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ABSTRACT 

 
Fractional calculus is the subject for evaluating derivatives and 

integrals of non-integer orders of a given function, while fractional 

differential equations (considered in this work) is the subject of studying 

the solution of differential equations of fractional order, with contain 

initial or boundary condition. The solution of fractional differential 

equations has so many difficulties in their analytic solution, therefore, 

numerical methods may be in most cases are the suitable methods of 

finding the solution. 

Therefore, the main objective of this work is to study ordinary 

differential equation of fractional order and solving the numerically 

equations using linear multistep method by utilizing the fractional Taylor 

series expansion. In addition, the numerical results have been improved 

using several approaches, such as variable step size method, predictor-

corrector methods, Richardson extrapolation method and variable order 

method, the calculations are written using the mathematical software 

MATLAB 16a.
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LIST OF SYMBOLS AND ABBREVIATIONS 

C
xD

 The Caputo fractional derivative of order . 

R
xD

 The Riemann-Liouville fractional derivative of order . 

a xI              The Riemann-Liouville fractional integral of order . 

 The gamma function. 

B The beta function. 

ODEs Ordinary differential equation. 

FODEs Fractional ordinary differential equation. 

 Order of fractional differentiation. 

Eα,1              One parameter Mittag-Leffler function.  

Eα,β              Two parameter Mittag-Leffler function. 

E(m)
∝,β        The mth derivative of the Mittag-Leffler function.  

LMMs        Linear Multistep Methods.                

FLMMs        Fractional Linear Multistep Methods. 

PCM           Predictor-Corrector Method. 

IVPs            initial value problems. 

ℕ                 Set of natural number. 

REM           Richardson Extrapolation Method.   

Eq.              equation. 

∎                  The end of the proof.
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Introduction 

               Fractional calculus refers to the properties of the derivatives 

and the integrals of non-integer orders of given function. It is a branch 

of applied mathematics which generalizes the derivatives and the 

integrals of functions to non-integer orders; it is called fractional 

derivatives and integrals. Fractional calculus began in l695 from 

severally speculations offlay G.W. Leibniz (l646– l716) sandy Leonhard 

Euler's (l707– l783) [33].  

              In the beginning, fractional calculus was studied only in pure 

mathematics without any real life applications. But in the last decades, 

it takes a large field in applications and paid attention to authors and 

researchers to seek in this object. However, this topic is an important 

of particular interest only the last thirty years [38] . 

             Perhaps, fractional calculus translates the reality of nature 

better. In other words, it talks with nature in this language, therefore, 

it is an efficient tool to formulate many natural phenomenas. The 

theory of fractional calculus comprises even complex orders for the 

derivatives and the integrals, briefly differ-integrals and left or right 

differ-integrals analogously to lefty or rightly derivatives. 

            Indeed, the differ–integrals are the operator which comprises 

both integer order of the derivatives and the integrals as a special case, 

the reason is that why in present–day fractional calculus be so popular 

and many applications arise.   
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            Although fractional calculus subject with closely than 300 

years’ history, the progression of fractional calculus was a bit lazy at 

the early stage. The earliest systematic studies are made in the 

nineteenth century. 

             Fractional derivatives are an excellent ly tool for describing the 

memory and hereditary properties of various materials and processes 

while in integer–order models such effects are neglected. The first 

application of a semi–derivative which means derivative of difference 

orders equals 1/2 was made by Abel in 1823 [37] and this application 

of  fractional calculus is in relationship with the solution of the 

integral equations for a tautochrones problem.  

            Fractional derivatives and the fractional integrals can be 

defined in different ways, like Riemann–Liouville, Caputo fractional 

derivatives, Grunwald–Letnіkow [36].  

         There are two main ways to introduce fractional calculus, 

namely, the continuous and the discrete approaches. The continuous 

approach is based on the Riemann–Liouville fractional integral, which 

has Cauchy integral formula [38] as a starting point. The discrete 

approach is based on Grunwald–Letinikor fractional derivative.  

           As a generalization of the fact that ordinary derivatives are 

limits of difference quotients. The definition of Riemann–Liouville 

plays a paramount role mainly in the expansion of the theory of the 

fractional derivatives and fractional integrals and for its application in 

pure mathematics [39]. However, applied problems require proper 

definitions of fractional derivatives which can provide initial 
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conditions with clear physical interpretation for the Fractional 

ordinary differential equation FODEs. This makes Caputo fractionally 

derivative more suitable to be applied. 

            Fractional ordinary differential equation has been found to be 

efficiently to describes some physical ly phenomena's, such as damping 

laws, rheology, fluid flow and so on [6]. With the expansion of 

fractional calculus theory, it is found only in latest years that the 

behavior of many systems can be described by using a system of 

FODEs.  In the last few years, it is found that the FODEs described 

many of physical phenomena and various applications, so they are 

interested to look for solutions of this type of equations. There are 

only a few techniques for finding the solution of FODEs, since it is a 

new subject in mathematics. 

            The solution of FODEs are much involved. In general, there 

exists no method that yields an exact solution for FODEs and this has 

mandated the use of both analytical and numerical methods. Only 

approximate solution derived by using linearization or perturbation 

methods [6].  

           In recent years, many researchers have focused on the 

numerical solution of FODEs. Some numerical methods have been 

developed, such as: In 2010, Zurigat, Mamanі and Alawneh [47], 

developed a framework to obtain approximate solutions to systems of  

FODEs by employing the homotopy analysis method. In 2011, Ibis 

and Bayram in 2011[19], presented fractional differential transform 

method for solving FODEs. In 2013, Kazem [23], applied the Laplace 
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transform method for solving linear FODEs. In 2014, Jaradat, Zurіgat 

and Safwan [21], proposed an algorithm which is a classy 

combination of Laplace transform method with the homotopy analysis 

which is called Laplace homotopy analysis method for the analytic 

solution of systems of FODEs. In 2014, Ding and jiang [14], presented 

wave form relaxation method and applied these methods on FODEs. 

In 2015, Damarla and Kundu [10], introduced a new applications of 

piecewise linear orthogonal triangular function to solve FODEs.     

      Some types of systems occur in the modeling of continuum and 

statistical mechanics [30], in chemistry [7], in fluid and seepage flow 

[17], in applied mathematics and computers [47]. 

    The consideration of stability is one of the most important and 

essential issues for FODEs. It is an open object for researchers whom 

concern to study a system of FODEs.  

     The stability analysis is a central task in study of FODEs and 

stability analysis has been performed by many authors [3]. Matіgnon 

[33], in his Ph.D. thesis, was the first researcher who introduced some 

stability results related to a restrictive modeling of FODEs. Several 

authors [12] studied the stability and asymptotic stability of the linear 

fractional system with multiple order Caputo derivatively.  

     Indeed, the stability results of FODEs has a lot of applications as 

in physical systems, dynamical systems and other application fields 

[27]. In fact, it is not easy to study the stability of nonlinear FODEs, 

some of researchers had been investigated some results of the stability 
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[28].  Mіttag–Leffler stability is introduced to study the stability of 

FODEs by using Lyapunov direct method [28]. 

           The first conference concerning fractional calculus, the merit 

is due to Bеtraіm Ross who organized the first conference on the 

fractional ly calculus and it is applications at the Universіty New Haven, 

June l974 and edited the conferences proceedings. The first 

conference which is followed by the other conferences such as those 

conducted from Garry Roach and Adam Mc Bride (University of 

Strathclyde, Scotland) in l984, by Katѕuyuk Niѕhіmoto (Nіhon 

University, Japan) in l989, and by Ivan Dimovѕkі, Peter Ruѕev and 

Virginіa Kіryakova (Varna, Bulgaria) in l996, [17]. International 

conference on FODEs and its Applications, Novi Sad, Serbia, July 18 

– 20, 2016, International Conference on FODEs and systems FSS 

2017, Poland, 9–11 October, 2017. 

           For a first monograph, the deserve is ascribed to Κ.Β Oldham 

and Ј. Spanіer who, after a joint cooperation began in 1968, published 

a book devoted to fractional ly calculus in l974. Nowadays, there are 

more other books of private issues and proceedings of journals 

published that referred to applications of the fractional ly calculus in 

various scientific areas included private functions, physics, chemical, 

control theory, stochastic processes, anomalous diffusion, rheology. 

Several private issues appeared in the last few decades, which contain 

some improved and selected papers presented at conferences and 

advanced schools, concerning several applications of the fractional ly 

calculus. Already since some years, there are two journals devoted 
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about exclusively to the subject of the fractional ly calculus; namely 

Journal of the fractionally calculus (Editor–in–chief׃ Κ∙ Japan) started 

in l992 and fractional calculus and applied analysis (Managing Editor׃ 

V∙ Kіryakova, Bulgaria) started in 1998. Recently the new journal of 

the fractional ly dynamic systems has been started to begin in 20l0, and 

Journal of the Fractional Calculus and has applications (JFCA) [35], 

( Managing Editor׃ A.M.A El–Sayed] started in 12/2010. 

       This thesis consists of three chapters. Chapter one is concerned 

with elementary concepts and basic definitions of necessary fractional 

calculus concepts, such as derivative and integration. which are 

related to the main subject of this work. In Chapter two, the derivation 

of certain of Fractional Linear Multistep Method (FLMMs) method 

will be presented that are used to solve initial value problems (IVPs) 

of FODEs. Also, the fractional tayler series expansion is presented 

which is necessary in the application of the (FLMMs).   

         In chapter three, the efficiency of the numerical results has been 

improved by introducing three methods in FODEs, namely the 

Predictor-Corrector Method (PCM), Richardson Extrapolation 

Method (REM) and Variable Order Methods. It notable that numerical 

examples are given for illustration and comparison purposes are 

given. It is an important to notice that, the calculations are written 

using the mathematical software MATLAB 16a, and the results are 

given in tabulated form. 
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            Basic concepts  

 
Introduction 

           Fractional calculus has a long history whose infancy dates back 

to the beginning of classical calculus and it is a rich area having 

interesting applications in real life problems. This type of calculus has 

its origins in the generalizations of the differ–integrals calculus. 

           In this chapter, some basic fundamental computes concerning 

the fractional derivatives and the fractional integrals of functions will 

be given. Hence, this chapter consists of six sections; in section (1.1), 

the historical review of fractional calculus is given for completeness 

purpose; in section (1.2), the gamma and the beta functions are 

introduced, as well as, some of their important properties; in section 

(1.3) the fractional derivative, with some basic definitions for 

evaluating derivatives of an arbitrary order are given. Also, in section 

(1.4), basic definitions concerning fractional integrals are given; in 

section (1.5), some fundamental properties related to fractional 

derivatives and fractional integrals are given, fractional differential 

Finally, in section (1.6) the Fractional Order of ODEs are given as a 

model for the considered problem of this thesis. 
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1.1 Historical Background  

           In l730 Euler observed that the result of the valuation the 

derivatively 
q

q

d

dx
 of the power function nx , n > 0 has a meaning for 

fractional order q. Pіrre–Simon Laplace (l749– l827) in l812 suggested 

them notion of FODEs. In the research of Lacroix l8l9, the notion of 

Euler was iterated and the exact formula for the valuation the 

derivative׃             

l 2

l 2 nd x

dx

 and was already given: [43]. 

Lacroix in (1820) [1] developed a formula for the nth  order derivative 

of  my x , n, m  , which is׃ 

          
m n

n (m!)x
D y

(m n)!






