DEMORGAN'S THEOREMS
One of DeMorgan's theorems stated as follows:
The complement of a product of variables is equal to the sum of the complements of
the variables.

Yy = X + Y

DeMorgan's second theorem is stated as follows:
The complement of a sum of variables is equal to the product of the complements of
the variables.

X + ¥ = XY

Yy




Example:

\RJ




SIMPLIFICATION USING BOOLEAN ALGEBRA
A simplified Boolean expression uses the fewest gates possible to implement a given
expression. Simplification means fewer gates for the same function

Example:

A




Product-of-Sums (POS) Form

When two or more sum terms are multiplied, the resulting expression is a product-
of-sums (POS). Implementing a POS expression simply requires ANDing the
outputs of two or more OR gates.

A POS expression is equal to 0 only if one or more of the sum terms in the
expression is equal to 0.

Example

Yo




BOOLEAN EXPRESSIONS AND TRUTH TABLES

Converting SOP Expressions to Truth Table Format

The first step in constructing a truth table is to list all possible combinations of binary
values of the variables in the expression. Next, convert the SOP expression to
standard form if it is not already. Finally, place a 1 in the output column (X) for each
binary value that makes the standard SOP expression a 1 and place a O for all the
remaining binary values.

Example

A




Converting POS Expressions to Truth Table Format

To construct a truth table from a POS expression, list all the possible combinations of
binary values of the variables just as was done for the SOP expression. Next, convert
the POS expression to standard form if it is not already. Finally, place a 0 in the
output column (X) for each binary value that makes the expression a 0 and place a 1
for all the remaining binary values.

v



THE KARNAUGH MAP

The purpose of a Karnaugh map is to simplify a Boolean expression.

The number of cells in a Karnaugh map is equal to the total number of possible input
variable combinations as is the number of rows in a truth table. For three variables,
the number of cells is 2° = 8. For four variables, the number of cells is 2* = 16.

3-Variable Karnaugh Map 4-Variable Karnaugh Map

Karnaugh Map Simplification of SOP_Expressions

Determining the Minimum SOP Expression from the Map

1. Group the cells that have 1 s. Each group of cells containing 1 s creates one product
term composed of all variables that occur in only one form (either un complemented
or complemented) within the group. Variables that occur both un complemented and
complemented within the group are eliminated. These called contradictory variables.
2. Determine the minimum product term for each group.

A. For a 3-variable map:

(1) I-cell group yields a 3-variable product term

(2) 2-cell group yields a 2-variable product term

(3) 4-cell group yields a 1-variable term

(4) 8-cell group yields a value of 1 for the expression

B. For a 4-variable map:

(1) 1-cell group yields a 4-variable product term

(2) 2-cell group yields a 3-variable product term

(3) 4-cell group yields a 2-variable product term

(4) 8-cell group yields a 1-variable term

(5) 16-cell group yields a value of 1 for the expression

3. When all the minimum product terms derived from the Karnaugh map, they
summed to form the minimum SOP expression.

YA



Example:

Example:

Ya




KARNAUGH MAP POS MINIMIZATION

Karnaugh Map Simplification of POS Expressions

The process for minimizing a POS expression is the same as for an SOP expression
except that you group 0s to produce minimum sum terms instead of grouping 1s to
produce minimum product terms.

Example




Converting Between POS and SOP Using the Karnaugh Map

Don’t care Karnough condition

£)




Chapter 4
COMBINATIONAL LOGIC CIRCUITS

e AND-OR Logic
AND-OR circuit consisting of two (2-input) AND gates and one 2-input OR gate;

e AND-OR-Invert Logic
When the output of an AND-OR circuit is complemented (inverted), it results in an AND-
OR-Invert circuit.

e Exclusive-OR logic we can used AND-OR to represent X-OR

e Exclusive-NOR Logic

£y




Example

Example

¢y




THE UNIVERSAL PROPERTY OF NAND AND NOR GATES
e The NAND Gate as a Universal Logic Element

The NAND gate is a universal gate because it can be used to produce the NOT, the
AND, the OR, and the NOR functions. An inverter can be made from a NAND gate
by connecting all of the inputs together and creating, in effect, a single input,

£¢



The NOR Gate as a Universal Logic Element
Like the NAND gate, the NOR gate can be used to produce the NOT, AND. OR and
NAND functions. As shown below:

COMBINATIONAL LOGIC USING NAND AND NOR GATES

e NAND Logic
NAND gate can function as either a NAND or a negative-OR because, by DeMorgan''s
theorem,

¢o




Example:

Example:

Solution:

12




e NOR Logic
A NOR gate can function as either a NOR or a negative-AND, as shown by

DeMorgan's theorem.

Example

1A%




CHAPYER FIVE BASIC ADDERS

The Half-Adder
The half-adder accepts two binary digits on its inputs and produces two binary digits on
its outputs, a sum bit and a carry bit.

