Models of Computation

Computation

Example:
$$f(x) = x^3$$

$$f(x) = x^3$$

temporary memory

$$f(x) = x^3$$

$$z = 2*2 = 4$$

 $f(x) = z*2 = 8$

input memory

$$x = 2$$

Program memory

output memory

compute x * x compute $x^2 * x$

CPU

temporary memory

$$f(x) = x^3$$

$$z = 2 * 2 = 4$$

$$f(x) = z * 2 = 8$$

input memory

$$x = 2$$

Program memory

$$f(x) = 8$$

output memory

compute
$$x * x$$
 compute $x^2 * x$

CPU

Automaton

Different Kinds of Automata

Automata are distinguished by the temporary memory

• Finite Automata: no temporary memory

· Pushdown Automata: stack

• Turing Machines: random access memory

Finite Automaton

Example: Vending Machines (small computing power)

Pushdown Automaton

Example: Compilers for Programming Languages (medium computing power)

Turing Machine

Examples: Any Algorithm

(highest computing power)

Power of Automata

Finite Pushdown Turing
Automata Automata Machine

Less power

Solve more

computational problems

The End

Mathematical Preliminaries

Mathematical Preliminaries

- Sets
- Functions
- Relations
- · Graphs
- Proof Techniques

SETS

A set is a collection of elements

$$A = \{1, 2, 3\}$$

$$B = \{train, bus, bicycle, airplane\}$$

We write

$$1 \in A$$

$$ship \notin B$$

Set Representations

$$C = \{a, b, c, d, e, f, g, h, i, j, k\}$$

$$C = \{a, b, ..., k\} \longrightarrow finite set$$

$$S = \{2, 4, 6, ...\} \longrightarrow infinite set$$

$$S = \{j : j > 0, and j = 2k \text{ for some } k > 0\}$$

$$S = \{j : j \text{ is nonnegative and even}\}$$

$$A = \{1, 2, 3, 4, 5\}$$

Universal Set: all possible elements

Set Operations

$$A = \{1, 2, 3\}$$

$$B = \{ 2, 3, 4, 5 \}$$

Union

Intersection

$$A \cap B = \{2, 3\}$$

· Difference

$$A - B = \{ 1 \}$$

$$B - A = \{4, 5\}$$

Venn diagrams

Complement

Universal set = $\{1, ..., 7\}$ $A = \{1, 2, 3\}$ $\overline{A} = \{4, 5, 6, 7\}$

$$=$$
 $A = A$

{ even integers } = { odd integers }

Integers

DeMorgan's Laws

$$\overline{A \cup B} = \overline{A \cap B}$$

$$\overline{A \cap B} = \overline{A \cup B}$$

Empty, Null Set: Ø

$$\emptyset = \{\}$$

$$SUØ = S$$

$$S \cap \emptyset = \emptyset$$

$$S - \emptyset = S$$

$$\overline{\emptyset}$$
 = Universal Set

Subset

$$A = \{1, 2, 3\}$$
 $B = \{1, 2, 3, 4, 5\}$
 $A \subseteq B$

Proper Subset: $A \subseteq B$

Disjoint Sets

$$A = \{1, 2, 3\}$$
 $B = \{5, 6\}$

$$A \cap B = \emptyset$$

Set Cardinality

For finite sets

$$A = \{ 2, 5, 7 \}$$

$$|A| = 3$$

(set size)

Powersets

A powerset is a set of sets

$$S = \{ a, b, c \}$$

Powerset of S = the set of all the subsets of S

$$2^{5} = \{ \emptyset, \{a\}, \{b\}, \{c\}, \{a, b\}, \{a, c\}, \{b, c\}, \{a, b, c\} \}$$

Observation:
$$|2^{5}| = 2^{|5|}$$
 (8 = 2³)

Cartesian Product

$$A = \{ 2, 4 \}$$

$$B = \{ 2, 3, 5 \}$$

$$A \times B = \{ (2, 2), (2, 3), (2, 5), (4, 2), (4, 3), (4, 5) \}$$

$$|A \times B| = |A| |B|$$

Generalizes to more than two sets

Functions

 $f:A \rightarrow B$

If A = domain

then f is a total function

otherwise f is a partial function

Relations

$$R = \{(x_1, y_1), (x_2, y_2), (x_3, y_3), ...\}$$

$$x_i R y_i$$

e. g. if
$$R = '>': 2 > 1, 3 > 2, 3 > 1$$

Equivalence Relations

- · Reflexive: x R x
- · Symmetric: xRy yRx
- Transitive: x R y and $y R z \longrightarrow x R z$

Example: R = '='

- x = x
- $\cdot x = y$ y = x
- $\cdot x = y \text{ and } y = z$ x = z

Equivalence Classes

For equivalence relation R

equivalence class of
$$x = \{y : x R y\}$$

Example:

$$R = \{ (1, 1), (2, 2), (1, 2), (2, 1), (3, 3), (4, 4), (3, 4), (4, 3) \}$$

Equivalence class of $1 = \{1, 2\}$

Equivalence class of $3 = \{3, 4\}$

Graphs

A directed graph

Nodes (Vertices)

$$V = \{ a, b, c, d, e \}$$

Edges

$$E = \{ (a,b), (b,c), (b,e), (c,a), (c,e), (d,c), (e,b), (e,d) \}$$

Labeled Graph

Walk

Walk is a sequence of adjacent edges (e, d), (d, c), (c, a)

Path

Path is a walk where no edge is repeated

Simple path: no node is repeated

Cycle

Cycle: a walk from a node (base) to itself

Simple cycle: only the base node is repeated

Euler Tour

A cycle that contains each edge once

Hamiltonian Cycle

A simple cycle that contains all nodes

Finding All Simple Paths

- (c, a) (c, e)

(c, a)

(c, a), (a, b)

(c, e)

(c, e), (e, b)

(c, e), (e, d)

(c, a)

(c, a), (a, b)

(c, a), (a, b), (b, e)

(c, e)

(c, e), (e, b)

(c, e), (e, d)

Binary Trees

Proof Techniques

Proof by induction

Proof by contradiction

Proof by construction

Induction

We have statements P_1 , P_2 , P_3 , ...

If we know

- for some b that P_1 , P_2 , ..., P_b are true
- for any k >= b that

$$P_1, P_2, ..., P_k$$
 imply P_{k+1}

Then

Every P_i is true

Proof by Induction

Inductive basis

Find P₁, P₂, ..., P_b which are true

Inductive hypothesis

Let's assume P_1 , P_2 , ..., P_k are true, for any $k \ge b$

Inductive step

Show that P_{k+1} is true

Example

Theorem: A binary tree of height n has at most 2ⁿ leaves.

Proof by induction:

let L(i) be the maximum number of leaves of any subtree at height i

Inductive basis

$$L(0) = 1$$
 (the root node)

Inductive hypothesis

Let's assume
$$L(i) \leftarrow 2^i$$
 for all $i = 0, 1, ..., k$

Induction step

we need to show that
$$L(k + 1) \leftarrow 2^{k+1}$$

Induction Step

From Inductive hypothesis: $L(k) \leftarrow 2^k$

Induction Step

$$L(k+1) \leftarrow 2 * L(k) \leftarrow 2 * 2^{k} = 2^{k+1}$$

(we add at most two nodes for every leaf of level k)

Remark

Recursion is another thing

Example of recursive function:

$$f(n) = f(n-1) + f(n-2)$$

$$f(0) = 1, f(1) = 1$$

Proof by Contradiction

We want to prove that a statement P is true

- we assume that P is false
- then we arrive at an incorrect conclusion
- therefore, statement P must be true

Example

Theorem: $\sqrt{2}$ is not rational

Proof:

Assume by contradiction that it is rational

$$\sqrt{2}$$
 = n/m

n and m have no common factors

We will show that this is impossible

$$\sqrt{2} = n/m \qquad \qquad 2 m^2 = n^2$$

Therefore,
$$n^2$$
 is even $n = 2 k$

$$2 m^2 = 4k^2 \qquad m^2 = 2k^2 \qquad m = 2 p$$

Thus, m and n have common factor 2

Contradiction!

Proof by Construction

We want to prove that a statement about something with a property is true

- constructing a concrete example with a property to show that something having that property exists.
- constructive proof is in contrast to a non-constructive proof which does not provide a means of constructing an example.

Example 1

16 can be exactly divided.

Proof

- A concrete example is 16/2. Therefore, the statement is true.

End

Example 2

There exist two irrational numbers which make a^b rational.

Proof

Let
$$a=b=\sqrt{2}$$

case 1: $\sqrt{2}^{\sqrt{2}}$ is rational. done, otherwise

case 2: let
$$a = \sqrt{2}^{\sqrt{2}}$$
, then $(\sqrt{2}^{\sqrt{2}})^{\sqrt{2}} = \sqrt{2}^2 = 2$, done.

End

Question

Is example 2 the constructive proof?

Why if yes? Why if no?

Example 3

Show that there is no "largest integer".

```
Proof
  Let n be any integer.
  Let m = n+1
  m is an integer
  m > n
  Therefore m is an integer that is larger than n
  Therefore, for any integer there exists an
  integer m = n + 1 that is larger than it.
```

End

Question

Is example 3 the constructive proof?

Why if yes? Why if no?

Example 4

Show that there is no "largest" prime number.

Proof

Let n be any prime number

Let m = n! + 1, then m > n

Case 1:

m = n! + 1 is a prime number, then we have constructed a prime number that is larger than the previous prime number.

Case 2:

m = n! + 1 is not a prime number, then it has at least one prime factor

Example 4 (Cont.)

Explanation:

If you divide m by any of the prime numbers that are smaller than or equal to n, you will always get a remainder of 1,

because each prime number less than or equal to n divides evenly into n!.

Therefore any prime factors of m must be greater than n.

End

Question

Is example 4 the constructive proof?

Why if yes? Why if no?

Languages

A language is a set of strings

String: A sequence of letters

Examples: "cat", "dog", "house", ...

