
                 Republic of Iraq 

       Ministry of Higher Education 

           and Scientific Research  

               University of Baghdad  

College of Education for Pure Science, 

                  Ibn Al-Haitham 

 

 

Efficient Method for Solving Some Types of 

Partial Differential Equations   

 

 

A Thesis 

Submitted to the Department of Mathematics, College of Education for 

Pure Science- Ibn Al-Haitham, University of Baghdad as Partial  

Fulfillment of Requirements for the Degree of 

 Master of Science in Mathematics 
 

By 

Myasar Obaid Enadi 

Supervised By 

Prof. Dr. Luma Naji Mohammed Tawfiq            

 
 

 

AC                                                                      1440 AH  2019 
 



 

 

 بسم الله الرحمن الرحيم

 

وَقاَلَ رَبِّ أَوْزعِْنِي أَنْ أَشْكُرَ نعِْمَتَكَ الَّتِي أنَْ عَمْتَ عَلَيَّ وَعَلَى وَالِدَيَّ وَأَنْ 
  ﴾19﴿ كَ فِي عِبَادِكَ الصَّالِحِينَ أَعْمَلَ صَالِحًا تَ رْضَاهُ وَأَدْخِلْنِي بِرَحْمَتِ 

 صدق الله العظيم

 

  (19)الآية  سورة النمل                                                   







 

 

 

 

 

يدنا محمد والصلاة والسلام على أشرف المرسلين س الحمد لله على نعمه التي لا تعد ولا تحصى

 وأله الطيبين الطاهرين 

 في نهاية رسالتي اهدي ثمرة جهدي المتواضعة 

الحياة مصاعب من أجلهم تهون الذين إلى  

من أجلهم تستحق الحياة الذين إلى   

"العائلة الكريمة  "حبهم في القلب فكانوا الهواء والنبض  سكنإلى من   

لمى ناجي محمد توفيق"الدكتور " الأستاذرسالتي على  اني بإشرافهتإلى من شرف  

ولتوجيهاتها العلمية يعل الكبيرصبرها لحروف لإيفائها حقها الالتي لن تكفي   

خالص ؛كما أتوجه ب العمل نجازبشكل كبير في إتمام و ا التي ساهمت التي لا تقدر بثمن و

 شكري و تقديري

 إلى بيارق العلم والمعرفة أساتذتي الأفاضل

في فترة دراستيإلى كل من ساعدني    

 الباحث  

داءـالإه     



 

 

 

 

            To “ALLAH” and to his prophet “Mohammed”, my praise and thanks are due 

for their blessings without which this research would not have been achieved 

without their blessings. It is pleasure to express my deep appreciation to my 

supervisor Prof. Dr. Luma Naji Mohammed Tawfiq for her invaluable advice, 

assistance, cooperation, and support throughout the course of preparing my thesis.  

        I dedicate this work to my dear parents and my wife for their financial and 

moral support throughout the study period, and thank them so much. 

     I would like to thank everyone who helped me and stayed by my side 

throughout the study period from my family, friends and teachers. 

 

 

                                                                                                   Researcher 

Acknowledgements 

 



 

 

 

 

Journal Papers 

1. Enadi, M. O., and Tawfiq, L.N.M., 2019, New Technique for Solving 

Autonomous Equations, Ibn Al-Haitham Journal for Pure and Applied Science, 

32(2), p: 123-130,  Doi: 10.30526/32.2.2150 

2. Enadi, M. O., and Tawfiq, L.N.M., 2019, Solving Systems of Non-linear 

Partial differential Equations by Using Coupled Method, International Journal 

of Modern Mathematical Sciences, 17(1), p: 68-77. 

3. Enadi, M. O., and Tawfiq, L.N.M., 2019, New Approach for Solving Three 

Dimensional Space Partial Differential Equation, Baghdad Science Journal, 

16(3), p: 786-792, Doi: http://dx.doi.org/10.21123/bsj.2019.16.3(Suppl.).0780.  

4. Enadi, M. O., and Tawfiq, L.N.M., 2019, Using New Coupled Method for 

Solving System of Nonlinear Wave Equation, Computers and Mathematics with 

Applications, Elsevier, Under review. 

  

 Author’s Publications 

   



 

 

 

 

 

 

 

Symbol Definition 

ADM Adomian Decomposition Method 

An Adomian Polynomials 

BCs Boundary Conditions 

BVP Boundary Value Problem 

CuTBs Cubic Trigonometric Bspline 

DTM Differential Transform Method 

Eq. Equation 

Eqs. Equations 

Figs. Figures 

HAM Homotopy Analysis method 

Hn He Polynomials 

HPM Homotopy Perturbation Method 

iD-PDEs 

i=1,2,3,4 
i dimensional Partial differential equations,  i=1,2,3,4 

ICs Initial Conditions 

IVP Inatial Value Problem 

KdV Korteweg-deVries 

LT Laplace Transformation 

MHPM Modified Homotopy Perturbation Method 

Non-Linear Linear and Nonlinear 

NT New Transformation 

NTHPM New transform homotopy perturbation method 

 List of Symbols and Abbreviations 

 



 

 

 

 

ODEs Ordinary Differential Equations 

PDEs Partial Differential Equations 

RLW Real Like Wave 

t Time 

VIM Variational Iteration Method 

𝑓 ̅ New transform for the function f 

Ω Omega 

𝕋 New Transformation 

𝛤 Gamma 

‖ ‖ Norm 



 

 

 

 

Subject 
Page 

No. 

Abstract I 

Introduction 1 

1 Chapter One : Preliminaries   6 

 1.1 Introduction 6 

1.2 Overview of Differential Equations  6 

1.3 Some Basic Concepts of the Homotopy Perturbation 

Method   

9 

1.4 New Transformation   15 

 1.4.1 Definition of New Transformation  15 

1.4.2 The General Properties of the New 

Transformation  

16 

1.4.3 The Advantages of the New Transformation   17 

2 Chapter Two : Couple New Transform with HPM to Solve 

Some Types of Partial Differential Equations   

20 

 2.1 Introduction 20 

2.2 New Transformation – Homotopy Perturbation Method  20 

2.3 Solve Linear PDEs by NTHPM  21 

2.4 Illustrative Application  24 

2.5 Solve Nonlinear PDE by NTHPM  27 

2.6 Applications  29 

2.7 Solve Automatous Equation by NTHPM 35 

2.8 Illustrative Examples  38 

2.9 Convergence of the Solution for Linear Case  42 

2.10 Convergence of the Solution for Nonlinear Case     45 

Contents    



 

