

Programming with C++ Language

Lectures for First Class

Computer Science Department

By

Israa A. Alwan

2017

Flowcharts and Algorithms

Algorithm
Sequence of step-by-step instructions that will produce a solution to a

problem.

Examples:

The taxi algorithm:
 Go to the taxi stand.

 Get in a taxi.

 Give the driver my address.

The call-me algorithm:

 When your plane arrives, call my cell phone.

 Meet me outside baggage claim.

Q. Define the algorithm for mailing a letter, from obtaining the

envelope to placing it in the mailbox

 Obtain Envelope

 If letter is too big, fold letter

 Place letter in envelope

 Address Envelope

 Seal envelope

 Obtain stamp

 Affix stamp

 Place in mailbox

Flowcharts
 Flowcharts are graphical and verbal illustrations of algorithms.

Flowchart Elements
 Specific shapes have specific roles in a flowchart:

Q. Draw the flowchart for mailing a letter

address
envelope

affix
stamp

place in
mailbox

obtain
stamp

end

seal
envelope

insert into
envelope

obtain
envelope

Is letter
bigger than
envelope?

yes

fold letter
no

start

start, end begin

read x input

print y output

x = y * x computation

if x > 0 comparison
or decision

T

F

connector

Q. Draw the flowchart for reading two numbers and displaying the
numbers in decreasing order:

Q. Draw the flowchart for finding the average of your six lessons

 1

C++ Programming Language Definition

Definition
C++ is an improved version of C that takes the C language to the next level of

evolution of programming languages—those that provide object-oriented

programming.

C++ Compared with Other Languages
C++ is a structured language that allows large programs to be built out of small, easy

to understand pieces of code. Early languages, such as the original BASIC and

FORTRAN, did not have this idea. To write large programs was difficult and the

results of trying are described as spaghetti code. Many of the object-oriented features

of C++ have been introduced to address this problem. C++ has many of the features

of a high-level language (a programming language that uses commands that bear little

relationship to the instructions a computer uses), but it also can handle the same

programming detail as assembler language (code that directly represents machine

instructions, which is a low-level language).

How to write a simple program with C++?

The main Structure of C++ Program is as bellow

 #include "iostream.h"
void main()
{

 Declaration
 C++ statements

}

func1
func2

 2

C++ Programming Language Definition

#include "iostream.h"

#include is a directive, which tells the compiler that we want to use the iostream

library. The name inside quotes is a header. Every program that uses a library facility

must include its associated header. The #include directive must be written on a single

line the name of the header and the #include must appear on the same line. In general,

#include directives should appear outside any function. Typically, all the #include

directives for a program appear at the beginning of the file. The iostream library

defines versions of the input and output operators that accept all of the built-in types.

void main()

A main() is a function consists of a sequence of statements that perform the work of

the function. The operating system executes a program by calling the function named

main. That function executes its constituent statements and returns a value to the

operating system.

{ Marks the beginning of the body of the function

 } Indicates the end of the body of the function

 All users' defined functions must be written after the end of the program.

Semicolons mark the end of most statements in C++. They are easy to
overlook, but when forgotten can lead to mysterious compiler error
messages.

 What is the origin of C++ Language?

 3

C++ Programming Language Primitive Built-in Types

Primitive Built-in Types
C++ defines a set of arithmetic types, which represent integers, floating-point

numbers, and individual characters and boolean values. The size of the arithmetic

types varies across machines. By size, we mean the number of bits used to represent

the type. The standard guarantees a minimum size for each of the arithmetic types, but

it does not prevent compilers from using larger sizes. Indeed, almost all compilers use

a larger size for int than is strictly required.

Type Meaning Minimum Size
bool boolean NA
char character 1 Byte (8 Bits)
short short integer 2 Byte (16 bits)
int integer According to the system

long long integer 4 Byte (32 bits)
float single-precision floating-point 4 Byte (32 Bits)

double double-precision floating-point 8 Byte (64 Bits)
long double extended-precision floating-point 10 Byte (80 Bits)

Because the number of bits varies, the maximum (or minimum) values that
these types can represent also vary by machine.

By default, an integer variable is assumed to be signed (i.e., have a signed
representation so that it can assume positive as well as negative values).
However, an integer can be defined to be unsigned by using the keyword
unsigned in its definition. The keyword signed is also allowed but is
redundant.

 unsigned short age = 20;
 unsigned int salary = 65000;

 unsigned long price = 4500000;

The float type is usually not precise enough for real programs float is
guaranteed to offer only 6 significant digits. The double type guarantees at
least 10 significant digits, which is sufficient for most calculations.

 4

C++ Programming Language Arithmetic Operator

Arithmetic Operators
 C++ provides five basic arithmetic operators.

Operator Name Example

+ Addition 12 + 4.9 // gives 16.9
- Subtraction 3.98 – 4 // gives -0.02
* Multiplication 2 * 3.4 // gives 6.8
/ Division 9 / 2.0 // gives 4.5

% Remainder 13 % 3 // gives 1

 Except for remainder (%) all other arithmetic operators can accept a mix of

integer and real operands. Generally, if both operands are integers then the result
will be an integer. However, if one or both of the operands are reals then the
result will be a real (or double to be exact).

 When both operands of the division operator (/) are integers then the division is

performed as an integer division and not the normal division we are used to.
Integer division always results in an integer outcome (i.e., the result is always
rounded down). For example:

 9 / 2 // gives 4, not 4.5!
 -9 / 2 // gives -5, not -4!

 Unintended integer divisions are a common source of programming errors. To

obtain a real division when both operands are integers, you should cast one of
the operands to be real:

 int cost = 100;
 int volume = 80;
 double unitPrice = cost / (double) volume; // gives 1.25

In addition to the above arithmetic operators, there are the unary minus and
the Unary plus operators. the unary minus operator negates its operand:

 int i = 1024;
 int k = -i; // negates the value of its operand

Unary plus returns the operand itself. It makes no change to its operand.

 It is illegal to divide a number by zero. This results in a run-time division-by

zero failure which typically causes the program to terminate.

 5

C++ Programming Language Relational Operators

Relational Operators
C++ provides six relational operators for comparing numeric quantities. These are

shown below. Relational operators evaluate to 1 (representing the true outcome) or 0

(representing the false outcome).

Operator Name Example

== Equality 5 == 5 // gives 1
!= Inequality 5 != 5 // gives 0
< Less Than 5 < 5.5 // gives 1

<= Less Than or Equal 5 <= 5 // gives 1
> Greater Than 5 > 5.5 // gives 0

>= Greater Than or Equal 6.3 >= 5 // gives 1

The <= and >= operators are only supported in the form shown. In particular,
=< and => are both invalid and do not mean anything.

The operands of a relational operator must evaluate to a number. Characters are
valid operands since they are represented by numeric values. For example
(assuming ASCII coding):

 'A' < 'F' // gives 1 (is like 65 < 70)

 The relational operators should not be used for comparing strings, because this
will result in the string addresses being compared, not the string contents. For
example, the expression

 "HELLO" < "BYE"

causes the address of "HELLO" to be compared to the address of "BYE". As
these addresses are determined by the compiler (in a machine-dependent
manner), the outcome may be 0 or may be 1, and is therefore undefined.
C++ provides library functions (e.g., strcmp) for the comparison of string.
These will be described later.

 6

C++ Programming Language Logical Operators

Logical Operators
C++ provides three logical operators for combining logical expression. Like the

relational operators, logical operators evaluate to 1 or 0.

Operator Name Example
! Logical Negation !(5 == 5) // gives 0

&& Logical And 5 < 6 && 6 < 6 // gives 1
| | Logical Or 5 < 6 || 6 < 5 // gives 1

Logical negation is a unary operator, which negates the logical value of its
single operand. If its operand is nonzero it produce 0, and if it is 0 it produces 1.

 Logical and produces 0 if one or both of its operands evaluate to 0. Otherwise, it
produces 1. Logical or produces 0 if both of its operands evaluate to 0.
Otherwise, it produces 1.

 Here we talk of zero and nonzero operands (not zero and 1). In general, any
nonzero value can be used to represent the logical true, whereas only zero
represents the logical false. The following are, therefore, all valid logical
expressions:

 !20 // gives 0
 10 && 5 // gives 1
 10 || 5.5 // gives 1

 10 && 0 // gives 0

 7

C++ Programming Language Increment/Decrement Operators

Increment/Decrement Operators
The auto increment (++) and auto decrement (--) operators provide a convenient way

of, respectively, adding and subtracting 1 from a numeric variable. These are shown

below. The examples assume the following variable definition: int k = 5;

Operator Name Example
++ Auto Increment (prefix) ++k + 10 // gives 16

++ Auto Increment (postfix) k++ + 10 // gives 15
-- Auto Decrement (prefix) --k + 10 // gives 14
-- Auto Decrement (postfix) k-- + 10 // gives 15

++k; or k++; k=k+1;
 --k; or k--; k=k-1;

A=5;
X=A++; X=5, A=6

A=5;
X=++A; X=6, A=6

Both operators can be used in prefix and postfix form. The difference is
significant. When used in prefix form, the operator is first applied and the
outcome is then used in the expression. When used in the postfix form, the
expression is evaluated first and then the operator applied.

Both operators may be applied to integer as well as real variables, although in
practice real variables are rarely useful in this form.

Use Postfix Operators Only When Necessary. The prefix version does less work
(simple). It increments the value and returns the incremented version. The
postfix operator must store the original value so that it can return the
unincremented value as its result. For ints and pointers, the compiler can
optimize away this extra work. For more complex iterator types, this extra work
potentially could be more costly.

 Why do you think C++ wasn't named ++C?

 Explain the difference between prefix and postfix increment.

