Compilers

University of Baghdad M.Sc. Shaimaa Abbas

College of Education / Ibn-AL-Haithem 2008-2009

Dep. Of Computer Science Third Stage
Chapter One

REFRENCES:-

e Compilers Principles, Techniques and Tools by Alferd V.Aho.
e Compiler Construction for Digital Computers by David Gries.
e Introduction Theory of Computer Science by E.R.
Krishuamurthy.
o dxuy olrd olazyde praadd Lidudhidl g 4yl e Y
olagdl we gU>.d (ool dLaxs plaw.d Liwlxld

Def.
A Compiler :- Is a program that reads a program written in one

language -the Source Language- and translates it into an equivalent

program in another language - the Target Language -.

Source Program Target Program
> Compiler >

»

Error l Messages

The Phases of a Compiler :-

A typical decomposition of a compiler is shown below, in practice,

some of the phases may be grouped together.

1. Lexical Analyzer. (B8l Judatl) Al ya

2. Syntax Analyzer. g1 i) Julail) Al ya

3. Semantic Analyzer. s sinal) Jalasl) Als pa

4. Intermediate Code Generator. Aahaa gl) A 2 g5 A ya
5. Code Optimizer. G EEY) at A ja

6. Code Generator. S A A ga

Compilers

University of Baghdad M.Sc. Shaimaa Abbas

College of Education / Ibn-AL-Haithem 2008-2009

Dep. Of Computer Science Third Stage
Chapter One

In each phase we need variables that can be obtained from a table

called Symbol Table manager , and in each phase some errors may be

generated so we must have a program used to handle these errors ,

this program called Error Handler.

Source Program

l

Lexical analyzer

A\ 4

Syntax analyzer

\ 4

Semantic analyzer

\ 4

Symbols Intermediate Code Error
Table > Generator > Handler
Manager

\ 4

Code Optimizer

\ 4

Code Generator

1

Target Program

Compilers

University of Baghdad M.Sc. Shaimaa Abbas

College of Education / Ibn-AL-Haithem 2008-2009

Dep. Of Computer Science Third Stage
Chapter One

» Lexical Analyzer :-

Its main task is to read the source program (character by character)
then translated into a sequence of primitive units called tokens like
(keywords, identifier, constant, operators, etc.).

Some times this phase is divided into two phases, the first one known
as "Scanning'" while the second is known as "Lexical Analysis'". The
Scanning is responsible for doing simple tasks while the Lexical

Analysis is suitable for doing complex tasks.

» Syntax analyzer :-

This phase begins when the lexical phase is terminated; the outputs
from the previous phase (Lexical analyzer) will represent the input for

this phase (Syntax analyzer).

» Intermediate Code Generator :-

After syntax and semantic analysis, some compilers generate an
explicit intermediate representation for the source program. This
phase has two important properties :- it should easy to produce and

translate into the target program.

» Code Optimization phase :-

The code optimization phase attempts to improve the intermediate

code which results into faster running machine code.

>» Code Generator :-

Compilers

University of Baghdad M.Sc. Shaimaa Abbas

College of Education / Ibn-AL-Haithem 2008-2009

Dep. Of Computer Science Third Stage
Chapter One

The final phase of complier is the generation of target code, consisting

of relocatable machine code or assembly code.

>» Symbol Table :-

Symbol table is a data structure containing a record for each

identifier, with fields for attributes of the identifier. This data structure

allows us to store and retrieve data from the record quickly.

> Error Handler :-

Each phase can produce errors. However, after detecting an error, a
phase must deal with that exror, so that the compilation can proceed.
So dealing with that error is done by a program known as Error
Handler which is a software used to handle any error that may be
produced from any phase and it is needed in all phases of the

compliers.

Note :- Each phase of the complier has two inputs and two outputs; for
example:- for the first phase (Lexical Analyzer) the first input to it is
the source program while the second input is some variables that may
be needed in that phase; while the first output is the errors that may be
generated in it and will be manipulated by the Exror Handler program,
and the second output from it will represent the input for the next

compiler phase (Syntax).

Grammars :-

Compilers

University of Baghdad M.Sc. Shaimaa Abbas

College of Education / Ibn-AL-Haithem 2008-2009

Dep. Of Computer Science Third Stage
Chapter One

A grammar is a set of formal rules for constructing correct sentences

in any language; such sentences are called Grammatical Sentences.

Def.

The set of rules which we use to reconstruct grammatical sentences
are called Syntax.

Def.

The specification of the meaning of sentences in a language is called
the Semantics of the language.

Def.

Let), be any finite set of symbols, called an alphabet; the symbols are
called the letters of the alphabet.

Def.

R word (String) X over), is any finite sequence of letters from), while
the empty word, denoted by € or A, is the word consisting of no letters.

Concatination :-
We define the Concatination of two symbols U and V by :-
UV={X | X=uv,uisinUandvisinV}
Note that:- UV £#VU
U (VW) =(UV) W

Example O:-

Let > ={0,1} and U= {000,111} and V= {101,010}
= UV={000101, 000010, 111101, 111010}

= VU={101000, 101111, 010000, 010111}
~UV#VU

Example @:-

Compilers

University of Baghdad M.Sc. Shaimaa Abbas

College of Education / Ibn-AL-Haithem 2008-2009

Dep. Of Computer Science Third Stage
Chapter One

Let Y = {a,b,c,d} ; U= {abd , bcd} ; V= {bcd , cab} and W= {da, bd}
To prove the following :- U (VW) = (UV) W
Take first the left side,
U (VW) ={abd , bcd} {bcdda, bcdbd, cabda, cabbd}
= { abdbcdda, abdbcdbd, abdcabda, abdcabbd, becdbcdda,
bcdbedbd, bcecdcabda, bedcabbd }
Take the right side,
(UV) W = { abdbcd, abdcab, bedbed, bedcab} {da , bd}
= { abdbcdda, abdcabda, bcdbcdda, becdcabda, abdbedbd,
abdcabbd, becdbecdbd, bedcabbd }
~U(VW) = (UV)W

Closure or Star Operation :-

This operation defines on a set S, a derived set $¥, having as members
the empty word and all words formed by concatinating a finite number

of words in S, as shown below:-

Where :-

Example :-
Let S = {01, 11}, then

$‘={e, 01,11, 0101,0111,1101,1111 , 010101, 010111, ...}
A A '\ A J \ A)
. . Y Y
s® s! s2 s?

Compilers

University of Baghdad M.Sc. Shaimaa Abbas

College of Education / Ibn-AL-Haithem 2008-2009

Dep. Of Computer Science Third Stage
Chapter One

A phrase structure grammar is of the form G= (N, T, S, P); where:-
N = A finite set of non-terminal symbols denoted by A, B, C,...

T= A finite set of terminal symbols denoted by a, b, c,...
WithNY T=Vand N[T= ¢ (null set).
P= A finite set of ordered pairs (o, f) called the Production Rules, a

and fbeing the string over V anda involving at least one symbol from
N.
5= Is a special symbol called the Starting Symbol.

Example :-
Let G=(N, T, S, P); N={S, B, C}, T= {a, b}

P= {(S — aba), (SB —b), (b—>bB), (b—>1)}

This grammar is not a structure grammar because of the production
rule b —bB because the left side of this rule containing only a
terminal symbol (b) and in any production rule the left side must

involve at least one non-terminal symbol.

Def.

Compilers

University of Baghdad M.Sc. Shaimaa Abbas

College of Education / Ibn-AL-Haithem 2008-2009

Dep. Of Computer Science Third Stage
Chapter One

The set of all sentences generated by G is called the language of G or L

(&)

LG)={X|X e T and S——X}

Example :-
Let G= (N, T, S, P) where N={S, A}, T={a, b}

P= {(S—»>aAa), (A—>bAb), (A—a)}
S > aAa —» abAba —» abbAbba —» abbabba

Note :-

1. The production rules can be written in another form, for the
above example, the production rule is written as follows:-

P={(S, aAa), (A, bAb), (A, a)}
2. Some times it may be that two different grammars G and G
generated the same language L (G)=L(G) .. the grammars are

said to be equivalent.

Example :-

G=(N,T,S,P)

N= {number, integer, fraction, digit}

T={,0,1,2,3,...,9}

S=number

P={(number—integer fraction), (integer—digit), (integer— integer
digit), (fraction—.digit), (fraction—fraction digit),(digit—0), (digit—1),
(digit—>2), (digit—>3), (digit—4), (digit—>5), (digit—6), (digit—>7),
(digit—38), (digit—9)}

Compilers

University of Baghdad M.Sc. Shaimaa Abbas

College of Education / Ibn-AL-Haithem 2008-2009

Dep. Of Computer Science Third Stage
Chapter One

Now we want to prove if the following number is accepted or not

153.127

number
/ \
integer fraction
integer digit fraction digit

/ | 1
integer digit 3 . digit 2

I 1
digit 5 1

|

7

Kinds of Grammar Description :-

. Transition Diagram.

