
Database Design 
 

1 
 

Database  

Database is a collection of interrelated data stored together without harmful or unnecessary 

redundancy to serve multiple applications. 

 

1. Database management system (DBMS)  

(DBMSs) are specially designed applications that interact with the user, other applications, and 

the database itself to capture and analyze data. A general-purpose (DBMS) is a software system 

designed to allow the definition, creation, querying, update, and administration of DB. 

Well-known DBMSs include: 

- MySQL 

- Microsoft SQL Server 

- Oracle, dBASE 

- FoxPro 

- IBM DB2 

 A database is not generally portable across different DBMS, but different DBMSs can by using 

standards such as SQL (Structure Query Language) and ODBC (Open Database Connectivity) 

or JDBC (The Java Database Connectivity) to allow a single application to work with more than 

one database. 

 

2. Classification of DBMS 

Database management systems can be classified based on several criteria, such as the data 

model, user numbers and database distribution. 

 

2.1 Classification Based on Data Model 

A database model is a type of data model that determines the logical structure of a database 

and fundamentally determines in which manner data can be stored, organized, and manipulated. 

 



Database Design 
 

2 
 

Types of DB models: 

- Network  

- Hierarchical  

- Relational 

- Entity-Relationship 

- Extended Relational 

- Object-oriented 

- Object-relational 

- Semi-structured (XML/ Extensible Markup Language) 

- NoSQL 

 

2.2 Classification Based on User Numbers 

It can be a single-user database system, which supports one user at a time, or a multiuser 

database system, which supports multiple users concurrently. 

 

2.3 Classification Based on Database Distribution 

There are four main distribution systems for database systems and these, in turn, can be used 

to classify the DBMS.  

 

2.3.1 Centralized systems: With a centralized database system, the DBMS and database 

are stored at a single site that is used by several other systems too. Fig(1) 

                 Fig(1) centralized DB 



Database Design 
 

3 
 

2.3.2 Distributed database system: In a distributed database system, the actual database 

and the DBMS software are distributed from various sites that are connected by a 

computer network, A distributed database system allows applications to access data 

from local and remote databases as shown in Fig(2) 

               Fig(2) distributed DB 

 

- Homogeneous distributed database systems: Homogeneous distributed database 

systems use the same DBMS software from multiple sites. Data exchange between these 

various sites can be handled easily.  

 

- Heterogeneous distributed database systems: In a heterogeneous distributed database 

system, different sites might use different DBMS software, but there is additional 

common software to support data exchange between these sites. 

 

3. Database design 

Database Design and Application Development: How can a user describe a real-world 

enterprise (e.g., a university) in terms of the data stored in a DBMS? What factors must be 

considered in deciding how to organize the stored data?  



Database Design 
 

4 
 

 

 

3.1 Database Design Process 

The database design process can be divided into six steps. The E-R model is most relevant to 

the first three steps. 

1. Requirements Analysis:  

The very first step in designing a DB application is to understand what data is to be 

stored in the DB, what applications must be built on top of it, and what operations are 

most frequent and subject to performance requirements.  

 

2. Conceptual Database Design: The information gathered in the requirements analysis step 

is used to develop a high-level description of the data to be stored in the DB, along with 

the constraints known to hold over this data. This step is often carried out using the E-R 

model.  

 

3. Logical Database Design: We must choose a DBMS to implement our DB design, and 

convert the conceptual database design into a DB schema in the data model of the chosen 

DBMS.   

 



Database Design 
 

5 
 

4. Schema Refinement: The fourth step with DB’s design is to analyze the collection of 

relations in our relational DB schema to identify potential problems, and to refine it 

(Normalization). 

 

5. Physical Database Design: It describes the details of how data is stored. This step may 

simply involve building indexes on some tables and clustering some tables 

 

6. Application and Security Design: Any software project that involves a DBMS must 

consider aspects of the application that go beyond the database itself. We must identify 

the entities (e.g., users, user groups, departments) and processes involved in the 

application. We must describe the role of each entity in every process that is reflected in 

some application task, as part of a complete workflow for that task.  

