Models of Computation

Copyright 2011@Xu Dezhi

Computation

CPU —

memory

Copyright 2011@Xu Dezhi

Temporary memory

L

iInput memory

CPU

output memory

Program memory

Copyright 2011@Xu Dezhi

Example: T(X)= X3

Temporary memory

|

L

input memory

CPU

\>

output memory

Program memory I
compute X 3* X

compute X2 * X

Copyright 2011@Xu Dezhi

f(x)= x>

Temporary memory

input memory

L X=2

CPU

output memory

Program memory

compute X* X

compute X2 * X

Oy it YONA4 AN/ NN Aol
CUPYTIYITU ZULLWAU JTZTT 5

Temporary memory f (X) — X3

1=2%2=4
f(X)=2*2=8
f input memory
. X=2
CPU
- —output memory

Program memory I

compute X* X

compute X2 * X

Copyright 2011@Xu Dezhi 6

temporary memory f (X) = X3

2=27%2=4
f(X)=2*2=8
f input memory
1 X=2
CPU
—— f(x)=8

Program memory I output memory

compute X3* X

compute X2 * X

Copyright 2011@Xu Dezhi 7

Automaton

Temporary memory

Automaton

CPU

Program memory

Copyright 2011@Xu Dezhi

iInput memory

output memory

Different Kinds of Automata

Automata are distinguished by the temporary memory

* Finite Automata: no temporary memory

* Pushdown Automata: stack

* Turing Machines: random access memory

Copyright 2011@Xu Dezhi 9

Finite Automaton

Tempo emory

Finite — Input memory

Automaton

output memory

Example: Vending Machines

(small computing power)

Copyright 2011@Xu Dezhi 10

Pushdown Automaton

Stack Push, Pop
Pushdown | Input memory
Automaton

\

output memory

Example: Compilers for Programming Languages

(medium computing power)

Copyright 2011@Xu Dezhi 11

Turing Machine

Random Access Memory

— input memory

Turing

Machine

output memory

Examples: Any Algorithm
(highest computing power)

Copyright 2011@Xu Dezhi 12

Power of Automata

Finite Pushdown Turing
Automata Automata Machine

Less power » More power
Solve more

computational problems

Copyright 2011@Xu Dezhi 13

The End

Copyright 2011@Xu Dezhi

14

Mathematical Preliminaries

Mathematical Preliminaries

Sefts
Functions
Relations
Graphs

Proof Techniques

SETS

A set is a collection of elements
A={12,3}
B ={train,bus,bicycle,airplane}

We write

le A
shipg B

Set Representations
C={a,b,c,d, e f,gh,i,jk}

C={a,b, .. k} - finite set

sS={2,4,6,..} - Infinite set
S={j:j>0,and j = 2k for some k>0 }

S={j:jis nonnegative and even }

A={12,3,4,5}

10

Universal Set:

all possible elements

U={1,..,10}

Set Operations
A={123} B={2,3,4,5)

* Union A 8

* Intersection

ANB={2 3) @
- Difference
A-B={1}

Venn diagrams

» Complement

Universal set = {1, ..., 7}

A={1,2,3} == A={4,5,6,7)

{ evenintegers } = { odd integers }

Integers

DeMorgan's Laws

AUB=ANB

ANB=AUB

Empty, Null Set: @

@ ={)

sU@ =5
SN@ =9
S-@ =5
@ -s5:=¢

@ = Universal Set

10

Subset

A={1,2, 3}
A S B

Proper Subset: A < B

B

B={1,2,3,4,5}

<

11

Disjoint Sets
A={12, 3} B={5, 6}

ANB=¢

(A

12

- For finite sets
A={2,D5,7}

|A] =3

(set size)

Set Cardinality

13

Powersets

A powerset is a set of sets

S={a,b,c}

Powerset of S = the set of all the subsets of S

25 ={ @, {a}, {b}, {c}. {a, b}, {a, ¢}, {b, c},{a, b, c} }

Observation: | 25 | = 218! (8=23)

14

Cartesian Product
A={2,4} B={2,3,5}

AXB={(2,2),(2,3).(2,5),(4,2),(4,3),4,5)}

|A X B| =|A] |B]

Generalizes to more than two sets

AXBX.. XZ

15

Functions

domain

4 A
1 f(1)=a
>
3/

5

f:A->B
If A = domain

then f is a total function

otherwise f is a partial function

16

Relations
R = {(x1, y1). (X2, ¥2). (X3, ¥3), ...}

X; Ry,

e.g.ifR=>" 2>1, 3>2, 3>1

17

Equivalence Relations

- Reflexive: X R x

* Symmetric: xRy >y R X
* Transitive: xRy and yRz j> XR z

Example: R = '<'

* X=X

-x:yj> y = X
*X=yandy =z j> X = Z

18

Equivalence Classes

For equivalence relation R

equivalence class of x = {y : x Ry}

Example:

R={(1),(2 2).(1,2),(@21,
(3.3),(4.4).(3,4),(4,3)}

Equiva

Equiva

ence C

ence C

ass of 1={1, 2}
ass of 3 ={3, 4}

19

Graphs
A directed graph

* Nodes (Vertices)

V={a,b,c,de}

- Edges

E={(ab), (b,c). (be).ca) (ce) (dc) (eb), (ed)}

20

Labeled Graph

21

Walk is a sequence of adjacent edges
(e,d), (d,c),(c,a)

22

Path

Path is a walk where no edge is repeated

Simple path: no node is repeated

23

Cycle: a walk from a node (base) to itself

Simple cycle: only the base node is repeated

24

Euler Tour

A cycle that contains each edge once

25

Hamiltonian Cycle

A simple cycle that contains all nodes

26

Finding All Simple Paths

origin

27

(c, a)
(c,e)

origin

28

origin

29

,a), (a, b)

,a), (a, b), (b, e)
, e)

,e), (e, b)

,e), (e, d)

origin

30

b)
| b, e)
| :3 Eb, e), (e, d)

, b)
,d)

origin

31

Trees

root

O

4R\

O O O

leaf

O

Trees have no cycles

parent

<:>chﬂd

A

32

root

<:> Level O

4R\

O

leaf

<j> <:> Level 1

Q/ \Q

(i) Level 3

Level 2

Height 3

33

Proof Techniques

* Proof by induction
* Proof by contradiction

‘Proof by construction

35

Induction

We have statements Py, P,, Ps, ...

If we know
- for some b that P,, P,, ..., P, are true
» for any k >= b that
P, P,, .., P, imply P,
Then

Every P, is true

36

Proof by Induction

- Inductive basis

Find Py, P,, ..., P, which are true

* Inductive hypothesis
Let's assume Py, P,, ..., P, are true,

for any k>= b

* Inductive step
Show that Py, is true

37

Example

Theorem: A binary tree of height n

has at most 2" leaves.
Proof by induction:

et L(i) be the maximum number of

eaves of any subtree at height i

O
o o

Q/E Q/\O
5o 4bd

38

We want to show: L(i) <= 2

» Inductive basis
L(0) =1 (the root node) O

* Inductive hypothesis
Let's assume L(i) <=2 foralli=0,1, ..,k

* Induction step
we need to show that L(k + 1) <= 2k

39

Induction Step

From Inductive hypothesis: L(k) <= 2k

40

Induction Step

Q
height Q \Q

k O/ B / \‘Q L(k) <= 2k

L(k+1) <= 2 * (k) <= 2 * 2k = 2k

k+1

(we add at most two nodes for every leaf of level k)

41

Remark

Recursion is another thing

Example of recursive function:

f(n) = f(n-1) + f(n-2)

f0)=1, f(1)=1

42

Proof by Contradiction

We want to prove that a statement P is true
* we assume that P is false

- then we arrive at an incorrect conclusion

* therefore, statement P must be true

43

Example
Theorem: /2 is not rational

Proof:

Assume by contradiction that it is rational

J2 = n/m

h and m have no common factors

We will show that this is impossible

44

J2 =n/m [E5) 2m2=n?

Therefore, n2 is even

j> h is even

n=2Kk

m IS even
2m2=4k? D) m2=2k?)

m=2p

Thus, m and n have common factor 2

Contradiction!

45

Proof by Construction

We want to prove that a statement
about something with a property is
True

- constructing a concrete example with a

property to show that something having
that property exists.

- constructive proof is in contrast 1o a
non-constructive proof which does not
provide a means of constructing an
example.

46

Example 1
16 can be exactly divided.

Proof

- A concrete example is 16/2. Therefore,
the statement is true.

End

47

Example 2

There exist two irrational numbers which make aP
rational.

case 1. \/?ﬁ is rational. done, otherwise
N7
case 2: let a= ﬁ’ﬁ _then (ﬁﬁ) 2 :ﬁz _ 2, done.

End

48

Question

Is example 2 the constructive proof?

Why if yes? Why if no?

49

Example 3

Show that there is no "largest integer”.

Proof
Let n be any integer.
Let m = n+l
IS an integer
>N
Therefore m is an integer that is larger than n

Therefore, for any integer there exists an
infeger m = n+ 1 that is larger than it.

End

50

Question

Is example 3 the constructive proof?

Why if yes? Why if no?

o1

Example 4

Show that there is no "largest” prime number.
Proof

Let n be any prime number
Let m=nl+1, then m>n
Case 1:
= nl+1is aprime number, then we have

constructed a prime number that is larger than
the previous prime number.

