
Compilers

University of Baghdad M.Sc. Shaimaa Abbas

College of Education / Ibn-AL-Haithem 2008-2009

Dep. Of Computer Science Third Stage

Chapter One

 -1-

REFRENCES:-

 Compilers Principles, Techniques and Tools by Alferd V.Aho.

 Compiler Construction for Digital Computers by David Gries.

 Introduction Theory of Computer Science by E.R.

Krishuamurthy.

 جه غات برم مات ل صميم مترج ية لت ية و التطبيق سس النظر الأ

 جنان عبد الوهاب.صباح محمد أمين د.دالحاسبة

Def.
A Compiler :- Is a program that reads a program written in one

language -the Source Language- and translates it into an equivalent

program in another language - the Target Language -.

The Phases of a Compiler :-

 A typical decomposition of a compiler is shown below, in practice,

some of the phases may be grouped together.

1. Lexical Analyzer. مرحلة التحليل اللفظي

2. Syntax Analyzer. مرحلة التحليل القواعدي

3. Semantic Analyzer. مرحلة التحليل المعنوي

4. Intermediate Code Generator. مرحلة توليد الشفرات الوسطية

5. Code Optimizer. مرحلة تحسين الشفرات

6. Code Generator. مولد الشفرات

Error Messages

Source Program Target Program

 Compiler

Compilers

University of Baghdad M.Sc. Shaimaa Abbas

College of Education / Ibn-AL-Haithem 2008-2009

Dep. Of Computer Science Third Stage

Chapter One

 -2-

In each phase we need variables that can be obtained from a table

called Symbol Table manager , and in each phase some errors may be

generated so we must have a program used to handle these errors ,

this program called Error Handler.

Source Program

Target Program

Lexical analyzer

Syntax analyzer

Intermediate Code

Generator

Semantic analyzer

Code Optimizer

Code Generator

Symbols

Table

Manager

Error

Handler

Compilers

University of Baghdad M.Sc. Shaimaa Abbas

College of Education / Ibn-AL-Haithem 2008-2009

Dep. Of Computer Science Third Stage

Chapter One

 -3-

 Lexical Analyzer :-

Its main task is to read the source program (character by character)

then translated into a sequence of primitive units called tokens like

(keywords, identifier, constant, operators, etc.).

 Some times this phase is divided into two phases, the first one known

as "Scanning" while the second is known as "Lexical Analysis". The

Scanning is responsible for doing simple tasks while the Lexical

Analysis is suitable for doing complex tasks.

 Syntax analyzer :-

This phase begins when the lexical phase is terminated; the outputs

from the previous phase (Lexical analyzer) will represent the input for

this phase (Syntax analyzer).

 Intermediate Code Generator :-

After syntax and semantic analysis, some compilers generate an

explicit intermediate representation for the source program. This

phase has two important properties :- it should easy to produce and

translate into the target program.

 Code Optimization phase :-

The code optimization phase attempts to improve the intermediate

code which results into faster running machine code.

 Code Generator :-

Compilers

University of Baghdad M.Sc. Shaimaa Abbas

College of Education / Ibn-AL-Haithem 2008-2009

Dep. Of Computer Science Third Stage

Chapter One

 -4-

The final phase of complier is the generation of target code, consisting

of relocatable machine code or assembly code.

 Symbol Table :-

Symbol table is a data structure containing a record for each

identifier, with fields for attributes of the identifier. This data structure

allows us to store and retrieve data from the record quickly.

 Error Handler :-

Each phase can produce errors. However, after detecting an error, a

phase must deal with that error, so that the compilation can proceed.

So dealing with that error is done by a program known as Error

Handler which is a software used to handle any error that may be

produced from any phase and it is needed in all phases of the

compliers.

Note :- Each phase of the complier has two inputs and two outputs; for

example:- for the first phase (Lexical Analyzer) the first input to it is

the source program while the second input is some variables that may

be needed in that phase; while the first output is the errors that may be

generated in it and will be manipulated by the Error Handler program,

and the second output from it will represent the input for the next

compiler phase (Syntax).

Grammars :-

Compilers

University of Baghdad M.Sc. Shaimaa Abbas

College of Education / Ibn-AL-Haithem 2008-2009

Dep. Of Computer Science Third Stage

Chapter One

 -5-

A grammar is a set of formal rules for constructing correct sentences

in any language; such sentences are called Grammatical Sentences.

Def.
The set of rules which we use to reconstruct grammatical sentences

are called Syntax.

Def.
The specification of the meaning of sentences in a language is called

the Semantics of the language.

Def.
Let ∑ be any finite set of symbols, called an alphabet; the symbols are

called the letters of the alphabet.

Def.
A word (String) X over ∑ is any finite sequence of letters from ∑, while

the empty word, denoted by ε or λ, is the word consisting of no letters.

Concatination :-

We define the Concatination of two symbols U and V by :-

UV= { X | X= uv, u is in U and v is in V }

Note that:- UV ≠ VU

 U (VW) = (UV) W

Example :-

Let ∑ = {0,1} and U= {000,111} and V= {101,010}

 UV= {000101, 000010, 111101, 111010}

 VU= {101000, 101111, 010000, 010111}

UV ≠ VU

Example :-

Compilers

University of Baghdad M.Sc. Shaimaa Abbas

College of Education / Ibn-AL-Haithem 2008-2009

Dep. Of Computer Science Third Stage

Chapter One

 -6-

Let ∑ = {a,b,c,d} ; U= {abd , bcd} ; V= {bcd , cab} and W= {da , bd}

To prove the following :- U (VW) = (UV) W

Take first the left side,

U (VW) ={abd , bcd} {bcdda, bcdbd, cabda, cabbd}

 = { abdbcdda, abdbcdbd, abdcabda, abdcabbd, bcdbcdda,

bcdbcdbd, bcdcabda, bcdcabbd }

Take the right side,

(UV) W = { abdbcd, abdcab, bcdbcd, bcdcab} {da , bd}

 = { abdbcdda, abdcabda, bcdbcdda, bcdcabda, abdbcdbd,

abdcabbd, bcdbcdbd, bcdcabbd }

 U (VW) = (UV) W

Closure or Star Operation :-

This operation defines on a set S, a derived set S*, having as members

the empty word and all words formed by concatinating a finite number

of words in S, as shown below:-

......
210*

SSSS 

Where :-

0iforSSSandS
1-ii0

ε 

Example :-

Let S = {01, 11}, then

S
*
={ε , 01,11 , 0101,0111,1101,1111 , 010101 , 010111, ... }

Formalization:-
S

0

S
1

S
2

S
3

Compilers

University of Baghdad M.Sc. Shaimaa Abbas

College of Education / Ibn-AL-Haithem 2008-2009

Dep. Of Computer Science Third Stage

Chapter One

 -7-

A phrase structure grammar is of the form G= (N, T, S, P); where:-

N = A finite set of non-terminal symbols denoted by A, B, C,...

T= A finite set of terminal symbols denoted by a, b, c,...

With N  T =V and N  T= φ (null set).

P= A finite set of ordered pairs (, ) called the Production Rules, 

and  being the string over V
* and  involving at least one symbol from

N.

S= Is a special symbol called the Starting Symbol.

Example :-

Let G= (N, T, S, P); N= {S, B, C}, T= {a, b}

P= {(S  aba), (SB b), (bbB), (bλ)}

This grammar is not a structure grammar because of the production

rule b bB because the left side of this rule containing only a

terminal symbol (b) and in any production rule the left side must

involve at least one non-terminal symbol.

Def.

Compilers

University of Baghdad M.Sc. Shaimaa Abbas

College of Education / Ibn-AL-Haithem 2008-2009

Dep. Of Computer Science Third Stage

Chapter One

 -8-

The set of all sentences generated by G is called the language of G or L

(G)

}XSandTXX{L(G)
G

*


Example :-

Let G= (N, T, S, P) where N= {S, A}, T= {a, b}

P= {(SaAa), (AbAb), (Aa)}

S  aAa  abAba  abbAbba  abbabba

Note :-

1. The production rules can be written in another form, for the

above example, the production rule is written as follows:-

 P= {(S, aAa), (A, bAb), (A, a)}

2. Some times it may be that two different grammars G and Ğ

generated the same language L (G)=L(Ğ)  the grammars are

said to be equivalent.

Example :-

G= (N,T,S,P)

N= {number, integer, fraction, digit}

T= {., 0, 1, 2, 3, ..., 9}

S=number

P={(numberinteger fraction), (integerdigit), (integer integer

digit), (fraction.digit), (fractionfraction digit),(digit0), (digit1),

(digit2), (digit3), (digit4), (digit5), (digit6), (digit7),

(digit8), (digit9)}

Compilers

University of Baghdad M.Sc. Shaimaa Abbas

College of Education / Ibn-AL-Haithem 2008-2009

Dep. Of Computer Science Third Stage

Chapter One

 -9-

Now we want to prove if the following number is accepted or not

75312?