 

4. The Entity Relationship Mode   

ER data model has existed for over 35 years. It is well suited to data modelling for use 

with DB because it is fairly abstract and is easy to discuss and explain. ER models are 

readily translated to relations. ER models, also called an ER schema, are represented by ER 

diagrams. ER modelling is based on two concepts: 

1. Entities, defined as tables that hold specific information (data) 

2. Relationships, defined as the associations or interactions between entities 

 

Table(1) Entity Relationship Diagram Symbols 

Symbol Shape Name Symbol Description 

Entities 

 

Entity 

An entity is an object in the real world with an 

independent existence that can be differentiated 

from other objects. An entity is represented by a 

rectangle which contains the entity’s name. 



Database Design 
 

6 
 

 

Weak Entity 

An entity that cannot be uniquely identified by its 

attributes alone. The existence of a weak entity is 

dependent upon another entity called the owner 

entity.  

 

Associative 

Entity 

An entity used in a many-to-many relationship 

(represents an extra table). All relationships for the 

associative entity should be many 

Attributes 

 

Attribute 

An attribute is a particular property that describes 

the entity. each attribute is represented by an oval 

containing attribute’s name 

 

Key attribute 
An attribute that uniquely identifies a particular 

entity. The name of a key attribute is underscored. 

 

Multivalued 

attribute 

An attribute that can have many values (there are 

many distinct values entered for it in the same 

column of the table). Multivalued attribute is depicted 

by a dual oval. 

 

Derived 

attribute 

An attribute whose value is calculated (derived) from 

other attributes. The derived attribute may not be 

physically stored in the database. This attribute is 

represented by dashed oval. 

Relationships 

 

Relationship A relationship among two or more entities 

 

 

   



Database Design 
 

7 
 

4.1 Entity 

An entity is an object in the real world with an independent existence that can be differentiated 

from other objects. 

An entity might be 

-  An object with physical existence (e.g., a lecturer, a student, a car) 

-  An object with conceptual existence (e.g., a course, a job, a position) 

 

Entities can be classified based on their strength into:-  

-Weak entity: an entity is considered weak if its tables are existence dependent. 

- That is, it cannot exist without a relationship with another entity 

-  Its primary key is derived from the primary key of the parent entity 

Strong entity: an entity is considered strong if it can exist a part from all of its related entities. 

-  A table without a foreign key or a table that contains a foreign key that can contain nulls 

is a strong entity 

An entity set is a collection of entities of an entity type at a particular point of time. In an entity 

relationship diagram (ERD), an entity type is represented by a name in a box.  

 

 
 

4.2 Entity and attributes  
Each entity has attributes—the particular properties that describe it. For example, an 

EMPLOYEE entity may be described by the employee’s name, age, address, salary, and job. A 

particular entity may have values for each of its attributes.  

Types Of Attributes 

Several types of attributes occur in the ER model: simple versus composite, single valued 

versus multivalued, and stored versus derived.  



Database Design 
 

8 
 

1. Simple attributes: Are those drawn from the atomic value domains; they are also called 

single-valued attributes. In the COMPANY database, an example of this would be: Name 

= {John} ; Age = {23} 

2. Composite attributes:  Are those that consist of a hierarchy of attributes. Figure 3 

Address may consist of Number, Street and Suburb. So this would be written as → 

Address = {59 +‘Meek Street’ + ‘Kingsford’} 

 

 

 

 

 

 

 

                                               Fig(3) Address is a Composite attribute 

 

3. Multivalued attributes: Are attributes that have a set of values for each entity. See 

Figure 4, are the degrees of an employee: BSc, MIT, PhD. 

 

 

Fig(4) Degree is a multi-valued attribute 

 

4. Derived attributes: Are attributes that contain values calculated from other attributes. 

Figure 5 Age can be derived from the attribute Birthdate. In this situation, Birthdate is 

called a stored attribute, which is physically saved to the database 

 



Database Design 
 

9 
 

 
Fig (5) Age is a derived attribute, name, birthday, salary, address are stored attributes 

 

4.3 NULL Values 

 A null is a special symbol, independent of data type, which means either unknown or 

inapplicable. It does not mean zero or blank. Features of null include: 

- No data entry 

- Not permitted in the primary key 

- Should be avoided in other attributes 

 Null Can represent:-  

- An unknown attribute value. 