3  Chapter Three : Solving System of Partial Differential 

Equations by New Couple Method 

 

 3.1 Introduction  49 

3.2 Solving System for 2Equation Nonlinear PDEs by 

NTHPM 

50 

3.3 Illustrative Examples for System of 1D-PDEs 54 

3.4 Illustrative Examples for System of 2D-PDEs 60 

3.5 Solving System for 3Equations Nonlinear 1D-PDEs  69 

3.6 Convergence for the Series Solution                        80 

4 Chapter Four: Application Model  84 

 4.1 Introduction  84 

 

4.2 Formulation Mathematical Model        84 

4.3 Solving Model Equation by the NTHPM  89 

4.4 Experiment Application  92 

 

5 Chapter Five : Conclusions and Future Work  101 

 5.1 Conclusions  101 

5.2 Future Works  103 

References 105 

 



I 
 

 

 

 

 

      In this thesis, a new method based on a combined form of the new transform 

with homotopy perturbation method is proposed to solve some types of partial 

differential equations, for finding exact solution in a wider domain. It can be used 

to solve the problems without any discretization, or resorting to the frequency 

domain or restrictive assumptions and it is free from round-off errors. This method 

is called the new transform homotopy perturbation method. 

     In this thesis, we focuse on some basic concepts of the partial differential 

equations.The first objective is implement suggested method in order to solve 

some types of PDEs with initial condition such that: Klein-Gordan equation, wave-

like equations, autonomous equation, system of two or three non-linear equations, 

Burgers' equations, coupled Hirota Satsuma KdV type II, and RLW equation. 

Finally, The proposed method is used to solve application model which is soil 

moisture equation where traditional HPM leads to an approximate solution. The 

second aim which is the convergence of the series solution is studied, the series 

solution converge to to the exact form is proved.Some examples are provided to 

illustrate the reliability and capability of the suggested method.The practical results 

Abstract    



II 
 

show that the proposed method is efficient tool for solving those types of partial 

differential equations.  
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     Many phenomena that arise in mathematical physics and engineering 

fields can be described by partial differential equations (PDEs). In physics for 

example, the heat flow and the wave propagation phenomena are well 

described by PDEs [45,55]. So, it is a useful tool for describing natural 

phenomena of science and engineering models. Most of engineering 

problems are nonlinear PDEs, and it is difficult to solve them analytically. 

The obtaining of the exact solution of nonlinear PDEs in physics and 

mathematics is still a significant problem that needs new efficient 

implemented methods to get exact solutions. Various powerful mathematical 

methods have been proposed for obtaining exact and approximate analytic 

solutions. Some of the classic analytic methods are perturbation techniques 

[8] and Hirota’s bilinear method [46]. Perturbation techniques were generated 

useful solutions in describing both quantitative and qualitative properties of 

the problem, which is an advantage compared to numerical solutions. 

However, some drawbacks were obvious for complex equations due to either 

such parameters cause a divergence of solutions as the quantities 

increase/decrease, or the non-existence of small or large perturbation 

Introduction   
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parameters. In problems where these quantities do not exist, the parameter 

has to be artificially introduced which may lead to incorrect results [17]. 

Perturbation techniques are therefore found to be mainly suitable for weakly 

nonlinear problems. 

      In recent years, many researchers have paid attention to study the 

solutions of non-linear PDEs by using various methods. Among these are the 

Adomian Decomposition Method (ADM) [2,38,39], tanh method, Homotopy 

Perturbation Method (HPM) [43], Homotopy Analysis Method (HAM) [35], 

the Differential Transform Method (DTM) [9], Cubic Trigonometric B-

Spline Method [29,30], Laplace Decomposition Method [26,43], Variational 

Iteration Method (VIM) [37, 56], parallel processing [39,40,49] and semi 

analytic technique [41, 42, 48, 50].  

     In this thesis we suggested a new method based on combine two efficient 

methods to get exact solution for some types of PDEs such autonomous 

equation which describes the appearance of the stripe pattern in two 

dimensional systems. Moreover, this equation was applied to a number of 

problems in variety systems, e.g., Rayleigh-Benard convection, Faraday 

instability, nonlinear optics, chemical reactions and biological systems. The 

approximate solutions of the autonomous equation were presented by 
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differential transformation method [1], reduce differential transformation 

[31].  

       The system of PDEs arises in in many areas of mathematics, engineering 

and physical sciences. These systems are too complicated to be solved 

exactly so it is still very difficult to get exact solution for most problems. A 

vast class of analytical and numerical methods has been proposed to solve 

such problems. But many systems such as system of high dimensional 

equations, the required calculations to obtain its solution in some time may 

be too complicated.  Recently, many powerful methods have been presented, 

such as the coupled method [27,30]. Herein we solved such systems by 

proposed method and we get exact solution without using computer 

programming and calculating.   

This thesis is organized as follows:  

In Chapter one, a brief review of basic definitions and concepts relate to the 

work is introduced. It includes an overview of PDEs and their types. 

Chapter two contains the implementation of proposed method based on 

coupled two efficient methods such Homotopy Perturbation Method (HPM) 

and new transform defined by Luma and Alaa in [51], that we will say the 

New Transform Homotopy Perturbation Method (NTHPM) for obtaining 

exact solutions to some types of PDEs such as:  Klein-Gordan equation, 
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wave-like equations, autonomous equation, 3D-PDEs, and other 3rd order 

PDEs.  

Chapter three contains the implementation of NTHPM for solving some types 

of system of PDEs. The efficiency of the proposed method is verified by the 

examples. The convergence of series solution to the exact analytic solution 

function is proved. 

In chapter four the proposed method are successfully implemented to solve 

1D, 2D, and 3D soil moisture model equation to determine the moisture 

content in soil.   

Finally, in chapter five the conclusions and future works are given. 
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1.1. Introduction  

      This chapter includes some basic definitions and concepts related to the 

problems for this thesis. An overview of differential equations and their types is 

introduced. In addition, we review some traditional techniques such as HPM for 

solving partial differential equations, for comparison with the proposed approach 

NTHPM illustrated by examples. 

1.2. Overview of Differential Equations  

    Differential equations are used in different field of science and engineering. It's a 

relation involving an unknown function (or functions say dependent variables) of 

one or several independent variables and their derivatives with respect to those 

variables. Many real phenomena in various fields such as engineering, physical, 

biological and chemical are modeled mathematically by using differential equations 

[47, 48, 50, 60]. Commonly, most real science and engineering processes including 

more than one independent variable and the corresponding differential equations 

are called partial differential equations (PDEs). However, the PDEs have been 

reduced to ordinary differential equations (ODEs) using simplified assumptions. 

