
1

COMPUTER GRAPHIC

Computer graphic references:

 1. M.Berger,” Computer Graphic with Pascal “, B/C Publishing Company,

 1984.

 2. J.D.Foley & A.Dametal,” Introduction to Computer Graphic “, Addison –

 wesly, 1993.

 3. D.Hearn & M.p.Baker,” Computer Graphics “, 2nd Ed., Prentice – Hall,

 1994.

Computer Graphics Contents :

 1. Scan Conversion

 Line, Bresenham’s line algorithm, Bresenham’s circle algorithm,

 Ellipses, Area and Sectors, Rectangle, Region filling.

 2. Two dimensional graphics transformations

 Transition, Rotation, Reflection, Scaling, Coordinates transformation.

 3. Tow dimensional viewing transformation and clipping windows and view

 part, Rectangular clipping windows, Points, Line segment, Convex polygons

 clipping windows.

 4. Three dimensional graphics

 Three dimensional transformation, translation, Scaling, Rotation, Reflection

 coordinates transformation. (Viewing transformation as 44 matrix with

 homogeneous coordinates).

2

INTRODUCTION TO COMPUTER GRAPHIC

Overview :

 Computer graphic can be defined as the creation and manipulation of graphic

image by means of computer.

Computer graphic started as a technique to enhance the display of information

generated by a computer. This ability to interpret and represent numerical data in

pictures has significantly increased the computer’s ability to represent

information to the user in a clear and understandable form.

Application of Graphics :

1. Management may be displayed as charts and diagrams, i.e. large amounts of

data are rapidly converted into bar charts, pie charts and graphs.

2. Scientific theories and models may be described in pictorial form.

3. Maps can be created for all kinds of geographic information.

4. Simulation.

5. Video games provides a new form of entertainment.

Remarks :

Mode:

divided to:

1. Text mode: deal with characters, numbers and symbols.

2. Graphics mode: deal with pixels.

3

Picture Elements:

1. Pixel: is the smallest addressable screen element. It is the smallest piece of

the display screen which we can control.

2. Line : has patron or type.

 Specification: color, lighting, type, width.

 Types of line:

3. Curve: depends on start point and end point and angle.

a) Raster – scan display :

 This video display screen used by most microcomputer is divided into small

rectangles or dots. These dots are referred to as picture elements or pixels.

 We can consider CRT (Cathode Ray Tube) screen to consist of number of

vertical and horizontal lines, where each horizontal line is made up of pixels

figure (1). These horizontal lines are called Raster – scan lines, and the video

display referred to a raster – scan display.

b) Resolution :

 Means the number of scan lines and the number of pixels on a line or dots per

unit area.

 Low resolution 300 scan lines & 400 pixels (lines).

 High resolution more than 1000 scan lines & 1000 pixels (lines).

4

Figure (1) A raster display image

The graphic display :

 The graphic display consists of three components :-

a) Frame buffer.

b) Display controller.

c) Scan conversion algorithms.

a) Frame buffer :

 Each screen pixel corresponds to a particular entry in a two – dimensional

array residing in memory. This memory is called a frame buffer or bit map.

 The number of rows in the frame buffer array equal the number of raster lines

on the display screen, and the number of columns in this array equals the number

of pixels on each raster line.

 The current tends is to have the frame buffer accessible to central processing

unit (CPU) of the main memory, Thus allowing rapid of the storage image.

 Whenever we wish to display a pixel on the screen, a specific value is placed

into the corresponding memory location in the frame buffer array. In figure (2),

a value of 1 placed in a location in the frame buffer results in the corresponding

(black) pixel being displayed on the screen.

5

Figure (2) Bit plane of frame buffer

Number of pixels depending on screen type, so that we have many types likes :-

1) Monochrome 2 color (black, green).

2) CGA (Color Graphic Adapter) 16 color 200320 .

3) EGA (Enhanced Graphic Adapter) 16 color 480640 .

4) VGA (Video Graphic Adapter) 256 color 480640 .

5) SVGA (Super Video Graphic Adapter) 256 color 7681024 .

 Each screen location pixel and corresponding memory location in the

frame buffer is accessed by an (X,Y) integer coordinate pair. The X value

refers to the columns, the Y value refers to the row position.

b) Display controller :

 The hardware device reads the contents of frame buffer into a video buffer

which then converts the digital representation of a string of pixel values into

analog voltage signals that are sent serially to the video screen.

Light pixel

 Frame buffer

0 1 1 0 0 1
1 0 0 1 1 0
1 1 1 0 1 1

6

 Whenever the display controller encounters a value of 1 in a single – bit –

plane frame buffer a high – voltage. Signal is sent to the CRT which truns on the

corresponding screen pixel.

c) Scan conversion :

 Image are usually defined in terms of equation for example C + D = 5 or

graphic descriptions, such as “ draw a line from A to B “. Scan conversion is

the process of converting this abstract representation of an image into the

appropriate pixel values in the frame buffer.

 “ DRAWING ELEMENTARY FIGURE “

1 . PLOTTING POINT :

 Each pixel in Pascal programming language is accessed by a positive integer

(x,y) coordinate pair, the value x start at origin 0, and increase from left to

right, the y value start at 0 increase from top to bottom, as in figure (3).

 Figure (3) Screen in Pascal programming language

 x

 0 1 2 3 4 5 6

 (4,2)

 (3,4)

 y

7

2 . LINE DRAWING ALGORITHMS :

 A line segment is displayed by turning on a string of adjacent pixels. In order

to draw a line, it is necessary to determine which pixels lie nearest the line and

provide the best approximation to the desired line. The accuracy and quality of

the displayed line depends on the resolution of the display device. High resolution

displays draw lines that look straight and continues and start and end accurately.

Lower resolution displays may draw lines with gaps.

2.1 Draw Horizontal Line :

 To draw horizontal line, the y value is fixed and the value x varies. The

following Pascal codes draw horizontal line from (xstart , y) to (xend , y).

For x := xstart to xend do

 plotpoint (x , y , white) ;

 If xstart > xend then (to) in the (for) loop must be replaced by down to.

 Y

 Horizontal line

X

8

2.2 Draw Vertical Line :

 To draw vertical line, the x value is fixed and y value varies. The

following Pascal codes draw a vertical line from (x , ystart) to (x , yend).

For y := ystart to yend do

 plotpoint (x , y , white) ;

 If ystart > yend then (to) in the (for) loop must be replaced by down to.

2.3 Draw Diagonal Line :

 To draw a diagonal line with a slope equal to +1 , we need only repeatedly

increment by one unit both the x and y values from the starting to the ending

pixels. The following Pascal codes draw a diagonal line:

x

y

xx

yy
Slope

12

12

 Y
 Vertical line

 X

9

x := xstart ;

y := ystart ;

i := 0 ;

while (x + i) <= xend do

 begin

 plotpoint (x + i , y + i , white) ;

 i := i + 1 ;

 end ;

To draw a line with a slope -1 , replace y+i by y-i in the code.

Example :

 Show the tracing to draw a diagonal line from (0 , 0) to (3 , 3).