 8

C++ Programming Language Assignment Operator

Assignment Operator
The assignment operator is used for storing a value at some memory location

(typically denoted by a variable). Its left operand should be an lvalue, and its right

operand may be an arbitrary expression. The latter is evaluated and the outcome is

stored in the location denoted by the lvalue. An lvalue (standing for left value) is

anything that denotes a memory location in which a value may be stored.

Operator Example Equivalent to

= n = 25
+= n += 25 n = n + 25

-= n -= 25 n = n - 25

*= n *= 25 n = n * 25

/= n /= 25 n = n / 25

%= n %= 25 n = n % 25

 An assignment operation is itself an expression whose value is the value stored

in its left operand. An assignment operation can therefore be used as the right
operand of another assignment operation. Any number of assignments can be
concatenated in this fashion to form one expression. For example:

 int m, n, p;
 m = n = p = 100; // means: n = (m = (p = 100));
 m = (n = p = 100) + 2; // means: m = (n = (p = 100)) + 2;

 This is equally applicable to other forms of assignment. For example:

 m = 100;
 m += n = p = 10; // means: m = m + (n = p = 10);

Beware of Confusing Equality and Assignment Operators. The fact that we can
use assignment in a condition can have surprising effects:

 if (i = 42)
This code is legal: What happens is that 42 is assigned to i and then the result of
the assignment is tested. In this case, 42 is nonzero, which is interpreted as a true
value. The author of this code almost surely intended to test whether i was 42:

 if (i == 42)
Bugs of this sort are notoriously difficult to find. Some, but not all, compilers
are kind enough to warn about code such as this example.

 Explain what happens in each of the if tests:
 if (42 = i) // . . .
 if (i = 42) // . . .

 9

C++ Programming Language Operator Precedence

Operator Precedence
The order in which operators are evaluated in an expression is significant and is

determined by precedence rules. These rules divide the C++ operators into a number

of precedence levels as shown below. Operators in higher levels take precedence over

operators in lower levels.

For example, in

 a == b + c * d

c * d is evaluated first because * has a higher precedence than + and ==. The result is

then added to b because + has a higher precedence than ==, and then == is evaluated.

Precedence rules can be overridden using brackets or Parentheses. For example,
rewriting the above expression as

 a == (b + c) * d

 causes + to be evaluated before *.

Operators with the same precedence level are evaluated in the order specified by
the last column of the above Table. For example, in

 a = b += c

the evaluation order is right to left, so first b += c is evaluated, followed by a =b

Level Operator Kind Order of Evaluation
Highest :: Unary Both

() [] . Binary Left to Right
+
-

++
-- ! *

& Unary Right to Left

* / % Binary Left to Right
+ - Binary Left to Right

< <= > >= Binary Left to Right
== != Binary Left to Right

&& Binary Left to Right
| | Binary Left to Right

= +=
-=

*=
/= %= Binary Right to Left

Lowest , Binary Left to Right

 10

C++ Programming Language Comments

 Misunderstanding how expressions and operands are evaluated is a rich source
of bugs. Moreover, the resulting bugs are difficult to find because reading the
program does not reveal the error unless the programmer already understands
the rules. So, when in doubt, parenthesize expressions to force the grouping
that the logic of your program requires.

Parenthesize the following expression to indicate how it is evaluated. Test your
answer by compiling the expression and printing its result.

 12 / 3 * 4 + 5 * 15 + 24 % 4 / 2

Write expressions for the following:

· To test if a number n is even.

· To test if a character c is a digit.

· To test if a character c is a letter.

· To do the test: n is odd and positive or n is even and negative.

· To give the absolute value of a number n.

Comments
Program text that is ignored by the compiler. C++ has two kinds of comments: single-

line and paired. Single-line comments start with a //. Everything from the // to the end

of the line is a comment. Paired comments begin with a /* and include all text up to

the next */.

Which form is better?

 11

C++ Programming Language Variables

Variables
A variable is a symbolic name for a memory location in which data can be stored and

subsequently recalled. Variables are used for holding data values so that they can be

utilized in various computations in a program. All variables have two important

attributes:

 A type which is established when the variable is defined (e.g., integer, float,

character), where determines the size and layout of the variable's memory; the

range of values that can be stored within that memory; and the set of operations

that can be applied to the variable. Once defined, the type of a C++ variable

cannot be changed.

 A value which can be changed by assigning a new value to the variable. The kind

of values a variable can assume depends on its type. For example, an integer

variable can only take integer values (e.g., 2, 100, -12).

As a general rule, a variable is defined by specifying its type first, followed by the
variable name, followed by a semicolon. For example:-

 #include "iostream.h"
 void main ()
 {
 int workDays;
 float workHours, payRate, weeklyPay;
 // do something
 }

As illustrated by the above example, multiple variables of the same type can be
defined at once by separating them with commas.

It is possible to define a variable and initialize it at the same time. This is
considered a good programming practice, because it pre-empts the possibility of
using the variable prior to it being initialized. For example:-

 #include "iostream.h"
 void main ()
 {
 int workDays = 5;
 loat workHours = 7.5;
 float payRate = 38.55;
 // do something
 }

 12

C++ Programming Language Variables

The name of a variable can be composed of letters, digits, and the underscore
character. It must begin with either a letter or an underscore. Upper- and
lowercase letters are distinct: Identifiers in C++ are case-sensitive. The following
defines four distinct identifiers:

 // declares four different int variables
 int somename, someName, SomeName, SOMENAME;
 int x,X;

 Which, if any, of the following names are invalid? Correct each identified invalid
name.

 (a) int double = 3.14159; (b) char _;
 (c) bool catch-22; (d) char 1_or_2 ='1';
 (e) float Float = 3.14f;

 13

C++ Programming Language Type Casting

Type Casting
Converting an expression of a given type into another type is known as type-casting.

We have already seen some ways to type cast:

Implicit conversion
Implicit conversions do not require any operator. They are automatically

performed when variables of one type are mixed with variables of another type. For

example:

 //Implicit type conversion example

 #include "iostream.h"
 void main()
 {
 int x=2;
 int i=10.5; // i receives 10
 float f=3.14;
 double d;
 char ch;
 long l;
 unsigned short s;
 d=x; // converts 2 to a double to give 2.0
 x=f; // converts 3.14 to an int to give 3
 l=f; // converts 3.14 to a long to give 3L
 ch=65; // converts 65 to a char whose code is 65 ('A')
 s=f; // gives 3 as an unsigned short
 cout<<" The values of variables after implicit conversion\n";
 cout<<" i = "<<i<<"\n";
 cout<<" d = "<<d<<"\n";
 cout<<" x = "<<x<<"\n";
 cout<<" l = "<<l<<"\n";
 cout<<" ch = "<<ch<<"\n";
 cout<<"s = "<<s<<"\n";
 cout<<"more implicit type conversion\n";
 ch+=1; //converts 65+1 to a char whose code is 66 ('B')
 cout<<" ch after increment = "<<ch<<"\n;
 d=1; // d receives 1.0
 cout<<" d="<<d<<"\n";
 i = i + d; // means: i = int(double(i) + d)
 cout<<" i=i+d is"<<i<<"\n";
 }

Arithmetic operations are applicable with variables that have a character data
type.

 14

C++ Programming Language Type Casting

Some of implicit conversions may imply a loss of precision, which the
compiler can signal with a warning. This can be avoided with an explicit
conversion.

Explicit conversion
A value in any of the built-in types, can be converted (type-cast) to any of the other

types. For example:

 (int) 3.14 // converts 3.14 to an int to give 3

(long) 3.14 // converts 3.14 to a long to give 3L

(double) 2 // converts 2 to a double to give 2.0

(char) 122 // converts 122 to a char whose code is 122

(unsigned short) 3.14 // gives 3 as an unsigned short

As shown by these examples, the built-in type identifiers can be used as type

operators. Type operators are unary (i.e., take one operand) and appear inside

brackets to the left of their operand. This is called explicit type conversion. When

the type name is just one word, an alternate notation may be used in which the

brackets appear around the operand:

int(3.14) // same as: (int) 3.14

 // c-like cast notation

 // functional notation

C++ has two notations for explicit type conversion: functional and c-like
casting.

What will be the value of each of the following variables after its
initialization?

float p = 3.14; int x = p;
double d = 2 * x;
long k = p - 3;
char c = 'a' + 2;
char c = 'p' + 'A' - 'a';

 15

C++ Programming Language Basic Input/Output

Basic Input/Output
Using the standard input and output library, we will be able to interact with the user

by printing messages on the screen and getting the user's input from the keyboard.

The standard C++ library includes the header file iostream, where the standard input

and output stream objects are declared.

Standard Output (cout)
By default, the standard output of a program is the screen, and the C++ stream object

defined to access it is cout.

cout is used in conjunction with the insertion operator, which is written as <<. For

example:-

 cout << "Output sentence"; // prints Output sentence on screen
 cout << 120; // prints number 120 on screen
 cout << x; // prints the content of x on screen

The sentence in the first instruction is enclosed between double quotes (") because
it is a constant string of characters. Whenever we want to use constant strings of
characters we must enclose them between double quotes (") so that they can be
clearly distinguished from variable names. For example, these two sentences have
very different results:

 cout << "Hello"; // prints Hello
 cout << Hello; // prints the content of Hello variable

The insertion operator (<<) may be used more than once in a single statement:

 cout << "Hello, " << "I am " << "a C++ statement";

This statement would print the message Hello, I am a C++ statement on the
screen. The utility of repeating the insertion operator (<<) is demonstrated when
we want to print out a combination of variables and constants or more than one
variable:

 cout << "Hello, I am " << age << " years old and my zipcode is " << zipcode;

If we assume the age variable to contain the value 24 and the zipcode variable to
contain 90064 the output of the previous statement would be:

 Hello, I am 24 years old and my zipcode is 90064

 16

C++ Programming Language Basic Input/Output

It is important to notice that cout does not add a line break after its output unless
we explicitly indicate it, therefore, the following statements:

 cout << "This is a sentence.";
 cout << "This is another sentence.";

will be shown on the screen one following the other without any line break
between them:

 This is a sentence. This is another sentence.