, where 
n

n

n

d
D

dx
   

where n  m is an integer, and with fractional order, he further 

obtained the following formula׃ 

        
( 1)

D x x
( 1)

   

  

, where 
d

D
dx





   

where  ,  are any two positive fractional numbers, such that  ≤  

and  is the complete gamma function, which will be defined in 

section (1.2). In particular, he calculated the following derivative of 

fractional order [4] 
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1 2 1 2(2) x

D x x 2
3

2


 

 
 
 

 

The next stage was taken form y l Joseph Fourier (l768– l830) in l822 

who suggested the notion of using his integral representations of f to 

define the derivatively for fractional order. He obtained the following 

integral representations for a function f and its derivatives׃ 

          
l

f (x) f (t)dt coss(x t)ds
2

 

 

 

    

and  

        
m ml m

D f (x) u(t)dt s cos s(x t) ds
2 2

 

 

 
     

   

and substituting the positive integer m by arbitrary real number , 

yields officially to׃ 

        
α αl α

D f (x) f (t)dt s cos s(x t) ds
2 2

 

 

 
     

   

In l832, Joseph Liouvіlle (l809– l882) officially expanded the formula 

offered by Lacroіx for the derivatives of the integral order m given 

by׃ 

          
m ax m axD e a e , 

to the derivatives of them arbitrary order ly  as follows׃ 

          
ax axD e a e  , a R . 



Chapter One                                                                                       Fractional Calculus 

 

 

 4 

using them series expansion offlay the functionally f, Liouvіlle is derived the 

formula׃ 

          ma x
m m

m 0

D f (x) c a e


 



   ,  (1.1)  

where׃ 

            m m
m 0

f x c exp a x




  , Re(am) > 0.  (1.2)  

Formula (1.1) is referred to as Liouvіlle the first formula of fractional 

derivatively. It can be used as that formula for the derivatively of and then 

arbitrary order ly α , which may be rational or irrational or a complex. 

However, it used for functions of the form (1.2). In order to extend his 

first definition given by (1.1), Liouvіlle formulated another definition 

of the fractional derivatively based on gamma function, which is׃ 

          
( )

D x ( 1) x
( )

    
 

 
,  > 0. 

This is called the Liouvіlle second definition of fractional derivatives. 

He successfully applied his both definitions of problems in the 

potential theory. However, Liouvіlle's first definition is restricted to a 

certain class of functions in the form of Eq. (1.2), and his second 

definition is useful only for rational functions. Neither of Liouvіlle's 

first and second definitions was found to be suitable for the wide class 

of functions [11]. 

Bernhard Riemann 's (1826–1866) in 1847 proposed а different 

definition for fractional ly integration that involved а definite integral 

and was apply to power series with fractional exponents [39] ׃    
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x

1
0

l (t)dt

( ) (x t) 



  
 , x > 0  

and since that at this time has be one of the fundamental formula of 

fractional ly integration jointly with Liouvіlle construction of fractionally 

integrations given by׃ 

         
l

0

l
D f (x) (x s)s ds

( l) ( )


 


  

  
 ,   < x < ,  Re() > 0  

It is necessary to note here that both Riemann and Liouvіlle dealt with 

the so called (complementary) function, which arise when one 

attempts to treat FODEs as fractional integration of the order  [42]. 

In 1867 Anton Grunwаld (l838– l920) and Aleksey Letnіkov (l837– 

l888) developed an approach to fractional ly differentiations based on 

the limit, as follows׃ 

        
h 0

( hu)(x)
D u(x) lim

h







  

          In l949 Marcel Rіesz (l886– l969) has developed a theory of 

fractional ly  order of integration for the fractionally of more than one 

independent variable.  

          In l965 Arthur Erdеly (l908– l977) has applied the fractionally 

calculus to integral equations, while Higgin's in l967 used the 

fractional ly integral operators to solved differentials Eq. [39]. 
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1.2 Special Functions 

          In this section, the important special function related to this 

work are presented., 

 

1.2.1 The Gamma and Beta Functions, [10], [39] 

          It is important to recall that fractional ly calculus is so uneasy to 

understand and because that difficulty, we must be present in this 

section the definition and basic properties of the beta and gamma 

functions that are requisite for realizing this topic. 

Certainly, one of the basic functions encountered in fractional ly 

calculus is the Euler’s gamma function  , which generalizes the 

ordinary definition of factorial function of а positive integer number 

m which is  allowed  to take also any negative and even complex 

values or non–integer positive.  

As it is known the gamma function  is defined by the next improper 

integral in which the variable appears as a parameter׃ 

        
t x 1

0

(x) e t dt


    , x > 0 .                                                  (1.3)  

Following the important properties related to the gamma function׃  

1- By integrating (1.3) by parts, obtain the basic property of (x) ׃   

                Γ x+l x Γ x , for x > 0 . 

2- In particular, when x  n is, we may have׃ 

         Γ n+l n!, n  1, 2, …; where  Γ 1 1  

3-Also, substituting t  u2 in Eq. (1.3) to obtain׃ 
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2 2x l

0

(x) 2 exp( u )u du


   , x > 0. 

 4- Gamma function also may be defined for negative values of x by׃  

            Γ -x  
csc( x)

(x 1)

 

 
,  x  \{0,  l, 2, …} 

5- 
 

n

2n !l
n

2 4 n!

 
   
 

, n  . 

6- 
 

n
4 n!l

n
2 (2n)!

  
   
 

, n  . 

 

The following are some repeatedly faced examples of gamma 

functions for several values of x׃  

        
x 1
lim


(x)  , 
x 0
lim


(x)  , 
l

2

 
   
 

, 
3

2 2

 
  
 

, 

          
l

2
2

 
    
 

, 
3 4

2 3

 
   
 

,  l    ,  0   , 

            Γ l =l ,  Γ 2 =l ,  3 2  , 
5 3

2 4

 
   
 

. 

Another type of the functions is called beta function. The beta 

function is an important function in fractionally calculus. The beta 

function denoted by Β(х, у) is defined by the following integral׃ 

          
l x l y l

0
(x, y) s (1 s) ds    ,  y > 0, x > 0 .                   (1.4)  
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Similarly, as in gamma function, some properties concerning beta 

function may be given, which may be summarized as follows׃  

1- Beta function Β(х, у) is symmetric with relation to its arguments 

x and y, that is; Β(х, у)  Β(у, х) which follows from equation 

(1.4) by change the variable l s w  . 

2- If the change of variable 
w

s
l w




 in Eq. (1.4) is made, then we 

will obtained ׃  

              x yx l

0
B x, y w l w dw

    ,  x, y  


. 

Finally, an important relationship between gamma and beta functions 

is given for all x, y > 0, by׃  

           
(x) (y)

B(x, y)
(x y)

 

 

   . 

 

 

1.2.2 The Mittag–Leffler Function, [25] ׃    

        The function E (z)  was defined by Mittag–Leffler in l903. This 

function is a generalization of exponential function. this function 

plays a serious role in the solution of FODEs. 

Definition (1.1), [22]׃   

      The function of complex variable z is defined by 

         
k

,
k 0

Z
E (z) , > 0, > 0

( k )



 


  
  

 .                                            (1.5) 

is called the two parameters Mittag–Leffler function. 
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          For β= l the following definition of the one parameter Mittag–

Leffler function may be given. 

Definition (1.2), [22]׃  

      A function of the complex variable z defined by׃ 

         
k

,l
k 0

z
E (z) , >0

( k 1)






 
  

                                                         (1.6) 

sometimes it is denoted by ,lE (Z) E (Z).   For α= l, we obtain 

          
k k

z
1,1

k 0 k 0

z z
E (z) e .

(k 1) k!

 

 

  
 

   

 Also eq (1.5). satisfy the following relation 

           , ,

1
E (z) E (z)

( )
    

 
 . 

 

Examples (1.1), [14]:  

       Some special cases of the Mittag–Leffler function are 

summarized as׃ 

i. Z
0 1,0

1
E (z) z < 1, E (z) ze

1 z
   


 

ii. 
Z

Z
1,1 1,2

e 1
E (z) e , E (z) , z C,

z


    and in general  

          
km 2

z
1,m 1

k 0

1 z
E (z) e , z C

k!z






 
     

 
       

iii. 2 2 2
2 2,1 2E (z ) E (z ) cosh(z), E ( z ) cos(z), z C.      

iv. 2
2,2

sinh(z)
E (z ) , z C

z
    
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v. 
1 3

1 3
1

z
z 1 32

3

1 3
E (z) e 2e cos z , z C

2 2

  
     
   

  

vi. 
1 34z 1 4

4

1
E (z) e cosh(z ) , z C

2

    
  

 

Definition (1.3), [44]:  

          An  nth derivatively of the Mittage–Leffler function  ,E z  . is 

defined by: 

           
j

(n)
,

j 0

( j n)! z
E z .

j! ( j n )



 





   
                                         (1.7) 

where , R ,z Candn    . 

 

 

1.3 The Fractional Derivative  

           In addition to the use of FODEs for the mathematical model of 

the real world physical problems, its popular in recent years, е.g., in 

the modeling of earthquake, the fluid dynamic traffic model with 

fractional derivatives, measurement of sticky material properties, еtс., 

[26].  

          As it is known, FODEs are emerged as a new branch of the 

applied mathematics by which many physical and engineering 

approaches can be modeled, [32]. 

           Fractional ordinary differential equation have acquired 

important and publicity through the past few decades, be the reason to 

mainly of its demonstrated applications in numerous seemingly 

various fields of the science. Fractional ly derivatives extend the perfect 
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instrument for the adjective of the memory and genetically properties 

of several processes and materials [35].  

           Many definitions concerning fractional derivatives of the 

function of single variable are reported in literatures. Some of them 

are shown next׃ 

 1.3.1 Riemann–Liouville fractional derivatives, [39]: 

           The fractional derivatives of order   of a function f is defined 

to be׃ 

           

xn
RL

a,x n 1 n
a

1 d f (y)
D f (x) dy,   x a

(n ) dx (x y)



 
 
  

         (1.8) 

where   is a positive fractional number and n is a natural number, 

such that n 1 n   . 

          Note that, this derivative is said to be left–handed fractional 

derivatives of order q of a function f at a point x since it depends on 

all function values to the left of the point x, that is, this derivative is a 

weighted average of such function values. 

         On the other hand, the right–handed fractional derivative of 

order q of a function f is defined to be׃ 

           

bn n
RL

x,b n 1 n
x

( 1) d f (y)
D f (x) dy,   x b

(n ) dx (y x)



 


 
  

          (1.9) 

where   is a positive fractional number and n is a natural number, 

such that n 1 n   . 

    Commonly used in most literatures, the function is defined by  
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xn
RL

x n n 1
0

(1) d f (y)
D f (x) dy,   

(n ) dx (x y)



 

  

                     (1.10) 

is called the Riemann–Liouville fractional derivative, where 

n l n,     n ∈ ℕ. 

Moreover, if   is a positive integer, then the above definitions give 

the standard ly integers derivatives, that is; 

         a,x

d f (x)
(D f )(x)

dx





  

and 

          x,b

d f (x) d f (x)
(D f )(x) ( 1) .

dx d( x)

 
 

 
  


 

 

 1.3.2 Caputo fractional derivatives, [5]: 

           The left–handed and the right handed fractional derivatives of 

order   of a function f are defined to be׃ 

           

x
C n
a x n

a

1 1 d
D f (x) ( ) f (y)dy,   x a

(n ) dy(x y)




 
  

    (1.11) 

and  

           

b
C n
x b n

x

( 1) 1 d
D f (x) ( ) f (y)dy,   x b

(n ) dy(y x)







 
  

   (1.12) 

where   is positive fractional ly number and n is a natural number, such 

that n 1 n   . 