Solution:

 Point 1 (0 , 0) , point 2 (3 , 3).

I (x+i , y+i)

0 (0,0)

1 (1,1)

2 (2,2)

3 (3,3)

4 stop

10

2.4 Simple DDA (Digital Differential Analyzer) :

 It is a vector generation algorithms (and curve generation) which step along

the line (or curve) to determine the pixels which should be turned on by using

the numerical method for solving differential equations.

)1(
12

12
1 x

xx

yy
yy ii

{ approximate the line length }

if | x2 – x1 | >= | y2 – y1 | then length = | x2 – x1 |

 else length = | y2 – y1 |

end { if }

{ select the larger of y or x to be raster unit }

length

xx
x

)(12

length

yy
y

)(12

 Y2
 Y

 Y1

 X2 X1

 X

11

{ round the value rather truncate using the sign function makes the algorithm

work in all quadrates }

)(5.0

)(5.0

1

1

ysignyy

xsignxx

begin { main loop }

 for i := 1 to length do

 begin

 plotpoint (integer (x) , integer (y))

 yyy

xxx

 end { for loop }

Example :

Draw a line between a points (0 , 0) and (4, 8).

Solution:

5.05.0815.0 yxlengthyx

I Plot x y

 0.5 0.5

1 0,0 1 1.5

2 1,1 1.5 2.5

3 1,2 2 3.5

4 2,3 2.5 4.5

5 2,4 3 5.5

6 3,5 3.5 6.5

7 3,6 4 7.5

8 4,7 4.5 8.5

9 stop

12

H . W (1) :

1 . Write program to draw a line between points (x1 , y1) , (x2 , y2) using

 DDA algorithm

2 . Find the points of a line where the first point (5 , 4) and the second point

 (8 , 6) by using the DDA algorithm.

2.5 Bresenham’s algorithm :

 Bresenham’s develop this algorithm that is attractive because it uses only

integer arithmetic, and Bresenham’s line specially algorithm for the first octant,

the line end points (x1 , y1) and (x2 , y2) assumed not equal.

x = x1

y = y1

2

1
12

12

x

y
e

yyy

xxx

begin { the main loop }

 for i := 1 to x

 plot (x , y)

 while (e >= 0)

 y

yx

 x > y

x

13

 y = y + 1

 e = e – 1

 end { while }

 x = x + 1

 e = e + x
y

 end { for }

finish

Example :

 By using Bresenham algorithm draw a line by used the following points

(0 , 0) and (5 , 3).

Solution:

3500 yxyx

i plot X y e

 0 0 0.1

1 (0 , 0) 1 -0.9

 1 -0.3

2 (1 , 1) 2 0.3

3 (2 , 1) 2 -0.7

 3 -0.1

4 (3 , 2) 4 0.5

5 (4 , 2) 3 -0.5

 5 0.1

6 stop

14

H . W (2) :

1 . Find a point of a line between point (4 , 6) and (10 , 9) using Bresenham’s

algorithm.

2 . Write a program to draw a line between points (x1 , y1) , (x2 , y2) using

Bresenham’s procedure.

2.6 Integer Bresentham algorithm:

Bresenham’s algorithm as presented above requires the use of :

1) Floating point arithmetic.

2) Division.

To calculate the slop of a line and to evaluate the error, term the speed of

algorithm can be increased by using, integer arithmetic and eliminating the

division.

x = x1

y = y1

xye

yyy

xxx

2
12

12

begin { the main loop }

 for i = 1 to x

 plot (x , y)

 while (e` >= 0)

 y = y + 1

 xee 2

 end { while }

 x = x + 1

15

 yee 2

 end { for }

Finish

H . W (3) :

1 . Find points of a line between (0 , 0) and (5 , 3) using Bresenham’s

algorithm, without division and without floating point.

2.7 General Bresenham’s algorithm :

 A full implementation of Bresenham’s algorithm requires modification for

lines lying the other octant. These can be easily developed by considering the

quadrant in which the lines lies and its slope.

x = x1

y = y1

12

12

yyy

xxx

s1 = sign (x2 – x1)

s2 = sign (y2 – y1)

{ Interchange x and y depending on the slope of the line. }

if xy then

 temp = x

 x = y

 y = temp

 interchange = 1

else

 interchange = 0

16

endif

xye 2

{ Main loop }

for i = 1 to x

 plot (x , y)

 while (e َ◌ >= 0)

 if interchange = 1 then

 x = x + s1

 else

 y = y + s2

 endif

 xee 2

 end { while }

 if interchange = 1 then

 y = y + s2

 else

 x = x + s1

 endif

 yee 2

end { for }

Finish

H . W (4) :

1 . Find points of a line between points (0 , 0) , (-2 , -4) using General

Bresenham’s algorithm.

2 . Write a program to draw a line between points (x1 , y1) , (x2 , y2) using

General Bresenham’s procedure.

17

3 . Write a program to draw a rectangle in any location in the screen without

 using a line instruction.

4 . Write a program to draw a triangle in any location in the screen without using

 a line instruction.

5 . Write procedure to draw a polygon in any location in the screen without

 using a line instruction.

3. CIRCLE DRAWING:

 Circles are probably the most used curves to elementary graphics. They often

serve as building blocks to generate artistic images. This sheet describes circle

drawing algorithm.

3.1 Circle generation Algorithm

 For any given point on the circle in clockwise to generation of it there are

only three possible selections for the next pixel which best represents the circle

horizontally to the right, diagonally downward to the right and vertically

downward. These are labeled: Hm , Dm , Vm , respectively in Figure 4. The

algorithm chooses the pixel which minimizes the square of the distance between

one of these pixels and the true circle, i.e. the minimum of:

 222

222

222

1

11

1

Ryxm

Ryxm

Ryxm

iiV

iiD

iiH

18

 Figure 4: First quadrant pixel selections.

The algorithm

X=xC

 Y=YC + R

 While (y >= 0)

 Plot (x,y)
 Eh = |(x+1)²+ y²- R²|
 Ed = |(x+1)² + (y-1)² - R²|

 Ev = |x² +(y-1)²-R²|
 Min = minimum (Eh, Ed, Ev)

 If min = Eh then X=X+1: go to 1

 If min = Ed then X=X+1:Y=Y-1: go to 1

 If min = Ev then y = y - 1

1 Endwhile

 ii yx , Hm

 ii yx ,1

 Dm

 Vm

 1, ii yx 1,1 ii yx

19

8. R=, when C=0, quationeircle csing uy b ircleca Draw : Example

Solution:

X Y Plot Eh Ed Ev MIN
0
1
2
3
4
5
6
7
7
8
8
8
8

8

7

6
5
4
3
3
2
1
0

0,8
1,8
2,8
3,7
4,7
5,6
6,5
7,4
7,3
8,3
8,2
8,1
8,0

1
4
9
1

10
8

10
16
6

26
21
18

14
11
6

12
3
3
1
9

24
21
18
17

15
14
11
19
12
14
12
6
11
4
1
0

Eh=1
Eh=4
Ed=6
Eh=1
Ed=3
Ed=3
Ed=1
Ev=6
Ev=6
Ev=4
Ev=1
Ev=0

3.2 Circle Generation – Bresenham`s Algorithm

 One of the most efficient and easiest to drive of the circle algorithms is due to

Bresenham. To begin, note that only one octant of the circle need be generated.