In order to perform a line break on the output we must explicitly insert a new-line
character into cout. In C++ a new-line character can be specified as \n:

 cout << "First sentence.\n ";
 cout << "Second sentence.\nThird sentence.";

 This produces the following output:

 First sentence.
 Second sentence.
 Third sentence.

 There are more characters can be used with cout:

 \t Tab character
 \b Backspace character
 \r Forces the cursor to move or return to the beginning of the current line.

 For example:-

 cout<<"\nJoe\tFred\tSally\r";

 This produces the following output:

 New line
 Joe Fred sally

 What is the output of the following statements:

1- cout<<"\nHere, something is wrong\r"<<" ";

 2- cout<<"If you fine, I will be fine\b"<<" "<<"\n";

 17

C++ Programming Language Basic Input/Output

Standard Input (cin)
The standard input device is usually the keyboard. Handling the standard input in

C++ is done by applying the overloaded operator of extraction (>>) on the cin

stream. The operator must be followed by the variable that will store the data that is

going to be extracted from the stream. For example:

 int age;
 cin >> age;

The first statement declares a variable of type int called age, and the second one waits

for an input from cin (the keyboard) in order to store it in this integer variable.

cin can only process the input from the keyboard once the RETURN key has
been pressed. Therefore, even if you request a single character, the extraction
from cin will not process the input until the user presses RETURN after the
character has been introduced.

You can also use cin to request more than one datum input from the user:

 cin >> a >> b;

 is equivalent to:

 cin >> a;
 cin >> b;

In both cases the user must give two data, one for variable a and another one for
variable b that may be separated by any valid blank separator: a space, a tab
character or a newline.

You must always consider the type of the variable that you are using as a
container with cin extractions. If you request an integer you will get an integer,
if you request a character you will get a character and if you request a string of
characters you will get a string of characters.

Insertion operator (<<) for cout.
Extraction operator (>>) for cin.

 18

C++ Programming Language Basic Input/Output

 I/O Example

 #include "iostream"
 void main ()
 {
 int i;
 cout << "Please enter an integer value: ";
 cin >> i;
 cout << "The value you entered is " << i;
 }

Write a C++ program to read an integer number and print its original and double
values.

 19

C++ Programming Language Control Structures

Control Structures
A program is usually not limited to a linear sequence of instructions. During its

process it may bifurcate, repeat code or take decisions. For that purpose, C++

provides control structures that serve to specify what has to be done by our program,

when and under which circumstances.

Conditional structure: if and else
The if keyword is used to execute a statement or block only if a condition is fulfilled.

Its form is:

 if (condition)

 statement;

Where condition is the expression that is being evaluated. If this condition is true,

statement is executed. If it is false, statement is ignored (not executed) and the

program continues right after this conditional structure. For example, the following

code fragment prints x is 100 only if the value stored in the x variable is indeed 100:

 if (x == 100)

 cout << "x is 100";

If we want more than a single statement to be executed in case that the condition is

true we can specify a block using braces { }:

 if (x == 100)

 {

 cout << "x is ";

 cout << x;

 }

 20

C++ Programming Language Control Structures

We can additionally specify what we want to happen if the condition is not fulfilled

by using the keyword else. Its form used in conjunction with if is:

 if (condition)

 statement1;

 else

 statement2;

For example:

 if (x == 100)

 cout << "x is 100";

 else

 cout << "x is not 100";

prints on the screen x is 100 if indeed x has a value of 100, but if it has not -and only

if not- it prints out x is not 100.

Statement2 can be any statement or a block of statements enclosed in curly
braces { }.

The if .. else structures can be concatenated with the intention of verifying a range of

values. The following example shows its use telling if the value currently stored in x

is positive, negative or none of them (i.e. zero):

 if (x > 0)

 cout << "x is positive";

 else if (x < 0)

 cout << "x is negative";

 else
 cout << "x is 0";

C++ compiler handles the Nested if by matching else to the nearest if, not
according to the semicolon that found at the end of the statement that precedes
the else, as in Pascal language.

 21

C++ Programming Language Control Structures

Common Mistakes of if statement
There are several common mistakes in the writing of if statements (by the users).

Some of these mistakes may result in compiler errors and therefore are easy to spot.

However, other mistakes are harder to pick out since they do not cause an error, either

at compile time or run-time, but instead give rise to illogical results. These mistakes

are:

Don’t Put a Semicolon after the Relational Expression!

 if (num % 2 == 0); // don't put a semicolon here!

 cout << "The number is even\n";

Since the compiler generally ignores blank spaces, the following if statement
would be the same, and better illustrates visually the problem:

 if (num % 2 == 0)
 ; // don't put a semicolon here!
 cout << "The number is even\n";

No compiler error will result. The compiler will assume from the semicolon that
it is an empty statement. An empty statement does nothing, and though it is
perfectly legal in C++, and indeed sometimes has a purpose, here it is not
intended.

One consequence will be that the empty statement will execute if the relational
expression is true. If this comes about, nothing will happen. So far, there is no
harm done.

However, there is an additional consequence, an illogical result. The cout
statement “The number is even” will execute whether or not the relational
expression is true. In other words, even if an odd number is entered, the program
will output “The number is even.”

 22

C++ Programming Language Control Structures

Curly Braces Needed for Multiple Conditional Statements. Unless you use
curly braces, only the first statement following the if keyword and relational
expression is conditional. For example, in the following code, only the first cout
statement is conditional. The second cout statement is not, so it will execute
whether the relational expression is true or false:

 if (num % 2 == 0)
 cout << "The number is even\n";
 cout << "And the number is not odd\n";

Thus, if the user enters an odd number such as 17, the cout statement “The
number is even” will not display because the relational expression is false.
However, the following statement “And the number is not odd” will display
because that statement does not belong to the if statement.

 Enter a whole number: 17
 And the number is not odd

If you want more than one statement to be part of the overall if statement, you
must encase these statements in curly braces:

 if (num % 2 == 0)
 {
 cout << "The number is even\n";
 cout << "And the number is not odd\n";
 }

Now the second cout statement will execute only if the if expression is true.

Forgetting these curly braces when you want multiple statements to be
conditional is another common syntax error.

Don’t Mistakenly Use the Assignment Operator!. The third most common
syntax error is to use the assignment operator instead of the relational equality
operator because the assignment operator looks like an equal sign:

 if (num % 2 = 0) // wrong operator!
 cout << "The number is even\n";

The result is that the if expression will not evaluate as the result of a
comparison. Instead, it will evaluate the expression within the parentheses as the
end result of the assignment, with a non-zero value being regarded as true, a
zero value being regarded as false.

 23

C++ Programming Language Control Structures

Common Mistakes of else statement
Just as with the if statement, there are several common syntax mistakes with the else

statement:

No else without an if. You can have an if expression without an else part.
However, you cannot have an else part without an if part. The else part must be
part of an overall if statement. This requirement is logical. The else part works
as “none of the above”; without an if part there is no “above.”

Don’t Put a Relational Expression after the else Keyword!. Another common
mistake is to place a relational expression in parentheses after the else keyword.
This will not cause a compiler or run-time error, but it will often cause an
illogical result.

 if (num % 2 == 0)
 cout << "The number is even\n";
 else (num % 2 == 1)
 cout << "The number is odd\n";

The program will not compile, and the cout statement following the else
expression will be highlighted with an error description such as “missing ‘;’
before identifier ‘cout’.”

Actually, the error description is misleading. There is nothing wrong with the
cout statement. Instead, no relational expression should follow the else keyword.
The reason is that the else acts like “none of the above” in a multiple choice test.
If the if expression is not true, then the conditional statements connected to the
else part execute.

Don’t Put a Semicolon after the Else!. Another common mistake is to place a
semicolon after the else expression. This too will not cause a compiler or run-
time error, but often will cause an illogical result. For example, in the following
code, the cout statement “The number is odd” will output even if the number
that’s input is even.

 if (num % 2 == 0)
 cout << "The number is even\n";
 else; // don't put a semicolon here!
 cout << "The number is odd\n";

 The result of inputting an even number will be

 Enter a whole number: 16
 The number is even
 The number is odd

 24

C++ Programming Language Control Structures

The cout statement “The number is odd” will execute whether or not the
relational expression is true because the cout statement no longer is part of the if
statement.

Curly Braces Are Needed for Multiple Conditional Statements. As with the
if expression, if you want more than one conditional statement to belong to the
else part, then you must encase the statements in curly braces. For example, in
the following code fragment, the cout statement “This also belongs to the else
part” will always display whether the number is even or odd since it does not
belong to the if statement.

 if (num % 2 == 0)
 cout << "The number is even\n";
 else
 cout << "The number is odd\n";
 cout << "This also belongs to the else part";

 The sample input and output could be

Enter a whole number: 16
The number is even
This also belongs to the else part

Encasing the multiple conditional statements in curly braces solves this issue.

if (num % 2 == 0)
 cout << "The number is even\n";
 else
 {
 cout << "The number is odd\n";
 cout << "This also belongs to the else part";
 }

As mentioned before, C++ compiler handles the Nested if by matching else to
the nearest if. In the example below:

 if (minVal <= ivec[i])
 if (minVal == ivec[i])
 ++occurs;
 else {
 minVal = ivec[i];
 occurs = 1;
 }

else part matches the inner if, but in our program we intend else part matches the
outer if, What will we do?. This case or problem is called Dangling else.