Kinds of Grammar Description :-

1. Transition Diagram.

2. BNF (Backus_ Naur form).

3. EBNF.

4. Cobol_Meta Language.

5. Syntax Equations.

6. Regular Expression (R.E.).

By using BNF the grammar can be represented as follows:-

(For the previous example)

G= (N, T, S, P)

number

integer fraction

integer

fraction

digit

integer

2

digit

1

.
3

digit

5

digit

7

digit

Compilers

University of Baghdad M.Sc. Shaimaa Abbas

College of Education / Ibn-AL-Haithem 2008-2009

Dep. Of Computer Science Third Stage

Chapter One

 -11-

N= {<number>, <integer> , <fraction> , <digit>}

T= {., 0, 1, 2, 3, ..., 9}

S= <number>

Production rules P will be represented as follows:

<number> ::= <integer> <fraction>

<integer> ::= <digit>|<integer> <digit>

<fraction> ::= .<digit>|<fraction> <digit>

<digit> ::= 0|1|2|3|4|5|6|7|8|9

Regular Expression (R.E.) :-

The main components of RE are

1. ε or λ is R.E. denoting by L0={ε}=L

2. Any terminal symbol like a is R.E. denoting L={a}

3. If S,R any two R.E. denoting LS,LR then

3.1 R|S is R.E. denoting LR  LS

3.2 RS is R.E. denoting LR. LS

3.3 R* is R.E. denoting
n

RRR
LLL 

2
}{

 S|R  R|S

 (R|S)|T  R| (S|T)

 (R.S).T  R. (S.T)

 R.S|R.T  R. (S|T)

 R  R.λ  λ.R

Compilers

University of Baghdad M.Sc. Shaimaa Abbas

College of Education / Ibn-AL-Haithem 2008-2009

Dep. Of Computer Science Third Stage

Chapter One

 -11-

Transformation of R.E. to Transition Diagram (Formal

Method) :-

1. For each non terminal NT draw a circle.

2. Connect with arrows between any two circles with respect to the

following rules:-

 If NTNT connect the two circles with arrow labeled λ or ε.

 If NTT NT connect the two circles with arrow labeled T.

 If NTT creates a new circle with a new NT (final) then

connect the left-hand side NT of the rule and the new NT

with arrow labeled T.

 If NTTs NT create circles (as the length of Ts-1).

Example :-

 Let G= {{S, R, U},{a, b}, S, P}

P=

S  a

R  abaU

U  b

S  bU

R  U

U  aS

S  bR

Transformation of BNF to Transition Diagram (Informal

Method):-

a b

a

a

a
b

b

b

ε

Z

S

R

X

U

Y

Compilers

University of Baghdad M.Sc. Shaimaa Abbas

College of Education / Ibn-AL-Haithem 2008-2009

Dep. Of Computer Science Third Stage

Chapter One

 -12-

1. Draw a separate transition diagram for each production rule.

2. Substitute each non-terminal symbol by its corresponding

transition diagrams.

Example :-

G= (N, T, S, P)

N= {<number>, <integer>, <fraction>, <digit>}

T= {., 0, 1, 2, 3, ..., 9}

S= <number>

P=

<number> ::= <integer> <fraction>

<integer> ::= <digit>|<integer> <digit>

<fraction> ::= .<digit>|<fraction> <digit>

<digit> ::= 0|1|2|3|4|5|6|7|8|9

Now we take each production rule and draw to it a separate transition

diagram:-

<number> ::= <integer> <fraction>

<integer> ::= <digit>|<integer> <digit>

<fraction> ::= .<digit>|<fraction> <digit>

<integer> <fraction>

<digit>
<digit>

<digit>
<digit> .

Compilers

University of Baghdad M.Sc. Shaimaa Abbas

College of Education / Ibn-AL-Haithem 2008-2009

Dep. Of Computer Science Third Stage

Chapter One

 -13-

<digit> ::= 0|1|2|3|4|5|6|7|8|9

Now we must substitute each non-terminal symbol by its

corresponding transition diagram.







0-9

<digit> <fraction>

<digit>

<digit> <digit>

<digit> <digit> .

0-9

0-9

0-9

0-9
.

Compilers
University of Baghdad M.Sc. Shaimaa Abbas

College of Education / Ibn-AL-Haithem 2008-2009

Dep. Of Computer Science Third Stage

Chapter Two

 -1-

Lexical Analyzer Design

The main sub-phases of the Lexical analyzer phase are shown below in

the following figure:-

 The grammar will converted to a Transition Diagram using

special algorithm.

 The converted Transition Diagram must be checked whether if it

is in NDFSA form or not; if so, the grammar must converted to

DFSA using algorithm which will be described in this chapter.

 The resulted grammar will be in DFSA form which must be

minimized to reduce the number of nodes depending on

Grammar

Transition Diagram

Non-Deterministic Finite

State Automata (NDFSA)

Deterministic Finite State

Automata (DFSA)

Minimize of DFSA

Recognizer

Compilers
University of Baghdad M.Sc. Shaimaa Abbas

College of Education / Ibn-AL-Haithem 2008-2009

Dep. Of Computer Science Third Stage

Chapter Two

 -2-

algorithm designed for this purpose(fast searching and

minimum memory storage).

 The final sub-phase in lexical analyzer phase is to recognize if

the input string or statement is accepted or not depending on a

specific grammar.

Finite State Automata (FSA):-

Is a mathematical model consists of :-

1. A set of terminal symbols

2. A set of transition functions

3. Initial state

4. Final state

5. A set of elements called states

Two types of FSA:-

 Non-Deterministic Finite State Automata (NDFSA)

 Deterministic Finite State Automata (DFSA)

FSA is of NDFSA if one of these two conditions is satisfied:-

1. There are more than one transition have the same label from that

state to another states.

2. There is a ε - transition.

Compilers
University of Baghdad M.Sc. Shaimaa Abbas

College of Education / Ibn-AL-Haithem 2008-2009

Dep. Of Computer Science Third Stage

Chapter Two

 -3-

ε

Formal method for converting R.E. to NDFSA :-

 If we have an ε

where i = initial state , f =final state

…………………………………….

 If we find a terminal symbol like a

…………………………………….

 If we have P|Q

…………………………………….

 If we have P.Q

SP
FP

SQ

FQ

ε
i f

ε

ε

ε

ε

2
0

Fp

Sp

FQ SQ

i f

ε
i f

Compilers
University of Baghdad M.Sc. Shaimaa Abbas

College of Education / Ibn-AL-Haithem 2008-2009

Dep. Of Computer Science Third Stage

Chapter Two

 -4-

 If we have Q*

Example :-

R.E.= abc|d*

…………………………………….

Examples :-

1. RE= letter (letter | digit)*

ε

ε

ε ε FQ SQ i f

d

b

ε

ε ε

c a

ε

ε

ε

ε

ε 0

1 2 3 4

7 8 5 6

9

ε

ε

letter

ε

ε

ε

ε

digit

letter ε ε
2

3 4

8

5 6

0 1 7

Compilers
University of Baghdad M.Sc. Shaimaa Abbas

College of Education / Ibn-AL-Haithem 2008-2009

Dep. Of Computer Science Third Stage

Chapter Two

 -5-

2. R.E.= (a | b) *

…………………………………….

3. R.E.= 0*1 0*1 0*

…………………………………….

4. R.E.= ((λ | a) b*)*

ε

ε

a

ε

ε

ε

ε

b

ε ε
1

2 3

7

4 5

0 6

0

ε

ε

ε

ε 0 1
1 0 S

3

3 1

ε

ε

ε

ε 0 1
5 4 6

0

F

p

7 1

ε

ε

ε

ε 0
9 8 1

0

0

F

p

11

ε

ε

a

ε ε

ε ε
λ

ε

ε

b ε ε

ε

ε

11 1

2 3

4 5

0 6

0
7 8

0

F

p

9

Compilers
University of Baghdad M.Sc. Shaimaa Abbas

College of Education / Ibn-AL-Haithem 2008-2009

Dep. Of Computer Science Third Stage

Chapter Two

 -6-

Data structure representation of FSA :-

 Transition Matrix

We must have a matrix with the number of its rows equal to the

number of the FSA states in the diagram while the number of its

columns in this matrix equal to the number of its inputs (labels).

This type of representation has a disadvantage that it contains many

blank spaces, while the advantage of this type is that the indexing is

fast.

For example:-

 0-9 .

1 2 #

2 2 3

3 4 #

4 4 #

0-9

0-9

0-9

0-9 . 1 4 2 3

Compilers
University of Baghdad M.Sc. Shaimaa Abbas

College of Education / Ibn-AL-Haithem 2008-2009

Dep. Of Computer Science Third Stage

Chapter Two

 -7-

 Graph Representation

In this representation we have a fixed number of columns which is

equal to 2 and the labels of these two columns are Input Symbol & Next

State while the number of rows differs from one transition diagram to

another and these rows are labeled by the number of states . The

disadvantage of this representation is that it takes a long time for

searching (search slow) while the advantage of this representation is

that it is compact.