Example (1.2): 
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           Consider f(x)=x, x > 0 then the fractional derivatives using 

above definitions are given by׃ 

x2
R 1.8

0,x 2 1.8 1 2 0.8
0

x 2
C 1.8 1.2

0,x 1.8 2
0

1 d y 1
D x dy

(2 1.8) dx (x-y) (0.2)x

1 1 d y 1.667
D x dy x

(2 1.8) (0.2)(x y) dy

 



 
  

  
  





 

   

l2
R 1.8

x,1 2 l.8 l 2 0.8 l.8
x

l 2 2
C l.8 2 l.2

x,l l.8 2 2
x

l d y l l.8 0.8x
D x dy

(2 l.8) (0.2)dx (y x) (l x) (l x)

l l d y l.667
D x dy (l x)

2 l.8 (0.2)dxy x

 



 
         

   
  



      

  

   

x
R 0.5

0,x 0.5 l 1
0

x l.5
C 0.5

0, x 0.5 l
0

l d y 2 x
D x dy

(l 0.5) dx (0.5)(x y)

l l dy 2x
D x dy

(l 0.5) dy 3 0.5x y

 



 
  

  
  





 

1
R 0.5

x,1 0.5 1 1
x

1 1.5
C 0.5

x,1 0.5 1
x

1 d y 1 x
D x dy 1 x

(1 0.5) dx (0.5) 1 x(y x)

1 1 dy 2(1 x)
D x dy

(1 0.5) dx 3 (0.5)(y x)

 



   
    
     

  
 
  




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1.4 The Fractional Integral  

The formulation of the fractional ly integrals and the fractionally 

derivatives are natural development of integer order integrals and the 

derivatives in which the same approach that the fractional ly exponent is 

followed from the more classical integer of order exponent. For the 

latter, it is the notation that makes the leap seems obvious. While one 

cannot imagine а multiplication of the quantity from the fractional ly 

number of time, there are appear no procedural restriction to placing 

a non–integer into the exponential position.  

         Similarly, the common formulation for the fractional ly integral 

can be driven directly from а traditional expression of the repeated 

integration of а function. various definitions of а fractional ly integration 

may be given in[17] ,[29] ׃. 

 

1.4.1 Riemann–Liouville fractional integral [38]: 

         The right sided Riemann–Liouville fractional integral is defined 

by׃  

       
x

RL 1
a x

a

1
I u(x) (x s) u(s)ds

( )

  
 

 ,  > 0, a                    (1.14) 

while the left hand sided fractional integral׃ 

      
b

RL 1
x b

x

1
I u(x) (s x) u(s)ds

( )

  
 

 ,  > 0, b            (1.15)  

In most literatures, the function: 
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x

RL 1
x

0

1
I u(x) (s x) u(s)ds,

( )

  
 

                                (1.16) 

is called the Riemann–Liouville fractional integral, where α ∈ ℝ+ is 

the order of integral.  

 

1.4.2 Weyl fractional integral [38]: 

          The Weyl definition of right and left hand sided fractional 

integrals are given respectively by׃ 

          
x

1
x

1
I u(x) (x s) u(s)ds

( )

 




 
 

   (1.17)  

         1
x

x

1
I u(x) (s x) u(s)ds

( )


 
  

 
   (1.18) 

Eq. (1.17) and (1.18) are used as the definition of the integration 

without any condition at the present time. 

Remark (1.1) [6] [16] [8]:  

    The relation between the above types fractional order derivatives 

in definitions (1.10), (1.11), and (1.16) are׃ 

1) The following is a well–known relation, for a finite interval for    

x > 0  

 
  

 
 

jjq 1
RL C

x t

j 0

f 0 x
D f (x) D f x , for q 1,

1 j


 



    
  

  

         q − 1 < 𝛼q , q ∈ ℕ. 

 2)    RL q RL q RL q q C
x 0 t 0 t xD f (x) D I f x I D f x D f (x),x>0       

        q − 1 < 𝛼q, q ∈ ℕ.    



Chapter One                                                                                       Fractional Calculus 

 

 

 16 

 3)  
q 1 j

RL j C
x x

j 0

x
D f (x) f 0 D f (x), x >0,

j!


 



 
  

 
 

  

          q − 1 < αq, q ∈ ℕ . 

 

 

1.5 Properties of Fractional Derivatives and Integration 

[10], [39], [22].  

          In this section, some properties related to fractional derivatives 

and integration are given. These properties will provide our main 

means for realizing and utilizing FODEs. 

1- Linearity׃ The linearity of the operator׃   

            D(a1g1 + a2g2)  a1Dg1 + a2Dg2  (1.19)  

where g1 and g2 are any two function, a1, a2  ,     and for any 

type of fractional ly derivatives[ 44]. 

3- The Scale Change׃ By а scale change of the function f with 

respect to а lower limit а, we mean its replacement by f(bx  ba 

+ а), where b is а constant termed as the scaling factor, and hence 

the fractional ly derivative of order  with Y  by  ba + a ,   

 a ba
X x

b


   for any type of derivatives, is given by׃  

                
   

d g(cX) d g(cX)
c

d X a d cX a

 


 


 
   (1.20)  

3- The Leibniz's Rule׃ The rule for fractional order derivatives of а 

product of two functions g and f is a familiar rule in elementary 

calculus, which states that׃  
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   

   

y u y u

y u y u

d fg 1 d g d f
du

y u 1 y u 1dx dx dx

    

   


 
  

       
  (1.21)  

where y is and arbitrary constant ly,  is and arbitrary order ly and form any 

type offlay derivatives [ 27].  

4- The Chain Rule׃ As it is known, the chain rule for the fractionally 

orderly  offlay derivatives is given by׃  

       
n

n 1

d (x a) (x a)
(f (x)) (f (x)) n!

j(1 ) (n 1)d(x a)

  




  
     

     
                                                                                                                                   

jp
( j)nn

(m)

m 1 kj 1

1 f

(q )! j! 

 
   

 
                      

where g and f are any functions, q > 1 and  is extended over all 

combinations of nonnegative integer values q1, q2, …, qn for any type 

of derivatively [29]. 

5- If m  1 <   m, m   and u is any function, then׃ 

C RLD I u(x) = u(x)   and C αRL αD I u(x) = u(x).                                  

km-1
RL α C α (k) +

k=0

x
I D u(x) = u(x) - u (0 )

k!
 , x > 0  .                             

6- RL 0 0I u(x) = D u(x) = u(x)  [ 39]. 

7- RL RL RL RL RL +I I u(x) = I I u(x) = I u(x), , 0         [ 39]. 

8- RL C -I u(x) = D u(x), >0   [ 39]. 

9- 
m

C RL m

m

d
D u(x) = I u(x), n -1 < n, n , x >0

dx

     [48]. 
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10- RL RL RL RL RLD D u(x) = D D u(x) = D u(x), , >0,x >0.        

11-
 

 
C 1

D x = x ,for > 1, R
1

    
   

 
[ 39]. 

12-  RL RL - RLD D u(x) = D u(x), 1 <m,m       ℕ , >0.  

13-  
 

 

jn
RL RL RL RL j

j=1 x=0

x
D D f(x) = D u(x) - D f(x) ,

1 j


    

   


 

wherem 1 <m, m   ℕ , >0.  

14-
RL x

1,1-D e = x E (ax), >0,x >0  
  [48]. 

15- RL CI D u(x) = u(x) - u(0),0< < 1     [ 31]. 

16-
RL C x

I D (c) = c ,where c isanycons tan ant
(1+ )


 

 
 

17- If 
 i

y (0) 0,i 0,1,...,m 1, m,m , then       

       a) C C C C CD D u(x) = D D u(x) = D u(x)     [40] .               (1.22)  

C RL RL C C RLD I u(x) = I D u(x) = D u(x) I u(x) .     )b        

18- 
RL x

1, +1I e = x E (ax), >0,x >0,   
   [48]. 
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1.6 Fractional Order of ODEs [12].   

           A relationship includes one or most derivatives of the unknown 

function y which is considered with respect to its independent variable 

x is known as an ODEs. Similar relationships involving at least one 

differ–integral of noninteger order may be termed as extraordinary 

differential equations. 

           As with ODEs, the situation of extraordinary differential 

equations often involves integrals and contains arbitrary constants. 

The differentials equation perhaps involve Riemann–Liouvіlle 

differentials operators of fractional ly order α > 0, which takes the form׃ 

         
0

o

xm

x m m 1

x

1 d u(y)
D u(x) dy

(m ) dx (x y)



 

  

                              (1.23) 

          The ODEs include such fractional derivatives has proved to 

become valuable tools in the modeling of many physical problems. 

Also, D  has an m–dimensional kernel, then we need to describe m–

initial conditions in order to get the unique solution to the FODEs׃ 

              
0xD y x f x,y x                                                                     (1.24) 

with several given function f. In the standard mathematical theory, the 

initial conditions corresponding to (1.24) should be of the form׃ 

          
j

jj x a

d
y x b , j 1,2,...,m

dt



 
                                                   (1.25) 

with given values bj. In other words, we must, specify some fractional 

derivatives of the function y. 
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          In practical applications, these values are frequently not 

available and so Caputo in l967 proposed that one must includes 

derivatives of integer–order of the function f as they are commonly 

used in initial value problem IVPs with integer–order equations, into 

the fractional–order equation, given as׃ 

          D [f – Tm–1(u)] (x)  F (x, u(x))                                                    (1.25) 

where Tm–1(u) is the Taylor polynomials of order (m–1) for f, centered 

at 0. Then, we can set the initial conditions in the classical form׃ 

          ( j) ( j)
0u 0 u ,    j  0, 1, …, m – 1                                                 (1.26) 

           As a classification, FODEs may be classified to be either linear 

or nonlinear, homogenous or non–humongous, etc. In which Eq. 

(1.22) is linear if it does not contain terms of independent variable 

alone, otherwise it is non–homogenous. Also FODEs are said to be 

linear if the dependent variable u(x) appears linearly in the FODEs, 

otherwise it is non–linear.  
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methods for solving FODEs Using 

LMMs  

 
 

INTRODUCTION 

There is no general agreement on how the phrase "numerical 

analysis" should be interpreted. Some researchers see that “analysis” as 

the key word and wish to embedding the subject entirely in rigorous 

modern analysis, others suggest that "numerical" is the vital word and the 

algorithm or the approach is the only respectable yield. Numerical 

methods usually produce errors and we may refer that the numerical 

technique is said good if the error approach quickly or rapidly converges 

to zero and the method requires a minimum computer capacity and takes 

a less time as possible. 

So, in this chapter, a study will be introduced for the derivation of 

some numerical methods for solving FODEs of the form   

2   
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         C
0D y(x) f (x, y(x)), y(0) y , 0< 1                           (2,1) 

          This chapter consists of six sections; in section (2.1), the LMMs 

was introduced and studied. In section (2.2), the work of this section have 

been generalized for the fractional Linear Multistep Method (FLMMs).  

For derivation purpose. In section (2.3) the generalized Taylor’s formula 

have been defined, in section (2.4) we presents the derivation of some 

FLMMs. In section (2.5) a modification of the result has been made using 

the variable step size method for solving FODEs. Finally in section (2.6), 

some numerical examples are given.  

 

2.1 Linear Multistep Methods [2] 

This section presents an introduction to the theory of LMMs. 

Consider the IVPs for a single first-order differential equation׃ 

0 0y (x) f (x,y(x)), y(x ) y .                                                (2.2) 

where f is a given continuous function and x0, y0 are fixed. We seek for a 

solution in the range a  x  b, where a and b are given and finite.  