 25

C++ Programming Language Control Structures

We can force an else to match an outer if by enclosing the inner if in a
compound statement:

 if (minVal <= ivec[i])
 {
 if (minVal == ivec[i])
 ++occurs;
 }
 else {
 minVal = ivec[i];
 occurs = 1;
 }

Correct each of the following:

 (a) if (ival1 != ival2)
 ival1 = ival2
 else ival1 = ival2 = 0;

 (b) if (ival < minval)
 minval = ival; // remember new minimum
 occurs = 1; // reset occurrence counter

 (c) if (ival = 0)
 ival = x;

What is a "dangling else"? How are else clauses resolved in C++?

Assuming that n is 20, what will the following code fragment output when
executed?

if (n >= 0)
 if (n < 10)
 cout << "n is small\n";
else
 cout << "n is negative\n";

Write a program which read two chars and if they are 'm', 'r' output "Good
Morning", if 'e', 'v' output "Good Evening", otherwise output "Goodbye".

 26

C++ Programming Language Control Structures

The switch Statement
The switch statement provides a way of choosing between a set of alternatives, based

on the value of an expression. The general form of the switch statement is:

 switch (expression)
 {
 case constant1:
 group of statements 1; // zero, one, or more statements
 break;
 case constant2:
 group of statements 2; // zero, one, or more statements
 break;
 .
 .
 .
 default:
 default group of statements; // zero, one, or more statements
 }

Why switch Statement?
Deeply nested if else statements can often be correct syntactically and yet not

correctly reflect the programmer's logic. For example, mistaken else if matchings are

more likely to pass unnoticed. Adding a new condition and associated logic or

making other changes to the statements is also hard to get right. A switch statement

provides a more convenient way to write deeply nested if/else logic.

How it works?
It works in the following way: switch evaluates expression and checks if it is

equivalent to constant1, if it is, it executes group of statements 1 until it finds the

break statement. When it finds this break statement the program jumps to the end of

the switch statement.

If expression was not equal to constant1 it will be checked against constant2. If it is

equal to this, it will execute group of statements 2 until a break keyword is found,

and then will jump to the end of the switch statement.

Finally, if the value of expression did not match any of the previously specified

constants (you can include as many case labels as values you want to check), the

program will execute the statements included after the default: label, if it exists

(since it is optional).

 27

C++ Programming Language Control Structures

Both of the following code fragments have the same behavior:

 switch example if-else equivalent

switch (x) if (x == 1)
{ {
 case 1: cout << "x is 1";
 cout << "x is 1"; }
 break; else if
(x == 2)
case 2: {
 cout << "x is 2"; cout << "x is 2";
 break; }
default: else
 cout << "value of x unknown"; {
} cout << "value of x unknown";
 }

No Break Statement Using
To understand what happens when no Break statement using, we'll trace through this

version:

 switch (ch)
 {
 case 'a':
 ++aCnt; // oops: should have a break statement
 case 'e':
 ++eCnt; // oops: should have a break statement
 case 'i':
 ++iCnt; // oops: should have a break statement
 case 'o':
 ++oCnt; // oops: should have a break statement
 case 'u':
 ++uCnt; // oops: should have a break statement
 }

Assuming that value of ch is 'i'. Execution begins following case 'i' thus incrementing

iCnt. Execution does not stop there but continues across the case labels incrementing

oCnt and uCnt as well. If ch had been 'e', then eCnt, iCnt, oCnt, and uCnt would

all be incremented. So, Forgetting to provide a break is a common source of bugs

in switch statements.

Although it is not strictly necessary to specify a break statement after the last
label of a switch, the safest course is to provide a break after every label, even
the last. If an additional case label is added later, then the break is already in
place.

 28

C++ Programming Language Control Structures

The switch statement is a bit peculiar within the C++ language because it uses
labels instead of blocks. This forces us to put break statements after the group
of statements that we want to be executed for a specific condition. Otherwise the
remainder statements -including those corresponding to other labels- will also be
executed until the end of the switch statement block or a break statement is
reached.

Notice that switch can only be used to compare an expression against
constants. Therefore we cannot put variables as labels (for example case n:
where n is a variable) or ranges (case (1..3):) because they are not valid C++
constants.

If you need to check ranges or values that are not constants, use a concatenation
of if and else if statements.

The expression evaluated by a switch can be arbitrarily complex. In particular,
the expression can define and intialize a variable:

 switch(char ch = getchar())

In this case, ch is initialized, and the value of ch is compared with each case
label. The variable ch exists throughout the entire switch statement but not
outside it.

Case labels must be constant integral expressions. For example, the following
labels result in compile-time errors:

 // illegal case label values
 case 3.14: // non-integer
 case ival: // non-constant

It is also an error for any two case labels to have the same value. For example:

 case 4:
 cout<<"four\n";
 break;
 case 4:
 cout<<"again four\n";
 break;

 29

C++ Programming Language Control Structures

The following program shows a switch statement in action in a program that
determines your average based on your grade:

 #include "iostream.h"
 void main()
 {
 char grade;
 cout << "Enter your grade: ";
 cin >> grade;
 switch (grade)
 {
 case 'A':
 cout << "Your average must be between 90 – 100\n";
 break;
 case 'B':
 cout << "Your average must be between 80 – 89\n";
 break;
 case 'C':
 cout << "Your average must be between 70 – 79\n";
 break;
 case 'D':
 cout << "Your average must be between 60 – 69\n";
 break;
 default:
 cout << "Your average must be below 60\n";
 }
 }

Modify the grade program, when you enter 'a' or 'A', the output must be "Your
average must be between 90 - 100", and 'b' or 'B' , the output must be "Your
average must be between 80 - 89", and so on. (by using switch statement only).

 30

C++ Programming Language Control Structures

Is there any difference between the two fragments below, and if there is no
difference, what is the output when ch='u','o','i', 'O',and'U'.

int vowelCnt = 0;
 // ...
 switch (ch)
 {
 // any occurrence of a,e,i,o,u increments vowelCnt
 case 'a':
 case 'e':
 case 'i':
 case 'o':
 case 'u':
 ++vowelCnt;
 break;
 }

int vowelCnt = 0;
 // ...
 switch (ch)
 {

 case 'a': case 'e': case 'i': case 'o': case 'u':
 ++vowelCnt;
 break;
 }

What is the output of the following fragments:

 switch (x)
 {
 case 1:
 cout<<"sat\n";
 break;
 case 2:
 cout<<"sun\n";
 break;
 case 3:
 cout<<"mon\n";
}

When x=1, 4, 2, and 3.

 31

C++ Programming Language Control Structures

switch (v)
{
 case 'a':
 cout<<"alpha"

 case 'b':
 cout<<"beta";
 case 'c':
 cout<<"gama";
 break;
 default:
 cout<<"not on list"
 }

When v='a','b', and 'c'.

 32

C++ Programming Language Control Structures

Iteration Structures (loops)
Loops have as purpose to repeat a statement a certain number of times or while a

condition is fulfilled.

The while loop
Its format is:

while (expression)

statement;

and its functionality is simply to repeat statement while the condition set in

expression is true. For example, we are going to make a program to countdown

using a while-loop:

 // custom countdown using while

#include "iostream.h"
void main ()
{

int n;
cout << "Enter the starting number > ";
cin >> n;
while (n>0)
{
 cout << n << ", ";
 --n;
}
 cout << "FIRE!\n";

}

When the program starts the user is prompted to insert a starting number for the

countdown. Then the while loop begins, if the value entered by the user fulfills the

condition n>0 (that n is greater than zero) the block that follows the condition will be

executed and repeated while the condition (n>0) remains being true.

The while loop is using when, the number of times is un-fixed.

If we want more than a single statement to be repeated, we can specify a block
using braces { }.

 33

C++ Programming Language Control Structures

When creating a while-loop, we must always consider that it has to end at some
point, therefore we must provide within the block some method to force the
condition to become false at some point, otherwise the loop will continue
looping forever. In this case we have included --n; that decreases the value of
the variable that is being evaluated in the condition (n) by one - this will
eventually make the condition (n>0) to become false after a certain number of
loop iterations: to be more specific, when n becomes 0, that is where our while-
loop and our countdown end.

It is not unusual for a while loop to have an empty body (i.e., a null statement).
The following loop, for example, sets n to its greatest odd factor.

 while (n % 2 == 0 && n /= 2);

Here the loop condition provides all the necessary computation, so there is no
real need for a body. The loop condition not only tests that n is even, it also
divides n by two and ensures that the loop will terminate should n be zero.

When a while loop has a block, don't Put a Semicolon after the Relational
Expression. For example, in the program below, it causes an infinite loop!

include "iostream.h"

 void main()
 {

 float x,y;
 char ch=' ';
 while (ch != 'n'); // oops, Infinite Loop!
 {
 cin>>x>>y;
 if(y==0)

 cout<<"divisor can't be zero\n";
 else
 y=x/y;
 cout<<"do another y/n";
 cin>>ch;

 }
 }

C++ compiler doesn't tell you about the above mistake during compilation time.
So, be careful.

 34

C++ Programming Language Control Structures

Remember, Assignment Has Low Precedence!

Inside a condition is another common place where assignment is used as a part
of a larger expression. Writing an assignment in a condition can shorten
programs and clarify the programmer's intent. For example, the following loop
uses a function named getchar(), which returns char values. We can test those
values until we obtain some desired value say, 'A':

Without the parentheses, the operands to != would be the value returned from
calling getchar and 'A'. The true or false result of that test would be assigned to
ch clearly not what we intended!. So, The additional parentheses around the
assignment are necessary because assignment has lower precedence than
inequality.

