
Chapter One General Introduction

1 | P a g e

∑

 برامجياتالالمـــادة : هندسة

 علي يحيىمدرس المادة : د.

جامعة بغداد

 ابن الهيثم -كلية التربية للعلوم الصرفة

 وبقسم علوم الحاس

 ةــــــــــــلة : الثالثـــالمرح

 المسائية /الدراسة: الصباحية
 2019-2018العام الدراسي :

Chapter One General Introduction

2 | P a g e

Chapter one

Introduction

Chapter One General Introduction

3 | P a g e

 Definition

Computer software is the product that software professionals build and

then support over the long term. It includes the following:

(1) Instructions (computer programs) that when executed provide desired

 function and performance.

(2) Data structures that enable the programs to adequately manipulate

information.

(3) Documents that describe the operation and use of the programs.

 Software Types

There are two fundamentals types of software product:

1. Generic products: These are stand-alone systems that are produced

by a development organization and sold on the open market to any

customer who is able to buy them. Examples of this type of product

include software for PCs such as databases, word processors, drawing

packages and project management tools.

2. Customized (or bespoke) products: These are systems which are

commissioned by a particular customer. A software contractor develops

the software especially for that customer. Examples of this type of

software include control systems for electronic devices, systems written

to support a particular business process and air traffic control systems.

Chapter One General Introduction

4 | P a g e

Software Characteristics

To gain an understanding of software (and ultimately an understanding of

software engineering), it is important to examine the characteristics of

software that make it different from other things that human beings build.

Software is a logical rather than a physical system element. Therefore,

software has characteristics that are considerably different than those of

hardware:

1. Software is developed or engineered, it is not manufactured in the

classical sense

Although some similarities exist between software development and

hardware manufacture, the two activities are fundamentally different:

In both activities, high quality is achieved through good design, but the

manufacturing phase for hardware can introduce quality problems that are

nonexistent (or easily corrected) for software. Both activities are

dependent on people, but the relationship between people applied and

work accomplished is entirely different. Both activities require the

construction of a "product" but the approaches are different. Software

costs are concentrated in engineering. This means that software projects

cannot be managed as if they were manufacturing projects.

2. Software doesn't "wear out"

 As time passes, the failure rate rises as hardware components suffer

from the cumulative affects of dust, vibration, abuse, temperature

extremes, and many other environmental maladies. Stated simply, the

hardware begins to wear out.

Chapter One General Introduction

5 | P a g e

Software is not susceptible to the environmental maladies that cause

hardware to wear out.

 However, the implication is clear—software doesn't wear out.

 But it does deteriorate!

 Another aspect of wear illustrates the difference between hardware and

software. When a hardware component wears out, it is replaced by a

spare part. There are no software spare parts. Every software failure

indicates an error in design or in the process through which design was

translated into machine executable code. Therefore, software

maintenance involves considerably more complexity than hardware

maintenance.

3. Although the industry is moving toward component-based

construction, most software continues to be custom built

Consider the manner in which the control hardware for a computer-based

product is designed and built. The design engineer draws a simple

schematic of the digital circuitry, does some fundamental analysis to

assure that proper function will be achieved, and then goes to the shelf

where catalogs of digital components exist. Each integrated circuit has a

part number, a defined and validated function, a well-defined interface,

and a standard set of integration guidelines. After each component is

selected, it can be ordered off the shelf.

As an engineering discipline evolves, a collection of standard design

components is created. Standard screws and off-the-shelf integrated

circuits are only two of thousands of standard components that are used

by mechanical and electrical engineers as they design new systems. The

reusable components have been created so that the engineer can

concentrate on the truly innovative elements of a design, that is, the

Chapter One General Introduction

6 | P a g e

parts of the design that represent something new. In the hardware world,

component reuse is a natural part of the engineering process. In the

software world, it has only begun to be achieved on a broad scale.

A software component should be designed and implemented so that it can

be reused in many different programs.

Modern reusable components encapsulate both data and the processing

applied to the data, enabling the software engineer to create new

applications from reusable parts. For example, today's user interfaces are

built using reusable components that enable the creation of graphics

windows, pull-down menus, and a wide variety of interaction

mechanisms. The data structure and processing detail required to build

the interface are contained with a library of reusable components for

interface construction.

 Software Applications

 There are seven categories of computer software:

1. System Software

System software is a collection of programs written to service

other programs. Some system software (e.g., compilers, editors, and file

management utilities) process complex, but determinate, information

structures. Other systems applications (e.g., operating system

components, drivers, telecommunications processors) process largely

indeterminate data. In either case, the system software area is

characterized by (heavy interaction with computer hardware; heavy

usage by multiple users; concurrent operation that requires scheduling,

Chapter One General Introduction

7 | P a g e

resource sharing, and sophisticated process management; complex data

structures; and multiple external interfaces).

2. Application Software

Application software consists of standalone programs that solve a specific

business need. Application in this area process business or technical data

in a way that facilitates business operations or management / technical

decision-making. In addition to conventional data processing

applications, application software is used to control business functions in

real-time (e.g., point-of-sale transaction processing, real-time

manufacturing process control).

3. Engineering / Scientific Software

Engineering and scientific software have been characterized by "number

crunching" algorithms. Applications range from astronomy to

volcanology, from automotive stress analysis to space shuttle orbital

dynamics, and from molecular biology to automated manufacturing.

However, modern applications within the engineering/scientific area are

moving away from conventional numerical algorithms. Computer-aided

design, system simulation, and other interactive applications have begun

to take on real-time and even system software characteristics.

4. Embedded Software

Embedded software resides within a product or system and is used to

implement and control features and functions for the end-user and for the

system itself. Embedded software can perform limited and esoteric

functions (e.g., keypad control for a microwave oven) or provide

significant function and control capability (e.g., digital functions in an

Chapter One General Introduction

8 | P a g e

automobile such as fuel control, dashboard displays, and braking systems,

etc.).

5. Product-Line Software

Designed to provide a specific capability for use by many different

customers, product-line software can focus on a limited marketplace (e.g.,

inventory control products) or address mass consumer markets (e.g., word

processing, computer graphics, multimedia, entertainment, database

management, personal and business financial applications).

6. Web-Applications

The Web pages retrieved by a browser are software that incorporates

executable instructions (e.g., CGI, HTML, Perl, or Java), and data (e.g.,

hypertext and a variety of visual and audio formats). In essence, the

network becomes a massive computer providing an almost unlimited

software resource that can be accessed by anyone with a modem.

7. Artificial intelligence software

Artificial intelligence (AI) software makes use of non numerical

algorithms to solve complex problems that are not amenable to

computation or straightforward analysis. Applications within area include

robotics, expert systems, pattern recognition (image and voice), artificial

neural networks, Theorem proving, and game playing.

Software Crisis

The software crisis resulted directly from the introduction of third

generation computer hardware which based on integrated circuits. These

Chapter One General Introduction

9 | P a g e

machines were orders of magnitude more powerful than the second

generation machines and their power made unrealizable computer

applications a feasible proposition.

Early experience in building these systems showed that informal software

development was not good enough. Major projects were sometimes years

late. The software cost much more than predicated, was unreliable, was

difficult to maintain and performed poorly. Software development was in

crisis. Hardware costs were tumbling while software costs were rising

rapidly. New techniques and methods were needed to control the

complexity inherent in large software systems.

Many industry observers have characterized the problems associated with

software development as a "crisis".

 In 1968 a conference was held to discuss the "software crisis". During

this conference, the notion of "software engineering" was first proposed.

The crisis manifested itself in several ways:

- Projects running over-budget.

- Projects running over-time.

- Projects were unmanageable and code difficult to maintain.

- Software was very inefficient.

- Software was of low quality.

- Software often did not meet requirements.

- Software was never delivered.

http://en.wikipedia.org/wiki/Spaghetti_code
http://en.wikipedia.org/wiki/Software_optimization
http://en.wikipedia.org/wiki/Software_optimization
http://en.wikipedia.org/wiki/Vaporware

Chapter One General Introduction

10 | P a g e

Software Engineering

Software engineering is an engineering discipline that is concerned with

all aspects of software production from the early stages of system

specification to maintaining the system after it has gone into use.

In this definition, there are two key phrases:

1. Engineering discipline: Engineers make things work. They apply

theories, methods and tools where these appropriate, but they use the

selectively and always try to discover solutions to problems even when

there are no applicable theories and methods. Engineers also recognize

that they must work to organizational and financial constrains, so they

look for solutions within these constrains.

 2. All aspects of software production: Software engineering is not just

concerned with the technical processes of software development but also

with activities such as software project management and with the

development of tools, methods and theories to support software

production.

In general, software engineers adopt a systematic and organized approach

to their work, this is often the most effective way to produce high-quality

software.

The Characteristics Of Well-Designed Software System

The following attributes which any well-designed software system should

possess:

1. Maintainability: Software should be written in such a way that it may

evolve to meet the changing needs of customers.

Chapter One General Introduction

11 | P a g e

2. Dependability: Software dependability has a range of characteristics,

including reliability, security and safety. Dependable software should not

cause physical or economic damage in the event of system failure.

3. Efficiency: Software should not make wasteful use of system

resources such as memory and processor cycles. Efficiency therefore

includes responsiveness, processing time, memory utilization, etc.

4. Usability: Software must be usable, without undue effort, by the type

of user for whom it is designed. This means that it should have an

appropriate user interface and adequate documentation.

 The goals of software engineering

Software engineering aims to achieve the following goals:

1. Costs: It should reduce the cost of the development operation and

maintenance of the software.

2. Efficiency: The software produced in time expected within the limits

of available resources, the software that is produced runs within the time

expected for various computation to be completed, and produces the

correct output.

3. portability: The software system can be ported to other computers or

systems without major rewriting of the software. The software needs only

to be re-compiled in order to have probably working on the new machine

is considered to be very portable.

4. Maintenance: The software should maintainable because the software

is subject to regular change as a long-lifetime. It is important that the

Chapter One General Introduction

12 | P a g e

software is written and documented such a way that changes can be made

without undue costs.

5. Reliability: The reliability of a system is the probability, over a given

period of time, that the system will correctly deliver services as expected

by the user. An appropriate level of reliability is essential if a software is

to be of any use (in multi-user systems, the system performs it's function

even with other on the system).

6. Delivery on time: The high quality software should be produced

within predicated date.