. BNT (Backus_ Naur form).
. EBNF.

. Cobol_Meta Language.

. Syntax Equations.

O G S W DN

. Regular Expression (R.E.).

By using BNF the grammar can be represented as follows:-
(For the previous example)

G=(N, T, S, P)

Compilers

University of Baghdad M.Sc. Shaimaa Abbas

College of Education / Ibn-AL-Haithem 2008-2009

Dep. Of Computer Science Third Stage
Chapter One

N= {<number>, <integer> , <fraction> , <digit>}
T={.,0,1,2,3,...,9}

S= <number>

Production rules P will be represented as follows:
<number> ::= <integer> <fraction>

<integer> ::= <digit> | <integer> <digit>

<fraction> ::= .<digit> | <fraction> <digit>

<digit> ::=0]1|2]|3]|4|5|6]|7]8]9

Regular Expression (R.E.) :-

The main components of RE are
1. € or A is R.E. denoting by L’={e}=L
2. Any terminal symbol like a is R.E. denoting L={a}
3. If S,R any two R.E. denoting Lg,Lg then
3.1 R|SisR.E. denoting Ly Y Lg
3.2 RSis R.E. denoting Ly. Lg

3.3 R*isR.E.denoting {¢}Y L_Y L. YK YL
e S|R=R|S
e (RIS)|T=R]| (S|T)
¢ (R.S).T=R.(S.T)
¢ RS|R.T=R.(S|T)
e R=RA=A.R

-10-

Compilers

University of Baghdad M.Sc. Shaimaa Abbas

College of Education / Ibn-AL-Haithem 2008-2009

Dep. Of Computer Science Third Stage
Chapter One

Transformation of R.E. to Transition Diagram (Formal

Method) :-

1. For each non terminal NT draw a circle.

2. Connect with arrows between any two circles with respect to the

following rules:-

If NT>NT connect the two circles with arrow labeled A or €.

e If NT-T NT connect the two circles with arrow labeled T.
e If NTHT creates a new circle with a new NT (final) then
connect the left-hand side NT of the rule and the new NT

with arrow labeled T.

e If NTH>T's NT create circles (as the length of T's-1).

Example :-
Let G= {{S, R, U},{a, b}, S, P}
P=

S—»>a

R —» abalU
U—->Db

S > bU
R->TU
U—> aS

S > bR

Transformation of BNF to Transition Diagram (Informal

Method):-

-11-

Compilers

University of Baghdad M.Sc. Shaimaa Abbas

College of Education / Ibn-AL-Haithem 2008-2009

Dep. Of Computer Science Third Stage
Chapter One

1. Draw a separate transition diagram for each production rule.
2. Substitute each non-terminal symbol by its corresponding

transition diagrams.

Example :-

G=(N,T,S,P)

N= {<number>, <integer>, <fraction>, <digit>}
T={.,0,1,2,3,...,9}

S= <number>

P=
<number> ::= <integer> <fraction>

<integer> ::= <digit> | <integer> <digit>

<fraction> ::= .<digit> | <fraction> <digit>
<digit>::=0]1]|2|3]|4|5]|6]|7|8]|9

Now we take each production rule and draw to it a separate transition
diagram:-

<number> ::= <integer> <fraction>

C <integer> O<fraction> :

<integer> ::= <digit> | <integer> <digit>
yit>
<digit>
O—©x
<fraction> ::= .<digit> | <fraction> <digit>

it>

O : =O <digit> % »

Compilers

University of Baghdad M.Sc. Shaimaa Abbas

College of Education / Ibn-AL-Haithem 2008-2009

Dep. Of Computer Science Third Stage
Chapter One

<digit>::=0]1|2|3|4|5|6|7|8]9

C - @
Now we must substitute each non-terminal symbol by its

corresponding transition diagram.

> Q <digit> <fraction>@

<digit> <digit>
> O—(0—0—0
<digi> ®>

-13-

Compilers

University of Baghdad M.Sc. Shaimaa Abbas
College of Education / Ibn-AL-Haithem 2008-2009
Dep. Of Computer Science Third Stage

Chapter Two

Lexical Analyzer Design

The main sub-phases of the Lexical analyzer phase are shown below in

the following figure:-

Grammar

Transition Diagram

\ 4

Non-Deterministic Finite
State Automata (NDFSA)

\ 4

Deterministic Finite State
Automata (DFSA)

\ 4

Minimize of DFSA

\ 4

Recognizer

e The grammar will converted to a Transition Diagram using
special algorithm.

e The converted Transition Diagram must be checked whether if it
is in NDFSA form or not; if so, the grammar must converted to
DFSA using algorithm which will be described in this chapter.

e The resulted grammar will be in DFSA form which must be

minimized to reduce the number of nodes depending on

-1-

Compilers

University of Baghdad M.Sc. Shaimaa Abbas
College of Education / Ibn-AL-Haithem 2008-2009
Dep. Of Computer Science Third Stage

Chapter Two

algorithm designed for this purpose(fast searching and
minimum memory storage).

e The final sub-phase in lexical analyzer phase is to recognize if
the input string or statement is accepted or not depending on a

specific grammar.

Finite State Automata (FSA):-

Is a mathematical model consists of :-
1. A set of terminal symbols
2. A set of transition functions
3. Initial state
4. Final state
5. A set of elements called states
Two types of FSA:-
e Non-Deterministic Finite State Automata (NDFSA)
e Deterministic Finite State Automata (DFSA)
FSA is of NDFSA if one of these two conditions is satisfied:-
1. There are more than one transition have the same label from that

state to another states.

2. There is a € - transition.

Compilers

University of Baghdad M.Sc. Shaimaa Abbas

College of Education / Ibn-AL-Haithem 2008-2009

Dep. Of Computer Science Third Stage
Chapter Two

Formal method for converting R.E. to NDFSA :-

® If we have an ¢
O

where i = initial state , f =final state

® If we have P|Q

OJO)N

@ If we have P.Q

Compilers

University of Baghdad M.Sc. Shaimaa Abbas
College of Education / Ibn-AL-Haithem 2008-2009
Dep. Of Computer Science Third Stage
Chapter Two
® If we have Q*
€
A‘
: O
&

Example :-

R.E.= abc|d*

Examples :-

1. RE= letter (letter | digit)™

letter

Compilers

University of Baghdad M.Sc. Shaimaa Abbas

College of Education / Ibn-AL-Haithem 2008-2009

Dep. Of Computer Science Third Stage
Chapter Two

2. RE=(a|b)*

€

Compilers

University of Baghdad M.Sc. Shaimaa Abbas
College of Education / Ibn-AL-Haithem 2008-2009
Dep. Of Computer Science Third Stage

Chapter Two

Data structure representation of FSA :-

® Transition Matrix

We must have a matrix with the number of its rows equal to the
number of the FSA states in the diagram while the number of its
columns in this matrix equal to the number of its inputs (labels).

This type of representation has a disadvantage that it contains many
blank spaces, while the advantage of this type is that the indexing is
fast.

For example:-

<>098

0-9

BOW N e
g Y B
] H]] #*

Compilers

University of Baghdad M.Sc. Shaimaa Abbas
College of Education / Ibn-AL-Haithem 2008-2009
Dep. Of Computer Science Third Stage

Chapter Two

@ Graph Representation

In this representation we have a fixed number of columns which is
equal to 2 and the labels of these two columns are Input Symbol & Next
State while the number of rows differs from one transition diagram to
another and these rows are labeled by the number of states . The
disadvantage of this representation is that it takes a long time for
searching (search slow) while the advantage of this representation is

that it is compact.