When you use the function getchar() to get a character, you must use the library
"stdio.h", as following:

 #include "stdio.h"

The assignment in the while loop represents a very common usage. Because
such code is widespread, it is important to study this expression until its
meaning is immediately clear.

char ch;
while ((ch = getchar()) != 'A')
{
 //do something ...
 }

char ch= getchar();
while (ch != 'A')
{
 //do something ...
 ch= getchar();
 }

 35

C++ Programming Language Control Structures

// Example about using assignment as apart of the relational expression

#include "iostream.h"
#include "stdio.h"
void main()
{

 char ch;
 cout<<"to quit, input 'q'\n";
 while ((ch = getchar()) != 'q')
 cout<<ch<<"\n";

}

What will happen if there is a semicolon after the relational expression of the
above example?

What is the output of the program below?

#include "iostream.h"
void main()
{
 int num = 0;
 while (num++ < 10)
 cout << num << " ";
}

 36

C++ Programming Language Control Structures

The do .. while Statement
The do .. while statement (also called do loop) is similar to the while statement,

except that its body is executed first and then the loop condition is examined. Its

format is:

 do

 statement;

 while (condition); // wow!!!, there is a semicolon

The statement in a do is executed before condition is evaluated. So, the do .. while

statement is granting at least one execution of statement even if condition is

never fulfilled. For example, the following example program echoes any number you

enter until you enter 0.

// number echoer

#include "iostream.h"
void main ()
{
 unsigned long n;
 do
 {
 cout << "Enter number (0 to end): ";
 cin >> n;
 cout << "You entered: " << n << "\n";
 } while (n != 0);
 }

The do .. while loop is using when, the number of times is un-fixed.

The condition cannot be empty. If condition evaluates as false, then the loop
terminates; otherwise, the loop is repeated.

If we want more than a single statement to be repeated, we can specify a block
using braces { }.

Unlike a while statement, a do-while statement always ends with a semicolon.

 37

C++ Programming Language Control Structures

The do .. while loop is less frequently used than the while loop. It is useful
for situations where we need the loop body to be executed at least once,
regardless of the loop condition. For example, suppose we wish to repeatedly
read a value and print its square, and stop when the value is zero. This can be
expressed as the following loop:

do
{
 cin >> n;
 cout << n * n << "\n";
} while (n != 0);

Unlike the while loop, the do loop is never used in situations where it would
have a null body. Although a do loop with a null body would be equivalent to a
similar while loop, the latter is always preferred for its superior readability.

// Example about do .. while, repeatedly asks user for pair of numbers to sum

#include "iostream.h"
void main()
{
 char ch;

 int val1, val2;
 do
 {
 cout << "please enter two values: ";
 cin >> val1 >> val2;
 cout << "The sum of " << val1 << " and " << val2
 << " = " << val1 + val2 << "\n\n"
 << "More? [yes,y][no,n] ";
 cin >> ch;
 } while(ch!='n');
}

 38

C++ Programming Language Control Structures

The for Statement
The for statement (also called for loop) is similar to the while statement, but has

two additional components: an expression which is evaluated only once before

everything else, and an expression which is evaluated once at the end of each

iteration. Its format is:

 for (expression1; expression2; expression3)
 statement;

First expression1 (initializer) is evaluated. Each time round the loop, expression2

(condition) is evaluated. If the outcome is nonzero then statement is executed and

expression3 (subscript increment or decrement) is evaluated. Otherwise, the loop

is terminated.

//Example, countdown using a for loop

#include "iostream.h"
void main ()
{
 int n;
 for (n=10; n>0; n--)
 cout << n << ", ";
 cout << "FIRE!\n";
}

The for loop is using when, the number of times is fixed or un-fixed.

If we want more than a single statement to be repeated, we can specify a block
using braces { }.

 The for loop repeats the statements as long as the condition is true.

 39

C++ Programming Language Control Structures

The most common use of for loops is for situations where a variable is
incremented or decremented with every iteration of the loop. The following
for loop, for example, calculates the sum of all integers from 1 to n.

sum = 0;
for (i = 1; i <= n; ++i)
 sum += i;

 This is preferred to the while-loop version we saw earlier. In this example, i is

usually called the loop variable.

C++ allows the first expression in a for loop to be a variable definition. In the
above loop, for example, i can be defined inside the loop itself:

for (int i = 1; i <= n; ++i)

 sum += i;

Any of the three expressions in a for loop may be empty. For example,
removing the first and the third expression gives us something identical to a
while loop:

 for (; i != 0;) // is equivalent to: while (i != 0)
 something; // something;

Removing all the expressions gives us an infinite loop. This loop's condition is
assumed to be always true:

 for (;;) // infinite loop
 something;

For loops with multiple loop variables are not unusual. In such cases, the
comma operator is used to separate their expressions:

 for (n=0, i=100 ; n!=i ; n++, i--)
 something;

n starts with a value of 0, and i with 100, the condition is n!=i (that n is not
equal to i). Because n is increased by one and i decreased by one, the loop's
condition will become false after the 50th loop, when both n and i will be equal
to 50.

 40

C++ Programming Language Control Structures

Don't Put a Semicolon at the end of for statement. For example, in the
fragment below, it separates the cout statement!, so it will execute one time
(prints one star).

 For (int i=0; i<=5; i++);
 cout<<"*";

C++ compiler doesn't tell you about the above mistake during compilation time.
So, be careful.

You would not intend an infinite loop in your code, but mistakes do happen. If it
happens to you, don’t panic. You can use the CTRL-BREAK keyboard
combination to end the program. Knowing you have encountered an infinite
loop, you then can correct the code error that caused it.

// the following program calculates the factorial of a number inputted by the
user. A factorial is the product of all the positive integers from 1 to that number.
For example, the factorial of 3 is 3 * 2 * 1, which is 6, while the factorial of 5 is
5 * 4 * 3 * 2 * 1, which is 120.

#include "iostream.h"
void main()
{
 int num, counter, total = 1;
 cout << "Enter a number: ";
 cin >> num;
 cout << "The factorial of " << num << " is ";
 for (int counter = 1; counter <= num; counter++)
 total *= counter;
 cout << total;

}

 Write program to read group of numbers ended with 999, using for loop, the
program should count a number of positive and negative number, a number of
numbers that larger than 100, and a number of odd and even numbers.

 41

C++ Programming Language Control Structures

Explain each of the following loops. Correct any problems you detect.

 (a) for (int a = 0, ix = 0; ix != 100 && a != 100; +ix, ++a)
 {

 // do something
 }

 (b) for (; ;);
 {
 //do something
 }

 (c) char ch;
 for(; ch=getchar() != '.' ;)
 putchar(ch);

(d) for (int ix = 0; ix != sz; ++ix)
 {
 // do something
 }

 if (ix != sz)
 // ...

(e) int ix;
 for (ix != sz; ++ix)
 {
 //do something
 }

(f) for (int ix = 0; ix != sz; ++ix, ++ sz)
 {
 //do something
 }

 42

C++ Programming Language Control Structures

Nesting Loops
You can nest one for loop inside another, or one while loop inside another. You also

can nest a while loop inside of a for loop, or a for loop inside of a while loop or do

loop, and so on.

With respect to nesting for loop, the following program prints five rows of ten X

characters:

//program prints five rows of ten X characters

#include "iostream.h"
void main()
{
 for (int x = 1; x <= 5; x++)
 {
 for (int y = 1; y <= 10; y++)
 cout << "X";
 cout << '\n';
 }
}

The for loop for (int x = 1; x <= 5; x++) is the outer for loop. The for loop for (int y =

1; y <= 10; y++) is the inner for loop.

With nested for loops, for each iteration of the outer for loop, the inner for loop goes

through all its iterations. By analogy, in a clock, minutes are the outer loop, seconds

the inner loop. In an hour, there are 60 iterations of minutes, but for each iteration of a

minute, there are 60 iterations of seconds.

Nested for loops can be used to read and print rows and columns for tables (two-

dimensional arrays)

Another example is a program prompts the user for the total number of salespersons

as well as the number of sales per salespersons, and has the user input each sale of

each salesperson, and then afterward displays the average sale for each salesperson.

The number of iterations of the outer for loop will be the number of salespersons. The

number of iterations of the inner for loop will be the number of sales per salesperson.

 43

C++ Programming Language Control Structures

//program finds the average sale for each salesperson

#include "iostream.h"
void main()
{
 int persons, int numSales;
 cout << "Enter number of salespersons: ";
 cin >> persons;
 cout << "Enter number of sales per salesperson: ";
 cin >> numSales;
 for (int x = 1; x <= persons; x++)
 {
 int sale, total = 0;
 float average;
 for (int y = 1; y <= numSales; y++)
 {
 cout << "Enter sale " << y << " for salesperson "
 << x <<": ";
 cin >> sale;
 total += sale;
 }
 average = (float) total / numSales;
 cout << "Average sales for salesperson #" << x
 << " is " << average << '\n';
 }
}

With respect to nesting while loops, The following is a modification of that program

that prints 5 rows of 10 X characters but using nested while loops.

//program prints five rows of ten X characters

 #include "iostream.h"

void main()
{
 int x = 0;
 while (x++ < 5)
 {
 int y = 0;
 while (y++ < 5)
 cout << "X";
 cout << '\n';
 }
}

Since each loop has a predictable number of iterations, using nested for loops is
somewhat simpler than using nested while loops. However, both work.

 44

C++ Programming Language Control Structures

 Compare between for and while Loops.

Compare between the do .. while and while Loops.

Write a program to print four strings, the end of each string is '*'.

Write a program which count the No. of digits, coma, newline in four lines,
the end of each line is ';'.

Write a program to read chars, then change each char in small letter to capital
letter and vice versa. The program must be finish when the char is '*'.