Truth table for half adder
From the operation of the half-
adder as stated in Table

The carry output expression
Notice that the output Carry
(Cout) is a 1 only when both A
and B are 1 s: therefore. (Cout)
can be expressed as the AND of
the input variables.

C

out

= AB

Half-adder logic diagram.

¢A



The Full-Adder
The full-adder accepts two input bits and an input carry and generates a sum output and
an output carry.

Full-Adder Logic
Full-Adder Logic The full-adder must add the two input bits and the input carry from
the half-adder.

2 = (A ('B B) ('B Cil‘l Cout = AB + (A 6_) B)Cin

€9




There are two half-adders, connected as shown in the block diagram with their output
carries ORed.

Example:




PARALLEL BINARY ADDERS

Two or more full-adders have connected to form parallel binary adders.

To add two binary numbers, a full-adder is required for each bit in the numbers. So for
2-bit numbers, two adders are needed; for 4-bit numbers, four adders are used; and so
on. The carry output of each adder is connected to the carry input of the next higher-
order adder, as shown in Figure below for a 2-bit adder. Notice that either a half-adder
can be used for the least significant position or the carry input of a full-adder can be
made 0 (grounded) because there is no carry input to the least significant bit position.

In Figure above the least significant bits (LSB) of the two numbers are represented by
A; and B1. The next higher-order bits are represented by A, and B; . The three sum bits
are 31> ,and)’r ' Notice that the output carry from the left-most full-adder becomes the
most significant bit (MSB) in the sum, Y 3.

Example

o)



Four-Bit Parallel Adders
A group of four bits is called a nibble. A basic 4-bit parallel adder is implemented
with four full-adder stages as shown in Figure

Truth Table for a 4-Bit Parallel Adder

Table 6-3 is the truth table for a 4-bit adder. On some data sheets, truth tables may be
called function tables or functional truth tables. The subscript n represents the adder bit
and can be 1, 2, 3, or 4 for the 4-bit adder. C,.1 is the carry from the previous adder.
Carries C; , C, and C; are generated internally. C,, is an external carry input and C4 is an
output.

Example:

oy




Half Subtractor

A subtracted from B the output is Di (Difference), and if B greater than A we need to
borrow and labeled (B,)

The truth table and block diagram of half subtractor as shown below

Logic Diagram half subtractor.

The Boolean expression for
half subtractor

Di: A@B

%= 1A B

Full subtractor

Full subtractor we have Barrow in (Bis) the truth table as shown below

Block symbol

oy



We can construct full subtractor by using half subtractor as shown below

Logic diagram as shown

4 bit parallel subtractor: the form bellow 4 bit parallel subtractor that can be subtract
binary number B3B,B1B, from binary number Az;A,A1A,, Notice that the top
subtractor (half subtractor ) subtract the LSBs(1s place). The B, of the 1s
subtractor is tied to next subtractor as Bi,

o¢




oo




COMPARATORS
The basic function of a comparator is to compare the magnitudes of two binary
quantities to determine the relationship of those quantities.

Equality
Exclusive-OR gate can be used as a basic comparator because its output is a 1 if the two
input bits are not equal and a 0 if the input bits are equal.

In order to compare binary numbers containing two bits each, an additional exclusive
OR gate is necessary. The two least significant bits (LSBs) of the two numbers
are compared by gate G;. In addition, the two most significant bits (MSBSs) are
compared by gate G, as shown in Figure below. If the two numbers are equal,
their corresponding bits are the same, and the output of each exclusive-OR gate
is a 0. If the corresponding sets of bits are not equal. a 1 occurs on that
exclusive-OR gate output. In order to produce a single output indicating an
equality or inequality of two numbers, two inverters and an AND gate can be
used,

o1




Example:

Inequality
In addition to the equality output, many IC comparators provide additional outputs that

indicate which of the two binary numbers being compared is the larger. That is,
there is an output that indicates when number A is greater than number B (A > B)
and an output that indicates when number A is less than number B (A < B), as
shown in the logic symbol for a 4-bit comparator.

Example:

oy



CODE CONVERTERS

BCD-to-Binary Conversion

One method of BCD-to-binary code conversion uses adder circuits. The basic
conversion process is as follows:

1. The value, or weight, of each bit in the BCD number have represented by a binary
number.

2. All of the binary representations of the weights of bits that are 1 s in the BCD
number have added.

3. The result of this addition is the binary equivalent of the BCD number.

The binary numbers representing the weights of the BCD bits have summed to produce
the total binary number.

Example:

oA



Binary-to-Gray and Gray-to-Binary Conversion
Figure bellow shows a 4-bit binary-to-Gray code converter.

In addition, Figure bellow illustrates a 4-bit Gray-to-binary converter.

Example:

o4




ENCODER




MULTIPLEXERS (DATA SELECTORYS)

Logic symbol for a 4-input multiplexer (MUX) is shown in Figure bellow. Notice that there
are two data-select lines because with two select bits. Any one of the four data input
lines have selected.