Chapter One 

Preliminaries 
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Where ODE is a differential equation for a function of single independent variable 

[47].  

       The order of a PDE is the order of the highest partial derivative that appears in 

the equation. A PDE s are classified as homogeneous or inhomogeneous. A PDE of 

any order is called homogeneous if every term of the PDE contains the dependent 

variable or one of its derivatives; otherwise, it is called an inhomogeneous PDE 

[55]. 

     In research field, there are several types of PDEs which depends on the 

application that are used. Each application has its own special governing equations 

and properties that should considered individually. 

 A PDE is called linear if the power of the dependent variable and each partial 

derivative contained in the equation is one and the coefficients of the dependent 

variable and the coefficients of each partial derivative are constants or independent 

variables. However, if any of these conditions is not satisfied, the equation is called 

nonlinear [55].   Also, it can consider a semi linear, if it is linear in partial 

derivative only. In addition, it can consider a quasi linear, if it is linear in the first 

partial derivatives or it is nonlinear in dependent variable [60].   

     The general form of quasi linear 2nd order inhomogeneous PDE with two 

independent variables can write as [Hoffman, 2001]:[55]  

    𝐴𝑢𝑥𝑥 + 𝐵𝑢𝑥𝑦 + 𝐶𝑢𝑦𝑦 + 𝐷𝑢𝑥 + 𝐸𝑢𝑦 + 𝐹𝑢 = 𝐺                                   (1.1)  

Where A, B, C, D, E, and F are the coefficients and the inhomogeneous term G 

may depend on x and y. The above equation (1.1) can be classified to:  
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1) Elliptic, when 𝐵2 − 4𝐴𝐶 < 0;  

2) Parabolic, when 𝐵2 − 4𝐴𝐶 = 0;  

3) Hyperbolic, when 𝐵2 − 4𝐴𝐶 > 0. 

        A solution of a PDE is a function satisfies the equation under discussion and 

satisfies the given conditions as well. In order to find the solution of PDEs, initial 

and / or boundary conditions used to solve PDEs, so the PDEs with initial 

conditions (ICs) is said to be initial value problem (IVPs), the PDEs with boundary 

conditions (BCs) is said to be boundary value problems (BVPs), but the PDEs with 

initial and boundary conditions is said to be initial-boundary value problems, the 

boundary conditions (BCs) which can be classify into three types:[60]  

1) Dirichlet boundary condition: numerical values of the function are specific of 

the boundary of the region.  

2) Neumann boundary condition: specifies the values that the derivative of a 

solution to take on the boundary of the domain.  

3) Mixed boundary conditions: defines a BVP in which the solution of the given 

equation is required to satisfy different boundary conditions on disjoint parts of the 

boundary of the domain where the condition is stated. In effect, in a mixed BVP, 

the solution is required to satisfy the Dirichlet or Neumann boundary conditions in 

a mutually exclusive way on disjoint parts of the boundary.[60]  
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     An elliptic partial differential equation with mixed boundary conditions is called 

a Robbins problem [60].  

          Some types of differential equation, such as nonlinear differential equation 

cannot be easy to solve, so we use numerical or approximate solution. In this thesis 

we suggest an efficient method to solve important types of PDEs to get exact 

solution. 

We are beginning with Homotopy Perturbation Method (HPM). 

1.3. Some Basic Concepts of the Homotopy Perturbation Method 

       The HPM was first proposed by He J. Huan in 1999 [13] for solving 

differential and integral equations, non-linear and has been successfully applied to 

solve non-linear differential equations, and other fields for more details see [15]. It 

is a combine of traditional perturbation method with homotopy method and it 

suggested to overcome the difficulty arising in calculating Adomian polynomials. 

This method has many advantages such as it is applied directly to the nonlinear 

problems without linearizing the problem. In this section, some basic concepts of 

this method have been explained.  

Definition 1.1 [20] 

     Let X and Y are two topological spaces. Two continuous functions 𝑓: 𝑋 → 𝑌 and 

𝑔: 𝑋 → 𝑌  are said to be homotopic, denoted by ≈ 𝑔 , if  a continuous function 

𝐻: 𝑋 × [0,1] → 𝑌 ,such that: 

𝐻(𝑥, 𝑣) = 𝑓(𝑥), ∀𝑥 ∈ 𝑋 
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𝐻(𝑥, 1) = 𝑔(𝑥), ∀𝑥 ∈ 𝑋 

In this case, 𝐻 is said to be a homotopy. 

   Now, to illustrate definition (1.1), consider the following examples. 

Example 1.1[20] 

Let 𝑋and 𝑌 be any topological spaces, 𝑓 be the identity function and 𝑔 be the zero 

function, then define 𝐻: 𝑋 × [0,1] → 𝑌 by: 

𝐻(𝑥, 𝑝) = 𝑥(1 − 𝑝), ∀𝑥 ∈ 𝑋, ∀ 𝑝 ∈ [0,1] 

Then 𝐻  is a continuous function and 

𝐻(𝑥, 0) = 𝑥 = 𝑓(𝑥), ∀𝑥 ∈ 𝑋 

𝐻(𝑥, 1) = 0 = 𝑔(𝑥), ∀𝑥 ∈ 𝑋 

Therefore 𝑓 ≈ 𝑔 . 

Remark  

Let 𝑓: 𝑅 → 𝑅and 𝑔: 𝑅 → 𝑅 be continuous functions. Define  

𝐻: 𝑅 × [0,1] → 𝑅 by 

𝐻(𝑥, 𝑝) = (1 − 𝑝)𝑓(𝑥) + 𝑝𝑔(𝑥), ∀ 𝑥 ∈ 𝑅  ,∀ 𝑝 ∈ [0,1] 

Then, 𝐻(𝑥, 0) = 𝑓(𝑥), ∀𝑥 ∈ 𝑅  

and,𝐻(𝑥, 1) = 𝑔(𝑥), ∀𝑥 ∈ 𝑅  

Therefore ≈ 𝑔 . 