- For small letter to capital letter

ch=ch-'a'+'A'
- For capital letter to small letter

Ch=ch-'A'+'a';

Write a program which inputs an octal number and outputs its decimal
equivalent. The following example illustrates the expected behavior of the
program:

Input an octal number: 214
Octal(214) = Decimal(532)

Write a program which produces a simple multiplication table of the following
format for integers in the range 1 to 9:

1 x 1 = 1
1 x 2 = 2
...
9 x 9 = 81

 45

C++ Programming Language Control Structures

Jump statements:

The break statement
Using break we can leave a loop (while, do, or for) even if the condition for its end is

not fulfilled. It can be used to end an infinite loop, or to force it to end before its

natural end. For example, we are going to stop the count down before its natural end:

// break loop example

#include "iostream.h"
void main ()
{
 int n;
 for (n=10; n>0; n--)
 {
 cout << n << ", ";
 if (n==3)
 {
 cout << "countdown aborted!";
 break;
 }
 }
}

In addition to the loop structures break statement may appear inside switch

statement. It causes a jump out of that structure, and hence terminates it.

A break statement only applies to the loop or switch immediately enclosing
it. It is an error to use the break statement outside a loop or a switch. The
break statement, is used, commonly within an if structure.

In for loop, if the condition is omitted, as the following:

 for (int i = 0; ; ++i)

or if the three parts are omitted, as the following:

 for (; ;)

It is essential that the body of the loop contain a break statement. Otherwise
the loop will execute until it exhausts the system resources (infinite loop).

 46

C++ Programming Language Control Structures

Similarly, if the expression3 (subscript inc. or dec.) is omitted, then the loop
must exit through a break the loop body must arrange to change the value
tested in the condition:

 for (int i = 0; i != 10;)
 {
 // body must change i or the loop won't terminate
 }

If the body doesn't change the value of i, then i remains 0 and the test will
always succeed (infinite loop).

In nesting loops, if you place a break statement in the inner loop, it will
affect only that inner loop, and have no effect on the outer loop.

Compare between the two programs and find the output of both.

#include "iostream.h"
void main()
{
 for (int x = 1; x <= 5; x++)
 {
 for (int y = 1; y <= 10; y++)
 {
 if(y%2==0)
 break;
 cout << "X";
 }
 cout << '\n';
 }
}

#include "iostream.h"
void main()
{
 for (int x = 1; x <= 5; x++)
 {
 if(x%2==0)
 break;
 for (int y = 1; y <= 10; y++)
 cout << "X";
 cout << '\n';
 }
}

 Outer loop
 {
 //do something
 Inner loop
 {
 //do something
 if(condition)
 break;
 }

 }

Stops the
inner loop

and the outer
loop goes on

Outer loop
{
 //do something
 if(condition)
 break;
 Inner loop
 {
 //do something
 }
}
.
.
.

Stops the outer
loop and so the

inner loop
stops too, and
the rest of the
program will

execute

 47

C++ Programming Language Control Structures

Is there any problem in the following fragment? If there is a problem what is
the solution?

 char ch;
 while ((ch=getchar()) != '.')
 {
 switch(ch)
 {
 case '+':
 float sum=0.0;
 for (int i=0; ; i++)
 {
 sum +=i
 if (sum == 100)
 break;
 // ...
 }

 case '-':
 // ...

 } // end switch

 } // end while

// program, Guess a number

#include "iostream.h"
void main()
{
 int num, counter, secret = 3;
 cout << "Guess a number between 1 and 10\n";
 cout << "You have 3 tries\n";
 for (int counter = 1; counter <= 3; counter++)
 {
 cout << "Enter the number now: ";
 cin >> num;
 if (num == secret)
 {
 cout << "You guessed the secret number!";
 break;
 }
 }
 cout << "Program over";
}

 48

C++ Programming Language Control Structures

The continue statement
The continue statement causes the program to skip or ignore the rest of the loop in

the current iteration as if the end of the statement block had been reached

(terminates the current iteration), causing it to jump to the start of the following

iteration. For example, we are going to skip the number 5 in our countdown:

// continue loop example

#include "iostream.h"
void main ()
{
 for (int n=10; n>0; n--)
 {
 if (n==5)
 continue;
 cout << n << ", ";
 }
cout << "FIRE!\n";
}

continue statement applies to the loop immediately enclosing it. It is an error
to use the continue statement outside a loop. The continue statement like the
break statement, is used, commonly within an if structure. For example:

//Program which prints any character you entered, and ignores the dollar sign $

#include "iostream.h"
#include "stdio.h"
void main ()
{
 char ch;
 for (int i=1 ; (ch=getchar()) != '\n'; i++)
 {
 if (ch=='$')
 continue;
 putchar();
 cout<< i <<"\n";
 }
}

 49

C++ Programming Language Control Structures

In while and do loops, the next iteration commences from the loop condition.
In a for loop, the next iteration commences from the loop’s third expression.
For example:

In nesting loops, if you place a continue statement in the inner loop, it will
affect only that inner loop, and have no effect on the outer loop. For example:

while (k <= more)
{
 for (i = 0; i < n; ++i)
 {
 cin >> num;
 if (num < 0)
 continue; // causes a jump to: ++i
 // process num here...
 }
 //etc...
}

do
{
 cin>>x>>y;
 if (y==0)
{
 cout<<"divisor can't be zero\n";
 continue;
}
y=x/y;
cout<<"do another y/n";
cin>>ch;
} while (ch != 'n');

Ignored

while (ch != 'n')
{
 cin>>x>>y;
 if (y==0)
 {
 cout<<"divisor can't be zero\n";
 continue;
 }
 y=x/y;
cout<<"do another y/n";
cin>>ch;
}

Ignored

for (i=1; i<=5 ; i++)
{
 cin>>x;
 cout<<" i="<<i<<"\n";
 if (x==2)
 continue;
 x += 10;
}

Increment i
and check
condition

Ignored

 50

C++ Programming Language Control Structures

What is the output of the following fragment?

while ((ch=getchar())!='\n')
{
 if (ch >= 'a' && ch <='z' || ch >= 'A' && ch <= 'Z')
 continue;
 for (int i=1 ; i<=10 ; i++)
 {
 if(i % 2 == 0)
 continue;
 cout<<ch<<" ";
 }
 cout<<"\n";
}

Is the following program logical or not? If, it is logical, is it equivalent to the
above fragment?

#include "iostream.h"
#include "stdio.h"
void main()
{

char ch;
while (1)
{
 ch=getchar();
 if (ch=='\n')
 break;
 if (ch >= 'a' && ch <='z' || ch >= 'A' && ch <= 'Z')
 continue;
 for (int i=1 ; i<=10 ; i++)
 {
 if(i % 2 == 0)
 continue;
 cout<<ch<<" ";
 }
 cout<<"\n";
}

}

 51

C++ Programming Language Control Structures

Write program which read a sequence of 20 numbers and compute their sum,
when sum>= 700 the program must print the sum and stop even if not all the
numbers are read, on the other hand if the number is zero, it must not be
counted.

Write a program which counts the No. of chars, digits, and special chars in 20
lines.

Write a program which counts the No. of newline, ',' , ';' , '%' in four lines.

Write a program which read a sequence of integers and counts the No. of odd
number, the program must be finished when the integer is zero.

Write a program which reads a sequence of 50 numbers and prints the prime
number only.

Write a program which reads a sequence of integers and counts the No. of
positive and negative integers, on the other hand, if the number is zero it must
not be counted. The program must be finished when the number is 99.

 52

C++ Programming Language Compound Data Types

Compound Data Types
Integer, char, and float are single, simple data type (consist of one cell only), but

compound data type are structured (consist of a number of cells may be similar may

be not) like arrays, pointers, references, and the structure (record).

Arrays
An array consists of a set of elements, all of which are of the same type and are

arranged contiguously in memory. In general, only the array itself has a symbolic

name, not its elements. Each element is identified by an index (or subscript) which

denotes the position of the element in the array. The number of elements in an array is

called its dimension. The dimension of an array is fixed and predetermined; it cannot

be changed during program execution.

Why Arrays?
Arrays are suitable for representing composite data which consist of many similar,

individual items. Examples include: a list of names, a table of world cities and their

current temperatures, or the monthly transactions for a bank account.

Because of an array consists of a set of elements, you have to use the loops
for accessing each one. Mostly, for loop is used for this purpose, for
accessing the elements of one dimensional array, you need to one for loop,
for accessing the elements of two dimensional array, you need to two for
loops.

Arrays keep data as long as the program in execution.

 53

C++ Programming Language One Dimensional Array

One Dimensional Array
One dimensional array has a one dimension. It also called list or vector.

One Dimensional Array Definition
It must be defined before it can be used. The syntax for defining an array is almost

identical to the syntax for defining integers, characters, or other variables. For

example, you would define an integer variable x as follows:

 int x;

By contrast, you would define an array x of three elements:

 int x[3];

This definition contains an array of integers. You instead could define an array of

floats, characters in the following manner:

 float GPA [5];
 char grades[7];

The definition of both a single variable and an array of variables begins with
the data type followed by a variable name and ending with a semicolon. The
only difference between defining a variable that holds a single value and an
array is that, when defining an array, the variable name is followed by a
number within square brackets. That number is the array’s size
declarator.

The purpose of the size declarator is to tell the computer how much memory
to reserve. The size declarator, combined with the data type of the array,
determines how much memory to reserve.

The size declarators used in above examples was a literal. A literal is a value
that is written exactly as it is meant to be interpreted. For example, the
numbers 3, 5, 7 are literals. You may use a constant instead of a literal as a
size declarator (this way is more logical than the literal way) for example:

#include "iostream.h"
void main ()
{
 const int d = 3;
 int x [d];
 .
 .
}

 54

C++ Programming Language One Dimensional Array

The size declarator can not be a variable. The following program attempts,
unsuccessfully, to use a variable d in declaring the size of an array:

#include "iostream.h"
void main ()
{
 int d;
 cout << "Enter the number of elements:";
 cin >> d;
 int x [d];
}

The result is a compiler error. The compiler will flag the declaration of the
array (int x[d]) and complain that a constant expression was expected.