The other parts can be obtained by successive reflections. This is illustrated in

Fig. 5. If the first octant (0 to 45 ْ◌ ccw) is generated, the second octant can be

obtained by reflection through the line y=x to yield the first quadrant. The results

in the first quadrant are reflected through the line x=0 to obtain those in the

second quadrant.

20

Figure 5: Generation of a complete circle from the fist octant

The combined result in the upper semicircle are reflected through the line y=0 to

complete the circle. Bresenham`s Algorithm is consider the first quadrant of an

origin- centered circle. If the algorithm begins at x=0 , y=R, then for clockwise

generation of the circle y is a monotonically decreasing function of x in the

first quadrant. Here the clockwise generation starting at x=0, y=R is chosen.

The center of the circle is (0,0). See Figure (6).

 Figure 6: First quadrant of a circle.

 y reflect first octant about y = x

 y = x

 Reflect first quadrant generate
 about x = 0

 y = 0 x

 x = 0 Reflect upper semicircle about y = o

 2 3

1 4

8 5

 7 6

 y

 (0,R)

 R
 (R,0)

 (0,0) x

21

The circle equation, when the center (a,b), and the radius R, is:

)1(222
Rbyax

 And when the center of this circle is the origin (0, 0), then the equation:
222 Ryx Because of a, b = 0.

The different between the square of the distance from the center of the circle to

the diagonal pixel at 1,1 ii yx and the distance to a point on the circle R² is:

)2(11 222
Ryx iii

If i < 0 then find)3(DH mm

If i = 0 then find)4(Dm

If i > 0 then find)5(VD mm

Bresenham`s suggestions that we can find n depending on :

1- Horizontal Case:

yyxx

x

xRyx

xRyx

Ryx

nn

nn

n

nnn

nnn

,1

12

1211

121

11

222

222

222

2- Diagonal Case:

1,1

222

22211

222

11

222

222

222

yyxx

yx

yxRyx

yxRyx

Ryx

nn

nnn

nn

nnnn

nnn

22

3- Vertical Case:

1,

12

1211

121

11

222

222

222

yyxx

y

yRyx

yRyx

Ryx

nn

nn

n

nnn

nnn

By simplified the equation (3), (5) we get:

122

122

x

y

When x=0, y=R, and use these values in equation (2):

 RRR 1211 22

Bresenham`s incremental circle algorithm for the first quadrant, all

variables are assumed integer:

{ initialize the variables }

 R

Ry

x

i

i

i

12

0

 Limit = 0

1 plot (ii yx ,)

 If iy limit then 4

 If 0 i then 2

 If 0 i then 3

 If 0 i then 20

2 122 ii y

 If 0 then 10

 If 0 then 20

23

3 122 ii x

 If 0 then 20

 If 0 then 30

 Perform the moves

 Move Hm

10
12

1

iii

ii

x

xx

 Goto 1

 Move Dm

20
222

1

1

iiii

ii

ii

yx

yy

xx

 Goto 1

 Move Vm

30
12

1

iii

ii

y

yy

 Goto 1

4 finish.

Example : find the pixels in first quadrant of circle where R=6, center =(0,0) by

using Bresenham`s algorithm, and draw them.

Solution:

x = 0 , y = r = 6 , 10 i , limit = 0

plot i x y

(0,6) -10 - - 0 6

24

(1,6) -7 -9 - 1 6

(2,6) -2 -3 - 2 6

(3,5) -4 7 - 3 5

(4,4) -2 1 - 4 4

(5,3) 4 3 - 5 3

(6,2) 14 - -3 6 2

(6,1) 13 - 15 6 1

(6,0) 14 - 13 6 0

3 . 3 Circle Drawing By Using Circle Equation

 (χ-χc)² + (у-уc)² = R²

χ , у :- point on the boundary

χc , уc :- the center of the circle

R :- ½ Radios

8

7

6

5

4

3

2 R=6

1

 1 2 3 4 5 6 7 8 9

25

From equation above we can find that

У = уc ± R² - (χ – χc)²

 0, yc+ R

 (χc – R ,0) (χc+R,0)

 0 , уc - R

) -(+ ، Yلها قيمتين في X لكل نقطة في -

 : بالشكل التالي for بعبارة أخرى نستطع استخدام -
For X : = (Xc – R) to (Xc + R)

 У := Yc ± R² - (X – Xc)²

Example : Draw a circle by using circle equation, when R=5, Xc=0 , Yc=0.

Solution:

For X: = -R To + R

 У= R² - X²

26

For x:= -5 to +5

 Y = 52 - X²

X Y Plot

-5 0 (-5,0)

-4 -3,+3 (-4,-3),(-4,3)

-3 -4,+4 (-3,-4),(-3,4)

-2

-1

0 -5,+5 (0,-5),(0,5)

1

2

3 -4,+4 (3,-4),(3,4)

4 -3,+3 (4,-3),(4,3)

5 0 (5,0)

3 . 4 Ellipse

- An ellipse is a variation of a circle.
- Stretching a circle in one direction produce an ellipse

 - We shall examine only ellipse that are stretched in the x or y direction.
- The polar equation for this type of ellipse centered at (χc,уc) are:-

 χ = χc+ a * cos ()

27

 У= уc+ b * sin () (1)

Where: the angle assumes values between 0 to 2 ╥

 Radius have major axis a , minor axis b.

The values of (a) and (b) effects the shape of the ellipse :

- If b>a the ellipse is longer in the у-direction.

- If a>b the ellipse is longer in the χ- direction.

The ellipse can be drawn using four-points summitry:

- If (c,d) lies on the ellipse, so do the points (-c,d),(c,-d) and (-c,-d).

 The following incremental equations for an ellipse are derived from equation (1)

X2 = X1 * cos (d) – (a/b) Y1 * sin (d)

Y2 = Y1 * cos (d) + (b/a) X1 * sin (d)

H.W (5):

1 . Draw a circle by using Circle generation Algorithm , when C=0, R= 8.

b

χc,уc
a

b

a
 χc,уc

28

2. write a program to draw a quadrant of circle where radius =R, center=(0,0), by

 using Bresenham`s incremental circle algorithm.

3. Find the pixels of quadrant circle where center=(0,0) and Radius=10, by using

 Bresenham`s incremental circle algorithm. Then draw these pixels.

4 . Draw a circle by using circle equation when R=8, Xc=0 , Yc=0.

5. write program to draw ellipse when Xc=320 , Yc=240, a=80, b=30.

6. write program to draw the following figure (without using ellipses instruction)

 when xc=300, yc=200, a=130, b=30.

TWO DIMENSIONAL

GEOMETRIC TRANSFORMATIONS

Introduction:

29

 Geometric transformations provide a mean by which an image can be

constructed or modified. The transformations we examine in this sheet are

translation, scaling, rotations, reflection and sharing.

 The advantage of used the translation: -

� Details appear more clearly.