7. The software should offer appropriate user interface: It is clear that

much software is not used to its full potential simply because the interface

which it offers make it difficult to use. The user interface designs take

into account the capabilities and background of the intended system users

and should be tailored accordingly.

Chapter Two SW Process Models

13 | P a g e

CHAPTER TWO

SW Process Models

Chapter Two SW Process Models

14 | P a g e

Introduction:

To solve actual problems in an industry setting, a software engineer or a

team of engineers must incorporate a development strategy that

encompasses the process, methods, and tools. This strategy is often

referred to as a process model or a software engineering paradigm. All

software processes include:

• Software Specification: the functionality of the software and

constraints on operation must be defined.

• Software Development (design and implementation): the

software to meet the specification must be produced.

• Software Validation: the software must be validated to ensure that

it does what the customer wants.

• Software Evolution: the software must evolve to meet changing

customer needs.

 A process model for software engineering is chosen based on the nature

of the project and application, the methods and tools to be used, and the

controls and deliverables that are required.

There are three generic process models that widely used in current

software engineering practice:

1. The Waterfall Model: This takes the fundamental process activities

of specification, development, validation and evolution and represent

them as separate process phases such as requirements specification,

software design, implementation, testing and so on.

2. Evolutionary development: This approach interleaves the activities of

specification, development and validation. An initial system is rapidly

Chapter Two SW Process Models

15 | P a g e

developed from abstract specifications. This is then refined with customer

input to produce a system that satisfies the customer needs. Evolutionary

models are iterative. A prototyping and spiral model, are examples of

evolutionary models.

3. Component-based software engineering: This approach is based on

the existence of a significant number of reusable components. The system

development process focuses on integrating these components into a

system rather than developing them from scratch.

The Waterfall Model

 The waterfall model, sometimes called the classic life cycle, is the oldest

and simplest model of software development process that views the

stages as successors to one another. It is called waterfall model because

the development stages proceed as a flow, with the diagram of phases.

looking a little like a waterfall. Figure (2.1) shows the waterfall model

stages. The following stage should not start until the previous stage has

finished. In practice, these stages overlap and feed information to each

other. The software process is not a simple linear model but involves a

sequence of iterations of the development activities.

The waterfall model should only be used when the requirements are well

understood and unlikely to change radically during system development.

Chapter Two SW Process Models

16 | P a g e

Waterfall Model Stages

 The principal stages of the model are:

1. Requirements Analysis and Definition: The system's services,

constrains and goals are established by consultation with system users.

They are then defined in detail and serve as a system specification.

2. System and Software Design: The system design process partitions

the requirements to either hardware or software systems. It establishes

overall system architecture. Software design involves identifying and

describing the fundamental software system abstractions and their

relationships.

3. Implementation and Unit Testing: During this stage, the software

design is realized as a set of programs or program units. Unit testing

involves verifying that each unit meets its specification.

4. Integration and System Testing: The individual program units or

programs are integrated and tested as a complete system to ensure that the

software requirements have been met. After testing, the software system

is delivered to the customer.

5. Operation and Maintenance: Normally this is the longest life-cycle

phase. The system is install and put into practical use. Maintenance

involves correcting errors which were not discovered in earlier stages of

the life cycle, improving the implementation of system units and

enhancing the system's services as new requirements are discovered.

Chapter Two SW Process Models

17 | P a g e

 Advantages

The advantages of the waterfall model are that documentation is produced

at each phase and that it fits with other engineering process models.

Figure (2.1): The waterfall model of software development stages

Disadvantages (problems) of Waterfall Model

Among the problems that are sometimes encountered when the waterfall

model is applied are:

1. Real projects rarely follow the sequential flow that the model proposes.

Although the linear model can accommodate iteration, it does so

indirectly. As a result, changes can cause confusion as the project team

proceeds.

Requirements
definition

System and
software design

Implementation
and unit testing

Integration and
system testing

Integration and
system testing

Chapter Two SW Process Models

18 | P a g e

2. It is often difficult for the customer to state all requirements explicitly.

The waterfall model requires this and has difficulty accommodating the

natural uncertainty that exists at the beginning of many projects.

 3. The customer must have patience. A working version of the

program(s) will not be available until late in the project time-span. A

major blunder, if undetected until the working program is reviewed, can

be disastrous.

 4. The linear nature of the classic life cycle leads to “blocking states” in

which some project team members must wait for other members of the

team to complete dependent tasks. In fact, the time spent waiting can

exceed the time spent on productive work.

 5. Today, software work is fast-paced and subject to a never-ending

stream of changes (to features, functions, and information content). The

waterfall model is often inappropriate for such work.

 Prototyping Model

The prototyping model is an iterative development process which an

example of evolutionary development model. It may offers the best

approach for the following cases:

 (a) Concentrates on experimenting with the customer requirements that

are poorly understood, and hence, develop a better requirements

definition for the system.

 (b) The developer may be unsure of the efficiency of an algorithm, the

adaptability of an operating system, or the form that human-machine

interaction should take.

Chapter Two SW Process Models

19 | P a g e

When implementing a prototype model, you first develop the parts of the

system you understand least, then you begin by developing the parts of

the system you understand best. See figure (2.2).

Prototyping Model Stages

1. Communication: The software engineer and customer meet and define

the overall objectives for the software, identify whatever requirements are

known, and outline areas where further definition is mandatory. The

customer and developer must agree that the prototype is built to serve as a

mechanism for defining requirements.

2. Quick design: The quick design focuses on a representation

of those aspects of the software that will be visible to the customer/end-

user (e.g., human interface layout or output display formats).

 3. Construction of prototype: The quick design leads to the

construction of a prototype, i.e., the prototype is deployed.

 4. Prototype evaluation: The prototype is evaluated by the

customer/user.

 5. Requirements refinement: Feedback used to refine requirements for

the software. Iteration occurs as the prototype is tuned to satisfy the needs

of the customer, while at the same time enabling the developer to better

understand what needs to be done.

 6. System engineering: Ideally, the prototype serves as a mechanism for

identifying software requirements. After all requirements have been

identified, then the next stages are started (design, construction, testing,

Chapter Two SW Process Models

20 | P a g e

Figure (2.2): Prototyping Model

Advantages of Using Prototype Model

In (1995), a study of (39) prototyping projects found that the benefits

(advantages) of using prototyping were:

1. Improved system usability.

2. A closer match of the system to users' needs.

3. Improved design quality.

4. Improved maintainability.

5. Reduce development effort

Chapter Two SW Process Models

21 | P a g e

Disadvantages of Using Prototype Model

Prototyping model can be problematic for the following reasons:

1. The customer sees what appears to be a working version of the

software, unaware that in the rush to get it working no one has considered

overall software quality or long-term maintainability.

2. The developer often makes implementation compromises in order to

get a prototype working quickly. An inappropriate operating system or

programming language may be used simply because it is available and

known; an inefficient algorithm may be implemented simply to

demonstrate capability.

3. It may be impossible to tune the prototype to meet some important

requirements that were ignored during prototype development, such as

performance, security, robustness and reliability.

4. Rapid change during development inevitably means that prototype is

undocumented. Only the design specification is the prototype code. This

is not good enough for long-term maintenance.

 The Incremental Model

The incremental model combines elements of the waterfall model applied

in an iterative fashion. Referring to Figure (2.3), the incremental model

applies linear sequences in a staggered fashion as calendar time

progresses. Each linear sequence produces a deliverable “increment” of

the software.

In an incremental development process, customers identify, in outline, the

services to provided by the system. They identify which of the services

Chapter Two SW Process Models

22 | P a g e

are most important and which are least important to them. A number of

delivery increments are then defined, with each increment providing a

sub-set of the system functionality.

Once an increment is completed and delivered, customers can put it into

service. As new increments are completed, they are integrated with

existing increments so that the system functionality improves with each

delivered increment.

For example, word-processing software developed using the incremental

 model might deliver basic file management, editing, and document

production functions in the first increment; more sophisticated editing

and document production capabilities in the second increment; spelling

and grammar checking in the third increment; and advanced page layout

capability in the fourth increment. It should be noted that the process

flow for any increment can incorporate the prototyping model.

Figure (2.3): The incremental model

Chapter Two SW Process Models

23 | P a g e

Advantages of Using Incremental Model

The incremental development process has a number of advantages:

1. Customers do not have to wait until the entire system is delivered

before they can gain value from it. The first increment satisfies their most

critical requirements so they can use the software immediately.

2. Customers can use the early increments as prototypes and gain

experience that informs their requirements for later system increments.

3. There is a lower risk overall project failure. Although problems may be

encountered in some increments, it is likely that will be successfully

delivered to the customer.

4. It is useful when staffing is unavailable for a complete implementation

by the business deadline that has been established for the project. Early

increments can be implemented with fewer people, then additional staff

(if required) can be added to implement the next increment.

The Spiral Model

The spiral model, originally proposed by Boehm (1988), is an

evolutionary software process model that couples the iterative nature of

prototyping with the controlled and systematic aspects of the waterfall

model. It provides the potential for rapid development of incremental

versions of the software. Rather than represent the software process as a

sequence of activities with some backtracking from one activity to

another, the process is represented as a spiral. As this process begins, the

software engineering team moves around the spiral in a clockwise

direction, beginning at the centre. Each loop in the spiral represent a

Chapter Two SW Process Models

24 | P a g e

phase of software process. Thus, the innermost loop might be concerned

with system feasibility, the next loop with requirements definition, the

next loop with system design and so on.

Figure (2.4: The Spiral Model

The Spiral Model Task Regions

Figure (2.4) depicts a spiral model that contains six task regions:

 • Customer communication—tasks required to establish effective

communication between developer and customer.

• Planning—tasks required to define resources, timelines, and other

project related information.

• Risk analysis—tasks required to assess both technical and management

risks.

Chapter Two SW Process Models

25 | P a g e

• Engineering—tasks required to build one or more representations of

the application.

• Construction and release—tasks required to construct, test, install, and

provide user support (e.g., documentation and training).

• Customer evaluation—tasks required to obtain customer feedback

based on evaluation of the software representations created during the

engineering stage and implemented during the installation stage.

Unlike other process models that end when Software is delivered, the

spiral model can be adapted to apply throughout the life of the Software.

Spiral Model Advantages

1. Focuses attention on reuse options.

2. Focuses attention on early error elimination.

3. Puts quality objectives up front.

4. Integrates development and maintenance.

5. Provides a framework for hardware/software development.

Spiral Model Problems

Like other paradigms, the spiral model is not a panacea, for many

reasons:

1-Contractual development often specifies process model and

deliverables in advance.