The first index in an array is always 0. There are no exceptions. The last
index in an array is always 1 less than the number of elements in the
array; again, with no exceptions. For example, If you were counting three
numbers, starting at 1, the last element would be number 3. However, if you
are starting at 0 instead of 1, then the last number would be 2, not 3.

By far, the most common causes of security problems are so-called "buffer
overflow" bugs. These bugs occur when a subscript is not checked and
reference is made to an element outside the bounds of an array or other
similar data structure. For example:

 //Example of Index out of range

#include "iostream.h"
void main ()
{
 int testi[3];
 int i;
 for (i = 0; i <100; i++)
 cin>> testi[i];
 for (i = 0; i <100; i++)
 cout<< testi[i] << "\n";
}

Nothing stops a programmer from stepping across an array boundary except
attention to detail and thorough testing of the code. It is not inconceivable
for a program to compile and execute and still be fatally wrong. In other
words, C++ complier doesn't tell you about this error, so be careful.

 55

C++ Programming Language One Dimensional Array

One Dimensional Array Initialization
There are two methods of initializing an array. The first is explicit array sizing, in

which the square brackets contain a numerical constant that explicitly specifies the

size of the array. The second is implicit array sizing, in which the square brackets are

empty and the size of the array is indicated implicitly by the number of elements on

the right side of the assignment operator.

The syntax of initialization, with both explicit and implicit array sizing, is that
the array declaration, is followed by an assignment operator and then, enclosed
in curly braces, the values to be assigned to each array element, in order, are
separated by commas.

Explicit Array Sizing
 The following are examples of explicit array sizing:

 int testi[3] = { 74, 87, 91 };

 float testf[4] = { 44.4, 22.3, 11.6, 33.3};

 char grades[5] = {'A', 'B', 'C', 'D', 'F' };

 string days[7] = {"Sunday", "Monday", "Tuesday", "Wednesday",

 "Thursday", "Friday", "Saturday"};

You do not have to assign values to each element of the array; the number of
elements on the right-hand side of the assignment operator may be less than
the number within the square brackets:

float testf[4] = { 44.4, 22.3, 11.6};

If you do not initialize all of the elements of an array, the uninitialized
elements have a default value that depends on the data type of the array. For
example, the default value is 0 for an integer array, 0.0 for a float array, and
the null character, ‘\0’, for a character array.

 56

C++ Programming Language One Dimensional Array

The number of elements on the right-hand side of the assignment
operator cannot be greater than the number within the square brackets.
Thus, the following statement will not compile, the error message being “too
many initializers.”

float testf[4] = { 44.4, 22.3, 11.6, 33.3, 7.4}; // won't compile

If you leave an element uninitialized, all elements that follow it must be
uninitialized. You can’t, for example, alternate initializing and not initializing
array elements. For example, the following statement won’t compile:

float testf[4] = { 44.4, , 11.6, 33.3}; // won't compile

Implicit Array Sizing
The following are examples of implicit array sizing:

 int testi[] = { 74, 87, 91 };

 float testf[] = { 44.4, 22.3, 11.6, 33.3};

 char grades[] = {'A', 'B', 'C', 'D', 'F' };

 string days[7] = {"Sunday", "Monday", "Tuesday", "Wednesday",

 "Thursday", "Friday", "Saturday"};

The first array, testi, allocates memory for three integers. Since the square brackets

are blank, the compiler allocates memory based on the number of elements to the right

side of the assignment statement, and so on for the rest.

You cannot have both empty square brackets and no initialization, as in
the following example:

 int testi[];

The compiler error message will be that the array is of unknown size. This of
course is a problem since the computer has no way of knowing how much
memory to allocate for the array.

 57

C++ Programming Language One Dimensional Array

You can initialize a character array using the same syntax as you would to
initialize an array of another data type such as an integer or a float. However,
there are some important differences between character arrays and arrays of
numeric data types. For example:

The following two initializations of a character array to name are different in
syntax but identical in effect:

 char name[] = {'J', 'e', 'f', 'f', '/0' };
 char name []= "Jeff";

The character ‘\0’ is the escape sequence for a null character. The 0 in ‘\0’ is a
zero, not a big letter o. The zero corresponds to the ASCII value of the null
character. The null character signals cout when to end the output of a
character array. For example, the following program outputs, as expected,
“Jeff”:

#include "iostream.h"
void main ()
{
 char name[] = {'J', 'e', 'f', 'f', '/0' };
 cout << name;
}

The result would be the same if the alternate syntax of char name = “Jeff’ was
used to initialize the character array.

By contrast, the following program outputs “Jeff¦¦¦¦+ ?.”

#include "iostream.h"
void main ()
{
 char name[] = {'J', 'e', 'f', 'f'};
 cout << name;
}

The strange characters after “Jeff” (which may differ when you run the
program) sometimes are referred to as “garbage characters";

Finally, The latter syntax (char name = "Jeff";) usually is preferred by
programmers simply because it is easier to type and it is automatically
inserting a null character '\0' as the end of the array.

 58

C++ Programming Language One Dimensional Array

It is important to remember the null-character when initializing an array of
characters to a literal. For example, the following is a compile-time error:

 char ch3[6] = "Daniel"; // error: Daniel is 7 elements

While the literal contains only six explicit characters, the required array size is
seven, six to hold the literal and one for the null.

No Array Copy or Assignment. It is not possible to initialize an array as a
copy of another array. Nor is it legal to assign one array to another:

 void main()
 {
 int ia[] = {0, 1, 2};
 const int size = 3;
 int ia3[size]; // ok: but elements are uninitialized!
 ia3 = ia; // error: cannot assign one array to another
 }

You can create arrays that are constants. For example, the following array
contains the number of days in each month (for February, we assume a non–
leap year).

 const int daysInMonth [] = { 31, 28, 31, 30, 31, 30,
 31, 31, 30, 31, 30, 31 };

You must use initialization when creating a constant array, just as you
must use initialization when creating a constant variable.

 59

C++ Programming Language One Dimensional Array

//Count capitals characters and change them to small.

#include "iostream.h"
void main()
{
 int i;
 int count=0;

 const int size=10;
 char letters[size];
 for (i=0 ; i < size ; i++)
 {
 cin>>letters[i];
 if (letters[i] >= 'A' && letters[i] <= 'Z')
 {
 count++;
 letters[i]= letters[i] - 'A' + 'a' ;
 }
 }
 cout<<"number of capitals = "<<count<<"\n";
 cout<<" array elements after changing\n";
 for (i=0 ; i<size ; i++)
 cout<< letters[i] << "\n";
 }

// Compare between two arrays of integers and find whether they are
equivalent or not.

#include "iostream.h"
void main()
{
 int i;
 int flag=1;
 int a[10],b[10];

 for (i=0; i<10 ; i++)
 cin>> a[i];
 for (i=0; i<10 ; i++)
 cin>> b[i];
 for (i=0; i<10 ; i++)

 if(a[i]!=b[i])
 {
 flag=0;
 break;
 }
 if (flag)
 cout<<" a and b are equivalent\n";
else
 cout<<" a and b are not equivalent\n";

 }

 60

C++ Programming Language One Dimensional Array

//Convert a char string of digits into its numeric value.

#include "iostream.h"
void main()
{
 int i, n;
 char s[5];
 for (i=0; (s[i]=getchar())!='\n'; i++);
 s[i]='\0';
 i=n=0;
 while (s[i]!= '\0')
 n=n*10+s[i++]-'0';
 cout<<"the numeric value = "<<n<<"\n";
}

Which, if any, of the following definitions are in error?

 (a) int ia[7] = { 0, 1, 1, 2, 3, 5, 8 };
 (b) int ivec = { 0, 1, 1, 2, 3, 5, 8 };
 (c) int ia2[] = ia1;
 (d) int ia3[] = ivec;
 (e) char ch3[6] = "Daniel";
 (f) char mystext = "Hello";

How can you initialize some or all the elements of an array?

What is the fatal wrong that may be happen when using arrays?

Write program to read 15 integer number then checkout whether the No. 70 is
found or not.

Write program to read 20 chars and count the number of small vowel letters,
then change them to capital.

 61

C++ Programming Language Strings

Strings
A C++ string is simply an array of characters. For example,

 char str[] = "HELLO"; // string

defines str to be an array of six characters: five letters and a null character. The

terminating null character '\0' is inserted by the compiler. By contrast,

 char str[] = {'H', 'E', 'L', 'L', 'O'}; // array of chars

Why a null character ('\0')?
Strings are in fact sequences of characters, For example, the following array:

 char jenny [20];

is an array that can store up to 20 elements of type char. It can be represented as:

Therefore, in this array, in theory, we can store sequences of characters up to 20

characters long. But we can also store shorter sequences. For example, jenny could

store at some point in a program either the sequence "Hello" or the sequence "Merry

Christmas", since both are shorter than 20 characters.

Therefore, since the array of characters can store shorter sequences than its total

length, a special character is used to signal the end of the valid sequence: the null

character, whose literal constant can be written as '\0' (backslash, zero).

Our array of 20 elements of type char, called jenny, can be represented storing the

characters sequences "Hello" and "Merry Christmas" as:

H e l l o \0

M e r r y C h r i s t m a s \0

Notice how after the valid content a null character ('\0') has been included in order to

indicate the end of the sequence.

jenny

jenny

 62

C++ Programming Language Strings

C Library String Functions
The Standard C library provides a set of functions that operate on C-style strings. To

use these functions, we must include the associated C header file (string.h).

Name Function
gets(s) Read a string s from the keyboard.
puts(s) Prints the string s on the screen.

strlen(s) Returns the length of s, not counting the null.

strcmp(s1, s2) Compares s1 and s2 for equality. Returns 0 if s1 == s2,
positive value if s1 > s2, negative value if s1 < s2.

strcat(s1, s2) Appends s2 (source) to s1 (target). Returns s1.
strcpy(s1, s2) Copies s2 (source) into s1 (target). Returns s1.

strncat(s1, s2,n) Appends n characters from s2 (source) onto s1 (target).
Returns s1.

strncpy(s1, s2, n) Copies n characters from s2 (source) into s1 (target).
Returns s1.

gets(s) function is automatically inserting a null character '\0' as the end of the

string.

We can use cin to get strings with the extraction operator (>>) as we do with
fundamental data type variables:

 cin >> mystring;

However, as it has been said, cin extraction stops reading as soon as if finds
any blank space character, so in this case we will be able to get just one word
for each extraction. This behavior may or may not be what we want; for
example if we want to get a sentence from the user likes:

 Law is a bottomless pit

 Output: Law

This extraction operation would not be useful. So, it is better to use the function
gets().

Blank space

 63

C++ Programming Language Strings

It is better to call strlen function by using an integer variable as the
following:
 len=strlen(str);

 Length of str is saved in the variable len.

You cannot use relational operators to compare the value of one string to
another, such as in the following code fragment:

 char str1[80] = "Devvie Kent";
 char str2[80] = "Devvie Kent";
 if (str1 == str2)
 cout << "The two strings are equal";
 else
 cout << "The two strings are not equal";

The output will always be: “The two strings are not equal.” The reason is
that the value of each array name is the base address of that array. Thus, the
comparison is not of values, but of addresses. Two variables cannot have the
same address, so the result of the comparison for equality will be false. S0,
you must use the strcmp function to compare the values of two strings.

Mostly, strcmp function is used with if statement. For example, we want to
check whether s1 is equal to "quit" or not:

 if(!(strcmp(s1,"quit")))
 Or
 if(strcmp(s1,"quit") == 0)

 Both, are right. So when you use strcmp function without decision structure,

it will become meaningless.

The strcmp function takes two arguments. Both can be string literals or one
of them or neither one.

 64

C++ Programming Language Strings

The strcat function takes two arguments. The first argument cannot be a
string literal since a value is being assigned to it. The second argument, the
source string, may be a character array, or a string literal. Also, you need to
make sure that the size of s1 (target) must larger than the s2 (source), else
you will make a fatal wrong, for example:

 char target[80] = "Jeff";
 char source[40]= " Kent";
 strcat(target, source);
 cout << target; // outputs "Jeff Kent"

You cannot assign the value of one string to another with an assignment
operator (=), such as in the following code fragment:

char target[80] = "Jeff Kent";
char source[80] = "Micaela";
target = source;

The value of source is the base address of its array. Thus, the assignment
operator assigns the address of source to target, not the value of source to
target.

So, you must use the strcpy function to assign the value of one string (the
source string) to another string (the target string). The strcpy function takes
two arguments. The first argument cannot be a string literal since a value is
being assigned to it. The second argument, the source string, may be a
character array, or a string literal. The following code fragment illustrates
the use of the strcpy function:

 char target[80] = "Jeff Kent";
 char source[80] = "Micaela";
 strcpy(target, source);

You need to be careful when using the strcpy function that the source string
is not larger than the target string.

Although C++ supports C-style strings, they should not be used by C++
programs. C-style strings are a surprisingly rich source of bugs and are the
root cause of many, many security problems.

 65

C++ Programming Language Strings

// Program which read two strings, and stop when the first string is "quit",
when each two strings are read, the program must print the smallest one and its
length.

 #include "iostream.h"
 #include "string.h"
 #include "stdio.h"
 void main()
 {
 char s1[10], s2[10];
 int n;
 for(; ;)
 {
 gets(s1);
 if(!(strcmp(s1,"quit")))
 break;
 gets(s2);

 if(strcmp(s1,"quit") < 0)
 {
 puts(s1);
 n = strlen(s1);
 cout<<"Length = "<<n<<"\n";
 }
 else
 {
 puts(s2);
 n = strlen(s2);
 cout<<"Length = "<<n<<"\n";
 }
 }
 cout<<"Finish\n";
 }

Explain the differences between strcpy and strncpy. What are the advantages
of each? The disadvantages?

 66

C++ Programming Language Strings

Write program which read two strings s1 and s2 and concatenating them in s2.

Write program which read a string and print it in reverse order.

Write program to convert an integer number (numeric value) to string of
digits.

Write program which read a string contains a number followed by an
operation then another number (e.g 25*3) the program must perform the
operation between the two numbers then print the result.

 67

C++ Programming Language Multidimensional Arrays

Multidimensional Arrays
An array may have more than one dimension (i.e., two, three, or higher). As before,

elements are accessed by indexing the array. A separate index is needed for each

dimension.

Two Dimensional Array Definition
It must be defined before it can be used. The syntax for defining two dimensional

array is as the following:

 int a[3][4]; // array of integers consists of three rows and four columns

 float ff[6][6]; // array of reals consists of six rows and six columns

 char name[10][10]; //Equivalent to array of 10 strings

The size declarator cases with two dimensional array are as in one
dimensional array, but the difference, two size declarators are needed, one
for rows and the second for columns, for example:

 const int rows=10;
 const int columns=5;
 int b [rows] [columns];

Remember that array indices always begin by zero.

Processing a two dimensional array is similar to a one-dimensional array, but
uses nested loops instead of a single loop. Mostly, two indices are needed,
one for rows and the second for columns.

As in one dimensional array, you need to make sure that indices or subscripts
are not outside the bounds of an array dimensions. Else you will make a
fatal wrong.

 68

C++ Programming Language Multidimensional Arrays

Two Dimensional array Initializing
The array may be initialized using a nested initializer (specifying bracketed values

for each row):

 int seasonTemp[3][4] = {
 {26, 34, 22, 17},
 {24, 32, 19, 13},
 {28, 38, 25, 20}
 };

Because this is mapped to a one-dimensional array of 12 elements in memory, it is
equivalent to:

 int seasonTemp[3][4] = { 26, 34, 22, 17, 24, 32, 19, 13, 28, 38, 25, 20};

The nested initializer is preferred because as well as being more informative,
it is more versatile. For example, it makes it possible to initialize only the first
element of each row and have the rest default to zero:

 int seasonTemp[3][4] = {{26}, {24}, {28}};

With respect to character array, the following two initializations of a name are
different in syntax but identical in effect:

 char name[3][20] = {
 {'A', 'l', 'i','\0'},
 {'A', 'h', 'm', 'e','d','\0'},
 {'M', 'a', 'h', 'm', 'm', 'o', 'd','\0'}
 };

char name[3][20] = {"Ali", "Ahmed", "Mahmmod"};

The latter syntax (char name[3][20] = {"Ali", "Ahmed", "Mahmmod"};)
usually is preferred by programmers simply because it is easier to type and it
is automatically inserting a null character '\0' as the end of the string.

 69

C++ Programming Language Multidimensional Arrays

We can also omit the first dimension (but not subsequent dimensions) and let it be

derived from the initializer:

 int seasonTemp[][4] = {
 {26, 34, 22, 17},
 {24, 32, 19, 13},
 {28, 38, 25, 20}
 };

Why the following initialization is invalid? What do you think?

 int seasonTemp[3][] = {
 {26, 34, 22, 17},
 {24, 32, 19, 13},
 {28, 38, 25, 20}
 };

// Program which reads a two dim. array and prints the squares of its elements.

 #include "iostream.h"
 void main()
 {
 int b[5][4];
 int i, j;
 for(i=0; i<5 ; i++)
 for(j=0; j<4 ; j++)
 cin>> b[i][j];
 for(i=0; i<5 ; i++)
 {
 for(j=0; j<4 ; j++)
 cout<< b[i][j] * b[i][j];
 cout<<"\n";
 }
 }

Columns dimension
can't be empty

 70

C++ Programming Language Multidimensional Arrays

// Program which reads a square array c(4,4) and finds the sum of its main
and secondary diagonal.

 #include "iostream.h"
 void main()
 {
 int c[4][4];
 int i, j,s,s1;
 for(i=0; i<4 ; i++)
 for(j=0; j<4 ; j++)
 cin>> b[i][j];
 s=s1=0;
 for(i=0; i<4 ; i++)
 for(j=0; j<4 ; j++)
 if(i==j)
 s += c[i][j];
 else if (i+j ==3)
 s1 += c[i][j];
 cout<<" the sum of main diagonal = "<<s<<"\n;
 cout<<" the sum of secondary diagonal = "<<s1<<"\n;
 }

// Program which reads the names of 10 students and sorts them in ascending

order.

 #include "iostream.h"
 #include "string.h"
 #include "stdio.h"

 void main()
 {
 char name[10][15],temp[15];
 int i,j;
 for(i=0; i<10 ; i++)
 gets(name[i]);
 for(i=0; i<9 ; i++)
 for(j=i+1; j<10 ; j++)
 if (strcmp(name[i], name[j]) > 0)
 {
 strcpy(temp, name[i]);
 strcpy(name[i], name[j]);
 strcpy(name[j], temp);
 }
 cout<<"\n Names after sorting \n";
 for(i=0; i<10 ; i++)
 puts(name[i]);
 }

 71

C++ Programming Language Multidimensional Arrays

Write a program to multiply two arrays: a (n,n) and b (n,n).

Write a program to read the names of 20 students and sorts them in descending
order.

Write a program to read A (3,4) and print it column by column.

Write a program to read a square array c (4,4), then change the values of the
triangles placed up and under the main diagonal to (-1) and (0) respectively.

C++ Programming Language References

References

1. Sharam Hekmat, "C++ Programming", 1998.

2. Jeff Kent, "C++ Demystified: A Self-Teaching Guide", 2004.

3. Stanley B. Lippman, Josée Lajoie, and Barbara E. Moo, " C++ Primer",

fourth edition, 2005.

4. Juan Soulié, "C++ Language Tutorial", 2008.