For the previous example:-

O (D0

Input Next
Symbol State
1 0-9 2
2 0-9 2
2 3
3 0-9 4
4 0-9 4

Compilers

University of Baghdad M.Sc. Shaimaa Abbas
College of Education / Ibn-AL-Haithem 2008-2009
Dep. Of Computer Science Third Stage

Chapter Two

Transformation of NDFSA to DFSA:-

Before we use an algorithm to convert the grammar which is NDFSA

form to DFSA form, we must deal with a special function known as &-

Closure Function, which can be explained using the following

procedure:-

Function &-Closure (M) :-

> Begin
Push all states in M into stack;
Initialize €-Closure (M) to M;

While stack is not empty do
> Begin

Pop S;
For each state X with an edge labeled € from S to X do
If X is not in £-Closure (M) then

> Begin

Push X

Add X to £-Closure (M);

, End;
End;

Ly

End;

Compilers

University of Baghdad M.Sc. Shaimaa Abbas

College of Education / Ibn-AL-Haithem 2008-2009

Dep. Of Computer Science Third Stage
Chapter Two

Example :-

R.E.= abc|d*

To compute randomly the £-Closure for the following states:-
&-Closure ({0}) ={0, 1,5, 6, 8,9}
&-Closure ({1}) = {1}
&-Closure ({1, 8}) ={1, 8, 9, 6}

&-Closure ({2, 3, 4)={2, 3, 4, 9}

Compilers

University of Baghdad M.Sc. Shaimaa Abbas

College of Education / Ibn-AL-Haithem 2008-2009

Dep. Of Computer Science Third Stage
Chapter Two

Algorithm for transforming NDFSA to DFSA:-

Initially let x= E£-Closure ({So}) marked as the start state of DFSA, S is
the start state of NDFSA;
While there is unmarked states X = {§;, Sj, ... ,5;,} of DFSA do
Begin
For each terminal symbol (a € X) do
Begin
Let M be the set of states to which there is transition on a from

some states S;in X ;

Y = E-Closure ({ M });
If Y has not yet been added to the set of states of DFSA then

make Y an unmarked state of DFSA;
Create an edge by adding a transition from X to Y labeled a if
not present;
End;
End;
End {algorithm}

-10-

Compilers

University of Baghdad M.Sc. Shaimaa Abbas

College of Education / Ibn-AL-Haithem 2008-2009

Dep. Of Computer Science Third Stage
Chapter Two

Examples:-

@ R.E. = Letter (letter | digit)*

@Ietter € e &
/ S
Start State
&

&-Closure ({0}) = {0} «------ Create a new node called for example A

N\

Final State

A— letter ; M={1}); £-Closure ({1})={1,2,3,5,8} <------ Create a new

node called for example B (must be a final node because of node 8).

—» digit ; M=J;

B — letter ; M={4); E-Closure ({4})={4,1,8,2,3,5} <------ Create a new

node called for example C (must be a final node because of node 8).

— digit ; M={6}; £-Closure ({6})={6,7,8,2,3,5} <------ Create a new

node called for example D (must be a final node because of node 8).

C — letter ; M={4}; No need to create a new node because £-Closure

({4}) has been computed and by which we have node C.

— digit ; M={6); No need to create a new node because E-Closure

({6}) has been computed and by which we have node D.

-11-

Compilers

University of Baghdad M.Sc. Shaimaa Abbas
College of Education / Ibn-AL-Haithem 2008-2009
Dep. Of Computer Science Third Stage

Chapter Two

D — letter ; M={4}; No need to create a new node because £-Closure

({4}) has been computed and by which we have node C.

— digit ; M={6}; No need to create a new node because £-Closure

({6}) has been computed and by which we have node D.

Since of no nodes will be created and all the created nodes have been
manipulated, we will reach to the final step by which we have the

DFSA, this step will convert all the above work into a graph as follows:-

letter

letter

-12-

Compilers

University of Baghdad M.Sc. Shaimaa Abbas

College of Education / Ibn-AL-Haithem 2008-2009

Dep. Of Computer Science Third Stage
Chapter Two

@ R.E.=((€]| a)b™)*

&-Closure ({0}) = {0,1,2,4,5,6,7,9,10} «--:---- Create a new node called for

example A(must be a final node because of node 10).

Ar— a ; M={3); £-Closure ({3})={3,6,7,9,10,1,2,4,5} <------ Create a new

node called for example B (must be a final node because of node 10).

— b ; M={8}; £E-Closure ({8})={8,7,9,10,1,2,4,5,6} <«------ Create a new

node called for example C (must be a final node because of node 10).

B— a ; M={3}; No need to create a new node because &-Closure ({3})

has been computed and by which we have node B.

—> b ; M={8}; No need to create a new node because E-Closure ({8})

has been computed and by which we have node C.

Cr— a ; M={3); No need to create a new node because &-Closure ({3})

has been computed and by which we have node B.

—> b ; M={8}; No need to create a new node because E-Closure ({8})

has been computed and by which we have node C.

-13-

Compilers

University of Baghdad M.Sc. Shaimaa Abbas
College of Education / Ibn-AL-Haithem 2008-2009
Dep. Of Computer Science Third Stage

Chapter Two

Since of no nodes will be created and all the created nodes have been
manipulated, we will reach to the final step by which we have the

DFSA, this step will convert all the above work into a graph as follows:-

® R.E.=(a|b)*abb

-14-

Compilers

University of Baghdad M.Sc. Shaimaa Abbas
College of Education / Ibn-AL-Haithem 2008-2009
Dep. Of Computer Science Third Stage

Chapter Two

Minimizing of DFSA:-

The purposes of minimization are:-

1. Efficiency.
2. Optimal DFSA.

Algorithm:-

1. Construct an initial partition JI of the set of states with two
groups: the accepting states F and the non accepting states S-F;
where S is the set of all states of DFSA.

2. for each group G of Jl do
Begin

partition G into subgroups such that two states S and T of G are
in the same subgroup if and only if for all input symbols a, and
states S and T have transitions on a to states in the same group of JI,

replace G in JIow by the set of all subgroups formed .

End

3. If Jlpew = JI, let JIginal = JI and continue with step (4), otherwise
repeat step (2) with J1:=JI__ .
4. Choose one state in each group of the partition JI; ., as the

representative for that group.

-15-

Compilers

University of Baghdad M.Sc. Shaimaa Abbas
College of Education / Ibn-AL-Haithem 2008-2009
Dep. Of Computer Science Third Stage

Chapter Two

Example :-
The DFSA for the R.E. = Letter (letter | digit)* is as follows:-

letter

letter

Group,= {A} which represents the set of not final nodes while Group, =

{B,C,D} which represents the set of final nodes.

Always minimization acts on the nodes of the same type (on the nodes
of one group)

After applying the previous algorithm, the minimization figure will be

as follows:-

letter

-16-

Compilers

University of Baghdad M.Sc. Shaimaa Abbas
College of Education / Ibn-AL-Haithem 2008-2009
Dep. Of Computer Science Third Stage

Chapter Two

Another example :-

Group,= {A,B,C,D} which represents the set of not final nodes while
Group, = {E} which represents the set of final nodes.

Always minimization acts on the nodes of the same type (on the nodes

of one group)

After applying the previous algorithm, the minimization figure will be

as follows:-

Compilers

University of Baghdad M.Sc. Shaimaa Abbas

College of Education / Ibn-AL-Haithem 2008-2009

Dep. Of Computer Science Third Stage
Chapter Three

FSA Accepter (Recognizer):-

This will represents the final sub-phase for the lexical analyzer ,by
using a specific algorithm shown below we can specify the input string
or statement is accepted or not depending on a given grammar.

Never can apply the algorithm unless the grammar will be in

minimized form.

First, a transition matrix must be created for a given FSA, then doing a
table having two columns, the first represents the number of states

while the other represents the symbols for a given input string.

Algorithm :-
Begin
State = Start State of the FSA;
Symbol = First Input Symbol;
If Matrix [State, Symbol] # Error Indication then
Begin
State = Matrix [State, Symbol];
Symbol = Next Input Symbol;
End
Else Input is not accepted
If State is a Final State of FSA then Input is accepted
Else Input is not accepted

End;

Compilers

University of Baghdad M.Sc. Shaimaa Abbas

College of Education / Ibn-AL-Haithem 2008-2009

Dep. Of Computer Science Third Stage
Chapter Three

Example :- Having the following FSA representation shown below:-

0-9) . :® 0-9

0-9 0-9

Depending on the above representation, for 1.3% and 379 ,you asked to

recognize which one is accepted and which one is not accepted?

Solution:-

The Transition Matrix for the above FSA:-

0-9
2

W DN e
Hl H]] #

2
4
4

For the String=1.3 %

W Input symbol

It is accepted
because state
number 4 is a final
State

Compilers

University of Baghdad M.Sc. Shaimaa Abbas

College of Education / Ibn-AL-Haithem 2008-2009

Dep. Of Computer Science Third Stage
Chapter Three

For the String =37 $

W Input symbol

It is not accepted because
state number 2 is not a final
state and the expression is
finished

This algorithm was slow and overlapping token, so a new algorithm
can be used to recognize the overlapping token.

For example:-

Suppose that we have this language:

{"bit" , "byte" , "item" , "tem''}

Now if we take the word items, we will find two words overlapping

with each other, these words are: ifem and fem

tem

|_|/'

items

/_I

item

Compilers

University of Baghdad M.Sc. Shaimaa Abbas

College of Education / Ibn-AL-Haithem 2008-2009

Dep. Of Computer Science Third Stage
Chapter Three

The new algorithm is known as AHO Algorithm and depends on the

following steps:-
(For the above example)
Step 1:- Constructing Tree-Structured DFSA.