2-Requires risk assessment expertise and relies on this expertise for

success.

Chapter Two SW Process Models

26 | P a g e

3- It may be difficult to convince customers (particularly in contract

situations) that the evolutionary approach is controllable.

4-The model has not been used as widely as the prototyping paradigms.

Software Requirements Definitions and Analysis CHAPTER Three

27 | P a g e

CHAPTER THREE

Software Requirements

Definitions

 And

 Analysis

Software Requirements Definitions and Analysis CHAPTER Three

28 | P a g e

Requirements Definitions

The requirements for a system are the descriptions of the services

provided by the system and its operational constraints. These

requirements reflect the needs of customers for a system that helps solve

some problem such as controlling a device, placing an order or finding

information.

The process of finding out, analyzing, documented and checking these

services and constraints is called requirements engineering.

We need to write requirements at different levels of detail because

different types of readers use them in different ways. To distinguish

between them we can use the term user requirements to mean the high-

level abstract requirements and system requirements to mean the detailed

description of what the system should do.

User Requirements

 Are statements, in natural language with simple tables and diagrams

(that are easily understood), of what services the system is expected to

provide. Thus, they should be expressed in such a way that they are

understandable by non-specialist staff. They are intended for use by

people involved in using and procuring the system. The user requirements

for a system should describe the functional and non-functional

requirements so that they are understandable by system users without

detailed technical knowledge. They should avoid, as far as possible,

system design characteristics.

Software Requirements Definitions and Analysis CHAPTER Three

29 | P a g e

System Requirements

 System requirements are expanded versions of the user requirements that

are used by software engineers as the starting point for the system design.

They set out the system's functions, services and operational constraints

in detail, they may be written in a structured form of natural language (to

reduce ambiguity). The system requirements document (sometimes called

a functional specification) should be precise. They should define exactly

what is to be implemented. They may be used as part of the contract for

the implementation between the system buyer and the software

developers. Thus, they should be a complete and consistent specification

of the whole system.

Functional Requirement

 These are statements of services the system should provide, how the

system should react to particular inputs and how the system should

behave in particular situations. In other words, functional requirements

for a system describe what the system should do.

 Non-Functional Requirements

 As the name suggests, they are requirements that are not directly

concerned with specific functions delivered by the system. These are

constraints on the services or functions offered by the system. They

include timing constraints, constraints on the development process. Non-

functional requirements often apply to the system as a whole. They do not

usually just apply to individual system features or services.

Software Requirements Definitions and Analysis CHAPTER Three

30 | P a g e

Requirements Engineering (Software Specification) Processes

 They are the processes of understanding and defining what services are

required from the system and identifying the constraints on the system's

operation and development. It is necessary to understand requirements

before design and construction of a computer-based system can begin. To

accomplish this, a set of requirements engineering processes (tasks) are

conducted. Requirements engineering process includes a feasibility study,

requirements definition and analysis, requirements specification,

requirements validation and requirements management. The goal of

requirements engineering process is to create and maintain a system

requirements document.

The Software Requirements Document

The software requirements document (sometimes called the software

requirements specification or SRS) is the official statement of what the

system developers should implement. It should include both the user the

user requirements for a system and a detailed specification of the system

requirements. In some cases, the user and system requirements may be

integrated into a single description. In other cases, the user requirements

are defined in an introduction to the system requirements specification.

The software requirements document is the agreed statement of the

system requirements. It should be organized so that both system

customers and software developers can use it. The diversity of possible

users means that the requirements document has to compromise between

communicating the requirements to customers, defining the requirements

in precise detail for developers and testers, and including information

about possible system evolution. Information on anticipated changes can

help system designers avoid restrictive design decisions and help system

Software Requirements Definitions and Analysis CHAPTER Three

31 | P a g e

maintenance engineers who have to adapt the system to new

requirements.

The following diagram illustrates possible users of the requirements

document and how they use it:

 System test
engineers

 System
maintenance

 engineers

 Use the requirements to
understand the system and
the relationships between its
parts.

 Use the requirements to
develop validation tests for
the system.

System
Customers

 Managers

 System
engineers

 Use the requirements to
understand what system is to
developed .

 Use the requirements
document to plan a bid for the
system and to plan the system
development .

Specify the requirements and
read them to check that they
meet their needs. Customers
specify changes to the
requirements.

Software Requirements Definitions and Analysis CHAPTER Three

32 | P a g e

The structure for a requirement document is as follows:

1.Preface

This should define the expected readership of the document and describe

its history, including a rationale for the creation of a new version and a

summary of the changes made in each version.

2.Introduction

This should describe the need for the system, Briefly describe its

functions and explain how it will work with other systems. It should

describe how the system fits into the overall business or strategic

objectives of the organization using the software.

3.Glossary

This should define the technical terms used in the document.

4.User Requirements Definition

This section should describe the services provided for the user and the

non-functional system requirements. This description may use natural

language, diagrams and other notations that are understandable by

customers.

5.System Architecture

This should present a high-level overview of the anticipated system

architecture showing the distribution of functions across system modules.

6.System Requirements Specification

This should describe the functional and non-functional requirements in

more detail.

Software Requirements Definitions and Analysis CHAPTER Three

33 | P a g e

7.System-models

This should set out one or more system models showing the relationships

between the system components and the system and its environment.

These may be object models, data-flow models, data models.

8.System-Evolution

This should describe the fundamental assumptions on which the system is

based and anticipated changes due to hardware evolution, changing user

needs, etc.

9.Appendices

These should provide details, specific information which is related to the

application which is being developed. Examples of appendices that may

be included are hardware and database descriptions (hardware

requirements, database requirements).

10.Index

Several indexes to the document may be included. As well as a normal

alphabetic index, there may be an index of diagrams, an index of

functions, etc.

Requirements Analysis

Requirements analysis is the first technical step in the software process.

Requirements analysis is a software engineering task that bridges the gap

between system level requirements engineering and software design

(Figure3.1).Requirements analysis allows the software engineer

(sometimes called analyst or modeler in this role) to refine the software

allocation and build models of the data, functional, and behavioral

domains that will be treated by software.

Requirements analysis provides the software designer with a

Software Requirements Definitions and Analysis CHAPTER Three

34 | P a g e

representation of information, function, and behavior that can be

translated to data, architectural, interface, and component-level designs.

Software requirements analysis may be divided into five areas of effort:

(1) Problem recognition.

 (2) Evaluation.

 (3) Modeling.

 (4) Specification.

 (5) Review.

Figure (3.1): Analysis as a Bridge Between System Engineering and

Software Design

Software Requirements Definitions and Analysis CHAPTER Three

35 | P a g e

Analysis Principles

Over the past two decades, a large number of analysis modeling methods

have been developed. Investigators have identified analysis problems and

their causes and have developed a variety of modeling notations and

corresponding sets to overcome them. Each analysis method has a unique

point of view. However, all analysis methods are related by a set of

operational principles:

1. The information domain of a problem must be represented and

understood.

2. The functions that the software is to perform must be defined.

3. The behavior of the software (as a consequence of external events)

must be represented.

4. The models that depict information, function , and behavior must be

partitioned in a manner that uncovers detail in a layered (or hierarchical)

fashion.

 Analysis Modeling

 At a technical level, software engineering begins with a series of

modeling tasks that lead to a complete specification of requirements and a

comprehensive design representation for the software to be built.

Analysis Modeling Objectives

 The analysis model must achieve three primary objectives:

 (1) To describe what the customer requires,

Software Requirements Definitions and Analysis CHAPTER Three

36 | P a g e

 (2) To establish a basis for the creation of a software design,

 (3) To define a set of requirements that can be validated once the

software is built.

Analysis Modeling Approaches

Over the years many methods have been proposed for analysis modeling.

However, two now dominate:

1. Structure Analysis: This approach, is a widely used for analysis

modeling, considers data and the processes that transform the data as

separate entities. Data objects are modeled in a way that defines their

attributes and relationships. Processes that manipulate data objects are

modeled in a manner that shows how they transform data as data objects

flow through the system.

 2. Object-Oriented Analysis: This approach to analysis modeling

focuses on the definition of classes and the manner in which they

collaborate with one another to effect user requirements.

Structured Analysis

Is a model building activity, using notation that satisfied the operational

analysis principles, we create models that depict information (data and

control) content and flow, we partition the system functionality and

behaviorally, and we depict the essence of what must be built.

The Elements of Structured Analysis

The elements of structured analysis take the form as illustrated in

(figure 3.2):

Software Requirements Definitions and Analysis CHAPTER Three

37 | P a g e

(1) Data dictionary (D.D.): Is a repository that contains descriptions of

all data objects consumed or produced by the software.

 It is an organized listing of all data elements that are pertinent to the

system, with precise, rigorous definitions so that both user and system

analyst will have a common understanding of inputs, outputs,

components of stores and (even) intermediate calculations.

 The data dictionary has been proposed as a quasi-formal grammar for

describing the content of objects defined during structured analysis.

Most data dictionaries contain the following information:

• Name—the primary name of the data or control item, the data store or

an external entity.

• Alias—other names used for the first entry.

• Where-used/how-used—a listing of the processes that use the data or

control item and how it is used (e.g., input to the process, output from the

process, as a store, as an external entity.

• Content description—a notation for representing content.

• Supplementary information—other information about data types, preset

values (if known), restrictions or limitations, and so forth.

Software Requirements Definitions and Analysis CHAPTER Three

38 | P a g e

Figure (3.2): The Elements of Analysis Model Using Structured Analysis

 (2) The Entity Relation Diagram (ERD): The ERD is the notation that

is used to conduct the data modeling activity. It depicts relationships

between data objects. The primary purpose of the ERD is to represent

entities (data objects) and their relationships with one another. The

attributes of each data object noted in the ERD can be described using a

data object description.

Software Requirements Definitions and Analysis CHAPTER Three

39 | P a g e

(3) Data Object Description: The attributes of each data object noted in

the ERD can be described using a data object description.

(4) The Data Flow Diagram (DFD): A data flow diagram is a graphical

representation that depicts information flow and the transforms that are

applied as data move from input to output. A data flow diagram, also

known as a data flow graph or a bubble chart. The data flow diagram

may be used to represent a system or software at any level of abstraction.

 The DFD serves two purposes:

 (1) To provide an indication of how data are transformed as they move

through the system, and

 (2) To depict the functions (and sub functions) that transform the data

flow.

