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Abstract

In this paper, we introduce the definitions and important
properties of fractional derivatives namely the Caputo which
are necessary for understanding the fractional Calculus's rules
and give several Caputo fractional derivative of functions and

1llustrate examples




Introduction

During the last few years it has been observed in many
fields that any phenomena with strange kinetics cannot be
described within the framework of classical theory wusing
integer order derivatives. Recently, fractional differential
equations have gained much attention since fractional order
system response ultimately converges to the integer order
system response. For high accuracy, fractional derivatives are
then used to describe the dynamics of some structures. An
integer order differential operator is a local operator. Whereas
the fractional order differential operator is non local in the
sense that it takes into account the fact that the future state
not only depends upon the present state but also upon all of the
history of its previous states. Because of this realistic property,
the fractional order systems are becoming increasingly popular.
Another reason in support of the use of fractional order
derivatives is that these are naturally related to the systems
with memory that prevails for most of the physical and
scientific system models. Applications and models involving
fractional derivatives can be found in probability physics,
astrophysics, chemical physics [Oldham and Spanier (1974);
Miller and Ross (1993); Podlubny (1999)] and various fields of
engineering. Mainardi et al. (2008) provided a fundamental
solution for the determination of probability density function
for a general distribution of fractional time order system. Magin
et al. (2008) solved the Bloch-Torrey equation after

incorporating a fractional order Brownian model of diffusivity.




Recently, Chen et al. (2010) have developed a fractal derivative
model of anomalous diffusion and the fundamental solution of
this model is compared with the existing method to establish its

computational efficiency.

After the Introduction, this paper is organized as follows, In
Chapterl: Preliminaries we remind some techniques and
special functions which are necessary for the understanding of

the fractional calculus's rules.

Chapter2: Basic fractional calculus give the definition of Caputo

differ integral their most important properties.

Chapter Three, we give several differential of simple functions,

such as exponential function, constant function, Power function,

sine function, and cosne function. And illustrate examples.




CHAPTER ONE

Preliminaries




1.1 The Gamma Function

Definition(1.1.1): The extension of a factorial function for the

nonnegative integers is known as a gamma function , which is

denoted by the symbol I'. for a>0 , the gamma function '(a) is

defined as follows; I'(O()=f0°o x*~1 e™* dx where a>0

Properties(1.1.2): Some properties of the gamma

function
1.M(@)=(a-1)M(a-1)
2.1 (1/2)=Vm
3.r(n)=(n-1)

4. (a+1)=al (a)

r'a+1)
a

5. (a)=

Examples(1.1.3): Find 1)['(7) 2)['(2-5) 3)I(-0.5) 4H)I(0.4)

Solution:
Dl (a+1)=a! — I(7)=r(6+1)=6!=720

2)[(a+1)=al (a)
[(2.5)=I(1.5+1)=(1.5)(1.5)=(1.5)[(0.5+1)=(1.5)(0.5)'(0.5)=0.75
\V7=0.866226

_I'(a+1)
a

3)la= — (-0.5)=——T(0.5) = -2V

4Hlro=

=", 1(0.4)== T (1.4)== (0.8873) = 2.21825




Example(1.1.4): Use the Gamma function to calculate some

integrals 1)f~ x®e ?*dx

Solution:
Put 2x=y — dx=>dy
© 6 _o _1 poo y 6 .—
Then [~ x®e™**dx _Efo (;)°e™dy
_1 o0 ¢ _
=)o ¥oedy
1

= Jo ¥ tedy

But M(a)=/," y*'e™¥dy = FZ(Z)=§

2)[y % dy

Solution:

dx

Putcy =e* - x =yln(c) — dy=ln(c)

oo y¢ _ 1 ©,  x -
Then [ =dy = 5 Jo (ln(c))ce *dx

In

1 o} _ _
=[ln(c)]6+1 fo xC+1 18 xdx

_ [ a—1 ..—x _ F(C+1)
But I'(a)=/, x* e dx = e




1.2 The Beta Function

Definition(1.2.1): The Beta function denoted by (m,n) or B(m,n)

is defined as [3(m,n)=f01 x™ 11— x)"tdx, (m>0,n>0)

Properties(1.2.2): Some Proposition of the Beta

Function
1)B(m,n)=p(m,n)

2)B(m,n)=22 sin*™"*Hcos*™~ 6d

B)B(M.N)=Jy rmm X

1 xM- 1y -1

(m n) fo (1+x)m+n dx

Remark (1.2.3) The relation between the beta function and the

function gamma

B( ’y) r(x)F(ZV)

Torty) , x>0 ,y>0

Example(1.2.4): Use the Beta function to calculate some integrals

fol x*(1 —/x)°dx
Solution:

LetVx =t — x = t? so that dx=2t dt

1 1
j x*(1—/x)>dx = f (t2)*(1 — £)°(2t dt)
0 0

=2/ t°(1 - t)3dt




=26(10.6)

_raore) _ ., 9is!
~ rae) 7 1s!