Case 2:

= nl+1is not a prime number, then it has at
least one prime factor

52

Example 4 (Cont.)

If you divide m by any of the prime numbers that
are smaller than or equal to n, you will always get
a remainder of 1,

because each prime number less than or equal to
n divides evenly into nl.

Therefore any prime factors of m must be
greater than n.

End

53

Question

Is example 4 the constructive proof?

Why if yes? Why if no?

54

Languages

A language is a set of strings

String: A sequence of letters

" W " W\

Examples: "cat”, "dog"”, "house”, ...

Defined over an alphabet:
> =1{a,b,c,...,z}

56

Alphabets and Strings
We will use small alphabets: ¥ = {a,b}

Strings
a
ab u=ab
abba v = bbbaaa
baba w = abba

aaabbbaabab

S7

String Operations

w=aa,--a
v=bb, b

N

Concatenation

szalaZ”'anble”'bm

abba
bbbaaa

abbabbbaaa

58

W=aa,--a,

Reverse

WR :an...azal

ababaaabbb

bbbaaababa

59

String Length

W=aa,--a,

Length: 'w =n

Examples:

abba =4
aa =2
a=1

60

Length of Concatenation

Example: U = aab,
Vv = abaab,

uv

uv

uv =+ Vv

u=3

aababaab
U+ Vv =3-

V=5

61

Empty String
A string with no letters: j

Observations: W -0

AW=WA=W

Aabba = abbaA = abba

62

Substring

Substring of string:
a subsequence of consecutive characters

String Substring
abbab ab
abbab abba
abbab b

abbab bbab

63

Prefix and Suffix

abbab
Prefixes Suffixes
1 abbab
3 bbab \
bah prefix
ap a suffix
abb ab
abba b

abbab

64

Another Operation

w" = ww---w

. J/

N

Example: (abba)? = abbaabba

Definition: w® = 4

(abba)’ = 2

65

The * Operation

2. *: the set of all possible strings from
alphabet X

> ={a,b}
>*=1{A,a,b,aa,ab,ba,bb,aaa,aab,...}

66

The + Operation

Yt : the set of all possible strings from
alphabet 2 except A

> ={a,b}
>*=1{A,a,b,aa,ab,ba,bb,aaa,aab,...}

ST=%*-1

>" =1{a,b,aa,ab,ba,bb,aaa,aab,...}

67

Languages
A language is any subset of X *

Example: ¥ =1{a,b}
>*=1{4,a,b,aa,ab,ba,bb,aaa,...}

Languages: { 1}
{a,aa,aab}
{/1,abba,baba,aa,ab,aaaaaa}

Note that:
et O = (Y= {1}
setsize. {}=< =0
setsize {A}=1

String length |A| =0

Another Example

An infinite language L ={a”b” :n >0}

ﬂ, N
ab

aabb
aaaaabbbbb

- e L abb ¢ L

Operations on Languages
The usual set operations

{a,ab,aaaa}l{bb,ab}={a,ab,bb,aaaa}
{a,ab,aaaa}(){bb,ab}={ab}
{a,ab,aaaa}—{bb,ab}={a,aaaa}

Complement: L =X*—-L

{a,ba}=1{A4,b,aa,ab,bb,aaa,...}

71

Reverse
Definition: L° :{WR wWe L}
Examples: {ab,aab,babal” = {ba,baa,abab!
L={a"b" :n>0}

LR ={b"a" :n>0}

72

Concatenation

Definition: 4L, ={xy:Xxely,yel,}

Example: {a,ab,ba}{b,aa}

= {ab,aaa, abb, abaa, bab,baaa}

73

Another Operation
Definition: N _...L

N

fa,b}> ={a,b}a,b}a,bl=
{aaa,aab,aba,abb,baa,bab,bba, bbb}

Special case: [0 = {4}

{a,bba,aaa\® = {1

74

More Examples

L={a"b" :n>0}
1> ={a"b"a™™ :n,m > 0}

aabbaaabbb e L

75

Star-Closure (Kleene *)

Definition: L*=L2ULtULZ...

Example:

{a,bb}* =+

(ﬂ,, A
a,bb,
aa, abb.bba, bbhb,

‘aaa,aabb,abba,abbbb,...

76

Positive Closure

Definition: |+ =1 v | 2 J---

{a,bb}" =<

- Lr (1)

‘a,bb,)
aa, abb,bba,bbbb,

‘aaa, aabb, abba, abbbb,...

77

The End

Finite Automata

Finite Automaton

Input
String
Output

Automaton

Finite Accepter

Input
String
Output
“Accept”
Finite or
Automaton "Reject”

Transition Graph

Abba -Finite Accepter g b

initial final

state . state
transition

state ‘accept

Initial Configuration
Input String

Reading the Input

Q

G~ <

G~ <

a b|b|a

Input finished
v

Output: "accept”

10

Rejection

11

Q

G~ <

al b

Input finished
v

a b|la

Another Rejection

16

17

Another Example

18

Q

Q

Input finished

v

a

b

Output: "accept”

— @

ab

22

Rejection

23

G~ <

Input finished

v

a

b

7 b a.b @

a,b

Output: “reject”

27

Formalities
Deterministic Finite Accepter (DFA)

M — (Q121§1q01 F)
Q :set of states
2 :input alphabet

O : transition function
Oo : initial state

F :set of final states

28

Input Alphabet X

> =1a,b}

29

Set of States Q
Q =100, 01,092,034,

30

Initial State Qg

31

Set of Final States F
F =104}

32

Transition Function o

0.Qx2X—>Q

33

6(0g,b)=0s

Transition Function o

Extended Transition Function §*

0*F: Qx2*—>Q

38

5*(gg,abba)=q,

40

6 *(qp,abbbaa)=gg

Observation: There is a walk from (to Q'
with label w

5*(qw)=0’

42

Example: There is a walk from Up to 0
with label abbbaa

6 *(qp,abbbaa)=gg

43

Recursive Definition

6*(9,4)=q
5*(q,wo)=5(5*(q,w),o)

5*(q,wo)=0q'~

6(q.0)=0q" >~ mm)s *(q,wo) = 5(5*(q, w), o)

44

Languages Accepted by DFAs
Take DFA M

Definition:
The language L(M) contains
all input strings accepted by M

L(M) = { strings that drive M to a final state}

46

L(M)= {abba}

Example

47

Another Example

L(M)={A,ab,abba} M

accept accept accept

48

Formally
ForaDFA M =(Q,X,5,qy,F)

Language accepted by M :
L(M)={wex*:5*(do,w) < F}

49

Observation
Language rejected by M :

L(M)={weX*:5*(qp,w) & F}

50

More Examples

L(M)={a"b:n>0}

a a,b

accept Trap state

o1

L(M)= { all strings with prefix ab }

b a accept
Q a,b

52

L(M) = { all strings without
substring 001 }

53

Regular Languages

A language L is regular if there is
aDFA M such that L=L(M)

All regular languages form a language family

54

Examples of regular languages:

{abba} {4,ab,abbaj {a"b:n>0}
{ all strings with prefix ab }

{ all strings without substring 001 }

55

Another Example

The language | = {awa W S {a, b}*}

is regular:
a

b
L=L(M) . Q
e O o)
9
a,b

56

There exist languages which are not Regular:

Example: L={a"b":n>0}
There is no DFA that accepts such a language

(we will prove this later in the class)

57

The End

Non Deterministic Automata

Nondeterministic Finite Accepter (NFA)

Alphabet = {a}

Nondeterministic Finite Accepter (NFA)

Alphabet = {a}

Two choices @ a

a

%!,

e

Nondeterministic Finite Accepter (NFA)

Alphabet = {a}

Two choices @ a No transition

a

%!,

@ No transition

First Choice

Q

First Choice

First Choice

First Choice
!

a a

All input is consumed

‘—> d “accept”

a

%!,

e

Second Choice

Second Choice

()

Second Choice

R ()

No transition:
the automaton hangs

11

v

Second Choice

a

a

Input cannot be consumed

12

An NFA accepts a string:
when there is a computation of the NFA
that accepts the string

AND

all the input is consumed and the automaton
is in a final state

13

Example

da is accepted by the NFA:

because this
computation
accepts ad

14

Rejection example

Q

First Choice

First Choice

Second Choice

Q

Second Choice

()

Second Choice

An NFA rejects a string:
when there is no computation of the NFA
that accepts the string:

* All the input is consumed and the
automaton is in a non final state

OR

* The input cannot be consumed

21

Example

A isrejected by the NFA:

® “reject”

All possible computations lead to rejection

22

Rejection example

Q

First Choice

First Choice

No transition:
@ the automaton hangs

25

v

First Choice

a

a

a

Input cannot be consumed

a

%,

‘—> a “reject”

e

26

Second Choice

Second Choice

()

Second Choice

R ()

No transition:
the automaton hangs

29

v

Second Choice

a

a

a

Input cannot be consumed

30

aaa is rejected by the NFA:

@ “reject

All possible computations lead to rejection

31

Language accepted: L ={aa}

-G

a

%!,
e

Lambda Transitions

RN

L OO

@ *-@-{%)

(read head does not move)

36

R ()

all input is consumed

v

a

a

“accept”

String aa is accepted

38

Rejection Example

@ *-@-{%)

(read head doesn't move)

41

Q

R ()

No transition:
the automaton hangs

42

Input cannot be consumed

v

a

a

a

“reject”

R ()