      Now, to illustrate the basic idea of the HPM, we consider the following 

nonlinear differential equation: 
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           A(u) f (x), x(1.2) 

where A is differential operator, f is a known function of x. The operator A can 

generally speaking be divided into two operators L and N, where L is a linear 

operator, and N is a nonlinear operator. Therefore equation (1.2) can be rewritten as 

follows: 

      L(u) N(u) f (x) 0 

According to [16], we can construct a homotopy H:[0,1]which satisfies 

the homotopy equation: 

𝐻(𝑣, 𝑝) = (1 − 𝑝)[𝐿(𝑣) − 𝐿(𝑢0)] + 𝑝[𝐴(𝑣) − 𝑓(𝑥)] = 0 

Or 

𝐻(𝑣, 𝑝) = 𝐿(𝑣(𝑥)) − 𝐿(𝑢0(𝑥)) + 𝑝𝐿(𝑢0(𝑥)) + 𝑝[𝑁(𝑣(𝑥)) − 𝑓(𝑥)] = 0         (1.3)  

where p[0,1], u0 is an initial approximation solution of equation (1.2). 

Obviously, from equation (1.3) we have: 

       H (v, 0) L(v) L(u0) 

       H (v,1) A(v) f (x) 0 

The changing process of p from zero to unity is just that of v(x, p) from u0(x) to 

u(x). 

Therefore, L(v) L(u0) A(v) f (x),    x  

and  u0(x) u(x) ,    x

Assume that the solution of equation (1.2) can be written as a power series in p as 

follows:  
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𝑣(x, p) = ∑ p𝑖∞
𝑖=0 vi(x) = 𝑣0 + 𝑝𝑣1 + 𝑝2𝑣2 + ⋯                                                   (1.4) 

Setting p =1 in equation (1.4), can get: 

𝑢(𝑥) =  ∑ v𝑖(x)

∞

𝑖=0

= lim
𝑝→1

𝑣 = 𝑣0 + 𝑣1 + 𝑣2 + ⋯                                                    (1.5) 

This is the solution of equation (1.2) 

      To illustrate the efficiency of method, consider the following examples. 

Example 1.2[55]  

Consider 2nd order linear homogeneous Klein-Gordan equation.  

𝑢𝑡𝑡 = 𝑢𝑥𝑥 + 𝑢𝑥 + 2𝑢     , −∞ < 𝑥 < ∞    ,   𝑡 > 0                                 

Subject to the IC: 𝑢(𝑥, 0) = 𝑒𝑥 ,  𝑢𝑡(𝑥, 0) = 0 

Using the HPM we have  

𝐻(𝑣, 𝑝) = (1 − 𝑝)(𝑣𝑡𝑡 − 𝑢0𝑡𝑡) + 𝑝(𝑣𝑡𝑡 − 𝑣𝑥𝑥 − 𝑣𝑥 − 2𝑣)        

= 𝑣𝑡𝑡 − 𝑢0𝑡𝑡 + 𝑝(𝑢0𝑡𝑡 − 𝑣𝑥𝑥 − 𝑣𝑥 − 2𝑣) = 0 

𝑝0: 𝑣0𝑡𝑡 − 𝑢0𝑡𝑡 = 0 

𝑣0𝑡 = 𝑢0𝑡  ⟹  𝑣0 = 𝑢0 = 𝑒𝑥 

𝑝1: 𝑣1𝑡𝑡 = (𝑣0𝑥𝑥 + 𝑣0𝑥 + 2𝑣0 − 𝑢0𝑡𝑡) = 𝑒𝑥 + 𝑒𝑥 + 2𝑒𝑥 = 4𝑒𝑥 

𝑣1𝑡 = 4𝑡𝑒𝑥 ⟹ 𝑣1 = 4
𝑡2

2!
𝑒𝑥 

𝑝2: 𝑣2𝑡𝑡 = (𝑣1𝑥𝑥 + 𝑣1𝑥 + 2𝑣1) = 4
𝑡2

2!
𝑒𝑥 + 4

𝑡2

2!
𝑒𝑥 + 8

𝑡2

2!
𝑒𝑥 = 16

𝑡2

2!
𝑒𝑥 

𝑣2𝑡 = 16
𝑡3

3!
𝑒𝑥 ⟹ 𝑣2 = 16

𝑡4

4!
𝑒𝑥 
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 𝑝3: 𝑣3𝑡𝑡 = (𝑣2𝑥𝑥 + 𝑣2𝑥 + 2𝑣2) = 16
𝑡4

4!
𝑒𝑥 + 16

𝑡4

4!
𝑒𝑥 + 32

𝑡4

4!
𝑒𝑥 = 64

𝑡4

4!
𝑒𝑥 

𝑣3𝑡 = 64
𝑡5

5!
𝑒𝑥 ⟹ 𝑣3 = 64

𝑡6

6!
𝑒𝑥 

And so on, to get  

𝑢(𝑥, 𝑡) = lim
𝑝→1

𝑣 = 𝑣0 + 𝑣1 + 𝑣2 + 𝑣3 + ⋯  

𝑢(𝑥, 𝑡) = 𝑒𝑥 + 4
𝑡2

2!
𝑒𝑥 + 16

𝑡4

4!
𝑒𝑥 + 64

𝑡6

6!
𝑒𝑥 + ⋯ 

𝑢(𝑥, 𝑡) = 𝑒𝑥 (1 +
(2𝑡)2

2!
+

(2𝑡)4

4!
+

(2𝑡)6

6!
+ ⋯ ) = 𝑒𝑥 𝑐𝑜𝑠ℎ(2𝑡) 

Example 1.3[60] 

       .PDE order nonlinear rdfollowing 3onsider the C 

𝑢𝑡 +
1

2
𝑢𝑥

2 = 𝑢𝑥𝑥𝑡      , −∞ < 𝑥 < ∞    ,   𝑡 > 0                                            

Subject to the initial condition (IC): 𝑢(𝑥, 0) = 𝑥  

Using the HPM we have:  

𝐻(𝑣, 𝑝) = (1 − 𝑝)(𝑣𝑡 − 𝑢0𝑡) + 𝑝 (𝑣𝑡 +
1

2
(𝑣2)𝑥 − 𝑣𝑥𝑥𝑡)        

= 𝑣𝑡 − 𝑢0𝑡 + 𝑝 (𝑢0𝑡 +
1

2
(𝑣2)𝑥 − 𝑣𝑥𝑥𝑡) = 0 

𝑝0: 𝑣0𝑡 − 𝑢0𝑡 = 0                                                           ,     𝑣0 = 𝑥  

𝑝1: 𝑣1𝑡 = − (𝑢0𝑡 +
1

2
(𝑣0

2)𝑥 − 𝑣0𝑥𝑥𝑡)                         ,     𝑣1 = −𝑥𝑡 

𝑝2: 𝑣2𝑡 = − (
1

2
(2𝑣0𝑣1)𝑥 − 𝑣1𝑥𝑥𝑡)                              ,     𝑣2 = 𝑥𝑡2 
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𝑝3: 𝑣3𝑡 = − (
1