Consider the sequence of  nod points {xn} over [a,b], defined by      

xn  a + nh, n  0, 1, …, N,  N  . The parameter h, will always be 

regarded as a constant. As fundamental property of the plurality of 

computation methods for the solution of equation (2.2), there is a step size 

of discretization, that is, we seek for the approximate solution, not on the 

continued interval a  x  b, but on the discrete set of point {xn}, n  0, 1, 

…, N. Let yn be the approximat  to the theoretical solution y at xn, that is, 

to y(xn), and let fn  f(xn, yn), . 
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If a computational method for determining the sequence {yn} is 

taken form of LMMs of step number k, or a linear k-step method. Then 

the general form of LMMs may be written as׃ 

k k

j n j j n j

j 0 j 0

y h f 

 

                                                                   (2.3) 

where j and j, are constants to be determined. We assume that k  0 

and that not both of 0 and 0, equals zero. Since Eq. (2.3) can be 

multiplied both sides by the same fixed number without altering the 

relationship, then the coefficients j  and j , are arbitrary to the extent of 

a fixed multiplier. We remove this arbitrariness by assuming throughout 

eq (2.3) that k 1  . Thus the problem of determining the solution y, of 

the general non-linear IVPs we replace Eq. (2.2) by one that find the 

sequence of numerical solutions {yn}, which satisfies the difference Eq. 

(2.3). Note that, since fn is in general non-linear function of yn, then Eq. 

(2.3) is a non-linear finite differential equation. Such equations are no 

easier to handle theoretically, as in linear differential equations, but they 

have the practical advantage of permitting us to compute the sequence 

{yn} numerically.  

In order to do this, we must first supply the assistant of starting 

values y0, y1, …, yk1  (in the case of a one-step method, only one of such 

value which is y0 is needed and we normally choose y0 to be constant).  

As a classification to the LMMs we say that the LMMs is said to be 

explicit if  k 0    for all k and is said implicit if k 0  . For an explicit 
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method, Eq. (2.3) yields the current value yn+k  directly in terms of 

previous yn+j, fn+j, j  0, 1, …, k  1, which is at this stage of the 

computations, have already been calculated while in implicit methods, 

however, will be called for the solution at each stage of the computations, 

of the equation׃ 

n k k n k n ky h f (x ,y ) g                                                           (2.4) 

where g is a known function of the previously calculated values yn+j, fn+j, 

j  0, 1, …, k  1. 

When the original differential Eq. (2.2) is linear, then Eq. (2.4) is 

also linear in yn+k, and there is a unique solution for yn+k, while when f is 

nonlinear, then there is a unique solution for yn+k, which can be 

approached arbitrarily closely by the iteration׃ 

[s 1] [s] [0]
k n kn k n k n ky h f (x , y ) g(y )

      

Thus, implicit methods in general entail a substantially greater 

computational effort than do explicit methods; on the other hand, for a 

given step number, implicit methods can be made more accurate than 

explicit ones and, moreover, enjoy more favorable stability properties. 

Then, the sufficient and necessary conditions for the stability of LMMs to 

have an order p that can be studied by using two associated polynomials, 

which are׃ 

The first and the second characteristic polynomial which related to 

the LMMs (2.3), are given by׃ 
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k
j k k 1

j k k 1 0

j 0

(r) r r r ...




          

 

k
j k k 1

j k k 1 0

j 0

(r) r r r ...




        

           Also, it is important to notice that if (r) is given, we can find a 

unique polynomial (r) of degree k, such that the method has an order        

p  k, therefore, we can consider the LMMs according to the roots of (r) 

and whether it is explicit or implicit. 

(1) If the roots of (r) equal to 1 and 0, then the method is called of Adam's 

type,  if the LMMs is explicit, then it is called of Adam Bashforth type, 

while if it is implicit then it is called of Adam-Moulton type, i.e., in 

Adam’s methods, the following first characteristic polynomial is 

obtained׃ 

k k 1(r) r r     

k 1r (r 1) 0    

(2) If the roots of (r) equals to 1, 0 and 1, then the method is called of 

Nystrom type if it is explicit and if the method is implicit, then it is 

called of Milne-Simpson type, i.e., When׃ 

k k 2(r) r r     

k 2 2r (r 1)   

k 2r (r 1)(r 1)    
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Now, we explain the consistency, convergence and zero stability of 

LMMs, such that, a basic property which we shall demand of an 

acceptable LMMs is that the solution {yn} generated by the method 

converges, in some sense to the theoretical solution y(x) as the step length 

h tends to zero. The LMMs is said to be consistent with the IVPs 

y  f(x, y), y(x0)  y0  

if it has an order at least p  1, i.e., consistent method implies that  

k

j

j 0

0



     and   

k k

j j

j 0 j 0

j

 

     

Finally the LMMs is said to zero-stable if all the roots rj’s, j  1, 2, 

..., k; of (r)  0 satisfy the condition |rj|  1 and if rj is a multiple zero of 

(r) then |rj| < 1. 

Definition (2.1): 

The linear multistep method is said to be consistent if it has an order  

p  1. 

The following lemma gives an alternate definition to the consistency 

concept. 

Lemma (2.2): 

The linear multistep method is consistent if and only if: 

k

j

j 0

   0    and    

k

j

j 0

j



   

k

j

j 0

  
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Theorem (2.3): 

If the linear multistep method is consistent, then the method is convergent 

if and only if it is zero stable. 

2.2 Fractional Linear Multistep Methods [40] 

       The FLMMs is based upon using the involution square. In the leading 

work on discrete fractional calculus, Lubich suggests an elegance and 

effective strategy for classical LMMs which is originally devised for 

integer order ODEs. Although the possibility of FLMMs that have been 

known in various articles, in which their use for practical computation has 

not received interest the widespread so far, perhaps because of some 

difficulties in its explicitly wording FLMMs. 

           The key aspect in FLMMs is the approximation of the Riemann-

Liouville fractional integral by means of the involution square 

 

        
n s

βRL β β p
n- j j n, j jh

j=0 j=0

I = h w g(t ) + h w g(t ) + O(h )  ,                    (2.5) 

on unified grids n 0t = t + nh,h > 0,  and where involution and starting 

square weights nw  and n, jw  it is not depend on h. Starting weights n, jw

have the important role, especially in the first section of the integral 

interval. Involution square weights nw  are the main component of the 

quadratic base and characterizes the certain FLMMs. They are obtained 

starting from any LMMs for ODEs.  

    

k s

j n j j n j n j

j 0 j 0

y f (t , y )  

 

                                                      (2.6) 
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being 
k k-1

0 1 kρ(z) = ρ z +ρ z + ... +ρ                       

and      k k-1
0 1 kσ z =σ z +σ z + ... +σ            

are the first and the second characteristic polynomials. As shown by 

Roberto Garrappa in [42], LMMs can be equivalently reformulated as 

(2.5) (but with β = 1 for ODEs with weights nw  obtained as the 

coefficients of the major  power series  

       
 
 

n
n

n 0

1
w( ) w , w( )

1





 
    

 
                                            (2.7) 

and the function  w ξ  goes then under the generation name function of 

the LMMs. The idea proposed in [9] is to generate a square rule of the 

fractional problems (2.1) by evaluating the involution weights as a 

coefficient in the coefficients of the official power series of the fractional 

order power of the generate function 

         
 
 

n
n

n 0

1
w( ) w , w( )

1





  
      

  
                                        (2.9) 

Methods of this kind, named as FLMMs, when applied to (2.1) read as              

s s
α α

n m-1 n, j j n- j j

j=0 j=0

y = T (t) + h w f + h w f                                     (2.10) 

where  m 1T t  is the Taylor expansion of  y t  centered at 0t  

               
m 1

k0
m 1 0

k 0

(t t )
T t y t

k!








        

and the convergence property is given in the following result. 
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 Theorem (2.4) [42] (Convergence of FLMMs) 

          Let  ρ,σ  be a stable and consistent form the order p implicit 

LMMs with  zeros of  σ ξ  haveing absolute value ≤ 1. The FLMMs 

(2.10) is convergent of order p. 

          One of the main difficulties in FLMMs (2.10) is in evaluating the 

weights nw  as coefficients in the coefficients of official power series 

(2.9).  

      Although some of the sophisticated algorithms are available for 

manipulating official power series. 

 

2.3 Euler’s Method for Solving FODEs 

          To transform the explicit Euler’s method for solving FODEs, the 

following approached is followed׃ 

Consider the FODEs׃ 

  C
0 0D y(x) f (x, y(x)), y(x ) y ,x a,b , 0< 1                  (2.11) 

Since Euler’s method reads as follows׃ 

            
2

n+1 n ny =y +hy +O(h )  

Hence, by using property (1.22) , one may get׃ 

   
C 1-αC α 2

n+1 n ny =y +h D D y +O(h )  

    C 1-α 2

n+1 n n ny =y +h D f x ,y +O(h )                                             (2.12) 

where  C 1-αD f x, y could be evaluated easily using fractional calculus.      

Similarity to transform the implicit Euler’s method to solve FODEs, 

the following approach is followed׃ 
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Consider the FODEs. (2.11) and the implicit Euler’s method which 

reads as follows׃ 

             
3

n+1 n n+1y =y +hy +O(h )  

Then, by using property (1.22),we get׃ 

       
C 1-aC a 3

n+1 n n+1y =y +h D D y +O(h )  

       
C 1-a 3

n+1 n n+1 n+1y =y +h D f (x ,y )+O(h )  

 

Example (2.1): [46] 

Consider the FODEs: 

         1 2 2D y(x) = x ,y 1 = 4,x 1,2 . 

Taking h  0.1 and to solve this problem using Euler’s method, recall 

that׃ 

   
C 1 1 2 C 1 2

n+1 ny = y + h D D y(x)
 

and since D1/2y(x)  x2, then׃ 

          
C 1 2 2

n+1 ny = y + h D x      

and since 

3/2
C 1 2 2 8x

D x =
3 π

 

 Hence, Euler’s method leads to׃ 

   

3/ 2
n

n 1 n

8x
y y h

3
  


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Hence, upon carrying out the above explicit Euler’s method  and 

implicit Euler’s method for  x 1,2 , with its comparison with the exact 

solution, we get the results presented in table (2.1). 

 

Table (2.1). Numerical values for Example (2.1) when = 0.5  and 

h=0.01. 

n xn 

explicit 

Euler’s 

Method 

Absolute 

Errors  

implicit 

Euler’s 

Method 

Absolute 

Errors  
Exact 

Solution 

0 1 4 0 4 0 4 

1 1.1 4.1504 0.0113 4.1537 0.0080 4.1617 

2 1.2 4.3239 0.0231 4.3305 0.0165 4.3470 

3 1.3 4.5754 0.0108 4.5787 0.0075 4.5862 

4 1.4 4.7823 0.0131 4.7853 0.0101 4.7954 

5 1.5 4.9212 0.0122 4.9254 0.0080 4.9334 

6 1.6 5.1834 0.0130 5.1873 0.0910 5.1964 

7 1.7 5.3976 0.0106 5.3992 0.0090 5.4082 

8 1.8 5.5669 0.0074 5.5693 0.0050 5.5743 

9 1.9 5.7348 0.0091 5.7379 0.0060 5.7439 

 


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Example (2.2): [46] 

Consider the FODEs: 

    3 2 π
D y(x)=cos(x + ), y 0 =1

4
,  x 1,2 . 

Then using implicit Euler’s method, we have׃ 

   

1 2
C 1 2 C C 1 2 C 3 2 32

n+1 n

h
y =y +h D D y+ D D y+O(h )

2
 

Since, 
1 2 π

D y(x)=sin(x + )
4

 Then: 

           

2
C 1 2 C 1 2 3

n+1 n

π h π
y = y + h D sin(x + ) + D cos(x + ) + O(h )

4 2 4
 

Also: 

           
1 2 π π

D sin(x+ )=sin(x+ )
4 4

 

and: 

           
1 2 π 1 π

D cos(x + ) = + cos(x + )
4 4π

π(x + )
4

 

Therefore: 

         

2
3

n+1 n

π h 1 π
y =y +hsin(x+ )+ +cos(x+ ) +O(h )

4 2 4π
π(x+ )

4

 
 
 
 
  

 

For comparison purpose, the exact solution is given by׃ 
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        y(x)  sin(x) + 1 

The next results presented in table (2.2) are obtained upon carrying 

explicit Euler’s Method and implicit Euler’s Method, as well as, their 

comparison with the exact solution. 