The DFD provides additional information that is used during the analysis

of the information domain and serves as a basis for the modeling of

function. A description of each function presented in the DFD is

contained in a process specification (PSPEC).

 (5) The Process Specification (PSPEC): The process specification

(PSPEC) is used to describe all flow model processes that appear at the

final level of refinement. The content of the process specification can

include narrative text, a program design language (PDL) description of

the process algorithm, mathematical equations, tables, diagrams, or

charts.

Software Requirements Definitions and Analysis CHAPTER Three

40 | P a g e

(6) The State Transition Diagram (STD): indicates how the system

behaves as a consequence of external events. To accomplish this, the

STD represents the various modes of behavior (called states) of the

system and the manner in which transitions are made from state to state.

The STD serves as the basis for behavioral modeling. The STD indicates

what actions (e.g., process activation) are taken as a consequence of a

particular event.

 (7) The Control Specification (CSPEC): It contains additional

information about the control aspects of the software. The CSPEC

describes the behavior of the system, but it gives us no information

about the inner working of the processes that are activated as a result of

this behavior. This information is provided by the process specification

(PSPEC). The control specification (CSPEC) represents the behavior of

the system (at the level from which it has been referenced) in two

different ways, (1) how the software behaves when an event or control

signal is sensed and (2) which processes are invoked as a consequence of

the occurrence of the event. The control specification (CSPEC) contains a

number of important modeling tools, for example, a process activation

table is used to indicate which processes are activated by a given event.

Software Requirements Definitions and Analysis CHAPTER Three

41 | P a g e

Data Modeling Concepts

Analysis modeling often begins with data modeling. The software

engineer or analyst defines all data objects that are processed within the

system, the relationships between the data objects, and other information

that is pertinent to the relationships. Most large software systems make

use of a large database of information, it is for the system being

developed. An important part of systems modeling is defining the data

processed by the system. These are sometimes called data models.

The most widely used data modeling technique is Entity-Relationship-

Diagram method (ERD). The ERD enables a software engineer to

identify data objects and their relationships using a graphical notation. In

the context of structured analysis, the ERD defines all data that are

entered, stored, transformed, and produced within an application.

The entity relationship diagram (ERD) focuses solely on data (and

therefore satisfies the first operational analysis principles), representing a

"data network" that exists for a given system. This approach to modeling

was first proposed in the mid-1970s by Chen, several variants have been

developed since then, all with the same basic form.

The data model consists of three interrelated pieces of information: the

data object, the attributes that describe the data object, and the

relationships that connect data objects to one another.

 Data Objects

A data object is a representation of almost any composite information

that must be understood by software. By composite information, we mean

something that has a number of different properties or attributes.

Software Requirements Definitions and Analysis CHAPTER Three

42 | P a g e

Therefore, width (a single value) would not be a valid data object, but

dimensions (incorporating height, width, and depth) could be defined as

an object.

A data object can be an external entity (e.g., anything that produces or

consumes information), a thing (e.g., a report or a display), an occurrence

(e.g., a telephone call) or event (e.g., an alarm), a role (e.g., salesperson),

an organizational unit (e.g., accounting department), a place (e.g., a

warehouse), or a structure (e.g., a file). For example, a person or a car

(Figure 3.3) can be viewed as a data object in the sense that either

can be defined in terms of a set of attributes. The data object description

incorporates the data object and all of its attributes.

Data objects (represented in bold) are related to one another. For

example, person can own car, where the relationship own connotes a

specific "connection” between person and car. The relationships are

always defined by the context of the problem that is being analyzed.

A data object encapsulates data only—there is no reference within a data

object to operations that act on the data, this distinction separates the data

object from the class or object defined as part of the object-oriented

approach.

Software Requirements Definitions and Analysis CHAPTER Three

43 | P a g e

Therefore, the data object can be represented as a table as shown in

(Figure 3. 4). The headings in the table reflect attributes of the object. In

this case, a car is defined in terms of make, model, ID number, body type,

color and owner. The body of the table represents specific instances of

the data object.

For example, a Chevy Corvette is an instance of the data object car

Figure (3.4): Tabular Representation of Data Objects

Software Requirements Definitions and Analysis CHAPTER Three

44 | P a g e

Data Attributes

Data attributes define the properties of a data object and take on one of

three different characteristics. They can be used to (1) name an instance

of the data object, (2) describe the instance, or (3) make reference to

another instance in another table.

In addition, one or more of the attributes must be defined as an

identifier—that is, the identifier attribute becomes a "key" when we want

to find an instance of the data object. In some cases, values for the

identifier(s) are unique, although this is not a requirement. Referring to

the data object car, a reasonable identifier might be the ID number.

The set of attributes that is appropriate for a given data object is

determined through an understanding of the problem context. The

attributes for car might serve well for an application that would be used

by a Department of Motor Vehicles, but these attributes would be useless

for an automobile company that needs manufacturing control software. In

the latter case, the attributes for car might also include ID number, body

type and color, but many additional attributes (e.g., interior code, drive

train type, trim package designator, transmission type) would have to be

added to make car a meaningful object in the manufacturing control

context.

Relationships

Data objects are connected to one another in different ways. Consider

two data objects, person and car. These objects can be represented using

the simple notation illustrated in Figure 3.5a. A connection is established

between person and car because the two objects are related. But what are

Software Requirements Definitions and Analysis CHAPTER Three

45 | P a g e

the relationships? To determine the answer, we must understand the role

of people (owners, in this case) and cars within the context of the

software to be built. We can define a set of object/relationship pairs that

define the relevant relationships. For example,

• A person owns a car.

• A person is insured to drive a car.

Figure (3.5): Relationships Between Data Objects

Cardinality and Modality

The elements of data modeling—data objects, attributes, and

relationships— provide the basis for understanding the information

domain of a problem. However, additional information related to these

basic elements must also be understood.

We have defined a set of objects and represented the object/relationship

pairs that bind them. But a simple pair that states: object X relates to

object Y does not provide enough information for software engineering

purposes. We must understand how many occurrences of object X are

related to how many occurrences of object Y. This leads to a data

modeling concept called cardinality.

person car

person car

(a) A basic connection between data objects

(b) Relationships between data objects

Software Requirements Definitions and Analysis CHAPTER Three

46 | P a g e

Cardinality

Cardinality is the maximum number of objects that can participate in a

relationship.

Cardinality is usually expressed as simply 'one' or 'many.' For example:

• One-to-one (l:l)—An occurrence of [object] 'A' can relate to only one

occurrence of [object] 'B,' and an occurrence of 'B' can relate to only one

occurrence of 'A.'

• One-to-many (l:N)—One occurrence of [object] 'A' can relate to one or

many occurrences of [object] 'B,' but an occurrence of 'B' can relate to

only one occurrence of 'A.'

 For example, a mother can have many children, but a child can have only

one mother.

• Many-to-many (M:N)—An occurrence of [object] 'A' can relate to one

or more occurrences of 'B,' while an occurrence of 'B' can relate to one or

more occurrences of 'A.‘ For example, an uncle can have many nephews,

while a nephew can have many uncles.

 Modality

The modality of a relationship is 0 if there is no explicit need for the

relationship to occur or the relationship is optional. The modality is 1 if

an occurrence of the relationship is mandatory.

To illustrate, consider software that is used by a local telephone company

to process requests for field service. A customer indicates that there is a

problem. If the problem is diagnosed as relatively simple, a single repair

Software Requirements Definitions and Analysis CHAPTER Three

47 | P a g e

action occurs. However, if the problem is complex, multiple repair

actions may be required. Figure (3.6) illustrates the relationship,

cardinality, and modality between the data objects customer and repair

action.

Figure (3.6): Cardinality and Modality

Referring to the figure (3.6), a one to many cardinality relationship is

established. That is, a single customer can be provided with zero or many

repair actions. The symbols on the relationship connection closest to the

data object rectangles indicate cardinality. The vertical bar indicates one

and the three-pronged fork indicates many.

Modality is indicated by the symbols that are further away from the data

object rectangles. The second vertical bar on the left indicates that there

must be a customer for a repair action to occur. The circle on the right

indicates that there may be no repair action required for the type of

problem reported by the customer.

Software Requirements Definitions and Analysis CHAPTER Three

48 | P a g e

Entity-Relationship Diagrams

The object/relationship pair is the cornerstone of the data model. These

pairs can be represented graphically using the entity/relationship

diagram. The ERD was originally proposed by Peter Chen for the

design of relational database systems and has been extended by others. A

set of primary components are identified for the ERD: data objects,

attributes, relationships, and various type indicators. The primary purpose

of the ERD is to represent data objects and their relationships. Data

objects are represented by a labeled rectangle. Relationships are indicated

with a labeled line connecting objects. In some variations of the ERD, the

connecting line contains a diamond that is labeled with the relationship.

Connections between data objects and relationships are established using

a variety of special symbols that indicate cardinality and modality.The

relationship between the data objects car and manufacturer would be

represented as shown in Figure(3.7). One manufacturer builds one or

many cars. Given the context implied by the ERD, the specification of the

data object car (data object table in Figure 3.7) would be radically

different from the earlier specification (Figure 3.4). By examining the

symbols at the end of the connection line between objects, it can be seen

that the modality of both occurrences is mandatory (the vertical lines).

Software Requirements Definitions and Analysis CHAPTER Three

49 | P a g e

Figure (3.7): A Simple ERD and Data Object Table

Expanding the model, we represent a grossly oversimplified ERD (Figure

3.8) of the distribution element of the automobile business. New data

objects, shipper and dealership, are introduced. In addition, new

relationships—transports, contracts, licenses, and stocks—indicate how

the data objects shown in the figure associate with one another. Tables for

each of the data objects contained in the ERD would have to be

developed.

Figure (3.8): An Expanded ERD.

Software Requirements Definitions and Analysis CHAPTER Three

50 | P a g e

Creating an Entity/Relationship Diagram

The entity/relationship diagram enables a software engineer to fully

specify the data objects that are input and output from a system, the

attributes that define the properties of these objects, and their

relationships. Like most elements of the analysis model, the ERD is

constructed in an iterative manner. The following approach is taken:

1. During requirements elicitation, customers are asked to list the “things”

that the application or business process addresses. These “things” evolve

into a list of input and output data objects as well as external entities that

produce or consume information.