- A known, but missing, attribute value. 

- A not ―applicable‖ condition. 

• Can create problems when functions such as COUNT, AVERAGE and SUM are used 

 

4.4 Relationship 

Relationships are the glue that holds the tables together. They are used to connect related 

information between tables. 

Degree of a relationship is the number of entities associated in the relationship. Binary and 

ternary relationships are special cases where the degrees are 2 and 3, respectively.  

The binary relationship, an association between two entities, is by far the most common type in 

the natural world. In fact, many modeling systems use only this type.  

Unary relationship (recursive): A unary relationship, also called recursive, is one in which a 

relationship exists between occurrences of the same entity set. In this relationship, the primary 

and foreign keys are the same, but they represent two entities with different roles fig(7).  



Database Design 
 

10 
 

 

Fig(7) recursive relationship 

Ternary Relationships:  A ternary relationship is a relationship type that involves many to 

many relationships between three tables. Refer to Figure (8) for an example of mapping a 

ternary relationship type. Note n-ary means multiple tables in relationship. 

 

Fig(8) A ternary relationship 

Connectivity of a Relationship The connectivity of a relationship describes a constraint 

on the connection of the associated entity occurrences in the relationship. Values for 

connectivity are either “one” or “many.‖ 

Example: for a relationship between the entities Department and Employee, a connectivity of 

one for Department and many for Employee means that there is at most one entity occurrence of 

Department associated with many occurrences of Employee. 

 

The actual count of elements associated with the connectivity is called the cardinality of the 

relationship. 

 

 

 



Database Design 
 

11 
 

Relationship Connectivity 

Table (2) Relational Symbol and Meaning 

Symbol Meaning 

Relationships (Cardinality and Modality) 

 

Zero or One 

 

 

One or More 

 

 

One and only One 

 

 

Zero or More 

 Many - to – One 

 

a one through many notation on one side of a 

relationship and a one and only one on the other 

 

 

a zero through many notation on one side of a 

relationship and a one and only one on the other 

 

 

a one through many notation on one side of a 

relationship and a zero or one notation on the other 

 

 

a zero through many notation on one side of a 

relationship and a zero or one notation on the other 

 Many - to – Many 

 

a zero through many on both sides of a relationship 

 

 

a zero through many on one side and a one through 

many on the other 

 

 

a one through many on both sides of a relationship 

 

 

a one and only one notation on one side of a relationship 

and a zero or one on the other 

 

 

a one and only one notation on both sides 

  



Database Design 
 

12 
 

4.5   How to Convert ER Diagram to Relational Database 

We will be following the simple rules: 

1.  Entities and Simple Attributes: 

- An entity type within ER diagram is turned into a table. You may preferably keep the 

same name for the entity or give it a sensible name but avoid DBMS reserved words as 

well as avoid the use of special characters. 

- Each attribute turns into a column (attribute) in the table. The key attribute of the entity is 

the primary key of the table which is usually underlined. It can be composite if required 

but can never be null. 

Example: 

Persons ( personid, name, lastname, email) 

Note the phone attribute not included.  

 

 

 

 

2. Multi-Valued Attributes 

A multi-valued attribute is usually represented with a double-line oval. 

If you have a multi-valued attribute, take the attribute and turn it into a new entity or table of its 

own. Then make a 1: N relationship between the new entity and the existing one. In simple 

words: 

-  Create a table for the attribute. 

-  Add the primary (id) column of the parent entity as a foreign key within the new table  

Persons (personid, name, lastname, email) 

Phones ( phoneid , personid, phone ) 



Database Design 
 

13 
 

3. 1:1 Relationships 

 

 

To keep it simple and even for better performances at data retrieval, I would personally 

recommend using attributes to represent such relationship. For instance, let us consider the case 

where the Person has or optionally has one wife. You can place the primary key of the wife 

within the table of the Persons which we call in this case Foreign key as shown below. 