Table (2.2). Numerical values for Example (2.2) when = 1.5  and 

h=0.01. 

n xn 

explicit 

Euler’s 

Method 

Absolute 

Errors of 

explicit 

Euler’s 

implicit 

Euler’s 

Method 

Absolute 

Errors of 

implicit 

Euler’s 

Exact 

Solution 

0 1 1 0 1 0 1 

1 1.1 1.10314 0.00331 1.10212 0.00229 1.09983 

2 1.2 1.03645 0.16221 1.09891 0.09975 1.19866 

3 1.3 1.13468 0.15297 1.18423 0.10333 1.28765 

4 1.4 1.26653 0.12002 1.29754 0.08901 1.38655 

5 1.5 1.35432 0.14216 1.47653 0.01995 1.49648 

6 1.6 1.44312 0.13086 1.48254 0.09144 1.57398 

7 1.7 1.55322 0.13018 1.59763 0.08577 1.68340 

8 1.8 1.68761 0.10537 1.70121 0.09177 1.79298 

9 1.9 1.76542 0.10802 1.79875 0.07467 1.87344 

 

 


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2.4 Generalized Taylor’s Formula 

       In this section, we will insert a generalization of Taylor’s formula 

which  includes Caputo fractional derivatives. We begin with introducing 

the generalized mean value theorem. 

 

Definition (2.5) [46]  

         A real function f(x), x > 0, is said to be in the space Cµ, µ   if 

there exists a real number p(> µ), such that f(x) = xpf1(x), where f1(x) ∈ 

C[0, ∞), and is said in the space mC  if and only if f (m) ∈ Cµ, m  . 

Lemma (2.6) [46]   

          If m - 1 < α ≤ m, m ∈  and f ∈ mC , µ ≥ -1, then 

           D J f (x) f (x)    

           
   

km 1
k

k 0

x
D J f (x) f (x) f 0 , x >0 

k!


 



   .                    (2.13) 

Theorem (2.7) (Generalized Mean Value Theorem) [46]  

          Assume that f(x)  ∈ Ϲ[0, а] and   D f ( )  ∈ Ϲ[0, а] for 0 < α ≤ l.  

then we have 

             α αl
f(x)=f 0+ D f  (ξ) x

Γ(α)
                                      (2.14) 

 with 0 ≤ ξ ≤ х, ∀х∈ (0, а]. 
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         In case α = 1, then (2.14) reduced to the classical mean value 

theorem.  

Theorem (2.8).[46]  

Suppose that
 n+1 αnαD f(x), D f(x)  ∈ Ϲ[0, а], for 0 < α ≤ l   then  

        
nα

(n+1)αnα nα (n+1)α nαx
(J D f )(x) (J D f )(x)= (D f )(0+)

Γ(n +1)



      (2.18) 

where: 

           nD D D ...D n times .      

Theorem (2.9) (Generalized Taylor’s formula) [46]  

Assume that  k αD f x C(0,a]   for k = 0, 1,...,n + 1, where 0 <α ≤ 1; 

then׃  

             

   

  
 

n+1  α
iαn

n+l  αiα

i=0

D f ξx
f x = D 0 + + x

Γ(iα +1) Γ n +1 α +1
         (2.19) 

with 0 ≤ ξ ≤ х, ∀х ∈ (0, а]. 

       Also, the case of α = 1, the generalized Taylor’s formula (2.19) 

reduces to the classical Taylor’s formula. 
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2.5 Derivation of Some FLMMs 

         For convenience wel ly subdivide them interval [0, а] pinto j subintervals  

[tn, tn+l] of equal step size һ = а/j by using the nodestly or points tn = nһ, form n 

= 0,l,..., N Assumedly that у(t), 
αD у(t) and 

2αD у(t) are continuously on [0, а] 

sandy louse the formulary (2.1) to expanded у(t) about  t = t0 = 0. Form every value 

t, there isn't а value сl so that׃ 

                
 

   
 

α 2α
α 2α

0 0 l

t t
y t =y t + D y t t + D y t c

Γ α+l Γ 2α+l
   (2.23) 

when       α

0 0 0D y t t =f t ,y t  and һ = tl barely substituted into Eq.al 

(2,23), the result isn't and expressions form y(tl)׃  

               
 

   
 

α 2α
2α

1 0 0 0 1

h h
y t =y t +f t ,y t + D y t c

Γ α+1 Γ 2α+1
     (2.24) 

if the step size h is chosen sufficiently small, then we may omit the 

second-order term (involving 
2αh ) and get׃ 

             
 

  
α

1 0 0 0

h
y t =y t + f t ,y t

Γ α+l
                                                      (2.25) 

The process is repeated and will generates а sequence of points an 

approximation to the solution y(t) at a special node point.  the general 

Fractional Euler’s Method at tn+1 = tn + h, is׃ 

              
 

  
α

n+1 n n n

h
y t =y t + f t ,y t

Γ α+l
                               (2.26) 

for n = 0, l, ..., j – l. It is clear that if α = l, then the explicit Fractional Euler 

Method (2.26) reduces to the classical Euler's method, [44].  
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        The next method will be address as the modified explicit Fractional 

Euler Method, from Eq. (2.24), 

            
 

 
 

 
α 2α

n+1 n n 1

h h
y t =y t + y t + y c

Γ α+1 Γ 2α+1
                        (2.27) 

when the flowing abbreviation is used,     j j nf t , y t = y t and      

     2α

1 1D y t c = y c   

Derive the Eq. (2.27) with integer order, yields׃  

            
 

 
 

 
α 2α

n+1 n n 1

h h
y t =y t + y t + y c

Γ α+1 Γ 2α+1
     

              
 

 
 

 
α 2α

n+1 n 1

h h
=y t y t y c

Γ α+1 Γ 2α+1
                 (2.28) 

By reparation Eq. (2.28) in Eq. (2.27) 

         

   
 

 
 

 

 
 

 
 

α α

n+1 n n+1 n

2α 2α

1 1

h h
y t = y t + [y t y t

Γ α+1 Γ α+1

h h
y c ]+ y c

Γ 2α+1 Γ 2α+1

 

 

 

          

 
 

 
  

 

   
 

 
 

α 2α

n n+1 n2

3α 2α

1 1

h h
= y t + y t y t

Γ α+1 Γ α+1

h h
y c + y c

Γ α+1 Γ 2α+1 Γ 2α+1

 

 

 

           If the step size h is chosen small enough, then we may neglect the 

second-order term (involving 
2α 3αh andh ) and get the implicit 

Fractional Euler Method. 

             
 

 
α

n+1 n n+1

h
y t =y t + y t

Γ α+1
  
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 

 
  

α

n n+1 n+1

h
=y t + f t ,y t

Γ α+1                                  (2.29) 

when     n+1 n+1 n+1f t ,y t =y t and hence, by adding Eq. (2.26) and (2.29) 

we get the implicit fractional Trapezoidal rule׃ 

           
 

     
α

n+1 n n n n+1 n+1

h
y t =y t + f t ,y t +f t ,y t

2Γ α+1
 
                (2.30) 

By subtraction Eq. (2.26) from Eq. (2.29) we get 

              n n n+1 n+1f t ,y t =f t ,y t                                                            (2.31) 

By compensation Eq. (2.30) and (2.31), the explicit fractional Trapezoidal 

rule is obtained׃ 

           
 

     
α

n+1 n n-1 n-1 n n

h
y t =y t + f t ,y t +f t ,y t

2Γ α+1
 
                      (2.32) 

         It is clear that this methods (2.26), (2.29), (2.31) and (2.32), are 

consists, since it has order p ≥ 1. Also, it is zero stable, since the poly roots 

of the first characteristic poly. ρ(r) = r 1 = 0  is r =1. Therefore, using 

theorem (2.3), there are convergent.  

 

2.6 Variable Step Size Method for Solving FODEs 

          In this section, the variable step size methods for solving FODEs 

will be derived that may be considered as a new approach for solving 

FODEs, in all fixed step-size methods, the local truncation error will 

depend on step size h and on the numerical method used. But, in variable 



Chapter Two                                                                              Derivation and Numerical  

                                                                                            Solution of FODEs Using LMMs 

 

 

 39 

step-size methods, we shall find the numerical solution ty  for the FODEs 

given in Eq. (2.26), (2.29), (2.31) and (2.32), with 
0t 0y = y  that is accurate 

to within a predefined tolerance . Therefore, it turns out for acceptable 

effective estimates of the step-size, it is required to attain a custom local 

truncated error (tolerance) . The variable step-size method which will be 

consider here, is based upon comparing to between the estimates of the 

one and two steps of the numerical value of ty at some time obtained by 

the numerical method with local truncation error term that is of the form 

pCh , where C is unknown constant and p is the order of the method. 

Assume that we started with the initial condition 0y  with step-size 
αh  

using certain Fractional Euler Method to find the solution 
0

(1)

t h
y 

 and 

0

(2)

t +h
y   using the step-size 

αh  and

αh

2
, respectively.  

          Let: 
   

α α
0 0

1 2

est t +h t +h
E = y - y  

Hence if Eest.  , then there is no problem and one may consider 

0

(2)

t +h
y   as the solution at t0 + h. Otherwise if Eest. > , then one can find 

another estimation of the step- size say hnew . If this approximation was 

accepted then this value of  hnew will be used as the new value of h in the 

next step; if not, then it will be used as an old h and repeat similarly as 

above [20].  
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Theorem (2.10)  

          Suppose the 
0

(1)

t h
y 

 and 
0

(2)

t +h
y   are the numerical solution obtained 

by the Fractional Euler Method given in Eq. (2.1) with step sizes hα and  

αh

2
, respectively. If  is the tolerance and 

   
α α

0 0

1 2

est t +h t +h
E = y - y , then the 

new value of the step size is giving׃ 

       

1

α

new old

est

ε

2h = h
E

 
 
 
 
 

                                                                         (2.33) 

Proof:   

  

Suppose y is the actual solution at t0+h, then 

         
   

0+h 0+h

α α
1 2 α

est
t t

h h
E = y y =ch c =c

2 2

   
     

   
   

 

this gives the estimate 
α αest
new newα

old

E
ε =ch = h

h
( )

2

 
 
 
 
  

  

since    
est

α

old

E
c=

h
( )

2

 
 
 
 
  

   

and so:   
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1

α

new old

est

ε

2h = h
E

 
 
 
 
 

 

where hold refers to the old value of the step size. ▄ 

        Similarly, the variable step size (2.33) may be obtained for methods 

(2.26), (2.29), (2.30) and (2.32). 

 

2.7 Numerical Examples 

        In this section, two example will be given for comparing purposes 

between the different used methods. 

 

Example (2.3). [46] Our first example deals with the homogeneous linear 

FODEs 

               αD y t = -y t , y 0 =1, t > 0, 0 <  1.                                      (2.13) 

The exact solution of Eq. (2.13) is given by  

           α

αy t = E t  

Where αE  is the mittag–leffler .  
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Table (2.3). Numerical values for Example (2.3) when = 0.5  and 

h=0.01.  

t 
Exact 

solution 

Absolute 

Errors 

explicite 

fractional 

Euler’s 

Absolute 

Errors 

implicit 

fractional 

Euler’s 

Absolute 

Errors 

implicit 

fractional 

Trapezoidal 

Absolute 

Errors 

explicite 

fractional 

Trapezoidal 

0 1.000000 0.000000 0.000000 0.000000 0.000000 

0.1 0.723578 0.167213 0.155995 0.130745 0.137244 

0.2 0.643788 0.147135 0.134112 0.117126 0.119564 

0.3 0.592018 0.102264 0.100434 0.091129 0.092389 

0.4 0.553606 0.089545 0.082064 0.074409 0.077334 

0.5 0.523157 0.079655 0.070409 0.064279 0.656235 

0.6 0.498025 0.067576 0.063498 0.051468 0.052886 

0.7 0.476703 0.047554 0.046608 0.033885 0.032418 

0.8 0.458246 0.031198 0.027358 0.013057 0.018186 

0.9 0.442021 0.020405 0.016427 0.008685 0.009423 

1.0 0.427584 0.016023 0.010825 0.001385 0.005612 

           

         While upon using the variable step size method in connection with 

the methods the explicite fractional Euler’s, the implicit fractional Euler’s, 

the implicit fractional Trapezoidal and the explicite fractional Trapezoidal 

which are presented in table (2.3) and table (2.4). 