String @AA is rejected

43

Language accepted: L ={aa}

R

Another NFA Example

b

@-2-@
A J 46

S

o

0 a@b,@z
-

A

Another String

ablab

ablab

0 a@b,@z
-

A

ablab

ablab

0 a@b,@z
-

A

Language accepted

L ={ab, abab, ababab, ...}
={abj"

o2 (G) b (G 2.
&ﬂ o

58

Another NFA Example

59

Language accepted

L(M) =1, 10, 1010, 101010, ..
={10}*

0

0,1
1 g (redundant

state)

A

60

Remarks:

*The A symbol never appears on the
input tape

-Simple automata:
M, M5
L(My) =4} L(M,) ={\}

61

*NFAs are interesting because we can
express languages easier than DFAs

NFA Ml DFA Mz d

%a G2,

d

@a

L(M,) ={a} L(M,) ={a}

L(Mq)={10}*

L(M,)={10}*

—

Example
NFA M

0

H
Q
H
=

Formal Definition of NFAs
M :(Q1 21 51 qu F)

Q: Setof states, ie. {Ug, O, U2}
>: Input aplhabet,ie. {a, b}
S Transition function

Uo - Initial state

F : Final states

64

Transition Function o

6(do, 1) =10y

65

6(01,0) ={dp. 02}

6(qo,4) ={0p. 02}

0

G 0,1

A

Extended Transition Function o *

6*(dp,a)=1{m |
/
{)\ l /0

69

6*(dp,aa)=104,0s

@Kﬂ/-‘m

6 *(0g,ab)=10,,093,q0

/
%b

— A

Formally

qj € 5*(q;,W) : there is a walk from 0i toQ;
with label W

72

The Language of an NFA M

F =1{do.0s}

6*(0p,aa)=104,0s aa e L(M)

~eF

F =1{0o.0s}
@ : g)

6*(gp,ab)=10p,93,9p5 abeL(M)

~eF

100,05
F =

L(M)
aaba

j

=104.05

abaa)

6 *(qo,

~eF

F =1{do.0s}
@ ; g Ay

6* (0o, aba)={qy | aba ¢ L(M)
ek

R

L(M) =14} v {abj* {aa}

Formally
The language accepted by NFA M is:

L(M)= {wy, Wy, Ws,...}

where 5*(qO,Wm) :{qi’qj ,...,qk,...}

and there is some Qx € F (final state)

78

NFAs accept the Regular
Languages

80

Equivalence of Machines

Definition for Automata:

Machine M1 is equivalent o machine M

if L(My)=L(My)

81

Example of equivalent machines
NFA M,

L(Mq)={10}* L

L(M,)={10}*

—

H
Q
H
=

r Languages
< accepted
_ by NFAs

NFAs and DFAs have the
same computation power

We will prove:

\

\

y

r

\.

Regular
Languages

Languages
accepted
by DFAs

J

83

r Languages
< accepted
_ by NFAs

\

\

Step 1

D,

y

r

\.

Regular
Languages

Proof: Every DFA is trivially an NFA

Any language L accepted by a DFA

1yt

is also accepted by an NFA

J

84

Step 2

2 r 2

r Languages Seaul
< accepted (_ < Legu ar) -
_ by NFAs angtage

\. J/

Proof: Any NFA can be converted to an
equivalent DFA

Any language L accepted by an NFA
is also accepted by a DFA

85

Convert NFA to DFA

NFA M

DFA M’

86

Convert NFA to DFA

NFA M

DFA M’

R

87

Convert NFA to DFA

NFA M

DFA M’

0

88

Convert NFA to DFA

NFA M a
a A
o »E) h

DFA M’
b
|

Convert NFA to DFA

NFA M

DFA M’ b 3
@
b

Convert NFA to DFA

NFA M

DFAM' P 3
ol

Convert NFA to DFA

NFA M
TR %(m) (M)

DFA M’ L
1o 2
b
OOL

More example: Converting NFA to DFA

- NFA N, =(Q.{a,b},3,1,{1}), the set of
states Q is {1,2,3} as shown in the
following figure.

The NFA N,

93

Stepl: Determine DFA's states

N, has three states {1,2,3}, so we
construct DFA D with eight.

+ We label each of D's states with the
corresponding subset. Thus D's state set

is {2,{1}.{2}.{3}.{1,2}.{1,3}.{2,3}.{1,2,3}}

94

Step2:Determine the start and accept states

<
@

Step3: Determine transition function

96

After removing unnecessary states

97

Rearranging states

98

Renaming states

el
q3

99

More simplified

NFA to DFA: Remarks

We are given an NFA M

We want to convert it
to an equivalent DFA M’

wWith L(M)=L(M")

101

If the NFA has states

Uo 1,42,

the DFA has states in the powerset

2,100) 1% » 1%, G2 J: 103, 4. 07 Jo---

102

Procedure NFA to DFA

1. Initial state of NFA: Uo

!

Initial state of DFA: {CIO}

103

Example

NFA M

DFA M’

104

Procedure NFA to DFA
2. For every DFA's state {0 4 o,

Compute in the NFA
o*(gj,a),

5*((11’3), - = {0i,qdj,0am}

J

Add transition to DFA
5({q| 1qj ,---,qm}; a):{q;iq’J ,,%1}

105

NFA M Qa
@a Q)2

0> (dp,a) =101, 02}

DFAM’

6(1do ha) =101, 9y |

5*(2,b)={3}, 6*(3,b)=¢

U

3({2, 3), b)={3}ue={3)

® @

Procedure NFA to DFA

Repeat Step 2 for all letters in alphabet,
until
no more transitions can be added.

108

109

Procedure NFA to DFA
3. For any DFA state 10i0jy-»0m}

If some (j is a final state in the NFA

Then, {CIi,OIj oo Om)
is a final state in the DFA

110

111

Theorem
Take NFA M

Apply procedure to obtain DFA M’

Then M and M’ areequivalent :

L(M)=L(M")

112

Proof

L(M)=L(M")

I

L(IM)cL(M') AND L(M)oL(M')

First we show: L(M)c L(M')

Take arbitrary: We L(M)

We will prove: we L(M")

114

We will show that if we L(M)

116

More generally, we will show that if in M:

(arbitrary s’rr'ing) V= 3.13.2 e an

gy

@ Q—’ Q NS m

{a0} {gi...} {9j.--3 -3 Ome--}

117

Proof by induction on | V|

Induction Basis: V=2gy

M (O

Pt {9}

118

Induction hypothesis: 1<|viI<k

V=aa,---ay
- 0@ @)

M (O 0

{@} {g...} 1953 {0.--} {aq..-}

119

Induction Step: |v|=K +1
V=88 -8 Ay1 = Vo

/

*Q%'
T

N

T S U (s S e SR T

120

Induction Step: |v|=k+1
V= ?1a2 o akJak_H]_ = V'ak+1

/

V

e NG

M / 4»0 ﬂ’ Q@» Q a QEKQMQ

Clo} {q,,...} {qja---} {qc’---} @} {Qev--}

121

Therefore if weL(M)

122

We have shown: L(M)cL(M')

We also need to show: L(M)2 L(M’)

(proof is similar)

123

The End

Single Final State for NFAs

Any NFA can be converted
to an equivalent NFA

with a single final state

Example

d NFA
ﬁ
(a A
.0

a Equivalent NFA

In General

NFA
® O
O

Equivalent NFA

final state

M A

4

Extreme Case

NFA without final state

AT

% Add a final state

Without transitions

Properties of
Regular Languages

For regular languages Ly and L,

we will prove that:
Union: Lyul,

Concatenation: Lo

Star: Ll *

Reversal: |_1R

Complement: L4

Are regular
> Languages

Intersection: |y nL, _

We say: Regular languages are closed under

Union: LUl
Concatenation: Lglo
Star: Ly*
Reversal: |_1R

Complement: L4
Intersection: |y N L,

Regular language Ly Regular language Ls

L(M1) =1Ly L(M3)=L;
NFA My NFA M,

Single final state Single final state

10

Union

NFA for L4 UL,

My

FolVAVAON

M5

A

VO

11

Example
NFA for Ly UL, ={a"b}u{ba}

Ll :{anb}

12

Concatenation

NFA fOf‘ L]_LZ

—OVVO

-\ O-

13

Example

NFA for LL, ={a"b}{ba}={a"bba}

Ll :{anb}

d

L, ={ba}

b a

M.