Defined over an alphabet:

$$\Sigma = \{a, b, c, \dots, z\}$$

Alphabets and Strings

We will use small alphabets:
$$\Sigma = \{a, b\}$$

Strings

a

ab

abba

baba

aaabbbaabab

$$u = ab$$

$$v = bbbaaa$$

$$w = abba$$

String Operations

$$w = a_1 a_2 \cdots a_n$$

$$v = b_1 b_2 \cdots b_m$$

abba

bbbaaa

Concatenation

$$wv = a_1 a_2 \cdots a_n b_1 b_2 \cdots b_m$$

abbabbbaaa

$$w = a_1 a_2 \cdots a_n$$

ababaaabbb

Reverse

$$w^R = a_n \cdots a_2 a_1$$

bbbaaababa

String Length

$$w = a_1 a_2 \cdots a_n$$

Length:
$$|w| = n$$

Examples:
$$|abba| = 4$$

$$|aa| = 2$$

$$|a| = 1$$

Length of Concatenation

$$|uv| = |u| + |v|$$

Example:
$$u = aab$$
, $|u| = 3$
 $v = abaab$, $|v| = 5$

$$|uv| = |aababaab| = 8$$

 $|uv| = |u| + |v| = 3 + 5 = 8$

Empty String

A string with no letters: λ

Observations:
$$|\lambda| = 0$$

$$\lambda w = w\lambda = w$$

$$\lambda abba = abba\lambda = abba$$

Substring

Substring of string: a subsequence of consecutive characters

String	Substring
<u>ab</u> bab	ab
<u>abba</u> b	abba
$ab\underline{b}ab$	b
a <u>bbab</u>	bbab

Prefix and Suffix

abbab

Prefixes Suffixes

abbab

a bbab

ab bab

abb ab

abba b

abbab λ

Another Operation

$$w^n = \underbrace{ww\cdots w}_n$$

Example:
$$(abba)^2 = abbaabba$$

Definition:
$$w^0 = \lambda$$

$$(abba)^0 = \lambda$$

The * Operation

 $\Sigma^*\colon$ the set of all possible strings from alphabet Σ

$$\Sigma = \{a,b\}$$

$$\Sigma^* = \{\lambda,a,b,aa,ab,ba,bb,aaa,aab,...\}$$

The + Operation

 Σ^+ : the set of all possible strings from alphabet Σ except $\, \lambda$

$$\Sigma = \{a,b\}$$

$$\Sigma^* = \{\lambda,a,b,aa,ab,ba,bb,aaa,aab,...\}$$

$$\Sigma^{+} = \Sigma^{*} - \lambda$$

$$\Sigma^{+} = \{a, b, aa, ab, ba, bb, aaa, aab, ...\}$$

Languages

A language is any subset of Σ^*

Example:
$$\Sigma = \{a,b\}$$

 $\Sigma^* = \{\lambda,a,b,aa,ab,ba,bb,aaa,\ldots\}$

Languages:
$$\{\chi\}$$
 $\{a,aa,aab\}$ $\{\lambda,abba,baba,aa,ab,aaaaaa\}$

Note that:

$$\emptyset = \{ \} \neq \{\lambda\}$$

$$|\{\}| = |\varnothing| = 0$$

$$|\{\lambda\}| = 1$$

String length
$$|\lambda| = 0$$

$$|\lambda| = 0$$

Another Example

An infinite language
$$L = \{a^n b^n : n \ge 0\}$$

$$\left. \begin{array}{c} \lambda \\ ab \\ aabb \end{array} \right. \in L \qquad abb
otin L \\ aaaaaabbbbb \end{array}$$

Operations on Languages

The usual set operations

$${a,ab,aaaa} \cup {bb,ab} = {a,ab,bb,aaaa}$$

 ${a,ab,aaaa} \cap {bb,ab} = {ab}$
 ${a,ab,aaaa} - {bb,ab} = {a,aaaa}$

Complement:
$$\overline{L} = \Sigma^* - L$$

$$\overline{L} = \Sigma * - L$$

$$\overline{\{a,ba\}} = \{\lambda,b,aa,ab,bb,aaa,\ldots\}$$

Reverse

Definition:
$$L^R = \{w^R : w \in L\}$$

Examples:
$$\{ab, aab, baba\}^R = \{ba, baa, abab\}$$

$$L = \{a^n b^n : n \ge 0\}$$

$$L^R = \{b^n a^n : n \ge 0\}$$

Concatenation

Definition:
$$L_1L_2 = \{xy : x \in L_1, y \in L_2\}$$

Example:
$$\{a,ab,ba\}\{b,aa\}$$

 $= \{ab, aaa, abb, abaa, bab, baaa\}$

Another Operation

Definition:
$$L^n = \underbrace{LL \cdots L}_n$$

$${a,b}^3 = {a,b}{a,b}{a,b} =$$

 ${aaa,aab,aba,abb,baa,bab,bba,bbb}$

Special case:
$$L^0 = \{\lambda\}$$

$$\{a,bba,aaa\}^0 = \{\lambda\}$$

More Examples

$$L = \{a^n b^n : n \ge 0\}$$

$$L^2 = \{a^n b^n a^m b^m : n, m \ge 0\}$$

$$aabbaaabbb \in L^2$$

Star-Closure (Kleene *)

Definition:
$$L^* = L^0 \cup L^1 \cup L^2 \cdots$$

Example:
$$\left\{a,bb\right\}* = \left\{\begin{matrix} \lambda,\\ a,bb,\\ aa,abb,bba,bbb,\\ aaa,aabb,abba,abbb,\ldots \end{matrix}\right\}$$

Positive Closure

Definition:
$$L^+ = L^1 \cup L^2 \cup \cdots$$

= $L^* - \{\lambda\}$

$$\{a,bb\}^{+} = \begin{cases} a,bb, \\ aa,abb,bba,bbb, \\ aaa,aabb,abba,abbb, \dots \end{cases}$$

The End

Finite Automata

Finite Automaton

Finite Accepter

Transition Graph

Initial Configuration

Input String

a b b a

Reading the Input

Input finished

Output: "accept"

Rejection

Input finished

Another Rejection

 λ

Output:

"reject"

Another Example

Input finished

Rejection

Input finished

Output: "reject"

Formalities

Deterministic Finite Accepter (DFA)

$$M = (Q, \Sigma, \delta, q_0, F)$$

Q : set of states

 Σ : input alphabet

 δ : transition function

 q_0 : initial state

F : set of final states

Input Alphabet Σ

$$\Sigma = \{a,b\}$$

Set of States Q

$$Q = \{q_0, q_1, q_2, q_3, q_4, q_5\}$$

Initial State q_0

Set of Final States F

$$F = \{q_4\}$$

Transition Function δ

$$\delta: Q \times \Sigma \to Q$$

$$\delta(q_0, a) = q_1$$

$$\delta(q_0,b)=q_5$$

$$\delta(q_2,b)=q_3$$

Transition Function δ

				1
	δ	а	Ь	
	90	q_1	9 5	
	q_1	9 5	92	
	92	q_5	<i>9</i> ₃	
	<i>q</i> ₃	94	95	a,b
	94	9 5	95	
	9 5	<i>9</i> ₅	95	q_5
•				b a a b a ,
				$\overrightarrow{q_0}$ \xrightarrow{a} $\overrightarrow{q_1}$ \xrightarrow{b} $\overrightarrow{q_2}$ \xrightarrow{b} $\overrightarrow{q_3}$ \xrightarrow{a} $\overrightarrow{q_4}$

Extended Transition Function δ^*

$$\delta^*: Q \times \Sigma^* \to Q$$

$$\delta * (q_0, ab) = q_2$$

$$\delta * (q_0, abba) = q_4$$

$$\delta * (q_0, abbbaa) = q_5$$

Observation: There is a walk from q to q' with label w

$$\delta * (q, w) = q'$$

Example: There is a walk from q_0 to q_5 with label abbbaa

$$\delta * (q_0, abbbaa) = q_5$$

Recursive Definition

$$\delta * (q, \lambda) = q$$

$$\delta * (q, w\sigma) = \delta(\delta * (q, w), \sigma)$$

$$\delta * (q_0, ab) =$$

$$\delta(\delta * (q_0, a), b) =$$

$$\delta(\delta(\delta * (q_0, \lambda), a), b) =$$

$$\delta(\delta(q_0, a), b) =$$

$$\delta(q_1, b) =$$

$$q_2$$

$$q_3$$

$$q_4$$

$$q_4$$

Languages Accepted by DFAs Take DFA $\,M\,$

Definition:

The language L(M) contains all input strings accepted by M

$$L(M)$$
 = { strings that drive M to a final state}

Example

$$L(M) = \{abba\}$$

Another Example

$$L(M) = \{\lambda, ab, abba\}$$

Formally

For a DFA
$$M = (Q, \Sigma, \delta, q_0, F)$$

Language accepted by M:

$$L(M) = \{ w \in \Sigma^* : \delta^*(q_0, w) \in F \}$$

$$q_0$$
 W $q' \in F$

Observation

Language rejected by M:

$$\overline{L(M)} = \{ w \in \Sigma^* : \mathcal{S}^*(q_0, w) \notin F \}$$

More Examples

$$L(M) = \{a^n b : n \ge 0\}$$

L(M)= { all strings with prefix ab }

L(M) = { all strings without substring 001 }

Regular Languages

A language L is regular if there is a DFA M such that L = L(M)

All regular languages form a language family

Examples of regular languages:

```
 \{abba\} \quad \{\lambda, ab, abba\} \quad \{a^nb: n \geq 0\}   \{ \text{ all strings with prefix } ab \ \}   \{ \text{ all strings without substring } 001 \ \}
```

There exist automata that accept these Languages (see previous slides).

Another Example

The language $L = \{awa : w \in \{a,b\}^*\}$ is regular:

There exist languages which are not Regular:

Example:
$$L=\{a^nb^n:n\geq 0\}$$

There is no DFA that accepts such a language

(we will prove this later in the class)

The End

Non Deterministic Automata

Nondeterministic Finite Accepter (NFA)

Alphabet =
$$\{a\}$$

Nondeterministic Finite Accepter (NFA)

Alphabet =
$$\{a\}$$

Nondeterministic Finite Accepter (NFA)

Alphabet =
$$\{a\}$$

All input is consumed

Input cannot be consumed

An NFA accepts a string: when there is a computation of the NFA that accepts the string

AND

all the input is consumed and the automaton is in a final state

Example

aa is accepted by the NFA:

computation accepts aa

Rejection example

An NFA rejects a string: when there is no computation of the NFA that accepts the string:

 All the input is consumed and the automaton is in a non final state

OR

The input cannot be consumed

Example

a is rejected by the NFA:

All possible computations lead to rejection

Rejection example

Input cannot be consumed

Input cannot be consumed

aaa is rejected by the NFA:

All possible computations lead to rejection

Language accepted: $L = \{aa\}$

Lambda Transitions

(read head does not move)

all input is consumed

String aa is accepted

Rejection Example

(read head doesn't move)

No transition: the automaton hangs

Input cannot be consumed

String aaa is rejected

Language accepted: $L = \{aa\}$

Another NFA Example

Another String

Language accepted

$$L = \{ab, abab, ababab, ...\}$$

= $\{ab\}^+$

Another NFA Example

Language accepted

$$L(M) = {\lambda, 10, 1010, 101010, ...}$$

= ${10}*$

Remarks:

- The λ symbol never appears on the input tape
- ·Simple automata:

·NFAs are interesting because we can express languages easier than DFAs

Example

$$L(M_1) = \{10\} *$$

Formal Definition of NFAs

$$M = (Q, \Sigma, \delta, q_0, F)$$

Q: Set of states, i.e. $\{q_0, q_1, q_2\}$

 Σ : Input applied, i.e. $\{a,b\}$

 δ : Transition function

 q_0 : Initial state

F: Final states

Transition Function δ

$$\mathcal{S}(q_0,1) = \{q_1\}$$

$$\delta(q_1,0) = \{q_0,q_2\}$$

$$\delta(q_0,\lambda) = \{q_0,q_2\}$$

$$\delta(q_2,1) = \emptyset$$

Extended Transition Function δ^*

$$\delta * (q_0, a) = \{q_1\}$$

$$\delta * (q_0, aa) = \{q_4, q_5\}$$

$$\delta * (q_0, ab) = \{q_2, q_3, q_0\}$$

Formally

 $q_j \in \delta^*(q_i, w)$: there is a walk from q_i to q_j with label w

$$w = \sigma_1 \sigma_2 \cdots \sigma_k$$

$$q_i \xrightarrow{\sigma_1} \xrightarrow{\sigma_2} \xrightarrow{\sigma_2} q_j$$

The Language of an NFA $\,M\,$

$$F = \{q_0, q_5\}$$

$$q_4$$

$$q_5$$

$$q_0$$

$$a$$

$$q_1$$

$$b$$

$$q_2$$

$$\lambda$$

$$\lambda$$

$$\delta^*(q_0, aa) = \{q_4, \underline{q_5}\} \qquad aa \in L(M)$$

$$\leq F$$

$$F = \{q_0, q_5\}$$

$$q_4$$

$$q_5$$

$$a \quad a$$

$$q_0$$

$$\lambda$$

$$\lambda$$

$$\lambda$$

$$\delta * (q_0, ab) = \{q_2, q_3, \underline{q_0}\} \qquad ab \in L(M)$$

$$F = \{q_0, q_5\}$$

$$q_4$$

$$q_5$$

$$q_6$$

$$q_1$$

$$\lambda$$

$$q_3$$

$$\delta * (q_0, abaa) = \{q_4, \underline{q_5}\} \quad aaba \in L(M)$$

$$F = \{q_0, q_5\}$$

$$q_4$$

$$q_5$$

$$a$$

$$a$$

$$q_1$$

$$b$$

$$q_2$$

$$\lambda$$

$$\lambda$$

$$\delta * (q_0, aba) = \{q_1\} \qquad aba \notin L(M)$$

$$L(M) = \{\lambda\} \cup \{ab\}^* \{aa\}$$

Formally

The language accepted by NFA M is:

$$L(M) = \{w_1, w_2, w_3, ...\}$$

where
$$\delta^*(q_0,w_m)=\{q_i,q_j,...,q_k,...\}$$
 and there is some $q_k\in F$ (final state)

$$w \in L(M)$$

$$\delta^*(q_0, w)$$

$$q_i$$

$$q_k \in F$$

NFAs accept the Regular Languages

Equivalence of Machines

Definition for Automata:

Machine $\,M_1\,$ is equivalent to machine $\,M_2\,$

if
$$L(M_1) = L(M_2)$$

Example of equivalent machines

$$L(M_1) = \{10\} *$$

We will prove:

Languages
accepted
by NFAs
— Regular
Languages
Languages

Languages accepted by DFAs

NFAs and DFAs have the same computation power

Step 1

 Languages

 accepted

 by NFAs

 Regular

 Languages

Proof: Every DFA is trivially an NFA

Any language L accepted by a DFA is also accepted by an NFA

Step 2

```
Languages
accepted
by NFAs
Regular
Languages
```

Proof: Any NFA can be converted to an equivalent DFA

Any language L accepted by an NFA is also accepted by a DFA

More example: Converting NFA to DFA

• NFA N_4 = (Q,{a,b}, δ ,1,{1}), the set of states Q is {1,2,3} as shown in the following figure.

The NFA N_A

Step1: Determine DFA's states

• N_4 has three states {1,2,3}, so we construct DFA D with eight.

• We label each of D's states with the corresponding subset. Thus D's state set is $\{\emptyset,\{1\},\{2\},\{3\},\{1,2\},\{1,3\},\{2,3\},\{1,2,3\}\}$

Step2: Determine the start and accept states

Step3: Determine transition function

After removing unnecessary states

Rearranging states

Renaming states

More simplified

NFA to DFA: Remarks

We are given an NFA M

We want to convert it to an equivalent DFA $\,M'$

With
$$L(M) = L(M')$$

If the NFA has states

$$q_0, q_1, q_2, \dots$$

the DFA has states in the powerset

$$\emptyset, \{q_0\}, \{q_1\}, \{q_1, q_2\}, \{q_3, q_4, q_7\}, \dots$$

Procedure NFA to DFA

1. Initial state of NFA: q_0

Initial state of DFA: $\{q_0\}$

Procedure NFA to DFA

2. For every DFA's state $\{q_i, q_j, ..., q_m\}$

Compute in the NFA

$$\left.\begin{array}{l}
\delta^*(q_i,a), \\
\delta^*(q_j,a), \\
\dots
\end{array}\right\} = \left\{q_i',q_j',\dots,q_m'\right\}$$

Add transition to DFA

$$\delta(\{q_i,q_j,...,q_m\}, a) = \{q'_i,q'_j,...,q'_m\}$$

DFA M'

$$\delta^*(2,b) = \{3\}, \ \delta^*(3,b) = \varphi$$

$$\delta(\{2,3\}, b) = \{3\} \cup \varphi = \{3\}$$

Procedure NFA to DFA

Repeat Step 2 for all letters in alphabet, until no more transitions can be added.

Procedure NFA to DFA

3. For any DFA state $\{q_i, q_j, ..., q_m\}$

If some q_j is a final state in the NFA

Then,
$$\{q_i,q_j,...,q_m\}$$
 is a final state in the DFA

Theorem

Take NFA M

Apply procedure to obtain DFA $\,M'$

Then M and M' are equivalent:

$$L(M) = L(M')$$

Proof

$$L(M) = L(M')$$

$$L(M) \subseteq L(M')$$
 AND $L(M) \supseteq L(M')$

First we show:
$$L(M) \subseteq L(M')$$

Take arbitrary:
$$w \in L(M)$$

We will prove:
$$w \in L(M')$$

$w \in L(M)$

$$M: -q_0$$
 W

$$w = \sigma_1 \sigma_2 \cdots \sigma_k$$

$$M: -q_0 \xrightarrow{\sigma_1} \xrightarrow{\sigma_2} \xrightarrow{\sigma_2} \xrightarrow{\sigma_k} q_f$$

We will show that if $w \in L(M)$

$$W = \sigma_1 \sigma_2 \cdots \sigma_k$$

$$M : \xrightarrow{\sigma_1} \xrightarrow{\sigma_2} \xrightarrow{\sigma_2} \xrightarrow{\sigma_k} q_f$$

$$M' : \xrightarrow{\sigma_1} \xrightarrow{\sigma_2} \xrightarrow{\sigma_2} \xrightarrow{\sigma_k} \xrightarrow{\sigma_k} q_f$$

$$w \in L(M')$$

More generally, we will show that if in M:

(arbitrary string) $v = a_1 a_2 \cdots a_n$

$$M: -q_0 \xrightarrow{a_1} q_i \xrightarrow{a_2} q_j \xrightarrow{a_n} q_m$$

$$M': \xrightarrow{a_1} \underbrace{a_2} \underbrace{a_2} \underbrace{a_1, \ldots} \underbrace{a_n} \underbrace{a_n} \underbrace{a_n, \ldots} \underbrace{a_n$$

Proof by induction on |v|

Induction Basis:
$$v = a_1$$

$$M: -q_0 \xrightarrow{a_1} q_i$$

$$M':\longrightarrow \underbrace{a_1}_{\{q_0\}}\underbrace{a_1}_{\{q_i,\ldots\}}$$

Induction hypothesis: $1 \le |v| \le k$

$$v = a_1 a_2 \cdots a_k$$

$$M: -q_0 \xrightarrow{a_1} q_i \xrightarrow{a_2} q_j -q_c \xrightarrow{a_k} q_d$$

$$M': \xrightarrow{a_1} \xrightarrow{a_2} \xrightarrow{a_2} \xrightarrow{a_k} \xrightarrow{a_k} \xrightarrow{a_k} \xrightarrow{q_c,...} \{q_c,...\}$$

Induction Step: |v| = k+1

$$v = \underbrace{a_1 a_2 \cdots a_k}_{v'} a_{k+1} = v' a_{k+1}$$

$$M: \xrightarrow{q_0} \xrightarrow{a_1} \xrightarrow{q_i} \xrightarrow{a_2} \xrightarrow{q_j} \xrightarrow{q_c} \xrightarrow{a_k} \xrightarrow{q_d}$$

$$M': \longrightarrow \underbrace{a_1}_{\{q_0\}} \underbrace{a_2}_{\{q_i,\ldots\}} \underbrace{\{q_j,\ldots\}}_{\{q_c,\ldots\}} \underbrace{\{q_d,\ldots\}}_{\{q_d,\ldots\}}$$

Induction Step: |v| = k + 1

$$v = \underbrace{a_1 a_2 \cdots a_k}_{v'} a_{k+1} = v' a_{k+1}$$

$$M: \xrightarrow{q_0} \xrightarrow{a_1} q_i \xrightarrow{a_2} q_j \xrightarrow{q_c} q_c \xrightarrow{a_k} q_d \xrightarrow{a_{k+1}} q_e$$

$$M': \xrightarrow{a_1} \underbrace{a_2}_{\{q_0\}} \underbrace{a_2}_{\{q_i,...\}} \underbrace{\{q_c,...\}}_{\{q_c,...\}} \underbrace{\{q_c,...\}}_{\{q_e,...\}}$$

Therefore if $w \in L(M)$

We have shown:
$$L(M) \subseteq L(M')$$

We also need to show:
$$L(M) \supseteq L(M')$$

(proof is similar)

The End

Single Final State for NFAs

Any NFA can be converted

to an equivalent NFA

with a single final state

NFA

In General

NFA

Equivalent NFA

Single final state

Extreme Case

NFA without final state

Add a final state
Without transitions

Properties of Regular Languages

For regular languages L_1 and L_2 we will prove that:

Union: $L_1 \cup L_2$

Concatenation: L_1L_2

Star: L_1*

Reversal: L_1^R

Complement: L_1

Intersection: $L_1 \cap L_2$

Are regular Languages

We say: Regular languages are closed under

Union: $L_1 \cup L_2$

Concatenation: L_1L_2

Star: L_1*

Reversal: L_1^R

Complement: $\overline{L_1}$

Intersection: $L_1 \cap L_2$

Regular language L_1

Regular language $\,L_{2}\,$

$$L(M_1) = L_1$$

$$L(M_2) = L_2$$

NFA M₁

NFA M_2

Single final state

Single final state

Union

NFA for $L_1 \cup L_2$

NFA for
$$L_1 \cup L_2 = \{a^n b\} \cup \{ba\}$$

Concatenation

NFA for L_1L_2

NFA for
$$L_1L_2 = \{a^nb\}\{ba\} = \{a^nbba\}$$

$$L_{1} = \{a^{n}b\}$$

$$a \qquad L_{2} = \{ba\}$$

$$b \qquad \lambda \qquad b \qquad \lambda \qquad \lambda$$

Star Operation

NFA for L_1*

NFA for
$$L_1^* = \{a^n b\}^*$$

$$w = w_1 w_2 \cdots w_k$$
$$w_i \in L_1$$

Reverse

- 1. Reverse all transitions
- 2. Make initial state final state and vice versa

$$L_1^R = \{ba^n\}$$

Complement

- 1. Take the ${\sf DFA}$ that accepts L_1
- 2. Make final states non-final, and vice-versa

Intersection

DeMorgan's Law: $L_1 \cap L_2 = \overline{L_1} \cup \overline{L_2}$

$$L_1$$
, L_2 regular $\overline{L_1}$, $\overline{L_2}$ regular $\overline{L_1} \cup \overline{L_2}$ regular $\overline{L_1} \cup \overline{L_2}$ regular $\overline{L_1} \cup \overline{L_2}$ regular $\overline{L_1} \cup \overline{L_2}$ regular $\overline{L_1} \cap L_2$ regular

$$L_1 = \{a^nb\} \quad \text{regular} \\ L_1 \cap L_2 = \{ab\} \\ L_2 = \{ab,ba\} \quad \text{regular}$$
 regular