(Always the input for the first node is all letters except the letters that

are outputted from it).

Every 4 b i t
character
except

b,i,t

A OanOmC©
()

Step 2:- Determine fall back function f (Q) =R which is calculated
as follows:-

e Find largest route o which lead to Q from a state that is not

the start state.

e Find the route a but this time from the start state and

finished in R.

e F(Q)=R.

Compilers

University of Baghdad M.Sc. Shaimaa Abbas

College of Education / Ibn-AL-Haithem 2008-2009

Dep. Of Computer Science Third Stage
Chapter Three

Q o|1|z|3|4|5 6|:l|8 91011|12|13

F(Q) o|o|z|8|o|11 12|o|11 12|13 ololo

Step 3:- Construct the Matrix Representation for the DFSA, the

number of rows in it equal to the number ob nodes found in DFSA,

while the number of columns equal to the number of characters

that form the input language.

biltlmye
olfltTzl1tf oo o
tzlzlz1l #2112l #
a2 zlzl3l#21#] #
sfzlzl=#1#1#| #
a4 (#2125 |2]|#
s #lel#|#z]e6
6 |2zl 2 1 #|#]| #
K2R EEEE R
slzlz] #1219
o [#l#l#l10]#] #
ol#zlzlz]|#|z]| #
11zl =zlz2]# |#]12
2#1#1#|13|#]| #
(13|l#zl#lzl#|#]| #

Compilers

University of Baghdad M.Sc. Shaimaa Abbas

College of Education / Ibn-AL-Haithem 2008-2009

Dep. Of Computer Science Third Stage
Chapter Three

Step 4:- Apply the steps of AHO Algorithm which is shown below:-

Algorithm :-

Begin

State = Start State;

Ch = First Character of Input;

While input symbols are not already exhausted do
If Matrix [State, Ch] # error indication then

— Begin

State = Matrix [State, Ch];

Ch = next Character;

— End

— Else begin
If State is a Final State then Signal;
If State = 0 then Ch= Next Character & State = Same State
Else State= f (State) & Ch=Same Character
. End;
End;

Compilers

University of Baghdad M.Sc. Shaimaa Abbas

College of Education / Ibn-AL-Haithem 2008-2009

Dep. Of Computer Science Third Stage
Chapter Three

Example :-

Input String = bitemk$ for the same language {"bit" , "byte" , "item" ,
"tem"}
After constructing Tree-Structured DFSA, and create a Transition

Matrix for it with computing the value of the fall back function

State | Ch
0 b 94— bhit
1 l
2 t < — tem
3 e
3 o —> tem
9 m —
C——
10 k
13 k
0 k
0 $

Compilers

University of Baghdad M.Sc. Shaimaa Abbas

College of Education / Ibn-AL-Haithem 2008-2009

Dep. Of Computer Science Third Stage
Chapter Three

Example :-

If you have the following language:-

{"WHAT", "WHERE"," WHEN"," WHERES","HOW"," WHY"} and you
asked to apply AHO algorithm on it to specify the words that are
overlapped with each other in this string:- (WHYOWNSES)

Step l:- Constructing Tree-Structured DFSA.

Every
character

Compilers

University of Baghdad M.Sc. Shaimaa Abbas

College of Education / Ibn-AL-Haithem 2008-2009

Dep. Of Computer Science Third Stage
Chapter Three

Step 2:- Compute fall back function f (Q) as follows:-

Q joj1]2|314|5)6]7|8|9]10]J11]J12]13

FQjlojojir1jojojojojojojojojojo]1

Step 3:- Construct the Matrix Representation for the DFSA, the

number of rows in it equal to the number ob nodes found in DFSA,

while the number of columns equal to the number of characters

that form the input language.

WlH A|E Y|NOS|R
olfltTiiJofoJoJofJoJoJo
1 #lzlzlzlelelz |z
o ([#1#1 315wl 2%
s[Z1 22121 #1212 #]|¢#
s lzlzl 21zl 2 1e]l #121¢%
sI[#l#1#1#1 #1o| ##1[s6
e 2121 #1z2] 21212 1#2|%
Tzl =2l 21zl #2121 # |8] #
s[#l#21l 2120211 ##]|¢#
o (2121 212 2121 2 2| %
olzlzl 212121212 12| %
1|zl 2l zlel #2112]#] #
lETzlzl2zl 21212 12| %
a2l 21212 21212 2| %

Compilers

University of Baghdad M.Sc. Shaimaa Abbas

College of Education / Ibn-AL-Haithem 2008-2009

Dep. Of Computer Science Third Stage
Chapter Three

Step 4:- Apply the steps of AHO Algorithm on the string :-
(WHYOWNSES).

State | Ch
0 |WH > WHY
1 H
2 Y <
10 O +— Matrix [State,Ch |=#
0 o
0 wW
1 N +— Matrix [State,Ch |=#
0 N
0 S
0 E
0 $

-10-

Compilers

University of Baghdad M.Sc. Shaimaa Abbas

College of Education / Ibn-AL-Haithem 2008-2009

Dep. Of Computer Science Third Stage
Chapter Three

Syntax Analyzer

Example :-

G= ({<exp>, <operand>, <id>},{a,b,c,+,-,(,) };<exp>, P)
T={asbscs+s'!(!)}

P=
<exp> ::= <operand> | <exp> + <operand> | <exp> - <operand>

<operand> ::= <id> | (<exp>)

<id>:=a|b|c
Syntax analyzer utilizes syntax trees to determine whether a statement
is accepted or not.

For the above example, check if a-(b+c) accepted?

<exp>
<exp> <operand>
i A
4 \
' (l)
<operand>
<exp>
v A
<id> l)
<exp> <operand>
v +
a \ 4 \ 4
<operand> <id>
A 4 v
<id> c
\ 4
b

-11-

Compilers

University of Baghdad M.Sc. Shaimaa Abbas

College of Education / Ibn-AL-Haithem 2008-2009

Dep. Of Computer Science Third Stage
Chapter Three

We can use another method to determine whether a statement is

accepted or not, this method is called (Derivation Method).

There are two types of derivation:-
1. Leftmost derivation
2. Rightmost derivation

Example :-

Let G be a grammar with this components ({S,E,F,P,R,L},{a, b, (,
)!+5'!X!A!/}!S!P)

P=
S— E S +E S- -E E~ T
T-F F+ P P-b R- a(L)
E+E+T E-TXF F- FAP L+ S
S+ E-T E-T/F P-+a P (S)

Is aX(b+a) accepted or not?

Leftmost derivation :-

S—+ E+ TXF » FXF -+ PxF -+ axF » axP = ax (S) = ax(E)~> ax(E+T) —»
ax(T+T) » ax(F+T) - ax(P+T) - axX(b+T) - ax(b+F) - ax(b+P)

—ax(b+a) .. aX(b+a) is accepted

Rightmost derivation :-
S + E » TXF - TXP - Tx(S) » TX(E) » TX(E+T) » TX(E+F) > Tx(E+P) >
Tx(E+a) = Tx(T+a) = Tx(F+a) » Tx(P+a) = Tx(b+a) »Fx(b+a) -

PXx(b+a) - ax(b+a) .. aX (b+a) is accepted

-12-

Compilers

University of Baghdad M.Sc. Shaimaa Abbas

College of Education / Ibn-AL-Haithem 2008-2009

Dep. Of Computer Science Third Stage
Chapter Three

Parser Techniques :-

Parser (Syntax Analyzer)

A
' N

Top-down parser Bottom-Up parser
(Predictive Parser) (Operator-Precedent
A Parser)
With Without
Backtracking Backtracking

Backtracking manipulating:-

1. Factoring

2. Substitution

3. Left-Recursion Elimination Sl il Jlay bl B palad)) S plad)
E > E+A

Left Recursion Elimination :-

1. Immediate Left-Recursion Elimination.

2. Not-Immediate Left-Recursion Elimination.

-13-

Compilers

University of Baghdad M.Sc. Shaimaa Abbas

College of Education / Ibn-AL-Haithem 2008-2009

Dep. Of Computer Science Third Stage
Chapter Three

Immediate Left-Recursion Elimination :-

The main rule for this method:-
A= Ax,| A, | Ao, |...|Ax_|3B, | B,|...| B,

>,

A-3BA|B8A|.|BA

n

A-> o,A |oL,A |0GA ..o A | €
Example 1:- Example 2:-
A->Aa|:B E*abc|def|Erx
. E*abc|def1§
A->3BA
. . f!-'rxf:|€
A->xA|E