� Reduces a picture more of if is visible.

� Change the scale of a symbol.

� Rotate it through some angle.

1. Translation:

 a point (x , y) is translated to a new position (x` , y`) by move it H units in

the horizontal direction and V units in the vertical direction (figure (7)).

 Figure (7) horizontal and vertical displacement

Mathematically this can be represented as:

X` = X + H

Y` = Y + V

The H and V represent the horizontal and vertical displacement or distance that

the point has moved. If H is positive, the point moves to the right, if H is

negative the point moves to the left, similarly, a point V moves the point up, a

 y

 (x` , y`)

 (x , y) V

 H
 x

30

negative V moves it down. Remember that to move object we must translate

every point describing the object.

 To translate an object in an image we must translate every point defining the

object. All point, are displaced the same distance and the object is draw using

these transformed points.

Example :

Consider a triangle defined by it three vertices (40 , 0), (80 , 0), (60 , 100) be

translated 120 units to the right and 20 units up.

Solution:

H = 120 , V = 20 . The new vertices are:

(160 , 20) , (200 , 20) , (180 , 120)

 100

 80

 60

 40

 20

 0
 20 40 60 80 100 120

31

120180

20200

20160

10060

080

040
)20,120(

rightup

 before after

H . W (6) :

1 . Write procedure to translated any picture (up , down , right , left).

2 . Write program to draw a polygon and using translated procedure to translate

 it’s in any direction.

3 . Consider a triangle defined by it three vertices (20 , 0) , (60 , 0) ,

 (40 , 100) be translated 20 units to the left.

4 . Consider a triangle defined by it three vertices (40 , 0) , (100 , 0) ,

(60 , 100) be translated 40 units to the left and 40 units down.

 120

 100

 80

 60

 40

 20

 0
 20 40 60 80 100 120 140 160 180 200

32

2. Rotation:

 Another useful transformation is the rotation of an object about a specified

pivot point. After the object has been rotated, it is still the same distance away

from the pivot point, however its orientation has been changed. It is possible to

rotate one or clockwise (negative angle) or counterclockwise (positive angle)

direction.

Any point (x , y) can be represented by its radial distance, r, from the origin and

its angle, , off the x – axis as show in figure (8).

 Figure (8) rotation about origin

If (x , y) is rotated an angle in the counterclockwise direction. The

transformed point (x` , y`) is represented as :

 y (x` , y`)

 r
 (x , y)
 r

 0 x

x = r * cos ()

y = r * sin () (1)

x = r * cos (+)

y = r * sin (+) (2)

33

 Using the laws of sines and cosines from trigonometry, the equation (2)

become:

From the definition of x and y, the equation (3) reduce to:

 To rotate an object an angle () about a pivot point (xp , yp) other than the
origin, we perform the following three steps:

Step 1: Translate
 Translate the pivot point (xp , yp) to the origin. Every point (x , y) defining
the object is translated to a new point (x` , y`) where:
x` = x - xp
y` = y - yp

Step 2: Rotate
 Use these translated points (x` , y`), degree about the origin to obtain the
new point (x`` , y``) where:

x`` = x` * cos () – y ` * sin ()
y`` = y` * cos () + x ` * sin ()

By substituting for x` and y` :

x`` = (x – xp) * cos () – (y – yp) * sin()
y`` = (y – yp) * cos () + (x – xp) * sin()

Step 3: Translate
 Translate the center of rotation back to the pivot point (xp , yp).

x` = r * cos () * cos () – r * sin () * sin ()

y` = r * sin () * cos () + r * cos () * sin () (3)

x` = x * cos () – y * sin ()
y` = y * cos () + x * sin () (4)

34

x``` = x`` + xp
y``` = y`` + yp

By substituting for x`` and y`` :

x``` = (x – xp) * cos () – (y – yp) * sin() + xp

y``` = (y – yp) * cos () + (x – xp) * sin() + yp

So to rotate a point (x , y) through a clockwise angle about the origin of the
coordinate system we write:-

x` = x cos () + y sin ()
y` = - x sin () + y cos ()

Example :

 The triangle (10 , 0) , (30 , 0) , (50 , 80) rotate 45o clockwise about the

origin.

Solution:

x` = x cos () + y sin ()
y` = - x sin () + y cos ()

y y y

 xp , yp
 xp , yp

origin x origin x origin x

35

(7.07 , - 7.07) , (21.21 , - 21.21) , (91.93 , 21.12)

 Rotate about the origin

H . w (7) :

1 . Rotate the triangle (10 , 0) , (30 , 0) , (50 , 80) 45o counterclockwise

about the origin.

2 . Rotate the triangle (7 , 8) , (4 , 4) , (10 , 5) 90o counter clockwise about

the point (7 , 8).

3 . Rotate the above triangle 90o clockwise about the point (4 , 4).

4 . Write program which rotate a polygon.

a) Counter clockwise about the origin.

b) Counter clockwise about the pivot point.

c) Clockwise about the origin.

d) Clockwise about the pivot point.

5 . Write an equation to rotate any picture clockwise about the pivot point.

 y

 0 100 x

36

3. Scaling :

 An object can be made by larger by increasing the distance between the points

describing the object. In general, we can change the size of an object, or the entire

image, by multiplying the distance between points by an enlargement or

reduction factor. This factor is called the “ scaling factor “, and the operation

that changes the size is called scaling. If the scaling is greater than 1, the object is

enlarge, if the factor is less than 1, the object is made smaller, a factor of 1 has

no effect on the object. Whenever scaling is performed, there is one point that

remains at the same location. This is called the fixed point of the scaling

transformation.

x` = x * Sx

y` = y * Sy

Example :
 Scale the triangle (4 , 4) , (7 , 8) , (10 , 5) by Sx = 2 and Sy = 2, about the
origin point.

Solution:

The new points are:
(8 , 8) , (14 , 16) , (20 , 10)

 10 16 (14,16)

 8 (7,8) 14

 6 12 (20,10)

 4 (4,4) (10,5) 10

 2 8 (8,8)

 2 4 6 8 10 8 10 12 14 16 18 20

37

H . w (8) :

1 . Magnify the triangle (0 , 0) , (8 , 10) , (12 , 4), 4 times its size, about the
 origin point.

2 . Magnify the above triangle 1 / 2 its size.

3 . Magnify the triangle (0 , - 3) , (- 6 , - 7) , (6 , - 7), 3 times its size, about
the point (0,-3).

4 . Write scale procedure to magnify any image.

5 . Write an equation to magnify any picture without translation.

Matrix representation of transformations :

 We are going to use 33 matrices, it is necessary to convert the two –

dimensional homogeneous vector. This is accomplished by associative (x , y)

with the homogeneous row vector [x y 1]. After multiplying this vector by a

33 matrix, we obtain another homogeneous row vector, one having three

components with the last component equal to 1 : [x1 y1 1]. The first two

38

term in this vector are the coordinate pair (x1 , y1) which is the transform of (x ,

y).

 We are now ready to give the matrix representation of the transformation:

Translation, Scaling, Rotation.