Regular Expressions

Regular Expressions

Regular expressions describe regular languages

Example:
$$(a+b\cdot c)^*$$

describes the language

$${a,bc}* = {\lambda,a,bc,aa,abc,bca,...}$$

Recursive Definition

Primitive regular expressions: \emptyset , λ , α

Given regular expressions r_1 and r_2

$$r_1 + r_2$$
 $r_1 \cdot r_2$
 $r_1 *$
 (r_1)

Are regular expressions

A regular expression:
$$(a+b\cdot c)*\cdot(c+\varnothing)$$

Not a regular expression:
$$(a+b+)$$

Languages of Regular Expressions

$$L(r)$$
: language of regular expression r

$$L((a+b\cdot c)^*) = \{\lambda, a, bc, aa, abc, bca, \ldots\}$$

Definition

For primitive regular expressions:

$$L(\varnothing) = \varnothing$$

$$L(\lambda) = \{\lambda\}$$

$$L(a) = \{a\}$$

Definition (continued)

For regular expressions r_1 and r_2

$$L(r_1 + r_2) = L(r_1) \cup L(r_2)$$

$$L(r_1 \cdot r_2) = L(r_1) L(r_2)$$

$$L(r_1 *) = (L(r_1))*$$

$$L((r_1)) = L(r_1)$$

Regular expression: $(a+b)\cdot a*$

$$L((a+b) \cdot a^*) = L((a+b)) L(a^*)$$

$$= L(a+b) L(a^*)$$

$$= (L(a) \cup L(b)) (L(a))^*$$

$$= (\{a\} \cup \{b\}) (\{a\})^*$$

$$= \{a,b\} \{\lambda,a,aa,aaa,...\}$$

$$= \{a,aa,aaa,...,b,ba,baa,...\}$$

Regular expression
$$r = (a+b)*(a+bb)$$

$$L(r) = \{a,bb,aa,abb,ba,bbb,...\}$$

Regular expression
$$r = (aa)*(bb)*b$$

$$L(r) = \{a^{2n}b^{2m}b: n, m \ge 0\}$$

Regular expression
$$r = (0+1)*00(0+1)*$$

$$L(r)$$
 = { all strings with at least two consecutive 0 }

Regular expression
$$r = (1+01)*(0+\lambda)$$

$$L(r)$$
 = { all strings without two consecutive 0 }

Equivalent Regular Expressions

Definition:

Regular expressions r_1 and r_2

are equivalent if
$$L(r_1) = L(r_2)$$

$$L = \{ all strings without two consecutive 0 \}$$

$$r_1 = (1+01)*(0+\lambda)$$

$$r_2 = (1*011*)*(0+\lambda)+1*(0+\lambda)$$

$$L(r_1) = L(r_2) = L$$

 r_1 and r_2 are equivalent regular expr.

Regular Expressions and Regular Languages

Theorem

Languages
Generated by
Regular Expressions

Regular
Languages

Theorem - Part 1

Languages
Generated by
Regular Expressions

Regular
Languages

1. For any regular expression r the language L(r) is regular

Theorem - Part 2

2. For any regular language L there is a regular expression r with L(r) = L

Proof - Part 1

1. For any regular expression r the language L(r) is regular

Proof by induction on the size of r

Induction Basis

Primitive Regular Expressions: \emptyset , λ , α

NFAS

$$L(M_1) = \emptyset = L(\emptyset)$$

$$L(M_2) = \{\lambda\} = L(\lambda)$$

regular languages

$$L(M_3) = \{a\} = L(a)$$

Inductive Hypothesis

```
Assume for regular expressions \it r_1 and \it r_2 that \it L(\it r_1) and \it L(\it r_2) are regular languages
```

Inductive Step

We will prove:

$$L(r_1+r_2)$$

$$L(r_1 \cdot r_2)$$

$$L(r_1 *)$$

$$L((r_1))$$

Are regular Languages

By definition of regular expressions:

$$L(r_1 + r_2) = L(r_1) \cup L(r_2)$$

$$L(r_1 \cdot r_2) = L(r_1) L(r_2)$$

$$L(r_1 *) = (L(r_1))*$$

$$L((r_1)) = L(r_1)$$

By inductive hypothesis we know:

$$L(r_1)$$
 and $L(r_2)$ are regular languages

We also know:

Regular languages are closed under:

Union
$$L(r_1) \cup L(r_2)$$

Concatenation $L(r_1) L(r_2)$
Star $(L(r_1))*$

Therefore:

$$L(r_1 + r_2) = L(r_1) \cup L(r_2)$$

$$L(r_1 \cdot r_2) = L(r_1) L(r_2)$$

$$L(r_1 *) = (L(r_1))*$$

Are regular languages

And trivially:

 $L((r_1))$ is a regular language

Proof - Part 2

2. For any regular language L there is a regular expression r with L(r) = L

Proof by construction of regular expression

Since L is regular take the NFA M that accepts it

$$L(M) = L$$

Single final state

From M construct the equivalent Generalized Transition Graph

in which transition labels are regular expressions

Example:

Another Example: \boldsymbol{a} a Reducing the states: \boldsymbol{a} bb*abb*(a+b)

Resulting Regular Expression:

$$r = (bb*a)*bb*(a+b)b*$$

$$L(r) = L(M) = L$$

In General

Removing states: q_{j} q_i qaae*dce*bce*d q_i q_j ae*b

The final transition graph:

The resulting regular expression:

$$r = r_1 * r_2 (r_4 + r_3 r_1 * r_2) *$$

$$L(r) = L(M) = L$$

Example

 $(a(aa \cup b)*ab \cup b)((ba \cup a)(aa \cup b)*ab \cup bb)*((ba \cup a)(aa \cup b)* \cup \epsilon) \cup a(aa \cup b)*$

The End

Grammars

Grammars

Grammars express languages

Example: the English language

$$\langle sentence \rangle \rightarrow \langle noun_phrase \rangle \langle predicate \rangle$$

$$\langle noun_phrase \rangle \rightarrow \langle article \rangle \langle noun \rangle$$

$$\langle predicate \rangle \rightarrow \langle verb \rangle$$

$$\langle article \rangle \rightarrow a$$

 $\langle article \rangle \rightarrow the$

$$\langle noun \rangle \rightarrow cat$$

 $\langle noun \rangle \rightarrow dog$

$$\langle verb \rangle \rightarrow runs$$

 $\langle verb \rangle \rightarrow walks$

A derivation of "the dog walks":

```
\langle sentence \rangle \Rightarrow \langle noun\_phrase \rangle \langle predicate \rangle
                        \Rightarrow \langle noun\_phrase \rangle \langle verb \rangle
                        \Rightarrow \langle article \rangle \langle noun \rangle \langle verb \rangle
                        \Rightarrow the \langle noun \rangle \langle verb \rangle
                        \Rightarrow the dog \langle verb \rangle
                        \Rightarrow the dog walks
```

A derivation of "a cat runs":

```
\langle sentence \rangle \Rightarrow \langle noun\_phrase \rangle \langle predicate \rangle
                         \Rightarrow \langle noun\_phrase \rangle \langle verb \rangle
                         \Rightarrow \langle article \rangle \langle noun \rangle \langle verb \rangle
                         \Rightarrow a \langle noun \rangle \langle verb \rangle
                         \Rightarrow a \ cat \ \langle verb \rangle
                         \Rightarrow a cat runs
```

Language of the grammar:

```
L = \{ \text{"a cat runs"}, 
      "a cat walks".
     "the cat runs",
      "the cat walks",
     "a dog runs",
     "a dog walks",
      "the dog runs",
     "the dog walks" }
```

Notation

Production Rules

Variable

Terminal

Another Example

Grammar:
$$S \rightarrow aSb$$

 $S \rightarrow \lambda$

Derivation of sentence ab:

$$S \Rightarrow aSb \Rightarrow ab$$

$$S \rightarrow aSb \qquad S \rightarrow \lambda$$

Grammar:
$$S \rightarrow aSb$$

$$S \to \lambda$$

Derivation of sentence *aabb*:

$$S \Rightarrow aSb \Rightarrow aaSbb \Rightarrow aabb$$

$$S \rightarrow aSb \qquad S \rightarrow \lambda$$

Other derivations:

$$S \Rightarrow aSb \Rightarrow aaSbb \Rightarrow aaaSbbb \Rightarrow aaabbb$$

$$S \Rightarrow aSb \Rightarrow aaSbb \Rightarrow aaaSbbb$$

 $\Rightarrow aaaaSbbbb \Rightarrow aaaabbbb$

Language of the grammar

$$S \to aSb$$
$$S \to \lambda$$

$$L = \{a^n b^n : n \ge 0\}$$

More Notation

Grammar
$$G = (V, T, S, P)$$

V: Set of variables

T: Set of terminal symbols

S: Start variable

P: Set of Production rules

Example

Grammar
$$G: S \to aSb$$

 $S \to \lambda$

$$G = (V, T, S, P)$$

$$V = \{S\} \qquad T = \{a, b\}$$

$$P = \{S \rightarrow aSb, S \rightarrow \lambda\}$$

More Notation

Sentential Form:

A sentence that contains variables and terminals

Example:

*

We write:

$$S \Rightarrow aaabbb$$

Instead of:

$$S \Rightarrow aSb \Rightarrow aaSbb \Rightarrow aaaSbbb \Rightarrow aaabbb$$

In general we write:
$$w_1 \Rightarrow w_n$$

If:
$$w_1 \Rightarrow w_2 \Rightarrow w_3 \Rightarrow \cdots \Rightarrow w_n$$

By default: W

Example

Grammar

$$S \rightarrow aSb$$

$$S \rightarrow \lambda$$

Derivations

$$S \Longrightarrow \lambda$$

*

$$S \Rightarrow ab$$

*

$$S \Rightarrow aabb$$

*

$$S \Rightarrow aaabbb$$

Example

Grammar

$$S \rightarrow aSb$$

$$S \rightarrow \lambda$$

Derivations

$$s \Rightarrow aaSbb$$

* $aaSbb \Rightarrow aaaaaSbbbbb$

Another Grammar Example

Grammar
$$G: S \rightarrow Ab$$

$$A \rightarrow aAb$$

$$A \rightarrow \lambda$$

Derivations:

$$S \Rightarrow Ab \Rightarrow b$$

$$S \Rightarrow Ab \Rightarrow aAbb \Rightarrow abb$$

$$S \Rightarrow Ab \Rightarrow aAbb \Rightarrow aaAbbb \Rightarrow aabbb$$

More Derivations

$$S \Rightarrow Ab \Rightarrow aAbb \Rightarrow aaAbbbb \Rightarrow aaaAbbbbb$$

 $\Rightarrow aaaaAbbbbbb \Rightarrow aaaabbbbbb$

$$S \Rightarrow aaaabbbbb$$

 $S \Rightarrow aaaaaabbbbbbb$

$$S \Rightarrow a^n b^n b$$

Language of a Grammar

For a grammar G with start variable S:

$$L(G) = \{w: S \Longrightarrow w\}$$

String of terminals

Example

For grammar
$$G: S \to Ab$$

$$A \to aAb$$

$$L(G) = \{a^n b^n b: n \ge 0\}$$

 $A \rightarrow \lambda$

Since:
$$S \Rightarrow a^n b^n b$$

A Convenient Notation

$$\begin{array}{ccc}
A \to aAb \\
A \to \lambda
\end{array}$$

$$A \to aAb \mid \lambda$$

$$\langle article \rangle \rightarrow a$$
 $\langle article \rangle \rightarrow a \mid the$ $\langle article \rangle \rightarrow the$