2. Taking the objects one at a time, the analyst and customer define

whether or not a connection (unnamed at this stage) exists between the

data object and other objects.

3. Wherever a connection exists, the analyst and the customer create one

or more object/relationship pairs.

4. For each object/relationship pair, cardinality and modality are

explored.

5. Steps 2 through 4 are continued iteratively until all object/relationships

have been defined. It is common to discover omissions as this process

continues. New objects and relationships will invariably be added as the

number of iterations grows.

6. The attributes of each entity are defined.

7. An entity relationship diagram is formalized and reviewed.

8. Steps 1 through 7 are repeated until data modeling is complete.

Software Requirements Definitions and Analysis CHAPTER Three

51 | P a g e

 Data Flow Diagram

Structured analysis began as an information flow modeling technique. A

computer-based system is represented as an information transform as

shown in Figure (3.9). A rectangle is used to represent an external entity;

that is, a system element (e.g., hardware, a person, another program) or

another system that produces information for transformation by the

software or receives information produced by the software. A circle

(sometimes called a bubble) represents a process or transform that is

applied to data (or control) and changes it in some way. An arrow

represents one or more data items (data objects). All arrows on a data

flow diagram should be labeled.

The double line represents a data store—stored information that is used

by the software. The simplicity of DFD notation is one reason why

structured analysis techniques are widely used.

Figure (3.9): Information Flow Model.

Software Requirements Definitions and Analysis CHAPTER Three

52 | P a g e

A data flow diagram is a graphical representation that depicts information

flow and the transforms that are applied as data move from input to

output. The basic form of a data flow diagram, also known as a data flow

graph or a bubble chart, is illustrated in Figure (3.9).

The data flow diagram may be used to represent a system or software at

any level of abstraction. In fact, DFDs may be partitioned into levels that

represent increasing information flow and functional detail. Therefore,

the DFD provides a mechanism for functional modeling as well as

information flow modeling. In so doing, it satisfies the second operational

analysis principle (i.e., creating a functional model).

A level 0 DFD, also called a fundamental system model or a context

model, represents the entire software element as a single bubble with

input and output data indicated by incoming and outgoing arrows,

respectively. Additional processes (bubbles) and information flow paths

are represented as the level 0 DFD is partitioned to reveal more detail.

For example, a level 1 DFD might contain five or six bubbles with

interconnecting arrows. Each of the processes represented at level 1 is a

sub function of the overall system depicted in the context model.

As we noted earlier, each of the bubbles may be refined or layered to

depict more detail. Figure (3.10) illustrates this concept. A fundamental

model for system F indicates the primary input is A and ultimate output is

B. We refine the F model into transforms f1 to f7. Note that information

flow continuity must be maintained; that is, input and output to each

refinement must remain the same. This concept, sometimes called

balancing, is essential for the development of consistent models. Further

refinement of f4 depicts detail in the form of transforms f41 to f45. Again,

the input (X, Y) and output (Z) remain unchanged.

Software Requirements Definitions and Analysis CHAPTER Three

53 | P a g e

Figure (3.10): Information Flow Refinements.

DFD graphical notation must be augmented with descriptive text. A

process specification

(PSPEC) can be used to specify the processing details implied by a

bubble within a DFD. The process specification describes the input to a

function, the algorithm that is applied to transform the input, and the

output that is produced. In addition, the PSPEC indicates restrictions and

limitations imposed on the process (function), performance characteristics

that are relevant to the process, and design constraints that may influence

the way in which the process will be implemented.

 Creating a Data Flow Diagram

A few simple guidelines can aid immeasurably during derivation of a data

flow diagram:

 (1) The level 0 data flow diagram should depict the software/system as a

Software Requirements Definitions and Analysis CHAPTER Three

54 | P a g e

single bubble;

 (2) Primary input and output should be carefully noted;

 (3) Refinement should begin by isolating candidate processes, data

objects, and stores to be represented at the next level;

 (4) All arrows and bubbles should be labeled with meaningful names;

 (5) Information flow continuity must be maintained from level to level,

 (6) One bubble at a time should be refined.

CHPATER Four Software Design

55 | P a g e

CHAPTER FOUR

Software Design

CHPATER Four Software Design

56 | P a g e

Design Engineering

Design engineering encompasses the set of principles, concepts, and

practices that lead to the development of a high-quality system or

product. The goal of design is to create a model a model of software that

will implement all customer requirements correctly and bring delight to

those who use it. Design engineering for computer software changes

continually as new methods, better analysis, and broader understanding

evolve.

 Software Design

Software design sits at the technical kernel of software engineering and is

applied regardless of the software process model that is used. Beginning

once software requirements have been analyzed and specified, software

design is the first of three technical activities—design, code generation,

and test—that are required to build and verify the software. Each activity

transforms information in a manner that ultimately results in validated

computer software. During design, progressive refinements of data

structure, architecture, interfaces, and procedural detail of software

components are developed, reviewed, and documented. Design results in

representations of software that can be assessed for quality. Software

design is an iterative process through which requirements are translated

into a “blueprint” for constructing the software.

 The Design Models

Each of the elements of the analysis model provides information that is

necessary to create the four design models required for a complete

CHPATER Four Software Design

57 | P a g e

specification of design. The flow of information during software design is

illustrated in Figure (4.1).

Software requirements, manifested by the data, functional, and behavioral

models, feed the design task. Using one of a number of design methods

the design task produces a data design, an architectural design, an

interface design, and a component design.

(1) Data Design

Data design translates the data objects defined in the analysis model into

data structures that reside within the software. The attributes that describe

the object, the relationships between data objects and their use within the

program all influence the choice of data structures.

Like other software engineering activities, data design (sometimes

referred to as data architecting) creates a model of data and/or

information that is represented at a high level of abstraction (the

customer/user’s view of data).

The data objects defined during software requirements analysis are

modeled using entity/relationship diagrams and the data dictionary. The

data design activity translates these elements of the requirements model

into data structures at the software component level and, when necessary,

a database architecture or a data warehouse at the application level.

 (2) Architectural Design

The architectural design defines the relationship between major structural

elements of the software. It depicts the structure and organization of

software components, their properties, and the connections between them.

CHPATER Four Software Design

58 | P a g e

Software components include program modules and the various data

representations that are manipulated by the program. Therefore, data

design is an integral part of the derivation of the software architecture.

The primary objective of architectural design is to develop a modular

program structure and represent the control relationship between

modules, in addition, architectural design melds program structure and

data structure, defining interface that enables data flow throughout the

program.

The architectural design for software is the equivalent to the floor plan of

a house. The floor plan depicts the overall layout of the rooms, their size,

shape, and relationship to one another, and the doors and windows that

allow movement into and out of the rooms. The floor plan gives us an

overall view of the house. Architectural design elements give us an

overall view of the software.

 (3) Interface Design

The interface design describes how the software communicates within

itself, with systems that interoperate with it, and with humans who use it.

An interface implies a flow of information (e.g., data and/or control) and

a specific type of behavior. Therefore, data and control flow diagrams

provide much of the information required for interface design. Interface

design focuses on three areas of concern:

(a) the design of interfaces between software components,

 (b) the design of interfaces between the software and other nonhuman

producers and consumers of information (i.e., other external entities),

CHPATER Four Software Design

59 | P a g e

(c) the design of the interface between a human (i.e., the user) and the

computer.

Three important principles guide the design of effective user interfaces:

(a) place the user in control,

(b) reduce the user’s memory load, and

(c) make the interface consistent.

User interface design begins with the identification of user, task, and

environmental requirements. Task analysis is a design activity that

defines user tasks and actions.

 (4) Component-Level Design

 component-level design, also called procedural design, occurs after data,

architectural, and interface designs have been established.

The component-level design transforms structural elements of the

software architecture into a procedural description of software

components. Information obtained from the PSPEC, CSPEC, and STD

serve as the basis for component design.

Component-level design depicts the software at a level of abstraction that

is very close to code.

At the component level, the software engineer must represent data

structures, interfaces, and algorithms in sufficient detail to guide in the

generation of programming language source code. To accomplish this,

the designer uses one of a number of design notations that represent

component-level detail in either graphical, tabular, or text-based formats.

CHPATER Four Software Design

60 | P a g e

Structured programming is a procedural design philosophy that constrains

the number and type of logical constructs used to represent algorithmic

detail. The intent of structured programming is to assist the designer in

defining algorithms that are less complex and therefore easier to read,

test, and maintain.

Figure (4.1): Translating the Analysis Model into a Software Design

Component-Level Design Techniques

 Component-level design depicts the software at a level of abstraction that

is very close to code. At the component level, the software engineer must

represent data structures, interfaces, and algorithms in sufficient detail to

guide in the generation of programming language source code. To

accomplish this, the designer uses one of a number of design notations

that represent component-level detail, the following are some of these

techniques:

CHPATER Four Software Design

61 | P a g e

 a. Structured Programming

 Structured programming is a design technique that constrains logic flow

to a three constructs: sequence, condition, and repetition, used to

represent algorithmic detail.

The intent of structured programming is to assist the designer to limit the

procedural design of software to a small number of predictable

operations, defining algorithms that are less complex and therefore easier

to read, test, and maintain.

 b. Graphical Design Notation

 The activity diagram allows a designer to represent sequence, condition,

and repetition-all elements of structured programming-by using a

flowchart.

"A picture is worth a thousand words," but it's rather important to know

which picture and which 1000 words. There is no question that graphical

tools, such as the flowchart, provide useful pictorial patterns that readily

depict procedural detail. However, if graphical tools are misused, the

wrong picture may lead to the wrong software.

A flowchart is quite simple pictorially. A box is used to indicate a

processing step. A diamond represents a logical condition, and arrows

show the flow of control. Figure (4.2) illustrates three structured

constructs. The sequence is represented as two processing boxes

connected by an line (arrow) of control. Condition, also called if- then-

else, is depicted as a decision diamond that if true, causes then-part

processing to occur, and if false, invokes else-part processing. Repetition

is represented using two slightly different forms. The do while tests a

CHPATER Four Software Design

62 | P a g e

condition and executes a loop task repetitively as long as the condition

holds true. A repeat until executes the loop task first, then tests a

condition and repeats the task until the condition fails.

Figure (4.2): Flowchart constructs

c. Tabular Design Notation

 In many software applications, a module may be required to evaluate a

complex combination of conditions and select appropriate actions based

on these conditions. Decision tables provide a notation that translates

actions and conditions (described in a processing narrative) into a tabular

form. The table is difficult to misinterpret and may even be used as a

machine readable input to a table driven algorithm.

Decision table organization is illustrated in Figure (4.3) Referring to the

figure, the table is divided into four sections. The upper left-hand

quadrant contains a list of all conditions. The lower left-hand quadrant

contains a list of all actions that are possible based on combinations of

conditions. The right-hand quadrants form a matrix that indicates

condition combinations and the corresponding actions that will occur

CHPATER Four Software Design

63 | P a g e

for a specific combination. Therefore, each column of the matrix may be

interpreted as a processing rule.

Figure (4.3): Resultant Decision Table

d. Program Design Language (PDL)

 Program design language (PDL), also called structured English or

pseudocode, is "a pidgin language in that it uses the vocabulary of one

language (i.e., English) and the overall syntax of another (i.e., a

structured programming language)".

At first glance PDL looks like a modern programming language. The

difference between PDL and a real programming language lies in the use

of narrative text (e.g., English) embedded directly within PDL statements.

Given the use of narrative text embedded directly into a syntactical

structure, PDL cannot be compiled (at least not yet). However, PDL tools

currently exist to translate PDL into a programming language “skeleton”

and/or a graphical representation (e.g., a flowchart) of design. These tools

also produce nesting maps, a design operation index, cross-reference

tables, and a variety of other information.

CHPATER Four Software Design

64 | P a g e

A program design language may be a simple transposition of a language

such as Ada or C. Alternatively, it may be a product purchased

specifically for procedural design.

 PDL Example

To illustrate the use of PDL, we present an example of a procedural

design for the SafeHome security system software. The system monitors

alarms for fire, smoke, burglar, water, and temperature (e.g., furnace

breaks while homeowner is away during winter) and produces an alarm

bell and calls a monitoring service, generating a voice-synthesized

message. In the PDL that follows, we illustrate some of the important

constructs noted in earlier sections.

Recall that PDL is not a programming language. The designer can adapt

as required without worry of syntax errors. However, the design for the

monitoring software would have to be reviewed (do you see any

problems?) and further refined before code could be written. The

following PDL defines an elaboration of the procedural design for the

security monitor component.

PROCEDURE security.monitor;

INTERFACE RETURNS system.status;

TYPE signal IS STRUCTURE DEFINED

name IS STRING LENGTH VAR;

address IS HEX device location;

 bound.value IS upper bound SCALAR;

CHPATER Four Software Design

65 | P a g e

message IS STRING LENGTH VAR;

END signal TYPE;

TYPE system.status IS BIT (4);

TYPE alarm.type DEFINED

smoke.alarm IS INSTANCE OF signal;

fire.alarm IS INSTANCE OF signal;

water.alarm IS INSTANCE OF signal;

temp.alarm IS INSTANCE OF signal;

burglar.alarm IS INSTANCE OF signal;

TYPE phone.number IS area code + 7-digit number;

•

•

•

initialize all system ports and reset all hardware;

CASE OF control.panel.switches (cps):

WHEN cps = "test" SELECT

CALL alarm PROCEDURE WITH "on" for test.time in seconds;

WHEN cps = "alarm-off" SELECT

CHPATER Four Software Design

66 | P a g e

CALL alarm PROCEDURE WITH "off";

WHEN cps = "new.bound.temp" SELECT

CALL keypad.input PROCEDURE;

WHEN cps = "burglar.alarm.off" SELECT deactivate signal

[burglar.alarm];

DEFAULT none;

ENDCASE

REPEAT UNTIL activate.switch is turned off

reset all signal.values and switches;

DO FOR alarm.type = smoke, fire, water, temp, burglar;

READ address [alarm.type] signal.value;

IF signal.value > bound [alarm.type]

THEN phone.message = message [alarm.type];

set alarm.bell to "on" for alarm.timeseconds;

PARBEGIN

CALL alarm PROCEDURE WITH "on", alarm.time in seconds;

CALL phone PROCEDURE WITH message [alarm.type], phone.number;

ENDPAR

ELSE skip

CHPATER Four Software Design

67 | P a g e

ENDIF

ENDFOR

ENDREP

END security.monitor

Effective Modular Design

Modularity has become an accepted approach in all engineering

disciplines. A modular design reduces complexity, facilitates change (a

critical aspect of software maintainability), and results in easier

implementation by encouraging parallel development of different parts of

a system.

 1. Functional Independence

The concept of functional independence is a direct outgrowth of

modularity and the concepts of abstraction and information hiding.

functional independence is a key to good design, and design is the key

to software quality.

2. Cohesion

A cohesive module performs a single task within a software procedure,

requiring little interaction with procedures being performed in other parts

of a program.

Stated simply, a cohesive module should (ideally) do just one thing.

CHPATER Four Software Design

68 | P a g e

3. Coupling

Coupling is a measure of interconnection among modules in a software

structure. Coupling depends on the interface complexity between

modules, the point at which entry or reference is made to a module, and

what data pass across the interface.

Coupling is a qualitative indication of the degree to which a module is

connected to other modules and to the outside world.

 Object-Oriented Design

Object-oriented design is an approach to software design where the

fundamental components in the design represent objects with their own

private state as well as represent operations rather than functions.

In design models above, we introduced the concept of a design pyramid

for conventional software.

Four design layers—data, architectural, interface, and component level—

were defined and discussed. For object-oriented systems, we can also

define a design pyramid, but the layers are a bit different. Referring to

Figure (4.4), the four layers of the OO design pyramid are:

The subsystem layer contains a representation of each of the subsystems

that enable the software to achieve its customer-defined requirements and

to implement the technical infrastructure that supports customer

requirements.

The class and object layer contains the class hierarchies that enable the

system to be created using generalizations and increasingly more targeted

CHPATER Four Software Design

69 | P a g e

specializations. This layer also contains representations of each object.

The message layer contains the design details that enable each object to

communicate with its collaborators. This layer establishes the external

and internal interfaces for the system.

The responsibilities layer contains the data structure and algorithmic

design for all attributes and operations for each object. management

facilities. Object design focuses on the internal detail of individual

classes, defining attributes, operations, and message detail.

What is the work product? An OO design model encompasses software

architecture, user interface description, data management components,

task management facilities, and detailed descriptions of each class to be

used in the system. >> How do I ensure that I’ve done it right? At each

stage, the elements of the object-oriented design model are reviewed for

clarity, correctness, completeness, and consistency with customer

requirements and with one another.

Figure (4.4): The OO Design Pyramid

CHPATER Four Software Design

70 | P a g e

Real-Time Design Concepts

Computers are used to control a wide range of systems from simple

domestic machine to entire manufacturing plants. These computers

interact directly with hardware devices. The software in these systems is

embedded real-time software that must react to events generated by the

hardware and issue control signals in response to these events. It is

embedded in some larger hardware system and must respond, in real

time, to events from the system's environment.

Real-time embedded systems are different from other types of software

systems. Their correct functioning is dependent on the system responding

to events within a short time interval.

A real-time system is a software system that must respond to events in

real time. Its correctness does not just depend on the results it produces

but also on the time when these results are produced.

Part of the system design process involves deciding which system

capabilities are to be implemented in software and which in hardware.

For many real-time systems embedded in consumer products, such as the

systems in cell phones, the costs and power consumption of the hardware

are critical. Specific processors designed to support embedded systems

may be used and, for some systems, special-purpose hardware may have

to be designed and built.

This means that a top-down design process – where the design starts with

an abstract model that is decomposed and developed in a series of stages-

is impractical for most real-time systems. Low –level decisions on

hardware, support software and system timing must be considered early

in the process. These limit the flexibility of system designers and may

CHPATER Four Software Design

71 | P a g e

mean that additional software functionality, such as battery and power

management, is required.

Top-Down Design Method

In the top-down model an overview of the system is formulated, without

going into detail for any part of it. Each part of the system is then refined

by designing it in more detail. Each new part may then be refined again,

defining it in yet more detail until the entire specification is detailed

enough to begin development.

Top-down approaches emphasis planning, and a complete understanding

of the system. It is inherent that no coding can begin until a sufficient

level of detail has been reached on at least some part of the system.

Top-down design is a strategy that supports the iterative development. It

also supports the concepts of abstraction and refinement.

 Bottom-Up Design Method

In bottom-up design, individual parts of the system are specified in detail,

and may even be coded. The parts are then linked together to form larger

components, which are in turn linked until a complete system is arrived.

This is a designed methodology in which the lowest level portion of

design is completed first. Only after the low-level building blocks are

completed then the higher-level hierarchical blocks in the design will be

finished.

CHAPTER Five Unified Modeling Language

72 | P a g e

CHAPTER FIVE

Unified Modeling

Language

(UML)

CHAPTER Five Unified Modeling Language

73 | P a g e

Modeling

• Describing a system at a high level of abstraction

– A model of the system

– Used for requirements and specifications

– Is it necessary to model software systems?

Object Oriented Modeling

CHAPTER Five Unified Modeling Language

74 | P a g e

What is UML?

 UML stands for “Unified Modeling Language”

• It is a industry-standard graphical language for specifying,

visualizing, constructing, and documenting the artifacts of software

systems

• The UML uses mostly graphical notations to express the OO

analysis and design of software projects.

• Simplifies the complex process of software design

Why UML for Modeling

• Use graphical notation to communicate more clearly than natural

language (imprecise) and code(too detailed).

• Help acquire an overall view of a system.

• UML is not dependent on any one language or technology.

• UML moves us from fragmentation to standardization.

CHAPTER Five Unified Modeling Language

75 | P a g e

History of UML

Types of UML Diagrams

1. Use Case Diagram

2. Class Diagram

3. Sequence Diagram

4. Collaboration Diagram

5. State Diagram

CHAPTER Five Unified Modeling Language

76 | P a g e

1. Use Case Diagram

Used for describing a set of user scenarios

Mainly used for capturing user requirements

Work like a contract between end user and software developers

 Use Case Diagram (core components)

Actors: A role that a user plays with respect to the system,

including human users and other systems. e.g., inanimate physical

objects (e.g. robot); an external system that needs some

information from the current system.

Use case: A set of scenarios that describing an interaction between

a user and a system, including alternatives.

System boundary: rectangle diagram representing the boundary between

the actors and the system.

Use Case Diagram(core relationship)

Association: communication between an actor and a use case;

Represented by a solid line.

Generalization: relationship between one general use case and a special

use case (used for defining special alternatives)

Represented by a line with a triangular arrow head toward the parent use

case.

CHAPTER Five Unified Modeling Language

77 | P a g e

Include: a dotted line labeled <<include>> beginning at base use case

and ending with an arrows pointing to the include use case. The include

relationship occurs when a chunk of behavior is similar across more than

one use case. Use “include” instead of copying the description of that

behavior.

 <<include>>

Extend: a dotted line labeled <<extend>> with an arrow toward the base

case. The extending use case may add behavior to the base use case. The

base class declares “extension points”.

 <<extend>>

•

•

•

•

CHAPTER Five Unified Modeling Language

78 | P a g e

- A generalized description of how a system will be used.

- Provides an overview of the intended functionality of the system.

CHAPTER Five Unified Modeling Language

79 | P a g e

• Pay Bill is a parent use case and Bill Insurance is the child use

case. (generalization)

• Both Make Appointment and Request Medication include

Check Patient Record as a subtask.(include)

• The extension point is written inside the base case

Pay bill; the extending class Defer payment adds the behavior of this

extension point. (extend).

CHAPTER Five Unified Modeling Language

80 | P a g e

2. Class Diagram

- Used for describing structure and behavior in the use cases

- Provide a conceptual model of the system in terms of entities and

their relationships

- Used for requirement capture, end-user interaction

- Detailed class diagrams are used for developers

Class Representation

• Each class is represented by a rectangle subdivided into three

compartments

– Name

– Attributes

– Operations

• Modifiers are used to indicate visibility of attributes and operations.

– ‘+’ is used to denote Public visibility (everyone)

– ‘#’ is used to denote Protected visibility (friends and derived)

– ‘-’ is used to denote Private visibility (no one)

• By default, attributes are hidden and operations are visible.

An example of Class

CHAPTER Five Unified Modeling Language

81 | P a g e

OO Relationships

• There are two kinds of Relationships

– Generalization (parent-child relationship)

– Association (student enrolls in course)

• Associations can be further classified as

– Aggregation

– Composition

OO Relationships: Association

• Represent relationship between instances of classes

– Student enrolls in a course

– Courses have students

– Courses have exams

– Etc.

CHAPTER Five Unified Modeling Language

82 | P a g e

• Association has two ends

– Role names (e.g. enrolls)

– Multiplicity (e.g. One course can have many

students)

– Navigability (unidirectional, bidirectional)

Association: Multiplicity and Roles

CHAPTER Five Unified Modeling Language

83 | P a g e

CHAPTER Five Unified Modeling Language

84 | P a g e

CHAPTER Five Unified Modeling Language

85 | P a g e

Aggregation vs. Composition

• Composition is really a strong form of aggregation

• components have only one owner

• components cannot exist independent of their

owner

• components live or die with their owner

e.g. Each car has an engine that can not be shared with other

cars.

CHAPTER Five Unified Modeling Language

86 | P a g e

• Aggregations may form "part of" the aggregate, but

may not be essential to it. They may also exist

independent of the aggregate.

 e.g. Apples may exist independent of the bag.

CHAPTER Five Unified Modeling Language

87 | P a g e

CHAPTER Five Unified Modeling Language

88 | P a g e

CHAPTER Five Unified Modeling Language

89 | P a g e

CHAPTER Five Unified Modeling Language

90 | P a g e

State Diagrams (Billing Example)

State Diagrams show the sequences of states an object goes

through during its life cycle in response to stimuli, together with

its responses and actions; an abstraction of all possible

behaviors.

Unpaid

Start
End

Paid

Invoice created paying Invoice destroying

CHAPTER Five Unified Modeling Language

91 | P a g e

UML Modeling Tools

• Rational Rose (www.rational.com) by IBM

• TogetherSoft Control Center, Borland

(http://www.borland.com/together/index.html)

• ArgoUML (free software) (http://argouml.tigris.org/)

 OpenSource; written in java

• Others

(http://www.objectsbydesign.com/tools/umltools_byComp

any.html)

http://www.rational.com/
http://www.borland.com/together/index.html
http://www.objectsbydesign.com/tools/umltools_byCompany.html
http://www.objectsbydesign.com/tools/umltools_byCompany.html

CHAPTER Six Software Testing

92 | P a g e

CHAPTER SIX

Software Testing

CHAPTER Six Software Testing

93 | P a g e

Software Testing

Once source code has been generated, software must be tested to uncover

(and correct) as many errors as possible before delivery to the customer.

Software testing is a critical element of software quality assurance and

represents the ultimate review of specification, design, and code

generation.

Testing Objectives

There is a number of rules that can serve well as testing objectives:

1. Testing is a process of executing a program with the intent of

finding an error.

2. A good test case is one that has a high probability of finding an as-yet-

 undiscovered error.

3. A successful test is one that uncovers an as-yet-undiscovered error.

Testing Goals

The software testing process has two distinct goals:

1. To demonstrate to the developer and the customer that the software

 meets its requirements. This means that there should be at least one

 test for every requirement in the user and system requirements

 documents.

2. To discover faults or defects in the software where the behavior of the

 software is incorrect, undesirable or does not conform to its

 specification.

CHAPTER Six Software Testing

94 | P a g e

 Testing Principles

Before applying methods to design effective test cases, a software

engineer must understand the basic principles that guide software testing.

A set of testing principles that have been adapted for use:

 • All tests should be traceable to customer requirements. As we have

 seen, the objective of software testing is to uncover errors. It follows

 that the most severe defects (from the customer’s point of view) are

 those that cause the program to fail to meet its requirements.

• Tests should be planned long before testing begins. Test planning

can begin as soon as the requirements model is complete.

 Detailed definition of test cases can begin as soon as the design model

 has been solidified. Therefore, all tests can be planned and designed

 before any code has been generated.

• The Pareto principle applies to software testing. Stated simply, the

 Pareto principle implies that 80 percent of all errors uncovered during

 testing will likely be traceable to 20 percent of all program

components. The problem, of course, is to isolate these suspect

components and to thoroughly test them.

• Testing should begin “in the small” and progress toward testing “in

 the large.” The first tests planned and executed generally focus on

individual components. As testing progresses, focus shifts in an attempt

to find errors in integrated clusters of components and ultimately in the

entire system.

CHAPTER Six Software Testing

95 | P a g e

• Exhaustive testing is not possible. The number of path permutations

for even a moderately sized program is exceptionally large.

 For this reason, it is impossible to execute every combination of paths

during testing. It is possible, however, to adequately cover program logic

and to ensure that all conditions in the component-level design have been

exercised.

Steps (Stages) in Testing Process

 Unit Testing

Unit testing focuses verification effort on the smallest unit of software

design—the software component or module to ensure that it operates

correctly. Each component or module is tested independently, without

other system components. Using the component-level design description

as a guide, important control paths are tested to uncover errors within the

boundary of the module. Components may be simple entities such as

functions or object classes.

Unit Testing Considerations

The tests that occur as part of unit tests are illustrated schematically in

Figure (5.1). The module interface is tested to ensure that information

properly flows into and out of the program unit under test. The local data

structure is examined to ensure that data stored temporarily maintains its

integrity during all steps in an algorithm's execution. Boundary

conditions are tested to ensure that the module operates properly at

boundaries established to limit or restrict processing. All independent

paths (basis paths) through the control structure are exercised to ensure

CHAPTER Six Software Testing

96 | P a g e

that all statements in a module have been executed at least once. And

finally, all error handling paths are tested.

Integration Testing

Integration testing is a systematic technique for constructing the program

structure while at the same time conducting tests to uncover errors

associated with interfacing. The objective is to take unit tested

components and build a program structure that has been dictated by

design. All components are combined in advance. The entire program is

tested as a whole.

Validation Testing

Validation testing begins at the culmination of integration testing, when

individual components have been exercised, the software is completely

assembled as a package, and interfacing errors have been uncovered and

corrected, and a final series of software tests—validation testing—may

begin. Validation can be defined in many ways, but a simple definition is

that validation succeeds when software functions in a manner that can be

reasonably expected by the customer. Software validation is achieved

through a series of tests that demonstrate conformity with requirements.

CHAPTER Six Software Testing

97 | P a g e

System Testing

As we know, software is only one element of a larger computer-based

system. Ultimately, software is incorporated with other system elements

(e.g., hardware, people, information), and a series of system integration

and validation tests are conducted. These tests fall outside the scope of

the software process and are not conducted solely by software engineers.

This test is also concerned with validating that the system meets its

functional and non-functional requirements and testing the emergent

system properties. However, steps taken during software design and

testing can greatly improve the probability of successful software

integration in the larger system.

System testing is actually a series of different tests whose primary

purpose is to fully exercise the computer-based system. Although each

test has a different purpose, all work to verify that system elements have

been properly integrated and perform allocated functions.

The types of system tests are:

• Recovery testing.

• Security testing.

• Stress testing.

• Performance testing.

 Acceptance Testing

This is the final stage in the testing process before the system is accepted

for operational use. The system is tested with data supplied by the system

customer rather than with simulated test data. Acceptance testing may

reveal errors and omissions in the system requirements definition because

the real data exercise the system in different ways from the test data.

Acceptance testing may also reveal requirements problems where the

system's facilities do not really meet the user's needs or the system

performance is unacceptable.

CHAPTER Six Software Testing

98 | P a g e

As the acceptance testing is concerned, there are two testing processes:

• Alpha Testing.

• Beta Testing.

Testing Strategy

 Strategy for software testing may also be viewed in the context of the

spiral Figure (5.2). Unit testing begins at the vortex of the spiral and

concentrates on each unit (i.e., component) of the software as

implemented in source code. Testing progresses by moving outward

along the spiral to integration testing, where the focus is on design

and the construction of the software architecture. Taking another turn

outward on the spiral, we encounter validation testing, where

requirements established as part of software requirements analysis are

validated against the software that has been constructed. Finally, we

arrive at system testing, where the software and other system elements are

tested as a whole. To test computer software, we spiral out along

streamlines that broaden the scope of testing with each turn

Figure (6.2): Testing Strategy

CHAPTER Six Software Testing

99 | P a g e

Test Cases Design Methods

 The primary objective for test case design is to derive a set of tests that

can be used for uncovering errors in the software. To accomplish this

objective, two different categories of test case design techniques are used:

black-box testing and white-box testing.

 Black-Box Testing

Black-box testing, also called behavioral testing, focuses on the

functional requirements of the software. That is, black-box testing

enables the software engineer to derive sets of input conditions that will

fully exercise all functional requirements for a program. Black-box

testing is not an alternative to white-box techniques. Rather, it is a

complementary approach that is likely to uncover a different class of

errors than white-box methods.

 Black-box tests are designed to validate functional requirements without

regard to the internal workings of a program.

Unlike white-box testing, which is performed early in the testing process,

black-box testing tends to be applied during later stages of testing.

Black-box testing attempts to find errors in the following categories:

 (1) incorrect or missing functions,

 (2) interface errors,

 (3) errors in data structures or external data base access,

 (4) behavior or performance errors,

CHAPTER Six Software Testing

100 | P a g e

 (5) initialization and termination errors.

 White-Box Testing

White-box testing, sometimes called glass-box testing, is a test case

design method that uses the control structure of the procedural design to

derive test cases.

White-box tests focus on the program control structure. Test cases are

derived to ensure that all statements in the program have been executed at

least once during testing and that all logical conditions have been

exercised.

Using white-box testing methods, the software engineer can derive test

cases that:

 (1) guarantee that all independent paths within a module have been

 exercised at least once,

(2) exercise all logical decisions on their true and false sides,

(3) execute all loops at their boundaries and within their operational

 bounds,

(4) exercise internal data structures to ensure their validity.

Alpha and Beta Testing

It is virtually impossible for a software developer to foresee how the

customer will really use a program. Instructions for use may be

misinterpreted; strange combinations of data may be regularly used;

output that seemed clear to the tester may be unintelligible to a user in the

field.

CHAPTER Six Software Testing

101 | P a g e

When custom software is built for one customer, a series of acceptance

tests are conducted to enable the customer to validate all requirements.

Conducted by the end user rather than software engineers, an acceptance

test can range from an informal "test drive" to a planned and

systematically executed series of tests. In fact, acceptance testing can be

conducted over a period of weeks or months, thereby uncovering

cumulative errors that might degrade the system over time.

If software is developed as a product to be used by many customers, it is

impractical to perform formal acceptance tests with each one. Most

software product builders use a process called alpha and beta testing to

uncover errors that only the end-user seems able to find.

Alpha Test

Custom systems are developed for a single client. The alpha test is

conducted at the developer's site by a customer. The software is used in a

natural setting with the developer "looking over the shoulder" of the user

and recording errors and usage problems. Alpha tests are conducted in a

controlled environment.

The alpha testing process continues until the system developer and the

client agree that the delivered system is an acceptable implementation of

the system requirements.

 Beta Test

When a system is to marked as a software product, beta testing is used.

The beta test is conducted at one or more customer sites by the end-user

of the software. Unlike alpha testing, the developer is generally not

CHAPTER Six Software Testing

102 | P a g e

present. Therefore, the beta test is a "live" application of the software in

an environment that cannot be controlled by the developer. The customer

records all problems (real or imagined) that are encountered during beta

testing and reports these to the developer at regular intervals. As a result

of problems reported during beta tests, software engineers make

modifications and then prepare for release of the software product to the

entire customer base.

CHAPTER Seven Software Project Management and Quality Assurance

103 | P a g e

CHAPTER SEVEN

Software Project

Management

 And

 Quality Assurance

CHAPTER Seven Software Project Management and Quality Assurance

104 | P a g e

Software Project Management

Software project management is an essential part of software engineering.

Good software project management can be achieved if software

engineering projects are to be developed on schedule and within budget.

Software project management is an umbrella activity within software

engineering. It begins before any technical activity is initiated and

continues throughout the definition, development, and support of

computer software.

 Four P’s have a substantial influence on software project management—

people, product, process, and project. People must be organized into

effective teams, motivated to do high-quality software work, and

coordinated to achieve effective communication.

The product requirements must be communicated from customer to

developer, partitioned (decomposed) into their constituent parts, and

positioned for work by the software team. The process must be adapted to

the people and the problem. A common process framework is selected, an

appropriate software engineering paradigm is applied, and a set of work

tasks is chosen to get the job done. Finally, the project must be organized

in a manner that enables the software team to succeed.

Software project management is a huge topics, it includes many

management activities: project planning, project scheduling, risk

management, managing people, software cost estimation and quality

management.

CHAPTER Seven Software Project Management and Quality Assurance

105 | P a g e

Types of Plan

 There are many types of plan used to manage software projects, some of

these are:

1. Quality plan: Describes the quality procedures and standards that will

 be used in the project.

2. Validation plan: Describes the approach, resources and schedule used

 for system validation.

3. Configuration management plan: Describes the configuration

 management procedures and structures to be used.

4. Maintenance plan: Predicts the maintenance requirements of the

 system, maintenance costs and effort required.

5. Staff development plan: Describes how the skills and experience of the

project team members will be developed.

Project Planning

The objective of software project planning is to provide a framework that

enables the manager to make reasonable estimates of resources, cost, and

schedule. These estimates are made within a limited time frame at the

beginning of a software project and should be updated regularly as the

project progresses. In addition, estimates should attempt to define best-

case and worst-case scenarios so that project outcomes can be bounded.

The plan must be adapted and updated as the project proceeds.

CHAPTER Seven Software Project Management and Quality Assurance

106 | P a g e

Software Planning Activities

1. Establish project scope: The first activity in software project planning

is the determination of software scope. Software scope describes the data

and control to be processed, function, performance, constraints,

interfaces, and reliability. Functions described in the statement of scope

are evaluated and in some cases refined to provide more detail prior to the

beginning of estimation.

Performance considerations encompass processing and response time

requirements. Constraints identify limits placed on the software by

external hardware, available memory, or other existing systems.

2. Determine feasibility: Once scope has been identified (with the

concurrence of the customer), it is reasonable to ask: “Can we build

software to meet this scope? Is the project feasible?”

3. Analyze risks: Risk analysis can absorb a significant amount of project

planning effort. Identification, projection, assessment, management, and

monitoring all take time. But the effort is worth it. For the software

project manager, the enemy is risk.

4. Define required resources: There are three major categories of

software engineering resources:

 a. Define human resources required: The planner begins by evaluating

scope and selecting the skills required to complete development. Both

organizational position (e.g., manager, senior software engineer) and

specialty (e.g., telecommunications, database, client/server) are

specified. The number of people required for a software project can be

CHAPTER Seven Software Project Management and Quality Assurance

107 | P a g e

determined only after an estimate of development effort (e.g., person-

months) is made.

 b. Define reusable software resources: Component-based software

engineering emphasizes reusability—that is, the creation and reuse of

software building blocks. Such building blocks, often called components,

must be cataloged for easy reference, standardized for easy application,

and validated for easy integration.

 c. Identify environment resources: The environment that supports the

 software project, often called the software engineering environment

 (SEE), incorporates hardware and software. Hardware provides a

 platform that supports the tools (software) required to produce the

 work products that are an outcome of good software engineering

 practice.

5. Estimate cost and effort: Software cost and effort estimation will never

 be an exact science. Too many variables—human, technical,

 environmental, political—can affect the ultimate cost of software and

 effort applied to develop it. However, software project estimation can

 be transformed as a series of systematic steps that provide estimates

 with acceptable risk. It includes:

 a. Decompose the problem: Software project estimation is a form of

 problem solving, and in most cases, the problem to be solved (i.e.,

 developing a cost and effort estimate for a software project) is too

 complex to be considered in one piece. For this reason, we

 decompose

CHAPTER Seven Software Project Management and Quality Assurance

108 | P a g e

 the problem, re-characterizing it as a set of smaller (and hopefully,

 more manageable) problems.

 b. Develop two or more estimates using size, function points, process

 tasks, or use-cases.

 c. Reconcile the estimates.

6. Develop a project schedule.

 a. Establish a meaningful task set.

 b. Define a task network.

 c. Use scheduling tools to develop a timeline chart.

 d. Define schedule tracking mechanisms.

Software Quality Assurance (SQA)

Quality assurance is an essential activity for any business that produces

products to be used by others.

The history of quality assurance in software development parallels the

history of quality in hardware manufacturing. During the early days of

computing (1950s and 1960s), quality was the sole responsibility of the

programmer. Standards for quality assurance for software were

introduced in military contract software development during the 1970s

and have spread rapidly into software development in the commercial

world. Software quality assurance is an umbrella activity that is applied at

each step in the software process.

CHAPTER Seven Software Project Management and Quality Assurance

109 | P a g e

 SQA encompasses procedures for the effective application of methods

and tools, formal technical reviews, testing strategies and techniques,

procedures for change control, procedures for assuring compliance to

standards, and measurement and reporting mechanisms.

Quality assurance consists of the auditing and reporting functions of

management.

The goal of quality assurance is to provide management with the data

necessary to be informed about product quality, thereby gaining insight

and confidence that product quality is meeting its goals. Of course, if the

data provided through quality assurance identify problems, it is

management’s responsibility to address the problems and apply the

necessary resources to resolve quality issues.

 SQA Activities

Software quality assurance is composed of a variety of tasks associated

with two different constituencies :

❖ The software engineers who do technical work.

❖ An SQA group that has responsibility for quality assurance

planning, oversight, record keeping, analysis, and reporting.

CHAPTER Seven Software Project Management and Quality Assurance

110 | P a g e

REFEREENCES

1. Software Engineering, Ian Summervill.

2. Software Engineering a practitioner Approach, Pressman,

6th Edition.

3. UML2 and Unified Process, Arlow & Neustadt, 2nd

Edition.

4. UML Distilled: A Brief Guide to the Standard Object

Modeling Language

Martin Fowler, Kendall Scott

5. IBM Rational:

http://www-306.ibm.com/software/rational/uml/

6. Practical UML --- A Hands-On Introduction for

Developers:

http://www.togethersoft.com/services/practical_guides/um

lonlinecourse/

7. Software Engineering Principles and Practice. Second

Edition; Hans van Vliet.

8. http://www-inst.eecs.berkeley.edu/~cs169/

http://search.barnesandnoble.com/textbooks/booksearch/results.asp?userid=332M40SGTY&ath=Martin+Fowler
http://search.barnesandnoble.com/textbooks/booksearch/results.asp?userid=332M40SGTY&ath=Kendall+Scott
http://www-306.ibm.com/software/rational/uml/
http://www.togethersoft.com/services/practical_guides/umlonlinecourse/
http://www.togethersoft.com/services/practical_guides/umlonlinecourse/
http://www-inst.eecs.berkeley.edu/~cs169/