2
(2𝑣0𝑣2 + 𝑣1

2)𝑥 − 𝑣2𝑥𝑥𝑡)                   ,     𝑣3 = −𝑥𝑡3 

And so on, to get:  

𝑢(𝑥, 𝑡) = ∑ 𝑝𝑛𝑣𝑛(𝑥, 𝑡) = 𝑥 ∑(−𝑡)𝑛 =  
𝑥

1 + 𝑡

∞

𝑛=0

∞

𝑛=0

 

This is exact solution 

Example 1.4[60]  

       .PDE order linear rdfollowing 3onsider the C 

𝑢𝑡 + 𝑢𝑥 = 2𝑢𝑥𝑥𝑡      , −∞ < 𝑥 < ∞    ,   𝑡 > 0                                            

Subject to the IC: 𝑢(𝑥, 0) = 𝑒−𝑥   

Using HPM we have:  

𝐻(𝑣, 𝑝) = (1 − 𝑝)(𝑣𝑡 − 𝑢0𝑡) + 𝑝(𝑣𝑡 + 𝑣𝑥 − 2𝑣𝑥𝑥𝑡)         

= 𝑣𝑡 − 𝑢0𝑡 + 𝑝(𝑢0𝑡 + 𝑣𝑥 − 2𝑣𝑥𝑥𝑡) = 0 

𝑝0: 𝑣0𝑡 − 𝑢0𝑡 = 0                         ,     𝑣0 = 𝑒−𝑥  

𝑝1: 𝑣1𝑡 = 2𝑣0𝑥𝑥𝑡 − 𝑣0𝑥 − 𝑢0𝑡   ,   𝑣1 = 𝑡𝑒−𝑥 = 𝑝1(𝑡)𝑒−𝑥 

𝑝2: 𝑣2𝑡 = 2𝑣1𝑥𝑥𝑡 − 𝑣1𝑥              ,   𝑣2 = (2𝑡 +
𝑡2

2
) 𝑒−𝑥 = 𝑝2(𝑡)𝑒−𝑥 

𝑝3: 𝑣3𝑡 = 2𝑣2𝑥𝑥𝑡 − 𝑣2𝑥              ,   𝑣3 = (4𝑡 + 2𝑡2 +
𝑡3

3!
) 𝑒−𝑥 = 𝑝3(𝑡)𝑒−𝑥 

And so on, where 𝑝𝑛(𝑡) is a polynomial which has the following form: 

𝑝𝑛(𝑡) = 2𝑛−1𝑡 + ∑ 𝑎𝑛𝑗𝑡𝑗

𝑛

𝑗=0

;  𝑎𝑛2 ,   𝑎𝑛3, … … …  , 𝑎𝑛𝑛 > 0 

By induction, we get:  
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𝑣𝑛 = 𝑝𝑛(𝑡)𝑒−𝑥  

And 

𝑣𝑛+1 = 𝐿𝑡
−1[2𝑣𝑛𝑥𝑥𝑡 − 𝑣𝑛𝑥] = 𝐿𝑡

−1[2𝐿𝑡𝑝𝑛(𝑡) + 𝑝𝑛(𝑡)]𝑒−𝑥 

    = [2𝑝𝑛(𝑡) + 𝐿𝑡
−1𝑝𝑛(𝑡)]𝑒−𝑥 ≡ 𝑝𝑛+1(𝑡)𝑒−𝑥 

It is easy to see that 𝑝𝑛(𝑡) → +∞ (𝑛 → +∞) for any 𝑡 > 0. Therefore, the infinite 

series: 

      ∑ 𝑣𝑛

∞

   𝑛=0

= [1 + ∑ 𝑝𝑛(𝑡)

∞

𝑛=1

] 𝑒−𝑥 

Is divergent. 

    We note that in example 1.3, the PDE is nonlinear and the method gave the exact 

solution, in example 1.4, the PDE is linear but the method miss fire to get the exact 

solution. For these reasons we suggest efficient method based on coupled new 

transformation with HPM and denoted by NTHPM. Now, firstly introduce the new 

transformation proposed by luma-Alaa [51]. 

1.4. New Transformation      

     In this section, a new integral transformation is introduced. The 

domain of the new transformation (NT) is wider than of the domain of 

other transformation; therefore, it is more widely used to solve problems. 

Definition 1.2 [51] 

The new transformation of a function f(t) is defined by: 
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𝑓(̅𝑢) = 𝕋{𝑓(𝑡)} = ∫ 𝑒−𝑡𝑓 (
𝑡

𝑢
) 𝑑𝑡

∞

0

,                              (1.6) 

Where u is a real number, for those values of u which the improper integral is 

finite. A list of the NT for common functions is presented in the Table (1.1).  

Table 1.1: New transformation for some common functions[51] 

f(t) 𝑓(̅𝑢) = 𝕋{𝑓(𝑡)} 𝐷𝑓̅ 

n=0,1,…,   nt 
𝑛!

𝑢𝑛
 𝑢 ≠ 0 

,   a>0 at au(a+1)/ u0 

ate 𝑢

𝑢−𝑎
          

uR\[0,a]   a0   uR\[a,0]  

 a<0 

sin(at) 
𝑎𝑢

𝑎2 + 𝑢2
 𝑢 ≠ 0 

cos(at) 
𝑢2

𝑎2 + 𝑢2
 𝑢 ≠ 0 

sinh(at) 
−𝑎𝑢

𝑎2 − 𝑢2
  |𝑢| > |𝑎| 

cosh(at) 
−𝑢2

𝑎2 − 𝑢2
  |𝑢| > |𝑎| 

)a-t)=H(a-t)=u(t(au au-e u>0 

(t-a) /uau-e u>0 

 

1.4.1. The General Properties of the New Transformation 

     If the new transformation 𝕋{𝑓} and 𝕋{𝑔} of the functions f (t) and g(t) are well-

defined and a, b are constants, then the following properties are hold: 

1. Linearity property: 𝕋{𝑎𝑓(𝑡) + 𝑏𝑔(𝑡)} = 𝑎𝕋{𝑓(𝑡)} + 𝑏𝕋{𝑔(𝑡)}                   (1.7) 
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2. Convolution property: (𝑓 ∗ 𝑔)(𝑡) = ∫ 𝑓(𝜏)𝑔(𝑡 − 𝜏)𝑑𝜏
𝑡

0
                                 (1.8)  

3. 𝕋{𝑡𝑛} =  
𝑛!