2-bit code on the data-select (S) inputs will allow the
data on the selected data input to pass through
to the data output. If a binary 0 (S; =0 and So
=0) is applied to the data-select lines, the data
on input Dy appear on the data-output line. If a
binary 1 (S; =0 and Sy = 1) is applied to the
data-select lines, the data on input D; appear
on the data output. If a binary 2 (S; =1 and So
=0) is applied, the data on D, appear on the
output. If a binary 3 (S; =1and So=1)is
applied, the data on D3

When these terms are OR, the total expression for the data output is

Y = DyS,Sy + D\S,S, + D-S,Sy + DsS,S,

The implementation of this equation requires four 3-input AND gates, a 4-input OR
gate, and two inverters to generate the complements of S;and S,

1)




DEMULTIPLEXERS

A demultiplexer (DEMUX), basically reverses the multiplexing function. It takes
digital information from one line and distributes it to a given number of output
lines. For this reason, the demultiplexer has known as a data distributor.

In Figure shows a I-line-to-4-line demultiplexer (DEMUX) circuit. The data-input line
goes to all of the AND gates. The two data-select lines enable only one gate at a
time, and the data appearing on the data-input line will pass through the selected
gate to the associated data-output line.

1y




CHAPTER SIX/ Flip Flop

The S-R (SET-RESET) Latch

An active-HIGH input S-R (SET-RESET) latch is formed with two cross-coupled
NOR gates, as shown in Figure

AnactiveLOW S-IR input latch has formed with two cross-coupled
NAND gates, as shown in figure

We start explain the operation by using Negative OR gates as shown in figure

two inputs, S and R. and two outputs, ¢ and O. Let’s start

1y




The truth table as shown in figure below

Logic symbols for both the active-HIGH input and the active-LOW input latches are shown

in figure
D Flip Flop:

Logic symbol for D- flip-flop has shown in figure
It has only one data input (D) and clock input (CLK)

the output are labeled Q and Q the D flip-

flop is often called delay flip flop because the
data (0 or 1) at input D is delayed one clock
pulse from getting to the output Q

From truth table Notice that output Q fallows input

D after one clock pulse (Q™)

¢




We can make D flip flop from a clocked R-S flip flop by adding inverter as shown

Logic diagram of D flip flop As shown below

Always we use the D flip flop contained in IC as shown in figure

We have two extra input

[PS(preset) and CLR (clear) ]

PS input sets o/p Q=1 when enabled
by logic 0

The CLR i/p clear o/p to 0 when
enabled by logic 0

The PSand CLR override the D and
CLK I/P

As shown in truth table

When we have the PS and CLR the
flip flop operate as Asynchronous (not
synchronous)

If the flip flop disable the PS and CLR
therefore in synchronous operation
and can be set and reset by D and
CLK input this can be see from the
last two line in truth table.




J-K Flip Flop

Most widely used and universal Flip Flop
The I/P label J and K are data input

CLK is the clock input

Qand Q are the normal and complementary
o/p
From truth table we see

If J and K =0 the flip flop in hold mode the
data input not effect on output then
the output in hold on last data
present line 1 in truth table

Line 2 and 3 is the reset and set condition
for Q output

Line 4 toggle position of J-K flip flop when
both data J=K=1 therefore the Q O/P
will repeat clock pulses causes turn
off-on-off-on and so on

The logic diagram of J-K flip-flop as
shown

The commercial logic symbols for
J_K flip flop as shown

We see asynchronous input (preset
and clear) and the synchronous is
the clock input

11




T —Flip Flop
The logic symbols for T- flip flop

The output is toggle if the input data T =1 with clock (reverse of previous state) as shown
in truth table

Also can be used the J-K flip flop to represent T flip flop by short Jand K =1

1y



CHAPTER SEVEN
SHIFT REGISTER

BASIC SHIFT REGISTER FUNCTIONS
A register is a digital circuit with two basic functions: data storage and data movement.
We have many type of shift register as shown

Serial IN/Serial OUT SHIFT REGISTERS

The serial in/serial out shift register accepts data serially-that is, one bit at a time on a
single line. It produces the stored information on its output also in serial form.

Let first look at the serial entry of data into a typical shift register. Figure below shows
a 4-bit device implemented with D flip-flops. With four stages, this register can store up
to four bits of data.

TA



Example:

14




SERIAL IN/PARALLEL OUT SHIFT REGISTERS

in the parallel output register. the output of each stage is available. Once the data are stored,
each bit appears on its respective output line, and all bits are available simultaneously,
rather than on a bit-by-bit basis as with the serial

Figure below shows a 4-bit serial in/parallel out shift register and its logic block symbol

Example :

PARALLEL IN/SERIAL OUT SHIFT REGISTERS

For parallel data, multiple bits have transferred at one time.