Linear Grammars

Linear Grammars

Grammars with at most one variable at the right side of a production

$$S \rightarrow aSb$$

$$S \rightarrow \lambda$$

$$S \rightarrow Ab$$

$$A \rightarrow aAb$$

$$A \rightarrow \lambda$$

A Non-Linear Grammar

Grammar
$$G: S \to SS$$

$$S \to \lambda$$

$$S \to aSb$$

$$S \to bSa$$

$$L(G) = \{w: n_a(w) = n_b(w)\}$$

Number of a in string w

Another Linear Grammar

Grammar
$$G: S \to A$$

$$A \to aB \mid \lambda$$

$$B \to Ab$$

$$L(G) = \{a^n b^n : n \ge 0\}$$

Right-Linear Grammars

All productions have form:

$$A \rightarrow xB$$

or

$$A \rightarrow x$$

Example: $S \rightarrow abS$

$$S \rightarrow abS$$

$$S \rightarrow a$$

string of terminals

Left-Linear Grammars

All productions have form:

$$A \rightarrow Bx$$

or

$$A \rightarrow x$$

Example: $S \rightarrow Aab$

$$S \rightarrow Aab$$

$$A \rightarrow Aab \mid B$$

$$B \rightarrow a$$

string of terminals

Regular Grammars

Regular Grammars

A regular grammar is any right-linear or left-linear grammar

Examples:

$$G_1$$
 G_2 $S \rightarrow abS$ $S \rightarrow Aab$ $A \rightarrow Aab \mid B$ $B \rightarrow a$

Observation

Regular grammars generate regular languages

Examples:

$$G_2$$

$$G_1$$

$$S \rightarrow Aab$$

$$S \rightarrow abS$$

$$A \rightarrow Aab \mid B$$

$$S \rightarrow a$$

$$B \rightarrow a$$

$$L(G_1) = (ab) * a$$

$$L(G_2) = aab(ab) *$$

Regular Grammars Generate Regular Languages

Theorem

Languages
Generated by
Regular Grammars
Regular Grammars

Theorem - Part 1

Languages
Generated by
Regular Grammars
Regular Grammars
Regular Grammars

Any regular grammar generates a regular language

Theorem - Part 2

Any regular language is generated by a regular grammar

Proof - Part 1

```
Languages
Generated by
Regular Grammars
Regular
Languages
```

The language L(G) generated by any regular grammar G is regular

The case of Right-Linear Grammars

Let G be a right-linear grammar

We will prove: L(G) is regular

Proof idea: We will construct NFA M with L(M) = L(G)

Grammar G is right-linear

Example:
$$S \rightarrow aA \mid B$$

 $A \rightarrow aa \mid B$
 $B \rightarrow b \mid B \mid a$

Construct NFA M such that every state is a grammar variable:

$$B \rightarrow b B \mid a$$

Add edges for each production:

 $S \rightarrow aA$

$$S \rightarrow aA \mid B$$

$$S \to aA \mid B$$
$$A \to aa \mid B$$

 $S \Rightarrow aA \Rightarrow aaaB \Rightarrow aaabB \Rightarrow aaaba$

In General

A right-linear grammar G

has variables:
$$V_0, V_1, V_2, \dots$$

and productions:
$$V_i \rightarrow a_1 a_2 \cdots a_m V_j$$

or

$$V_i \rightarrow a_1 a_2 \cdots a_m$$

We construct the NFA $\,M\,$ such that:

each variable V_i corresponds to a node:

For each production: $V_i \rightarrow a_1 a_2 \cdots a_m V_j$

we add transitions and intermediate nodes

For each production: $V_i \rightarrow a_1 a_2 \cdots a_m$

we add transitions and intermediate nodes

Resulting NFA M looks like this:

It holds that: L(G) = L(M)

The case of Left-Linear Grammars

Let G be a left-linear grammar

We will prove: L(G) is regular

Proof idea:

We will construct a right-linear grammar G' with $L(G) = L(G')^R$

Since G is left-linear grammar the productions look like:

$$A \rightarrow Ba_1a_2\cdots a_k$$

$$A \rightarrow a_1 a_2 \cdots a_k$$

Construct right-linear grammar G'

$$A \rightarrow Ba_1a_2\cdots a_k$$

$$A \rightarrow Bv$$

Right
$$G'$$

$$A \rightarrow a_k \cdots a_2 a_1 B$$

$$A \rightarrow v^R B$$

Construct right-linear grammar G'

$$A \rightarrow a_1 a_2 \cdots a_k$$

$$A \rightarrow v$$

Right
$$G'$$

$$A \rightarrow a_k \cdots a_2 a_1$$

$$A \rightarrow v^R$$

It is easy to see that:
$$L(G) = L(G')^R$$

Since G' is right-linear, we have:

$$L(G') \longrightarrow L(G')^R \longrightarrow L(G)$$
Regular Regular Regular Language Language

Proof - Part 2

Any regular language $\,L\,$ is generated by some regular grammar $\,G\,$

Any regular language $\,L\,$ is generated by some regular grammar $\,G\,$

Proof idea:

Let M be the NFA with L = L(M).

Construct from M a regular grammar G such that L(M) = L(G)

Since L is regular there is an NFA M such that L = L(M)

Convert M to a right-linear grammar

$$L(G) = L(M) = L$$

In General

For any transition:

For any final state:

Add production:

$$q_f \to \lambda$$

Since G is right-linear grammar

G is also a regular grammar

with
$$L(G) = L(M) = L$$

The End

Standard Representations of Regular Languages

When we say: We are given a Regular Language L

We mean: Language L is in a standard representation

What are the differences among NFA/DFA, regular expression and regular grammar?

NFA/DFA accepts languages

Regular expresses operate languages

Grammar generates language

Elementary Questions

about

Regular Languages

Membership Question

Question:

Given regular language L and string w how can we check if $w \in L$?

Answer:

Take the DFA that accepts L and check if w is accepted

$$w \in L$$

$$w \notin L$$

Question: Given regular language L how can we check if L is empty: $(L = \emptyset)$?

Answer: Take the DFA that accepts L

Check if there is any path from the initial state to a final state

DFA

$$L \neq \emptyset$$

DFA

$$L = \emptyset$$

Question: Given regular language L how can we check if L is finite?

Answer: Take the DFA that accepts L

Check if there is a walk with cycle from the initial state to a final state

DFA

L is infinite

L is finite

Question: Given regular languages L_1 and L_2 how can we check if $L_1 = L_2$?

Answer: Find if $(L_1 \cap \overline{L_2}) \cup (\overline{L_1} \cap L_2) = \emptyset$

$$(L_1 \cap \overline{L_2}) \cup (\overline{L_1} \cap L_2) = \varnothing$$

$$L_1 \cap \overline{L_2} = \varnothing \quad \text{and} \quad \overline{L_1} \cap L_2 = \varnothing$$

$$L_1 \cap L_2 = Z$$

$$L_1 \cap L_2 \cap L_2 = Z$$

$$L_1 \cap L_2 \cap L_1 \cap L_2 = Z$$

$$L_1 \cap L_2 \cap L_2 \cap L_1 \cap L_2 \cap L_2 \cap L_1 \cap L_1 \cap L_2 \cap L_2 \cap L_1 \cap L_2 \cap L_1 \cap L_2 \cap L_1 \cap L_2 \cap L_2$$

Non-regular languages

Non-regular languages

$$\{a^n b^n : n \ge 0\}$$

 $\{vv^R : v \in \{a,b\}^*\}$

Regular languages
$$a*b$$
 $b*c+a$
 $b+c(a+b)*$

Finite languages are regular

How can we prove that a language L is not regular?

Prove that there is no DFA that accepts L

Ha Ha Ha.....^-^

Problem: this is not easy to prove

Solution: the Pumping Lemma!!!

The Pigeonhole Principle

4 pigeons

3 pigeonholes

A pigeonhole must contain at least two pigeons

n pigeons

The Pigeonhole Principle

n pigeons

m pigeonholes

n > m

There is a pigeonhole with at least 2 pigeons

Ex 1: Show that if any five numbers from 1 to 8 are chosen, then two of them will add up to 9.

Solution: {1,8},{2,7},{3,6},{4,5}

Ex 2: show that if any 11 numbers are chosen from the set {1,2,...,20}, then one of them will be a multiple of another.

```
Solution: {1,2,...,20}={2<sup>k</sup>m|k could be any positive integer including 0, m=some odd number}, odd number={k=0,m=1,3,...,19}, 2={k=1,m=1},...,12={k=2,m=3},...,18={k=1,m=9} ...
```

 2^{k1} m, 2^{k2} m

Ex 3: Consider the region shown in the figure. It is bounded by a regular hexagon whose sides are of length 1 unit. Show that if any seven points are chosen in this region, then two of them must be no farther apart than 1 unit.

Ex 4: shirts numbered consecutively from 1 to 20 are worn by the 20 members of a bowling league. When any 3 of these members are chosen to be a team, the sum of their shirt numbers is used as a code number for the team. Show that if any 8 of the 20 members are selected, then from theses 8 we may form at least two different teams having the same code number. (one member can be in several different teams simultaneously)

Solution: *C*(8,3)=56, 1+2+3=6,...,18+19+20=57, 57-6+1=52

The Pigeonhole Principle

and

DFAs

DFA with 4 states

In walks of strings: a

aa

no state is repeated

aab

In walks of strings: aabb a state bbaa is repeated abbabb abbabb...

If string w has length $|w| \ge 4$:

Then the transitions of string w are more than the states of the DFA

Thus, a state must be repeated

In general, for any DFA:

String w has length \geq number of states

A state q must be repeated in the walk of w

In other words for a string w:

 \xrightarrow{a} transitions are pigeons

(q) states are pigeonholes

The Pumping Lemma

The Pumping Lemma:

- \cdot Given a infinite regular language L
- \cdot there exists an integer m
- for any string $w \in L$ with length $|w| \ge m$
- we can write w = x y z
- with $|xy| \le m$ and $|y| \ge 1$
- such that: $x y^l z \in L$ i = 0, 1, 2, ...