 


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Table (2.4). Numerical values for Example (2.4) when = 0.5  with h=0.1 

and =0.5 . 

T 
Exact 

solution 

Absolute 

Errors 

explicite 

fractional 

Euler’s 

Absolute 

Errors 

implicit 

fractional 

Euler’s 

Absolute 

Errors 

implicit 

fractional 

Trapezoidal 

Absolute 

Errors 

explicite 

fractional 

Trapezoidal 

0 1.000000 0.000000 0.000000 0.000000 0.000000 

0.1 0.723578 0.038724 0.033786 0.029024 0.029987 

0.2 0.643788 0.025795 0.021898 0.019893 0.019979 

0.3 0.592018 0.013606 0.012463 0.009667 0.009857 

0.4 0.553606 0.010369 0.00969 0.007996 0.008215 

0.5 0.523157 0.009424 0.008609 0.006298 0.006758 

0.6 0.498025 0.008798 0.008184 0.005876 0.005956 

0.7 0.476703 0.007209 0.006546 0.005054 0.005286 

0.8 0.458246 0.00678 0.005323 0.004984 0.005054 

0.9 0.442021 0.00596 0.005046 0.003243 0.003554 

1.0 0.427584 0.00408 0.003928 0.002847 0.002998 

 

Example (2.4) . [44] The second example deal with the nonlinear 

equation  

          
αD у(t)  

 

2

2

2
= y t ,

t 1



 y(0) = 2, where0 < α 1.      (2.14) 

 







Chapter Two                                                                              Derivation and Numerical  

                                                                                            Solution of FODEs Using LMMs 

 

 

 44 

Table (2.5). Numerical values for Example (2.4) when = 0.5  and 

h=0.01. 

t 
Exact 

solution 

Absolute 

Errors 

explicite 

fractional 

Euler’s 

Absolute 

Errors 

implicit 

fractional 

Euler’s 

Absolute 

Errors 

implicit 

fractional 

Trapezoidal 

Absolute 

Errors 

explicite 

fractional 

Trapezoidal 

0 0.000000 0.000000 0.000000 0.000000 0.000000 

0.1 -0.090000 0.112765 0.105022 0.091132 0.09314 

0.2 -0.160000 0.110098 0.100212 0.090122 0.092176 

0.3 -0.210000 0.102565 0.100115 0.087662 0.088565 

0.4 -0.240000 0.095425 0.092214 0.072029 0.073245 

0.5 -0.250000 0. 096522 0.090423 0.070279 0.071001 

0.6 -0.240000 0.095769 0.088363 0.061433 0.062234 

0.7 -0.210000 0.08654 0.080811 0.058542 0.059461 

0.8 -0.160000 0.08023 0.076352 0.043644 0.044766 

0.9 -0.090000 0.07470 0.067672 0.033256 0.034121 

1.0 0.000000 0.05022 0.04812 0.012520 0.013224 

        

         While upon using the Variable Step Size Method in connection with 

the methods the explicite fractional Euler’s, the implicit fractional Euler’s, 

the implicit fractional Trapezoidal and the explicite fractional Trapezoidal 

which are presented in table (2.5) and table (2.6).  

 

 

 


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Table (2.6). Numerical values for Example (2.4) when = 0.5  with 

h=0.1 and =0.5.  

 

t 
Exact 

solution 

Absolute 

Errors 

explicite 

fractional 

Euler’s 

Absolute 

Errors 

implicit 

fractional 

Euler’s 

Absolute 

Errors 

implicit 

fractional 

Trapezoidal 

Absolute 

Errors 

explicite 

fractional 

Trapezoidal 

0 0.000000 0.000000 0.000000 0.000000 0.000000 

0.1 -0.090000 0.030651 0.029077 0.011022 0.012873 

0.2 -0.160000 0.023218 0.022120 0.010542 0.011644 

0.3 -0.210000 0.011678 0.010981 0.008732 0.008843 

0.4 -0.240000 0.010505 0.009643 0.007632 0.077454 

0.5 -0.250000 0. 009843 0.009122 0.007071 0.007112 

0.6 -0.240000 0.009277 0.008921 0.006621 0.006822 

0.7 -0.210000 0.008905 0.008010 0.006011 0.06243 

0.8 -0.160000 0.008021 0.007263 0.005121 0.005322 

0.9 -0.090000 0.007704 0.006971 0.004290 0.044322 

1.0 0.000000 0.006023 0.005511 0.003522 0.003722 




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Predictor-Corrector, 
Richardson Extrapolation AND 

VARIABIE ORDER METHODs FOR               
SOLVING FODEs 

 

Introduction 

           Sometimes, numerical methods for solving ODEs are more reliable 

than analytic methods, especially in solving FODEs, since such type of 

equations has some difficulties in their methods of solution, which could 

not be handled easily. 

This chapter consists of four sections. In section (3.1) the 

predictor-corrector method (PCM) for solving FODEs is presented. In 

section (3.2) the Richardson extrapolation method (REM) for solving 

FODEs is derived to improve the accuracy of the numerical results for 

solving FODEs by means of the second and third order methods. In 

sections (3.3) the variable order methods have been modified and 

introduced to solve numerically the FODEs. Finally, in section (3.4) an 

illustrative examples are considered in order to compare between the 

presented methods in this chapter. 

3   
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3.1 Predictor-Corrector Methods for Solving FODEs [16] 

        In this section, we will derive the fundamental algorithm that we 

have developed for the solution of IVPs with Caputo derivatives of the 

form   

         
C

0D y(x) f (x, y(x)), y(0) y , 0< 1.                                  (3.1) 

where C D y(x)  denotes the Caputo derivatives. The algorithm is 

generalization of classical Fractional Euler Method that is well known for 

the numerical solution of problems [25]. Our approach is based on the 

analytical properties that the IVPs will depends on. 

 As it is known, the Fractional Euler Method of PCM are explicit, 

linear, multistep techniques. Each successive member of the family has 

the higher order of convergence, and the family can be extended 

indefinitely. The Fractional Euler Method of PCM, can be similarly 

extended to an arbitrarily high order of convergence. This PCM combined 

method will be termed as Fractional Euler Method. For clarity, we will 

refer to the order of convergence of both the implicit Euler method 

predictor phase “explicit Fractional Euler Method”. [36]  

Now, the Fractional Euler Method of PCM can be constructed from 

the Fractional Euler Method (an explicit method) and the (an implicit 

method). 

First,  for the predictor step; starting from the correct value y0, 

calculate an initial value ny  via the explicit Fractional Euler Method: 

α
p c c

n+1 n n n

h
y (t ) = y (t ) + f (t , y (t ))

Γ(α +1)
  (3.2) 
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Next, for the corrector steps; improve the initial guess through 

iteration of implicit Fractional Euler Method: 

α
c c p

n+1 n n n+1

h
y (t ) = y (t ) + f (t , y (t ))

Γ(α +1)
  (3.3) 

Hence, the pair of Euler’s scheme for PCM is as follows 

P: 

α
p c c

n+1 n n n

h
y (t ) = y (t ) + f (t , y (t ))

Γ(α +1)
                              (3.4)                         

C: 
α

c c p

n+1 n n n+1

h
y (t ) = y (t ) + f (t , y (t ))

Γ(α +1)
                             (3.5) 

         This iteration may repeated for some fixed n-times or until the 

guesses converge to within some error tolerance : 

          |
p

ny   
p

n 1y  |   , n = 1, 2, 3, …   

 

    Similarly, the PCM for the pair fractional trapezoidal rule (an 

explicit method) and certain corrector method (an implicit method) is as 

follows. 

 P:
α

p c c c

n+2 n+1 n n n+1 n+1

h
y (t ) y (t ) f (t , y (t )) f (t , y (t ))

2Γ(α +1)
            (3.6) 

C:
α

c c p p

n+2 n+1 n+1 n+1 n+2 n+2

h
y (t ) = y (t ) + f (t , y (t )) f (t , y (t ))

2Γ(α +1)
   (3.7) 
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3.2 Richardson Extrapolation Method for Solving FODEs 

[21] 

        Let ny(x )  be the numerical solution at nx  obtained using certain 

numerical scheme say fractional Euler’s method for simplicity, which has 

an order one and let ny(x )  be the exact solution at 
nx . The numerical 

solution will depends on the step size h and therefore the error 

approximation may be extended using power series expansion in certain 

time step ih of the form  

            
α α

n n i i

i=1

y(x ) y (h ) a h


   

or equivalently 

           
α α

n n 1 i i

i=1

y(x ) y (h ) a h


                                                                              (3.8) 

Also, for another step size 2h  we have similarly 

            
α α

n n 2 i i

i=1

y(x ) y (h ) a h


                                                                              (3.9)  

multiply Eq. (3.8) by α

2h and Eq. (3.9) by α

1h and subtract  them, to get: 

          

α α α α α α α α α α

1 n 2 n 1 n 2 2 n 1 1 1 2 1 2

α 2α α 2α

2 1 2 2 1

h y(x ) h y(x ) h y (h ) h y (h ) a (h h h h )

a (h h h h ) ...

    

  
 

and so 

          

α α α α α 2α α 2α

1 n 2 2 n 1 2 1 2 2 2 1
n α α α α

1 2 1 2

h y (h ) h y (h ) a h h a h h
y(x )

h h h h

 
 

 
, 

α α

1 2h h  
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and to make the 
2αh  terms cancel, will implies to: 

         

α α α α
α α1 n 2 2 n 1

n 1 2α α

1 2

h y (h ) h y (h )
y(x ) O(h h )

h h


 


                                     (3.10) 

Eq. (3.10) 
α α

1 2O(h h ) is a higher order terms in 
α α

1 2h andh . Clear that Eq. 

(3.10) is a better approximation for ny(x ) . 

           As an illustration and for simplicity, let 1
1 2

h h
h h ,h

2 2
   , and 

therefore Eq. (3.10) will take the form:  

         

α
α 2α

n n n

h
y(x ) 2y ( ) y (h ) O(h )

2
                                              (3.11) 

        It is remarkable that Similarity to the above approach may be 

followed to obtain solution of higher order 3α 4αO(h ),O(h ),...  as we will 

show next . This approach for improving the accuracy is called REM. 