Figure below illustrates a 4-bit parallel in/serial out shift register and a typical logic symbol.
Notice that there are four data-input lines, Do, D1, D,, and Ds,and SHIFT / LOAD input, which
allows four bits of data to load in parallel into the register.

When SHIFT/LOAD is LOW, gates G 1 through G 4 are enabled, allowing each data bit
to be applied to the D input of its respective flip-flop. When a clock pulse is applied, the
flip-flops with D = 1will set and those with D = 0 will reset. Thereby storing all four bits
simultaneously.

When SHIFT/LOAD s HIGH, gates G, through G, are disabled and gates G5; through
G7 are enabled, allowing the data bits to shift right from one stage to the next. The OR
gates allow either the normal shifting operation or the parallel data-entry operation,
depending on which AND gates are enabled by the level on the SHIFT/LOAD input.

Notice that FFO has a single AND to disable the parallel input, D. It does not require an
AND/OR arrangement because there is no serial data in.




Example

\A




PARALLEL IN/PARALLEL OUT SHIFT REGISTERS
The parallel in/parallel out register, immediately following the simultaneous entry of all
data bits, the bits appear on the parallel outputs.

\At




CHAPTER EIGHT Counters

ASYNCHRONOUS COUNTER OPERATION

The term asynchronous refers to events that do not have a fixed time relationship with each
other and, generally, do not occur at the same time. An asynchronous counter is one in
which the flip-flops (FF) within the counter do not change states at exactly the same time
because they do not have a common clock pulse. A counter can have 2" states, where n is
the number of flip-flops.

A 2-Bit Asynchronous Binary Counter

Figure below shows a 2-bit counter connected for asynchronous operation. Notice that the
clock (CLK) has applied to the clock input (C) of only the first flop-flop, FFO, which is al-
ways the least significant bit (LSB). The second flip-flop, FF1, is triggered by the Qo out
put of FFO. FFO changes state at the positive-going edge of each clock pulse. But FF1
changes only when triggered by a positive-going transition of the Qo output of FFO.

The binary state sequence of 2 bit as shown in table below

Since it goes through a binary sequence, the counter in Figure 8-1 is a binary counter.

It actually counts the number of clock pulses up to three, and on the fourth pulse it recycles
to its original state (Qo = 0, Q1= 0). The term recycle has commonly applied to counter
operation; it refers to the transition of the counter from its final state back to its original
state.

Y




The Timing Diagram

The positive-going edge of CLKI (clock pulse]) causes the Qo output of FFO to go HIGH,
At the same time the Q o output goes low. But it has no effect on FF1 because a positive
-going transition must occur to trigger the flip-flop. After the

A 3-Bit Asynchronous Binary Counter

The state sequence for a 3-bit binary counter has listed in table below:
basic operation is the same as that of
the 2-bit counter except that the 3-
bit counter has eight states, due to its
three flip-flops.

Notice that the counter progresses through a binary count of zero through seven and then
recycles to the zero state. This counter can be easily expanded for higher count, by
connecting additional toggle flip-flops.

A&




Asynchronous Decade Counters

One common modulus for counters with truncated sequences is ten (called MOD10).
Counters with ten states in their sequence have called decade counters. A decade counter
with a count sequence of zero (0000) through nine (1001) is a BCD decade counter because
its ten-state sequence produces the BCD code. To obtain a truncated sequence, it is
necessary to force the counter to recycle before going through all of its possible states. For
example, the BCD decade counter must recycle back to the 0000 state after the 100l state.
One way to make the counter recycle after the count of nine (1001) is to decode count ten

(1010) with a NAND gate and connect the output of the NAND gate to the clear (CLR)
inputs of the flip-flops, as shown




Example:

A




SYNCHRONOUS COUNTER OPERATION

The term synchronous refers to events that have a fixed time relationship with each other.
A synchronous counter is one in which all the flip-flops in the counter have clocked at the
same time by a common clock pulse.

A 2-Bit Synchronous Binary Counter

Figure below shows a 2-bit synchronous binary counter. Notice that an arrangement
different from that for the asynchronous counter must be used for the J; and K; inputs of
FF1 in order to achieve a binary sequence.

The operation of this synchronous counter is as follows:

First, assume that the counter is initially in the binary O state: that is. Both flip-flops are
RESET. When the positive edge of the first clock pulse is applied, FFO will toggle and Qo
will therefore go HIGH. After CLK1, Qo = 1land Q; = 0. When the leading edge of

CLK2 occurs, FFO will toggle and Qo will go LOW. Since FF1 has a HIGH (Qo = 1) on its
J1, and Kl inputs at the triggering edge of this clock pulse, the flip-flop toggles and Q; goes
HIGH. Thus, after CLK2, Qo = 0 and Q; = 1(which is a binary 2 state).

When the leading edge of CLK3 occurs. FFO again toggles to the SET state (Qo = 1),

and FF1 remains SET (Q; =1) because its J; and K; inputs are both LOW (Qo = 0). After
this triggering edge, Qo =1 and Q; = 1 (which is a binary 3 state).