Applications

of

the Pumping Lemma

Theorem: The language
$$L = \{a^nb^n : n \ge 0\}$$
 is not regular

Proof: Use the Pumping Lemma

$$L = \{a^n b^n : n \ge 0\}$$

Assume for contradiction that $\,L\,$ is a regular language

Since L is infinite we can apply the Pumping Lemma

$$L = \{a^n b^n : n \ge 0\}$$

Let m be the integer in the Pumping Lemma

Pick a string w such that: $w \in L$

length $|w| \ge m$

We pick
$$w = a^m b^m$$

Write:
$$a^m b^m = x y z$$

From the Pumping Lemma it must be that length $|x y| \le m$, $|y| \ge 1$

$$xyz = a^m b^m = \underbrace{a...aa...aa...ab...b}_{m}$$

Thus:
$$y = a^k$$
, $k \ge 1$

$$x y z = a^m b^m$$

$$y = a^k, \quad k \ge 1$$

$$x y^{i} z \in L$$

 $i = 0, 1, 2, ...$

Thus:
$$x y^2 z \in L$$

$$x y z = a^m b^m \qquad y = a^k, \quad k \ge 1$$

From the Pumping Lemma: $x y^2 z \in L$

$$xy^{2}z = \underbrace{a...aa...aa...aa...ab...b}_{m+k} \in L$$

Thus:
$$a^{m+k}b^m \in L$$

$$a^{m+k}b^m \in L$$

$$k \ge 1$$

BUT:
$$L = \{a^n b^n : n \ge 0\}$$

$$a^{m+k}b^m \notin L$$

CONTRADICTION!!!

Therefore: Our assumption that L is a regular language is not true

Conclusion: L is not a regular language

Non-regular languages $\{a^nb^n: n \ge 0\}$

Understanding pumping lemma more

Take an infinite regular language L

There exists a DFA that accepts L

Take string w with $w \in L$

There is a walk with label w:

If string w has length $|w| \ge m$ (number of states of DFA)

then, from the pigeonhole principle:

a state is repeated in the walk w

Let q be the first state repeated in the walk of w

Write w = x y z

Observations:

 $| length \ | \ x \ y | \le m \ number$ of states $| length \ | \ y | \ge 1 \qquad of \ DFA$

Observation: The string xz is accepted

Observation: The string x y y z is accepted

Observation: The string x y y y z is accepted

In General:

The string $xy^{l}z$ is accepted i=0,1,2,...

In General:
$$x y^i z \in L$$

 $i = 0, 1, 2, \dots$

Language accepted by the DFA

In other words, we described:

The Pumping Lemma!!!

More Applications

of

the Pumping Lemma

The Pumping Lemma:

- \cdot Given a infinite regular language L
- there exists an integer m
- for any string $w \in L$ with length $|w| \ge m$
- we can write w = x y z
- with $|xy| \le m$ and $|y| \ge 1$
- such that: $x y^l z \in L$ i = 0, 1, 2, ...

Non-regular languages

$$L = \{vv^R : v \in \Sigma^*\}$$

Theorem: The language

$$L = \{ vv^R : v \in \Sigma^* \} \qquad \Sigma = \{a,b\}$$
 is not regular

Proof: Use the Pumping Lemma

$$L = \{vv^R : v \in \Sigma^*\}$$

Assume for contradiction that L is a regular language

Since L is infinite we can apply the Pumping Lemma

$$L = \{vv^R : v \in \Sigma^*\}$$

Let m be the integer in the Pumping Lemma

Pick a string w such that: $w \in L$ and $|w| \ge m$

We pick
$$w = a^m b^m b^m a^m$$

Write
$$a^m b^m b^m a^m = x y z$$

From the Pumping Lemma it must be that length $|x y| \le m$, $|y| \ge 1$

$$xyz = a...aa...a...ab...bb...ba...a$$

$$x y z = a...aa...a$$

Thus:
$$y = a^k, k \ge 1$$

$$x y z = a^m b^m b^m a^m$$

$$y = a^k, \quad k \ge 1$$

From the Pumping Lemma:

$$x y^{l} z \in L$$

 $i = 0, 1, 2, ...$

Thus:
$$x y^2 z \in L$$

$$x y z = a^m b^m b^m a^m$$

$$y = a^k, \quad k \ge 1$$

From the Pumping Lemma: $x y^2 z \in L$

$$xy^{2}z = \overbrace{a...aa...aa...aa...ab...bb...ba...a}^{m+k} \in L$$

Thus:
$$a^{m+k}b^mb^ma^m \in L$$

$$a^{m+k}b^mb^ma^m \in L$$

$$k \ge 1$$

BUT:
$$L = \{vv^R : v \in \Sigma^*\}$$

$$a^{m+k}b^mb^ma^m \notin L$$

CONTRADICTION!!!

Therefore: Our assumption that L is a regular language is not true

Conclusion: L is not a regular language

Non-regular languages

$$L = \{a^n b^l c^{n+l} : n, l \ge 0\}$$

Regular languages

Theorem: The language

$$L = \{a^n b^l c^{n+l} : n, l \ge 0\}$$

is not regular

Proof: Use the Pumping Lemma

$$L = \{a^n b^l c^{n+l} : n, l \ge 0\}$$

Assume for contradiction that $\,L\,$ is a regular language

Since L is infinite we can apply the Pumping Lemma

$$L = \{a^n b^l c^{n+l} : n, l \ge 0\}$$

Let m be the integer in the Pumping Lemma

Pick a string
$$w$$
 such that: $w \in L$ and
$$|w| \ge m$$

We pick
$$w = a^m b^m c^{2m}$$

Write
$$a^m b^m c^{2m} = x y z$$

From the Pumping Lemma it must be that length $|x y| \le m$, $|y| \ge 1$

$$xyz = \overbrace{a...aa...aa...ab...bc...cc...c}^{m}$$

$$xyz = \underbrace{a...aa...aa...ab...bc...cc...c}_{x}$$

Thus:
$$y = a^k$$
, $k \ge 1$

$$x y z = a^m b^m c^{2m} \qquad y = a^k, \quad k \ge 1$$

From the Pumping Lemma:
$$x y^{l} z \in L$$
 $i = 0, 1, 2, ...$

Thus:
$$x y^0 z = xz \in L$$

$$x y z = a^m b^m c^{2m} \qquad y = a^k, \quad k \ge 1$$

From the Pumping Lemma: $xz \in L$

$$xz = a...aa...ab...bc...cc...c \in L$$

Thus:
$$a^{m-k}b^mc^{2m} \in L$$

$$a^{m-k}b^mc^{2m} \in L$$

 $k \ge 1$

BUT:
$$L = \{a^n b^l c^{n+l} : n, l \ge 0\}$$

$$a^{m-k}b^mc^{2m} \notin L$$

CONTRADICTION!!!

Therefore: Our assumption that L is a regular language is not true

Conclusion: L is not a regular language

Non-regular languages $L = \{a^{n!}: n \ge 0\}$

$$L = \{a^{n!}: n \ge 0\}$$

Theorem: The language $L = \{a^{n!}: n \ge 0\}$ is not regular

$$n! = 1 \cdot 2 \cdot \cdot \cdot (n-1) \cdot n$$

Proof: Use the Pumping Lemma

$$L = \{a^{n!}: n \ge 0\}$$

Assume for contradiction that $\,L\,$ is a regular language

Since L is infinite we can apply the Pumping Lemma

$$L = \{a^{n!}: n \ge 0\}$$

Let m be the integer in the Pumping Lemma

Pick a string w such that: $w \in L$

length $|w| \ge m$

We pick
$$w = a^{m!}$$

Write
$$a^{m!} = x y z$$

From the Pumping Lemma it must be that length $|x y| \le m$, $|y| \ge 1$

$$xyz = a^{m!} = \overbrace{a...aa...aa...aa...aa...aa...aa}^{m!-m}$$

Thus:
$$y = a^k$$
, $1 \le k \le m$

$$x y z = a^{m!}$$

$$y = a^k$$
, $1 \le k \le m$

$$x y^{i} z \in L$$

 $i = 0, 1, 2, ...$

Thus:
$$x y^2 z \in L$$

$$x y z = a^{m!}$$

$$y = a^k$$
, $1 \le k \le m$

From the Pumping Lemma: $x y^2 z \in L$

$$a^{m!+k} \in L$$

$$a^{m!+k} \in L$$

$$1 \le k \le m$$

Since:
$$L = \{a^{n!}: n \ge 0\}$$

There must exist p such that:

$$m! + k = p!$$

$$m!+k \leq m!+m$$

for m > 1

$$\leq m!+m!$$

$$< m!m + m!$$

$$= m!(m+1)$$

$$=(m+1)!$$

$$m!+k < (m+1)!$$

$$m!+k \neq p!$$
 for any p

$$a^{m!+k} \in L$$

$$1 \le k \le m$$

BUT:
$$L = \{a^{n!}: n \ge 0\}$$

$$a^{m!+k} \notin L$$

CONTRADICTION!!!

Therefore: Our assumption that L is a regular language is not true

Conclusion: L is not a regular language

Context-Free Languages

$$\{a^nb^n: n \ge 0\}$$
 $\{ww^R\}$

Regular Languages
 $a*b*$ $(a+b)*$

 $\{a^nb^n\}$

 $\{ww^R\}$

Regular Languages

Context-Free Languages

Context-Free Grammars

Example

A context-free grammar
$$G\colon S\to aSb$$

$$S\to \lambda$$

A derivation:

$$S \Rightarrow aSb \Rightarrow aaSbb \Rightarrow aabb$$

A context-free grammar
$$G\colon S\to aSb$$
 $S\to \lambda$

Another derivation:

$$S \Rightarrow aSb \Rightarrow aaSbb \Rightarrow aaaSbbb \Rightarrow aaabbb$$

$$S \to aSb$$
$$S \to \lambda$$

$$L(G) = \{a^n b^n : n \ge 0\}$$

Example

A context-free grammar
$$G\colon S\to aSa$$

$$S\to bSb$$

$$S\to \lambda$$

A derivation:

$$S \Rightarrow aSa \Rightarrow abSba \Rightarrow abba$$

A context-free grammar
$$G\colon S\to aSa$$

$$S\to bSb$$

$$S\to \lambda$$

Another derivation:

 $S \Rightarrow aSa \Rightarrow abSba \Rightarrow abaSaba \Rightarrow abaaba$

$$S \to aSa$$

$$S \to bSb$$

$$S \to \lambda$$

$$L(G) = \{ww^R : w \in \{a,b\}^*\}$$

Example

A context-free grammar
$$G: S \rightarrow aSb$$

$$S \rightarrow SS$$

$$S \to \lambda$$

A derivation:

$$S \Rightarrow SS \Rightarrow aSbS \Rightarrow abS \Rightarrow ab$$

A context-free grammar
$$G\colon S\to aSb$$

$$S\to SS$$

$$S\to \lambda$$

A derivation:

$$S \Rightarrow SS \Rightarrow aSbS \Rightarrow abS \Rightarrow abaSb \Rightarrow abab$$

$$S \to aSb$$

$$S \to SS$$

$$S \to \lambda$$

$$L(G) = \{w : n_a(w) = n_b(w),$$
and $n_a(v) \ge n_b(v)$
in any prefix $v\}$

Definition: Context-Free Grammars

and terminals

$$G = (V, T, S, P)$$

$$L(G) = \{w: S \Longrightarrow w, w \in T^*\}$$

Definition: Context-Free Languages

A language L is context-free

if and only if

there is a context-free grammar G with L = L(G)

Derivation Order

1.
$$S \rightarrow AB$$

2.
$$A \rightarrow aaA$$

4.
$$B \rightarrow Bb$$

3.
$$A \rightarrow \lambda$$

5.
$$B \rightarrow \lambda$$

Leftmost derivation:

Rightmost derivation:

$$S \rightarrow aAB$$
 $A \rightarrow bBb$
 $B \rightarrow A \mid \lambda$

$D \longrightarrow A \mid A$

Leftmost derivation:

$$S \Rightarrow aAB \Rightarrow abBbB \Rightarrow abAbB \Rightarrow abbBbbB$$

 $\Rightarrow abbbbB \Rightarrow abbbb$

Rightmost derivation:

$$S \Rightarrow aAB \Rightarrow aA \Rightarrow abBb \Rightarrow abAb$$

 $\Rightarrow abbBbb \Rightarrow abbbb$

Derivation Trees

$$S \rightarrow AB$$

$$S \rightarrow AB$$

$$S \rightarrow AB$$
 $A \rightarrow aaA \mid \lambda$ $B \rightarrow Bb \mid \lambda$

$$S \Rightarrow AB \Rightarrow aaAB$$

$$S \to AB$$

$$S \rightarrow AB$$
 $A \rightarrow aaA \mid \lambda$ $B \rightarrow Bb \mid \lambda$

$$B \to Bb \mid \lambda$$

$$S \Rightarrow AB \Rightarrow aaAB \Rightarrow aaABb$$

$$S \to AB$$

$$S \rightarrow AB$$
 $A \rightarrow aaA \mid \lambda$ $B \rightarrow Bb \mid \lambda$

 $S \Rightarrow AB \Rightarrow aaAB \Rightarrow aaABb \Rightarrow aaBb$

$$S \rightarrow AB$$

$$S \rightarrow AB$$
 $A \rightarrow aaA \mid \lambda$ $B \rightarrow Bb \mid \lambda$

 $S \Rightarrow AB \Rightarrow aaAB \Rightarrow aaABb \Rightarrow aaBb \Rightarrow aab$

$$S \rightarrow AB$$

$$A \rightarrow aaA \mid \lambda$$
 $B \rightarrow Bb \mid \lambda$

$$B \to Bb \mid \lambda$$

 $S \Rightarrow AB \Rightarrow aaAB \Rightarrow aaABb \Rightarrow aaBb \Rightarrow aab$

Partial Derivation Trees

$$S \rightarrow AB$$

$$A \rightarrow aaA \mid \lambda$$
 $B \rightarrow Bb \mid \lambda$

$$B \to Bb \mid \lambda$$

$$S \Rightarrow AB$$

Partial derivation tree

$S \Rightarrow AB \Rightarrow aaAB$

$$S \Rightarrow AB \Rightarrow aaAB$$
 sentential form

Sometimes, derivation order doesn't matter

Leftmost:

$$S \Rightarrow AB \Rightarrow aaAB \Rightarrow aaB \Rightarrow aaBb \Rightarrow aab$$

Rightmost:

$$S \Rightarrow AB \Rightarrow ABb \Rightarrow Ab \Rightarrow aaAb \Rightarrow aab$$

Ambiguity

$$E \rightarrow E + E \mid E * E \mid (E) \mid a$$

$$a + a * a$$

$$E \rightarrow E + E \mid E * E \mid (E) \mid a$$

$$a + a * a$$

$$E \to E + E \mid E * E \mid (E) \mid a$$
$$a + a * a$$

The grammar $E \rightarrow E + E \mid E * E \mid (E) \mid a$ is ambiguous:

string a + a * a has two derivation trees

The grammar $E \rightarrow E + E \mid E * E \mid (E) \mid a$ is ambiguous:

string a + a * a has two leftmost derivations

$$E \Rightarrow E + E \Rightarrow a + E \Rightarrow a + E * E$$

 $\Rightarrow a + a * E \Rightarrow a + a * a$

$$E \Rightarrow E * E \Rightarrow E + E * E \Rightarrow a + E * E$$

$$\Rightarrow a + a * E \Rightarrow a + a * a$$

Definition:

A context-free grammar $\,G\,$ is ambiguous

if some string $w \in L(G)$ has:

two or more derivation trees

In other words:

A context-free grammar $\,G\,$ is ambiguous

if some string $w \in L(G)$ has:

two or more leftmost derivations (or rightmost)

Why do we care about ambiguity?

2 + 2 * 2

$$2 + 2 * 2 = 6$$

$$2+2*2=8$$

Correct result: 2+2*2=6

Ambiguity is bad for programming languages

· We want to remove ambiguity

We fix the ambiguous grammar:

$$E \rightarrow E + E \mid E * E \mid (E) \mid a$$

New non-ambiguous grammar:
$$E \rightarrow E + T$$

$$E \rightarrow T$$

$$T \to T * F$$

$$T \to F$$

$$F \rightarrow (E)$$

$$F \rightarrow a$$

$$E \Rightarrow E + T \Rightarrow T + T \Rightarrow F + T \Rightarrow a + T \Rightarrow a + T * F$$
$$\Rightarrow a + F * F \Rightarrow a + a * F \Rightarrow a + a * a$$

Unique derivation tree

The grammar $G: E \to E + T$

$$E \to E + T$$

$$E \rightarrow T$$

$$T \to T * F$$

$$T \rightarrow F$$

$$F \rightarrow (E)$$

$$F \rightarrow a$$

is non-ambiguous:

Every string $w \in L(G)$ has a unique derivation tree

Another Ambiguous Grammar

```
IF\_STMT \rightarrow if EXPR then STMT
if EXPR then STMT else STMT
```

If expr1 then if expr2 then stmt1 else stmt2

Inherent Ambiguity

Some context free languages have only ambiguous grammars

Example:
$$L = \{a^nb^nc^m\} \cup \{a^nb^mc^m\}$$

$$S \to S_1 \mid S_2 \qquad S_1 \to S_1c \mid A \qquad S_2 \to aS_2 \mid B$$

$$A \to aAb \mid \lambda \qquad B \to bBc \mid \lambda$$

The string $a^n b^n c^n$

has two derivation trees

Simplifications of Context-Free Grammars

A Substitution Rule

$$S \rightarrow aB$$

$$A \rightarrow aaA$$

$$A \rightarrow abBc$$

$$B \rightarrow aA$$

$$B \rightarrow b$$

$$B \rightarrow b$$

Equivalent grammar

$$S \rightarrow aB \mid ab$$

$$A \rightarrow aaA$$

$$A \rightarrow abBc \mid abbc$$

$$B \rightarrow aA$$

A Substitution Rule

$$S \rightarrow aB \mid ab$$

$$A \rightarrow aaA$$

$$A \rightarrow abBc \mid abbc$$

$$B \rightarrow aA$$

Substitute

$$B \rightarrow aA$$

$$S \rightarrow aB \mid ab \mid aaA$$

$$A \rightarrow aaA$$

$$A \rightarrow abBc \mid abbc \mid abaAc$$

Equivalent grammar

In general:

$$A \rightarrow xBz$$

$$B \rightarrow y_1$$

Substitute
$$B \rightarrow y_1$$

$$A \rightarrow xBz \mid xy_1z$$

equivalent grammar

Nullable Variables

$$\lambda$$
 – production :

$$A \rightarrow \lambda$$

Nullable Variable:

$$A \Rightarrow \ldots \Rightarrow \lambda$$

Removing Nullable Variables

Example Grammar:

Nullable variable

$$S \to aMb$$

$$M \to aMb$$

$$M \to \lambda$$

Final Grammar

$$S \to aMb$$

$$M \to aMb$$

$$M \to \lambda$$

Substitute
$$M \rightarrow \lambda$$

$$S \to aMb$$

$$S \to ab$$

$$M \to aMb$$

Unit-Productions

Unit Production:
$$A \rightarrow B$$

(a single variable in both sides)

Removing Unit Productions

Observation:

$$A \rightarrow A$$

Is removed immediately

Example Grammar:

$$S \rightarrow aA$$
 $A \rightarrow a$
 $A \rightarrow B$
 $B \rightarrow A$
 $B \rightarrow bb$

$$S \to aA$$

$$A \to a$$

$$A \to B$$

$$B \to A$$

$$B \to bb$$

$$S \to aA \mid aB$$

$$A \to a$$

$$B \to A \mid B$$

$$B \to bb$$

$$S \rightarrow aA \mid aB$$
 $A \rightarrow a$
 $B \rightarrow A$
 $B \rightarrow bb$
 $S \rightarrow aA \mid aB \mid aA$
 $Substitute$
 $S \rightarrow aA \mid aB \mid aA$
 $A \rightarrow a$
 $B \rightarrow bb$

Remove repeated productions

$$S \to aA \mid aB \mid aA$$

$$A \to a$$

$$B \to bb$$

Final grammar

$$S \rightarrow aA \mid aB$$

$$A \rightarrow a$$

$$B \rightarrow bb$$

Useless Productions

$$S o aSb$$

$$S o \lambda$$

$$S o A$$

$$A o aA$$
 Useless Production

Some derivations never terminate...

$$S \Rightarrow A \Rightarrow aA \Rightarrow aaA \Rightarrow ... \Rightarrow aa...aA \Rightarrow ...$$

Another grammar:

$$S o A$$
 $A o aA$
 $A o \lambda$
 $B o bA$ Useless Production

Not reachable from 5

In general:

contains only terminals

if
$$S \Rightarrow ... \Rightarrow xAy \Rightarrow ... \Rightarrow w$$

$$w \in L(G)$$

then variable A is useful

otherwise, variable A is useless

A production $A \rightarrow x$ is useless if any of its variables is useless

$$S o aSb$$
 $S o \lambda$ Productions Variables $S o A$ useless useless $A o aA$ useless useless $B o C$ useless useless $C o D$ useless

Removing Useless Productions

Example Grammar:

$$S \rightarrow aS \mid A \mid C$$
 $A \rightarrow a$
 $B \rightarrow aa$
 $C \rightarrow aCb$

First: find all variables that can produce strings with only terminals

$$S
ightharpoonup aS \mid A \mid C$$
 Round 1: $\{A, B\}$

$$S
ightharpoonup aS \mid A \mid C$$

$$S
ightharpoonup A$$

$$B
ightharpoonup aCb$$
 Round 2: $\{A, B, S\}$

Keep only the variables that produce terminal symbols: $\{A, B, S\}$

(the rest variables are useless)

$$S \to aS \mid A \mid \varnothing$$

$$A \to a$$

$$B \to aa$$

$$C \to aCb$$

$$S \to aS \mid A$$

$$A \to a$$

$$B \to aa$$

Remove useless productions

Second: Find all variables reachable from S

Use a Dependency Graph

$$S \to aS \mid A$$

$$A \to a$$

$$B \to aa$$

not reachable

Keep only the variables reachable from S

(the rest variables are useless)

Final Grammar

$$S \to aS \mid A$$

$$A \to a$$

$$B \to aa$$

$$S \to aS \mid A$$

$$A \to a$$

Remove useless productions

Removing All

Step 1: Remove Nullable Variables

Step 2: Remove Unit-Productions

Step 3: Remove Useless Variables

Normal Forms for Context-free Grammars

Chomsky Normal Form

Each productions has form:

Examples:

$$S \rightarrow AS$$

$$S \rightarrow a$$

$$A \rightarrow SA$$

$$A \rightarrow b$$

Chomsky Normal Form

$$S \rightarrow AS$$

$$S \rightarrow AAS$$

$$A \rightarrow SA$$

$$A \rightarrow aa$$

Not Chomsky Normal Form

Convertion to Chomsky Normal Form

$$S \rightarrow ABa$$

$$A \rightarrow aab$$

$$B \rightarrow Ac$$

Not Chomsky Normal Form

Introduce variables for terminals: T_a, T_b, T_c

Introduce intermediate variable: V_1

$$S \to ABT_{a}$$

$$A \to T_{a}T_{a}T_{b}$$

$$B \to AT_{c}$$

$$T_{a} \to a$$

$$T_{b} \to b$$

$$T_{c} \to c$$

$$S \to AV_{1}$$

$$V_{1} \to BT_{a}$$

$$A \to T_{a}T_{a}T_{b}$$

$$B \to AT_{c}$$

$$T_{a} \to a$$

$$T_{b} \to b$$

$$T_{c} \to c$$

Introduce intermediate variable:

Final grammar in Chomsky Normal Form:

$$S \to AV_1$$

$$V_1 \to BT_a$$

$$A \to T_aV_2$$

$$V_2 \to T_aT_b$$

$$B \to AT_c$$

$$T_a \to a$$

$$S \rightarrow ABa$$

$$A \rightarrow aab$$

$$B \rightarrow Ac$$

$$T_a \rightarrow a$$
 $T_b \rightarrow b$
 $T_c \rightarrow c$

In general:

From any context-free grammar (which doesn't produce λ) not in Chomsky Normal Form

we can obtain:

An equivalent grammar in Chomsky Normal Form

The Procedure

First remove:

Nullable variables

Unit productions

Then, for every symbol a:

Add production
$$T_a \rightarrow a$$

In productions: replace $\,a\,\,$ with $\,T_a\,\,$

New variable: T_a

Replace any production $A \rightarrow C_1 C_2 \cdots C_n$

with
$$A \to C_1 V_1$$

$$V_1 \to C_2 V_2$$

$$\cdots$$

$$V_{n-2} \to C_{n-1} C_n$$

New intermediate variables: $V_1, V_2, ..., V_{n-2}$

Theorem:

For any context-free grammar (which doesn't produce λ) there is an equivalent grammar in Chomsky Normal Form

Observations

 Chomsky normal forms are good for parsing and proving theorems

• It is very easy to find the Chomsky normal form for any context-free grammar

Pushdown Automata PDAs

Pushdown Automaton -- PDA

Input String

Initial Stack Symbol

The States

stack

$$\underbrace{q_1} \xrightarrow{a, \lambda \to c} \underbrace{q_2}$$

stack

stack

A Possible Transition

A Bad Transition

The automaton Halts in state q_1 and Rejects the input string

A Bad Transition

The automaton Halts in state q_1 and Rejects the input string

No transition is allowed to be followed When the stack is empty

Empty stack

A Good Transition

Non-Determinism

These are allowed transitions in a Non-deterministic PDA (NPDA)

NPDA: Non-Deterministic PDA

Example:

Execution Example: Time 0

Input

Input

Input

Input

Input

Input

Input

Input

Input

A string is accepted if there is a computation such that:

All the input is consumed AND

The last state is a final state

At the end of the computation, we do not care about the stack contents

The input string aaabbb is accepted by the NPDA:

In general,

$$L = \{a^n b^n : n \ge 0\}$$

is the language accepted by the NPDA:

Another NPDA example

NPDA M

$$L(M) = \{ww^R\}$$

$$a, \lambda \rightarrow a$$
 $a, a \rightarrow \lambda$
 $b, \lambda \rightarrow b$ $b, b \rightarrow \lambda$
 q_0 $\lambda, \lambda \rightarrow \lambda$ q_1 $\lambda, \$ \rightarrow \$$ q_2

Execution Example: Time 0

Input

$$a, \lambda \rightarrow a$$

$$b, \lambda \rightarrow b$$

$$a, a \rightarrow \lambda$$

$$b, b \rightarrow \lambda$$

$$\lambda, \lambda \rightarrow \lambda$$

Input

$$\lambda \rightarrow b$$

Input

Input

 $\lambda, \lambda \to \lambda$

Guess the middle of string

 $a, \lambda \rightarrow a$ / $a, a \rightarrow \lambda$ Stack

$$b, \lambda \rightarrow b$$

 $a, a \rightarrow \lambda$ $b, b \rightarrow \lambda$

Input

Input

$$b, \lambda \rightarrow b$$

$$\lambda, \lambda \to \lambda$$

Input

$$a, \lambda \rightarrow a$$

$$a, a \rightarrow \lambda$$

$$b, \lambda \rightarrow b$$

$$b, b \rightarrow \lambda$$

Rejection Example: Time 0

Input

$$a, \lambda \rightarrow a$$

$$b, \lambda \rightarrow b$$

$$a, a \rightarrow \lambda$$

$$b, b \rightarrow \lambda$$

$$\lambda, \lambda \to \lambda$$

Input

$$a, a \rightarrow \lambda$$

$$b, \lambda \rightarrow b$$

$$b, b \rightarrow \lambda$$

$$\lambda, \lambda \rightarrow \lambda$$

Input

$$a, a \rightarrow \lambda$$

$$b, b \rightarrow \lambda$$

Input

Guess the middle of string

 $a, \lambda \rightarrow a$

 $b, \lambda \rightarrow b$

 $a, a \rightarrow \lambda$ $b, b \rightarrow \lambda$

Input

Input

There is no possible transition.

Input is not consumed

$$a, \lambda \rightarrow a$$

$$b, \lambda \rightarrow b$$

$$a, a \rightarrow \lambda$$

$$b, b \rightarrow \lambda$$

Another computation on same string:

Input

$$b, \lambda \rightarrow b$$

$$b, b \rightarrow \lambda$$

$$\lambda, \lambda \rightarrow \lambda$$

Input

$$\begin{array}{c}
a, \lambda \to a \\
b, \lambda \to b \\
\hline
\lambda, \lambda \to \lambda
\end{array}$$

$$a, a \rightarrow \lambda$$

$$b, b \rightarrow \lambda$$

Input

$$a, \lambda \rightarrow a$$

$$b, \lambda \rightarrow b$$

$$a, a \rightarrow \lambda$$

$$b, b \rightarrow \lambda$$

$$\lambda, \lambda \rightarrow \lambda$$

$$\lambda, \$ \rightarrow \$$$

Input

$$a, \lambda \rightarrow a$$

$$b, \lambda \rightarrow b$$

$$a, a \rightarrow \lambda$$

$$b, b \rightarrow \lambda$$

 $a, a \rightarrow \lambda$

Input

No final state is reached

$$a, \lambda \rightarrow a$$

$$b, \lambda \rightarrow b$$

$$b, b \rightarrow \lambda$$

$$\lambda, \$ \rightarrow \$$$

There is no computation that accepts string *abbb*

 $abbb \notin L(M)$

$$a, \lambda \rightarrow a$$
 $a, a \rightarrow \lambda$
 $b, \lambda \rightarrow b$ $b, b \rightarrow \lambda$
 q_0 $\lambda, \lambda \rightarrow \lambda$ q_1 $\lambda, \$ \rightarrow \$$ q_2

A string is rejected if there is no computation such that:

All the input is consumed AND

The last state is a final state

At the end of the computation, we do not care about the stack contents

In other words, a string is rejected if in every computation with this string:

The input cannot be consumed

OR

The input is consumed and the last state is not a final state

OR

The stack head moves below the bottom of the stack

Another NPDA example

NPDA M

$$L(M) = \{w : w \in \{a,b\}^*, n_a \ge n_b \text{ for any prefix of } w\}$$

$$a, \lambda \to a$$

$$b, a \to \lambda$$

$$b, \$ \to \lambda$$

$$q_0$$

Execution Example: Time 0

Input

$$a, \lambda \rightarrow a$$

$$b, a \rightarrow \lambda$$

$$b, \$ \rightarrow \lambda$$

Input

Stack

Input

Input

Stack

accept

Rejection example: Time 0

Input

Input

Stack

Input

Input

Input

$$b, \$ \rightarrow \lambda$$

Halt and Reject

Pushing Strings

Example:

Another NPDA example

NPDA M

$$L(M) = \{w: n_a = n_b\}$$

Execution Example: Time 0

Input

$$a, \$ \rightarrow 0\$$$
 $b, \$ \rightarrow 1\$$
 $a, 0 \rightarrow 00$ $b, 1 \rightarrow 11$
 $a, 1 \rightarrow \lambda$ $b, 0 \rightarrow \lambda$

\$

Stack

current

state

$$\lambda, \$ \rightarrow \$$$

Input

Input

Input

Stack

$$b, \$ \rightarrow 1\$$$

$$a, 0 \rightarrow 00$$
 $b, 1 \rightarrow 11$

$$b, 1 \rightarrow 11$$

$$(a, 1 \rightarrow \lambda)$$

$$b, 0 \rightarrow \lambda$$

Stack

$$b, \$ \rightarrow 1\$$$

$$a, 0 \rightarrow 00$$
 $b, 1 \rightarrow 11$

$$b, 1 \rightarrow 11$$

$$(a, 1 \rightarrow \lambda)$$

$$b, 0 \rightarrow \lambda$$

Stack

Formalities for NPDAs

$$\underbrace{q_1}^{a, b \to w} \underbrace{q_2}$$

Transition function:

$$\delta(q_1, a, b) = \{(q_2, w)\}$$

Transition function:

$$\delta(q_1,a,b) = \{(q_2,w), (q_3,w)\}$$

Formal Definition

Non-Deterministic Pushdown Automaton NPDA

Instantaneous Description

Example:

Instantaneous Description

 $(q_1,bbb,aaa\$)$

Time 4:

Input

a

Stack

Example:

Instantaneous Description

 $(q_2,bb,aa\$)$

Time 5:

 $(b, a \rightarrow \lambda)$

 $a, \lambda \to a$ $\lambda, \lambda \to \lambda \qquad b$

 q_2 $\lambda, \$ \rightarrow \$$

 $b, a \rightarrow \lambda$

We write:

```
(q_1,bbb,aaa\$) \succ (q_2,bb,aa\$)
   Time 4
```

Time 5

A computation:

$$(q_0, aaabbb,\$) \succ (q_1, aaabbb,\$) \succ$$

 $(q_1, aabbb, a\$) \succ (q_1, abbb, aa\$) \succ (q_1, bbb, aaa\$) \succ$
 $(q_2, bb, aa\$) \succ (q_2, b, a\$) \succ (q_2, \lambda,\$) \succ (q_3, \lambda,\$)$

$$(q_{0}, aaabbb,\$) \succ (q_{1}, aaabbb,\$) \succ$$

 $(q_{1}, aabbb, a\$) \succ (q_{1}, abbb, aa\$) \succ (q_{1}, bbb, aaa\$) \succ$
 $(q_{2}, bb, aa\$) \succ (q_{2}, b, a\$) \succ (q_{2}, \lambda,\$) \succ (q_{3}, \lambda,\$)$

For convenience we write:

$$(q_0, aaabbb,\$) \succ (q_3, \lambda,\$)$$

Formal Definition

Language L(M) of NPDA M:

$$L(M) = \{w \colon (q_0, w, s) \succ (q_f, \lambda, s')\}$$
 Initial state Final state

Example:

$$(q_0, aaabbb,\$) \succ (q_3, \lambda,\$)$$

 $aaabbb \in L(M)$

NPDA M:

NPDA M:

Therefore:
$$L(M) = \{a^n b^n : n \ge 0\}$$

NPDA M: