Elementary Particles and their Effect on the Evolution of Modern Physics

Mudhafar Jasim Sahib

Department of Physics, College of Education for Pure Science\Ibn AL-Haitham, University of Baghdad

Introduction

One of the primary goals in modern physics is to answer the question: "What is the Universe made of?". Often that question reduces to "What is matter and what holds it together?".

In particle physics, an elementary particle or fundamental particle is a particle whose substructure is unknown. Thus, it is unknown whether it is composed of other particles.

Today, more than 2000 hadron species have been discovered.

Timeline of particle discoveries

The inclusion criteria are:

- * Elementary particles from the Standard Model.
- * Antiparticles which were historically important to the development of particle physics, specifically the positron and antiproton.
- * Composite particles which were the first particle discovered containing a particular elementary constituent, or whose discovery was critical to the understanding of particle physics.

Time	Event
1895	X-ray produced by Wilhelm Röntgen (later identified as photons)
1897	Electron discovered by J. J. Thomson
1899	Alpha particle discovered by Ernest Rutherford in uranium radiation
1900	Gamma ray (a high-energy photon) discovered by Paul Villard in uranium
1900	decay
1911	Atomic nucleus identified by Ernest Rutherford, based on scattering
1711	observed by Hans Geiger and Ernest Marsden
1919	Proton discovered by Ernest Rutherford
1932	Neutron discovered by James Chadwick (predicted by Rutherford in 1920)
1932	Antielectron (or positron), the first antiparticle, discovered by Carl D.

Muon (or mu lepton) discovered by Seth Neddermeyer, Carl D. Anderson, J.C. Street, and E.C. Stevenson, using cloud chamber measurements of cosmic rays (it was mistaken for the pion until 1947)1947Pion (or pi meson) discovered by C. F. Powell's group (predicted by Hideki Yukawa in 1935)1947Kaon (or K meson), the first strange particle, discovered by George Dixon Rochester and Clifford Charles Butler1955Antiproton discovered by Owen Chamberlain, Emilio Segrè, Clyde Wiegand, and Thomas Ypsilantis1956Electron antineutrino detected by Frederick Reines and Clyde Cowan (proposed by Wolfgang Pauli in 1930 to explain the apparent violation of energy conservation in beta decay) At the time it was simply referred to as <i>neutrino</i> since there was only one known neutrino.1962Muon neutrino (or mu neutrino) shown to be distinct from the electron neutrino by a group headed by Leon Lederman1964Xi baryon discovery at Brookhaven National Laboratory1975Partons (internal constituents of hadrons) observed in deep inelastic scattering experiments between protons and electrons at SLAC; this was1969eventually associated with the quark model (predicted by Murray Gell-Mann and George Zweig in 1964) and thus constitutes the discovery of the up quark, down quark, and strange quark.1977Upsilon meson discovered at Fermilab, demonstrating the existence of the bottom quark (proposed by Kobayashi and Maskawa in 1973)1979Gluon observed indirectly in three-jet events at DESY W and Z bosons discovered by Carlo Rubbia, Simon van der Meer, and the CERN UA1 collaboration (predicted in detail by Sheldon Glashow, Abdus Salam, and Steven Weinberg)1995Top quark discovered at Fermilab<		Anderson (proposed by Paul Dirac in 1927 and by Ettore Majorana in 1928)
1937J.C. Street, and E.C. Stevenson, using cloud chamber measurements of cosmic rays (it was mistaken for the pion until 1947)1947Pion (or pi meson) discovered by C. F. Powell's group (predicted by Hideki Yukawa in 1935)1947Kaon (or K meson), the first strange particle, discovered by George Dixon Rochester and Clifford Charles Butler1955Antiproton discovered by Owen Chamberlain, Emilio Segrè, Clyde Wiegand, and Thomas Ypsilantis1956Electron antineutrino detected by Frederick Reines and Clyde Cowan (proposed by Wolfgang Pauli in 1930 to cxplain the apparent violation of energy conservation in beta decay) At the time it was simply referred to as <i>neutrino</i> since there was only one known neutrino.1964Xi baryon discovery at Brookhaven National Laboratory1975Partons (internal constituents of hadrons) observed in deep inclastic scattering experiments between protons and electrons at SLAC; this was eventually associated with the quark model (predicted by Murray Gell-Mann and George Zweig in 1964) and thus constitutes the discovery of the up quark, down quark, and strange quark.1977Tau discovered by a group headed by Martin Per Upsilon meson discovered by Calo Rubbia, Simon van der Meer, and the bottom quark (proposed by Kobayashi and Maskawa in 1973)1979Gluon observed indirectly in three-jet events at DESY W and Z bosons discovered by Calo Rubbia, Simon van der Meer, and the CERN UA1 collaboration (predicted in detail by Sheldon Glashow, Abdus Salam, and Steven Weinberg)1995Top quark discovered at Fermilab1995Antihydrogen produced and measured by the LEAR experiment at CERN 20002010Tau neutrino first observed directly at Fermilab<		Muon (or mu lepton) discovered by Seth Neddermeyer, Carl D. Anderson,
cosmic rays (it was mistaken for the pion until 1947)1947Pion (or pi meson) discovered by C. F. Powell's group (predicted by Hideki Yukawa in 1935)1947Kaon (or K meson), the first strange particle, discovered by George Dixon Rochester and Clifford Charles Butler1955Antiproton discovered by Owen Chamberlain, Emilio Segrè, Clyde Wiegand, and Thomas Ypsilantis1955Electron antineutrino detected by Frederick Reines and Clyde Cowan (proposed by Wolfgang Pauli in 1930 to explain the apparent violation of energy conservation in beta decay) At the time it was simply referred to as <i>neutrino</i> since there was only one known neutrino.1962Muon neutrino (or mu neutrino) shown to be distinct from the electron neutrino by a group headed by Leon Lederman1964Xi baryon discovery at Brookhaven National Laboratory1975Partons (internal constituents of hadrons) observed in deep inelastic scattering experiments between protons and clectrons at SLAC; this was eventually associated with the quark model (predicted by Murray Gell-Mann and George Zweig in 1964) and thus constitutes the discovery of the up quark, down quark, and strange quark.1977Tau discovered by a group headed by Martin Per1978Gluon observed indirectly in three-jet events at DESY1979Gluon observed indirectly in three-jet events at DESY1985Yand X bosons discovered by Calo Rubbia, Simon van der Meer, and the Detay and and Steven Weinberg)1995Top quark discovered at Fermilab1995Top quark discovered at Fermilab1995Antihydrogen produced and measured by the LEAR experiment at CERN to be discovered by the experiment2011 <td>1937</td> <td>J.C. Street, and E.C. Stevenson, using cloud chamber measurements of</td>	1937	J.C. Street, and E.C. Stevenson, using cloud chamber measurements of
1947Pion (or pi meson) discovered by C. F. Powell's group (predicted by Hideki Yukawa in 1935)1947Kaon (or K meson), the first strange particle, discovered by George Dixon Rochester and Clifford Charles Butler1955Antiproton discovered by Owen Chamberlain, Emilio Segrè, Clyde Wiegand, and Thomas Ypsilantis1956Electron antineutrino detected by Frederick Reines and Clyde Cowan (proposed by Wolfgang Pauli in 1930 to explain the apparent violation of energy conservation in beta decay) At the time it was simply referred to as <i>neutrino</i> since there was only one known neutrino.1962Muon neutrino (or mu neutrino) shown to be distinct from the electron neutrino by a group headed by Leon Lederman1964Xi baryon discovery at Brookhaven National Laboratory1965Partons (internal constituents of hadrons) observed in deep inelastic scattering experiments between protons and electrons at SLAC; this was eventually associated with the quark model (predicted by Murray Gell-Mann and George Zweig in 1964) and thus constitutes the discovery of the up quark, down quark, and strange quark.1977Upsilon meson discovered at Fermilab, demonstrating the existence of the bottom quark (proposed by Kobayashi and Maskawa in 1973)1979Gluon observed indirectly in three-jet events at DESY W and Z bosons discovered by Carlo Rubbia, Simon van der Meer, and the CERN UA1 collaboration (predicted in detail by Sheldon Glashow, Abdus Salam, and Steven Weinberg)1995Top quark discovered at Fermilab1995Antihydrogen produced and measured by the LEAR experiment at CERN 20102010Tau neutrino first observed directly at Fermilab2021Antihelium-4 produced and meas		cosmic rays (it was mistaken for the pion until 1947)
 Yukawa in 1935) Yukawa in 1935) Kaon (or K meson), the first strange particle, discovered by George Dixon Rochester and Clifford Charles Butler Antiproton discovered by Owen Chamberlain, Emilio Segrè, Clyde Wiegand, and Thomas Ypsilantis Electron antineutrino detected by Frederick Reines and Clyde Cowan (proposed by Wolfgang Pauli in 1930 to explain the apparent violation of energy conservation in beta decay) At the time it was simply referred to as <i>neutrino</i> since there was only one known neutrino. Muon neutrino (or mu neutrino) shown to be distinct from the electron neutrino by a group headed by Leon Lederman Xi baryon discovery at Brookhaven National Laboratory Partons (internal constituents of hadrons) observed in deep inelastic scattering experiments between protons and electrons at SLAC; this was eventually associated with the quark model (predicted by Murray Gell-Mann and George Zweig in 1964) and thus constitutes the discovery of the up quark, down quark, and strange quark. Tau discovered by a group headed by Martin Per Upsilon meson discovered at Fermilab, demonstrating the existence of the bottom quark (proposed by Kobayashi and Maskawa in 1973) Gluon observed indirectly in three-jet events at DESY W and Z bosons discovered by Carlo Rubbia, Simon van der Meer, and the CERN UA1 collaboration (predicted in detail by Sheldon Glashow, Abdus Salam, and Steven Weinberg) Top quark discovered at Fermilab Antihydrogen produced and measured by the LEAR experiment at CERN Antihelium-4 produced and measured by the STAR detector; the first particle to be discovered by the experiment A particle exhibiting most of the predicted characteristics of the Higgs boson discovered by the experiment at CERN's Large Hadron Collider 	10/7	Pion (or pi meson) discovered by C. F. Powell's group (predicted by Hideki
1947Kaon (or K meson), the first strange particle, discovered by George Dixon Rochester and Clifford Charles Butler1955Antiproton discovered by Owen Chamberlain, Emilio Segrè, Clyde Wiegand, and Thomas Ypsilantis1956Electron antineutrino detected by Frederick Reines and Clyde Cowan (proposed by Wolfgang Pauli in 1930 to explain the apparent violation of energy conservation in beta decay) At the time it was simply referred to as <i>neutrino</i> since there was only one known neutrino.1962Muon neutrino (or mu neutrino) shown to be distinct from the electron neutrino by a group headed by Leon Lederman1964Xi baryon discovery at Brookhaven National Laboratory1965Partons (internal constituents of hadrons) observed in deep inelastic scattering experiments between protons and electrons at SLAC; this was eventually associated with the quark model (predicted by Murray Gell-Mann and George Zweig in 1964) and thus constitutes the discovery of the up quark, down quark, and strange quark.1977Upsilon meson discovered at Fermilab, demonstrating the existence of the bottom quark (proposed by Kobayashi and Maskawa in 1973)1979Gluon observed indirectly in three-jet events at DESY1985Xand Z bosons discovered by Carlo Rubbia, Simon van der Meer, and the CERN UA1 collaboration (predicted in detail by Sheldon Glashow, Abdus Salam, and Steven Weinberg)1995Top quark discovered at Fermilab1995Antihydrogen produced and measured by the LEAR experiment at CERN to be discovered by the experiment2001Tau neutrino first observed directly at Fermilab2012Antihelium-4 produced and measured by the STAR detector; the first particle to be discovered by	1747	Yukawa in 1935)
 Rochester and Clifford Charles Butler Antiproton discovered by Owen Chamberlain, Emilio Segrè, Clyde Wiegand, and Thomas Ypsilantis Electron antineutrino detected by Frederick Reines and Clyde Cowan (proposed by Wolfgang Pauli in 1930 to explain the apparent violation of energy conservation in beta decay) At the time it was simply referred to as <i>neutrino</i> since there was only one known neutrino. Muon neutrino (or mu neutrino) shown to be distinct from the electron neutrino by a group headed by Leon Lederman Xi baryon discovery at Brookhaven National Laboratory Partons (internal constituents of hadrons) observed in deep inelastic scattering experiments between protons and electrons at SLAC; this was eventually associated with the quark model (predicted by Murray Gell-Mann and George Zweig in 1964) and thus constitutes the discovery of the up quark, down quark, and strange quark. Tau discovered by a group headed by Martin Per Upsilon meson discovered at Fermilab, demonstrating the existence of the bottom quark (proposed by Kobayashi and Maskawa in 1973) Gluon observed indirectly in three-jet events at DESY W and Z bosons discovered by Carlo Rubbia, Simon van der Meer, and the CERN UA1 collaboration (predicted in detail by Sheldon Glashow, Abdus Salam, and Steven Weinberg) Top quark discovered at Fermilab Antihydrogen produced and measured by the LEAR experiment at CERN Antihelium-4 produced and measured by the STAR detector; the first particle to be discovered by the experiment A particle exhibiting most of the predicted characteristics of the Higgs boson discovered by researchers conducting the Compact Muon Solenoid and ATLAS experiments at CERN's Large Hadron Collider 	1947	Kaon (or K meson), the first strange particle, discovered by George Dixon
1955Antiproton discovered by Owen Chamberlain, Emilio Segrè, Clyde Wiegand, and Thomas Ypsilantis1956Electron antineutrino detected by Frederick Reines and Clyde Cowan (proposed by Wolfgang Pauli in 1930 to explain the apparent violation of energy conservation in beta decay) At the time it was simply referred to as <i>neutrino</i> since there was only one known neutrino.1962Muon neutrino (or mu neutrino) shown to be distinct from the electron neutrino by a group headed by Leon Lederman1964Xi baryon discovery at Brookhaven National Laboratory1965Partons (internal constituents of hadrons) observed in deep inelastic scattering experiments between protons and electrons at SLAC; this was eventually associated with the quark model (predicted by Murray Gell-Mann and George Zweig in 1964) and thus constitutes the discovery of the up quark, down quark, and strange quark.1975Tau discovered by a group headed by Matrin Per1977Upsilon meson discovered at Fermilab, demonstrating the existence of the bottom quark (proposed by Kobayashi and Maskawa in 1973)1979Gluon observed indirectly in three-jet events at DESY1983CERN UA1 collaboration (predicted in detail by Sheldon Glashow, Abdus Salam, and Steven Weinberg)1995Top quark discovered at Fermilab1995Antihydrogen produced and measured by the LEAR experiment at CERN to be discovered by the experiment2011Antihelium-4 produced and measured by the STAR detector; the first particle to be discovered by the experiment2012A particle exhibiting most of the predicted characteristics of the Higgs boson discovered by researchers conducting the Compact Muon Solenoid and ATLAS experiments at CE	1)+/	Rochester and Clifford Charles Butler
and Thomas Ypsilantis 1956 and Thomas Ypsilantis Electron antineutrino detected by Frederick Reines and Clyde Cowan (proposed by Wolfgang Pauli in 1930 to explain the apparent violation of energy conservation in beta decay) At the time it was simply referred to as <i>neutrino</i> since there was only one known neutrino. 1962 Muon neutrino (or mu neutrino) shown to be distinct from the electron neutrino by a group headed by Leon Lederman 1964 Xi baryon discovery at Brookhaven National Laboratory Partons (internal constituents of hadrons) observed in deep inelastic scattering experiments between protons and electrons at SLAC; this was eventually associated with the quark model (predicted by Murray Gell-Mann and George Zweig in 1964) and thus constitutes the discovery of the up quark, down quark, and strange quark. 1975 Tau discovered by a group headed by Martin Per 1977 Upsilon meson discovered at Fermilab, demonstrating the existence of the bottom quark (proposed by Kobayashi and Maskawa in 1973) 1979 Gluon observed indirectly in three-jet events at DESY W and Z bosons discovered by Carlo Rubbia, Simon van der Meer, and the CERN UA1 collaboration (predicted in detail by Sheldon Glashow, Abdus Salam, and Steven Weinberg) 1995 Top quark discovered at Fermilab 1995 Antihydrogen produced and measured by the LEAR experiment at CERN 2000 Tau neutrino first observed directly at Fermilab 2011 to	1955	Antiproton discovered by Owen Chamberlain, Emilio Segrè, Clyde Wiegand,
Electron antineutrino detected by Frederick Reines and Clyde Cowan (proposed by Wolfgang Pauli in 1930 to explain the apparent violation of energy conservation in beta decay) At the time it was simply referred to as <i>neutrino</i> since there was only one known neutrino.1962Muon neutrino (or mu neutrino) shown to be distinct from the electron neutrino by a group headed by Leon Lederman1964Xi baryon discovery at Brookhaven National Laboratory1965Partons (internal constituents of hadrons) observed in deep inelastic scattering experiments between protons and electrons at SLAC; this was eventually associated with the quark model (predicted by Murray Gell-Mann and George Zweig in 1964) and thus constitutes the discovery of the up quark, down quark, and strange quark.1975Tau discovered by a group headed by Martin Per1977Upsilon meson discovered at Fermilab, demonstrating the existence of the bottom quark (proposed by Kobayashi and Maskawa in 1973)1979Gluon observed indirectly in three-jet events at DESY1983Xi and Z bosons discovered by Carlo Rubbia, Simon van der Meer, and the CERN UA1 collaboration (predicted in detail by Sheldon Glashow, Abdus Salam, and Steven Weinberg)1995Top quark discovered at Fermilab1995Antihydrogen produced and measured by the LEAR experiment at CERN2000Tau neutrino first observed directly at Fermilab2011A particle exhibiting most of the predicted characteristics of the Higgs boson discovered by the experiment	1755	and Thomas Ypsilantis
1956(proposed by Wolfgang Pauli in 1930 to explain the apparent violation of energy conservation in beta decay) At the time it was simply referred to as <i>neutrino</i> since there was only one known neutrino.1962Muon neutrino (or mu neutrino) shown to be distinct from the electron neutrino by a group headed by Leon Lederman1964Xi baryon discovery at Brookhaven National Laboratory1965Partons (internal constituents of hadrons) observed in deep inelastic scattering experiments between protons and electrons at SLAC; this was eventually associated with the quark model (predicted by Murray Gell-Mann and George Zweig in 1964) and thus constitutes the discovery of the up quark, down quark, and strange quark.1975Tau discovered by a group headed by Martin Per1977Upsilon meson discovered at Fermilab, demonstrating the existence of the bottom quark (proposed by Kobayashi and Maskawa in 1973)1979Gluon observed indirectly in three-jet events at DESY1983W and Z bosons discovered by Carlo Rubbia, Simon van der Meer, and the CERN UA1 collaboration (predicted in detail by Sheldon Glashow, Abdus Salam, and Steven Weinberg)1995Top quark discovered at Fermilab2000Tau neutrino first observed directly at Fermilab2011Antihelium-4 produced and measured by the STAR detector; the first particle to be discovered by the experiment2012A particle exhibiting most of the predicted characteristics of the Higgs boson discovered by researchers conducting the Compact Muon Solenoid and ATLAS experiments at CERN's Large Hadron Collider		Electron antineutrino detected by Frederick Reines and Clyde Cowan
1960energy conservation in beta decay) At the time it was simply referred to as neutrino since there was only one known neutrino.1961Muon neutrino (or mu neutrino) shown to be distinct from the electron neutrino by a group headed by Leon Lederman1962Muon neutrino cor mu neutrino) shown to be distinct from the electron neutrino by a group headed by Leon Lederman1964Xi baryon discovery at Brookhaven National Laboratory1965Partons (internal constituents of hadrons) observed in deep inelastic scattering experiments between protons and electrons at SLAC; this was eventually associated with the quark model (predicted by Murray Gell-Mann and George Zweig in 1964) and thus constitutes the discovery of the up quark, down quark, and strange quark.1975Tau discovered by a group headed by Martin Per1977Upsilon meson discovered at Fermilab, demonstrating the existence of the bottom quark (proposed by Kobayashi and Maskawa in 1973)1979Gluon observed indirectly in three-jet events at DESY1983W and Z bosons discovered by Carlo Rubbia, Simon van der Meer, and the CERN UA1 collaboration (predicted in detail by Sheldon Glashow, Abdus Salam, and Steven Weinberg)1995Antihydrogen produced and measured by the LEAR experiment at CERN2000Tau neutrino first observed directly at Fermilab2011Antihelium-4 produced and measured by the STAR detector; the first particle to be discovered by the experiment2012A particle exhibiting most of the predicted characteristics of the Higgs boson discovered by researchers conducting the Compact Muon Solenoid and ATLAS experiments at CERN's Large Hadron Collider	1956	(proposed by Wolfgang Pauli in 1930 to explain the apparent violation of
neutrino1962Muon neutrino (or mu neutrino) shown to be distinct from the electron neutrino by a group headed by Leon Lederman1964Xi baryon discovery at Brookhaven National Laboratory1964Xi baryon discovery at Brookhaven National Laboratory1964Partons (internal constituents of hadrons) observed in deep inelastic scattering experiments between protons and electrons at SLAC; this was1969eventually associated with the quark model (predicted by Murray Gell-Mann and George Zweig in 1964) and thus constitutes the discovery of the up quark, down quark, and strange quark.1975Tau discovered by a group headed by Martin Per1977Upsilon meson discovered at Fermilab, demonstrating the existence of the bottom quark (proposed by Kobayashi and Maskawa in 1973)1979Gluon observed indirectly in three-jet events at DESY1983W and Z bosons discovered by Carlo Rubbia, Simon van der Meer, and the CERN UA1 collaboration (predicted in detail by Sheldon Glashow, Abdus Salam, and Steven Weinberg)1995Antihydrogen produced and measured by the LEAR experiment at CERN2000Tau neutrino first observed directly at Fermilab2011Antihelium-4 produced and measured by the STAR detector; the first particle to be discovered by the experiment2012A particle exhibiting most of the predicted characteristics of the Higgs boson discovered by researchers conducting the Compact Muon Solenoid and ATLAS experiments at CERN's Large Hadron Collider	1700	energy conservation in beta decay) At the time it was simply referred to as
1962Muon neutrino (or mu neutrino) shown to be distinct from the electron neutrino by a group headed by Leon Lederman1964Xi baryon discovery at Brookhaven National Laboratory1964Xi baryon discovery at Brookhaven National Laboratory1964Partons (internal constituents of hadrons) observed in deep inelastic scattering experiments between protons and electrons at SLAC; this was eventually associated with the quark model (predicted by Murray Gell-Mann and George Zweig in 1964) and thus constitutes the discovery of the up quark, down quark, and strange quark.1975Tau discovered by a group headed by Martin Per1977Upsilon meson discovered at Fermilab, demonstrating the existence of the bottom quark (proposed by Kobayashi and Maskawa in 1973)1979Gluon observed indirectly in three-jet events at DESY1983W and Z bosons discovered by Carlo Rubbia, Simon van der Meer, and the CERN UA1 collaboration (predicted in detail by Sheldon Glashow, Abdus Salam, and Steven Weinberg)1995Antihydrogen produced and measured by the LEAR experiment at CERN2000Tau neutrino first observed directly at Fermilab2011Antihelium-4 produced and measured by the STAR detector; the first particle to be discovered by the experiment2012A particle exhibiting most of the predicted characteristics of the Higgs boson discovered by researchers conducting the Compact Muon Solenoid and ATLAS experiments at CERN's Large Hadron Collider		<i>neutrino</i> since there was only one known neutrino.
1962neutrino by a group headed by Leon Lederman1964Xi baryon discovery at Brookhaven National Laboratory1964Partons (internal constituents of hadrons) observed in deep inelastic scattering experiments between protons and electrons at SLAC; this was1969eventually associated with the quark model (predicted by Murray Gell-Mann and George Zweig in 1964) and thus constitutes the discovery of the up quark, down quark, and strange quark.1975Tau discovered by a group headed by Martin Per1977Upsilon meson discovered at Fermilab, demonstrating the existence of the bottom quark (proposed by Kobayashi and Maskawa in 1973)1979Gluon observed indirectly in three-jet events at DESY1983CERN UA1 collaboration (predicted in detail by Sheldon Glashow, Abdus Salam, and Steven Weinberg)1995Antihydrogen produced and measured by the LEAR experiment at CERN2000Tau neutrino first observed directly at Fermilab2011Antihelium-4 produced and measured by the STAR detector; the first particle to be discovered by the experiment2012A particle exhibiting most of the predicted characteristics of the Higgs boson discovered by researchers conducting the Compact Muon Solenoid and ATLAS experiments at CERN's Large Hadron Collider	1962	Muon neutrino (or mu neutrino) shown to be distinct from the electron
1964Xi baryon discovery at Brookhaven National Laboratory1964Partons (internal constituents of hadrons) observed in deep inelastic scattering experiments between protons and electrons at SLAC; this was eventually associated with the quark model (predicted by Murray Gell-Mann and George Zweig in 1964) and thus constitutes the discovery of the up quark, down quark, and strange quark.1975Tau discovered by a group headed by Martin Per Upsilon meson discovered at Fermilab, demonstrating the existence of the bottom quark (proposed by Kobayashi and Maskawa in 1973)1979Gluon observed indirectly in three-jet events at DESY1983W and Z bosons discovered by Carlo Rubbia, Simon van der Meer, and the CERN UA1 collaboration (predicted in detail by Sheldon Glashow, Abdus Salam, and Steven Weinberg)1995Top quark discovered at Fermilab2000Tau neutrino first observed directly at Fermilab2011Antihelium-4 produced and measured by the STAR detector; the first particle to be discovered by the experiment2012A particle exhibiting most of the predicted characteristics of the Higgs boson discovered by researchers conducting the Compact Muon Solenoid and ATLAS experiments at CERN's Large Hadron Collider	1702	neutrino by a group headed by Leon Lederman
Partons (internal constituents of hadrons) observed in deep inelastic scattering experiments between protons and electrons at SLAC; this was1969eventually associated with the quark model (predicted by Murray Gell-Mann and George Zweig in 1964) and thus constitutes the discovery of the up quark, down quark, and strange quark.1975Tau discovered by a group headed by Martin Per1977Upsilon meson discovered at Fermilab, demonstrating the existence of the bottom quark (proposed by Kobayashi and Maskawa in 1973)1979Gluon observed indirectly in three-jet events at DESY1983W and Z bosons discovered by Carlo Rubbia, Simon van der Meer, and the CERN UA1 collaboration (predicted in detail by Sheldon Glashow, Abdus Salam, and Steven Weinberg)1995Top quark discovered at Fermilab1995Antihydrogen produced and measured by the LEAR experiment at CERN2000Tau neutrino first observed directly at Fermilab2011Antihelium-4 produced and measured by the STAR detector; the first particle to be discovered by the experiment2012A particle exhibiting most of the predicted characteristics of the Higgs boson discovered by researchers conducting the Compact Muon Solenoid and ATLAS experiments at CERN's Large Hadron Collider	1964	Xi baryon discovery at Brookhaven National Laboratory
scattering experiments between protons and electrons at SLAC; this was1969eventually associated with the quark model (predicted by Murray Gell-Mann and George Zweig in 1964) and thus constitutes the discovery of the up quark, down quark, and strange quark.1975Tau discovered by a group headed by Martin Per1977Upsilon meson discovered at Fermilab, demonstrating the existence of the bottom quark (proposed by Kobayashi and Maskawa in 1973)1979Gluon observed indirectly in three-jet events at DESY1983W and Z bosons discovered by Carlo Rubbia, Simon van der Meer, and the CERN UA1 collaboration (predicted in detail by Sheldon Glashow, Abdus Salam, and Steven Weinberg)1995Top quark discovered at Fermilab1995Antihydrogen produced and measured by the LEAR experiment at CERN2000Tau neutrino first observed directly at Fermilab2011Antihelium-4 produced and measured by the STAR detector; the first particle to be discovered by the experiment2012A particle exhibiting most of the predicted characteristics of the Higgs boson discovered by researchers conducting the Compact Muon Solenoid and ATLAS experiments at CERN's Large Hadron Collider		Partons (internal constituents of hadrons) observed in deep inelastic
 1969 eventually associated with the quark model (predicted by Murray Gell-Mann and George Zweig in 1964) and thus constitutes the discovery of the up quark, down quark, and strange quark. 1975 Tau discovered by a group headed by Martin Per 1977 Upsilon meson discovered at Fermilab, demonstrating the existence of the bottom quark (proposed by Kobayashi and Maskawa in 1973) 1979 Gluon observed indirectly in three-jet events at DESY W and Z bosons discovered by Carlo Rubbia, Simon van der Meer, and the CERN UA1 collaboration (predicted in detail by Sheldon Glashow, Abdus Salam, and Steven Weinberg) 1995 Top quark discovered at Fermilab 1995 Antihydrogen produced and measured by the LEAR experiment at CERN 2000 Tau neutrino first observed directly at Fermilab 2011 Antihelium-4 produced and measured by the STAR detector; the first particle to be discovered by the experiment 2012 A particle exhibiting most of the predicted characteristics of the Higgs boson discovered by researchers conducting the Compact Muon Solenoid and ATLAS experiments at CERN's Large Hadron Collider 		scattering experiments between protons and electrons at SLAC; this was
and George Zweig in 1964) and thus constitutes the discovery of the up quark, down quark, and strange quark.1975Tau discovered by a group headed by Martin Per1977Upsilon meson discovered at Fermilab, demonstrating the existence of the bottom quark (proposed by Kobayashi and Maskawa in 1973)1979Gluon observed indirectly in three-jet events at DESY1978W and Z bosons discovered by Carlo Rubbia, Simon van der Meer, and the CERN UA1 collaboration (predicted in detail by Sheldon Glashow, Abdus Salam, and Steven Weinberg)1995Top quark discovered at Fermilab1995Antihydrogen produced and measured by the LEAR experiment at CERN2000Tau neutrino first observed directly at Fermilab2011Antihelium-4 produced and measured by the STAR detector; the first particle to be discovered by the experiment2012A particle exhibiting most of the predicted characteristics of the Higgs boson discovered by researchers conducting the Compact Muon Solenoid and ATLAS experiments at CERN's Large Hadron Collider	1969	eventually associated with the quark model (predicted by Murray Gell-Mann
quark, down quark, and strange quark.1975Tau discovered by a group headed by Martin Per1977Upsilon meson discovered at Fermilab, demonstrating the existence of the bottom quark (proposed by Kobayashi and Maskawa in 1973)1979Gluon observed indirectly in three-jet events at DESY1978W and Z bosons discovered by Carlo Rubbia, Simon van der Meer, and the CERN UA1 collaboration (predicted in detail by Sheldon Glashow, Abdus Salam, and Steven Weinberg)1995Top quark discovered at Fermilab1995Antihydrogen produced and measured by the LEAR experiment at CERN2000Tau neutrino first observed directly at Fermilab2011Antihelium-4 produced and measured by the STAR detector; the first particle 		and George Zweig in 1964) and thus constitutes the discovery of the up
1975Tau discovered by a group headed by Martin Per1977Upsilon meson discovered at Fermilab, demonstrating the existence of the bottom quark (proposed by Kobayashi and Maskawa in 1973)1979Gluon observed indirectly in three-jet events at DESY1979W and Z bosons discovered by Carlo Rubbia, Simon van der Meer, and the CERN UA1 collaboration (predicted in detail by Sheldon Glashow, Abdus Salam, and Steven Weinberg)1995Top quark discovered at Fermilab1995Antihydrogen produced and measured by the LEAR experiment at CERN2000Tau neutrino first observed directly at Fermilab2011Antihelium-4 produced and measured by the STAR detector; the first particle to be discovered by the experiment2012A particle exhibiting most of the predicted characteristics of the Higgs boson discovered by researchers conducting the Compact Muon Solenoid and ATLAS experiments at CERN's Large Hadron Collider		quark, down quark, and strange quark.
1977Upsilon meson discovered at Fermilab, demonstrating the existence of the bottom quark (proposed by Kobayashi and Maskawa in 1973)1979Gluon observed indirectly in three-jet events at DESY1978W and Z bosons discovered by Carlo Rubbia, Simon van der Meer, and the CERN UA1 collaboration (predicted in detail by Sheldon Glashow, Abdus Salam, and Steven Weinberg)1995Top quark discovered at Fermilab1995Antihydrogen produced and measured by the LEAR experiment at CERN2000Tau neutrino first observed directly at Fermilab2011Antihelium-4 produced and measured by the STAR detector; the first particle to be discovered by the experiment2012A particle exhibiting most of the predicted characteristics of the Higgs boson discovered by researchers conducting the Compact Muon Solenoid and ATLAS experiments at CERN's Large Hadron Collider	1975	Tau discovered by a group headed by Martin Per