O—O—0

40

14

Star Operation

NFA for L™
A
ZEL]_*
M1
A
-V OO

Example

NFA for L*={a"b}*

W = Wy W, - - - W,
Wi EL]_

16

Reverse

NFA fOI" L]_R

/

M,
OV O

1. Reverse all transitions

2. Make initial state final state

and vice versa

17

18

Complement

L M

OV O

1. Take the DFA that accepts Ly

2. Make final states non-final,

and vice-versa

19

L, ={a"b}

L ={a,b}*—{a"b}

M
a,b

b a.b
M,
a,b
b ab
OO

20

Intersection

DeMorgan's Law: Lyl =L UL,

regular
regular
regular

regular

regular

21

Example

L, :{anb} regular ~
> j>1 Ll M L2 Z{ab}

regular

L, ={ab,ba} regular -

22

Regular Expressions

23

Regular Expressions

Regular expressions
describe regular languages

Example: (a+b-c)*

describes the language
{a,bc}*={A4,a,bc,aa,abc,bca,...}

24

Recursive Definition

Primitive regular expressions: &, A, o

Given reqular expressions I and Iy

r1+r2\

1 -17
I’l*

()

> Are regular expressions

_/

25

Examples

A regular expression:

(a+b-c)*-(c+ D)

Not a regular expression: (a +Db +)

26

Languages of Regular Expressions

L(r) . language of regular expression I

Example
L((a+b-c)*)={A,a,bc,aa,abc,bca,...}

27

Definition

For primitive regular expressions:

(D)=

28

Definition (continued)

For regular expressions I1 and 2

L(r+12)=L(r) U L(r)
L(r-1p)=L(r) L(r2)
L (1 *)=(L(r))*
L((r))=L(r)

29

Example
Regular expression: (a + b)- a*

L((a+b)-a*) =L((a+b))L(a*)
=L(a+b)L(a*)
=(L(a)uL(b))(L(a)*
=(tafu {bf) (1af)*

=1{a,b}{1,a,aa,aaa,...|
={a,aa,aaa,...,,b,ba,baa,...}

Example

Regular expression r =(a+b)*(a+bb)

L(r)={a,bb,aa,abb,ba,bbb,...}

31

Example

Regular expression I =(aa)*(bb)*b

L(r)={a*"b*™p: n,m=>0}

32

Example

Regular expression r=(0+1)*00(0+1)*

L(r) = { all strings with at least
two consecutive O }

33

Example

Regular expression I =(1+01)*(0+ A1)

L(r) = { all strings without
two consecutive O }

34

Equivalent Regular Expressions
Definition:
Regular expressions I and Iy

are equivalent if L(p)=L()

35

Example

L = { all strings without
two consecutive O }

h = (1-|- 01)*(04-1)
b, =(1*011*)*(0+ 1) +1*(0+ 1)
I and)

are equivalent
regular expr.

L(r)=L(p)=L ==

36

Regular Expressions
and
Regular Languages

Theorem

(Languages
Generated by

Regular Expressions
. 7

f

\.

Regular
Languages

7

38

Theorem - Part 1

(Languages
Generated by

1. For any regular expression I
the language L(I) is regular

\

>g<

Regular Expressions
. 7

f

\.

Regular
Languages

7

39

Theorem - Part 2

(Languages
Generated by

\

>:_)<

Regular Expressions
. 7

f

\.

Regular
Languages

2. For any regular language L there is
a regular expression I' with L(r)=L

7

40

Proof - Part 1

1. For any regular expression I
the language L(r) is regular

Proof by induction on the size of r

41

Induction Basis
Primitive Regular Expressions: &, A, «

NFAs

Hivy L(M,) =D =L(D)

B e regular
@ L(M2) =14y =L{4) > languages
— OO0 L(Mg)={a}=L(a)

42

Inductive Hypothesis

Assume

for regular expressions I and I?
that

L(r;) and L(r») are regular languages

43

We will prove:

Inductive Step

L(r+1p) "
L(K-r
(' 2) Are regular
Languages
L(r.*)

44

By definition of regular expressions:

L(r +12)=L(r)w L(rp)
L(r-1p)=L(n) L(r)
L(r*)=(L(r))*
L((r))=L(n)

By inductive hypothesis we know:
L(r;) and L(r,) are regular languages

We also know:
Regular languages are closed under:

Union L(r;)w L(r)
Concatenation L(rl) L(rz)
Star (L(rl))*

46

Therefore:

L(f+1,)=L(R)UL(r)
L(F-1,)=L(r) L(r,)

L(r*)=(L(r))*

-

Are regular
languages

47

And trivially:

L((r)) isaregular language

48

Proof - Part 2

2. For any regular language L there is
a reqular expression I' with L(r)=L

Proof by construction of regular expression

49

Since L is regular take the
NFA M that accepts it

L(M) =L

SANE®

Single final state

50

From M construct the equivalent
Generalized Transition Graph
in which transition labels are regular expressions

Example:
M

a,b@ j>»8a b@

&

o1

b

Another Example: q :
b

b

b
a+b
b

52

Reducing the states:) D
2
b

bb*a b

\gqo bb* (a + b)

53

Resulting Regular Expression:

bb*a b
gqo bb*(a+Db)

r = (bb*a) *bb* (a +b)b *

L(r)=L(M) =L

54

In General
Removing states: S

'

ae*d ce*b
' ce*d '
G 4j,

ae*hb

The final transition graph:
h

The resulting regular expression:

r=R*nR(+pR*n)*

L(r)=L(M) =L

56

Example

S7

Example (Cont.)

Example (Cont.)

59

Example (Cont.)

Q a(aaub)’
—» S >

a(aaub)’abub

(baua)(aaub) ue

(baua)(aaub) abubb

60

Example (Cont.)

—(s)

(a(aaub)*ab ub)((ba ua)(aa ub)*ab ubb) *((ba U a)(aa ub)* U ¢€) U a(aa Ub)*

61

The End

Grammars

Grammars
Grammars express languages

Example: the English language

'sentence) — (noun _ phrase, (predicate,
‘noun_ phrase) — (article, (noun,

_predicate) — (verb;

(article) — a
(article) — the

(noun) — cat
(noun) — dog

(verb) — runs
(verb) — walks

A derivation of "the dog walks":

(sentence) =

(
(

= (noun_ p

noun_p

nrase) (predicate)

)
nrase) (verb)
)

= (article) (noun) (verb,

m— |

m— |

=1

ne (noun) (verb;
ne dog (verb,
ne dog walks

A derivation of "a cat runs”:

(sentence) = (noun_ phrase) (predicate)

)
= (noun_ phrase, (verb)
— (article) (noun) (verb)
= a (noun, (verb)
—a cat (verb,
—a cat runs

Language of the grammar:

L ={ "a cat runs”,
“a cat walks”,
“the cat runs”,
"the cat walks”,
"a dog runs”,
“a dog walks"”,
“the dog runs”,
“the dog walks" }

Notation

Production Rules

PN

(noun) — cat

(noun) — dog

7 N

Variable Terminal

Another Example
Grammar: S > aSh
S—>A4

Derivation of sentence ab:

S=aSh=ab

N

S —> aSb S—> A

Grammar: S — aSh
S > A

Derivation of sentence aabb :

S = aSh = aaSbb = aabb

WA

S —>asSh S—> A

Other derivations:

S = aSh — aaSbb — aaaSbbb — aaabbb

S = aSh = aaSbb = aaaSbhb
—> aaaaSbbbb — aaaabbbb

10

Language of the grammar

S — aSh
S—> A

L={a"b" :n>0}

11

More Notation
Grammar G=(V,T,S,P)
V. Set of variables

T Set of terminal symbols

S: Start variable

P: Set of Production rules

12

Example

Grammar G S — aSb
S—> A

7v$,s,P)

V ={S} T ={a,b}
P={S —>aSh, S— A1}

More Notation
Sentential Form:

A sentence that contains

variables and terminals

Example:

S = aSh = aaSbb — aaaSbbb — aaabbb

N7

Sentential Forms

sentence

14

*

We write: S — aaabbb

Instead of:

S = aSh — aaSbb — aaaSbbb — aaabbb

15

*

In general we write: Wy, = W,

If: W = Wy = Wy = -+ = W,

16

By default:

W = W

17

Grammar

S — aSh
S—> A

Example

Derivations

*

S=>A

*

S—=ab

*

S =aabb

*

S = aaabbb

18

Grammar

S — aSh
S—> A

Example

Derivations

S =aaSbhb

aaSbh— aaaaaSbhbbb

19

Another Grammar Example
Grammar G: S — Ab

A — aAb
A->A

Derivations:

S=Ab=b
S =Ab=aAbb =abb
S =Ab =aAbb =aaAbbb =aabbb

20

More Derivations
S = Ab = aAbb = aaAbbb = aaaAbbbb
—> aaaaAbbbbb = aaaabbbhb

S = aaaabbbbb

S = aaaaaabbbbbbb

S=a"b"b

21

Language of a Grammar

For a grammar G
with start variable S :

*

L(G)={w: S=w}

String of terminals

22

Example
For grammar G: S — Ab

A — aAb
A>A

L(G)={a"b"b: n>0}

%k

Since: S=a"b"b

23

A Convenient Notation

A — aAb
A—> A

‘article) > a
‘article) — the

mm)> A—>aAblAa

) (article) — a|the

24

Linear Grammars

25

Linear Grammars

Grammars with
at most one variable at the right side
of a production

Examples: S — aShb S — ADb
S—>A A — aAb
A—>A

26

A Non-Linear Grammar

Grammar G: S =SS
S—> A
S —>aSb
S —> bSa

L(G) =1w: ng(w) =ny (W)}
/

Number of @ in string W

27

Another Linear Grammar

Grammar G © S — A
A—aB|A
B— Ab

L(G) ={a"b":n >0}

28

Right-Linear Grammars

All productions have form:

Example: S — abS
S —>a

A— xB

or
Ao X

\

string of
terminals

29

Left-Linear Grammars

All productions have form:

Example: S — Aab
A— Aab|B

B—>a

A — BXx

or
Ao X

\

string of
terminals

30

Regular Grammars

31

Regular Grammars

A regular grammar is any
right-linear or left-linear grammar

Examples:
G, G,
S — abS S — Aab
S 5>a A — Aab ‘ B

B—>a

32

Observation
Regular grammars generate regular languages

Examples: G,
S S — Aab
S — abS A— Aab|B
S —a B—>a

L(G,) =(ab)*a L(G,) =aab(ab)*

33

Regular Grammars
Generate
Regular Languages

Theorem

(Languages
Generated by

Regular Grammars
_ 7

f

\.