Example 3:-

exp - exp or term | term
term - term and factor | factor

factor = not factor | (exp) | true | false

exp - term exp
exp - ortermexp |&
term - factor term

term - and factor term | &

factor - not factor | (exp) | true | false

-14-

Compilers

University of Baghdad M.Sc. Shaimaa Abbas

College of Education / Ibn-AL-Haithem 2008-2009

Dep. Of Computer Science Third Stage
Chapter Four

Not Immediate Left-Recursion Elimination :-

Algorithm:-

Arrange NT in any order;
ForI:=2tondo
ForJ:=1toi-1do
Begin
Replace each production of the form A; > Aj & by the production
Aj > 91 X /92 X /93 X [.ee/O O

Where
Ay = 21/82/33/+--/3x are the current Ay productions;

End;
Eliminate the immediate left recursion among the Ai productions;

End;{of algorithm}

Example O:-
B-+>Ac/d

A - Br/x
Solution:-

Aj=B A=A

A= Axc/d

Replace:- A;j~> Ay«

By:- Ai = 91 X /g2 X [o3 & [...[ox X
Using:- Ay > 01/92/03/ -++/ox

n2 - ﬂll e K= X

Compilers

University of Baghdad M.Sc. Shaimaa Abbas

College of Education / Ibn-AL-Haithem 2008-2009

Dep. Of Computer Science Third Stage
Chapter Four

Az~ 91 X /92 &

Al -»> al/az Al" AZC/d S d1™ A2C and J1— d

| =2 J=1 o=~ 01=A2C o= d

A > 51X /g X : Ap>Axcr/dr/x

A,* Axc/d These two rules are converted to
Ay > Axcr/dr/x immediate backtracking which can be

eliminated by the following rules:-

A Ax,/ Ax,/ Ax,/.../Ax_ /B, /B, /.../B,
A+ 3BA/BA/../BA
A-> oA joL,A JoLA .../ _A JE

B- Ac/d
A->Acr/drx/x
The result will be:-
B = Ac/d
A->drA/xA
A->crAj/e

Example @:-

Compilers

University of Baghdad M.Sc. Shaimaa Abbas

College of Education / Ibn-AL-Haithem 2008-2009

Dep. Of Computer Science Third Stage
Chapter Four

S->Ab/b

A—->Ac/Sd/ e

Predicative Parsing (Top Down Parser):-

Architecture:-
Stack Input buffer
)
X
Y
4_[Program]— Output
$
—
Parsing table
Algorithm:-

Set IP (Input Pointer) point to the first symbol of the input string W$
Repeat
Let X be the top stack symbol and (@) be the symbol pointed by IP;
If X is a terminal or $ then
If X = a then
Pop X from the stack and advance IP

Else error()

Compilers

University of Baghdad M.Sc. Shaimaa Abbas
College of Education / Ibn-AL-Haithem 2008-2009
Dep. Of Computer Science Third Stage
Chapter Four
Else

if M[X,a]= X-Y,Y,...Y,_then

Begin
Pop X from the stack
pushY Y, ...Y ontostack with Y, on top

Output the production XY Y, ... Y

End
Else errox();
Until X=§;
—Ala) £ sl (e 2 gl 915 s & (Top-Down) A—iy sy qul 3 ilsl) Ja)il
.(Backtracking)
£.940 Ca LS 13 Lagh ALY £ ga 1) £ 63 Cpa aSL) e aBlh ALY £ ga) o (o gial ao) gl cils 13U
Not-Immediate)_—dlall < 5 (Immediate Backtracking) —aball
JLacea Lga i 2 A1) (3l (38 g Adalles oy <! (Backtracking
. Push & Pop Jixi Al g L daldll cibleall g Stack 2529) Aa) sall oda B liad
Ll Non-Terminal als Jid jhul) jualic o dua Baasiy slaul) (e dany Jgaa sllae) oy

.Terminal yalic Jici sy yalic g ad
—: g el adgy ey 13 L gl

Baas| dusady J g (ST o
. Top of Stack Jia: sy X 3l Jiay Jo¥) agandl 1
) sthal) ALl) udy jdise Jiay sdllg @ Sl Jiay (AUl 3 gand) 2
. Stack Jiey &Ll 2 gaal) 3
Jalsll Lo e | pllaall Alaad) jualic e gl 1) aganl) 4

-4-

Compilers

University of Baghdad M.Sc. Shaimaa Abbas

College of Education / Ibn-AL-Haithem 2008-2009

Dep. Of Computer Science Third Stage
Chapter Four

malinl) iy La Bl e ¢ iy 531 s Output Sy 419 (ualdl) agaall |5
. Non-terminal s<lizlls terminal
. $ Start Symbol s ;s siad (Stack) GG 2 gaall 4005Y) dadl) o
L e) qgthall ddaal) A (Input) gl A 2 geall 4051 dagl) o
AS B (98 A g ualdd) 3 gandl 00N Aadl) o
. Top of Stack Jiaiy Gl 2 geal) A a2 9 La o salad oY) 3 gaall dpil i) dagdl)
il B3 ga el uainl Jiddig a1 3 gand) B 3 9a e L o daiad AU 3 peall Aulaiy) Aagdl) o
Agle) qsthal) Aaal) by

—o oY Ay

X=a o< 1)) diad e &Y Terminal £.5 (o X 0% Latis |1
ainl) 3l Top of Stack e iy X dad s dglany ool Ja &) (385 13)¢s
Input &l 2ganl dad pati dlliSy 1850 g 2genl) dad O) W2l ue) llaall Alaad) B U

(Stack Jier g g Gl 3 garll dad Lyl g
RGeS Ll o) quplhaall ddaadl ¢ slina (X # @) O) odel ladll (38ay ol V3¢
.(Not accepted) 4 e
bl adalii of Jgandl B @ ae X ABBe (o Ciauid Not-Terminal £ 55 (o X 058 Ladie 2
rainll Stack (e eawy (ual Al 3 ganll B LgiBla) Ay G g 4Bl Al () g @ 2 gendl 2a X
R0 9y a JBa Ay g plially (Sl Al G (ai) i bl Push Jas g Aalll 8 3 9 gall
JInput Jis Al
.Stack # § dad Laltla 43Ul 5 A ¥ il ghadl)) S0 s .3
Example O:-

Having the following grammar:-

E-E+T/T

Compilers

University of Baghdad M.Sc. Shaimaa Abbas

College of Education / Ibn-AL-Haithem 2008-2009

Dep. Of Computer Science Third Stage
Chapter Four

T->TxF/F

F-(E)/id

Show the moves made by the Top-Down Parser on the input=id+idXxid$

using the following table:-

Id + X () $

E |IE - TE’ E 9TE’

E 2€|E —¢

rd >

T T -FT T -FT

T >xFT" T e |T ¢

F F = id

F = (E)

lany pad) 8 ALY £ gl dallea (e 208 Jdilial) £ 95 (e (AL £ g (Ao 20 58 038 (g gt
<)

E-TE’

E-+TE /¢

T->FT

T+ xFT /¢

F - (E)/id

Stack

Input

$SE

id+idxid$

University of Baghdad

Compilers

M.Sc. Shaimaa Abbas

College of Education / Ibn-AL-Haithem 2008-2009
Dep. Of Computer Science Third Stage
Chapter Four

T |lid||$SE"T id+idxid$|| E - TE

F |lid||$E° T" F [|id+idxid$|| T -FT”

id ||id|[sE” T id |[ia+iaxids|| F - id

|+ $SE° T’ +idxid$ Pop id

E [+ |[sE° +idxids || T" - €

+|[+|[sE T+ || +iaxids |[E° »+TE

T ||lid||SE" T idxid$ Pop +

F |lid|[$SE" T F idxid$ T -FT

id ||id|[sE” T~ i || iaxids || F - id

' |[x |[sE” T xid$ || Pop id

x |[x| $SE° T Fx xid$ T ->xFT’

F ||id||$SE" T F id$ Pop x

id ||[id||$E" T~ id Id$ F = id

T|| $ ||SE" T $ Pop id

E°||l $ ||SE” $ T -¢

s[5 |[s $ E -¢

Stop

Example @:-

Having the following grammar:-

Compilers

University of Baghdad M.Sc. Shaimaa Abbas

College of Education / Ibn-AL-Haithem 2008-2009

Dep. Of Computer Science Third Stage
Chapter Four

exp - exp or term / term
term - term and factor / factor
factor = not factor / (exp) / true / false

Depending on the following table, parse the following statement:-

not (true or false) $

not or and () true | false $
exp— exp— exp— exp—
exp tern,1 tern’1 terr? term
exp exp exp exp
exp’—
exp’ or term exp’—e€ exp’—e
exp’
term— term— term— term—
term facto,r facto’r facto:' facto,r
term term term term

term’ term’

, — or — and
term factor | factor term’—e term’—e

term’ term’

factor || factor— factor factor— | factor
not — (exp) true — false
factor

Bottom Up Parser (Shift-Reduce Parser) :- Is a right most

derivation for a sentential form in reverse order.

