Models of Computation
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Computation

CPU —

memory
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Temporary memory

L

iInput memory

CPU

output memory

Program memory
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Example: T(X)= X3

Temporary memory

|

L

input memory

CPU

\>

output memory

Program memory I
compute X 3* X

compute X2 * X
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f(x)= x>

Temporary memory

input memory

L X=2

CPU

output memory

Program memory

compute X* X

compute X2 * X

Oy it YONA4 AN/ NN Aol
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Temporary memory f (X) — X3

1=2%2=4
f(X)=2*2=8
f input memory
. X=2
CPU
- —output memory

Program memory I

compute X* X

compute X2 * X

Copyright 2011@Xu Dezhi 6



temporary memory f (X) = X3

2=27%2=4
f(X)=2*2=8
f input memory
1 X=2
CPU
—— f(x)=8

Program memory I output memory

compute X3* X

compute X2 * X

Copyright 2011@Xu Dezhi 7



Automaton

Temporary memory

Automaton

CPU

Program memory

Copyright 2011@Xu Dezhi

iInput memory

output memory




Different Kinds of Automata

Automata are distinguished by the temporary memory

* Finite Automata: no temporary memory

* Pushdown Automata: stack

* Turing Machines: random access memory

Copyright 2011@Xu Dezhi 9



Finite Automaton

Tempo emory

Finite — Input memory

Automaton

output memory

Example: Vending Machines

(small computing power)

Copyright 2011@Xu Dezhi 10



Pushdown Automaton

Stack Push, Pop
Pushdown | Input memory
Automaton

\

output memory

Example: Compilers for Programming Languages

(medium computing power)

Copyright 2011@Xu Dezhi 11



Turing Machine

Random Access Memory

— input memory

Turing

Machine

output memory

Examples: Any Algorithm
(highest computing power)
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Power of Automata

Finite Pushdown Turing
Automata Automata Machine

Less power » More power
Solve more

computational problems
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The End
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Mathematical Preliminaries

Sefts
Functions
Relations
Graphs

Proof Techniques



SETS

A set is a collection of elements
A={12,3}
B ={train,bus,bicycle,airplane}

We write

le A
shipg B



Set Representations
C={a,b,c,d, e f,gh,i,jk}

C={a,b, .. k} - finite set

sS={2,4,6,..} - Infinite set
S={j:j>0,and j = 2k for some k>0 }

S={j:jis nonnegative and even }



A={12,3,4,5}

10

Universal Set:

all possible elements

U={1,..,10}




Set Operations
A={123} B={2,3,4,5)

* Union A 8

* Intersection

ANB={2 3) @
- Difference
A-B={1}

Venn diagrams



» Complement

Universal set = {1, ..., 7}

A={1,2,3} == A={4,5,6,7)




{ evenintegers } = { odd integers }

Integers




DeMorgan's Laws

AUB=ANB

ANB=AUB



Empty, Null Set: @

@ ={)

sU@ =5
SN@ =9
S-@ =5
@ -s5:=¢

@ = Universal Set

10



Subset

A={1,2, 3}
A S B

Proper Subset: A < B

B

B={1,2,3,4,5}

<

11



Disjoint Sets
A={12, 3} B={5, 6}

ANB=¢

(A

12



- For finite sets
A={2,D5,7}

|A] =3

(set size)

Set Cardinality

13



Powersets

A powerset is a set of sets

S={a,b,c}

Powerset of S = the set of all the subsets of S

25 ={ @, {a}, {b}, {c}. {a, b}, {a, ¢}, {b, c},{a, b, c} }

Observation: | 25 | = 218! (8=23)

14



Cartesian Product
A={2,4} B={2,3,5}

AXB={(2,2),(2,3).(2,5),(4,2),(4,3),4,5)}

|A X B| =|A] |B]

Generalizes to more than two sets

AXBX.. XZ

15



Functions

domain

4 A
1 f(1)=a
>
3/

5

f:A->B
If A = domain

then f is a total function

otherwise f is a partial function

16



Relations
R = {(x1, y1). (X2, ¥2). (X3, ¥3), ...}

X; Ry,

e.g.ifR=>" 2>1, 3>2, 3>1

17



Equivalence Relations

- Reflexive: X R x

* Symmetric: xRy >y R X
* Transitive: xRy and yRz j> XR z

Example: R = '<'

* X=X

-x:yj> y = X
*X=yandy =z j> X = Z

18



Equivalence Classes

For equivalence relation R

equivalence class of x = {y : x Ry}

Example:

R={(1),(2 2).(1,2),(@21,
(3.3),(4.4).(3,4),(4,3)}

Equiva

Equiva

ence C

ence C

ass of 1={1, 2}
ass of 3 ={3, 4}

19



Graphs
A directed graph

* Nodes (Vertices)

V={a,b,c,de}

- Edges

E={(ab), (b,c). (be).ca) (ce) (dc) (eb), (ed)}

20



Labeled Graph

21



Walk is a sequence of adjacent edges
(e,d), (d,c),(c,a)

22



Path

Path is a walk where no edge is repeated

Simple path: no node is repeated

23



Cycle: a walk from a node (base) to itself

Simple cycle: only the base node is repeated

24



Euler Tour

A cycle that contains each edge once

25



Hamiltonian Cycle

A simple cycle that contains all nodes

26



Finding All Simple Paths

origin

27



(c, a)
(c,e)

origin

28



origin

29



,a), (a, b)

,a), (a, b), (b, e)
, e)

,e), (e, b)

,e), (e, d)

origin

30



b)
| b, e)
| :3 Eb, e), (e, d)

, b)
,d)

origin

31



Trees

root

O

4R\

O O O

leaf

O

Trees have no cycles

parent

<:>chﬂd

A

32



root

<:> Level O

4R\

O

leaf

<j> <:> Level 1

Q/ \Q

(i) Level 3

Level 2

Height 3

33






Proof Techniques

* Proof by induction
* Proof by contradiction

‘Proof by construction

35



Induction

We have statements Py, P,, Ps, ...

If we know
- for some b that P,, P,, ..., P, are true
» for any k >= b that
P, P,, .., P, imply P,
Then

Every P, is true

36



Proof by Induction

- Inductive basis

Find Py, P,, ..., P, which are true

* Inductive hypothesis
Let's assume Py, P,, ..., P, are true,

for any k>= b

* Inductive step
Show that Py, is true

37



Example

Theorem: A binary tree of height n

has at most 2" leaves.
Proof by induction:

et L(i) be the maximum number of

eaves of any subtree at height i

O
o o

Q/E Q/\O
5o 4bd

38



We want to show: L(i) <= 2

» Inductive basis
L(0) =1 (the root node) O

* Inductive hypothesis
Let's assume L(i) <=2 foralli=0,1, ..,k

* Induction step
we need to show that L(k + 1) <= 2k

39



Induction Step

From Inductive hypothesis: L(k) <= 2k

40



Induction Step

Q
height Q \Q

k O/ B / \‘Q L(k) <= 2k

L(k+1) <= 2 * (k) <= 2 * 2k = 2k

k+1

(we add at most two nodes for every leaf of level k)

41



Remark

Recursion is another thing

Example of recursive function:

f(n) = f(n-1) + f(n-2)

f0)=1, f(1)=1

42



Proof by Contradiction

We want to prove that a statement P is true
* we assume that P is false

- then we arrive at an incorrect conclusion

* therefore, statement P must be true

43



Example
Theorem: /2 is not rational

Proof:

Assume by contradiction that it is rational

J2 = n/m

h and m have no common factors

We will show that this is impossible

44



J2 =n/m  [E5) 2m2=n?

Therefore, n2 is even

j> h is even

n=2Kk

m IS even
2m2=4k? D) m2=2k? )

m=2p

Thus, m and n have common factor 2

Contradiction!

45



Proof by Construction

We want to prove that a statement
about something with a property is
True

- constructing a concrete example with a

property to show that something having
that property exists.

- constructive proof is in contrast 1o a
non-constructive proof which does not
provide a means of constructing an
example.

46



Example 1
16 can be exactly divided.

Proof

- A concrete example is 16/2. Therefore,
the statement is true.

End

47



Example 2

There exist two irrational numbers which make aP
rational.

case 1. \/?ﬁ is rational. done, otherwise
N7
case 2: let a= ﬁ’ﬁ _then (ﬁﬁ) 2 :ﬁz _ 2, done.

End

48



Question

Is example 2 the constructive proof?

Why if yes? Why if no?

49



Example 3

Show that there is no "largest integer”.

Proof
Let n be any integer.
Let m = n+l
IS an integer
>N
Therefore m is an integer that is larger than n

Therefore, for any integer there exists an
infeger m = n+ 1 that is larger than it.

End

50



Question

Is example 3 the constructive proof?

Why if yes? Why if no?

o1



Example 4

Show that there is no "largest” prime number.
Proof

Let n be any prime number
Let m=nl+1, then m>n
Case 1:
= nl+1is aprime number, then we have

constructed a prime number that is larger than
the previous prime number.

Case 2:

= nl+1is not a prime number, then it has at
least one prime factor

52



Example 4 (Cont.)

If you divide m by any of the prime numbers that
are smaller than or equal to n, you will always get
a remainder of 1,

because each prime number less than or equal to
n divides evenly into nl.

Therefore any prime factors of m must be
greater than n.

End

53



Question

Is example 4 the constructive proof?

Why if yes? Why if no?

54



Languages



A language is a set of strings

String: A sequence of letters

" W " W\

Examples: "cat”, "dog"”, "house”, ...

Defined over an alphabet:
> =1{a,b,c,...,z}

56



Alphabets and Strings
We will use small alphabets: ¥ = {a,b}

Strings
a
ab u=ab
abba v = bbbaaa
baba w = abba

aaabbbaabab

S7



String Operations

w=aa,--a
v=bb, b

N

Concatenation

szalaZ”'anble”'bm

abba
bbbaaa

abbabbbaaa

58



W=aa,--a,

Reverse

WR :an...azal

ababaaabbb

bbbaaababa

59



String Length

W=aa,--a,

Length: 'w =n

Examples:

abba =4
aa =2
a=1

60



Length of Concatenation

Example: U = aab,
Vv = abaab,

uv

uv

uv =+ Vv

u=3

aababaab
U+ Vv =3-

V=5

61



Empty String
A string with no letters: j

Observations: W -0

AW=WA=W

Aabba = abbaA = abba

62



Substring

Substring of string:
a subsequence of consecutive characters

String Substring
abbab ab
abbab abba
abbab b

abbab bbab

63



Prefix and Suffix

abbab
Prefixes Suffixes
1 abbab
3 bbab \
bah prefix
ap a suffix
abb ab
abba b

abbab

64



Another Operation

w" = ww---w

. J/

N

Example:  (abba)? = abbaabba

Definition: w® = 4

(abba)’ = 2

65



The * Operation

2. *: the set of all possible strings from
alphabet X

> ={a,b}
>*=1{A,a,b,aa,ab,ba,bb,aaa,aab,...}

66



The + Operation

Yt : the set of all possible strings from
alphabet 2 except A

> ={a,b}
>*=1{A,a,b,aa,ab,ba,bb,aaa,aab,...}

ST=%*-1

>" =1{a,b,aa,ab,ba,bb,aaa,aab,...}

67



Languages
A language is any subset of X *

Example: ¥ =1{a,b}
>*=1{4,a,b,aa,ab,ba,bb,aaa,...}

Languages: { 1}
{a,aa,aab}
{/1,abba,baba,aa,ab,aaaaaa}



Note that:
et O = (Y= {1}
setsize. {}=< =0
setsize  {A}=1

String length |A| =0



Another Example

An infinite language L ={a”b” :n >0}

ﬂ, N
ab

aabb
aaaaabbbbb

- e L abb ¢ L




Operations on Languages
The usual set operations

{a,ab,aaaa}l{bb,ab}={a,ab,bb,aaaa}
{a,ab,aaaa}(){bb,ab}={ab}
{a,ab,aaaa}—{bb,ab}={a,aaaa}

Complement: L =X*—-L

{a,ba}=1{A4,b,aa,ab,bb,aaa,...}

71



Reverse
Definition: L° :{WR wWe L}
Examples: {ab,aab,babal” = {ba,baa,abab!
L={a"b" :n>0}

LR ={b"a" :n>0}

72



Concatenation

Definition: 4L, ={xy:Xxely,yel,}

Example: {a,ab,ba}{b,aa}

= {ab,aaa, abb, abaa, bab,baaa}

73



Another Operation
Definition: N _...L

N

fa,b}> ={a,b}a,b}a,bl=
{aaa,aab,aba,abb,baa,bab,bba, bbb}

Special case: [0 = {4}

{a,bba,aaa\® = {1

74



More Examples

L={a"b" :n>0}
1> ={a"b"a™™ :n,m > 0}

aabbaaabbb e L

75



Star-Closure (Kleene *)

Definition: L*=L2ULtULZ...

Example:

{a,bb}* =+

(ﬂ,, A
a,bb,
aa, abb.bba, bbhb,

‘aaa,aabb,abba,abbbb,...

76



Positive Closure

Definition: |+ =1 v | 2 J---

{a,bb}" =<

- Lr (1)

‘a,bb, )
aa, abb,bba,bbbb,

‘aaa, aabb, abba, abbbb,...

77



The End



Finite Automata



Finite Automaton

Input
String
Output

Automaton




Finite Accepter

Input
String
Output
“Accept”
Finite or
Automaton "Reject”




Transition Graph

Abba -Finite Accepter g b

initial final

state . state
transition

state ‘accept




Initial Configuration
Input String




Reading the Input

Q




G~ <




G~ <




a b|b|a




Input finished
v

Output: "accept”
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Rejection

11



Q




G~ <




al b




Input finished
v

a b|la




Another Rejection

16



17



Another Example

18



Q




Q







Input finished

v

a

b

Output: "accept”

— @

ab

22



Rejection

23



G~ <










Input finished

v

a

b

7 b a.b @

a,b

Output: “reject”

27



Formalities
Deterministic Finite Accepter (DFA)

M — (Q121§1q01 F)
Q :set of states
2 :input alphabet

O : transition function
Oo : initial state

F :set of final states

28



Input Alphabet X

> =1a,b}

29



Set of States Q
Q =100, 01,092,034,

30



Initial State Qg

31



Set of Final States F
F =104}

32



Transition Function o

0.Qx2X—>Q

33






6(0g,b)=0s







Transition Function o




Extended Transition Function §*

0*F: Qx2*—>Q

38






5*(gg,abba)=q,

40



6 *(qp,abbbaa)=gg




Observation: There is a walk from ( to Q'
with label w

5*(qw)=0’

42



Example: There is a walk from Up to 0
with label abbbaa

6 *(qp,abbbaa)=gg

43



Recursive Definition

6*(9,4)=q
5*(q,wo)=5(5*(q,w),o)

5*(q,wo)=0q'~

6(q.0)=0q" >~ mm)s *(q,wo) = 5(5*(q, w), o)

44






Languages Accepted by DFAs
Take DFA M

Definition:
The language L(M ) contains
all input strings accepted by M

L(M ) = { strings that drive M to a final state}

46



L(M )= {abba}

Example

47



Another Example

L(M)={A,ab,abba} M

accept accept accept

48



Formally
ForaDFA M =(Q,X,5,qy,F)

Language accepted by M :
L(M)={wex*:5*(do,w) < F}

49



Observation
Language rejected by M :

L(M)={weX*:5*(qp,w) & F}

50



More Examples

L(M)={a"b:n>0}

a a,b

accept Trap state

o1



L(M )= { all strings with prefix ab }

b a accept
Q a,b

52




L(M) = { all strings without
substring 001 }

53



Regular Languages

A language L is regular if there is
aDFA M such that L=L(M)

All regular languages form a language family

54



Examples of regular languages:

{abba} {4,ab,abbaj {a"b:n>0}
{ all strings with prefix ab }

{ all strings without substring 001 }

55



Another Example

The language | = {awa W S {a, b}*}

is regular:
a

b
L=L(M) . Q
e O o)
9
a,b

56



There exist languages which are not Regular:

Example: L={a"b":n>0}
There is no DFA that accepts such a language

(we will prove this later in the class)

57



The End



Non Deterministic Automata



Nondeterministic Finite Accepter (NFA)

Alphabet = {a}




Nondeterministic Finite Accepter (NFA)

Alphabet = {a}

Two choices @ a

a

%!,

e



Nondeterministic Finite Accepter (NFA)

Alphabet = {a}

Two choices @ a No transition

a

%!,

@ No transition



First Choice




Q

First Choice




First Choice




First Choice
!

a a

All input is consumed

‘—> d “accept”

a

%!,

e



Second Choice




Second Choice

()




Second Choice

R ()

No transition:
the automaton hangs

11



v

Second Choice

a

a

Input cannot be consumed

12



An NFA accepts a string:
when there is a computation of the NFA
that accepts the string

AND

all the input is consumed and the automaton
is in a final state

13



Example

da is accepted by the NFA:

because this
computation
accepts ad

14



Rejection example




Q

First Choice




First Choice




Second Choice




Q

Second Choice

()




Second Choice




An NFA rejects a string:
when there is no computation of the NFA
that accepts the string:

* All the input is consumed and the
automaton is in a non final state

OR

* The input cannot be consumed

21



Example

A isrejected by the NFA:

® “reject”

All possible computations lead to rejection

22



Rejection example




Q

First Choice




First Choice

No transition:
@ the automaton hangs

25



v

First Choice

a

a

a

Input cannot be consumed

a

%,

‘—> a “reject”

e

26



Second Choice




Second Choice

()




Second Choice

R ()

No transition:
the automaton hangs

29



v

Second Choice

a

a

a

Input cannot be consumed

30



aaa is rejected by the NFA:

@ “reject

All possible computations lead to rejection

31



Language accepted: L ={aa}

-G

a

%!,
e



Lambda Transitions

RN



L OO




@ *-@-{%)




(read head does not move)

36



R ()




all input is consumed

v

a

a

“accept”

String aa is accepted

38



Rejection Example




@ *-@-{%)



(read head doesn't move)

41



Q

R ()

No transition:
the automaton hangs

42



Input cannot be consumed

v

a

a

a

“reject”

R ()

String @AA is rejected

43



Language accepted: L ={aa}

R



Another NFA Example




b

@-2-@
A J 46

S

o






0 a@b,@z
-

A







Another String




ablab




ablab

0 a@b,@z
-

A










ablab




ablab

0 a@b,@z
-

A







Language accepted

L ={ab, abab, ababab, ...}
={abj"

o2 (G) b (G 2.
&ﬂ o

58



Another NFA Example

59



Language accepted

L(M) =1, 10, 1010, 101010, ..
={10}*

0

0,1
1 g (redundant

state)

A

60



Remarks:

*The A symbol never appears on the
input tape

-Simple automata:
M, M5
L(My) =4} L(M,) ={\}

61



*NFAs are interesting because we can
express languages easier than DFAs

NFA Ml DFA Mz d

%a G2,

d

@a

L(M,) ={a} L(M,) ={a}




L(Mq)={10}*

L(M,)={10}*

—

Example
NFA M

0

H
Q
H
=




Formal Definition of NFAs
M :(Q1 21 51 qu F)

Q: Setof states, ie. {Ug, O, U2}
>: Input aplhabet,ie. {a, b}
S Transition function

Uo - Initial state

F : Final states

64



Transition Function o

6(do, 1) =10y

65



6(01,0) ={dp. 02}




6(qo,4) ={0p. 02}

0

G 0,1

A






Extended Transition Function o *

6*(dp,a)=1{m |
/
{)\ l /0

69



6*(dp,aa)=104,0s

@Kﬂ/-‘m




6 *(0g,ab)=10,,093,q0

/
%b

— A




Formally

qj € 5*(q;,W) : there is a walk from 0i toQ;
with label W

72



The Language of an NFA M

F =1{do.0s}

6*(0p,aa)=104,0s aa e L(M)

~eF




F =1{0o.0s}
@ : g )

6*(gp,ab)=10p,93,9p5  abeL(M)

~eF



100,05
F =

L(M)
aaba

j

=104.05

abaa)

6 *(qo,

~eF




F =1{do.0s}
@ ; g Ay

6* (0o, aba)={qy | aba ¢ L(M)
ek



R

L(M) =14} v {abj* {aa}




Formally
The language accepted by NFA M is:

L(M )= {wy, Wy, Ws,...}

where 5*(qO,Wm) :{qi’qj ,...,qk,...}

and there is some Qx € F  (final state)

78






NFAs accept the Regular
Languages

80



Equivalence of Machines

Definition for Automata:

Machine M1 is equivalent o machine M

if L(My)=L(My)

81



Example of equivalent machines
NFA M,

L(Mq)={10}* L

L(M,)={10}*

—

H
Q
H
=




r Languages
< accepted
_ by NFAs

NFAs and DFAs have the
same computation power

We will prove:

\

\

y

r

\.

Regular
Languages

Languages
accepted
by DFAs

J

83



r Languages
< accepted
_ by NFAs

\

\

Step 1

D,

y

r

\.

Regular
Languages

Proof: Every DFA is trivially an NFA

Any language L accepted by a DFA

1yt

is also accepted by an NFA

J

84



Step 2

2 r 2

r Languages Seaul
< accepted (_ < Legu ar ) -
_ by NFAs angtage

\. J/

Proof: Any NFA can be converted to an
equivalent DFA

Any language L accepted by an NFA
is also accepted by a DFA

85



Convert NFA to DFA

NFA M

DFA M’

86



Convert NFA to DFA

NFA M

DFA M’

R

87



Convert NFA to DFA

NFA M

DFA M’

0

88



Convert NFA to DFA

NFA M a
a A
o »E) h

DFA M’
b
|




Convert NFA to DFA

NFA M

DFA M’ b 3
@
b




Convert NFA to DFA

NFA M

DFAM' P 3
ol




Convert NFA to DFA

NFA M
TR %(m) (M)

DFA M’ L
1o 2
b
OOL




More example: Converting NFA to DFA

- NFA N, =(Q.{a,b},3,1,{1}), the set of
states Q is {1,2,3} as shown in the
following figure.

The NFA N,

93



Stepl: Determine DFA's states

N, has three states {1,2,3}, so we
construct DFA D with eight.

+ We label each of D's states with the
corresponding subset. Thus D's state set

is {2,{1}.{2}.{3}.{1,2}.{1,3}.{2,3}.{1,2,3}}

94



Step2:Determine the start and accept states

<
@



Step3: Determine transition function

96



After removing unnecessary states

97



Rearranging states

98




Renaming states

el
q3

99



More simplified




NFA to DFA: Remarks

We are given an NFA M

We want to convert it
to an equivalent DFA M’

wWith  L(M)=L(M")

101



If the NFA has states

Uo 1,42,

the DFA has states in the powerset

2,100 ) 1% » 1%, G2 J: 103, 4. 07 Jo---

102



Procedure NFA to DFA

1. Initial state of NFA: Uo

!

Initial state of DFA: {CIO}

103



Example

NFA M

DFA M’

104



Procedure NFA to DFA
2. For every DFA's state {0 4 o,

Compute in the NFA
o*(gj,a),

5*((11’3), - = {0i,qdj,0am}

J

Add transition to DFA
5({q| 1qj ,---,qm}; a):{q;iq’J ,,%1}

105




NFA M Qa
@a Q)2

0> (dp,a) =101, 02}

DFAM’

6(1do ha) =101, 9y |




5*(2,b)={3}, 6*(3,b)=¢

U

3({2, 3), b)={3}ue={3)

® @



Procedure NFA to DFA

Repeat Step 2 for all letters in alphabet,
until
no more transitions can be added.

108
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Procedure NFA to DFA
3. For any DFA state 10i0jy-»0m}

If some (j is a final state in the NFA

Then, {CIi,OIj oo Om )
is a final state in the DFA

110
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Theorem
Take NFA M

Apply procedure to obtain DFA M’

Then M and M’ areequivalent :

L(M)=L(M")

112



Proof

L(M)=L(M")

I

L(IM)cL(M') AND L(M)oL(M')



First we show: L(M)c L(M')

Take arbitrary: We L(M)

We will prove: we L(M")

114






We will show that if we L(M)

116



More generally, we will show that if in M:

(arbitrary s’rr'ing) V= 3.13.2 e an

gy

@ Q—’ Q NS m

{a0} {gi...} {9j.--3 -3 Ome--}

117



Proof by induction on | V|

Induction Basis: V=2gy

M (O

Pt {9}

118



Induction hypothesis:  1<|viI<k

V=aa,---ay
- 0@ @)

M (O 0

{@} {g...} 1953 {0.--} {aq..-}

119



Induction Step: |v|=K +1
V=88 -8 Ay1 = Vo

/

*Q%'
T

N

T S U (s S e SR T

120



Induction Step: |v|=k+1
V= ?1a2 o akJak_H]_ = V'ak+1

/

V

e NG

M / 4»0 ﬂ’ Q@» Q ..... a QEKQMQ

Clo} {q,,...} {qja---} {qc’---} @} {Qev--}

121



Therefore if weL(M)

122



We have shown: L(M)cL(M')

We also need to show: L(M )2 L(M’)

(proof is similar)

123



The End



Single Final State for NFAs



Any NFA can be converted
to an equivalent NFA

with a single final state



Example

d NFA
ﬁ
( a A
.0

a Equivalent NFA




In General

NFA
® O
O

Equivalent NFA

final state

M A

4



Extreme Case

NFA without final state

AT

% Add a final state

Without transitions




Properties of
Regular Languages



For regular languages Ly and L,

we will prove that:
Union: Lyul,

Concatenation: Lo

Star: Ll *

Reversal: |_1R

Complement: L4

Are regular
> Languages

Intersection: |y nL, _



We say: Regular languages are closed under

Union: LUl
Concatenation: Lglo
Star: Ly*
Reversal: |_1R

Complement: L4
Intersection: |y N L,



Regular language Ly Regular language Ls

L(M1) =1Ly L(M3)=L;
NFA My NFA M,

Single final state Single final state




10



Union

NFA for L4 UL,

My

FolVAVAON

M5

A

VO

11



Example
NFA for Ly UL, ={a"b}u{ba}

Ll :{anb}

12



Concatenation

NFA fOf‘ L]_LZ

—OVVO

-\ O-

13



Example

NFA for LL, ={a"b}{ba}={a"bba}

Ll :{anb}

d

L, ={ba}

b a

M.

O—O—0

40

14



Star Operation

NFA for L™
A
ZEL]_*
M1
A
-V OO




Example

NFA for L*={a"b}*

W = Wy W, - - - W,
Wi EL]_

16



Reverse

NFA fOI" L]_R

/

M,
OV O

1. Reverse all transitions

2. Make initial state final state

and vice versa

17
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Complement

L M

OV O

1. Take the DFA that accepts Ly

2. Make final states non-final,

and vice-versa

19



L, ={a"b}

L ={a,b}*—{a"b}

M
a,b

b a.b
M,
a,b
b ab
OO

20



Intersection

DeMorgan's Law: Lyl =L UL,

regular
regular
regular

regular

regular

21



Example

L, :{anb} regular ~
> j>1 Ll M L2 Z{ab}

regular

L, ={ab,ba} regular -

22



Regular Expressions

23



Regular Expressions

Regular expressions
describe regular languages

Example: (a+b-c)*

describes the language
{a,bc}*={A4,a,bc,aa,abc,bca,...}

24



Recursive Definition

Primitive regular expressions: &, A, o

Given reqular expressions I and Iy

r1+r2\

1 -17
I’l*

()

> Are regular expressions

_/

25



Examples

A regular expression:

(a+b-c)*-(c+ D)

Not a regular expression: (a +Db +)

26



Languages of Regular Expressions

L(r) . language of regular expression I

Example
L((a+b-c)*)={A,a,bc,aa,abc,bca,...}

27



Definition

For primitive regular expressions:

(D)=

28



Definition (continued)

For regular expressions I1 and 2

L(r+12)=L(r) U L(r)
L(r-1p)=L(r) L(r2)
L (1 *)=(L(r))*
L((r))=L(r)

29



Example
Regular expression: (a + b)- a*

L((a+b)-a*) =L((a+b))L(a*)
=L(a+b)L(a*)
=(L(a)uL(b))(L(a)*
=(tafu {bf) (1af)*

=1{a,b}{1,a,aa,aaa,...|
={a,aa,aaa,...,,b,ba,baa,...}



Example

Regular expression r =(a+b)*(a+bb)

L(r)={a,bb,aa,abb,ba,bbb,...}

31



Example

Regular expression I =(aa)*(bb)*b

L(r)={a*"b*™p: n,m=>0}

32



Example

Regular expression r=(0+1)*00(0+1)*

L(r) = { all strings with at least
two consecutive O }

33



Example

Regular expression I =(1+01)*(0+ A1)

L(r) = { all strings without
two consecutive O }

34



Equivalent Regular Expressions
Definition:
Regular expressions I and Iy

are equivalent if L(p)=L()

35



Example

L = { all strings without
two consecutive O }

h = (1-|- 01)*(04-1)
b, =(1*011*)*(0+ 1) +1*(0+ 1)
I and )

are equivalent
regular expr.

L(r)=L(p)=L ==

36



Regular Expressions
and
Regular Languages



Theorem

(Languages
Generated by

Regular Expressions
. 7

f

\.

Regular
Languages

7

38



Theorem - Part 1

(Languages
Generated by

1. For any regular expression I
the language L(I) is regular

\

>g<

Regular Expressions
. 7

f

\.

Regular
Languages

7

39



Theorem - Part 2

(Languages
Generated by

\

>:_)<

Regular Expressions
. 7

f

\.

Regular
Languages

2. For any regular language L there is
a regular expression I' with L(r)=L

7

40



Proof - Part 1

1. For any regular expression I
the language L(r) is regular

Proof by induction on the size of r

41



Induction Basis
Primitive Regular Expressions: &, A, «

NFAs

Hivy L(M,) =D =L(D)

B e regular
@ L(M2) =14y =L{4) > languages
— OO0 L(Mg)={a}=L(a)

42



Inductive Hypothesis

Assume

for regular expressions I and I?
that

L(r;) and L(r») are regular languages

43



We will prove:

Inductive Step

L(r+1p) "
L(K-r
( ' 2) Are regular
Languages
L(r.*)

44



By definition of regular expressions:

L(r +12)=L(r)w L(rp)
L(r-1p)=L(n) L(r)
L(r*)=(L(r))*
L((r))=L(n)



By inductive hypothesis we know:
L(r;) and L(r,) are regular languages

We also know:
Regular languages are closed under:

Union L(r;)w L(r)
Concatenation L(rl) L(rz)
Star (L(rl ))*

46



Therefore:

L(f+1,)=L(R)UL(r)
L(F-1,)=L(r) L(r,)

L(r*)=(L(r))*

-

Are regular
languages

47



And trivially:

L((r)) isaregular language

48



Proof - Part 2

2. For any regular language L there is
a reqular expression I' with L(r)=L

Proof by construction of regular expression

49



Since L is regular take the
NFA M that accepts it

L(M) =L

SANE®

Single final state

50



From M construct the equivalent
Generalized Transition Graph
in which transition labels are regular expressions

Example:
M

a,b@ j>»8a b@

&

o1



b

Another Example: q :
b

b

b
a+b
b

52



Reducing the states: ) D
2
b

bb*a b

\gqo bb* (a + b)

53




Resulting Regular Expression:

bb*a b
gqo bb*(a+Db)

r = (bb*a) *bb* (a +b)b *

L(r)=L(M) =L

54



In General
Removing states: S

'

ae*d ce*b
' ce*d '
G 4j,

ae*hb



The final transition graph:
h

The resulting regular expression:

r=R*nR(+pR*n)*

L(r)=L(M) =L

56



Example

S7



Example (Cont.)




Example (Cont.)

59



Example (Cont.)

Q a(aaub)’
—» S >

a(aaub)’abub

(baua)(aaub) ue

(baua)(aaub) abubb

60



Example (Cont.)

—(s)

(a(aaub)*ab ub)((ba ua)(aa ub)*ab ubb) *((ba U a)(aa ub)* U ¢€) U a(aa Ub)*

61



The End



Grammars



Grammars
Grammars express languages

Example: the English language

'sentence) — (noun _ phrase, ( predicate,
‘noun_ phrase) — (article, (noun,

_predicate) — (verb;



(article) — a
(article) — the

(noun) — cat
(noun) — dog

(verb) — runs
(verb) — walks



A derivation of "the dog walks":

(sentence) =

(
(

= (noun_ p

noun_p

nrase) (predicate)

)
nrase) (verb)
)

= (article) (noun) (verb,

m— |

m— |

=1

ne (noun) (verb;
ne dog (verb,
ne dog walks



A derivation of "a cat runs”:

(sentence) = (noun_ phrase) ( predicate)

)
= (noun_ phrase, (verb)
— (article) (noun) (verb)
= a (noun, (verb)
—a cat (verb,
—a cat runs



Language of the grammar:

L ={ "a cat runs”,
“a cat walks”,
“the cat runs”,
"the cat walks”,
"a dog runs”,
“a dog walks"”,
“the dog runs”,
“the dog walks" }



Notation

Production Rules

PN

(noun) — cat

(noun) — dog

7 N

Variable Terminal



Another Example
Grammar: S > aSh
S—>A4

Derivation of sentence ab:

S=aSh=ab

N

S —> aSb S—> A



Grammar: S — aSh
S > A

Derivation of sentence aabb :

S = aSh = aaSbb = aabb

WA

S —>asSh S—> A



Other derivations:

S = aSh — aaSbb — aaaSbbb — aaabbb

S = aSh = aaSbb = aaaSbhb
—> aaaaSbbbb — aaaabbbb

10



Language of the grammar

S — aSh
S—> A

L={a"b" :n>0}

11



More Notation
Grammar G=(V,T,S,P)
V. Set of variables

T Set of terminal symbols

S: Start variable

P: Set of Production rules

12



Example

Grammar G S — aSb
S—> A

7v$,s,P)

V ={S} T ={a,b}
P={S —>aSh, S— A1}



More Notation
Sentential Form:

A sentence that contains

variables and terminals

Example:

S = aSh = aaSbb — aaaSbbb — aaabbb

N7

Sentential Forms

sentence

14



*

We write: S — aaabbb

Instead of:

S = aSh — aaSbb — aaaSbbb — aaabbb

15



*

In general we write: Wy, = W,

If: W = Wy = Wy = -+ = W,

16



By default:

W = W

17



Grammar

S — aSh
S—> A

Example

Derivations

*

S=>A

*

S—=ab

*

S =aabb

*

S = aaabbb

18



Grammar

S — aSh
S—> A

Example

Derivations

S =aaSbhb

aaSbh— aaaaaSbhbbb

19



Another Grammar Example
Grammar G: S — Ab

A — aAb
A->A

Derivations:

S=Ab=b
S =Ab=aAbb =abb
S =Ab =aAbb =aaAbbb =aabbb

20



More Derivations
S = Ab = aAbb = aaAbbb = aaaAbbbb
—> aaaaAbbbbb = aaaabbbhb

S = aaaabbbbb

S = aaaaaabbbbbbb

S=a"b"b

21



Language of a Grammar

For a grammar G
with start variable S :

*

L(G)={w: S=w}

String of terminals

22



Example
For grammar G: S — Ab

A — aAb
A>A

L(G)={a"b"b: n>0}

%k

Since: S=a"b"b

23



A Convenient Notation

A — aAb
A—> A

‘article) > a
‘article) — the

mm)> A—>aAblAa

) (article) — a|the

24



Linear Grammars

25



Linear Grammars

Grammars with
at most one variable at the right side
of a production

Examples: S — aShb S — ADb
S—>A A — aAb
A—>A

26



A Non-Linear Grammar

Grammar G: S =SS
S—> A
S —>aSb
S —> bSa

L(G) =1w: ng(w) =ny (W)}
/

Number of @ in string W

27



Another Linear Grammar

Grammar G © S — A
A—aB|A
B— Ab

L(G) ={a"b":n >0}

28



Right-Linear Grammars

All productions have form:

Example: S — abS
S —>a

A— xB

or
Ao X

\

string of
terminals

29



Left-Linear Grammars

All productions have form:

Example: S — Aab
A— Aab|B

B—>a

A — BXx

or
Ao X

\

string of
terminals

30



Regular Grammars

31



Regular Grammars

A regular grammar is any
right-linear or left-linear grammar

Examples:
G, G,
S — abS S — Aab
S 5>a A — Aab ‘ B

B—>a

32



Observation
Regular grammars generate regular languages

Examples: G,
S S — Aab
S — abS A— Aab|B
S —a B—>a

L(G,) =(ab)*a L(G,) =aab(ab)*

33



Regular Grammars
Generate
Regular Languages



Theorem

(Languages
Generated by

Regular Grammars
\_ 7

f

\.

Regular
Languages

7

35



Theorem - Part 1

(Languages
Generated by

\

>g<

Regular Grammars
\_ 7

f

\.

Regular
Languages

Any regular grammar generates
a regular language

7

36



Theorem - Part 2

(Languages
Generated by

\

>:_)<

Regular Grammars
\_ 7

f

\.

Regular
Languages

Any regular language is generated
by a regular grammar

7

37



Proof - Part 1

(Languages
Generated by

\

>g<

Regular Grammars
. 7

f

\.

Regular
Languages

The language L(G) generated by
any regular grammar (G is reqgular

7

38



The case of Right-Linear Grammars

Let G be a right-linear grammar

We will prove: L(G) is regular

Proof idea: @ We will construct NFA M
with L(M) =L(G)

39



Grammar G is right-linear

Example: S —aA|B
A —aa B
B—o>bB|a

40



Construct NFA M such that
every state is a grammar variable:

(A §
,C) specia
final state
S—>aA|B
A—aabB
B—>bB|a

41



Add edges for each production:

©

S > aA






S—>aA|lB
A—>aabB









S = aA— aaaB — aaabB — aaaba

47



NFA M Grammar

@ G

S—>aA|lB
A—aaB

B—bB|a
A b a

L(M)=L(G) =
aaab*a+b*a

48



In General

A right-linear grammar G

has variables: Vg,V1,Va,...

and productions:

Vi > qa-

or

Vi > qas-

..am

49



We construct the NFA M such that:

each variable Vj corresponds to a node:

W

o
@ special

final state

50



For each production: Vi — &jay - -amV;

we add transitions and intermediate nodes

@al.@ﬁ.g_. ......... M

o1



For each production: V; = aqas---ay

we add transitions and intermediate nodes

@al.@i.@ ......... am

52



Resulting NFA M looks like this:

It holds that: L(G)=L(M)

53



The case of Left-Linear Grammars

Let G be aleft-linear grammar

We will prove:  L(G) is regular

Proof idea:
We will construct a right-linear

grammar G" with  L(G) = L(G')R

54



Since G is left-linear grammar
the productions look like:

A — Baja,---aqy

A— aqa,---a

55



Construct right-linear grammar G’

LefT G

linear

Right
linear

G’

A — Baa,---a
A— Bv

!

A—a

A->vV

e .azalB

B

56



Construct right-linear grammar G’

Left G

linear

Right
linear

Gl

A— aqay---aqy

A—>vV

!

A—a---argy

AoV

S7



I't is easy to see that: L(G) = L(G’)R

Since G’ is right-linear, we have:

L(G) =wmp L(G)" =mp L(G)

Regular Regular Regular
Language Language Language

58



Proof - Part 2

(Languages
Generated by

Any regular language L

\

>:_)<

Regular Grammars
\_ 7

f

by some regular grammar G

\.

Regular
Languages

IS generated

7

59



Any regular language L is generated
by some regular grammar G

Proof idea:
Let M be the NFA with L=L(M).

Construct from M a regular grammar G
such that L(M)=L(G)

60



Since L is regular
there isan NFA' M such that L=L(M)

b

Example: M Q
a

—(a) ! A
) b
L =ab*ab(b*ab)*

L=L(M)

61



Convert M to a right-linear grammar

62









Go — ath
th — bgy
h — ady
dp — baz

3 > 01
q:g—)/l

L(G)=L(M)=L

65



In General

For any transition: @ 2 @

Add production: q—ap

7N

variable terminal variable

66



For any final state:

Add production:

oF —> A

67



Since G

G

is right-linear grammar

is also a regular grammar

with  L(G)=L(M)=L

68



The End

69



Standard Representations
of Reqgular Languages

[Regular' Languages}

o] \

Regular
Grammars

Regular
Expressions

NFAs.




When we say:  We are given
a Regular Language L

We mean: Language L is in a standard
representation



What are the differences among NFA/DFA,
regular expression and regular grammar?

NFA/DFA accepts languages

Regular expresses operate languages

Grammar generates language



Elementary Questions
about

Regular Languages



Membership Question

Question: Given reqular language L
and string W
how can we check if W € L?

Answer:  Take the DFA that accepts L
and check if W is accepted



DFA

wWe L



Question:

Answer:

Given reqular language L
how can we check

if Lisempty: (L=O) ?

Take the DFA that accepts L

Check if there is any path from
the initial state to a final state



DFA

m L )

DFA




Question: Given regular language L
how can we check
if L is finite?

Answer: Take the DFA that accepts L

Check if there is a walk with cycle
from the initial state to a final state

9



L is infinite

L is finite

10



Question: Given regular languages Ly and L
how can we check if Ly =L, ?

Answer: Find if (LLNL)u(lNlL,)=

11



(L) u(ynl,) =2

|

Lnl,=g ad LNl =90

OO

Ll - L2 L2 C I—]_

|

L =L,

12



(L) u(nly) %D

|

Lnl#zd o LNl 0

Do) @y

L]_ A L2 L2 L Ll

Ll?’—' L2

13



Non-regular languages

14



fa"b": n>0}
Non-regular languages

{wR . ve{a,b}*}

Regular languages
a*b

b*c+a
b+c(a+b)*
etc...

Finite languages are regular

15



How can we prove that a language L
is not regular?

Prove that there is no DFA that accepts L

AN A

Ha Ha Ha..... -

Problem: this is not easy to prove

Solution: the Pumping Lemma !l

16



The Pigeonhole Principle



4 pigeons

3 pigeonholes

18



A pigeonhole must
contain at least two pigeons

19



N pigeons

m pigeonholes

n>m

20



The Pigeonhole Principle

n pigeons

m pigeonholes
n>m

There is a pigeonhole
with at least 2 pigeons

21



Ex 1: Show that if any five numbers from 1
to 8 are chosen, then two of them will add
up to 9.

Solution: {1,8}{2,7}{3,6},{4,5}

22



Ex 2: show that if any 11 numbers are chosen
from the set {1,2,..,20}, then one of them
will be a multiple of another.

Solution: {1,2,...,20}={2km|k could be any
positive integer including O, m=some odd
number}, odd number={k=0,m=1,3,...,19},
2={k=1m=1},... 12={k=2,m=3},...,18={k=1,m=9}

Zk.l}n, 2k2m

23



Ex 3: Consider the region shown in the

figure. It is bounded by a regular hexagon
whose sides are of length 1 unit. Show that
if any seven points are chosen in this

region, then two of them must be no
farther apart than 1 unit.

VAVAN
VAV

24



Ex 4: shirts numbered consecutively from 1
to 20 are worn by the 20 members of a
bowling league. When any 3 of these
members are chosen to be a team, the sum
of their shirt numbers is used as a code
number for the feam. Show that if any 8 of
the 20 members are selected, then from
theses 8 we may form at least fwo
dif ferent teams having the same code
number. (one member can be in several
different teams simultaneously)

Solution: €(8,3)=56, 1+2+3=6,...,18+19+20=57,
57-6+1=H2

25



The Pigeonhole Principle
and

DFAs



DFA with 4 states

b b

a b b
Hiﬁhé 8\@
\/

d a

b

(.

27



In walks of strings: a
dad
aab

no state
IS repeated

b b
lga_g a b
th q'\a@\/

d

28



In walks of strings: aabb a state
bbaa IS repeated

abbabb
abbbabbabb...

b b L

29



If string W has length |w| >4

Then the transitions of string W
are more than the states of the DFA

Thus, a state must be repeated

b b D

30



In general, for any DFA:

String W has length > number of states

A state 0 must be repeated in the walk of W

Repeated state

31



In other words for a string W:

~ 2, transitions are pigeons

@ states are pigeonholes

Repeated state

32



The Pumping Lemma



The Pumping Lemma:

- Given a infinite regular language L

* there exists an integer M

» for any string We L with length |w|>m
- we canwrite W=XYZ

cwith  |[XYy| <mMand [Yy]| 21

» such that: Xyi Z € L 1=0,1 2, ...

34



Applications

of

the Pumping Lemma



Theorem: The language L ={anbn 'n >0}

is not reqgular

Proof: Use the Pumping Lemma

36



L={a"b" :n>0}

Assume for contradiction
that L is a regular language

Since L isinfinite
we can apply the Pumping Lemma

37



L={a"b" :n>0}

Let M be the integer in the Pumping Lemma
Pick a string W such that: w e L

length |W[=m

We pick w=a"b"

38



Write: a"b" =Xy z

From the Pumping Lemma
it must be that length | XYy[<m, |y[>1

m m
N
xyz=a"b™ = a.aa..aa..ab..b
T

X y  Z

39



xyz=a"b" y=a%, k>1

From the Pumping Lemma: X yi Z €L

1=0,1, 2, ...

Thus: xyzz e L

40



xyz=a"b" y=a%, k>1

From the Pumping Lemma: X y2 Z e L

m+ K m

2 S - \f—H
Xy“z = a..aa..aa..aa..ab..b eL
TLWT\ e J

Vi

Thus: aMHkpM o |

41



am+kbm cl

k =1

BUT:

L={a"b":n>0}

am+kbm z L

CONTRADICTIONII

42



Therefore:

Conclusion:

Our assumption that L
is a regular language is not true

L is not a reqular language

43



Non-regular languages  {a"b": n> 0}

Regular languages

44



Understanding pumping lemma more

45



Take an infinite reqular language L

There exists a DFA that accepts L
:Q O
Oo—0

\/

states

46



Take string W with we L

There is a walk with label W:

47



If string W has length |W‘ > M (number
of states

of DFA)

then, from the pigeonhole principle:

a state is repeated in the walk w

48



Let  be the first state repeated in the
walk of W

49



Write W=XY Z




Observations:  length | X y| < m number
of states

length |y| =1  of DFA

o1



Observation:  Thestring XZ
IS accepted




Observation:

The string XY YZ
IS accepted

53



Observation:

The string XY VYYVYZ
IS accepted

54



In General:

The string X y'
is accepted 1=0,1, 2, ...

55



In General: X yi Z =L 1=0,1 2, ...

|

Language accepted by the DFA

56



*

In other words, we described:

® %

The Pumping Lemma !l \

57



More Applications

of

the Pumping Lemma



The Pumping Lemma:

» Given a infinite regular language L

* there exists an integer M

» for any string We L with length |w|>m
- we canwrite W=XYZ

cwith  |[XYy| <mMand [Yy]| 21

» such that: Xyi Z € L 1=0,1 2, ...

2



Non-regular languages L ={w":vez*}

Regular languages




Theorem: The language
L={w":vez*} Z={ab}

is not regular

Proof: Use the Pumping Lemma



L:{wR VeX*}

Assume for contradiction
that L is a regular language

Since L isinfinite
we can apply the Pumping Lemma



L :{WR Ve X*}
Let M be the integer in the Pumping Lemma

Pick a string W such that: w € L and

length |W[=m

We pick w=a"b"bMa"



write a"b"b"Ma™ =x vy z

From the Pumping Lemma
it must be that length [ Xy|<m, |y[21

m m m m

e e
Xyz = a...aa...a...ab...bb...ba...a

R N —
X Y

Vi

Thus: y:ak, k>1



xyz=a b"bMa" y=a%, k>1

From the Pumping Lemma: X yi Z €L
1=0,1 2,...

Thus: xyzz e L



xyz=a b"bMa" y=a“, k>1

From the Pumping Lemma: X y2 Z e L




aMkpMpMaM <L

BUT:

L:{WR Ve X*}

aMkpMpMaM & |

CONTRADICTIONII

10



Therefore:

Conclusion:

Our assumption that L
is a regular language is not true

L is not a reqular language

11



Non-regular languages

L={a"b'c": n,1>0

Regular languages

12



Theorem: The language
L={a"b'c": n,1>0

is not regular

Proof: Use the Pumping Lemma

13



L={a"b'c": n,1>0

Assume for contradiction
that L is a regular language

Since L isinfinite
we can apply the Pumping Lemma

14



L={a"b'c": n,1>0

Let M be the integer in the Pumping Lemma

Pick a string W such that: w € L and

length |W[=m

We pick w = ammeZm

15



ammeZm

Write =XYyZ

From the Pumping Lemma
it must be that length [ Xy|<m, |y[21

m M m

A \Hﬁf_i_—\
xyz_a .aa...aa...ab..bc...cc...c

L
X Y

VA

ThUS: y:ak’ kZl

16



From the Pumping Lemma: X yi Z €L
1=0,1 2,...

Thus: xyOz =Xz €L

17



Xxyz=a"pMc™ y=a%, k>1

From the Pumping Lemma: Xz € L

m-K m 2m
— P
XZ =a...aa...ab..bc..cc..c € L
NN ,
g
X

VA

Thus: am—kmeZm el

18



aMKpMe2m o |

BUT:

L={a"b'c": n,1>0

aMKpMe2m o |

CONTRADICTIONII

19



Therefore:

Conclusion:

Our assumption that L
is a regular language is not true

L is not a reqular language

20



Non-regular languages L =

Regular languages

21



Theorem: The language L :{an! . n>0}

is not regular

nN=1.2---(n=-1)-n

Proof: Use the Pumping Lemma

22



L ={a": n>0}

Assume for contradiction
that L is a regular language

Since L isinfinite
we can apply the Pumping Lemma

23



L ={a": n>0}

Let M be the integer in the Pumping Lemma

Pick a string W such that: w e L

length |W[=m

We pick W= am

24



|
Write a™ = x y Z

From the Pumping Lemma
it must be that length [ Xy|<m, |y[21

M ml—m
ml N N 7 \
XYZ =a —a .dd...dd...dd...dad...d
_ N _J
—— ~
Xy

VA

Thus: yzak, 1<k <m

25



Xyz=a y=a, 1<k<m

From the Pumping Lemma: X yi Z €L
1=0,1 2,...

Thus: xyzz e L

26



xyz=am™ y=a%, 1<k<m

From the Pumping Lemma: X y2 Z e L

myk | mbm
- N A

xyz_a aa..aa..aa..aa.aa.a e L
oI —
Xy y Z

Thus: am!+k =28

27



a e L 1<k<m

There must exist P such that:

mi+k = p!

28



However: m+k <ml+m for m>1
<m-+m!
<mm+m!
=mi(m+1)
=(m+1)!

: |

m+k <(m+1)!

: |

mi+k = p! forany P

29



ml+k = L

1<k <m

BUT:

L ={a": n>0}

CONTRADICTIONII

30



Therefore:

Conclusion:

Our assumption that L
is a regular language is not true

L is not a reqular language

31



Context-Free Languages



Regular Languages
a*b*  (a+b)*




Context-Free Languages

{a"o"} {ww"}

Regular Languages



Context-Free Languages

/N

Context-Free Pushdown
Grammars Automata

stack

automaton <«




Context-Free Grammars



Example

A context-free grammar G: S — aSbh
S—>A

A derivation:

S = aSh = aaSbb = aabb



A context-free grammar G: S — aSbh
S—>A

Another derivation:

S = aSh = aaSbb = aaaSbbb — aaabbhb

7



S — aSh
S—> A

L(G)={a"b" :n>0}



Example

A context-free grammar G: S — adSa
S — bSb

S—o> A

A derivation:

S = aSa = abSba = abba



A context-free grammar G: S — adSa
S — bSb

S—o> A

Another derivation:

S = aSa — abSba = abaSaba = abaaba

10



S > aSa
S —> bSh
S—> A

L(G) = fwwR :

w e{a,b}*}

11



Example

A context-free grammar G: S — aSh
S —SS
S—>A

A derivation:

S =SS = aSbS — abS = ab

12



A context-free grammar G: S — aSh
S —SS
S—>A

A derivation:

S = SS = aSbS = abS — abaSh = abab

13



S — aSh
S >SS
S—> A

L(G)={w :n,(w)=n,(w),
and ng(v) = n,(v)
In any prefix v}

14



Definition: Context-Free Grammars

Grammar G = (\/ T, S P)

Variables Termmal STarT
symbols  variable

Productions of the form:

A — X
Variable String of variables

and terminals

15



G=(,T,S,P)

*

L(G)={w: S=w, weT*}



Definition: Context-Free Languages

A language L is context-free
if and only if

there is a context-free grammar G

with L=L(G)

17



Derivation Order

1. S— AB 2. A— aaA 4. B — Bb
3. Ao A 5. B> A

Leftmost derivation:

1 2 3 4 5
S= AB=—=aaAB— aaB—aaBb—=aab

Rightmost derivation:

1 4 5 2 3
S= AB= ABb= Ab— aaAb—=aab

18



S > aAB
A — bBb

B—>A|A
Leftmost derivation:
S = aAB = abBbB = abAbB = abbBbbB

—> abbbbB = abbbb

Rightmost derivation:
S = aAB = aA = abBb = abAb

—> abbBbb = abbbb

19



Derivation Trees

20



S— AB A—aaA|A B—>Bb|A

S= AB

S)
o



S— AB A—aaA|A B—>Bb|A

S:>AB:>aaAB

/I\ -



S— AB A—aaA|A B—>Bb|A

S = AB — aaAB — aaABb

/@\'
s 5
@/\@ g



S— AB A—aaA|A B—>Bb|A

S=AB= aaAB — aaABb = aaBb

/\\'



S— AB A—aaA|A B—>Bb|A

S= AB—=aaAB= aaABb — aaBb = aab

Derivation Tr'ee \'
/ \

25



S— AB A—aaA|A B—>Bb|A

S = AB = aaAB — aaABb = aaBb = aab
Derivation Tree @

/ |
\ / yield
@) (@ (A
oy

@ aaAAb

B
= aab
o

26



Partial Derivation Trees

S > AB A—>aaA|ll  B->Bb|A

S= AB

Partial derivation tree @

5 e

27



S = AB = aaAB

.

Partial derivation ’rree

/\



sentential

S = AB — aaAB
form

Partial derivation tree @

/
A B

yield
@ @ @ CAAR

29



Sometimes, derivation order doesn't matter

Leftmost:
S = AB — aaAB — aaB — aaBb — aab

Rightmost:
S:>AB:>ABb:Ab:>aaAb:aab

Same derivation tree f

30



Ambiguity



E>E+E | ExE | (E)| a
at+a*xa

@ E—-_E+E—=a+E—=a+E*E
—a+ax*E=>a+a*a

leftmost derivation

32



E>E+E | ExE | (E)| a
at+a*xa

E—-oE+*xE—=E+E*E—=>a+Ex*E g
—a+a*E—=>a+axa

leftmost derivation




E>E+E | ExE | (E)| a
at+a*xa

Two derivation trees




The grammar E—>E+E | E*xE | (E) | @
is ambiguous:

string a+a*a has two derivation trees

35



The grammar E—>E+E | E*xE | (E) | @
is ambiguous:

string a+a*a has two leftmost derivations

E—-DE+E—=a+E—=a+E=*E
—a+a*E—=>a+a*a

E—-oE*xE=E+E*xE—=a+E=*E
—a+a*E=>a+a*a

36



Definition:

A context-free grammar G is ambiguous
if some string We L(G) has:

two or more derivation trees

37



In other words:

A context-free grammar G is ambiguous
if some string We L(G) has:

two or more leftmost derivations

(or rightmost)

38



Why do we care about ambiguity?
d+ad*ad

take a=2

Z?ggggge



@ ) (E)
oy i@







Correct result: 2+2%2=0

42



- Ambiguity is bad for programming languages

+ We want to remove ambiguity

43



We fix the ambiguous grammar:
E->E+E | ExE | (E) | a

New non-ambiguous grammar:

E->E+T
E—>T

T o>Tx*xF

T —>F

F - (E)
F—>a N



E=E+T=T+T=F+T =a+T =a+T*F
—a+F*F=a+a*F=a+a*a

a+a*a
E—>E+T C;P
E>T CEB/ E}D
T 5T *F T @ F
T —>F
F — (E) (E (F <

F —>a (a) (a)

45



Unique derivation tree

d+ax*xa

M

(o @@\
()
=



The grammar G: E S E+T

E—>T
T o>Tx*xF
T —>F
F - (E)

F—a
IS hon-ambiguous:

Every string We L(G) has
a unique derivation tree

47



Another Ambiguous Grammar

IF STMT —> if EXPR then STMT
| if EXPR then STMT else STMT

48



If exprl then if expr2 then stmtl else stmt2
NN

:

W s > > a2

@
(then

S
4



Inherent Ambiguity

Some context free languages
have only ambiguous grammars

Exampi;L:{a”b”cm} v {a"b™c™}
S_)Sl‘SZ Sl—)S]_C‘A Sz-)ﬂSle
A—>aAb|i B->bBc|A

50



The string ab"c"

has two derivation trees

o1



Simplifications
of
Context-Free Grammars



A Substitution Rule

Equivalent
grammar
SA_) a; S—aB|ab
—a
Ay apBe | SUbstitute A — aaA
B—b A — abBc | abbc
B— aA

B — aA
B—ob



A Substitution Rule

S—aB|ab

A — aaA

A — abBc | abbc
B— aA

Substitute
B — aA

S —> 28 | ab| aaA |
A s aaA Equivalent

A—> gbBc|abbc|abaac 94NN



In general:
A — XBz

B—)yl

Substitute
B— Y1

equivalent

A — XBz | xy;z grammar



Nullable Variables

A —production : A—>A

Nullable Variable: A=..=> A



Removing Nullable Variables

Example Grammar:

S —> aMb
M — aMb
M o> A

/

Nullable variable



S — aMb
M — aMb

Final Grammar

S - aMb
Substitute S > ab
M= 4 M — aMb

M — ab



Unit-Productions

Unit Production: A—>B

(a single variable in both sides)



Removing Unit Productions

Observation:

A— A

Is removed immediately



Example Grammar:

S —>aA
A—a
A—B
B—> A
B — bb

10



S > aA
A—> a

B—> A
B —bb

Substitute
A—B

S—>aAlaB
A— a
B— A|B
B — bb

11



Remove

B—>B

S—>aAlaB
A— a
B—> A
B — bb

12



S—aAl|aB
A S—aAlaB|aA
—a Substitute

M B A A—a

3 s bb B—bb

13



Remove repeated productions

Final grammar
S —aA|aB |34 S —aA|aB

A— a mmmm) A—>a
B — bb B —bb

14



Useless Productions

S — aSh
S—o A
S>> A

Useless Production

Some derivations never terminate...

S=>A—=adA— adA—...—aa...aA=—...

15



Another grammar:

S>> A
A — aA
Ao A

Useless Production

Not reachable from S

16



In general: contains only
terminals

I S= .. .=oXAy=> ... =W

\
we L(G)

then variable A is useful

otherwise, variable A is useless

17



A production A — X is useless
if any of its variables is useless

S —asSb
S —> A Productions
Variables useless
useless useless
useless useless

useless

@ useless

o

18



Removing Useless Productions

Example Grammar:

S—aS|A|C
A—a

B — aa
C —->aChb

19



First: find all variables that can produce
strings with only terminals

S >aS|A|C  Roundl: {A B}

S—> A

C — aCb Round 2: {A,B,S}

20



Keep only the variables
that produce terminal symbols: {A,B,S}

(the rest variables are useless)

S —>aS|A[&

A 3 S—aS|A
B - aa — A—a

N B - aa

Remove useless productions

21



Second: Find all variables
reachable from S

Use a Dependency Graph

S—aS|A
A—> a
B — aa not

reachable

22



Keep only the variables

reachable from S
(the rest variables are useless)

Final Grammar
S—>aS|A

A g S—>aS|A

M A— a

Remove useless productions

23



Removing All

Step 1: Remove Nullable Variables
Step 2: Remove Unit-Productions

Step 3: Remove Useless Variables

24



Normal Forms
for
Context-free Grammars

25



Chomsky Normal Form

Each productions has form:

A — BC or A—>a

R

variable variable

|

terminal

26



Examples:

S —> AS S —> AS

S —>a S —>
A — SA A — SA
A—b A—@a
Chomsky Not Chomsky

Normal Form Normal Form

27



Convertion to Chomsky Normal Form

Example: S — ABa
A — aab
B— AC

Not Chomsky
Normal Form

28



Introduce variables for terminals: T,, Ty, I,

S — ABa
A — aab
B—> AC

>

S —> ABT,
A—>T,T,T,
B — AT,
T, —>a

T, —>Db

T, —>cC

29



Introduce intermediate variable: Vj

S — AV]_
S - ABT, Vi o> BT.
A= Talalb A—T,T,T,
5 Al ) B AT,
la—a T, > a
Tb D Tb —Db
T, —>cC

T, —>cC

30



Introduce intermediate variable: V5

%
L V, — BT,
V1= Bla A—T.V
AT, T.T, y _)T‘""TZ
B — AT, —> BZ_)Aib
T, >a ¢
T, —>a
Tb —)b
Tb —)b
T, —>cC

T. —>cC .



Final grammar in Chomsky Normal Form:

S —> AV,
Vi — BT,
N A—>T,.V,
Initial grammar V, >T.T,
S — ABa B — AT,
A — aab T, >a
B— AcC T, —>b

T. —>cC

32



In general:

From any context-free grammar
(which doesn't produce 1)
not in Chomsky Normal Form

we can obtain:
An equivalent grammar
in Chomsky Normal Form

33



The Procedure
First remove:
Nullable variables

Unit productions

34



Then, for every symbol a:

Add production T, —>a

In productions: replace a with T,

New variable: T,

35



Replace any production A — C,C,---C,

with A — C]_Vl
Vl —> C2V2

V2 = C 4G

New intermediate variables: V1’V2’ ---’Vn—2

36



Theorem:

For any context-free grammar
(which doesn't produce /] )
there is an equivalent grammar
in Chomsky Normal Form

37



Observations

» Chomsky normal forms are good
for parsing and proving theorems

» It is very easy to find the Chomsky normal
form for any context-free grammar

38



Pushdown Automata
PDAs



Pushdown Automaton -- PDA

Input String

Stack
\ 4
States
‘ ‘ < >
Oy O




Initial Stack Symbol

Stack

stack

head \

bottom
special symbol




The States

Input Pop Push
symbol symbol symbol

NS
@a,b—>c




input l

@a,b—>c

stack

— 1
P Replace>

AT T

& D> O




<3£> a,)i—»ca‘ng’

input l
a
stack
b l— +
h °P Push )
e
$

AR DS T O




<3£> a,t)—»,%4‘!’

input l

stack



input l

(GiD>a,;%—9u&4c!’

stack

“ top
No Change

AT T

- lindieoy




1

A Possible Transition

@ a,$—>/1

«—

ut

stack
$ <« Top

Pop )

d

empty

L ]

47




1

u’rl

A Bad Transition

@ a,b—>C

d

Empty stack

L ]

47

) HALT

The automaton Halts in state (1
and Rejects the input string

10



1

u’rl

A Bad Transition

@ a,/1—>c

d

Empty stack

L ]

47

) HALT

The automaton Halts in state (1
and Rejects the input string

11



No transition is allowed to be followed
When the stack is empty

@ X,y—)Z

Empty stack

L ]
47

12



1

@ a,$—>b

«—

ut

A Good Transition

stack
$ <« Top

Pop )

13



a

=

Non-Determinism

, b—>cC
/'

@i, b—)C

a,bXA A —transition

These are allowed transitions in a
Non-deterministic PDA (NPDA)

14



NPDA: Non-Deterministic PDA

Example:

a, 1l—a bha—> A

ﬂ,l—)ﬁ@b,a—)/lgl,$—>$




Execution Example: Time O

Input
aj/aj/a|b|bl|b
| 81
Stack
current a, 1l—a bha—> A

state
*<:E»)L,l>2§§é;2b,a:»2K§%;;)L359334‘!”



Time 1

Input

Stack







IHPUT a «——
a aj/a/ bbb d
T $







Time b

Input 3 ke
aa a b|b|b a
| $

Stack

a, l—a bha—> A

z,zez%gzﬁ—ﬁ




Time 6

Input
a aj/a/ bbb a <«
f $
Stack
a, 1L —a

CE’,1PZ>ZE£%£%1619



Input

a, 1L —a

CE’,1PZ>ZE£%£%1619




Input

a, l—a bha—> A

%§!5y1,2,>}5§é;2b,a:>2,




A string is accepted if there is
a computation such that:

All the input is consumed
AND
The last state is a final state

At the end of the computation,
we do not care about the stack contents

25



The input string aaabbb
is accepted by the NPDA:

a,l—a bha—> A

Z,ﬁ—)i@b,aﬁﬂgl,$—>$




In general,

L={a"b" :n>0}

is the language accepted by the NPDA:

a,l—a bha—> A

Z,ﬂ—)i@b,a—)igl,$—>$




Another NPDA example

NPDA M
R
L(M) ={ww"}
a, A —a a,a—A
b, A —>Db b,b— A

AV

1,3—>% @



Execution Example:  Time 0

Input
a blb|a
| -
Stack
a, L —a a,a—>A
b, A —>Db b b—> A4

A A A ‘2 $—-9% CE’



Time 1

Input
d| b | b|a
T $
Stack
a,a—>A
b A—Db b b —> A

WE YR z,$—>$ (@) 30



Time 2

a
$
Stack
a,a—>A
b,b—> A




Time 3

Input
ajp|bja Guess the middle d
T of string $
Stack
a, L —a aa—>A~
b, /1 —b b,b—> 1

m Ql$—>$ @

h [«—



Time 4




Time b

Input
alb| b|a
T §
Stack
a, l—a
b, L —>D bb—>/1

<§%ﬁ%),l,ﬂ,>,% <§;3;)11 $—-9% CE,



Time 6

Input
ad b|b|a
| §
Stack
a, A —a a,a—A
b, A —Db b,b—> 1

<:’:7 <:’:7 accept
A, A=A m‘



Rejection Example:  Time O

Input
a bbb
T §
Stack
a, A —a a,a—A
b, A —Db bb—>/1

A A A Z$—>$ @



Time 1

Input
a bbb
T $
Stack
a,a—A
b A—Db b b —> A

WE YR z,$—>$ (@) 37



Time 2




Time 3

Input
ajp|b|b Guess the middle d
T of string $
Stack
a, L —a aa—>A~
b, /1 —b b,b—> 1

m Ql$—>$ @

h [«—



Time 4




Time b

Input There is no possible transition.
al/b|b b| Inputisnot 3 e
T consumed $
Stack
a, l—a aa—A
b, ﬂ/ —> b b’ b — l

H(@]A,z—m (@zzﬁ—ﬁ (@) 41



Another computation on same string:

Input Time O

al'b|b|b
| § [
a1 a o 8 Stack
b, —>b bb—>/1

A A A l$—>$ @



Time 1

Input
a bbb
T $
Stack
a,a—A
b A—Db b b —> A

WE YR z,$—>$ (@) 43



Time 2




Time 3

b
b
a
$
Stack
a,a—>A
b,b—> A




Time 4 b

b

b

a

$

Stack

a,a—>A
b,b—> A




Time 5 b

b

Input No final state .

a b|b|b| isreached 3

| $

Stack

a, L —a a,a—>A
b, /1 —Db bb—> A

m Ql$—>$ ‘



There is no computation
that accepts string abbb

abbb ¢ L(M)
a, 1l—a aa—>A~
b, A —Db b,b—> 1

AV

4,359 ‘



A string is rejected if there is
no computation such that:

All the input is consumed
AND
The last state is a final state

At the end of the computation,
we do not care about the stack contents

49



In other words, a string is rejected
if in every computation with this string:

The input cannot be consumed
OR

The input is consumed and the last
state is not a final state

OR

The stack head moves below the
bottom of the stack

50



Another NPDA example
NPDA M

L(M) ={w: we{a,b},n_>n_for any prefix of w}

a, A—a
b,a—> A
bh,$—> 1

o1



Execution Example:

Input

d

d

Time O

a, A—a
b,a—> A
bh,$—> 1

Stack

52



Time 1
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Time 2

54



—>

Time 3

a, A—a

b,$ > A

accept

Stack
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Rejection example:

Input

d

b

Time O

Stack

56



Time 1

S7



Input

Time 2

a, A—a

b,$ > A

Stack
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Time 3

59



Input

Time 4

a, A—a
b,a—> A
bh,$—> 1

Stack

Halt and Reject
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Pushing Strings

Input Pop
symbol symbol
@ a, b—->w

61



Example:

input l

@a, b— cdf

stack

« TOP

&R0 5T

Push[>>

pushed

A D> | O

"~ string
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Another NPDA example
NPDA M

L(M) ={w: ng=ny}

,$—>05 b$—o1%
a,0—->00 Db1l1-o11
a,l1—> A bh,0—> A

HQ 1,$—>9% »
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Execution Example:  Time O
Input

a b/ blala|b

2, 3—>0% b $->19
a,0—->00 Db1->11
a,1l>14 Db 0—->A

current
state ; 1,$—>9%

64



Time 1
Input

b, $—>1%
a,0—->00 Db1l1-o11
a,l1—> A bh,0—> A

1,$—>9
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Time 3

Input
a'b|b blala
$ «—
,$—>0% b $—-1% Stack

a,0—->00 Db1l1-o11

a,l1-> A4 4‘!'!'!'!’»
0 1,$—>9% 4‘!’,

66



Time 4
Input

a'b|b/  bla]a
|

3,$—>0% b$—-1%
a,0—->00 Db1l1-o11
a,l1—> A bh,0—> A

1,$—>9
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Input

Time b

b

T

a,$— 0%
a,0—00
a,l1—-> A

b,$—>1%
e

bh,0—> A

1,$—>9% 4‘!”



Input

Time 6

alb | b|b|a

T

,$—>0% b IF—o1%
a,0—->00 Db1l1-o11

b, 0—> A

1,$—>9
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Time /

Input

al'b|b|b|ala

T

,$—>0% b IF—o1%
a,0—->00 Db1l1-o11

b, 0—> A

1,$—>9

70



Time 8

Input
al'b|b|b|ala
,$—>05 b 1% ol
A DA Stack

a,0—->00 Db1l1-o11
a,l1—> A bh,0—> A

accept

71



Formalities for NPDAs

72



@a, b—)W

Transition function:

0 (G, a,0) ={(d2, W)}

73



a,b—>/W'

Transition function:

o(qp,a,b) ={(gz,w), (g3, w)}



Formal Definition

Nonh-Deterministic Pushdown Automaton
NPDA

M=(Q,2T,3qy, 2 F)

N Final
States / \s’ra’res
Input Stack
alphabet

Transition Tnitial start
Stack function symbol
alphabet state Y

75



Instantaneous Description

Current
state

AN

Remaining
input

Current
stack
contents

76



Example:

Time 4.

Instantaneous Description

(g;,bbb, aaa$)

Input




Example: Instantaneous Description

(9,,bb,aa$)
Time 5: Input —{ a
alalalbl!blb a
T $
al—a ba—A Stack

z,z»z@@@zﬁ—ﬁ



We write:

(g;,bbb,aaa$) > (g,,bb,aa$)

Time 4 Time b
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A computation:

(qg,aaabbb,$) > (g;,aaabbb,$) >
(g;,aabbb, a$) - (g;,abbb,aa$) > (g;,bbb,aaa$) -
(d2,bb,aad) > (gz,b,a3) > (02, 4,3) > (43, 4,9)

a, 1l—a bha—> A

ﬂ,ﬁ—)ﬂg b,aexlgﬂ,$—>$




(qg,aaabbb,$) > (g;,aaabbb,$) >
(g;,aabbb, a$) - (g;,abbb,aa$) > (g;,bbb,aaa$) -
(d2,bb,aad) > (gz,b,a3) > (02, 4,3) > (43, 4,9)

For convenience we write:

(gg,aaabbb,$) > (qgz,41,9)

81



Formal Definition

Language L(M) of NPDA M:

L(M)=w: (qg,W,s) > (df,4,8)}

S\

Initial state Final state

82



Example:

(gg,aaabbb,$) > (g3,4,%)

|

aaabbb e L(M)

NPDA M:

a, l—a bha—> A

A,ﬂ—)ig b,a—>l@ﬁ,$—>$




(qg.a"b",$) > (03,4.$)

|

a'b" e L(M)
NPDA M:

a, l—a bha—> A

A,ﬂ—)lg b,a—>i@ﬁ,$—>$




Therefore:  L(M)={a"b" :n>0}

NPDA M.

a, 1L—a b,a—> A

A,ﬂ—)ig b,a—>l@ﬁ,$—>$
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