Translation:

1

010

001

11

VH

yxyx

Scaling:

100

00

00

11 y

x

S

S

yxyx

Rotation:

(a) Counterclockwise direction :

100

0)(cos)(sin

0)(sin)(cos

11 xx

xx

yxyx

(b) Clockwise direction :

100

0)(cos)(sin

0)(sin)(cos

11 xx

xx

yxyx

Example :

 Consider a triangle defined by it three vertices (40 , 100), (20 , 0), (60 , 0)

be translated 20 units to the right, using matrix representation.

39

Solution:

1080

1040

110060

1020

010

001

1060

1020

110040

Example :

 Rotate the triangle (7 , 8) , (4 , 4) , (10 , 5) 90o counterclockwise about

the point (7 , 8), using matrix representation.

 Solution:

1) Translate:-

133

143

100

187

010

001

1510

144

187

 Y

 100

 80

 60

 40

 20

 0 20 40 60 80 X

40

2) Rotate: -

133

134

100

100

0)90(cos)90(sin

0)90(sin)90(cos

133

143

100

3) Translate: -

11110

1511

187

187

010

001

133

134

100

Example :

 Magnify the triangle (0 , 0) , (8 , 10) , (12 , 4), 4 times its size, using

matrix representation.

 Solution:

 Y

 10

 8

 6

 4

 2

 0 2 4 6 8 10 X

41

11648

14032

100

100

040

004

1412

1108

100

4. Reflection :

 It is a transformation that produced a mirror image of an object; the mirror

image is generated relative to an axis of reflection.

 There are different types of reflection:

 Y

 50

 40

 30

 20

 10

 0 10 20 30 40 50 X

42

1 - Reflection about X – axis:

100

010

001

11 yxyx

yy

xx

2 - Reflection about Y – axis:

100

010

001

11 yxyx

yy

xx

3 - Reflection about the origin (0, 0):

100

010

001

11 yxyx

yy

xx

4 - Reflection about the line y = x :

43

100

001

010

11 yxyx

xy

yx

5 - Reflection about the line y = - x :

100

001

010

11 yxyx

xy

yx

 Example :

Reflect the shape (20, 70), (40, 50), (60, 70), (40, 90), about:

1- X – axis 2- Y- axis

3- origin (0,0) 4- y = x 5- y = -x , by used matrix

representation, and draw the result.

Solution:

1- X – axis:

19040

17060

15040

17020

100

010

001

19040

17060

15040

17020

yy

xx

2- Y- axis:

44

19040

17060

15040

17020

100

010

001

19040

17060

15040

17020

yy

xx

3- origin (0,0):

19040

17060

15040

17020

100

010

001

19040

17060

15040

17020

yy

xx

4- y = x:

14090

16070

14050

12070

100

001

010

19040

17060

15040

17020

xy

yx

5- y = -x:

14090

16070

14050

12070

100

001

010

19040

17060

15040

17020

xy

yx

 y

 100

 90

80

45

5. Shearing :

Origin

1

2

4

3

5

46

 A shearing transformation produces a distortion of an object or the entire

image. There are two types of shearing (Y-shear & X-shear).

1) Y-shear transforms the point (x,y) to the point (x',y') , where :-

YXShyY

XX

*
 Shy # 0

A Y-shear moves a vertical line up or down, depending on the sign of the shear

factor Shy. A horizontal line is distorted into a slanted line with slop Shy.

2) X-shear has the opposite effect. That is, the point (x',y') is transformed to

the point (x,y) , where :-

YY

YShxXX

 * Shx # 0

 A vertical line becomes slanted line with slop Shx and the horizontal lines are

shifted to the right or left, depending on the sign of Shx.

 Before Y-shear X-shear

Matrix Representation of Shearing

47

1:- Y-shear
 1 shy
[x y] = [x y] 0 1
 2x2

 3x3

2:- X-shear

 1 0
[x y] = [x y] shx 1
 2x2

 3x3

Example :

Shear the object (1,1), (3,1),(1,3), (3,3) with

a: shx = 2

b: shy =2

solution:

a: shx

48

b: shy

49

H . W (9):

1 . Magnify the triangle (0 , 0) , (10 , 12) , (14 , 6), 3 times its size, using

matrix representation.

2 . Rotate the above triangle 90o clockwise about the point (10 , 12), using

matrix representation.

3 . Translated the shape above 20 units to the left, and 10 units up. Using matrix

representation.

4 . Reflect the shape (2, 2), (4, 4), (6, 2), about:

a- X – axis b- Y- axis

c- origin (0,0) d- y = x e- y = -x , then draw the result.

5. Shear the shape above with: a- shx = 4

 b- shy = 4.

50

TWO – DIMENSIONAL VIEWING TRANSACTION AND

CLIPPING WINDOWS AND VIEW PORTS:

 The method for selecting and enlarging portions of a drawing enclosed in a

rectangular region is called Widowing. The rectangular region is called a window.

 The technique for not showing that part of the drawing which one is not

interested in is called clipping.

 Clipping is a process which divided each element of the picture into its risible

and invisible portions allowing the invisible portion to be discarded.

- If we imagine a box about a portion of the object so we could display what is

enclosed in the box such a box called a Window.

- If we do not wish to use the entire screen for display, we can imagine a box on

the screen and have the image confined to that box such a box in the screen space

is called a view port.

- When the window is hanged a different part of the object at the same positron is

displayed.

- If we change the view port, we see the same part of the object drawn at a

different place on the display.

51

1- Viewing Transformation :

 Mapping from object space to image space,

1. Change the window size to become the size of the view port (Scaling).

2. Position the window at the desired location on the screen (Translate) by

moving the Lower-left corner of the window to the view port Lower-left

corner location. To do this we need 2 step:

Step 1:
Move the corner to the origin (to perform the necessary scaling without

disturbing the corner the corner's position).

52

Step 2:
Move it to the view port corner location.

Example :

 A window has left and right boundaries of 3 of 5 and lower and upper

boundaries of 0 and 4. The view port is the upper-right quadrant of the screen

with boundaries at 0.5 and 1.0 for both X and Y direction, find the viewing

transformation?

1- Translate :

 The first translation matrix would be

2- Scaling :

 The length of the window is

 5 – 3 = 2 in the X direction
 4 – 0 = 4 in the Y direction
The length of the view port is 1.0 – 0.5 = 0.5 in the X direction

The X scale factor is 0.5/2 = 0.25

In the Y direction is 0.5/4 = 0.125

The scaling transformation matrix is

3- Translate :

Finally to position the view port requires a translation of :

53

The viewing transformation is then:

 =

V: View port
W: Window
X: Position of a vertical boundary
Y: Horizontal boundary
H: High boundary
L: Low boundary

In general the viewing transformation is

54

2 - CLIPPING:

 If we wish to display only a portion of the total picture, we use a window to

select that portion of the picture which is to be viewed (like clipping or cutting

out a picture from a magazine). This is known as clipping.

The process of clipping determines which elements of the picture lie inside the

window and so are visible.