For the previous example:-

 Input

Symbol

Next

State

1 0-9 2

2 0-9 2

2 . 3

3 0-9 4

4 0-9 4

0-9

0-9

0-9

0-9 . 1 4 2 3

Compilers
University of Baghdad M.Sc. Shaimaa Abbas

College of Education / Ibn-AL-Haithem 2008-2009

Dep. Of Computer Science Third Stage

Chapter Two

 -8-

Transformation of NDFSA to DFSA:-

Before we use an algorithm to convert the grammar which is NDFSA

form to DFSA form, we must deal with a special function known as ε-

Closure Function, which can be explained using the following

procedure:-

Function ℇ-Closure (M) :-

 Begin

 Push all states in M into stack;

 Initialize ℇ-Closure (M) to M;

 While stack is not empty do

 Begin

 Pop S;

 For each state X with an edge labeled ε from S to X do

 If X is not in ℇ-Closure (M) then

 Begin

 Push X;

 Add X to ℇ-Closure (M);

 End;

 End;

 End;

Compilers
University of Baghdad M.Sc. Shaimaa Abbas

College of Education / Ibn-AL-Haithem 2008-2009

Dep. Of Computer Science Third Stage

Chapter Two

 -9-

Example :-

R.E.= abc|d*

To compute randomly the ε-Closure for the following states:-

ℇ-Closure ({0}) = {0, 1, 5, 6, 8, 9}

ℇ-Closure ({1}) = {1}

ℇ-Closure ({7, 8}) = {7, 8, 9, 6}

ℇ-Closure ({2, 3, 4})={2, 3, 4, 9}

d

b

ε

ε ε

c a

ε

ε

ε

ε

ε 0

1 2 3 4

7 8 5 6

9

Compilers
University of Baghdad M.Sc. Shaimaa Abbas

College of Education / Ibn-AL-Haithem 2008-2009

Dep. Of Computer Science Third Stage

Chapter Two

 -11-

Algorithm for transforming NDFSA to DFSA:-

Initially let x= ℇ-Closure ({S0}) marked as the start state of DFSA, S0 is

the start state of NDFSA;

While there is unmarked states X = {S1, S2, ... ,Sn} of DFSA do

 Begin

 For each terminal symbol (a ∈ Σ) do

 Begin

 Let M be the set of states to which there is transition on a from

some states Si in X ;

 Y = ℇ-Closure ({ M });

 If Y has not yet been added to the set of states of DFSA then

make Y an unmarked state of DFSA;

 Create an edge by adding a transition from X to Y labeled a if

not present;

 End;

 End;

End {algorithm}

Compilers
University of Baghdad M.Sc. Shaimaa Abbas

College of Education / Ibn-AL-Haithem 2008-2009

Dep. Of Computer Science Third Stage

Chapter Two

 -11-

Examples:-

 R.E. = Letter (letter | digit)*

ε-Closure ({ 0 }) = {0} Create a new node called for example A

ε

ε

letter

ε

ε

ε

ε

digit

letter ε ε
2

3 4

8

5 6

0 1 7

Start State
Final State

A letter ; M={1}; ℇ-Closure ({1})={1,2,3,5,8} Create a new

node called for example B (must be a final node because of node 8).

digit ; M=∅;

B letter ; M={4}; ℇ-Closure ({4})={4,7,8,2,3,5} Create a new

node called for example C (must be a final node because of node 8).

digit ; M={6}; ℇ-Closure ({6})={6,7,8,2,3,5} Create a new

node called for example D (must be a final node because of node 8).

C letter ; M={4}; No need to create a new node because ℇ-Closure

({4}) has been computed and by which we have node C.

digit ; M={6}; No need to create a new node because ℇ-Closure

({6}) has been computed and by which we have node D.

Compilers
University of Baghdad M.Sc. Shaimaa Abbas

College of Education / Ibn-AL-Haithem 2008-2009

Dep. Of Computer Science Third Stage

Chapter Two

 -12-

Since of no nodes will be created and all the created nodes have been

manipulated, we will reach to the final step by which we have the

DFSA, this step will convert all the above work into a graph as follows:-

D letter ; M={4}; No need to create a new node because ℇ-Closure

({4}) has been computed and by which we have node C.

digit ; M={6}; No need to create a new node because ℇ-Closure

({6}) has been computed and by which we have node D.

letter

le
tt

e
r

digit

letter

digit

letter

digit

C

B

D

A

Compilers
University of Baghdad M.Sc. Shaimaa Abbas

College of Education / Ibn-AL-Haithem 2008-2009

Dep. Of Computer Science Third Stage

Chapter Two

 -13-

 R.E. = ((ε| a) b*)*

ε-Closure ({0}) = {0,1,2,4,5,6,7,9,10} Create a new node called for

example A(must be a final node because of node 10).

ε

ε

a

ε ε

ε ε
ε

ε

ε

b ε ε

ε

ε

11 1

2 3

4 5

0 6

0
7 8

0

F

p

9

A a ; M={3}; ℇ-Closure ({3})={3,6,7,9,10,1,2,4,5} Create a new

node called for example B (must be a final node because of node 10).

b ; M={8}; ℇ-Closure ({8})={8,7,9,10,1,2,4,5,6} Create a new

node called for example C (must be a final node because of node 10).

B a ; M={3}; No need to create a new node because ℇ-Closure ({3})

has been computed and by which we have node B.

b ; M={8}; No need to create a new node because ℇ-Closure ({8})

has been computed and by which we have node C.

 C a ; M={3}; No need to create a new node because ℇ-Closure ({3})

has been computed and by which we have node B.

b ; M={8}; No need to create a new node because ℇ-Closure ({8})

has been computed and by which we have node C.

Compilers
University of Baghdad M.Sc. Shaimaa Abbas

College of Education / Ibn-AL-Haithem 2008-2009

Dep. Of Computer Science Third Stage

Chapter Two

 -14-

Since of no nodes will be created and all the created nodes have been

manipulated, we will reach to the final step by which we have the

DFSA, this step will convert all the above work into a graph as follows:-

 R.E. = (a|b)*abb

b

a
a

a

b

b

C

A

B

Compilers
University of Baghdad M.Sc. Shaimaa Abbas

College of Education / Ibn-AL-Haithem 2008-2009

Dep. Of Computer Science Third Stage

Chapter Two

 -15-

Minimizing of DFSA:-

The purposes of minimization are:-

1. Efficiency.

2. Optimal DFSA.

Algorithm:-

1. Construct an initial partition Л of the set of states with two

groups: the accepting states F and the non accepting states S-F;

where S is the set of all states of DFSA.

2. for each group G of Л do

Begin

 partition G into subgroups such that two states S and T of G are

in the same subgroup if and only if for all input symbols a, and

states S and T have transitions on a to states in the same group of Л,

replace G in Лnew by the set of all subgroups formed .

 End

3. If Лnew = Л, let Лfinal = Л and continue with step (4), otherwise

repeat step (2) with Л := Лnew

4. Choose one state in each group of the partition Лfinal as the

representative for that group.

Compilers
University of Baghdad M.Sc. Shaimaa Abbas

College of Education / Ibn-AL-Haithem 2008-2009

Dep. Of Computer Science Third Stage

Chapter Two

 -16-

Example :-

The DFSA for the R.E. = Letter (letter | digit)* is as follows:-

Group1= {A} which represents the set of not final nodes while Group2 =

{B,C,D} which represents the set of final nodes.

Always minimization acts on the nodes of the same type (on the nodes

of one group)

After applying the previous algorithm, the minimization figure will be

as follows:-

letter
le

tt
e

r

digit

letter

digit

letter

digit

C

B

D

A

letter

digit

letter
A B

Compilers
University of Baghdad M.Sc. Shaimaa Abbas

College of Education / Ibn-AL-Haithem 2008-2009

Dep. Of Computer Science Third Stage

Chapter Two

 -17-

a

Another example :-

Group1= {A,B,C,D} which represents the set of not final nodes while

Group2 = {E} which represents the set of final nodes.

Always minimization acts on the nodes of the same type (on the nodes

of one group)

After applying the previous algorithm, the minimization figure will be

as follows:-

a

b

b

a

b

a

a

a

b

b

A

C

D

E

B

b

a

b

b

a

a

b

a

C

D

E

B

Compilers

University of Baghdad M.Sc. Shaimaa Abbas

College of Education / Ibn-AL-Haithem 2008-2009

Dep. Of Computer Science Third Stage

Chapter Three

 -1-

FSA Accepter (Recognizer):-

This will represents the final sub-phase for the lexical analyzer ,by

using a specific algorithm shown below we can specify the input string

or statement is accepted or not depending on a given grammar.

Never can apply the algorithm unless the grammar will be in

minimized form.

First, a transition matrix must be created for a given FSA, then doing a

table having two columns, the first represents the number of states

while the other represents the symbols for a given input string.

Algorithm :-

Begin

 State = Start State of the FSA;

 Symbol = First Input Symbol;

 If Matrix [State, Symbol] ≠ Error Indication then

 Begin

 State = Matrix [State, Symbol];

 Symbol = Next Input Symbol;

 End

 Else Input is not accepted

 If State is a Final State of FSA then Input is accepted

 Else Input is not accepted

End;

Compilers

University of Baghdad M.Sc. Shaimaa Abbas

College of Education / Ibn-AL-Haithem 2008-2009

Dep. Of Computer Science Third Stage

Chapter Three

 -2-

Example :- Having the following FSA representation shown below:-

Depending on the above representation, for 1.3$ and 37$,you asked to

recognize which one is accepted and which one is not accepted?

Solution:-

The Transition Matrix for the above FSA:-

 0-9 .

1 2 #

2 2 3

3 4 #

4 4 #

For the String = 1.3 $

State Input symbol

1 1

2 .