𝑣𝑛
  , 𝑣 ≠ 0 , 𝑛 = 0,1,2,3, …                                                            (1.9) 

4. Differentiation property: 𝕋{𝑓′} = 𝑣(𝕋{𝑓} − 𝑓(0))                                      (1.10)   

For more details see [51]. 

1.4.2. The Advantages of the New Transform 

    The NT has many interesting properties which make it rival to the Laplace 

Transform (LT). Some of these properties are: 

1. The domain of the NT is wider than or equal to the domain of LT as illustrate in 

Table (1.2). This feature makes the NT more widely used for problems.  

2. Depending on [51], the NT has the duality with LT, therefore, the NT can be 

solve all the problems which be solved by LT. 

3. The unit step function in the t-domain is transformed to unity in the u-domain. 

4. The differentiation and integration in the t‐domain are equivalent to 

multiplication and division of the transformed function F(u) by u in the u‐

domain. 

5. By Linear property (1.7), we have that for any constant aR, 𝕋{𝑎} = 𝑎𝕋{1} =

𝑎, and hence,  𝕋−1{𝑎} = 𝑎, that is, we don’t have any problem when we dealing 

with the constant term( the constant with respect to the parameter u). 

 

 

 



Preliminaries         Chapter One                                                                                                       

 

18 
 

Table 1.2: The domain of Laplace and new transformation[51] 

 

 

 

 

 

 

 

 

 

 

 

          In the next chapter, we will use a combination of new transformation (NT) 

and the HPM to solve types of PDEs and get exact solution without needing 

computer calculations. 

 

 

 

 

 

f(t) 
Laplace New Transform 

[ 𝕃 (f)](s) Domain [ 𝕋 (f)](u) Domain 

tn       n=0,1,2,… n!/sn+1 s>0 n!/un u0 

ta      a>0 (a+1)/sa+1 s>0 (a+1)/ua u0 

eat 1/(s-a) s>a u/(u-a) 

uR/[0,a]   if 

a0 uR/[a,0]   

if a<0 

sin(at) a/(s2+a2) s>0 au/(u2+a2) u0 

cos(at) s/(s2+a2) s>0 u2/(u2+a2) u0 

sinh(at) a/(s2-a2) s>|a| au/(u2-a2) |u|>|a| 

cosh(at) s/(s2-a2) s>|a| u2/(u2-a2) |u|>|a| 

ua(t)=u(t-a)=H(t-

a) 
e-as/s s>0 e-au u>0 

(t-a) e-as s>0 e-au/u u>0 

ln(at)      a>0 (ln(a/s)-γ) /s s>0 ln(a/u)-γ u>0 

𝛾 = − ∫ 𝑒−𝑡𝑙𝑛𝑡 𝑑𝑡

∞

0

≅ 0.5772 … 
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2.1. Introduction 

     In this chapter, we will introduce an approach in obtaining the exact 

solution of non-linear partial differential equations. The new approach based 

on combine two methods, new transform with HPM and denoted by NTHPM. 

Then applied it to solve some important model equations. The exact solutions 

of these equations are compared to the HPM. The comparisons show the 

efficiency of the proposed NTHPM against the other methods. The method is 

strongly and powerful to treatment the nonlinear term of nonlinear equations.  

2.2. New Transformation–Homotopy Perturbation Method  

      The NTHPM is a new method to solve differential equation; it 

successfully applied to solve types of PDEs. This method is powerful to obtain 

the exact solution without using computer calculating. The method suggested 

firstly by Tawfiq and Jabber in 2018 [18] to solve groundwater equation. The 

NTHPM has many merits and has many advantages over the HPM and ADM. 

In the present work, the suggested method is used to solve of 1D, 2D, and 3D; 

Chapter Two 

Couple New Transform with HPM to Solve 

Some Types of Partial Differential Equations 
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2nd and 3rd order non-linear PDEs equations, and comparison has been made to 

the results obtained by the HPM and NTHPM. 

2.3. Solve Linear PDEs by NTHPM  

     In this section, we will use a combination of new transform (NT) and the 

HPM to get the new transform that has played an important role because its 

theoretical interest also in such method that allows to solve in the simplest 

form; it used have to accelerate the convergence of power series. 

       To illustrate the ideas of NTHPM to find the exact solution of linear three 

dimensions 2nd order PDEs of the form: 

𝑢𝑥𝑥 + 𝑢𝑦𝑦 + 𝑢𝑧𝑧 = 𝛼𝑢𝑡 ;  𝑥, 𝑦, 𝑧 ∈ 𝑅 & 𝑡 > 0                               (2.1) 

with initial condition (IC): 𝑢(𝑥, 𝑦, 𝑧, 0) = 𝑓(𝑥, 𝑦, 𝑧); α is constant. 

Firstly, rewrite equation (2.1) as following: 

𝐿[𝑢(𝑥, 𝑦, 𝑧, 𝑡)] + 𝑅[𝑢(𝑥, 𝑦, 𝑧, 𝑡)] = 𝑔(𝑥, 𝑦, 𝑧, 𝑡)                                 (2.2) 

where L: is the linear differential operator (𝐿 = 𝛼
𝜕

𝜕𝑡
), 𝑅: is the remainder of 

the linear operator, g(𝑥, 𝑦, 𝑧, 𝑡) is the inhomogeneous part.  

We construct a Homotopy as:  

𝐻(𝑢(𝑥, 𝑦, 𝑧, 𝑡), 𝑝) = (1 − 𝑝)[𝐿(𝑢(𝑥, 𝑦, 𝑧, 𝑡)) − 𝐿(𝑢(𝑥, 𝑦, 𝑧, 0))] +

𝑝 [𝐴[𝑢(𝑥, 𝑦, 𝑧, 𝑡)] − 𝑔(𝑥, 𝑦, 𝑧, 𝑡)] = 0                                                                (2.3)  

Where p[0, 1] is an embedding parameter and A defined as A= L+ R. 
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It is clear that, if p =1, then the homotopy equation (2.3) is converted to the 

differential equation (2.2). 