1977bottom quark (proposed by Kobayashi and Maskawa in 1973)1979Gluon observed indirectly in three-jet events at DESY1983W and Z bosons discovered by Carlo Rubbia, Simon van der Meer, and the CERN UA1 collaboration (predicted in detail by Sheldon Glashow, Abdus Salam, and Steven Weinberg)1995Top quark discovered at Fermilab1995Antihydrogen produced and measured by the LEAR experiment at CERN2000Tau neutrino first observed directly at Fermilab2011Antihelium-4 produced and measured by the STAR detector; the first particle to be discovered by the experiment2012A particle exhibiting most of the predicted characteristics of the Higgs boson discovered by researchers conducting the Compact Muon Solenoid and ATLAS experiments at CERN's Large Hadron Collider	1077	Upsilon meson discovered at Fermilab, demonstrating the existence of the
 1979 Gluon observed indirectly in three-jet events at DESY W and Z bosons discovered by Carlo Rubbia, Simon van der Meer, and the 1983 CERN UA1 collaboration (predicted in detail by Sheldon Glashow, Abdus Salam, and Steven Weinberg) 1995 Top quark discovered at Fermilab 1995 Antihydrogen produced and measured by the LEAR experiment at CERN 2000 Tau neutrino first observed directly at Fermilab 2011 Antihelium-4 produced and measured by the STAR detector; the first particle to be discovered by the experiment 2012 A particle exhibiting most of the predicted characteristics of the Higgs boson discovered by researchers conducting the Compact Muon Solenoid and ATLAS experiments at CERN's Large Hadron Collider 	17//	bottom quark (proposed by Kobayashi and Maskawa in 1973)
W and Z bosons discovered by Carlo Rubbia, Simon van der Meer, and the CERN UA1 collaboration (predicted in detail by Sheldon Glashow, Abdus Salam, and Steven Weinberg)1995Top quark discovered at Fermilab1995Antihydrogen produced and measured by the LEAR experiment at CERN2000Tau neutrino first observed directly at Fermilab2011Antihelium-4 produced and measured by the STAR detector; the first particle to be discovered by the experiment2012A particle exhibiting most of the predicted characteristics of the Higgs boson discovered by researchers conducting the Compact Muon Solenoid and ATLAS experiments at CERN's Large Hadron Collider	1979	Gluon observed indirectly in three-jet events at DESY
 1983 CERN UA1 collaboration (predicted in detail by Sheldon Glashow, Abdus Salam, and Steven Weinberg) 1995 Top quark discovered at Fermilab 1995 Antihydrogen produced and measured by the LEAR experiment at CERN 2000 Tau neutrino first observed directly at Fermilab 2011 Antihelium-4 produced and measured by the STAR detector; the first particle to be discovered by the experiment 2012 A particle exhibiting most of the predicted characteristics of the Higgs boson discovered by researchers conducting the Compact Muon Solenoid and ATLAS experiments at CERN's Large Hadron Collider 		W and Z bosons discovered by Carlo Rubbia, Simon van der Meer, and the
Salam, and Steven Weinberg)1995Top quark discovered at Fermilab1995Antihydrogen produced and measured by the LEAR experiment at CERN2000Tau neutrino first observed directly at Fermilab2011Antihelium-4 produced and measured by the STAR detector; the first particle to be discovered by the experiment2012A particle exhibiting most of the predicted characteristics of the Higgs boson discovered by researchers conducting the Compact Muon Solenoid and ATLAS experiments at CERN's Large Hadron Collider	1983	CERN UA1 collaboration (predicted in detail by Sheldon Glashow, Abdus
 1995 Top quark discovered at Fermilab 1995 Antihydrogen produced and measured by the LEAR experiment at CERN 2000 Tau neutrino first observed directly at Fermilab 2011 Antihelium-4 produced and measured by the STAR detector; the first particle to be discovered by the experiment 2012 A particle exhibiting most of the predicted characteristics of the Higgs boson discovered by researchers conducting the Compact Muon Solenoid and ATLAS experiments at CERN's Large Hadron Collider 		Salam, and Steven Weinberg)
 1995 Antihydrogen produced and measured by the LEAR experiment at CERN 2000 Tau neutrino first observed directly at Fermilab 2011 Antihelium-4 produced and measured by the STAR detector; the first particle to be discovered by the experiment 2012 A particle exhibiting most of the predicted characteristics of the Higgs boson discovered by researchers conducting the Compact Muon Solenoid and ATLAS experiments at CERN's Large Hadron Collider 	1995	Top quark discovered at Fermilab
 2000 Tau neutrino first observed directly at Fermilab 2011 Antihelium-4 produced and measured by the STAR detector; the first particle to be discovered by the experiment 2012 A particle exhibiting most of the predicted characteristics of the Higgs boson discovered by researchers conducting the Compact Muon Solenoid and ATLAS experiments at CERN's Large Hadron Collider 	1995	Antihydrogen produced and measured by the LEAR experiment at CERN
2011Antihelium-4 produced and measured by the STAR detector; the first particle to be discovered by the experiment2012A particle exhibiting most of the predicted characteristics of the Higgs boson discovered by researchers conducting the Compact Muon Solenoid and ATLAS experiments at CERN's Large Hadron Collider	2000	Tau neutrino first observed directly at Fermilab
2011to be discovered by the experiment2012A particle exhibiting most of the predicted characteristics of the Higgs boson2012discovered by researchers conducting the Compact Muon Solenoid andATLAS experiments at CERN's Large Hadron Collider	2011	Antihelium-4 produced and measured by the STAR detector; the first particle
A particle exhibiting most of the predicted characteristics of the Higgs boson discovered by researchers conducting the Compact Muon Solenoid and ATLAS experiments at CERN's Large Hadron Collider	2011	to be discovered by the experiment
2012 discovered by researchers conducting the Compact Muon Solenoid and ATLAS experiments at CERN's Large Hadron Collider		A particle exhibiting most of the predicted characteristics of the Higgs boson
ATLAS experiments at CERN's Large Hadron Collider	2012	discovered by researchers conducting the Compact Muon Solenoid and
		ATLAS experiments at CERN's Large Hadron Collider