2 – 1 RECTANGULAR CLIPPING WINDOWS:

 The clipping window assumes to be rectangles whose sides are aligned with the

coordinate area. The X extent is measured from X min to X max and the Y extent

is measured from Y min to Y max.

There are three types of clipping:-

1 – Point 2 – Line 3 – Polygon

a) POINT CLIPPING:

 A point p(x,y) is inside the rectangular window (visible) if all the following

inequalities are true.

 If any of these inequalities is false point P is outside the window and is not

displayed (invisible).

55

Point Clipping algorithm
 P(x , y) اēنقطة إحداثيا , XL , XR , YT , YB معلومة

Procedure out code (p ; VAR OP: integer) ;

Begin

 Op := 0 ;

 If P.x < xl then op : = op OR 1 ;

 If P.x > xr then op : = op OR 2 ;

 If P.y < yb then op : = op OR 4 ;

 If P.y > yt then op : = op OR 8 ;

End;

b) Line Clipping :

1001 1000 1010
0001 0000 0010
0101 0100 0110

First bit on if x < xl to the left of window.

Second bit on if x > xr to the right of window.

Third bit on if y < yb to the below of window.

Fourth bit on if y > yt to the top of window.

Line Segment Clipping:

 Line clipping process is into two phases:

1: Identify those lines which intersect the window and so need to be clipped.

2: Perform the clipping.

f

56

All line segments fall into one of the following clipping categories:

1 – Visible:

Both endpoints of the line segment lie within the window (Line AB).

2 – Not visible:

The line segment definitely lies outside the window (Line CD and EF). This will

occur if the line segment from (X1, Y1) to (X2, Y2) satisfies any one of the

following four in qualities

X1, X2 > X max Y1, Y2 > Y max X1, X2 < X min Y1, Y2 < Y min

3 – Clipping candidate:

The line is in neither category 1 nor 2 (Line GH, IJ, and KL)

57

1- Simple visibility algorithm.

Check for totally visible lines.

If ((xb < xL) OR (xb > xR)) then 1 .

If ((xe < xL) OR (xe > xR)) then 1 .

If ((yb < yB) OR (yb > yT)) then 1 .

If ((ye < yB) OR (ye > yT)) then 1 .

Draw line

Go to 3

1 - Check for totally invisible lines

if ((xb < xL) AND (xe < xL)) then 2

if ((xb > xL) AND (xe > xL)) then 2

if ((yb < yL) AND (ye < yB)) then 2

if ((yb > yT) AND (ye > yT)) then 2

The line is partially visibly or diagonally crosses the corner; determine the

intersections go to 3

2 line is invisible

3 next line

58

2 - Cohen clipping Algorithm
{w (4) = (xl , xr ,yb , yt) }

Subroutine end point (p , w , pc , s)

If p (1) < w (1) then pc (4) = 1 else pc (4) = 0

If p (1) > w (2) then pc (3) = 1 else pc (3) = 0

If p (2) < w (3) then pc (2) = 1 else pc (2) = 0

If p (2) > w (4) then pc (1) = 1 else pc (1) = 0

S = 0

For I = 1 to 4 s = s + pc (i) Next i

Return

Subroutine logical (pc1 ,pc2 , inter)

 Inter = 0

 For I = 1 to 4 Inter = inter = pc1 (i) * pc2(i) Next i

Return

Subroutine Cohen (p1 , p2 , w , visible)

 Call end point (p1 , w . pc . s1)

 Call end point (p2 , w .pc2 , s2)

 If S1 = 0 & S2 = 0 then visible = yes

 Call logical (pc1 , pc2 , inter)

 If inter < > 0 then visible = NO

 else visible = partial

 If S1 = 0 then 1

 else p1 p2 end if

1 Return

THE ALGONITHM

 FLAG = 0

 IF (P2 (1) – P1 (1) = 0) THEN FLAG = - 1

 ELSE slop = (p2 (2) – p1 (2)) /(p2 (1) – (p1(1))

 End if

59

For i = 1 to 4

 Call cohen (p1 , p2 . w1 visible)

 If visible = yes then 2

 If visible = No then 3

 If flag = -1 and i ≤ 2 then 1

 If i ≤ 2 then

 Inter = slop * (w (i) – p1 (1)) + p1 (2)

 P2 (1) = w (I)

 P2 (2) = inter

 else if flag = -1 then p2 (2) = w (i)

 else inter = (1 /slop) * (w (i) – p1 (2)) + p1 (1)

 p2 (1) = inter

 p2 (2) = w (i)

 end if

 end if

next i

draw p1 p2

end

60

Find Intersection Points

1 - Midpoint Subdivision :

 The line segment is divided at its midpoint into two smaller line segments.

The clipping categories of the two new line segments are then determined. Each

segment in category 3 is divided again into smaller segment and categorized. The

bisection and categorization process continues until all segments are in category 1

(visible) or category 2 (invisible).

 The midpoint coordination (Xm , Ym) of a line segment joining P1 (X1 , Y1) to

P2 (X2 , Y2) are given by

2 - Line Intersections and Clipping :

 We determine the intersection points of the lines in category (3) with the

boundaries of the window. The intersection points subdivided the line segment

into several smaller line segments which can belong only to category 1 (visible)

or category 2 (not visible). The segment in category 1 will be the clipped line

segment.

 m = X + X2 m= Y1 + Y2

 2 2

61

INTERSECTION POINT:

 If M is the slope of the line segment between points (X1, Y1) and (X2, Y2)

then if X1 ≠ X2

 (Y2 – Y1)

 (X2 – X1)

Then any point (X, Y) on the line is

 (Y - Y1)

 (X - X1)

 If the line segment crosses a left or right window edge then X1 ≠ X2 and M

has non denominator.

 If the line crosses a top or bottom widow edge then Y1 ≠ Y2 and the reciprocal

of the slop 1/m has a nonzero denominator.

The slop M is obtained from the two given endpoints.

 If we are testing against a left or right direction the X value is known (the left

or right edge value).

The X value is substituted into the equation for Y.

For top and bottom the Y value known then:

Y = M * (X – X1) + Y1

X = 1/M * (Y - Y1) + X1

62

c) Polygon Clipping Algorithm :

 Case – 1 :

 If the first point and the second point inside the window then store second

point.

Case – 2:

 If the first point inside and the second point outside the window then store

the intersection.

Case – 3:

 If the first point and the second point outside the window then nothing.

Case – 4:

 If the first point outside and the second point inside the window then store

the intersection and the second point .

The input polygon is: V1 . V2 . V3 . V4

 . V2 P1 P2 V1تكون النتيجة ھي Left إلىبالنسبة Clippingعندما نعمل -

 P2 V1 V2 P1. تكون النتيجة ھي Right إلىبالنسبة Clippingعندما نعمل -

 P1 P2 V1 V2.تكون النتيجة ھي TOP إلىبالنسبة Clippingعندما نعمل -

 .V1 V2 P1 P2 تكون النتيجة ھي Bottom إلىبالنسبة Clippingعندما نعمل -

63

) Bottom , right , top , left (مرات 4 نطبق العملية

Left : - V2 P1 P2 V1

Bottom : - P1 P2 V1 V2

Right : - P2 V1 V2 P1

Top : - V1 V2 P1 P2

- Clips a polygon against each edge of the window.