Regular
Languages

7

35

Theorem - Part 1

(Languages
Generated by

\

>g<

Regular Grammars
_ 7

f

\.

Regular
Languages

Any regular grammar generates
a regular language

7

36

Theorem - Part 2

(Languages
Generated by

\

>:_)<

Regular Grammars
_ 7

f

\.

Regular
Languages

Any regular language is generated
by a regular grammar

7

37

Proof - Part 1

(Languages
Generated by

\

>g<

Regular Grammars
. 7

f

\.

Regular
Languages

The language L(G) generated by
any regular grammar (G is reqgular

7

38

The case of Right-Linear Grammars

Let G be a right-linear grammar

We will prove: L(G) is regular

Proof idea: @ We will construct NFA M
with L(M) =L(G)

39

Grammar G is right-linear

Example: S —aA|B
A —aa B
B—o>bB|a

40

Construct NFA M such that
every state is a grammar variable:

(A §
,C) specia
final state
S—>aA|B
A—aabB
B—>bB|a

41

Add edges for each production:

©

S > aA

S—>aA|lB
A—>aabB

S = aA— aaaB — aaabB — aaaba

47

NFA M Grammar

@ G

S—>aA|lB
A—aaB

B—bB|a
A b a

L(M)=L(G) =
aaab*a+b*a

48

In General

A right-linear grammar G

has variables: Vg,V1,Va,...

and productions:

Vi > qa-

or

Vi > qas-

..am

49

We construct the NFA M such that:

each variable Vj corresponds to a node:

W

o
@ special

final state

50

For each production: Vi — &jay - -amV;

we add transitions and intermediate nodes

@al.@ﬁ.g_. M

o1

For each production: V; = aqas---ay

we add transitions and intermediate nodes

@al.@i.@ am

52

Resulting NFA M looks like this:

It holds that: L(G)=L(M)

53

The case of Left-Linear Grammars

Let G be aleft-linear grammar

We will prove: L(G) is regular

Proof idea:
We will construct a right-linear

grammar G" with L(G) = L(G')R

54

Since G is left-linear grammar
the productions look like:

A — Baja,---aqy

A— aqa,---a

55

Construct right-linear grammar G’

LefT G

linear

Right
linear

G’

A — Baa,---a
A— Bv

!

A—a

A->vV

e .azalB

B

56

Construct right-linear grammar G’

Left G

linear

Right
linear

Gl

A— aqay---aqy

A—>vV

!

A—a---argy

AoV

S7

I't is easy to see that: L(G) = L(G’)R

Since G’ is right-linear, we have:

L(G) =wmp L(G)" =mp L(G)

Regular Regular Regular
Language Language Language

58

Proof - Part 2

(Languages
Generated by

Any regular language L

\

>:_)<

Regular Grammars
_ 7

f

by some regular grammar G

\.

Regular
Languages

IS generated

7

59

Any regular language L is generated
by some regular grammar G

Proof idea:
Let M be the NFA with L=L(M).

Construct from M a regular grammar G
such that L(M)=L(G)

60

Since L is regular
there isan NFA' M such that L=L(M)

b

Example: M Q
a

—(a) ! A
) b
L =ab*ab(b*ab)*

L=L(M)

61

Convert M to a right-linear grammar

62

Go — ath
th — bgy
h — ady
dp — baz

3 > 01
q:g—)/l

L(G)=L(M)=L

65

In General

For any transition: @ 2 @

Add production: q—ap

7N

variable terminal variable

66

For any final state:

Add production:

oF —> A

67

Since G

G

is right-linear grammar

is also a regular grammar

with L(G)=L(M)=L

68

The End

69

Standard Representations
of Reqgular Languages

[Regular' Languages}

o] \

Regular
Grammars

Regular
Expressions

NFAs.

When we say: We are given
a Regular Language L

We mean: Language L is in a standard
representation

What are the differences among NFA/DFA,
regular expression and regular grammar?

NFA/DFA accepts languages

Regular expresses operate languages

Grammar generates language

Elementary Questions
about

Regular Languages

Membership Question

Question: Given reqular language L
and string W
how can we check if W € L?

Answer: Take the DFA that accepts L
and check if W is accepted

DFA

wWe L

Question:

Answer:

Given reqular language L
how can we check

if Lisempty: (L=O) ?

Take the DFA that accepts L

Check if there is any path from
the initial state to a final state

DFA

m L)

DFA

Question: Given regular language L
how can we check
if L is finite?

Answer: Take the DFA that accepts L

Check if there is a walk with cycle
from the initial state to a final state

9

L is infinite

L is finite

10

Question: Given regular languages Ly and L
how can we check if Ly =L, ?

Answer: Find if (LLNL)u(lNlL,)=

11

(L) u(ynl,) =2

|

Lnl,=g ad LNl =90

OO

Ll - L2 L2 C I—]_

|

L =L,

12

(L) u(nly) %D

|

Lnl#zd o LNl 0

Do) @y

L]_ A L2 L2 L Ll

Ll?’—' L2

13

Non-regular languages

14

fa"b": n>0}
Non-regular languages

{wR . ve{a,b}*}

Regular languages
a*b

b*c+a
b+c(a+b)*
etc...

Finite languages are regular

15

How can we prove that a language L
is not regular?

Prove that there is no DFA that accepts L

AN A

Ha Ha Ha..... -

Problem: this is not easy to prove

Solution: the Pumping Lemma !l

16

The Pigeonhole Principle

4 pigeons

3 pigeonholes

18

A pigeonhole must
contain at least two pigeons

19

N pigeons

m pigeonholes

n>m

20

The Pigeonhole Principle

n pigeons

m pigeonholes
n>m

There is a pigeonhole
with at least 2 pigeons

21

Ex 1: Show that if any five numbers from 1
to 8 are chosen, then two of them will add
up to 9.

Solution: {1,8}{2,7}{3,6},{4,5}

22

Ex 2: show that if any 11 numbers are chosen
from the set {1,2,..,20}, then one of them
will be a multiple of another.

Solution: {1,2,...,20}={2km|k could be any
positive integer including O, m=some odd
number}, odd number={k=0,m=1,3,...,19},
2={k=1m=1},... 12={k=2,m=3},...,18={k=1,m=9}

Zk.l}n, 2k2m

23

Ex 3: Consider the region shown in the

figure. It is bounded by a regular hexagon
whose sides are of length 1 unit. Show that
if any seven points are chosen in this

region, then two of them must be no
farther apart than 1 unit.

VAVAN
VAV

24

Ex 4: shirts numbered consecutively from 1
to 20 are worn by the 20 members of a
bowling league. When any 3 of these
members are chosen to be a team, the sum
of their shirt numbers is used as a code
number for the feam. Show that if any 8 of
the 20 members are selected, then from
theses 8 we may form at least fwo
dif ferent teams having the same code
number. (one member can be in several
different teams simultaneously)

Solution: €(8,3)=56, 1+2+3=6,...,18+19+20=57,
57-6+1=H2

25

The Pigeonhole Principle
and

DFAs

DFA with 4 states

b b

a b b
Hiﬁhé 8\@
\/

d a

b

(.

27

In walks of strings: a
dad
aab

no state
IS repeated

b b
lga_g a b
th q'\a@\/

d

28

In walks of strings: aabb a state
bbaa IS repeated

abbabb
abbbabbabb...

b b L

29

If string W has length |w| >4

Then the transitions of string W
are more than the states of the DFA

Thus, a state must be repeated

b b D

30

In general, for any DFA:

String W has length > number of states

A state 0 must be repeated in the walk of W

Repeated state

31

In other words for a string W:

~ 2, transitions are pigeons

@ states are pigeonholes

Repeated state

32

The Pumping Lemma

The Pumping Lemma:

- Given a infinite regular language L

* there exists an integer M

» for any string We L with length |w|>m
- we canwrite W=XYZ

cwith |[XYy| <mMand [Yy]| 21

» such that: Xyi Z € L 1=0,1 2, ...

34

Applications

of

the Pumping Lemma

Theorem: The language L ={anbn 'n >0}

is not reqgular

Proof: Use the Pumping Lemma

36

L={a"b" :n>0}

Assume for contradiction
that L is a regular language

Since L isinfinite
we can apply the Pumping Lemma

37

L={a"b" :n>0}

Let M be the integer in the Pumping Lemma
Pick a string W such that: w e L

length |W[=m

We pick w=a"b"

38

Write: a"b" =Xy z

From the Pumping Lemma
it must be that length | XYy[<m, |y[>1

m m
N
xyz=a"b™ = a.aa..aa..ab..b
T

X y Z

39

xyz=a"b" y=a%, k>1

From the Pumping Lemma: X yi Z €L

1=0,1, 2, ...

Thus: xyzz e L

40

xyz=a"b" y=a%, k>1

From the Pumping Lemma: X y2 Z e L

m+ K m

2 S - \f—H
Xy“z = a..aa..aa..aa..ab..b eL
TLWT\ e J

Vi

Thus: aMHkpM o |

41

am+kbm cl

k =1

BUT:

L={a"b":n>0}

am+kbm z L

CONTRADICTIONII

42

Therefore:

Conclusion:

Our assumption that L
is a regular language is not true

L is not a reqular language

43

Non-regular languages {a"b": n> 0}

Regular languages

44

Understanding pumping lemma more

45

Take an infinite reqular language L

There exists a DFA that accepts L
:Q O
Oo—0

\/

states

46

Take string W with we L

There is a walk with label W:

47

If string W has length |W‘ > M (number
of states

of DFA)

then, from the pigeonhole principle:

a state is repeated in the walk w

48

Let be the first state repeated in the
walk of W

49

Write W=XY Z

Observations: length | X y| < m number
of states

length |y| =1 of DFA

o1

Observation: Thestring XZ
IS accepted

Observation:

The string XY YZ
IS accepted

53

Observation:

The string XY VYYVYZ
IS accepted

54

In General:

The string X y'
is accepted 1=0,1, 2, ...

55

In General: X yi Z =L 1=0,1 2, ...

|

Language accepted by the DFA

56

*

In other words, we described:

® %

The Pumping Lemma !l \

57

More Applications

of

the Pumping Lemma

The Pumping Lemma:

» Given a infinite regular language L

* there exists an integer M

» for any string We L with length |w|>m
- we canwrite W=XYZ

cwith |[XYy| <mMand [Yy]| 21

» such that: Xyi Z € L 1=0,1 2, ...

2

Non-regular languages L ={w":vez*}

Regular languages

Theorem: The language
L={w":vez*} Z={ab}

is not regular

Proof: Use the Pumping Lemma

L:{wR VeX*}

Assume for contradiction
that L is a regular language

Since L isinfinite
we can apply the Pumping Lemma

L :{WR Ve X*}
Let M be the integer in the Pumping Lemma

Pick a string W such that: w € L and

length |W[=m

We pick w=a"b"bMa"

write a"b"b"Ma™ =x vy z

From the Pumping Lemma
it must be that length [Xy|<m, |y[21

m m m m

e e
Xyz = a...aa...a...ab...bb...ba...a

R N —
X Y

Vi

Thus: y:ak, k>1

xyz=a b"bMa" y=a%, k>1

From the Pumping Lemma: X yi Z €L
1=0,1 2,...

Thus: xyzz e L

xyz=a b"bMa" y=a“, k>1

From the Pumping Lemma: X y2 Z e L

aMkpMpMaM <L

BUT:

L:{WR Ve X*}

aMkpMpMaM & |

CONTRADICTIONII

10

Therefore:

Conclusion:

Our assumption that L
is a regular language is not true

L is not a reqular language

11

Non-regular languages

L={a"b'c": n,1>0

Regular languages

12

Theorem: The language
L={a"b'c": n,1>0

is not regular

Proof: Use the Pumping Lemma

13

L={a"b'c": n,1>0

Assume for contradiction
that L is a regular language

Since L isinfinite
we can apply the Pumping Lemma

14

L={a"b'c": n,1>0

Let M be the integer in the Pumping Lemma

Pick a string W such that: w € L and

length |W[=m

We pick w = ammeZm

15

ammeZm

Write =XYyZ

From the Pumping Lemma
it must be that length [Xy|<m, |y[21

m M m

A \Hﬁf_i_—\
xyz_a .aa...aa...ab..bc...cc...c

L
X Y

VA

ThUS: y:ak’ kZl

16

From the Pumping Lemma: X yi Z €L
1=0,1 2,...

Thus: xyOz =Xz €L

17

Xxyz=a"pMc™ y=a%, k>1

From the Pumping Lemma: Xz € L

m-K m 2m
— P
XZ =a...aa...ab..bc..cc..c € L
NN ,
g
X

VA

Thus: am—kmeZm el

18

aMKpMe2m o |

BUT:

L={a"b'c": n,1>0

aMKpMe2m o |

CONTRADICTIONII

19

Therefore:

Conclusion:

Our assumption that L
is a regular language is not true

L is not a reqular language

20

Non-regular languages L =

Regular languages

21

Theorem: The language L :{an! . n>0}

is not regular

nN=1.2---(n=-1)-n

Proof: Use the Pumping Lemma

22

L ={a": n>0}

Assume for contradiction
that L is a regular language

Since L isinfinite
we can apply the Pumping Lemma

23

L ={a": n>0}

Let M be the integer in the Pumping Lemma

Pick a string W such that: w e L

length |W[=m

We pick W= am

24

|
Write a™ = x y Z

From the Pumping Lemma
it must be that length [Xy|<m, |y[21

M ml—m
ml N N 7 \
XYZ =a —a .dd...dd...dd...dad...d
_ N _J
—— ~
Xy

VA

Thus: yzak, 1<k <m

25

Xyz=a y=a, 1<k<m

From the Pumping Lemma: X yi Z €L
1=0,1 2,...

Thus: xyzz e L

26

xyz=am™ y=a%, 1<k<m

From the Pumping Lemma: X y2 Z e L

myk | mbm
- N A

xyz_a aa..aa..aa..aa.aa.a e L
oI —
Xy y Z

Thus: am!+k =28

27

a e L 1<k<m

There must exist P such that:

mi+k = p!

28

However: m+k <ml+m for m>1
<m-+m!
<mm+m!
=mi(m+1)
=(m+1)!

: |

m+k <(m+1)!

: |

mi+k = p! forany P

29

ml+k = L

1<k <m

BUT:

L ={a": n>0}

CONTRADICTIONII

30

Therefore:

Conclusion:

Our assumption that L
is a regular language is not true

L is not a reqular language

31

Context-Free Languages

Regular Languages
a*b* (a+b)*

Context-Free Languages

{a"o"} {ww"}

Regular Languages

Context-Free Languages

/N

Context-Free Pushdown
Grammars Automata

stack

automaton <«

Context-Free Grammars

Example

A context-free grammar G: S — aSbh
S—>A

A derivation:

S = aSh = aaSbb = aabb

A context-free grammar G: S — aSbh
S—>A

Another derivation:

S = aSh = aaSbb = aaaSbbb — aaabbhb

7

S — aSh
S—> A

L(G)={a"b" :n>0}

Example

A context-free grammar G: S — adSa
S — bSb

S—o> A

A derivation:

S = aSa = abSba = abba

A context-free grammar G: S — adSa
S — bSb

S—o> A

Another derivation:

S = aSa — abSba = abaSaba = abaaba

10

S > aSa
S —> bSh
S—> A

L(G) = fwwR :

w e{a,b}*}

11

Example

A context-free grammar G: S — aSh
S —SS
S—>A

A derivation:

S =SS = aSbS — abS = ab

12

A context-free grammar G: S — aSh
S —SS
S—>A

A derivation:

S = SS = aSbS = abS — abaSh = abab

13

S — aSh
S >SS
S—> A

L(G)={w :n,(w)=n,(w),
and ng(v) = n,(v)
In any prefix v}

14

Definition: Context-Free Grammars

Grammar G = (\/ T, S P)

Variables Termmal STarT
symbols variable

Productions of the form:

A — X
Variable String of variables

and terminals

15

G=(,T,S,P)

*

L(G)={w: S=w, weT*}

Definition: Context-Free Languages

A language L is context-free
if and only if

there is a context-free grammar G

with L=L(G)

17

Derivation Order

1. S— AB 2. A— aaA 4. B — Bb
3. Ao A 5. B> A

Leftmost derivation:

1 2 3 4 5
S= AB=—=aaAB— aaB—aaBb—=aab

Rightmost derivation:

1 4 5 2 3
S= AB= ABb= Ab— aaAb—=aab

18

S > aAB
A — bBb

B—>A|A
Leftmost derivation:
S = aAB = abBbB = abAbB = abbBbbB

—> abbbbB = abbbb

Rightmost derivation:
S = aAB = aA = abBb = abAb

—> abbBbb = abbbb

19

Derivation Trees

20

S— AB A—aaA|A B—>Bb|A

S= AB

S)
o

S— AB A—aaA|A B—>Bb|A

S:>AB:>aaAB

/I\ -

S— AB A—aaA|A B—>Bb|A

S = AB — aaAB — aaABb

/@\'
s 5
@/\@ g

S— AB A—aaA|A B—>Bb|A

S=AB= aaAB — aaABb = aaBb

/\\'

S— AB A—aaA|A B—>Bb|A

S= AB—=aaAB= aaABb — aaBb = aab

Derivation Tr'ee \'
/ \

25

S— AB A—aaA|A B—>Bb|A

S = AB = aaAB — aaABb = aaBb = aab
Derivation Tree @

/ |
\ / yield
@) (@ (A
oy

@ aaAAb

B
= aab
o

26

Partial Derivation Trees

S > AB A—>aaA|ll B->Bb|A

S= AB

Partial derivation tree @

5 e

27

S = AB = aaAB

.

Partial derivation ’rree

/\

sentential

S = AB — aaAB
form

Partial derivation tree @

/
A B

yield
@ @ @ CAAR

29

Sometimes, derivation order doesn't matter

Leftmost:
S = AB — aaAB — aaB — aaBb — aab

Rightmost:
S:>AB:>ABb:Ab:>aaAb:aab

Same derivation tree f

30

Ambiguity

E>E+E | ExE | (E)| a
at+a*xa

@ E—-_E+E—=a+E—=a+E*E
—a+ax*E=>a+a*a

leftmost derivation

32

E>E+E | ExE | (E)| a
at+a*xa

E—-oE+*xE—=E+E*E—=>a+Ex*E g
—a+a*E—=>a+axa

leftmost derivation

E>E+E | ExE | (E)| a
at+a*xa

Two derivation trees

The grammar E—>E+E | E*xE | (E) | @
is ambiguous:

string a+a*a has two derivation trees

35

The grammar E—>E+E | E*xE | (E) | @
is ambiguous:

string a+a*a has two leftmost derivations

E—-DE+E—=a+E—=a+E=*E
—a+a*E—=>a+a*a

E—-oE*xE=E+E*xE—=a+E=*E
—a+a*E=>a+a*a

36

Definition:

A context-free grammar G is ambiguous
if some string We L(G) has:

two or more derivation trees

37

In other words:

A context-free grammar G is ambiguous
if some string We L(G) has:

two or more leftmost derivations

(or rightmost)

38

Why do we care about ambiguity?
d+ad*ad

take a=2

Z?ggggge

@) (E)
oy i@

Correct result: 2+2%2=0

42

- Ambiguity is bad for programming languages

+ We want to remove ambiguity

43

We fix the ambiguous grammar:
E->E+E | ExE | (E) | a

New non-ambiguous grammar:

E->E+T
E—>T

T o>Tx*xF

T —>F

F - (E)
F—>a N

E=E+T=T+T=F+T =a+T =a+T*F
—a+F*F=a+a*F=a+a*a

a+a*a
E—>E+T C;P
E>T CEB/ E}D
T 5T *F T @ F
T —>F
F — (E) (E (F <

F —>a (a) (a)

45

Unique derivation tree

d+ax*xa

M

(o @@\
()
=

The grammar G: E S E+T

E—>T
T o>Tx*xF
T —>F
F - (E)

F—a
IS hon-ambiguous:

Every string We L(G) has
a unique derivation tree

47

Another Ambiguous Grammar

IF STMT —> if EXPR then STMT
| if EXPR then STMT else STMT

48

If exprl then if expr2 then stmtl else stmt2
NN

:

W s > > a2

@
(then

S
4

Inherent Ambiguity

Some context free languages
have only ambiguous grammars

Exampi;L:{a”b”cm} v {a"b™c™}
S_)Sl‘SZ Sl—)S]_C‘A Sz-)ﬂSle
A—>aAb|i B->bBc|A

50

The string ab"c"

has two derivation trees

o1

Simplifications
of
Context-Free Grammars

A Substitution Rule

Equivalent
grammar
SA_) a; S—aB|ab
—a
Ay apBe | SUbstitute A — aaA
B—b A — abBc | abbc
B— aA

B — aA
B—ob

A Substitution Rule

S—aB|ab

A — aaA

A — abBc | abbc
B— aA

Substitute
B — aA

S —> 28 | ab| aaA |
A s aaA Equivalent

A—> gbBc|abbc|abaac 94NN

In general:
A — XBz

B—)yl

Substitute
B— Y1

equivalent

A — XBz | xy;z grammar

Nullable Variables

A —production : A—>A

Nullable Variable: A=..=> A

Removing Nullable Variables

Example Grammar:

S —> aMb
M — aMb
M o> A

/

Nullable variable

S — aMb
M — aMb

Final Grammar

S - aMb
Substitute S > ab
M= 4 M — aMb

M — ab

Unit-Productions

Unit Production: A—>B

(a single variable in both sides)

Removing Unit Productions

Observation:

A— A

Is removed immediately

Example Grammar:

S —>aA
A—a
A—B
B—> A
B — bb

10

S > aA
A—> a

B—> A
B —bb

Substitute
A—B

S—>aAlaB
A— a
B— A|B
B — bb

11

Remove

B—>B

S—>aAlaB
A— a
B—> A
B — bb

12

S—aAl|aB
A S—aAlaB|aA
—a Substitute

M B A A—a

3 s bb B—bb

13

Remove repeated productions

Final grammar
S —aA|aB |34 S —aA|aB

A— a mmmm) A—>a
B — bb B —bb

14

Useless Productions

S — aSh
S—o A
S>> A

Useless Production

Some derivations never terminate...

S=>A—=adA— adA—...—aa...aA=—...

15

Another grammar:

S>> A
A — aA
Ao A

Useless Production

Not reachable from S

16

In general: contains only
terminals

I S= .. .=oXAy=> ... =W

\
we L(G)

then variable A is useful

otherwise, variable A is useless

17

A production A — X is useless
if any of its variables is useless

S —asSb
S —> A Productions
Variables useless
useless useless
useless useless

useless

@ useless

o

18

Removing Useless Productions

Example Grammar:

S—aS|A|C
A—a

B — aa
C —->aChb

19

First: find all variables that can produce
strings with only terminals

S >aS|A|C Roundl: {A B}

S—> A

C — aCb Round 2: {A,B,S}

20

Keep only the variables
that produce terminal symbols: {A,B,S}

(the rest variables are useless)

S —>aS|A[&

A 3 S—aS|A
B - aa — A—a

N B - aa

Remove useless productions

21

Second: Find all variables
reachable from S

Use a Dependency Graph

S—aS|A
A—> a
B — aa not

reachable

22

Keep only the variables

reachable from S
(the rest variables are useless)

Final Grammar
S—>aS|A

A g S—>aS|A

M A— a

Remove useless productions

23

Removing All

Step 1: Remove Nullable Variables
Step 2: Remove Unit-Productions

Step 3: Remove Useless Variables

24

Normal Forms
for
Context-free Grammars

25

Chomsky Normal Form

Each productions has form:

A — BC or A—>a

R

variable variable

|

terminal

26

Examples:

S —> AS S —> AS

S —>a S —>
A — SA A — SA
A—b A—@a
Chomsky Not Chomsky

Normal Form Normal Form

27

Convertion to Chomsky Normal Form

Example: S — ABa
A — aab
B— AC

Not Chomsky
Normal Form

28

Introduce variables for terminals: T,, Ty, I,

S — ABa
A — aab
B—> AC

>

S —> ABT,
A—>T,T,T,
B — AT,
T, —>a

T, —>Db

T, —>cC

29

Introduce intermediate variable: Vj

S — AV]_
S - ABT, Vi o> BT.
A= Talalb A—T,T,T,
5 Al) B AT,
la—a T, > a
Tb D Tb —Db
T, —>cC

T, —>cC

30

Introduce intermediate variable: V5

%
L V, — BT,
V1= Bla A—T.V
AT, T.T, y _)T‘""TZ
B — AT, —> BZ_)Aib
T, >a ¢
T, —>a
Tb —)b
Tb —)b
T, —>cC

T. —>cC .

Final grammar in Chomsky Normal Form:

S —> AV,
Vi — BT,
N A—>T,.V,
Initial grammar V, >T.T,
S — ABa B — AT,
A — aab T, >a
B— AcC T, —>b

T. —>cC

32

In general:

From any context-free grammar
(which doesn't produce 1)
not in Chomsky Normal Form

we can obtain:
An equivalent grammar
in Chomsky Normal Form

33

The Procedure
First remove:
Nullable variables

Unit productions

34

Then, for every symbol a:

Add production T, —>a

In productions: replace a with T,

New variable: T,

35

Replace any production A — C,C,---C,

with A — C]_Vl
Vl —> C2V2

V2 = C 4G

New intermediate variables: V1’V2’ ---’Vn—2

36

Theorem:

For any context-free grammar
(which doesn't produce /])
there is an equivalent grammar
in Chomsky Normal Form

37

Observations

» Chomsky normal forms are good
for parsing and proving theorems

» It is very easy to find the Chomsky normal
form for any context-free grammar

38

Pushdown Automata
PDAs

Pushdown Automaton -- PDA

Input String

Stack
\ 4
States
‘ ‘ < >
Oy O

Initial Stack Symbol

Stack

stack

head \

bottom
special symbol

The States

Input Pop Push
symbol symbol symbol

NS
@a,b—>c

input l

@a,b—>c

stack

— 1
P Replace>

AT T

& D> O

<3£> a,)i—»ca‘ng’

input l
a
stack
b l— +
h °P Push)
e
$

AR DS T O

<3£> a,t)—»,%4‘!’

input l

stack

input l

(GiD>a,;%—9u&4c!’

stack

“ top
No Change

AT T

- lindieoy

1

A Possible Transition

@ a,$—>/1

«—

ut

stack
$ <« Top

Pop)

d

empty

L]

47

1

u’rl

A Bad Transition

@ a,b—>C

d

Empty stack

L]

47

) HALT

The automaton Halts in state (1
and Rejects the input string

10

1

u’rl

A Bad Transition

@ a,/1—>c

d

Empty stack

L]

47

) HALT

The automaton Halts in state (1
and Rejects the input string

11

No transition is allowed to be followed
When the stack is empty

@ X,y—)Z

Empty stack

L]
47

12

1

@ a,$—>b

«—

ut

A Good Transition

stack
$ <« Top

Pop)

13

a

=

Non-Determinism

, b—>cC
/'

@i, b—)C

a,bXA A —transition

These are allowed transitions in a
Non-deterministic PDA (NPDA)

14

NPDA: Non-Deterministic PDA

Example:

a, 1l—a bha—> A

ﬂ,l—)ﬁ@b,a—)/lgl,$—>$

Execution Example: Time O

Input
aj/aj/a|b|bl|b
| 81
Stack
current a, 1l—a bha—> A

state
*<:E»)L,l>2§§é;2b,a:»2K§%;;)L359334‘!”