Persons ( personid, name, lastname, email , wifeid ) 

Wife ( wifeid , name ) 

 

Or vice versa to put the personid as a foreign key within the Wife table as shown below: 

 

Persons ( personid , name, lastname, email ) 

Wife ( wifeid , name , personid) 

 

4.   1: N Relationships 

This is the tricky part! For simplicity, use attributes in the same way as 1:1 relationship but we 

have only one choice as opposed to two choices. For instance, the Person can have 

a House from zero to many, but a House can have only one Person. To represent such 

relationship the personidas the Parent node must be placed within the Child table as a foreign 

key but not the other way around as shown next: 

 



Database Design 
 

14 
 

 

It should convert to: 

Persons ( personid , name, lastname, email ) 

House ( houseid , num , address, personid) 

 

5. N:N Relationships 

We normally use tables to express such type of relationship. It is the same for N − ary 

relationship of ER diagrams. For instance, The Person can live or work in many countries. Also, 

a country can have many people. To express this relationship within a relational schema we use 

a separate table as shown below: 

 

it should convert into : 

Persons( personid , name, lastname, email ) 

Countries ( countryid , name, code) 

HasRelat ( personid + countryid) 

 

 



Database Design 
 

15 
 

Case Study 

Convert the E-R diagram into relational database 

 

The relational schema for the ER Diagram is given below as: 

 

Company( CompanyID) 

Staff( ID , dob , name, address , companyID, WifeID) 

Child( ChildID , name , ID ) 

Wife ( WifeID , name ) 

Phone(PhoneID , phoneNumber , ID) 

Task ( TaskID , description) 

Perform(ID + TaskID ) 

 

 

 

 



Database Design 
 

16 
 

4.6  Key Differences between E-R Model and Relational Model 

BASIS FOR 

COMPARISON 
E-R MODEL RELATIONAL MODEL 

Basic It represents the collection 

of objects called entities 

and relation between those 

entities. 

It represents the collection of 

Tables and the relation 

between those tables. 

Describe Entity Relationship Model 

describe data as Entity set, 

Relationship set and 

Attribute. 

Relational Model describes 

data in a table as Domain, 

Attributes, Tuples. 

Relationship E-R Model is easier to 

understand the relationship 

between entities. 

Comparatively, it is less easy 

to derive a relation between 

tables in Relational Model. 

Mapping E-R Model describes 

Mapping Cardinalities. 

Relational Model does not 

describe mapping 

cardinalities. 

 

5. Enhanced Entity Relationship Model (EER Model) 

EER is a high-level data model that incorporates the extensions to the original ER model. It 

includes all modeling concepts of basic ER and additional: 

-  Sub Class and Super Class 

- Specialization and Generalization 

- Union or Category 

- Aggregation 



Database Design 
 

17 
 

5.1 Sub class-super class 

One entity type might be a subtype of another; very similar to subclasses in OO programming 

- Example: 

o EMPLOYEE may be further grouped into SECRETARY, ENGINEER, 

MANAGER, TECHNICIAN…. 

o VEHICLE may be grouped into CAR, TRUCK, VAN, … 

o  Each of these groupings is a subset of EMPLOYEE entities and  is called a 

subclass of EMPLOYEE  

o EMPLOYEE is the superclass for each of these subclasses  

o These are called superclass/subclass relationships. 

o These are also called IS-A relationships (SECRETARY IS-A EMPLOYEE, 

TECHNICIAN IS-A EMPLOYEE, …). - 

 

 
- An entity that is member of a subclass inherits all attributes of the entity as a member of 

the superclass  

- It also inherits all relationships  

 

5.2 Specialization 

- Is the process of defining a set of subclasses of a superclass  

- The set of subclasses is based upon some distinguishing characteristics of the entities in 

the superclass 

- Example: {SECRETARY, ENGINEER, TECHNICIAN} is a specialization of 

EMPLOYEE based upon job type. 

- May have several specializations of the same superclass  

- Example: Another specialization of EMPLOYEE based in method of pay is 

{SALARIED_EMPLOYEE, HOURLY_EMPLOYEE}. 

- Superclass/subclass relationships and specialization can be diagrammatically represented 

in EER diagrams 

- Attributes of a subclass are called specific attributes. For example, Typing Speed of 

SECRETARY 



Database Design 
 

18 
 

- The subclass can participate in specific relationship types. For example, BELONGS_TO 

of HOURLY_EMPLOYEE.  