3 3

4 $

0-9

0-9

0-9
.

0-9
1 4

2

3

It is accepted

because state

number 4 is a final

State

Compilers

University of Baghdad M.Sc. Shaimaa Abbas

College of Education / Ibn-AL-Haithem 2008-2009

Dep. Of Computer Science Third Stage

Chapter Three

 -3-

For the String = 37 $

State Input symbol

1 3

2 7

2 $

This algorithm was slow and overlapping token, so a new algorithm

can be used to recognize the overlapping token.

For example:-

Suppose that we have this language:

{"bit" , "byte" , "item" , "tem"}

Now if we take the word items, we will find two words overlapping

with each other, these words are: item and tem

items

tem

item

It is not accepted because

state number 2 is not a final

state and the expression is

finished

Compilers

University of Baghdad M.Sc. Shaimaa Abbas

College of Education / Ibn-AL-Haithem 2008-2009

Dep. Of Computer Science Third Stage

Chapter Three

 -4-

The new algorithm is known as AHO Algorithm and depends on the

following steps:-

(For the above example)

Step 1:- Constructing Tree-Structured DFSA.

(Always the input for the first node is all letters except the letters that

are outputted from it).

Step 2:- Determine fall back function f (Q) =R which is calculated

as follows:-

 Find largest route  which lead to Q from a state that is not

the start state.

 Find the route  but this time from the start state and

finished in R.

 F(Q)=R.

e

t m

t

t

e

e
i

y

m

t

b i Every

character

except

 b,i,t

3

6

10

4 5

7 8 9

0

13

1 2

11 12

Compilers

University of Baghdad M.Sc. Shaimaa Abbas

College of Education / Ibn-AL-Haithem 2008-2009

Dep. Of Computer Science Third Stage

Chapter Three

 -5-

Step 3:- Construct the Matrix Representation for the DFSA, the

number of rows in it equal to the number ob nodes found in DFSA,

while the number of columns equal to the number of characters

that form the input language.

 b i t m y e

0 1 7 11 0 0 0

1 # 2 # # 4 #

2 # # 3 # # #

3 # # # # # #

4 # # 5 # # #

5 # # # # # 6

6 # # # # # #

7 # # 8 # # #

8 # # # # # 9

9 # # # 10 # #

10 # # # # # #

11 # # # # # 12

12 # # # 13 # #

13 # # # # # #

Q 0 1 2 3 4 5 6 7 8 9 10 11 12 13

F(Q) 0 0 7 8 0 11 12 0 11 12 13 0 0 0

Compilers

University of Baghdad M.Sc. Shaimaa Abbas

College of Education / Ibn-AL-Haithem 2008-2009

Dep. Of Computer Science Third Stage

Chapter Three

 -6-

Step 4:- Apply the steps of AHO Algorithm which is shown below:-

Algorithm :-

Begin

 State = Start State;

 Ch = First Character of Input;

 While input symbols are not already exhausted do

 If Matrix [State, Ch] ≠ error indication then

 Begin

 State = Matrix [State, Ch];

 Ch = next Character;

 End

 Else begin

 If State is a Final State then Signal;

 If State = 0 then Ch= Next Character & State = Same State

 Else State= f (State) & Ch=Same Character

 End;

End;

Compilers

University of Baghdad M.Sc. Shaimaa Abbas

College of Education / Ibn-AL-Haithem 2008-2009

Dep. Of Computer Science Third Stage

Chapter Three

 -7-

Example :-

Input String = bitemk$ for the same language {"bit" , "byte" , "item" ,

"tem"}

After constructing Tree-Structured DFSA, and create a Transition

Matrix for it with computing the value of the fall back function

State Ch

0 b

1 i

2 t

3 e

8 e

9 m

10 k

13 k

0 k

0 $

bit

item

tem

Compilers

University of Baghdad M.Sc. Shaimaa Abbas

College of Education / Ibn-AL-Haithem 2008-2009

Dep. Of Computer Science Third Stage

Chapter Three

 -8-

Example :-

If you have the following language:-

{"WHAT", "WHERE"," WHEN"," WHERES","HOW"," WHY"} and you

asked to apply AHO algorithm on it to specify the words that are

overlapped with each other in this string:- (WHYOWNSE$)

Step 1:- Constructing Tree-Structured DFSA.

Every

character

except

W,H

W H

H

A T

E

R E S

N

O

Y

W

0

13

1 2

11 12

3 4

5 6 8 7

9

10

Compilers

University of Baghdad M.Sc. Shaimaa Abbas

College of Education / Ibn-AL-Haithem 2008-2009

Dep. Of Computer Science Third Stage

Chapter Three

 -9-

Step 2:- Compute fall back function f (Q) as follows:-

Q 0 1 2 3 4 5 6 7 8 9 10 11 12 13

F(Q) 0 0 11 0 0 0 0 0 0 0 0 0 0 1

Step 3:- Construct the Matrix Representation for the DFSA, the

number of rows in it equal to the number ob nodes found in DFSA,

while the number of columns equal to the number of characters

that form the input language.

 W H A E Y N O S R

0 1 11 0 0 0 0 0 0 0

1 # 2 # # # # # # #

2 # # 3 5 10 # # # #

3 # # # # # # # # #

4 # # # # # # # # #

5 # # # # # 9 # # 6

6 # # # 7 # # # # #

7 # # # # # # # 8 #

8 # # # # # # # # #

9 # # # # # # # # #

10 # # # # # # # # #

11 # # # # # # 12 # #

12 13 # # # # # # # #

13 # # # # # # # # #

Compilers

University of Baghdad M.Sc. Shaimaa Abbas

College of Education / Ibn-AL-Haithem 2008-2009

Dep. Of Computer Science Third Stage

Chapter Three

 -11-

Step 4:- Apply the steps of AHO Algorithm on the string :-

(WHYOWNSE$).

State Ch

0 W

1 H

2 Y

10 O

0 O

0 W

1 N

0 N

0 S

0 E

0 $

WHY

Matrix [State,Ch]=#

Matrix [State,Ch]=#

Compilers

University of Baghdad M.Sc. Shaimaa Abbas

College of Education / Ibn-AL-Haithem 2008-2009

Dep. Of Computer Science Third Stage

Chapter Three

 -11-

Syntax Analyzer

Example :-

G= ({<exp>, <operand>, <id>},{a , b , c , + , - , (,) },<exp>, P)

T= {a , b , c , + , - , (,) }

P=

 <exp> ::= <operand> | <exp> + <operand> | <exp> - <operand>

 <operand> ::= <id> | (<exp>)

 <id> ::= a | b |c

Syntax analyzer utilizes syntax trees to determine whether a statement

is accepted or not.

For the above example, check if a-(b+c) accepted?

<exp>

<exp>

<exp>

<operand>

<operand>

<id>

a

(

)

-

<exp>

<operand>

+

<operand>

<id>

b

<id>

c

Compilers

University of Baghdad M.Sc. Shaimaa Abbas

College of Education / Ibn-AL-Haithem 2008-2009

Dep. Of Computer Science Third Stage

Chapter Three

 -12-

We can use another method to determine whether a statement is

accepted or not, this method is called (Derivation Method).

There are two types of derivation:-

1. Leftmost derivation

2. Rightmost derivation

Example :-

Let G be a grammar with this components ({S , E , F , P , R , L},{a , b , (,

) , + , - , × , ^ , /}, S ,P)

P=

S E S +E S -E E T

T F F P P b R a(L)

E E+T ET×F F F^P L S

S E-T ET/F P a P (S)

Is a×(b+a) accepted or not?

Leftmost derivation :-

S E T×F  F×F  P×F  a×F  a×P  a× (S)  a×(E) a×(E+T) 

a×(T+T)  a×(F+T)  a×(P+T)  a×(b+T)  a×(b+F)  a×(b+P)

a×(b+a) ∴ a×(b+a) is accepted

Rightmost derivation :-

S  E  T×F  T×P  T×(S)  T×(E)  T×(E+T)  T×(E+F) T×(E+P) 

T×(E+a)  T×(T+a)  T×(F+a)  T×(P+a)  T×(b+a) F×(b+a) 

P×(b+a)  a×(b+a) ∴ a× (b+a) is accepted

Compilers

University of Baghdad M.Sc. Shaimaa Abbas

College of Education / Ibn-AL-Haithem 2008-2009

Dep. Of Computer Science Third Stage

Chapter Three

 -13-

Parser Techniques :-

Backtracking manipulating:-

1. Factoring

2. Substitution

3. Left-Recursion Elimination إلغاء تكرار العنصر في أقصى يسار الطرف الأيمن

E  E+A

Left Recursion Elimination :-

1. Immediate Left-Recursion Elimination.

2. Not-Immediate Left-Recursion Elimination.

Top-down parser

(Predictive Parser)

Bottom-Up parser

(Operator-Precedent

Parser)

With

Backtracking

Without

Backtracking

Parser (Syntax Analyzer)