1 5 1
. 4 _
fo x(Wx) dx = 5

1.3 The mittagt-Leffer Function

Definition(1.3.1): In mathematics , the Mittag-Leffler function E, 5

is a special function , a complex parameters a and 3 . It may be

defined by the following series when the real part of a is strictly

-, . oe] k
positive :E, (z) = Y=o = m

Properties(1.3.2):Some Proposition of the Mittag-

Leffler Function
1)E11(2) = e*

2)E, 1 (z*) = cosh(z)

sinh(z)
z

3)E2,2(ZZ) =
4)Ea,1(z) = Ea(z)
5)E%,1(z) = eZerfc(—z)

e?-1

Example(1.3.3): prove that E; ,(z) =

Solution.

7k

We have E15(2) = Xilo roag




Z

—_ o0
=Lk=0 r(k+

_ 1200 z
T 2 2k=0 (k1)

1)!

k+1

2(e? - 1)

zZ




CHAPTER TWO

Basic Fractional

Calculus




2.1 The Caputo Differ inteqgral

Definition(2.1.1): Suppose that a>0, t>a, a, a, t € R.

The fractional operator

(1 (@

drt, —1<a<neN
Daf:JF(n—a) g (t—r)eti-mn ' " asn
dm
dt"f() a=n €N,

Is called the Caputo fractional derivative or Caputo fractional

differential operator of order a.

Example(2.1.2): Let a=0, cx:%, (n—1),f(t) =t Then, applying

1 J-t
r@/2)-o (t-t )1/2

1
formula we get Dzt = dt Taking intoaccount the
properties of the Gamma function and using the substitution

1
u=(t-7)2 the final result for the Caputo fractional derive of the

function f(t)=t is obtained as

th———f 1 d(t-1)

(t-1)2

f\/—_d u?

f\/_ 2U

==(\t-0)

1
Thus, it holds Dzt = %ﬁ

A




2.2 Basic Properties of Caputo Differ integrals

e Interpolation

Lemma(2.2.1). Let n-1<a<n, n € N, a € R and f(t) be such that
D%f(t) exists .Then the following properties for the Caputo
operator hold lim,_,, DEf(t) = f™(¢),

lim DUf(t) = f®1 (&) — F"7D(0)

a-n—1

Proof: The proof uses integration by Parts

cpom ARG
D f(t) - F(n _ 0() 0 (t _ T)a'+1—n dt

(n) <”> t_ [t _fp+) oy EDT
(—F@E2—] L - [ () = dr)

F(n a)

= (FO e 4 [ FOHD (2 (¢ — 1))

F(n a'+1)

Now, by taking the limit for a—n and a—n-1, respectively , it

follows

lim DF(®) = (£ + FO@| =)

And

j _f (r)dr)

lim D*f(t) = (f(")(O)t + ™M@ - 0|,

=[P,
=D () = fOD(0),




e Linearity

Lemma(2.2.2.). Let n-1<a<n, n€ N, a,2 € ¢ and the functions

f(t) and g(t) be such that both D*f(t) and D*g(t) exist. The

Caputo fractional derivative is a linear operator , i.e.,
D« (3 (1) + (1)) = aDf (2) + D*(t)
e Non-commutation

Lemma(2.2.3): Suppose that n-1<a<n, m, n € N,a € R and the

functions f(t) is such that D%f(t)exists. Then in general
D*D™f(t) = D**™f(t) + D™DYf(t).

Example(2.2.4): Let f(t)=1, and m=1, a=1/2

Then D1D%(1)=D1[ L t‘%]

ra-3)




CHAPTER THREE

Examples of Caputo Fractional

Derivatives




3.1 The constant Function

Theorem(3.1.1): For the Caputo Fractional derivative it holds
D%C =0, C =const

Proof. Asusual 0 <n—1<a<nn€N,a € Rwhich means
n > 1. Applying the definition of the Caputo derivative and
since the n-th derivative C™ (n € N,n > 1) of a constant equals

0, it follows

1 t cm
DaC = dr = 0
r(n—a L (t — pyarin 1

Example(3.1.2): Find D22

Solution:

By

1 t c™
DeC = dr =0
I'(n—a) fa (t — pya+i-n &1

2(1)
dt

1
Let n=1 D22 =—7 [ —2
r(1-"a ;p_pyz+i-1

= 11 Jt 2 1 dt
rz)"e (t-r1)2

1 t
=— | 0dr
\/Eja

1 t
= —0|
a

Vr

1
==0-0=0




Example(3.1.3): Find D35

Solution. By

1 t cm
DeC = f ( dt =0
a

r'n—a) t —7)eti-n
1 @)
Let n=1 D35= llft Sk dr
r(i-<) (t—r)§+1_1
1 t

=——| 0drt

Py
_ 1 0| t

r(é a




3.2 The Power Function

Theorem(3.2.1): The Caputo fractional derivative of the power

function satisfies

rp+1) . .
DeEp — F(p—a+1)tp =D%P n—1<a<np>n—-1p€R
0 n—1<a<np<n—1,p€eN

Proof. Let -1<a<np>n—1,p€ER,a€R,nEN

(TP)(n)

: app_ 1t
The direct way reads Dt” = - - Jy i dt

1 t I'(p+1) p—n o sn-a-1
F(n—a)f0 I"(p—n+1)(T )(t T) dr,

And using the substitution 1 =2t,0 <1< 1

Datp = Mo+ 1) LGP — N1t da
I'n—a)l[(p—n+1))J,

_ rp+1)
T T'(n—a)(p—n+1)

1
tP‘“f PG P Ll T
0

B rip+1)
T I'(n—a)(p—n+1)

tP~B(p—n+1,n—a)

B I'p+1) p_al“(p—n+1)l“(n—a)
T T'(n—a)(p—n+1) I'(p—a+1)

rip+1)

= p-a
'p—a+1)




Example(3.2.2): Find Dz¢?

Solution. By D%tP = L&D tp-a
r(p—a+1)
1 1
- D2t? = re -; D 273
rez- 5+ 1)
re@) 3
5
r)
8 3
= ——4t2
3Vm

Example(3.2.3): Find Dit!

Solution. By D%tP = _Lp+1) p-a

r(p—a+1)
1 ra+ 1
Datl = (1 . 1) tl—z
I (1 4 | 1)
rc2) 3
= ()tZ

rQ)




3.3 The Exponential Function

Theorem(3.3.1): Let aeR,n—1 < a <n,n € N,ve€ Then the

Caputo fractional derivative of the exponential function has the

form

eV = UM CE, gy (1),

o @WHF
Proof. D%Vt = D ¥k=0 7

1 t
_I"(n—a)jo <k=0
1 to vk o

vn i vk.[t
e — R Tk(t _ T)n_a_ld‘[
— |
I'n—a) £ k! J,

Lett=at,0<a<1-odr=tda

= i ) jl ‘
>=——— % — | QO)F(t—-2)" %t da
— |
r(n—a) &kt ),

L had Uk 1 K
— n+k—-«a _ g\n—a-1
F(n—a)kz_of(k+1)t fo > A=

vntn—a e vkt"
=T
(n—a) & (k+1)

pk+1,n—a)

LT O ()F Tk+ DI(n—a)
_r(n—a)kzor(k“)' Tm+k—a+1)




(vt)*
=0I“(n+k—cx+1)

ntn—a

=7
k

Example(3.3.2): Find D%el't

Solution: By

(W)

D&Vt = pngn—«
k_ol"(n+k—a+1)

Let n=1 —

© k
D%elt = lltl_%z (10
=o' (1 +k—%+ 1)

Example(8.3.3): Find D%e”

Solution: By

(wt)*

Da vt — vntn—a’
¢ LT+ k—a+1)

k

Let n=1—

i k
D%eZt = 21t1_%z (2t)
“=r+k —%+ 1)




3.4 Other Frequently Used Functions

Theorem(3.4.1): Leta €, a €ER,neNn—1< a <n.

Then

1
D¥sinat = — = i()"t" " (Eyn-a+1(i2t) = (=1)" (Byn-qs1(=i26)?)
Proof. The following representation of the sine function used

. elz _ g-iz
sinz=———, z€(
20

Now, using the linearity property of the Caputo fractional
derivative and formula for the exponential function it can be

shown that
eixt _ e—iat

D% sinat = D% -
20

— %(D“ei“t _ Dae—i:lt)
1
= Z((m)ntn—agl,n_aﬂ(m) — (=30) "B g (—iaD) )

= % i(in)ntn_a(El,n—a+1(th) - (_1)nE1,n—a+1(_i'lt))

In the same manner a formula for the Caputo derivative of the

cosine function is received.




The corresponding representation is

COSZ =
2

eiz + e—iz

, z€C(




References

/Z/ Caputo M., Linear mode! of dissipation whose { Is almost jreguency
mdependent — 11, The Geophysical Journal of the Roval Astronomical Socrety,
Vol /3, 1967, 529-579,

/2 Detnath L., Fractional integral and fractional dijferential equations i jluid
mechan-ics, Fractional Calculus and Applied Analysis, Vol 6, No. 2, 2005,
[79-753.

/) Oldham K. and Spanier./, The fractional calculus, Academic Fress, New
York- London, /974

[/ Podlubny £, Fractional differential equations, Academic Fress, San Diego,
7999