Substituting equation (2.2) into equation (2.3) and rewrite it as: 

𝐿(𝑢) − 𝐿(𝑓) − 𝑝𝐿(𝑢) + 𝑝𝐿(𝑓) + 𝑝𝐿(𝑢) + 𝑝𝑅(𝑢) − 𝑝 𝑔 = 0 

Then  

𝐿(𝑢) − 𝐿(𝑓) + 𝑝[𝐿(𝑓) + 𝑅(𝑢) − 𝑔] = 0                                                          (2.4) 

Since f(x, y, z) is independent of the variable t and the linear operator L 

dependent on t so, L(f(x, y, z)) = 0, i.e., the equation (2.4) becomes: 

𝐿(𝑢) + 𝑝𝑅(𝑢) − 𝑝 𝑔 = 0                                                                                      (2.5) 

According to the classical perturbation technique, the solution of the equation 

(2.5) can be written as a power series of embedding parameter p, as follows: 

𝑢(𝑥, 𝑦, 𝑧, 𝑡) = ∑𝑝𝑛𝑢𝑛(𝑥, 𝑦, 𝑧, 𝑡)

∞

𝑛=0

                                                                      (2.6) 

       The convergence of series (2.6) at p =1 is discussed and proved in [8,25], 

which satisfies the differential equation (2.2). 

The final step is determining the parts un (n= 0,1, 2,…) to get the solution 

u(𝑥, 𝑦, 𝑧, 𝑡). 

       Here, we couple the NT with HPM as follows: 

Taking the NT (with respect to the variable t) for the equation (2.5) to get: 

𝕋{𝐿(𝑢)} + 𝑝 𝕋{𝑅(𝑢)} − 𝑝 𝕋{𝑔}  = 0                                                                (2.7) 

Now by using the differentiation property of NT (property 4) and equations 

(2.2), (2.7) becomes: 
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𝑣𝛼𝕋{𝑢} − 𝑣𝛼𝑓(𝑥) + 𝑝 𝕋{𝑅(𝑢)} − 𝑝 𝕋{𝑔} = 0                                               (2.8) 

Hence: 

𝕋{𝑢} = 𝑓(𝑥, 𝑦, 𝑧) − 𝑝
𝕋{𝑅(𝑢)}

𝑣𝛼
+ 𝑝

𝕋{𝑔}

𝑣𝛼
                                                         (2.9) 

Taking the inverse of the NT on both sides of equation (2.9), to get: 

𝑢(𝑥, 𝑦, 𝑧, 𝑡) = 𝑓(𝑥, 𝑦, 𝑧) − 𝑝𝕋−1 {
𝕋{𝑅(𝑢(𝑥,𝑦,𝑧,𝑡))}

𝑣𝛼
} + 𝑝𝕋−1 {

𝕋{𝑔(𝑥,𝑦,𝑧,𝑡)}

𝑣𝛼
}  (2.10)  

Then substituting equation (2.6) into equation (2.10) to obtain: 

∑𝑝𝑛𝑢𝑛

∞

𝑛=0

= 𝑓(𝑥, 𝑦, 𝑧) − 𝑝𝕋−1 {
𝕋 {𝑅(∑ 𝑝𝑛𝑢𝑛

∞
𝑛=0 )}

𝑣𝛼
} + 𝑝 𝕋−1 {

𝕋{𝑔(𝑥, 𝑦, 𝑧, 𝑡)}

𝑣𝛼
}        (2.11) 

By comparing the coefficient of powers of p in both sides of the equation 

(2.11), we have: 

𝑢0 = 𝑓(𝑥, 𝑦, 𝑧) 

𝑢1 = −𝕋
−1 {

𝕋{𝑅[𝑢0]}

𝑣𝛼
} + 𝕋−1 {

𝕋{𝑔(𝑥, 𝑦, 𝑧, 𝑡)}

𝑣𝛼
} 

𝑢2 = −𝕋
−1 {

𝕋{𝑅[𝑢1]}

𝑣𝛼
} 

𝑢3 = −𝕋
−1 {

𝕋{𝑅[𝑢2]}

𝑣𝛼
}                                                                                      (2.12) 

⋮ 

𝑢𝑛+1 = −𝕋
−1 {

𝕋{𝑅[𝑢𝑛]}

𝑣𝛼
} 
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2.4. Illustrative Application 

     Here, the NTHPM may be used to solve the 2nd order-PDE with initial 

condition as following:   

Example 2.1[60]  

Let us consider the following 3D - PDE 

 𝑢𝑥𝑥 + 𝑢𝑦𝑦 + 𝑢𝑧𝑧 = 𝛼𝑢𝑡    ;      𝑎𝑙𝑙 𝑥, 𝑦, 𝑧 𝑖𝑛 𝑅 & 𝑡 > 0        

Subject to IC:    𝑢(𝑥, 𝑦, 𝑧, 0) = 𝑓(𝑥, 𝑦, 𝑧) = 5 𝑠𝑖𝑛(𝑎𝑥) 𝑠𝑖𝑛(𝑏𝑦) 𝑠𝑖𝑛(𝑐𝑧), 

where a, b, c and 𝛼 are constants. According to the equation (2.12) the power 

series of p get as follows: 

𝑝0: 𝑢0(𝑥, 𝑦, 𝑧, 𝑡) = 5 𝑠𝑖𝑛(𝑎𝑥) 𝑠𝑖𝑛(𝑏𝑦) 𝑠𝑖𝑛(𝑐𝑧)  

𝑝1: 𝑢1(𝑥, 𝑦, 𝑧, 𝑡) = −(5 𝑠𝑖𝑛(𝑎𝑥) 𝑠𝑖𝑛(𝑏𝑦) 𝑠𝑖𝑛(𝑐𝑧)) (
𝑡

𝛼
) (𝑎2 + 𝑏2 + 𝑐2) 