Compilers

University of Baghdad M.Sc. Shaimaa Abbas

College of Education / Ibn-AL-Haithem 2008-2009

Dep. Of Computer Science Third Stage

Chapter Three

 -14-

Immediate Left-Recursion Elimination :-

The main rule for this method:-

A  Aα
1
│ Aα

2
│ Aα

3
│…│Aα

m
│ℬ

1
 │ ℬ

2
│…│ℬ

n

A  ℬ
1
Á │ ℬ

2
Á │…│ ℬ

n
Á

Á  α
1
Á │α

2
Á │α

3
Á │…│α

m
Á │ℇ

Example 3:-

exp  exp or term│term

term  term and factor│factor

factor  not factor │(exp)│true│false

exp  term exp´

exp´  or term exp´│ℇ

term  factor term´

term´  and factor term´│ℇ

factor  not factor │(exp)│true│false

Example 1:-

 A  A α │ℬ

 A  ℬ Á

 Á  α Á│ℇ

Example 2:-

 E  a b c │d e f │E r x

 É  a b c │ d e f É

 É  r x É│ℇ

Compilers
University of Baghdad M.Sc. Shaimaa Abbas
College of Education / Ibn-AL-Haithem 2008-2009
Dep. Of Computer Science Third Stage

Chapter Four

 -1-

Not Immediate Left-Recursion Elimination :-

-:Algorithm

Arrange NT in any order;

For I :=2 to n do

 For J := 1 to i-1 do

 Begin

 Replace each production of the form Ai  AJ α by the production

 Ai  ∂1 α /∂2 α /∂3 α /…/∂k α;
Where

AJ  ∂1/∂2/∂3/…/∂k are the current AJ productions;

 End;

Eliminate the immediate left recursion among the Ai productions;

End;{of algorithm}

Example :-

B  A c/d

A  Br/x

-:Solution

A1=B A2=A

A1 A2c/d

A2  A1r/ x

A2  A1r ∴ α = r

Replace:- Ai  AJ α

By:- Ai  ∂1 α /∂2 α /∂3 α /…/∂k α

Using:- AJ  ∂1/∂2/∂3/…/∂k

Compilers
University of Baghdad M.Sc. Shaimaa Abbas
College of Education / Ibn-AL-Haithem 2008-2009
Dep. Of Computer Science Third Stage

Chapter Four

 -2-

……………..

A2 ∂1 α /∂2 α

A1  ∂1/∂2 ∵ A1 A2c/d ∴ ∂1= A2c and ∂1= d

I = 2 J = 1 α = r ∂1= A2c ∂2 = d

A2  ∂1 α /∂2 α ∴ A2  A2c r /d r/ x

……………..

A1 A2c/d

A2  A2c r /d r/ x

B Ac/d

A  Ac r /d r/ x

The result will be:-

B  Ac/d

A  d r Á / x Á

Á  c r Á /ɛ

Example :-

These two rules are converted to

immediate backtracking which can be

eliminated by the following rules:-

A  Aα
1
 / Aα

2
 / Aα

3
/…/Aα

m
/ℬ

1
 / ℬ

2
 /…/ℬ

n

A  ℬ
1
Á / ℬ

2
Á /…/ ℬ

n
Á

Á  α
1
Á /α

2
Á /α

3
Á /…/α

m
Á /ℇ

Compilers
University of Baghdad M.Sc. Shaimaa Abbas
College of Education / Ibn-AL-Haithem 2008-2009
Dep. Of Computer Science Third Stage

Chapter Four

 -3-

S  A b / b

A  Ac / Sd/ e

-(Top Down Parser): Predicative Parsing

Architecture:-

Algorithm:-

Set IP (Input Pointer) point to the first symbol of the input string W$

Repeat

 Let X be the top stack symbol and (a) be the symbol pointed by IP;

 If X is a terminal or $ then

 If X = a then

 Pop X from the stack and advance IP

 Else error()

Input buffer

Program

Parsing table

X

Y

.

.

.

.

$

Output

Stack

Compilers
University of Baghdad M.Sc. Shaimaa Abbas
College of Education / Ibn-AL-Haithem 2008-2009
Dep. Of Computer Science Third Stage

Chapter Four

 -4-

 Else

 if M[X,a] = X  Y
1
 Y

2
 … Y

k
 then

 Begin

 Pop X from the stack

 push Y
1
 Y

2
 … Y

k
 on to stack with Y

1
 on top

 Output the production X  Y
1
 Y

2
 … Y

k

End

Else error();

Until X=$;

 هررررررا قوررررررا ال اا رررررر رررررر الا ررررررا ال و رررررري(Top-Down)الشرررررراس اللإعلإرررررري ل رررررراا ا رررررر

(Backtracking).

كرع ر العرا إذاالا ا ال و ري فمارع فإذا كعنت ال اا تحتاي وى الا ا ال و ي فلا التأك نا

 Not-Immediate)غمرررررررا الابعشرررررررا أو(Immediate Backtracking)الابعشرررررررا

Backtracking) لكي تم ععلجته وفق ال اق التي تم شاحهع سب ع.

 . Push & Popوالعاومعت ال عص هع والتي تاثل Stackنحتعج في هذه ال اارز م إلى و اد

 أ رع Non-Terminal تم إ عء ول ع د اللإ ا وال ار حمرأ أ ععصرا اللإر ا تاثرل ععصرا

 .Terminal ععصا قمم أو ععصا ال ا فتاثل

- :بهذه الطريقة ما قبل الإعراب خطوات
 تكا ول اس أ ا

 . Top of Stackوالذي اثل X اثل الا ز الولالعااد .1

 . إ اا هع ؤشا شما إلى الكوا الا وا والذي اثل aالعااد الثعني اثل الا ز .2

 . Stackالعااد الثعلأ اثل .3

 . علكع ل أ ا هعالجاو الا وا العااد الاا ع اثل ععصا .4

Compilers
University of Baghdad M.Sc. Shaimaa Abbas
College of Education / Ibn-AL-Haithem 2008-2009
Dep. Of Computer Science Third Stage

Chapter Four

 -5-

والررذي حتررراي وررى العلاقرررعت ررع رررم العععصرررا Outputالعارراد ال رررع خ والقمررا اثرررل .5

terminal والعععصاNon-terminal .

 ال ما الا ت ائم لوعااد الثعلأ(Stack) تحتاي وى$ Start Symbol .

 لوعااد الاا ع ال ما الا ت ائم(Input) الا وا إ اا هع هي الجاو.

 ال ما الا ت ائم لوعااد ال ع خ والقما تكا فعرغ.

 ال ما الا ت ائم لوعااد الول تعتا وى ع ا اد في العااد الثعلأ وتاثلTop of Stack .

 ال ما الا ت ائم لوعااد الثعني تعتا وى ع ا اد في العااد الاا ع وتاثل لععصا الاا اد في أقصى

 .عر الجاو الا وا إ اا هع س

- :طريقة الإعراب
 a=Xكع إذالا لاحظ Terminal نا X ع ع كا .1

اشمنصق منأخقذ Top of Stackماشقذ ةللق Xنققم عمليةقس بقحي ةةلقس تحقق اشرق إذا⇚

 Inputةلس اشملمد اش اعع مكذشك تتغة ةتتغة aةةلس اشملمد إنأ) إع اعهااشتاشي في اشجليس اشل يمي

 .(Stackةةلس اشملمد اشلاشث ماشذ ةلل مأةضا

لمنققاأ أن اشجليققس اشل يققمي إع اعهققا تكققمن ةقق (a ≠ X)أعقق أ أ إن شقق ةتحققق اشرقق إذا⇚

 .(Not accepted)لقعمشس

سر ا ت عسع ال أيفي الج ول a ع Xفعبحأ لاق Not-Terminal نا X ع ع كا .2

X ع العااد a وا توك العلاق لإاف تم إضعفتهع فري العاراد ال رع خ ولإرح رStack الععصرا

 ر و تيممرا aولك علا وا و ب ى ح رل لو اف ال ا العلاق Pushالاا اد في ال ا و ال

 .Inputوكذلك ح ل

 . $ ≠ Stackال اات الولى والثعنم سعلاع قما تكاار نستاا .3

Example :-

Having the following grammar:-

EE+T / T

Compilers
University of Baghdad M.Sc. Shaimaa Abbas
College of Education / Ibn-AL-Haithem 2008-2009
Dep. Of Computer Science Third Stage

Chapter Four

 -6-

TT×F / F

F(E) / id

Show the moves made by the Top-Down Parser on the input=id+id×id$

using the following table:-

 Id + × () $

E E  TE´ E TE´

E´ E´ +TE´ E´ε E´ε

T T FT´ T FT´

T´ T´  ε T´ ×FT´ T´ε T´ε

F F  id F  (E)

تحتاي هذه ال اا ورى ر را قو ري ر نرا الابعشرا فلا ر ر ععلجر الا را ال و ري قبرل البر ء عاومر

 .الإ اا

E  T E´

E´ +T E´ / ε

T  F T´

T´ ×F T´ / ε

F  (E) / id

X a Stack Input Output

E id $E id+id×id$ ----------

Compilers
University of Baghdad M.Sc. Shaimaa Abbas
College of Education / Ibn-AL-Haithem 2008-2009
Dep. Of Computer Science Third Stage

Chapter Four

 -7-

T id $E´T id+id×id$ E  TE´

F id $E´ T´ F id+id×id$ T FT´

id id $E´ T´ id id+id×id$ F  id

T´ + $E´ T´ +id×id$ Pop id

E´ + $E´ +id×id$ T´  ε

+ + $E´ T+ +id×id$ E´ +TE´

T id $E´ T id×id$ Pop +

F id $E´ T´ F id×id$ T FT´

id id $E´ T´ id id×id$ F  id

T´ × $E´ T´ ×id$ Pop id

× × $E´ T´ F× ×id$ T´ ×FT´

F id $E´ T´ F id$ Pop ×

id id $E´ T´ id Id$ F  id

T´ $ $E´ T´ $ Pop id

E´ $ $E´ $ T´ε

$ $ $ $ E´ε

Stop

Example :-

Having the following grammar:-

Compilers
University of Baghdad M.Sc. Shaimaa Abbas
College of Education / Ibn-AL-Haithem 2008-2009
Dep. Of Computer Science Third Stage

Chapter Four

 -8-

exp  exp or term / term

term  term and factor / factor

factor  not factor / (exp) / true / false

Depending on the following table, parse the following statement:-

not (true or false) $

$ false true) (and or not

 exp→

term

exp

exp→

term

exp’

 exp→

term

exp’

 exp→

term

exp’
exp

exp’→ϵ

exp’→ϵ

 exp’→

or term

exp’

exp’

 term→

factor

term’

term→

factor

term’

 term→

factor

term’

 term→

factor

term’
term

term’→ϵ

term’→ϵ

 term’
→ and

factor

term’

term’
→ or

factor

term’

term’

 factor

→ false

factor→

true

 factor

→ (exp)

 factor→

not

factor

factor

Bottom Up Parser (Shift-Reduce Parser) :- Is a right most

derivation for a sentential form in reverse order.

Compilers
University of Baghdad M.Sc. Shaimaa Abbas
College of Education / Ibn-AL-Haithem 2008-2009
Dep. Of Computer Science Third Stage

Chapter Four

 -9-

Conditions for Bottom-Up Parser:-

1. No ɛ-rules (i.e., A  ε).

2. It must be operator grammar (i.e., no adjacent non-terminal).

Example :- E  E A E / (E) / -E / id

Example :- E  E + E / E-E

We need to do a table with three fields (Stack, Input, action {which will

be either shift or reduce}).

Initial value for stack=$.

Initial value for input=the sentence which we want to parse.

Initial value for action=Shift.

We need to know the meaning of the handle.

وا تكرا Empty word (ɛ)هرا قورا ال اا ر ر (Bottom-Up)الشاس اللإعلإي ل راا ا ر

 . Non-Terminal م و اد ععصا تجعور نا أي (Operator grammar) نا

 . م و اد ر ا قو ي في ال اا الا وا التعع ل عهع أوولا تهتم هذه ال ا ا اد

 . Push & Popوالعاومعت ال عص هع والتي تاثل Stackنحتعج في هذه ال اارز م إلى و اد

- : اشخما زلةسخ مات

Since of this production rule, the

grammar is not operator grammar

(E=NT, A=NT, E=NT).

This grammar is an operator grammar

(E = NT, + = T, E=NT).

Compilers
University of Baghdad M.Sc. Shaimaa Abbas
College of Education / Ibn-AL-Haithem 2008-2009
Dep. Of Computer Science Third Stage

Chapter Four

 -11-

 أ ا ثلاث تكا ول:-

 . Stack اثل الولالعااد .1

 .(Input) اثل ععصا الجاو الا وا أ ا هع علكع ل لثعنيالعااد ا .2

 & Shift اثررل اومتررم ألإعلإررمتم هاررع والررذي Actionوالقمررا اثررل العارراد الثعلررأ .3

Reduce .

 الولال ما الا ت ائم لوعااد (Stack)وى ف ط تحتاي $.

 لثعنيلوعااد ا ال ما الا ت ائم (Input)ا وا إ اا هعهي الجاو ال.

 تكا والقما ثعلأال ما الا ت ائم لوعااد الShift وتاثل اومPush أقصرىلوععصا الاا اد فري

 .Stack سعر العااد الثعني ودفع الععصا في

 لا ت بمقRight Most Derivation وى ال اا الاع ع .

 ع سراى ر ع ال ا السع بعشا و علا تاعد ومهع تم تح (Handle) والتري لإراف عتار

 (.Action)أ ومهع قمم العااد الثعل

 اشت عق ال اا علإت ام(Tree.)

 احو تاثل حعل إضعف الععصا الاا اد في أقصى سعر الجاور الا ورا إ اا هرع وإضرعفته إلرى أول

(Top of Stack).

 لاحظرر إذا كررع الععصررا الررذي تررم إضررعفته إلررى (Top of Stack) فرري ال ررا السررع هررل هررا

(Handle) أم لا، إذا كع(Handle) فمتم إر ع الععصا إلى أصوه وإذا لم ك(Handle) فمرتم

 .(Top of Stack) إضعفته إلى

 السع الى ا تكا قما الح ل الول نستاا عل اات(Start Symbol$Stack=).

Compilers
University of Baghdad M.Sc. Shaimaa Abbas
College of Education / Ibn-AL-Haithem 2008-2009
Dep. Of Computer Science Third Stage

Chapter Four

 -11-

Example :-

S  S×S / S+S / id

Sol.

Derive this grammar using right most derivation:-

S  S×S  S×S+S  S×S+id  S×id+id  id×id+id

Specify the handles (using the above derivation):-

S  S×S  S× S+S  S×S+ id  S× id +id  id ×id+id

Doing Syntax tree (parse tree):-

S

S × S

id
S + S

id id

Input = id×id+id$

Compilers
University of Baghdad M.Sc. Shaimaa Abbas
College of Education / Ibn-AL-Haithem 2008-2009
Dep. Of Computer Science Third Stage

Chapter Four

 -12-

Doing Parse table:-

Stack Input Action

$ id×id+id$ Shift

$ id ×id+id$ Reduce S id

$ S ×id+id$ Shift

$ S× id+id$ Shift

$ S×id +id$ Reduce S id

$ S×S +id$ Shift

$ S×S+ id$ Shift

$ S×S+id $ Reduce S id

$ S×S+S $ Reduce S S+S

$ S×S $ Reduce S S×S

$ S $ Accept

Compilers
University of Baghdad M.Sc. Shaimaa Abbas
College of Education / Ibn-AL-Haithem 2008-2009
Dep. Of Computer Science Third Stage

Chapter Four

 -13-

Example :-

E  T / E+T / E-T / -T

T  F / T×F/ T⁄F

F  (E) / id

Solution :-

E  -T

 -F

 -(E)

 -(T)

-(T⁄F)

-(T⁄ id)

-(T×F ⁄ id)

-(T× (E) ⁄id)

 -(T×(E-T) ⁄id)

 -(T×(E - F) ⁄id)

 -(T×(E - id) ⁄id)

 -(T×(T - id) ⁄id)

 -(T×(F - id) ⁄id)

 -(T×(id - id) ⁄id)

 -(F × (id - id) ⁄id)

 -(id × (id - id) ⁄id)

Input = -(id×(id-id) ⁄ id)$

E

E

F T

E

) (

×

- T

F

(E)

T

T ⁄ F

id

-

T

F

T

id

F

id

F

id

Compilers
University of Baghdad M.Sc. Shaimaa Abbas
College of Education / Ibn-AL-Haithem 2008-2009
Dep. Of Computer Science Third Stage

Chapter Four

 -14-

Stack Input Action

$ -(id×(id-id) ⁄ id)$ Shift

$- (id×(id-id) ⁄ id)$ Shift

$-(id×(id-id) ⁄ id)$ Shift

$-(id ×(id-id) ⁄ id)$ Reduce F id

$-(F ×(id-id) ⁄ id)$ Reduce T F

$ -(T ×(id-id) ⁄ id)$ Shift

$ -(T× (id-id) ⁄ id)$ Shift

$ -(T×(id-id) ⁄ id)$ Shift

$ -(T×(id -id) ⁄ id)$ Reduce F id

$ -(T×(F -id) ⁄ id)$ Reduce T F

$ -(T×(T -id) ⁄ id)$ Reduce E T

$ -(T×(E -id) ⁄ id)$ Shift

$ -(T×(E- id) ⁄ id)$ Shift

$ -(T×(E-id) ⁄ id)$ Reduce F id

$ -(T×(E-F) ⁄ id)$ Reduce T F

$ -(T×(E-T) ⁄ id)$ Reduce E E-T

$-(T×(E) ⁄ id)$ Shift

$-(T×(E) ⁄ id)$ Reduce F  (E)

$-(T×F ⁄ id)$ Reduce T T×F

Compilers
University of Baghdad M.Sc. Shaimaa Abbas
College of Education / Ibn-AL-Haithem 2008-2009
Dep. Of Computer Science Third Stage

Chapter Four

 -15-

$-(T ⁄ id)$ Shift

$-(T⁄ id)$ Shift

$-(T⁄id)$ Reduce F id

$-(T⁄F)$ Reduce T T⁄F

$-(T)$ Reduce E  T

$-(E)$ Shift

$-(E) $ Reduce F  (E)

$-F $ Reduce T F

$-T $ Reduce E  -T

$E $ Accept

S
3

Compilers

University of Baghdad M.Sc. Shaimaa Abbas

College of Education / Ibn-AL-Haithem 2009-2010

Dep. Of Computer Science Third Stage

Chapter Five

 -1-

 What is a Context-Free Grammar CFG?

Context free Grammars are more general than Regular

Expression. There are more languages defined by CFGs (called

Type-2 Language).

A Context Free Grammar G=(V,∑,S,P), Where:-

 V Is a finite set of variables or Non terminal symbols.

 ∑ Is a finite set of terminal symbols T.

 S Is the start symbol.

 P Is a finite set of Production Rules (A→α) where A∈V and α∈

(V∪T)*.

As an example, we have the following grammar:-

G = ({ E, T, F },{ (,) , a , + , *}, E , P)

Where P is given by:-

P={ E→T

 E→E+T

 T→F

 T→T * F

 F→a

 F→(E) }

And to save space we may combine all the rules with the same

left hand side, i.e.,

P={ E→T∕E→E+T

 T→F∕T * F

 F→a∕(E) }

Compilers

University of Baghdad M.Sc. Shaimaa Abbas

College of Education / Ibn-AL-Haithem 2009-2010

Dep. Of Computer Science Third Stage

Chapter Five

 -2-

 Lexical Analyzer :- Its main task is to read the source

program (character by character) then translated into a sequence of

primitive units called tokens like (keywords, identifier, constant,

operators, etc.).

Lexical Analyzer reads the source program character by character

and returns the tokens of the source program. A token describes a

pattern of characters having same meaning in the source

program. (Such as identifiers, operators, keywords, numbers,

delimeters and so on), puts information about identifiers into the

symbol table.

Example :- newval := oldval + 12

⇛ Tokens: newval identifier

 := assignment operator

 oldval identifier

 + add operator

 12 a number

 Syntax Analyzer :- A Context Free Grammar, CFG,

(synonyms: Backus-Naur Firm of BNF) is a common notation for

specifying the syntax of a languages. The syntax of a language is

specified by a context free grammar (CFG). The rules in a CFG are

mostly recursive. A syntax analyzer checks whether a given

program satisfies the rules implied by a CFG or not. If it satisfies,

the syntax analyzer creates a parse tree for the given program.

Compilers

University of Baghdad M.Sc. Shaimaa Abbas

College of Education / Ibn-AL-Haithem 2009-2010

Dep. Of Computer Science Third Stage

Chapter Five

 -3-

Therefore, Syntax analysis is applied by a compiler to check the

syntax of a program by constructing a parse tree of the program.

Syntax Analysis generates a Parse Tree as shown below:-

Example 1:- If we have the following arithmetic expression:-

M= (D∗E) – ((F + G) / (H + I))

Then the parse tree for this expression will be as below:-

Example 2:- Having the following arithmetic expression:-

M= ((A - C) ∗ B) – (A - B) / (A + (A - C) ∗ B)

How to reconstruct the syntax parse tree?

 Semantic Analysis :- Immediately followed the parsing

phase(Syntax Analyzer). A semantic analyzer checks the source

program for semantic errors. Type-checking is an important part

of semantic analyzer. This attempts to catch programming errors

based on the theory of types. In practice this is checking things

like a variable declared as a string is not used in an expression

requiring an integer.The Semantic Analysis of the Compiler is

I H

-

∗

E D

/

+ +

G F

Compilers

University of Baghdad M.Sc. Shaimaa Abbas

College of Education / Ibn-AL-Haithem 2009-2010

Dep. Of Computer Science Third Stage

Chapter Five

 -4-

implemented in two passes. The first pass handles the definition

of names (check for duplicate names) and completeness

(consistency) checks. The second pass completes the scope

analysis (check for undefined names) and performs type analysis.

Example :- newval := oldval + 12

The type of the identifier newval must match with type of the

expression (oldval+12). If the declaration part for a Pascal

segment code for example declares the type of newval as integer

type and through the running of the program the value of oldval

has a type of real then the Semantic Analysis of the Compiler is

implemented through the first pass by giving an error message

refers to the type inconsistency (type mismatch).

Two types of semantic Checks are performed within this phase

these are:-

1. Static Semantic Checks are performed at compile time like:-

 Type checking.

 Every variable is declared before used.

 Identifiers are used in appropriate contexts.

 Check labels

2. Dynamic Semantic Checks are performed at run time, and the

compiler produces code that performs these checks:-

 Array subscript values are within bounds.

 Arithmetic errors, e.g. division by zero.

 A variable is used but hasn’t been initialized.

Compilers

University of Baghdad M.Sc. Shaimaa Abbas

College of Education / Ibn-AL-Haithem 2009-2010

Dep. Of Computer Science Third Stage

Chapter Five

 -5-

 Intermediate Code Generator :- After syntax and

semantic analysis, some compilers generate an explicit

intermediate representation of the source program. This

representation should be easy to produce and easy to translate

into the target program. These intermediate codes are generally

machine (architecture independent). But the level of intermediate

codes is close to the level of machine codes.

The form of codes that are generated in the Intermediate Code

Generator phase are:-

1. Polish Notation :- which can be performed through the

following

 Infix Notation :- In which the operation must be in the

middle of the expression (between two operands) like A+B.

 Prefix Notation :- In which the operation must prior the

operands (in the left hand side of the operands) like +AB.

 Postfix Notation :- In which the operation must be in the

right hand side of the operands like AB+.

Example 1:- Having the following expression

M= ((D∗E) – ((F + G) / (H + I)))

For Infix Notation the expression will be as same because the

operation is between the two operands.

For Prefix Notation the expression will be as shown step by step

depending on the notation of the prefix rule which make the

operation prior the operand by moving these operations to the

left hand side of the operand as shown:-

Compilers

University of Baghdad M.Sc. Shaimaa Abbas

College of Education / Ibn-AL-Haithem 2009-2010

Dep. Of Computer Science Third Stage

Chapter Five

 -6-

For Postfix Notation the expression will be as shown step by step

depending on the notation of the postfix rule moves the

operations to the right hand side of the operand as shown below:-

Example 2:- Having the following expressions in infix form

convert them to the two others forms:-

1. U+A∗B 2. (W∗L)-(A/(C∗D)) 3. (A+B)∗(C+D)

3- M= (∗(DE) – /(+(FG) +(HI)))

1- M= ((D∗E) – ((F + G) / (H + I)))

4- M= – (∗(DE) /(+(FG) +(HI)))

2- M= (∗(DE) – (+(FG) / +(HI)))

3- M= ((DE) – ((FG)+ (HI)+)/)

1- M= ((D∗E) – ((F + G) / (H + I)))

4- M= ((DE)∗ ((FG)+ (HI)+)/) –

2- M= ((DE)∗ – ((FG)+ / (HI)+))

Compilers

University of Baghdad M.Sc. Shaimaa Abbas

College of Education / Ibn-AL-Haithem 2009-2010

Dep. Of Computer Science Third Stage

Chapter Five

 -7-

2. Quadruples :- In which each expression is performed using

the following format:-

Operator, operand1, operand2, result

Example :- Having the following expression M= (A ∗ B) + (Y + Z)

The Quadruple format will be:-

+ , Y , Z , T1

∗ , A , B , T2

+ , T1 , T2 , T3

3. Triples :- In which each expression is performed using the

following format:-

Operator, operand1, operand2

Example 1:- Having the following expression M= (A ∗ B) + (Y + Z)

The Triples format will be:-

Steps

(1) + , Y , Z

(2) ∗ , A , B

(3) + , (1) , (2)

Compilers

University of Baghdad M.Sc. Shaimaa Abbas

College of Education / Ibn-AL-Haithem 2009-2010

Dep. Of Computer Science Third Stage

Chapter Five

 -8-

Example 2 :- Having the following expression

X= (X1 + X2) ∗ (X2 + X3) ∗ (X3 + X4)

The Quadruple format will be:-

OP. Operand1 Operand2 Result Meaning

+ X1 X2 Temp1 ADD X1, X2 ,Temp1

+ X2 X3 Temp2 ADD X2, X3 ,Temp2

+ X3 X4 Temp3 ADD X3, X4 ,Temp3

∗ Temp1 Temp2 Temp4 MULT Temp1, Temp2,Temp4

∗ Temp4 Temp3 Temp5 MULT Temp4, Temp3,Temp5

:= Temp5 ---------- --------- MOV Temp5, X

The Triple format will be:-

Steps Operation Operand1 Operand2

(0) + X1 X2

(1) + X2 X3

(2) + X3 X4

(3) ∗ (0) (1)

(4) ∗ (3) (2)

 := X (4)

Compilers

University of Baghdad M.Sc. Shaimaa Abbas

College of Education / Ibn-AL-Haithem 2009-2010

Dep. Of Computer Science Third Stage

Chapter Five

 -9-

Three Address Code Is a sequence of statements typically of

the general form A := B op C, where A,B and C are temporary

operands and op is the operation. The cause of naming this

format by Three Address Code is that each statement or

expression usually contains three addresses, two for

operands and one for the result.

The following expression X= (X1 + X2) ∗ (X2 + X3) ∗ (X3 + X4) will

performed using Three Address Code as shown below:-

 Steps

T1 + , X1 , X2

T2 + , X2 , X3

T3 + , X3 , X4

T4 ∗ , T1 , T2

T5 ∗ , T4 , T3

X = T5

 Code Optimizer :- The code optimizer optimizes the code

produced by the intermediate code generator in the terms of time

and space. This code optimization phase attempts to improve the

intermediate code, so the faster-running machine code will result.

Example 1:- newval =oldval + 12 This will means (id1 := id2 + 12)

In code optimizer we have the following codes:-

 ADD id2, #12, temp1

 MOV temp1, id1

Compilers

University of Baghdad M.Sc. Shaimaa Abbas

College of Education / Ibn-AL-Haithem 2009-2010

Dep. Of Computer Science Third Stage

Chapter Five

 -11-

Example 2 :- position := initial + rate ∗ 60

This will means (id1 := id2 + id3 ∗ 60)

In code optimizer we have the following codes:-

temp1 := inttoreal (60)

temp2 := id3 * temp1

temp1 := id3 * 60.0

temp3 := id2 + temp2

id1 := id2 + temp1

id1 := temp3

 Code Generator :- The final phase of the compiler is the

generation of target program, the target program is normally a

relocatable object file containing the machine codes.

For example, having the following expressions:-

a := b + c

d := a + e

Inefficient assembly code is:

MOV b , R0 R0 ← b

ADD c , R0 R0 ← c + R0

MOV R0 , a a ← R0

MOV a , R0 R0 ← a

ADD e , R0 R0 ←e + R0

MOV R0 , d d ← R0

Compilers

University of Baghdad M.Sc. Shaimaa Abbas

College of Education / Ibn-AL-Haithem 2009-2010

Dep. Of Computer Science Third Stage

Chapter Five

 -11-

Example :- having the following expression newval =oldval + 12

The whole running of each phase of the compiler phases are

shown in the following diagram:-

Now, newval = oldval + 12 represents the source program or

source code.

Intermediate Code Gen.

temp1:=id2 + 12
id1:=temp1

Code Optimizer

ADD id2, #12, temp1

MOV temp1, id1

Code Generator

MOV id2 , R1

ADD R1 , #12
MOV R1 , id1

:=

id1 +

id2 12

1

newval = oldval + 12

id1 := id2 + 12

Syntax Analyzer

Lexical Analyzer

:=

id1 +

id2 12

Semantic Analyzer

1

Symbols Tables

Arg. Valu.

newval …….

oldval …….

 جامعة بغداد

 ابن الهيثم كلية التربية للعلوم الصرفة

 قسم علوم الحاسبات

Compilers
Code optimizer

Third stage

M.Sc. Ahmed Rafid

2016-2017

Compilers Code Optimizer M.Sc. Ahmed Rafid

2

Code Optimization

Optimization is a program transformation technique, which tries to

improve the code by making it consume less resources (i.e. CPU,

Memory) and deliver high speed.

In optimization, high-level general programming constructs are replaced

by very efficient low-level programming codes. A code optimizing

process must follow the three rules given below:

 The output code must not, in any way, change the meaning of the

program.

 Optimization should increase the speed of the program and if

possible.

 The program should demand less number of resources.

 Efforts for an optimized code can be made at various levels of

compiling the process.

 At the beginning, users can change/rearrange the code or use better

algorithms to write the code.

 After generating intermediate code, the compiler can modify the

intermediate code by address calculations and improving loops.

 While producing the target machine code, the compiler can make

use of memory hierarchy and CPU registers.

Optimization can be categorized broadly into two types:

machine independent and machine dependent.

Compilers Code Optimizer M.Sc. Ahmed Rafid

3

1- Machine-independent Optimization

In this optimization, the compiler takes in the intermediate code and

transforms a part of the code that does not involve any CPU registers

and/or absolute memory locations. (Machine Independent

improvements address the logic of the program)

For example:

do

{

item = 10;

 value = value + item;

}while(value<100);

This code involves repeated assignment of the identifier item, which

if we put this way:

Item = 10;

do

{

 value = value + item;

} while(value<100);

should not only save the CPU cycles, but can be used on any

processor.

Compilers Code Optimizer M.Sc. Ahmed Rafid

4

2- Machine-dependent Optimization

Machine-dependent optimization is done after the target code has

been generated and when the code is transformed according to the

target machine architecture. It involves CPU registers and may

have absolute memory references rather than relative references.

Machine-dependent optimizers put efforts to take maximum

advantage of memory hierarchy.

Peephole optimization: - peephole optimization is a kind

of optimization performed over a very small set of instructions in a

segment of generated code. The set is called a "peephole" or a "window".

It works by recognizing sets of instructions that can be replaced by

shorter or faster sets of instructions.

Code Optimization has Two levels which are:-

 1- Machine independent code Optimization

• Control Flow analysis

• Data Flow analysis

• Transformation

https://en.wikipedia.org/wiki/Optimization_(computer_science)

Compilers Code Optimizer M.Sc. Ahmed Rafid

5

 2- Machine dependent code- Optimization

• Register allocation

• Utilization of special instructions.

Code optimization can either be high level or low level:

– High level code optimizations.

– Low level code optimizations.

– Some optimization can be done in both levels.

Flow graph: - is a common intermediate representation for code

optimization.

Basic Blocks

Source codes generally have a number of instructions, which are always

executed in sequence and are considered as the basic blocks of the code.

These basic blocks do not have any jump statements among them, i.e.,

when the first instruction is executed, all the instructions in the same

basic block will be executed in their sequence of appearance without

losing the flow control of the program.

A program can have various constructs as basic blocks, like IF-THEN-

ELSE, SWITCH-CASE conditional statements and loops such as DO-

WHILE, FOR, and REPEAT-UNTIL, etc.

Basic blocks are important concepts from both code generation and

optimization point of view.

Compilers Code Optimizer M.Sc. Ahmed Rafid

6

Local Optimizations are performed on basic blocks of code

Global Optimizations are performed on the whole code

Control Flow Graph

Basic blocks in a program can be represented by means of control flow

graphs. A control flow graph depicts how the program control is being

passed among the blocks. It is a useful tool that helps in optimization by

help locating any unwanted loops in the program.

Compilers Code Optimizer M.Sc. Ahmed Rafid

7

Global Data Flow Analysis

 Compiler collect information about all program that needed for code

optimizer phase, Collect information about the whole program and

distribute the information to each block in the flow graph.

DFA provide information for global optimization about how execution

program manipulate data.

 Data flow information: Information collected by data flow analysis.

 Data flow equations: A set of equations solved by data flow

analysis to gather data flow information.

Compilers Code Optimizer M.Sc. Ahmed Rafid

8

Criteria for code-improvement Transformations

1. Transformations must preserve the meaning of programs

2. A transformation must, on the average, speed up programs by a

measurable amount

3. A transformation must be worth the effort.

Function Preserving Transformations

1. Common sub expression eliminations

2. Copy propagations

3. Dead and unreachable code elimination

4. Constant Folding

 جامعة بغداد

 ابن الهيثم كلية التربية للعلوم الصرفة

 قسم علوم الحاسبات

Compilers
Code Generation

Third stage

M.Sc. Ahmed Rafid

2016-2017

Compilers Code generation M.Sc. Ahmed Rafid

2

 Code Generation

 Code generation is the final phase of compiler phases, It takes input from

the intermediate representation with information in symbol table of the

source program and produces as output an equivalent target program (see

Figure 1).

 Figure 1: position of Code generation

Main Tasks of Code Generator

1- Instruction selection: choosing appropriate target-machine

instructions to implement the IR statements.

The complexity of mapping IR program into code-sequence for

target machine depends on:

 – Level of IR (high-level or low-level)

 – Nature of instruction set (data type support)

 – Desired quality of generated code (speed and size)

2- Registers allocation and assignment: deciding what values to

keep in which registers

3- Instruction ordering: deciding in what order to schedule the

execution of instructions.

Compilers Code generation M.Sc. Ahmed Rafid

3

Issues in the design of code generator

1- Input to the code generator

• three-address presentations (quadruples, triples, …)

• Virtual machine presentations (bytecode, stack-machine, …)

• Linear presentation (postfix …)

• Graphical presentation (syntax trees, DAGs,…)

2- The target program

Instruction set architecture (RISC, CISC)

The instruction-set architecture of the target machine has a significant

impact on the difficulty of constructing a good code generator that

produces high-quality machine code. The most common target-machine

architectures are RISC (reduced instruction set computer), CISC

(complex instruction set computer), and stack based.

A RISC machine typically has many registers, three-address instructions,

simple addressing modes, and a relatively simple instruction-set

architecture.

In contrast, a CISC machine typically has few registers, two-address

instructions, a variety of addressing modes, several register classes,

variable-length instructions, and instructions with side effects.

In a stack-based machine, operations are done by pushing operands onto a

stack and then performing the operations on the operands at the top of the

stack. To achieve high performance the top of the stack is typically kept

in registers. Stack-based machines almost disappeared because it was felt

Compilers Code generation M.Sc. Ahmed Rafid

4

that the stack organization was too limiting and required too many swap

and copy operations.

Output may take variety of forms

1. Absolute machine language(executable code)

2. Relocatable machine language(object files for linker)

3. Assembly language(facilitates debugging)

Absolute machine language has advantage that it can be placed in a fixed

location in memory and immediately executed.

Relocatable machine language program allows subprograms to be

compiled separately.

Producing assembly language program as output makes the process of

code generation somewhat easier.