         Similarly, for the step size 0 1 2h , h andh , we have  

            
α α

n n 0 i i

i=1

y(x ) y (h ) a h


                                                             (3.12)                           

             
α α

n n 1 i i

i=1

y(x ) y (h ) a h


                                                            (3.13) 

             
α α

n n 2 i i

i=1

y(x ) y (h ) a h


                                                             (3.14) 

Multiplying Eq. (3.12) by α α

1 2h h  and Eq. (3.13) by  α α

0 2-3h h  and Eq. (3.14) 

by  α α

0 12h h . By combining the three equations, we get. 
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α α α α α α α α α α α α

2 3 n 1 3 n 1 2 n 2 3 n 1 1 3 n 2

α α α α α α α α α α α α 2α α α

1 2 n 3 1 1 2 3 1 1 2 3 1 1 2 3 2 1 2 3

α 2α α α α 2α 3α α α α 3α α α α 3

2 1 2 3 2 1 2 3 3 1 2 3 3 1 2 3 3 1 2 3

h h y(x ) 3h h y(x ) 2h h y(x ) h h y (h ) 3h h y (h )

2h h y (h ) a h h h 3a h h h 2a h h h a h h h

3a h h h 2a h h h a h h h 3a h h h 2a h h h

   

    

     α

 

 

 

 

α α α α α α α α α

2 3 n 1 1 3 n 2 1 2 n 3
n α α α α α α

2 3 1 3 1 2

2α α α α 2α α α α 2α

2 1 2 3 2 1 2 3 2 1 2 3

α α α α α α

2 3 1 3 1 2

3α α α α 3α α α α 3α

3 1 2 3 3 1 2 3 3 1 2 3

α α α α α α

2 3 1 3 1 2

h h y (h ) 3h h y (h ) 2h h y (h )
y(x )

h h 3h h 2h h

a h h h 3a h h h 2a h h h

h h 3h h +2h h

a h h h 3a h h h 2a h h h

h h 3h h 2h h

 


 

 




 


 

          

take 0h h , 
1

h
h

2
  and 2

h
h

4
 ; then 

          
2α α 2α α

α 2α

n n n

n 2α 2α
2α

4α 4α 5α 5α 5α
4α

2 3 3

2α 2α 2α 2α
2α 2α

h 3h h h
y (h ) y h y

8 4 2 4
y(x )

h 3h
h

8 4

h 3 h h h h
a h a 3a 2

8 16 16 8 32 128

h 3h h 3h
h h

8 4 8 4

   
    

    
 

  
 

          
             
          

   
      

   

 

  

          

2α α α 5α
α

n n n

n 2α 2α

3h 1 h 8 h 3h
y (h ) 2y y

8 3 2 3 4 64
y(x )

3h 3h

8 8

      
       

       
   
   
   
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2α α α
α

n n n 3α

n 2α

3h 1 h 8 h
y (h ) 2y y

8 3 2 3 4 3h
y(x )

83h

8

    
     

     
 
 
 

 

and to make the 3αh  terms cancel, we get: 

          

α α
α 3α

n n n n

1 h 8 h
y(x ) y (h ) 2y y O(h )

3 2 3 4

   
      

   
 

 

3.3 Variable Order Method for Solving FODEs [20]  

This method is considered as a generalization of REM using the 

FLMMs in connection with variable order methods used for solving ODEs 

to derive a new approach for solving FODEs with more accurate results. 

This method will be referred to as the variable order method for solving 

FODEs. 

Consider the FODEs: 

C
0D y(x) f (x, y(x)), y(0) y , 0< 1.       (3.15) 

In this investigation, approximation is studied for expectations of 

functions of the solution, i.e., 
ny(x )  that is, weak approximation. The 

weak error is defined as: 

α

ny(x ) y (h )   (3.16) 

The primary goal of this investigation is to prove that the variable 

order method has a weak error power series expansion of the form: 

α α 2α 3α

n 1 2 3y(x ) y (h ) a h a h a h ...       (3.17) 
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where a1, a2, … are some constants independent of 
αh  and by using 

several approximations 
α

0y(h ) ,
α

1y(h ) ,
α

2y(h )…; with 
α

0h > 
α

1h  > 
α

2h  > …; 

where 
α

0h , α

1h , 
α

2h , … are the step sizes.  

Now, to successively eliminate the terms in the error expansion, 

thereby producing approximations using methods of higher order. The 

sequence of step sizes used was 
α

α

j

h
h =

2
; j  0, 1, 2, …; where h is some 

starting step size. If a1 in Eq. (3.17) is not zero, then the approximation 

scheme
ny(x ) is only of order h. To obtain approximations of order 

2αh , 

and we proceed as follows: 

Find the weak error expansion using two different step sizes α

0h and 

α

1h , such that 
α α

1 0h < h , as follows: 

          
α α 2α 3α

n 0 1 0 2 0 3 0y(x ) y(h ) a h a h a h ...           (3.18) 

          
α α 2α 3α

n 1 1 1 2 1 3 1y(x ) y(h ) a h a h a h ...                                      (3.19) 

and upon subtracting α

0h  times the second equation from α

1h  times the first 

equation and solving for 
ny(x ) , one may get: 

           

α α α α α α α α α α

1 n 0 n 1 0 0 1 1 0 1 1 0 1

α 2α α 2α

2 1 0 2 0 1

h y(x ) h y(x ) h y(h ) h y(h ) a h h a h h

a h h -a h h ...

    

 
 

and upon eliminating the terms involving a1, we obtain: 

           

α α α α α 2α α 2α

1 0 0 1 2 1 0 2 0 1
n α α α α

1 0 1 0

h y(h ) h y(h ) a h h a h h
y(x )

h h h h

 
 

 
, 

α α

1 0h h  

Thus, letting: 
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   α α α αα α α α

2 1 0 1 01 0 0 1
n α α α α

1 0 1 0

1 a h h h hh y(h ) h y(h )
y(x )

h h h h

 
 

 
 

and also 

           

α α α α
α α1 0 0 1

n 2 1 0

1 0

h y (h ) h y (h )
y(x ) = a h h

h h





 

Therefore, and to make the 2αh  terms cancel, we get: 

          

α α α α
α α1 0 0 1

n 0 1α α

1 0

h y(h ) h y(h )
y(x ) O(h h )

h h


 


 

         

α α
α α α1 0
1 0 1α

0

α

1

y(h ) y(h )
y(h ) O(h h )

h
1

h


  



 

where 
α α

0 1O(h h ) is higher order terms in
α α

0 1h andh  

Thus, letting 

 

         

α α
α α α α1 0

1 0 1 1 0α

0

α

1

y(h ) y(h )
y (h ) y(h ) O(h h )

h
1

h


  



 

that is an O(
2
0h 

) approximation to ny(x ) . Since α α

1 0h < h and any two 

pair 
α α

j j+1h ,  h  may be used in the above elimination process, one may 

see that in general:  

        

α α

j+1 jα α 2α

1 j j+1 α

j

α

j+1

y(h ) y(h )
y (h ) y(h ) O(h )

h
1

h


  



                                                 (3.20) 

which is also an O( 2
jh  ) approximation to ny(x ) . Now, we have: 
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α α α α α α α

n 1 0 2 0 1 3 0 1 0 1

α α 2α α α 2α

4 0 1 0 1 2 2

y(x ) y (h ) a h h a h h (h h )

a h h (h h h h ) ...

   

   
 

and 

        

α α α α α α α

n 1 1 2 1 2 3 1 2 1 2

α α 2α α α 2α

4 1 2 1 1 2 2

y(x ) y (h ) a h h a h h (h h )

a h h (h h h h ) ...

   

   
 

and upon eliminating the terms involving a2, we obtain: 

        
α α α α α α α α α α

n 2 1 3 0 1 2 4 0 1 2 0 1 2y(x ) y (h ) a h h h a h h h (h h h ) ...       

where  

           

α α
α α 3α1 1 1 0

2 0 1 0 α

0

α

1

y (h ) y (h )
y (h ) y (h ) O(h )

h
1

h


  



 

which is an O( 3h  ) approximation to ny(x ) . More generally: 

           

α α

1 j+1 1 jα α 3α

2 j 1 j α

j

α

j+1

y (h ) y (h )
y (h ) y (h ) O(h )

h
1

h


  



                                                       (3.21) 

        Similarly, continuing in this manner, the following recursively 

sequence may be derived: 

             
α α

0 j jy (h ) y(h ) , 

            

α α

n-1 j+1 n-1 jα α

n j n-1 j+1 α

j

α

j+1

y (h ) y (h )
y (h ) y (h )

h
1

h


 



 .                                                      (3.22) 

for all n  1, 2, …; j  0, 1, … 
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 On the basis of the results for 
α

jy(h ) and 
α

2 jy (h ) , it seems that 

α

n jy (h )  provides an O(
(n+1)α
jh ) approximation to ny(x ) . This may be 

verified directly by following the evolution of the general term an 
nαh  

in the error expansion, but is perhaps obtained more easily by the 

following alternative approach obtained from Eq. (3.22) and (2.26), 

which is given in the following table: 

Level O( jh
) O(

2

jh 
) O(

3

jh 
) O(

4

jh 
)  

0 
α

0 0y (h )      

1 
α

0 1y (h )  
α

1 0y (h )     

2 
α

0 2y (h )  
α

1 1y (h )  
α

2 0y (h )    

3 
α

0 3y (h )  
α

1 2y (h )  α

2 1y (h )  α

3 0y (h )   

      
 

3.4 Numerical Examples 

In this section, two example will be given for comparing purposes 

between the different proposed methods. 

Example (3.1) [46] Our first example deals with the homogeneous linear 

FODEs.  

              αD y t = -y t , y 0 =1, t ≥ 0, 0 < α 1                                   

The exact solution of Eq. (2.13) is given by  

             α

αy t = E -t  
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Where 
αE  is the mittag-leffler  function. 

Table (3.1). Numerical values for Example (3.1) when α = 0.5  and 

h=0.01, n = 10, 0.5  . 

t 

Absolute 

Errors 

PCM of 

Euler’s 

Absolute 

Errors 

PCM of 

Trapezoidal 

Absolute 

Errors REM 

O(
2h 

) 

Absolute 

Errors REM 

O(
3h 

) 

Absolute 

Errors 

Variable 

order 

0 0.000000 0.000000 0.000000 0.000000 0.000000 

0.1 0.039874 0.027654 0.146547 0.132871 0.139775 

0.2 0.026578 0.015689 0.131756 0.119321 0.128564 

0.3 0.017699 0.003311 0.094786 0.092876 0.093765 

0.4 0.008754 0.004234 0.072163 0.071002 0.071876 

0.5 0.007592 0.003966 0.062386 0.061988 0.620125 

0.6 0.005538 0.003678 0.053297 0.051787 0.052765 

0.7 0.004679 0.003076 0.032265 0.030889 0.031668 

0.8 0.003434 0.002867 0.027954 0.025129 0.026118 

0.9 0.002387 0.001765 0.019817 0.017776 0.018556 

1.0 0.001765 0.001243 0.009781 0.008385 0.009088 

 

Example (3.2)   [46] The second example deal with the nonlinear 

equation  

αD у(t)  
 

2

2

2
= y t ,

t 1



  y(0) = 2, where0 < α 1           (3.23) 
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Table (3.2). Numerical values for Example (3.2) when = 0.5  and 

h=0.01, n = 10, 0.5  . 

t 

Absolute 

Errors 

PCM of 

Euler’s 

Absolute 

Errors 

PCM of 

Trapezoidal 

Absolute 

Errors REM 

O(
2h 

) 

Absolute 

Errors REM 

O(
3h 

) 

Absolute 

Errors 

Variable 

order 

0 0.000000 0.000000 0.000000 0.000000 0.000000 

0.1 0.026543 0.015777 0.107112 0.102434 0.106542 

0.2 0.017432 0.010229 0.102356 0.098775 0.101987 

0.3 0.015743 0.009466 0.099212 0.092245 0.098321 

0.4 0.012547 0.007443 0.091001 0.087321 0.090122 

0.5 0. 010211 0. 007060 0.090988 0.086752 0.090002 

0.6 0.009653 0.005221 0.089962 0.080211 0.087865 

0.7 0.007223 0.004552 0.082765 0.079443 0.080234 

0.8 0.005887 0.002234 0.073987 0.067882 0.072987 

0.9 0.003876 0.001088 0.072335 0.053217 0.071876 

1.0 0.001665 0.000989 0.048342 0.044876 0.047844 

 





61 

 

References 

[1] Ali S. M., “Some Approximate Solutions of Fractional Integro-

Differential Equations”, M.Sc. Thesis, College of Science, Al-

Nahrain University, 2010. 