Finally, at the leading edge of CLK4, Qg and Q; go LOW because they both have a toggle
condition on their J and K inputs.

Yy



A 3-Bit Synchronous Binary Counter

A 3-bit synchronous binary counter is shown in Figure below its timing diagram is
shown in Figure You can understand this counter operation by examining its sequence
of states as shown in table

First, let's look at Qo. Notice that Qo changes on each clock pulse as the counter progresses
from its original state to its final state and then back to its original state.

To produce this operation, FFO must be held in the toggle mode by constant HIGH on its Jo
and Ky inputs. Notice that Q; goes to the opposite state following each time Qg is a 1. This
change occurs at CLK2, CLK4, CLK®6, and CLK8. The CLKS8 pulse causes the counter to
recycle. To produce this operation, Qg is connected to the J; and K; inputs of FF1. When Qo
isa 1 and a clock pulse occurs, FF1 is in the toggle mode and therefore changes state. The
other times, when Qo is a 0, FF1 is in the no-change mode and remains in its present state.
Next, let's see how FF2 is made to change at the proper times according to the binary
sequence. Notice that both times Q, changes state. it is preceded by the unique condition in
which both Qg and Q; are HIGH. This condition is detected by the AND gate and applied to
the J, and K; inputs of FF2. Whenever both Qo and Q are HIGH, the output of the AND
gate makes the J, and K; inputs of FF2 HIGH, and FF2 toggles on the following clock
pulse. At all other times, the J, and K; inputs of FF2 are held LOW by the AND gate
output, andFF2 does not change state.

YA



A 4-Bit Synchronous Binary Counter
Figure below shows a 4-bit synchronous binary counter,
This particular counter is implemented with negative edge-triggered flip-

A 4-Bit Synchronous Decade Counter

As you know, a BCD decade counter exhibits a truncated binary sequence and goes from
0000 through the 1001 state. Rather than going from the 1001 state to the 1010 state, it
recycles to the 0000 state. A synchronous BCD decade counter is shown in Figure below.

First, notice that FFO (Qo) toggles on each clock pulse, so the logic equation for its J, and
Ko inputsis Jo=Ky=1

This equation is implemented by connecting Joand Ky to a constant HIGH level.

Next, notice in Table below that FF1 (Q;) changes on the next clock pulse each time

Qo =1and Q3 =0, so the logic equation for the J; and K; inputs is

= k= Q0§3

v4




FF3 as shown in the logic diagram

States of a BCD decade
counter .table

UP/DOWN SYNCHRONOUS COUNTERS

In general, most up/down counters can be reversed at any point in their sequence. Table
below shows the complete up/down sequence for a 3-bit binary counter. The arrows
indicate the state-to-state movement of the counter for both its UP and its DOWN modes of
operation. An examination of Qq for both the up and down sequences shows that FFO
toggles on each clock pulse. Thus, the Jo and Ky inputs of FFO are

Jo: Ko:].

A



Figures below shows the logic diagram and truth table for UP/DOWN counter

AN




CHAPTER NINE /Memories

The Basic Semiconductor Memory Array

Each storage element in a memory can retain either a 1 or a 0 and is called a cell. Memories
made up of arrays of cells, as illustrated in Figure below Each block in the memory array
represents one storage cell. and its location can be identified by specifying a row and a
column.

The location of a unit of data in a memory array called its address . The address of a byte
specified only by the row.
Basic Memory Operations

Since a memory stores binary data. data must be put into the memory and data must be
copied from the memory when needed. The write operation puts data into a specified
address in the memory, and the read operation copies data out of a specified address in the
memory. The addressing operation, which is part of both the write and the read operations,
selects the specified memory address.

Data units go into the memory during a write operation and come out of the memory during
a read operation on a set of lines called the data bus.

bus. As indicated in Figure below the data bus is bidirectional, which means that data can
go in either direction (into the memory or out of the memory).

AY



In this case, of byte-organized memories, the data bus has at least eight lines so that all
eight bits in a selected address are transferred in parallel. For write or read operation. An
address selected by placing a binary code representing the desired address on a set of lines
called the address bus. The address code is decoded internally. And the appropriate address

is selected.
The Write Operation
A simplified write operation illustrated in Figure

AY



Read Operation
A simplified read operation is illustrated in Figure

Bit: The smallest unit of binary data

Byte: data are handled in an 8-bit unit or in multiples of 8-bit units.

Nibbles: The byte can be split into two 4-bit units

Word: generally consists of one or more bytes.

RANDOM-ACCESS MEMORIES (RAMs)

RAM are read/write memories in which data can be written into or read from any selected
address in any sequence. When a data unit is written into a given address in the RAM, the
data unit previously stored at that address is replaced by the new data unit. When a data
unit is read from a given address in the RAM, the data unit remains stored and is not erased
by the read operation. This nondestructive read operation can be viewed as copying the
content of an address while leaving the content intact. A

RAM is typically used for short-term data storage because it cannot retain stored data when
power is turned off.