Time 1

Input

Stack

IHPUT a «——
a aj/a/ bbb d
T $

Time b

Input 3 ke
aa a b|b|b a
| $

Stack

a, l—a bha—> A

z,zez%gzﬁ—ﬁ

Time 6

Input
a aj/a/ bbb a <«
f $
Stack
a, 1L —a

CE’,1PZ>ZE£%£%1619

Input

a, 1L —a

CE’,1PZ>ZE£%£%1619

Input

a, l—a bha—> A

%§!5y1,2,>}5§é;2b,a:>2,

A string is accepted if there is
a computation such that:

All the input is consumed
AND
The last state is a final state

At the end of the computation,
we do not care about the stack contents

25

The input string aaabbb
is accepted by the NPDA:

a,l—a bha—> A

Z,ﬁ—)i@b,aﬁﬂgl,$—>$

In general,

L={a"b" :n>0}

is the language accepted by the NPDA:

a,l—a bha—> A

Z,ﬂ—)i@b,a—)igl,$—>$

Another NPDA example

NPDA M
R
L(M) ={ww"}
a, A —a a,a—A
b, A —>Db b,b— A

AV

1,3—>% @

Execution Example: Time 0

Input
a blb|a
| -
Stack
a, L —a a,a—>A
b, A —>Db b b—> A4

A A A ‘2 $—-9% CE’

Time 1

Input
d| b | b|a
T $
Stack
a,a—>A
b A—Db b b —> A

WE YR z,$—>$ (@) 30

Time 2

a
$
Stack
a,a—>A
b,b—> A

Time 3

Input
ajp|bja Guess the middle d
T of string $
Stack
a, L —a aa—>A~
b, /1 —b b,b—> 1

m Ql$—>$ @

h [«—

Time 4

Time b

Input
alb| b|a
T §
Stack
a, l—a
b, L —>D bb—>/1

<§%ﬁ%),l,ﬂ,>,% <§;3;)11 $—-9% CE,

Time 6

Input
ad b|b|a
| §
Stack
a, A —a a,a—A
b, A —Db b,b—> 1

<:’:7 <:’:7 accept
A, A=A m‘

Rejection Example: Time O

Input
a bbb
T §
Stack
a, A —a a,a—A
b, A —Db bb—>/1

A A A Z$—>$ @

Time 1

Input
a bbb
T $
Stack
a,a—A
b A—Db b b —> A

WE YR z,$—>$ (@) 37

Time 2

Time 3

Input
ajp|b|b Guess the middle d
T of string $
Stack
a, L —a aa—>A~
b, /1 —b b,b—> 1

m Ql$—>$ @

h [«—

Time 4

Time b

Input There is no possible transition.
al/b|b b| Inputisnot 3 e
T consumed $
Stack
a, l—a aa—A
b, ﬂ/ —> b b’ b — l

H(@]A,z—m (@zzﬁ—ﬁ (@) 41

Another computation on same string:

Input Time O

al'b|b|b
| § [
a1 a o 8 Stack
b, —>b bb—>/1

A A A l$—>$ @

Time 1

Input
a bbb
T $
Stack
a,a—A
b A—Db b b —> A

WE YR z,$—>$ (@) 43

Time 2

Time 3

b
b
a
$
Stack
a,a—>A
b,b—> A

Time 4 b

b

b

a

$

Stack

a,a—>A
b,b—> A

Time 5 b

b

Input No final state .

a b|b|b| isreached 3

| $

Stack

a, L —a a,a—>A
b, /1 —Db bb—> A

m Ql$—>$ ‘

There is no computation
that accepts string abbb

abbb ¢ L(M)
a, 1l—a aa—>A~
b, A —Db b,b—> 1

AV

4,359 ‘

A string is rejected if there is
no computation such that:

All the input is consumed
AND
The last state is a final state

At the end of the computation,
we do not care about the stack contents

49

In other words, a string is rejected
if in every computation with this string:

The input cannot be consumed
OR

The input is consumed and the last
state is not a final state

OR

The stack head moves below the
bottom of the stack

50

Another NPDA example
NPDA M

L(M) ={w: we{a,b},n_>n_for any prefix of w}

a, A—a
b,a—> A
bh,$—> 1

o1

Execution Example:

Input

d

d

Time O

a, A—a
b,a—> A
bh,$—> 1

Stack

52

Time 1

53

Time 2

54

—>

Time 3

a, A—a

b,$ > A

accept

Stack

55

Rejection example:

Input

d

b

Time O

Stack

56

Time 1

S7

Input

Time 2

a, A—a

b,$ > A

Stack

58

Time 3

59

Input

Time 4

a, A—a
b,a—> A
bh,$—> 1

Stack

Halt and Reject

60

Pushing Strings

Input Pop
symbol symbol
@ a, b—->w

61

Example:

input l

@a, b— cdf

stack

« TOP

&R0 5T

Push[>>

pushed

A D> | O

"~ string

62

Another NPDA example
NPDA M

L(M) ={w: ng=ny}

,$—>05 b$—o1%
a,0—->00 Db1l1-o11
a,l1—> A bh,0—> A

HQ 1,$—>9% »

63

Execution Example: Time O
Input

a b/ blala|b

2, 3—>0% b $->19
a,0—->00 Db1->11
a,1l>14 Db 0—->A

current
state ; 1,$—>9%

64

Time 1
Input

b, $—>1%
a,0—->00 Db1l1-o11
a,l1—> A bh,0—> A

1,$—>9

65

Time 3

Input
a'b|b blala
$ «—
,$—>0% b $—-1% Stack

a,0—->00 Db1l1-o11

a,l1-> A4 4‘!'!'!'!’»
0 1,$—>9% 4‘!’,

66

Time 4
Input

a'b|b/ bla]a
|

3,$—>0% b$—-1%
a,0—->00 Db1l1-o11
a,l1—> A bh,0—> A

1,$—>9

67

Input

Time b

b

T

a,$— 0%
a,0—00
a,l1—-> A

b,$—>1%
e

bh,0—> A

1,$—>9% 4‘!”

Input

Time 6

alb | b|b|a

T

,$—>0% b IF—o1%
a,0—->00 Db1l1-o11

b, 0—> A

1,$—>9

69

Time /

Input

al'b|b|b|ala

T

,$—>0% b IF—o1%
a,0—->00 Db1l1-o11

b, 0—> A

1,$—>9

70

Time 8

Input
al'b|b|b|ala
,$—>05 b 1% ol
A DA Stack

a,0—->00 Db1l1-o11
a,l1—> A bh,0—> A

accept

71

Formalities for NPDAs

72

@a, b—)W

Transition function:

0 (G, a,0) ={(d2, W)}

73

a,b—>/W'

Transition function:

o(qp,a,b) ={(gz,w), (g3, w)}

Formal Definition

Nonh-Deterministic Pushdown Automaton
NPDA

M=(Q,2T,3qy, 2 F)

N Final
States / \s’ra’res
Input Stack
alphabet

Transition Tnitial start
Stack function symbol
alphabet state Y

75

Instantaneous Description

Current
state

AN

Remaining
input

Current
stack
contents

76

Example:

Time 4.

Instantaneous Description

(g;,bbb, aaa$)

Input

Example: Instantaneous Description

(9,,bb,aa$)
Time 5: Input —{ a
alalalbl!blb a
T $
al—a ba—A Stack

z,z»z@@@zﬁ—ﬁ

We write:

(g;,bbb,aaa$) > (g,,bb,aa$)

Time 4 Time b

79

A computation:

(qg,aaabbb,$) > (g;,aaabbb,$) >
(g;,aabbb, a$) - (g;,abbb,aa$) > (g;,bbb,aaa$) -
(d2,bb,aad) > (gz,b,a3) > (02, 4,3) > (43, 4,9)

a, 1l—a bha—> A

ﬂ,ﬁ—)ﬂg b,aexlgﬂ,$—>$

(qg,aaabbb,$) > (g;,aaabbb,$) >
(g;,aabbb, a$) - (g;,abbb,aa$) > (g;,bbb,aaa$) -
(d2,bb,aad) > (gz,b,a3) > (02, 4,3) > (43, 4,9)

For convenience we write:

(gg,aaabbb,$) > (qgz,41,9)

81

Formal Definition

Language L(M) of NPDA M:

L(M)=w: (qg,W,s) > (df,4,8)}

S\

Initial state Final state

82

Example:

(gg,aaabbb,$) > (g3,4,%)

|

aaabbb e L(M)

NPDA M:

a, l—a bha—> A

A,ﬂ—)ig b,a—>l@ﬁ,$—>$

(qg.a"b",$) > (03,4.$)

|

a'b" e L(M)
NPDA M:

a, l—a bha—> A

A,ﬂ—)lg b,a—>i@ﬁ,$—>$

Therefore: L(M)={a"b" :n>0}

NPDA M.

a, 1L—a b,a—> A

A,ﬂ—)ig b,a—>l@ﬁ,$—>$

	class0 model of computation
	class1 mathematics and language
	class2 finite automata and regular language
	class3 Non Deterministic Automata
	class4 Properties of Regular Languages
	class5 Grammars
	class6 pumping lemma for regular
	class7 More Applications of the Pumping Lemma
	class8 Context Free Languages
	class9 Chomsky Normal Form (1)
	class10 Pushdown Automata