[2] Ab Al-Qahar, S. W., "Numerical Solution of Delay Differential 

Equations Using Linear Multistep Methods", M.Sc. Thesis, 

College of Science, Al-Nahrain University, 2004. 

[3] Ahamed E., El-Sayed A. M. A., and El- Saka H. A. A., 

"Equilibrium Points Stability and Numerical Solutions of 

Fractional- Order Predator- Prey and Vibies Models", Journal 

of Mathematical Analysis and Applications, 325(1), pp. 542-

553, (2007).    

[4] Caponetto R., Dongola G., Fortuna L., and Petráŝ I., "Fractional 

Order Systems Modeling and Control Applications", World 

Scientific Publishing Co. Pte. Ltd, New Jersey, London, 

Singapore, and Hon Kong, Vol.72, 2010. 

[5] Caputo M., "Linear Models for Dissipation in Elastic Solids", 

Rivistadel, Nuovo Girneto, 1, 161-198, 1971. 

[6] Carpinteri A.and Mainardi F., "Fractals and fractional calculus 

in continuum mechanics", Springer Verlag, Wien, New York, 

(1997). 

[7] Celik E., Karaduman E. and Bayram M., "A numerical Method 

to solve chemical differential- algebraic equations", 



references 

62 

 

Intemational Joumal of Quantum Chemistry, 89, pp.447-451, 

(2002). 

[8] Chen Y.Q., " Fractional-Order Systems and Controls 

Fundamentals and  Applications" , Springer-Verlag London 

Limited (2010). 

[9] C. Lubich, Discretized fractional calculus, SIAM J. Math. Anal. 

17 (3) (1986) 704–719. 

[10] Damarla S. K. and Kundu K. , "Numerical Solution of 

Fractional Order Differential-Algebraic Equations Using 

Generalized Triangular Function Operational Matrices", 

Journal of Fractional Calculus and Applications, 6(2)  pp.31-52, 

(2015). 

[11]  Debnath L., and Bhatta D., "Integral Transforms and Their 

Applications", Second Edition, Chapman and Hall/CRC, 

London, New York, 2007. 

[12] Deng W. and Li C. P., "Analysis of Fractional Differential 

Equations with Multi- Orders", Fractals, 15(2) pp. 173-182, 

(2007). 

[13] Dielthelm, K. "Analysis of Fractional Differential Equations", 

Department of Mathematics, University of Manchester, 

England, 1999. 

[14] Ding X. L. and Jiang Y. L. , "Waveform Relaxation Methods 

for Frational Differential-Algebraic Equations", Fract. Calc. 

Appl. Anal, 17, pp. 585-604, (2014). 



references 

63 

 

[15] Haubold H.J, "Mittag-leffler function and their applications”,  

909. 0230. Vol.2, MathCA , (2009).  

[16] Hayes A. P.,"The Adams-Bashforth-Moulton Integration 

Method Generalized To An Adaptive Grid" University of 

Maine,120 Benntt Hall, Orono , Maine 4469-5709, USA and 

rew .  

[17] He J. H., Approximate solution for seepage flow with fractional 

derivatives in porous media, Comput. Methods Appl. Mech. 

Energy., 167, pp.57-68, (1998). 

[18] Hilfer R., "Fractional Calculus in Physics", First Edition, World 

Scientific Publishing, Singapore, New Jersey, London and 

Hong Kong, 2000. 

[19] Ibis B., Bayram M., Numerical comparison of methods for 

solving fractional differential- algebraic equations (FDAEs), 

Computers & Mathematics with Applications, 62(8),pp.3270-

3278, (2011). 

[20] James L. Buchanan and Peter R. Turner, “Numerical Methods 

and Analysis”, McGraw- Hill, Inc., 1992. 

[21] Jaradat H. M., Zurigat M., and Safwan A. S., " Toward a New 

Algorithm for Systems of Fractional Differential- Algebraic 

Equations", Italian Journal of Pure and Applied Mathematics, 

Vol. 32, pp. 579-594, (2014) 

[22] Kaczorek, T. ,"Descriptor Fractional Linear Systems with 

Regular Pencils", Asian Journal of Control 15(4),pp. 1–14, 

(2012).  



references 

64 

 

[23] Kazem S., "Exact solution of some linear fractional differential 

equations by laplace transform", Tnternational Journal of 

Nonlinear Science, 16 (1) pp. 3-11, (2013). 

[24] Kloeden P. E, Platen E. and Schurz H., "Numerical Solution of 

Stochastic Differential Equations through Computer 

Experiments", Springer-Verlag, Berlin, (1997). 

[25] Kunkel P.,and Mehrmann V., "Differential- Algebraic 

Equations Analysis and Numerical Solutions", Europian 

Mathematical Society, (2006). 

[26] Kurulay M. and Secer A., "Variational Iteration Method for 

Solving Nonlinear Fractional Integro-Differential Equations", 

International Journal of Computer Science and Emerging 

Technologies, Vol.2, pp. 18-20, (2011). 

[27] Li C.P. and Deng WH., "Remarks on fractional derivatives", 

Appl. Math. Comput., 187,pp.777-784, (2007). 

[28] Li Y., Chen Y., and Podlubny I., "Mittag- Leffler Stability of 

Fractional Order Nonlinear Dynamic Systems", Automatically, 

45, pp. 1965-1969, (2009). 

[29] Loverro A., "Fractional Calculus: History, Definitions and 

Applications for the Engineer", IN 46556, U.S.A., May 8, 

(2004). 

[30] Mainardi F., Fractional calculus: Some basic problems in 

continuum and statistical mechanics, in: A. Carpinteri, F. 

Mainardi. (EDS.), Fractals and Fractional Calculus in 



references 

65 

 

Continuum Mechanics, Springer, New York, pp. 291-348, 

(1997). 

[31] Mariya K. I., "Properties and Applications of the Caputo 

Fractional Operator", Master Thesis, Universitat Karlsruhe 

(TH), (2005). 

[32] Matar M., "Boundary Value Problem for Fractional Integro-

Differential Equations with Nonlocal Conditions", International 

Journal of Open Problems Compt. Math., Vol.3, No.4, pp. 481-

429, December, (2010). 

[33] Matignor D., " Stability Properties for Generalized Fractional 

Differential System", Proc. Of ESAIM, 5, pp. 145-158, (1998). 

[34] Miller K. and Ross B., An introduction to the fraction calculus 

and fractional differential equations, John Wiley & Sons Inc., 

New York, (1993). 

[35] Momani S., Jameel A. and Al-Azawi S., "Local and Global 

Uniqueness Theorems of Fractional Integro-Differential 

Equations Via Biharis and Grunwalls Inequalities", pp. 619-

627, (2007). 

[36] Moulton, F. R, "New Methods in Exterior Ballistics", 

University of Chicago, pp 721- 331, (1926). 

[37] Munkhammar J. D., Fractional calculus and the Taylor- 

Riemann series, Undergraduate Math. Journal, 6, pp.1-19, 

(2005). 



references 

66 

 

[38] Nishimoto K., " Fractional Calculus: Integrations and 

Differentiations of Arbitrary Order", Descartes Press Co. 

Koriyama Japan, (1983). 

[39] Oldham K. B. and Spanir J., "The Fractional Calculus", 

Academic Press, New York and London, (1974). 

[40] Podlubny I., Fractional differential equations: an introduction to 

fractional derivative, fractional differential equation, to 

methods of their solution and some of their applications, 

Academic Press, New york, (1999). 

[41] P. H. M. Wolkenfelt, "Linear mulstistep methods and the 

construction of quadrature formulae for volterra integral and 

integro-differential equations", Tech. Rep. NW 76/79, 

Mathematisch Centrum, Amsterdam (Netherlands) (1979). 

[42] Roberto Garrappa., “Trapezoidal methods for fractional 

differential equations theoretical and computational aspects” 

Universit`a degli Studi di Bari, Italy (2013) 

[43] Samko S. G., Kilbas A. A. and Maricher O. I., "Fractional 

Integrals and Derivatives: Theory and Applications", Gorden 

and Breach Science Publishers, Switzerland, (1993). 

[44] Yan L., Yang Q. C. and Hyo-Sung A.," Fractional-Order 

Iterative Learning Control for Fractional-Order Systems" 

,Asian Journal of Control 13(1),pp.54–63, (2011).  

[45] Yan S. P., Jafari H., and Jassim H. K., "Local Fractional 

Adomian Decomposition and Function Decomposition Method 

for Solving Laplace Equation within Local Fractional 



references 

67 

 

Operators", Advances in Mathematical Physics, Article ID 

161580, 2014, pp. 1-7, (2014). 

[46] Zaid M. Odibat, And Shaher Momani, “An Algorithm For 

The Numerical Solution of Differential Equations of 

Fractional Order” J. Appl. Math. & Informatics, pp. 15-27 

(2008). 

[47] Zurigat M, Mamani S. and Alawneh A., Analytical approximate 

solutions of systems of fractional algebraic- differential 

equations by homotopy analysis method, Comput. Math. Appl., 

59(3), pp.1227-1235, (2010). 

[48] Wang W. H., "An Effective Method for Solving Fractional 

Integro-Differential Equations", Acta Universitatis Apulensis, 

No.20, pp. 229-235, (2009). 

 

  



60 

 

CONCLUSIONS AND RECOMMENDATION  

 

            The fundamental objective of this work has been to construct 

a numerical scheme to the numerical solution of the linear and 

nonlinear (FODE,s). Those objective has been obtained by using the 

submitted Modified Fractional Euler’s method. From the results or the 

table (2.1) to (2.5) we can see the accuracy of the optioned used 

approaches and there are step size methods, in which the efficiency of 

the results is increased, and more precisely. the Variable Step Size 

Method approximate solution in this case is in high agreement with 

the exact solution. 

           As a results of the table (3.1) and (3.2) we can see that the PCM 

is very high in accuracy, which is the most accuracy of all methods. 

The REM gives a good result, but on other hand the Variable order 

method gives more accuracy results than REM.  

 

          For future work the following problems could be recommended: 

1- Solve the initial value problem given by equations (2.1) by using 

Runge-Kutta method. 

2- Derive methods that highest order. 

3- Solve FODEs with multiple order. 

4- Solve system of FODEs. 

 

 



 

 

 الخلاصة

 

من دالة  كسريةالمشتقات والتكاملات لرتب  لحسابهو موضوع  كسريحساب التفاضل ال

حل المعادلات التفاضلية هو دراسة لا موضوع، الكسريةلمعادلات التفاضلية لمعينة، 

للرتب الكسري، التي تحتوي على شرط أولي أو حدودي. حل المعادلات التفاضلية ذات 

الرتب الكسرية لديها الكثير من الصعوبات في الحل التحليلي، وبالتالي قد تكون الطرق 

هذا ولذلك، فإن الهدف الرئيسي من  الطريقة المناسبة للحل. هيالعددية في معظم الحالات 

ذات الرتب الكسرية  عتياديةالعمل هو دراسة الحل العددي للمعادلات التفاضلية الا

نشر متسلسلة تايلر طريق الاستفادة من  نع متعددة الخطوات الخطية طريقةباستخدام 

. وبالإضافة إلى ذلك، تم تحسين النتائج العددية باستخدام العديد من النهج، مثل الكسرية

ريكاردسون طريقة  التخمين والتصحيح،، طريقة الخطوة المتغيرة طريقة حجم  طريقة 

بت باستخدام البرمجيات الرياضية  ماتلاب الحسابات كت.متغير الرتبةوطريقة للاستكمال 

أ.16
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