The RAM Family

The two categories of RAM are the static RAM (SRAM) and the dynamic RAM (DRAM).
Static RAMs generally use latches as storage elements and can therefore store data
indefinitely as long as dc power is applied.

Dynamic RAMs use capacitors as storage elements and cannot retain data very long
without the capacitors being recharged by a process called refreshing.

Data can be read much faster from SRAMs than from DRAMs.

DRAMs can store much more data than SRAMSs for a given physical size and cost because
the DRAM cell is much simpler, and more cells can be crammed into a given chip area than
in the SRAM. The type of RAM as shown in figure below

A¢



Ao




READ-ONLY MEMORIES (ROMs)

ROM contain permanently or semi permanently stored data, Which can be read from the
memory but either cannot be changed at all or cannot be changed without specialized
equipment. ROMs retain stored data when the power is off and are therefore nonvolatile
memories.

The mask ROM is the type in which the data are permanently stored in the memory during
the manufacturing process.

The PROM, or programmable ROM, is the type in which the data are electrically stored by
the user with the aid of specialized equipment.

The EPROM, or erasable PROM.

The UV EPROM is electrically programmable by the user, but the stored data must be
erased by exposure to ultraviolet light over a period of several minutes.

The electricallyerasable PROM (EEPROM or E2 PROM) can be erased in a few
milliseconds.

The types of ROM as shown in figure below

AT



Chapter one

1- Number system and codes

The binary number system and digital codes are fundamental to computers and to digital
electronics in general. The binary number system and its relationship to other number systems
such as decimal, hexadecimal, and octal has presented. Arithmetic operations with binary
numbers have covered to provide a basis for understanding how computers and many other
types of digital systems work.

1.1 DECIMAL NUMBERS

We are familiar with the decimal number system because we use decimal nu rs every
day. The decimal number system has ten digits, 0 through 9. Represent a ce

Therefore, these digits not limited because used in different position. A n ample
below. ‘ : )

For example

The position of each digit in a decimal numbgr indicates the magnitude of the quantity
represented and could assign a weight. eights for whole numbers are positive powers of
ten that increase from righ eft, b@inning with 10°= 1.

L 107 107 107107 10 107

For fractignal nugibers; S are negative powers of ten that decrease from left to right

Example:




1.2 BINARY NUMBERS

The binary number has only two digits (bits) 1 and 0.
The position of a 1 or 0 in a binary number indicates its weight or value within the number,

The weights in a binary number have based on power of two.

| —4

om zero to sixty-three.
2*-1=16-1=15

eighted number. The right most bit is the LSB (least significant bit) in
ber and has a weight of 2° = 1. The weights increase from right to left by

Frictional numbers can be represents in binary by placing bits to the right of the
binary point. The left-most bit is the MSB in a binary fractional number, the fractional
weights decrease from left to right by a negative power of two for each bit.

Figure below show the weights of binary fraction number where n is the number of
bits from the binary point.




Binary weight table as shown below

1.3 OCTAL NUMBERS

The octal number system is composed of eight digits, which are
01,2 3,45,6,7
Each octal number can be represented by three digits only 000 to 111

1.4 HEXADECIMAL NUMBERS
The hexadecimal number system consists of digits 0-9 and letters A-F. Q

PN




Conversion between systems

o Decimal —to- binary conversion.
We have two method discussed below

1. Sum-of-Weights Method
One way to find the binary number that is equivalent to a given decimal number is to
determine the set of binary weights whose sum is equal to the decimal number.

Example:

2. Repeated Division-by-2 Method
To get the binary number for a given decimal number, di decimal number by 2 until
the quotient is zero. Remainders form is the binary ber:

Examples below explain the process fog mored ﬁ

Examples :




e Converting Decimal Fractions -to Binary
An easy way to remember fractional binary weights is that the most significant weight is 0.5,

which is 2" and that by halving any weight, you get the next lower weight; thus a list of four
fractional binary weights would be 0.5, 0.25, 0.125, 0.0625.

1. Sum-of-Weights
The sum-of-weights method could apply to fractional decimal numbers, we determine

the fraction binary wait whose sum equal to decimal number as shown in the

following example:

0625=05+0125=2"+2"2%=0.101
Example:
) 4
2. Repeated Multiplication by 2
As you have seen, decimal whole numbers can be converted to eated division
by 2. Decimal fractions can be converted to binary by repeated ff{ltipli€ation by 2, the carry
digits are the binary number we stop multiplication whe a part of multiplication

equal to zero For example,




Binary-to-Decimal Conversion
The decimal value of any binary number can be founds by adding the weights of all bits that

are 1 and discarding the weights of all bits that are zero. Examples below more detail to
conversion.

Examplel:

Example2:

o 4

Decimal-to-Octal Conversion : A method of %ﬂecimal number to an octal

number is the repeated division-by-

Example

Octal-to-Decimal Conversion

The evaluation of an octal number in terms of its decimal equivalent has accomplished by multiplying
each digit by its weight and summing the products.




Decimal to Hexadecimal Conversion

Repeated division of a decimal number by 16 will produce the equivalent hexadecimal
number, formed by the remainders of the divisions. The first remainder produced is the least
significant digit (LSD). Each successive division by 16 yields a remainder that becomes digit in
the equivalent hexadecimal number. Note that when a quotient has a fractional part, the
fractional part has multiplied by the divisor to get the remainder.

~

One way to find the decimal equivalent of a fiexadecimal number is to first convert the

Hexadecimal-to-Decimal Conversion

y

hexadecimal number to binary and then convert from binary to decimal.
Another way to convert a hexadecimal number to its decimal equivalent is to multiply

The decimal value of each hexadecimal digit by its weight and then take the sum of these
products, the weights of a hexadecimal number are increasing powers of 16 (from right to
left). For a 4-digit hexadecimal number, the weights are

163 152 16° 1a°
4096 256 16 1




Example:

Binary-to-Octal Conversion of a binary number to an octal number is ve se!¥ the
octal-to-binary conversion

Example V)

\ 4

Octal-to-Binary Conversion : Because each gctal digit can be represented by a 3-bit binary

number, i
.

Exam




Binary-to-Hexadecimal Conversion

Converting a binary number to hexadecimal is a straightforward procedure. Simply break the
binary number into 4-bit groups. Starting at the right-most bit, replace each 4-bit group with
the equivalent hexadecimal symbol.

Hexadecimal-to-Binary Conversion

To convert from a hexadecimal number to a binary number, rev ss and replace
each hexadecimal symbol with the appropriate four bits.

Example: A
Octal to Hexadecimal Conversion A g
o
To convert the octal to y the fallowing steps
o binary
4 digit and we add 0 to MSB
copVert 7545 to Hexadecimal number
7 5 4
Binary 00( 111 101 100 )
0001 1110 1100
HEX (1 E Ce




Hexadecimal to Octal Conversion

To convert the hex number to octal by

1- Convert the Hex number to binary
2- Make group for 3 digit and add 0 to MSB
3- Convert the number to octal

Example: convert the Hex (FD4).sto octal

(F D 4)

(1111 1101 0100)

(111 111 010 100)

(7 7 2 4)g
[

10




BINARY ARITHMETIC

Binary Addition
The four basic rules for adding binary digits (bits) are as follows:

When there is a carry of 1, you have a situation in which three bits are being added (bit in
each of the two numbers and a carry bit). This situation has illustrated as fol

N

Na. 0.4

Example:

d tw@ oCtal number if greater than 7 we subtract 8 from result digit
Example:
71

+47

140
1+7 =8 >7 than 8-8=0 with carry 1

7+4+1 =12 >7 than 12-8 = 4 with carry 1

11



Hexadecimal Addition : use the following rules;

Example:

12




1-3-2 : COMPLEMENTS:

1'S AND 2'S COMPLEMENTS OF BINARY NUMBERS

The I's complement and the 2's complement of a binary number are important because they
permit the representation of negative numbers. The method of 2's complement arithmetic
has commonly used in computers to handle negative numbers.

Finding the 1's Complement

10110010 Binary number
The 1's complement of a binary I E TS

number were found by changing all

1 to Os and all Os to 1s, 01001101 1’s complement

As illustrated:

The 2' s Complement

2's complement = (1's compleme 1

Example:

An alternative method of finding the.2's Eomplement of a binary number is as follows:
1. Start at the right with the ite the bits as they are up to and including the first 1.

2. Take the 1's com e ft aining bits.

13



1° And 2" complement in decimal

1% And 2" complement in hexadei

14







Binary Subtraction

Subtraction is addition with the sign of the subtrahend changed, and adds it to the minuend.
The result of a subtraction has called the difference.

To subtract two signed numbers, take the 2's complement of the subtrahend and add.

Discard any final carry bit.

Example:

16



Multiplication
The sign of the product of a multiplication depends on the signs of the multiplicand and

the multiplier according to the following two rules:

If the signs are the same, the product is positive.

If the signs are different, the product is negative.

The basic steps in the partial products method of binary multiplication are as follows:
Step 1. Determine if the signs of the multiplicand and multiplier are the same or different.
This determines what the sign of the product will be.

Step 2. Change any negative number to true (uncomplemented) form. Because most
computers store negative numbers in 2's complement, a 2's complement operation is
required to get the negative number into true form.

Step 3. Starting with the least significant multiplier bit, generate the partial
When the multiplier bit is 1, the partial product is the same as the multipli
When the multiplier bit is 0, the partial product is zero. Shift each succ
one bit to the left.

Step 4. Add each successive partial product to the sum of the io
to get the final product.

Step 5. if the sign bit that was determined in step 1 is
of the product. if positive. Leave the product in tru
product.

rtial products

the 2's complement
the sign bit to the

Example

17




Division

The sign of the quotient depends on the signs of the dividend and the divis rding to
the following two rules:

If the signs are the same, the quotient is positive.
If the signs are different, the quotient is negative

When two binary numbers are divided, both numbers must be ia¢true (incomplememed)
form. The basic steps in a division process are as follows:

Step 1. Determine if the signs of the dividend and dj
This determines what the sign of the quotient will be

same or different.
e.the quotient to zero.
plement addition to get the
first partial remainder and add 1 to the quot ispartial remainder is positive, go to
= division is complete.

Step 3. Subtract the divisor frof th ainder and add 1 to the quotient. If the

result is positive, repeat for the ne mainder. If the result is zero or negative, the
division is complete.

Example

18







Chapter two
e BINARY CODED DECIMAL (BCD) :

The 8421 code is a type of BCD (binary coded decimal) code. Binary coded decimal means
that each decimal digit, 0 through 9, is represented by a binary code of four bits.

¢

Example:

BCD Addition
Step 1. Add the two BCD ers, WSing the rules for binary addition.

Step 2. If a 4-bit sum,is e ss than 9, it is a valid BCD number.

terthan 9, or if a carry out of the 4-bit group is generated, it is an

20




sssss




e The Gray Code
The Gray code is un weighted and is not an arithmetic code; that is, there are no specific

weights assigned to the bit positions.

Binary-to-Gray Code Conversion

22







Chapter three
Boolean algebra

e INVERTER

Standard logic symbols for the inverter are shown in Figure below:

Inverter Truth Table

When a HIGH level is applied to an inverter input, a LOW il ear on its output. When a
LOW level is applied to its input, a HIGH will appear o utp

logic Expression for an Inverter v

mat”ematics of logic circuits the operation of an inverter
lows: If the input variable is called, A and the output

In Boolean algebra, whi
(NOT circuit) can be exp
variable is called

e AND GATE
An AND gate produces a HIGH output only when all of the inputs are HIGH, otherwise any of
the inputs is LOW or both low, the output is LOW.

24




AND Gate Truth Table

The total number of possible combinations of binary inputs to a gate is determined by the
following formula:

N=2"

The operation of a 2-input AND gate can be expressed in equation form as follows: If one
input variable is A, the other input variable is B, and the output variable is X, then the
Boolean expression is

X=A.B

e ORGATE
An OR gate symbol as shown in figure

OR Gate Truth Table
For a 2-input OR gate, o
A and B are HIGH; X is LG

is Hla-l when either input A or input B is HIGH, or when both
vhien both A and B are LOW.

o

Logic Expressions for an OR Gate
The logical OR function of two variables is represented mathematically by a (+) between the
two variables, for example, A + B.

25




NAND GATE
The term NAND is a contraction of NOT-AND and implies an AND function with a
complemented (inverted) output.

Operation of a NAND Gate
For a 2-input NAND gate, output X is LOW only when inputs A and B are HIGH;
Xis HIGH when either A or B is LOW, or when both A and B are LOW. .‘

Logic Expressions for a NAND Gate

26




NOR GATE

The NOR is the same as the OR except the output is inverted.

For a 2-input NOR gate, output X is LOW when either input A or input B is HIGH, or when
both A and B are HIGH; X is HIGH only when both A and B are LOW.

[ 4

e Exclusive-OR Gate

Standard symbols for an exclusive-OR (XOR)W in Figure

Output X is HIGH when i
input B is LOW: Xi W whe

A'isds@W and input B is HIGH, or when input A is HIGH and

'ﬁ. B are both HIGH or both LOW.

e Exclusive-NOR Gate
Standard symbols for an exclusive-NOR (XNOR) gate are shown in Figure
Output X is LOW when input A is LOW and input B is HIGH, or when A is HIGH and B is LOW;
X is HIGH when A and B are both HIGH or both LOW.

27




e LAWS AND RULES OF BOOLEAN ALGEBRA

Laws of Boolean Algebra
Equation 1
o N
Equation 2
Equation 3
[ J
Equation 4

Equation 5

28




Rules of Boolean algebra
Table below lists 12 basic rules that are useful in manipulating and simplifying Boolean
expressions.

Rule 1. A+ 0 =A: Avariable OR with 0 is always equal to the vaw.w

- 7
Rule2.A+1=1 :Avariable OR with 1 is alm.

Rule 3. A.0=0 Avariadble AND with 0 is always equal to 0.

Rule 4. A® l :

=/A :Avariable AND with 1 is always equal to the variable.

Rule 5. A+ A=A: Avariable OR with itself is always equal to the variable.

29




Rule7. A. A =A: Avariable AND with itself is always equal to the variable.

30







	logic lacuture2011ex1t
	logic lucture 12011