- For each edge it inputs a list of vertices and outputs a new list of vertices.

- The input list is a sequence of consecutive vertices of the polygon obtained from

the previous edge clipping.

Example :

There are 4 possible cases:

Case 1:

 First and second V1,V2 inside the window, V2 is sent to the output list.

64

Case 2:

 First vertex V2 inside and the second vertex V3 outside the window, the

intersection point (P1) of the side of the polygon joining the vertices and the edge

is added to the output list.

Case 3:

 Both vertices V3, V4 outside the window and no point is output.

Case 4:

 First vertex V4 outside the window and the second vertex V1 inside the

window, the intersection point (P2) and the second vertex V1 are added to the

output list.

The result of this left clipping is the transformation of

input list {V1, V2, V3, V4} to the

output list {V1,V2, P1, P2}.

65

Convex and Concave Window:

 (10,30) V3=(-20,0) (30,30)

 (10,-10) = V4

 (-10,-10) = V5 (20,20) V2 = (0,20)

 (10,10) V1 = (20,0) (30,10)

V1 = (x2 - x1 , y2 - y1) = (30 – 10 , 10 – 10) = (20 , 0)

V2 = (x2 - x1 , y2 - y1) = (30 – 30 , 30 – 10) = (0 ,20)

V3 = (x2 - x1 , y2 - y1) = (10 – 30 , 30 – 30) = (-20 ,0)

V4 = (x2 - x1 , y2 - y1) = (20 – 10 , 20 – 30) = (10 ,-10)

V5 = (x2 - x1 , y2 - y1) = (10 – 20 , 10 – 20) = (-10 ,-10)

66

200
020

1010
15

200
1010

1010
54

200
1010

020
43

400
020

200
32

400
200

020
21

VV

VV

VV

VV

VV

H . W (10) :

1. A window has been set to set-window (2,5,3,7), and a view port has been set

to set-viewport (0,0.5,0.5,1). Find the viewing transformation.

2 . We have a set window (5,10,5,10), check the points:

a) P1(6,7).

b) P2(8,16), were inside the rectangular window or not (By Low)?

3 . We have a set window (5,10,5,10), clipping the point:

a) P1(7,7)

b) P2(18,20)

c) P3(8,16)

67

4 . If the clipping window is XL = 5, XR = 10, YB = 5, YT = 10. Clip the lines,

using simple visibility algorithm:

a) AB = (6,6) – (8,7)

b) EF = (14,8) – (12,14)

c) IJ = (1,6) – (7,8)

5 . Clip the following figure using polygon clipping algorithm.

 polygon

 window

6 . Determine the window of the end points P1(5,5) , P2(20,5) , P3(18,10) ,

P4(20,20) , P5(5,20) , P6(10,10).

68

Aspect Ratio

Aspect Ratio: is the ratio of the horizontal width to the vertical

to the vertical height.

- The horizontal and vertical plots of an equal number of pixels

 have different lengths.

- The ratio is a consequence of non – square pixels and rectangular

 display screen.

Example :
 If we plot eight pixels horizontally on the display screen and

then we measure the line, we find that it is 0 .3 cm wide. If we plot

eight pixels vertically on the display screen and then we measure the

line, we find that its 0.4 cm height.

 The A.R = 0.4 / 0.3 = 1.33 .

 New number of pixels = Old number of pixels * AR .

 New number of pixels = 8 * 1.33

 = 10.64 ≈ 11 pixels.

 11 – 8 = 3 pixels will be added to the horizontal line.

69

Graphics Primitives

The normalized device coordinate :

 Different display devices may have different screen sizes as measured in

pixels. If we wish our program to be devices independent we should specify the

coordinates in some units other than pixels and then use the interpreter to convert

these coordinates to the appropriates values for particular display, we are using

device independent units are called the normalized device coordinates.
 In these units, the screen measures (1) unit wide and (1) unit high, the lower

left corner of the screen is the origin , and the right upper corner is the point (1 ,

1) , the point (0.5 , 0.5) is the center of the screen no matter what the physical or

resolution of the actual display device may be .
Appropriate pixel values for the particular display we are using the device

Independent units are called the normalized devices coordinates.

70

)0,0 (()0,1

) 1,1 ()1,0 (

Normalized device coordinates

 The interpreter uses a simple linear formula to convert from normalized

device coordinates to the actual device coordinates suppose that for actual display

the index of the left most pixel is the (width – start) and that there are (width)

pixels in the horizontal direction .

 Suppose also that the bottom most pixel is (high – start) and the number of

Pixels in the vertical direction is (height). In the normalized coordinates the

screen is one unit wide, so the normalized coordinates it is (width) units wide, so

the normalized X position should by multiplied by (width / 1) to convert it actual

screen units . At position Xn = 0 in normalized coordinates we should get

Xs = width – start in actual screen coordinate, so the conversion formula should

be:

 Xs = width * xn + width – start.

Similarly for the vertical direction

 Ys =height * Yn + height – start

Center

)0.5 ، 0.5 (

71

 Xs width
 ـــــ = ـــ

 Xn 1

 Xs = width * Xn + width – start

 Screen normalized

Normalization

ھي عملية تحويل إحداثيات الشاشة إلى إحداثيات جديدة وتفيد في عملية تنفيذ البرامج على جميع أنواع

 الشاشات ومھما كان حجم الشاشة .

 -: عملية التحويل وكالاتي وتجري

)1 , 0وتكون محصورة ما بين y-1(max)(و max (x-1)أخذ جميع إحداثيات الصورة على -

 . Yأو المحور x سواء على المحور

Example :

 If we have points P1(0,0) , p2(200,200) p3(1023,1023) , convert these points

from screen 1024 * 1024 to appropriate coordinates in screen 800*600 ?

 واحد. المصدر ناقص الشاشة إحداثياتتقسيم -: الأولى العملية

MaxX = 1023(1024 = 0..1023).

MaxY = 1023(1024 = 0..1023).

We use the equation

Xr = X / maxX ; Yr = Y / maxY

For all points so we get:-

p1 *)1023/0، 1023/0 = (≈)0,0 (

P2 *)1023/200، 1023/200= (≈ (0.195,0.195)

P3 *)1023/1023، 1023/1023(= ≈ (1,1)

72

 .ناقص واحد الجديدة الشاشة نضرب النسبة في -لثانية :ا العملية

MaxX = 799(800 = 0..799).

MaxY = 599(600 = 0..599).

By using the equation

 X = Xr * maxX ; Y = Yr * maxY

For all points so we get:-

p1 * = (0*799, 0*599) ≈)0,0(

P2 * = (0.195*799 , 0.195*599) ≈ (156 , 116)

P3 * = (1*799, 1*599) ≈ (799,599)

So that the points will be:-

1024 * 1024 800 * 600

(0,0) (0,0)

(200,200) (156,116)

(1023,1023) (799,599)

73

THREE – DIMENSIONAL TRANSFORMATIONS

 The world composed of three – dimensional images so the object has height,

width and depth. The computer uses a mathematical model to create the image.

1 - Coordinate system:

 A three- dimensional coordinate system can be view as an extension of the –

two –-dimension coordinate system.

 The third – dimension depth is represented by the Z – axis which is at right

angle to the X , Y coordinate plane. A point can be described by triple (X , Y , Z

) of coordinate values.

 Z

 Y

 X

74

2 . The Transformations:

2 . 1 Translation :-

 A point (x , y , z) is translated to a new position

(x1 , y1 , z1) by move it dx units in the X – direction and by units in the Y –

direction and dz units in Z – direction. Mathematically this can be represented

as:-

1

0100

0010

0001

11111

1

1

1

dzdydx

ZYXZYX

dzZZ

dyYY

dxXX

2 . 2 Scaling :-

 Increasing the distance, between the points describing the object can make an

object. In general, we can change the size of an object, or the entire image, by

multiplying the distance between points by an enlargement or reduction factor.

This factor is called the scaling factor, and the operation that the size is called

scaling. If the scaling factor is greater than 1, the object is enlarge, if the factor is

less than 1, the object is made smaller, a factor of 1 has no effect on the object.

Whenever scaling is performed, there is one point that remains at the same

location. This is called fixed point of the scaling transformation.

a) To scale an object from a origin point:-

We used the following matrix.

1000

000

000

000

z

y

x

S

S

S

75

b) To scale an object from fixed point (xp , yp , zp), we perform the

following three steps:

1. Translate the point (xp , yp , zp) to the origin. Every point (x , y , z) is

moved to a new point (xp , yp , zp):

p

p

p

zzz

yyy

xxx

1

1

1

2. Scale these translate points with the origin as the fixed points:

z

y

x

Szz

Syy

Sxx

12

12

12

3. Translate the origin back to the fixed point (xp , yp , zp):

p

p

p

zzz

yyy

xxx

23

23

23

1

0100

0010

0001

1111

000

000

000

1

0100

0010

0001

11111

ppp

z

y

x

ppp zyx

S

S

S

zyx

ZYXZYX

76

2 . 3 Rotation :-

a) Rotation about X – axis:

1000

0)cos()sin(0

0)sin()cos(0

0001

)(

xR

b) Rotation about Y – axis:

1000

0)cos(0)sin(

0010

0)sin(0)cos(

)(

yR

c) Rotation about Z – axis:

1000

0100

00)cos()sin(

00)sin()cos(

)(

zR

Example (1):

 Draw the figure (0 , 0 , 0) , (0 , 1 , 0) ,(0 , 1 , 3) , (0 , 0 , 3) , (2 , 0 , 0) ,

(2 , 3 , 0), (2 , 0 , 3) , (2 , 1 , 3), and find: Not: sin (90) = 1 , cos (90) = 0.

a) Translate it to the point (0 , 3 , 0).

b) Scaling 4 times its size.

c) Rotate its (90o) about the Z – axis.

77

Solution:

a) Translate it to the point (0 , 3 , 0).

1342

1332

1062

1032

1330

1340

1030

1030

1030

0100

0010

0001

1312

1302

1032

1002

1300

1310

1010

1000

 Z

 (0,0,3)

 (2,0,3) (0,1,3)

 (2,1,3)

 (0,0,0)
 (0,1,0)
 (2,0,0)

 X (2,3,0) Y

78

b) Scaling 4 times its size.

11248

11208

10128

1008

11200

11240

1040

1000

1000

0400

0040

0004

1312

1302

1032

1002

1300

1310

1010

1000

c) Rotate its (90o) about the Z – axis.

1321

1320

1023

1020

1300

1301

1001

1000

1000

0100

00)90cos()90sin(

00)90sin()90cos(

1312

1302

1032

1002

1300

1310

1010

1000

H . W (11):

 Draw the figure A (4 , 4 , 0) , B (-3 , 3 , 4) , C (-2 , 3 , 3), D (3 , -3 , 4) ,

E(3 , -2 , 3) and find:- Not: sin (180) = 0 , cos (180) = -1

a) Translate above shape to point (-3 , 4 , 3).

b) Scaling the figure, twice in X direction, three in Y direction and once in Z

direction.

c) Rotate the figure (180o) about X – axis.

Ibn Al-Haitham Education College

Computer Science Department

Computer Graphics / Third class

Subject name No. of hours

1 – Introduction to Computer Graphics.

2

1-1) Overview.
1-2) Application of Graphics .
1-3) Remarks.

1. Mode.
- Text mode.
- Graphics mode.

2. Picture Elements.
3. Raster-Scan Display.
4. Resolution.

1-4) The Graphic Display.
1. Frame buffer.
2. Display Controller.
3. Scan Conversion Algorithms.

1-5) Graphic Devices.
2- Drawing Elementary Figure.

2

2-1) Plotting Point.
2-2) Line Drawing Algorithms.

 2-2-1) Draw Horizontal Line.
 2-2-2) Draw Vertical Line.
 2-2-3) Draw Diagonal Line.
 2-2-4) DDA Algorithm.
 2-2-5) Bresenham`s Algorithm. 2
 2-2-6) Integer Bresenham`s Algorithm.
 2-2-7) General Bresenham`s Algorithm. 2

2-3) Circle Drawing. 2
 2-3-1) Circle General Algorithm.
 2-3-2) Circle General Bresenham`s Algorithm. 2
 2-3-3) Circle Drawing by Using Circle Equation. 2
 2-3-4) Ellipse.
3- Two Dimensional Geometric Transformations. 2

3-1) Introduction.
 3-1-1) Translation.
 3-1-2) Rotation. 2
 3-1-3) Scaling. 2

Subject name No. of hours

 3-1-4) Reflection. 2
 3-1-5) Shearing.

3-2) Matrix Representation of Transformations. 2
 3-2-1) Translation.
 3-2-2) Rotation. 2
 3-2-3) Scaling. 2
 3-2-4) Reflection. 2
 3-2-5) Shearing.
4- Two Dimensional Viewing Transaction and Clipping

Windows and View Ports.
2

4-1) Viewing Transformation.
4-2) Clipping. 2

 4-2-1) Rectangular Clipping Windows.
a) Point Clipping.
b) Line Clipping. 2

- Simple Visibility Algorithm.
- Find Intersection Points. 2

1) Midpoint Subdivision.
2) Line Intersections and Clipping.

c) Polygon Clipping Algorithm. 2
 4-2-2) Convex and Concave Window.
5- Aspect Ration. 2

5-1) Graphics Primitives. 2
5-2) Normalized Device Coordinates. 2

- Normalization.
6- Three Dimensional Transformations. 2

6-1) Coordinate System.
6-2) The Transformations.

a) Translation.
b) Rotation. 2
c) Scaling.

7- 3D Models.

8

7-1) Why do you see the movie in 3D?
7-2) 3D Modeling.
7-3) 3D Modeling Operations.
7-4) Usage of 3D Modeling.
7-5) 3D Models Features.
7-6) The Process of 3D Modeling.
7-7) 3D Models Creating Method.
7-8) Stereoscopy.

	sa10
	مفردات