Compilers

University of Baghdad M.Sc. Shaimaa Abbas

College of Education / Ibn-AL-Haithem 2008-2009

Dep. Of Computer Science Third Stage
Chapter Four

Conditions for Bottom-Up Parser:-
1. No &-rules (i.e., A = €).
2. It must be operator grammar (i.e., no adjacent non-terminal).

Example ©:- E-EAE/(E)/-E/id

Since of this production rule, the
grammar is not operator grammar

(E=NT, A=NT, E=NT).

Example @:- E-»E+E/E-E

-\ This grammar is an operator grammar
(E=NT, + =T, E=NT).

We need to do a table with three fields (Stack, Input, action {which will
be either shift or reduce}).

Initial value for stack=$.

Initial value for input=the sentence which we want to parse.

Initial value for action=Shift.

We need to know the meaning of the handle.
053 Oy Empty word (€) (= 258l 313 52 (Bottom-Up) 4k sk ol jo M oauleadd) Ja)
. Non-Terminal ¢ 5 ¢ 5_gtaia ualic 3529 ae i (Operator grammar) ¢ 5 (+
 gaa Jaladl) cgllaall o) 81 A A1A £ say aga g aae gl 2 g AL phal) 038 23g5 Y
. Push & Pop Jixi il 5 Lz daldl) cibileall g Stack 2529 oA Aol Al oda b gliad

-t) sAd) el ghad

Compilers

University of Baghdad M.Sc. Shaimaa Abbas

College of Education / Ibn-AL-Haithem 2008-2009

Dep. Of Computer Science Third Stage
Chapter Four

~idaas| A Jgan (eSS
. Stack Jia ¥ ageadl |1
(Input) el L e g glhaall Alaall jualic Jiay AN 3ganl) 2
Shift & e Osbabal opisles Jiay Mg Action Jiay J-AY) g EIEN 3 gnl) |3
. Reduce
$ Ao k8 g giak (Stack) JY) A gendl 410N Aadl) o
Lle) isthall dlaad) & (Input) AU 3 ganll L0001 dagdll o
bl B 392 gal) paisll Push dsles Jidiy Shift 19S5 paY) g Gl 3 gaall Laiaiy) dadll o
Stack b saindl adag AN 3 gead) lay
Slaral) 20158l e Right Most Derivation (bl (e &Y«
aing U g Al g (Handle) = (o La 3aa3 s Lale Slaio Yl g 8 jdilea dAlilaal) 3 ghadl) 2y o3
[(Action) &dUl) 3 garl) ad Lgnle
(Tree) plaaiul i) gil) GELE) <
() A3ilida) 5 Lol o) @ pthaal) Adlaad) Sl ol (B 352 gall puainl) dBlia) Alla Jiad Alds ja Jg) o
.(Top of Stack)
52 J ALl 5 9hadll 8 (Top of Stack)) 4Bl ad sd) jmaial) (LS 1)) Adiade o
aid (Handle) S ol 13y Alal) jaiall gla) aid (Handle) ¢S 1) Y o) (Handle)
.(Top of Stack) . 438
.(Stack=$Start Symbol) Js¥ Jiall dad (1985)) Aileal) il ghadlly paliad o

L)

-10-

Compilers

University of Baghdad M.Sc. Shaimaa Abbas

College of Education / Ibn-AL-Haithem 2008-2009

Dep. Of Computer Science Third Stage
Chapter Four

Example O:-

S - Sx§ /S+S/id Input = idxid+id$

Sol.

® Derive this grammar using right most derivation:-
S &> SXS =& SXS+S » SxXS+id = SxXid+id —» idxid+id

@ Specify the handles (using the above derivation):-

S+ SXS =+ Sx S+8 - SxS+ id »» Sx id +id = id xid+id

®Doing Syntax tree (parse tree):-

b

2 A\

S X S

L
S + S
| |
id id

-11-

Compilers

-12-

University of Baghdad M.Sc. Shaimaa Abbas
College of Education / Ibn-AL-Haithem 2008-2009
Dep. Of Computer Science Third Stage
Chapter Four
@ Doing Parse table:-
Stack Input Action
$ idxid+id$ Shift
$id xid+id$ Reduce S »id
$S xid+id$ Shift
$ Sx id+id$ Shift
$ Sxid +id$ Reduce S »+id
$ SxS +id$ Shift
$ SxS+ id$ Shift
$ SxS+id $ Reduce S »id
$ SxS+S $ Reduce S +S+S
$ SxS $ Reduce S +SxS
$S $ Accept

University of Baghdad

College of Education / Ibn-AL-Haithem

Dep. Of Computer Science

Compilers

Chapter Four

M.Sc. Shaimaa Abbas

2008-2009
Third Stage

Example @:-

E~>T/E+T/ET/-T 1nput=_-(idx(id-id) / id)$

T -+ F/ TXF/ TF
F- (E)/id

Solution :-

E->-T

- -F

= -(E)

= -(T)

»>-(I/F)
»>-(T/id)

--(IxF /id)
-+.(Tx (E) /id)

+ -(TX(E-T) /id)

-+ (TX(E-F) /id)
- -(TX(E-id) /id)
-+ -(T%(T -id) /id)
-+ -(Tx(F-id) /id)
-+ -(Tx(id -id) /id)
- -(F % (id - id) /id)
- -(id % (id - id) /id)

—

—~—

o — M — =

-13-

X ¢ = <

—-

He—m N

e

NH—He— O —— He— He

o «—'1 «

—-

o— N —

| —— g«

o — o — =+

Compilers

University of Baghdad M.Sc. Shaimaa Abbas
College of Education / Ibn-AL-Haithem 2008-2009
Dep. Of Computer Science Third Stage
Chapter Four
Stack Input Action
$ -(idx(id-id)/id)$ Shift
$- (idx(id-id)/id)$ Shift
$-(idx(id-id)/id)$ Shift
$-(id x(id-id)/id)$ Reduce F =+id
$-(F x(id-id)/id)$ Reduce T »F
$-(T x(id-id)/id)$ Shift
$-(Tx (id-id)/id)$ Shift
$ -(Tx(id-id)/id)$ Shift
$ -(Tx(id -id)/id)$ Reduce F =+id
$ -(Tx(F -id)/id)$ Reduce T »F
$ -(Tx(T -id)/id)$ Reduce E »T
$-(Tx(E -id)/id)$ Shift
$ -(Tx(E- id)/id)$ Shift
$ -(Tx(E-id)/id)$ Reduce F —+id
$ -(Tx(E-F)/id)$ Reduce T »F
$ -(Tx(E-T)/id)$ Reduce E = E-T
$-(Tx(E)/id)$ Shift
$-(TX(E) /id)$ Reduce F - (E)
$-(TxF /id)$ Reduce T = TxF

-14-

Compilers

University of Baghdad M.Sc. Shaimaa Abbas
College of Education / Ibn-AL-Haithem 2008-2009
s3 ep. Of Computer Science Third Stage

Chapter Four

$-(T /id)$ Shift
$-(T/ id)$ Shift
$-(T/id)$ Reduce F »id
$-(T/F)$ Reduce T =+ T/F
$-(T)$ Reduce E—-+ T
$-(E)$ Shift
$-(E) $ Reduce F - (E)
$-F $ Reduce T = F
$-T $ Reduce E -+ -T
$E $ Accept

-15-

Compilers

University of Baghdad M.Sc. Shaimaa Abbas

College of Education / Ibn-AL-Haithem 2009-2010

Dep. Of Computer Science Third Stage
Chapter Five

< What is a Context-Free Grammar CFG?

Context free Grammars are more general than Regular
Expression. There are more languages defined by CFGs (called
Type-2 Language).

A Context Free Grammar G=(V,,S,P), Where:-

4+ V Is a finite set of variables or Non terminal symbols.

4+ 2 Is a finite set of terminal symbols T.

4+ S Is the start symbol.

4+ P Is a finite set of Production Rules (A—X) where AcV and xe

(VuT)™.
As an example, we have the following grammar:-
G=({ET,FLi(,),a,+,*, E,P)
Where P is given by:-
P={ E-T
E—-E+T

T-F
T-T = F

F—-a

F-(E)}

And to save space we may combine all the rules with the same

left hand side, i.e.,

P={ E—~T/E—E+T
T-F/T +«F

F—a/(E)}

-1-

Compilers

University of Baghdad M.Sc. Shaimaa Abbas

College of Education / Ibn-AL-Haithem 2009-2010

Dep. Of Computer Science Third Stage
Chapter Five

¢ Lexical Analyzer :- Its main task is to read the source
program (character by character) then translated into a sequence of
primitive units called tfokens like (keywords, identifier, constant,
operators, etc.).