<u></u>

Figure 1: Schematic of Composite Particles.

The Standard Model

The Standard Model is a quantum field theory that describes the interactions between the fermionic quark and lepton fields through the exchange of gauge boson fields. It consists of two main parts: quantum chromodynamics theory (QCD) describing the strong interaction, and the electroweak theory (EW) unifying the description of the electromagnetic and the weak interactions. The gravitational interaction is left out of the description, because it has not yet been possible to successfully formulate a theory of quantum gravity, and furthermore, at present energies in high energy physics it is not important.

Table 1: The generations of quark and lepton.

Generation	1^{st}	2^{nd}	3 rd
Quark	u	C	t
	d	S	b

Generation	1^{st}	2^{nd}	3 rd
Lepton	v _e e	$rac{ u_{\mu}}{\mu}$	$rac{ u_{ au}}{ au}$

A (Quarks)

B (Leptons)

Fermions	Name	Mass	Electric Charge	Spin	Interaction
	Up	$2.3^{+0.7}_{-0.5}$ MeV/c ²	$+\frac{2}{3}e$	1/2	
	Down	$4.8^{+0.5}_{-0.3}$ MeV/c ²	$-\frac{1}{3}e$	1/2	Electro-
	Charm	$1.275 \pm 0.025 \text{GeV/c}^2$	$+\frac{2}{3}e$	1/2	, Weak,
Quarks	Strange	$95 \pm 5 \text{ MeV/c}^2$	$-\frac{1}{3}e$	1/2	Strong
	Top (truth)	$173.2 \pm 0.9 \text{ GeV/c}^2$	$+\frac{2}{3}e$	1/2	
	Bottom (beauty)	$4.18 \pm 0.03 \text{GeV/c}^2$	$-\frac{1}{3}e$	1/2	

Table 2: The summary of characteristics for quarks.

Table 3: The summary of characteristics for leptons.

Fermions	Name	Mass	Electric Charge	Spin	Interaction
	е	0.51 MeV/c^2	-1	1/2	Electromagnetism, Weak
	Ve	$< 2 \text{ eV/c}^2$	0	1/2	Weak
Leptons	μ	105.66 MeV/c^2	-1	1/2	Electromagnetism, Weak
	V_{μ}	$< 0.19 \text{ MeV/c}^2$	0	1/2	Weak
	τ	$1776.99^{+29}_{-26} \text{ MeV/c}^2$	-1	1/2	Electromagnetism, Weak
	V_{τ}	$< 18.2 \text{ MeV/c}^2$	0	1/2	Weak

Table 4: The summary of characteristics for Gauge Bosons.

Gauge Bosons	Name	Force	Coupling	Mass (GeV/c^2)	Electric Charge	Spin
	photon (γ)	EM	10 ⁻²	0	0	1
	W boson	Weak	10 ⁻¹³	80.4	±1	1
	Z boson	Weak	10 ⁻¹³	91.2	0	1
	gluon (g)	Strong	1	0	0	1

In addition to the quarks and leptons, there are basic elementary particles which transmit the four fundamental forces, called "gauge bosons" which summarized in figure 2;

Figure 2: Schematic of elementary particles depending on coupling force.

Asymptotic Freedom and Confinement

when two quarks are close together, the force is relatively weak, or in very high-energy reactions, quarks and gluons interact very weakly, this is asymptotic freedom, which states that the interaction strength α_s between quarks becomes smaller as the distance between them gets shorter.

The other kind is confinement, it occurs when two quarks are move farther apart, then the force becomes much stronger. Because of this, it would take an infinite amount of energy to separate two quarks.

Figure 3:

(a) The apparent strength of an electrical charge as a function of the distance from which it is viewed.

(b) The apparent strength of the color charge on a quark.

Figure 4: A possible scenario for quark confinement

The Potential of QCD

The potential between two quarks should consist of a Coulomb-like part and a confining part and it is taken to be of the form:

$$V_s = -\frac{4}{3}\frac{\alpha_s}{r} + kr \tag{1}$$

The elementary estimate of k from size of hadrons: $r \sim 1$ fm and $k \sim 1$ GeV/fm, then from the derivative of eq. (1); the force between two quarks at large distance is:

$$F = |dV/dr| = k = 1.6 \times 10^{-10} \text{ J}/10^{-15} \text{ m} = 160,000 \text{ N}$$
 (2)

The Effect on the evolution of modern physics

* The electromagnetic and weak forces have been unified into one electroweak force as shown in figure 2. It is the aim of theoretical physicists to unify all forces into one Grand Unified Theory. Much progress has been made towards this goal, but it is gravity, although very well described by General Relativity, that is proving hardest to incorporate.

* Also there is Higgs boson H⁰, which is a boson with no spin, electric charge, or color charge. Higgs boson plays a unique role in the Standard Model, by explaining why the other elementary particles, except the photon and gluon, are massive. In particular, the Higgs boson would explain why the photon has no mass, while the W and Z bosons are very heavy. Elementary particle masses, and the differences between electromagnetism and the weak force, are critical to many aspects of the structure of microscopic (and hence macroscopic) matter. In electroweak theory, Higgs boson generates the masses of the leptons

(electron, muon, and tau) and quarks. As the Higgs boson is massive, it must interact with itself. The mass of it is 125.9 ± 0.4 GeV.

* According to consensus among cosmologists, dark matter is composed primarily of a not yet characterized type of subatomic particle. The search for this particle, by a variety of means, is one of the major efforts in particle physics today.