 

 

5.3 Generalization 

- The reverse of the specialization process  

- Several classes with common features are generalized into a superclass; original classes 

become its subclasses 

- Example: CAR, TRUCK generalized into VEHICLE; both CAR, TRUCK become 

subclasses of the superclass VEHICLE. 

- We can view {CAR, TRUCK} as a specialization of VEHICLE  

- Alternatively, we can view VEHICLE as a generalization of CAR and TRUCK  

 
 



Database Design 
 

19 
 

5.4 Category or Union 

- Category represents a single super class or sub class relationship with more than one 

super class. 

- For example Car booking, Car owner can be a person, a bank (holds a possession on a 

Car) or a company. Category (sub class) → Owner is a subset of the union of the three 

super classes → Company, Bank, and Person. A Category member must exist in at least 

one of its super classes. 

 

 
REWRITING UNION AS SPECIALIZATION 

 

5.5 Aggregation 

- Aggregation is a process that represent a relationship between a whole object and its 

component parts. 

- It abstracts a relationship between objects and viewing the relationship as an object. 

- It is a process when two entity is treated as a single entity. 

In the following example, the relation between College and Course is acting as an Entity 

in Relation with Student. 

 



Database Design 
 

20 
 

5.6 EER to Relational Mapping 

 
Fig( 9) ER schema diagram specialization on job title 

 

To convert each super-class/subclass relationship into a relational schema you must use one of 

the four options available. 

Let C be the super-class, K its primary key and A1, A2, …, An its remaining 

attributes and let S1, S2, …, Sm be the sub-classes. 

Option A (multiple relation option): 

• Create a relation L for C with attributes 

(L) = {K, A1, A2, …, An} and PK(L) = K. 

• Create a relation Li for each subclass Si, 1 < i < m, with the attributes 

(Li) = {K} U {attributes of Si} and PK(Li) = K. 

• This option works for any constraints: disjoint or overlapping; total or partial. 

Mapping the EER diagram on fig(9) using option A  



Database Design 
 

21 
 

 

Option B (multiple relation option): 

• Create a relation Li for each subclass Si, 1 < i < m, with 

(Li) = {attributes of Si} U {K, A1, A2, …, An} PK(Li) = K 

• This option works well only for disjoint and total constraints. 

• If not disjoint, redundant values for inherited attributes. 

 

 

Fig(10)  

Car 

MaxSpeed Pass-count Model Price Vec-no 

Truck 

Tonnage Axel count Model Price Vec-no 

 

Option c (Single Relation Option) 

• Create a single relation L with attributes 

(L) = {K, A1, …, An} U {attributes of S1} U… U {attributes of Sm} U {T} and PK(L)=K 

Vehicle 

Prices Vec-No 

 

Car Truck 

Model 



Database Design 
 

22 
 

• This option is for specialization whose subclasses are DISJOINT, and T is a type attribute that 

indicates the subclass to which each tuple belongs, if any. This option may generate a large 

number of null values. 

• Not recommended if many specific attributes are defined in subclasses (will result in many 

null values!) 

Employee 

Ssn Fname Minit Lname birthdate Address JobType typpigSpeed TGrad EngType 

 

Option d (Single Relation Option) 

• Create a single relation schema L with attributes 

(L) = {K, A1, …, An} U {attributes of S1} U… U {attributes of Sm} U {T1, …, Tn} and 

PK(L)=K 

• This option is for specialization whose subclasses are overlapping, and each Ti, 1 < i < m, is a 

Boolean attribute indicating whether a tuple belongs to subclass Si. 

• This option could be used for disjoint subclasses too. 

Vehicle  

Vec_no Model Price Maxspee Pass-count carF tonnage Axel count truckF 

 

6. Relational algebra 

Relational algebra is a set of operators to manipulate relations. Each operator of the 

relational algebra takes either one or two relations as its input and produces a new 

relation as its output.  

Codd defined 8 such operators, two groups of 4 each:  

-  The traditional set operations: union, intersection, difference and Cartesian product  

-  The special relational operations: select, project, join and divide.  

 

 



Database Design 
 

23 
 

6.1 Selection: picking certain rows. 

 

 



Database Design 
 

24 
 

6.2 Projection: 

 

 



Database Design 
 

25 
 

Set Operations 

• Takes as input two relation instances, four standard operations 

– Union 

– Intersection 

– Difference 

– Cross-product 

Note: Union, intersection, and difference require the two input set to be union compatible – 

They have the same number of fields – corresponding fields, taken in order from left to right, 

have the same domains 

 

6.3 Union 
 

R U S returns relation instance containing all tuples that occur in either relation instance R or S, 

or both. 

- R and S must be union compatible. 

- Schema of the result is defined to be that of R. 

- Remove the duplicated tuples. 

 

 
 

6.4 Intersection 

 R ⋂ S: returns a relation instance containing all tuples that occur in both R and S. 

- R and S must be union compatible. 

- Schema of the result is that of R. 



Database Design 
 

26 
 

 

 

 

6.5 Difference  

R – S: returns a relation instance containing all tuples that occur in R but not in S. 

• R and S must be union-compatible. 

• Scheme of the result is the schema of R. 

 

 

6.6 Cross-Product 

R x S: Returns a relation instance whose scheme contains: 

– All the fields of R (in the same order as they appear in R) 

– All the fields of S (in the same order as they appear in S) 

• The result contains one tuple <r,s> for each pair with r ⋳ R and s ⋳ S 

• Basically, it is the Cartesian product. 

• Fields of the same name are may renamed 

 



Database Design 
 

27 
 

 

6.7 Join  

Join can be defined as cross-product followed by selection and projection. We have 

several variants of join. 

– Condition joins 

– Equijoin 

– Natural join 

6.7.1 Condition Joins: 

 



Database Design 
 

28 
 

6.7.2 Equijoin 

Condition consists only of equalities connected by ᴧ 

• Redundancy in retaining both attributes in result 

• So, an additional projection is applied to remove the second attribute. 

 
 

6.7.3 Natural Join 

It is an equijoin in which equalities are specified on all fields having the same name in R and S. 

• We can then omit the join condition. 

• Result is guaranteed not to have two fields with the same name. 

• If no fields in common, then natural join is simply cross product. 

 

 
 



Database Design 
 

29 
 

6.8 Division  

Suppose A has two groups of fields <x,y>  y fields are same fields in terms of domain as B. 

A/B = <x> such as for every y value in a tuple of B there is <x,y> in A. 

 

 

Combining Operations: 

Since the result of a relational algebra operation is also a relation, it can act as input to another 

Algebra operation. 

• For instance, to compute the exercises solved by student 102: 

  π CAT, ENO(Ϭ SID=102(RESULTS)) 

• An intermediate result can be stored in a temporary relation. 

 S102 := Ϭ SID=102(RESULTS); 

π CAT, ENO(S102) 

7. Relational calculus 

Relational calculus represents an alternative to relational algebra as a candidate for the 

manipulative part of the relational data model. The difference between the two is as follows: 



Database Design 
 

30 
 

BASIS FOR 

COMPARISON 

RELATIONAL ALGEBRA RELATIONAL CALCULUS 

Basic language Relational Algebra is a Procedural Relational Claculus is Declarative 

language 

States Relational Algebra states how to 

obtain the result. 

Relational Calculus states what 

result we have to obtain. 

Order Relational Algebra describes the 

order in which operations have to be 

performed 

Relational Calculus does not specify 

the order of operations 

Domain Relational Algebra is not domain 

dependent. 

Relation Claculus can be domain 

dependent. 

Related It is close to a programming 

language. 

It is close to the natural language. 

 

For example, consider the query “Get owners’ complete names and cities for owners who own a 

red car.”  

An algebraic version of this query could be:  

- Join relation OWNERS with relation CARS on IdentificationNumber attributes  

- Select from the resulting relation only those tuples with car Colour = ”RED”  

- Project the result of that restriction on owner FirstName, LastName and City  

A calculus formulation, by contrast, might look like:  

- Get FirstName, LastName and City for cars owners such that there exists a car with the 

same IdentificationNumber and with RED color.  

 