Lexical Analyzer reads the source program character by character
and returns the tokens of the source program. A token describes a
pattern of characters having same meaning in the source
program. (Such as identifiers, operators, keywords, numbers,
delimeters and so on), puts information about identifiers into the
symbol table.

Example :- newval := oldval + 12
= Tokens: newval identifier

= assignment operator

oldval identifier
+ add operator
12 a number

¢ Syntax Analyzer :- A Context Free Grammar, CFG,

(synonyms: Backus-Naur Firm of BNF) is a common notation for
specifying the syntax of a languages. The syntax of a language is
specified by a context free grammar (CFG). The rules in a CFG are
mostly recursive. A syntax analyzer checks whether a given
program satisfies the rules implied by a CFG or not. If it satisfies,

the syntax analyzer creates a parse tree for the given program.

-2

Compilers

University of Baghdad M.Sc. Shaimaa Abbas

College of Education / Ibn-AL-Haithem 2009-2010

Dep. Of Computer Science Third Stage
Chapter Five

Therefore, Syntax analysis is applied by a compiler to check the
syntax of a program by constructing a parse tree of the program.
Syntax Analysis generates a Parse Tree as shown below:-
Example 1:- If we have the following arithmetic expression:-

M= (D%E) - ((F + G) / (H + I))

Then the parse tree for this expression will be as below:-

Example 2:- Having the following arithmetic expression:-
M=((A-C)*xB)-(A-B)/ (A+(A-C)x B)

How to reconstruct the syntax parse tree?

/

* Semantic Analysis :- Immediately followed the parsing

phase(Syntax Analyzer). A semantic analyzer checks the source
program for semantic errors. Type-checking is an important part
of semantic analyzer. This attempts to catch programming errors
based on the theory of types. In practice this is checking things
like a variable declared as a string is not used in an expression

requiring an integer.The Semantic Analysis of the Compiler is

_3-

Compilers

University of Baghdad M.Sc. Shaimaa Abbas

College of Education / Ibn-AL-Haithem 2009-2010

Dep. Of Computer Science Third Stage
Chapter Five

implemented in two passes. The first pass handles the definition
of names (check for duplicate names) and completeness
(consistency) checks. The second pass completes the scope
analysis (check for undefined names) and performs type analysis.
Example :- newval := oldval + 12

The type of the identifier newval must match with type of the

expression (oldval+12). If the declaration part for a Pascal

segment code for example declares the type of newval as integer
type and through the running of the program the value of oldval
has a type of real then the Semantic Analysis of the Compiler is
implemented through the first pass by giving an error message
refers to the type inconsistency (type mismatch).

Two types of semantic Checks are performed within this phase

these are:-

1. Static Semantic Checks are performed at compile time like:-

e Type checking.
e Every variable is declared before used.
e Identifiers are used in appropriate contexts.

e Check labels

2. Dynamic Semantic Checks are performed at run time, and the

compiler produces code that performs these checks:-
e Array subscript values are within bounds.
e Arithmetic errors, e.g. division by zero.

e A variable is used but hasn’t been initialized.

Compilers

University of Baghdad M.Sc. Shaimaa Abbas

College of Education / Ibn-AL-Haithem 2009-2010

Dep. Of Computer Science Third Stage
Chapter Five

s Intermediate Code Generator :- After syntax and

semantic analysis, some compilers generate an explicit
intermediate representation of the source program. This
representation should be easy to produce and easy to translate
into the target program. These intermediate codes are generally
machine (architecture independent). But the level of intermediate
codes is close to the level of machine codes.

The form of codes that are generated in the Intermediate Code

Generator phase are:-

1. Polish Notation :- which can be performed through the

following

e Infix Notation :- In which the operation must be in the
middle of the expression (between two operands) like A+B.

e Prefix Notation :- In which the operation must prior the
operands (in the left hand side of the operands) like +AB.

e Postfix Notation :- In which the operation must be in the
right hand side of the operands like AB+.

Example 1:- Having the following expression
M= ((D*E) - ((F + G) / (H + 1))

For Infix Notation the expression will be as same because the

operation is between the two operands.

For Prefix Notation the expression will be as shown step by step

depending on the notation of the prefix rule which make the
operation prior the operand by moving these operations to the

left hand side of the operand as shown:-

_5-

Compilers

University of Baghdad M.Sc. Shaimaa Abbas

College of Education / Ibn-AL-Haithem 2009-2010

Dep. Of Computer Science Third Stage
Chapter Five

1- M= (DxE) - ((F + G) / (H + I)))
t | t | t |

2- M= (*(DE) - (+(FG) / +(HI
(*(DE) - (+(FG) / +(HI)))

3- M= (*%(DE) - /(+(FG) +(HI
(*(DE) - /(+(FG) +(HI)))

4- M= - (%(DE) /(+(FG) +(HI)))

For Postfix Notation the expression will be as shown step by step

depending on the notation of the postfix rule moves the

operations to the right hand side of the operand as shown below:-

1- M= (D*E)- ((F+ G) / (H+]1))
((|)))
2- M= ((DE)* - ((FG)+ / (HI
(DB = (FG)* Iﬂ)

3- M= ((DE) - ((FG)+ (HI}+)/),

4- M= ((DE)* ((FG)+ (HI)+)/) -

Example 2:- Having the following expressions in infix form

convert them to the two others forms:-

2. (W*L)-(A/(C*D)) 3. (A+B)*(C+D)

Compilers

University of Baghdad M.Sc. Shaimaa Abbas

College of Education / Ibn-AL-Haithem 2009-2010

Dep. Of Computer Science Third Stage
Chapter Five

2. Quadruples :- In which each expression is performed using

the following format:-
Operator, operand,, operand,, result
Example :- Having the following expression M= (A * B) + (Y + Z)
The Quadruple format will be:-

3. Triples :- In which each expression is performed using the
following format:-

Operator, operand;, operand,

Example 1:- Having the following expression M= (A % B) + (Y + Z)
The Triples format will be:-

Steps
(1) +, Y, Z
(2) *, A, B

(3) t, 1), @)

Compilers

University of Baghdad
College of Education / Ibn-AL-Haithem
Dep. Of Computer Science

M.Sc. Shaimaa Abbas

2009-2010
Third Stage

Chapter Five

Example 2 :- Having the following expression

X=(Xg + Xp) ¥ (X3 + X3) ¥ (X3 + Xy)

The Quadruple format will be:-

OP. | Operand; | Operand, | Result | Meaning
+ X4 X5 Temp, | ADD X; X, ,Temp,
+ X X3 Temp, | ADD X, X3 ,Temp,
+ X3 Xa Temps | ADD X3 X, ,Tempgs
* Temp, Temp, |Tempy, MULT Templ’ Temp,,Temp,
% Tempy Tempg |Tempg|MULT Temp,y Tempgs,Tempg
= Tempg | -------oem | —moomee- MOV Temps X

The Triple format will be:-

Steps | Operation |Operand; | Operand,
(0) + X4 X
(1) . X, X5
(2) + X3 X4
(3) * (0) (1)
(4) * (3) (2)

= X (4)

Compilers

University of Baghdad M.Sc. Shaimaa Abbas

College of Education / Ibn-AL-Haithem 2009-2010

Dep. Of Computer Science Third Stage
Chapter Five

Three Address Code Is a sequence of statements typically of

the general form A := B op C, where A,B and C are temporary

operands and op is the operation. The cause of naming this

format by Three Address Code is that each statement or
expression usually contains three addresses, two for
operands and one for the result.

The following expression X= (X; + X,) * (X5 + X3) * (X3 + X4) will

performed using Three Address Code as shown below:-

Steps

Ty +, X7, X,
Ty + , X5, X3
Tg + , X3, X4
T4 *, Ty, Ty
Ts x, Tq, T3
X =Tsg

/

s Code Optimizer :- The code optimizer optimizes the code

produced by the intermediate code generator in the terms of time
and space. This code optimization phase attempts to improve the
intermediate code, so the faster-running machine code will result.
Example 1:- newval =oldval + 12 This will means (id1 := id2 + 12)
In code optimizer we have the following codes:-

ADD id2, #12, templ

MOV templ, idl

Compilers

University of Baghdad M.Sc. Shaimaa Abbas

College of Education / Ibn-AL-Haithem 2009-2010

Dep. Of Computer Science Third Stage
Chapter Five

Example 2 :- position := initial + rate * 60

This will means (id1 := id2 + id3 * 60)

In code optimizer we have the following codes:-

templ := inttoreal (60)
temp2 := id3 * templ
templ := id3 * 60.0
temp3 := id2 + temp2
id1 := id2 + templ
id1 := temp3

s Code Generator :- The final phase of the compiler is the

generation of target program, the target program is normally a
relocatable object file containing the machine codes.

For example, having the following expressions:-

a:=b+c

d:=a+e

Inefficient assembly code is:

MOV b, R, R, «b
ADD c, R, R, «—c+R,
MOV R,, a a «— R,

MOV a, R, R, «— a
ADD e, R, R, «—e +R,
MOV R,, d d —R,

-10-

Compilers

University of Baghdad M.Sc. Shaimaa Abbas

College of Education / Ibn-AL-Haithem 2009-2010

Dep. Of Computer Science Third Stage
Chapter Five

Example :- having the following expression newval =oldval + 12

The whole running of each phase of the compiler phases are

shown in the following diagram:-

Now, newval = oldval + 12 represents the source program or

source code.

newval = oldval + 12

Lexical Analyzer e
id1 :=id2 + 12 e ‘
Syntax Analyzer @ °

7 l

‘ Symbols Tables Intermediate Code Gen.
Arg. Valu. l
newval | templ:=id2 + 12
° ‘ OIdval 1d1:=tlemp1
e e Code Optimizer

ADD id2, #12, templ
MOV templ, idl

Semantic Analyzer

|

Code Generator

!

MOV id2 , R1
ADD R1, #12
MOV R1 , id1

-11-

33y daaly
g () 2l sl gy)

Compilers

Code optimizer

Third stage

M.Sc. Ahmed Rafid

2016-2017

Compilers Code Optimizer M.Sc. Ahmed Rafid

Code Optimization

Optimization is a program transformation technique, which tries to
improve the code by making it consume less resources (i.e. CPU,

Memory) and deliver high speed.

In optimization, high-level general programming constructs are replaced
by very efficient low-level programming codes. A code optimizing

process must follow the three rules given below:

. The output code must not, in any way, change the meaning of the

program.

« Optimization should increase the speed of the program and if

possible.
« The program should demand less number of resources.

Efforts for an optimized code can be made at various levels of

compiling the process.

« At the beginning, users can change/rearrange the code or use better

algorithms to write the code.

« After generating intermediate code, the compiler can modify the

intermediate code by address calculations and improving loops.

« While producing the target machine code, the compiler can make

use of memory hierarchy and CPU registers.

Optimization can be categorized broadly into two types:

machine independent and machine dependent.

Compilers Code Optimizer M.Sc. Ahmed Rafid

1- Machine-independent Optimization

In this optimization, the compiler takes in the intermediate code and
transforms a part of the code that does not involve any CPU registers
and/or absolute memory locations. (Machine Independent

Improvements address the logic of the program)

For example:
do

{

item = 10;

value = value + item;

Twhile(value<100);

This code involves repeated assignment of the identifier item, which
if we put this way:
Item = 10;
do
{
value = value + item;

} while(value<100);

should not only save the CPU cycles, but can be used on any

Processor.

Compilers Code Optimizer M.Sc. Ahmed Rafid

2- Machine-dependent Optimization

Machine-dependent optimization is done after the target code has
been generated and when the code is transformed according to the
target machine architecture. It involves CPU registers and may
have absolute memory references rather than relative references.
Machine-dependent optimizers put efforts to take maximum

advantage of memory hierarchy.

Lntermmediate Code Optimized Code Optimized
chrcscntatinn+ﬂptimizcr 1ﬂlﬂfmﬂﬂiﬂl‘:+ Genecator > Target

Representation Code
Machine—Independent Machine—Dependent
Optirmzations Optirmzations
Peephole optimization: - peephole optimizationis a kind

of optimization performed over a very small set of instructions in a
segment of generated code. The set is called a "peephole™ or a "window".
It works by recognizing sets of instructions that can be replaced by

shorter or faster sets of instructions.

Code Optimization has Two levels which are:-

1- Machine independent code Optimization
« Control Flow analysis
» Data Flow analysis

* Transformation

https://en.wikipedia.org/wiki/Optimization_(computer_science)

Compilers Code Optimizer M.Sc. Ahmed Rafid

2- Machine dependent code- Optimization
* Register allocation
« Utilization of special instructions.
Code optimization can either be high level or low level:
— High level code optimizations.
— Low level code optimizations.

— Some optimization can be done in both levels.

Flow graph: - is a common intermediate representation for code

optimization.

Basic Blocks

Source codes generally have a number of instructions, which are always
executed in sequence and are considered as the basic blocks of the code.
These basic blocks do not have any jump statements among them, i.e.,
when the first instruction is executed, all the instructions in the same
basic block will be executed in their sequence of appearance without

losing the flow control of the program.

A program can have various constructs as basic blocks, like IF-THEN-
ELSE, SWITCH-CASE conditional statements and loops such as DO-
WHILE, FOR, and REPEAT-UNTIL, etc.

Basic blocks are important concepts from both code generation and
optimization point of view.

Compilers

Code Optimizer M.Sc. Ahmed Rafid

Local Optimizations are performed on basic blocks of code

Global Optimizations are performed on the whole code

Source Code

Control Flow Graph

w = 0;
x =x +y;
y = 0;

w=x+ z;

Basic Blocks

Basic blocks in a program can be represented by means of control flow

graphs. A control flow graph depicts how the program control is being

passed among the blocks. It is a useful tool that helps in optimization by

help locating any unwanted loops in the program.

Compilers Code Optimizer M.Sc. Ahmed Rafid

B1
ENMTER
w = 0;
X = x + ¥; l
y = 0;
if(x > z) B1 |
B2 \
Y = x;
S B2 / B3
|

SN

Y = 2; B4
Z++;

B4 _ l

W= X + 2 EXIT
Basic Blocks Flow Graph

Global Data Flow Analysis

Compiler collect information about all program that needed for code
optimizer phase, Collect information about the whole program and

distribute the information to each block in the flow graph.

DFA provide information for global optimization about how execution

program manipulate data.
B Data flow information: Information collected by data flow analysis.

B Data flow equations: A set of equations solved by data flow

analysis to gather data flow information.

Compilers Code Optimizer M.Sc. Ahmed Rafid

Criteria for code-improvement Transformations
1. Transformations must preserve the meaning of programs

2. A transformation must, on the average, speed up programs by a

measurable amount
3. A transformation must be worth the effort.
Function Preserving Transformations
1. Common sub expression eliminations
2. Copy propagations
3. Dead and unreachable code elimination

4. Constant Folding

33y daaly
g () 2l sl gy)

Compilers

Code Generation

Third stage

M.Sc. Ahmed Rafid

2016-2017

Compilers Code generation M.Sc. Ahmed Rafid

Code Generation

Code generation is the final phase of compiler phases, It takes input from
the intermediate representation with information in symbol table of the
source program and produces as output an equivalent target program (see

Figure 1).

e |
source | Front intermediate | Code | intermediate | - Code | turget

pogram | End | code 'Optimizer code |Generator| program

Figure 1: position of Code generation

Main Tasks of Code Generator

1- Instruction selection: choosing appropriate target-machine
instructions to implement the IR statements.
The complexity of mapping IR program into code-sequence for
target machine depends on:
— Level of IR (high-level or low-level)
— Nature of instruction set (data type support)
— Desired quality of generated code (speed and size)
2- Registers allocation and assignment: deciding what values to
keep in which registers
3- Instruction ordering: deciding in what order to schedule the

execution of instructions.

Compilers Code generation M.Sc. Ahmed Rafid

Issues in the design of code generator

1- Input to the code generator

 three-address presentations (quadruples, triples, ...)
* Virtual machine presentations (bytecode, stack-machine, ...)
* Linear presentation (postfix ...)

* Graphical presentation (syntax trees, DAGs,...)
2- The target program

Instruction set architecture (RISC, CISC)

The instruction-set architecture of the target machine has a significant
impact on the difficulty of constructing a good code generator that
produces high-quality machine code. The most common target-machine
architectures are RISC (reduced instruction set computer), CISC
(complex instruction set computer), and stack based.

A RISC machine typically has many registers, three-address instructions,

simple addressing modes, and a relatively simple instruction-set
architecture.

In contrast, a CISC machine typically has few registers, two-address
instructions, a variety of addressing modes, several register classes,
variable-length instructions, and instructions with side effects.

In a stack-based machine, operations are done by pushing operands onto a
stack and then performing the operations on the operands at the top of the
stack. To achieve high performance the top of the stack is typically kept

In registers. Stack-based machines almost disappeared because it was felt

Compilers Code generation M.Sc. Ahmed Rafid

that the stack organization was too limiting and required too many swap
and copy operations.

Output may take variety of forms

1. Absolute machine language(executable code)
2. Relocatable machine language(object files for linker)

3. Assembly language(facilitates debugging)

Absolute machine language has advantage that it can be placed in a fixed
location in memory and immediately executed.
Relocatable machine language program allows subprograms to be

compiled separately.

Producing assembly language program as output makes the process of
code generation somewhat easier.