𝑝2: 𝑢2(𝑥, 𝑦, 𝑧, 𝑡) = (5 𝑠𝑖𝑛(𝑎𝑥) 𝑠𝑖𝑛(𝑏𝑦) 𝑠𝑖𝑛(𝑐𝑧)) (
𝑡2

2 𝛼2
) (𝑎2 + 𝑏2 + 𝑐2)2 

𝑝3: 𝑢3(𝑥, 𝑦, 𝑧, 𝑡) = −(5 𝑠𝑖𝑛(𝑎𝑥) 𝑠𝑖𝑛(𝑏𝑦) 𝑠𝑖𝑛(𝑐𝑧)) (
𝑡3

3!  𝛼3
) (𝑎2 + 𝑏2 + 𝑐2)3 

𝑝4: 𝑢4(𝑥, 𝑦, 𝑧, 𝑡) = (5 𝑠𝑖𝑛(𝑎𝑥) 𝑠𝑖𝑛(𝑏𝑦) 𝑠𝑖𝑛(𝑐𝑧)) (
𝑡4

4!  𝛼4
) (𝑎2 + 𝑏2 + 𝑐2)4 

𝑝5: 𝑢5(𝑥, 𝑦, 𝑧, 𝑡) = −(5 𝑠𝑖𝑛(𝑎𝑥) 𝑠𝑖𝑛(𝑏𝑦) 𝑠𝑖𝑛(𝑐𝑧)) (
𝑡5

5!  𝛼5
) (𝑎2 + 𝑏2 + 𝑐2)5 

⁞ 

𝑝𝑛: 𝑢𝑛(𝑥, 𝑦, 𝑧, 𝑡) = (−1)𝑛(5 𝑠𝑖𝑛(𝑎𝑥) 𝑠𝑖𝑛(𝑏𝑦) 𝑠𝑖𝑛(𝑐𝑧)) (
𝑡𝑛

𝑛!  𝛼𝑛
) (𝑎2 + 𝑏2 + 𝑐2)𝑛 

Thus, we get the following series form:  
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(𝑥, 𝑦, 𝑧, 𝑡) =  ∑𝑢𝑛(𝑥, 𝑦, 𝑧, 𝑡)

∞

𝑛=0

= ∑(−1)𝑛5 𝑠𝑖𝑛(𝑎𝑥) 𝑠𝑖𝑛(𝑏𝑦) 𝑠𝑖𝑛(𝑐𝑧) (
𝑡𝑛

𝑛! 𝛼𝑛
) (𝑎2 + 𝑏2 + 𝑐2)𝑛 

∞

𝑛=0

 

So, the closed form of the above series is:     

𝑢(𝑥, 𝑦, 𝑧, 𝑡) = 5 sin(𝑎𝑥) sin(𝑏𝑦) sin(𝑐𝑧) 𝑒−
𝑡
𝛼
(𝑎2+𝑏2+𝑐2) 

This gives an exact solution of the problem. 

Example 2.2[60]  

Consider the following 3D-PDE 

 𝑢𝑥𝑥 + 𝑢𝑦𝑦 + 𝑢𝑧𝑧 + 𝑒
𝑥+𝑦 = 𝛼𝑢𝑡 ;  𝑎𝑙𝑙 𝑥, 𝑦, 𝑧 𝑖𝑛 𝑅 & 𝑡 > 0        

with IC:  𝑢(𝑥, 𝑦, 𝑧, 0) = 𝑓(𝑥, 𝑦, 𝑧) = 𝑑,  where d is constants. 

From equation (2.12), we get the power series of p as follows: 

 𝑝0: 𝑢0(𝑥, 𝑦, 𝑧, 𝑡) = 𝑑 

 𝑝1: 𝑢1(𝑥, 𝑦, 𝑧, 𝑡) =
𝑡

𝛼
(𝑒𝑥+𝑦) 

 𝑝2: 𝑢2(𝑥, 𝑦, 𝑧, 𝑡) =
𝑡2

2𝛼2
(𝑒𝑥+𝑦) 

 𝑝3: 𝑢3(𝑥, 𝑦, 𝑧, 𝑡) =
𝑡3

6𝛼3
(𝑒𝑥+𝑦) 

 𝑝4: 𝑢4(𝑥, 𝑦, 𝑧, 𝑡) =
𝑡4

24𝛼4
(𝑒𝑥+𝑦)   

⁞ 

 𝑝𝑛: 𝑢𝑛(𝑥, 𝑦, 𝑧, 𝑡) =
𝑡𝑛

𝑛!𝛼𝑛
(𝑒𝑥+𝑦) 

Thus, the following series form is obtained: 
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𝑢(𝑥, 𝑦, 𝑧, 𝑡) = ∑𝑢𝑛(𝑥, 𝑦, 𝑧, 𝑡) =

∞

𝑛=0

𝑑 +∑
𝑡𝑛+1

(𝑛 + 1)! 𝛼𝑛+1
(𝑒𝑥+𝑦)

∞

𝑛=0

 

Therefore, the closed form of the above series is: 

 𝑢(𝑥, 𝑦, 𝑧, 𝑡) = 𝑒𝑥+𝑦 (𝑒
𝑡

𝛼 − 1) + 𝑑 

Example 2.3[55]  

Consider another linear homogeneous Klein-Gordan equation  

𝑢𝑡𝑡 = 𝑢𝑥𝑥 + 𝑢𝑥 + 2𝑢     , −∞ < 𝑥 < ∞    ,   𝑡 > 0                                 

Subject to the ICs: 

𝑢(𝑥, 0) = 𝑒𝑥 , 𝑢𝑡(𝑥, 0) = 0                                                                                    

Taking new transformation on both sides, subject to the IC, to get: 

𝕋[𝑢(𝑥, 𝑦, 𝑡)] = 𝑒𝑥 +
1

𝑣2
𝕋[𝑢𝑥𝑥 + 𝑢𝑥 + 2𝑢 ]  

Taking inverse of new transformation, we get: 

𝑢(𝑥, 𝑦, 𝑡) = 𝑒𝑥 + 𝕋−1 [
1

𝑣2
𝕋[𝑢𝑥𝑥 + 𝑢𝑥 + 2𝑢]] 

by HPM, we get: 

𝑢(𝑥, 𝑡) = ∑𝑝𝑛𝑢𝑛(𝑥, 𝑡)

∞

𝑛=0

 

Using equation (2.11) in equation (2.10), to get: 
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∑𝑝𝑛𝑢𝑛(𝑥, 𝑡)

∞

𝑛=0

= 𝑒𝑥

+ 𝑝(𝕋−1 [
1

𝑣2
𝕋 [∑𝑝𝑛𝑢𝑛𝑥𝑥(𝑥, 𝑦, 𝑡)

∞

𝑛=0

+∑𝑝𝑛𝑢𝑛𝑥(𝑥, 𝑦, 𝑡)

∞

𝑛=0

+ 2∑𝑝𝑛𝑢𝑛(𝑥, 𝑦, 𝑡)

∞

𝑛=0

]]) 

𝑝0: 𝑢0(𝑥, 𝑡) = 𝑒
𝑥  

𝑝1: 𝑢1(𝑥, 𝑡) =
(2𝑡)2

2!
𝑒𝑥 

     

𝑝2: 𝑢2(𝑥, 𝑡) =
(2𝑡)4

4!
 𝑒𝑥   

𝑝3: 𝑢3(𝑥, 𝑡) =
(2𝑡)6

6!
𝑒𝑥 

: 

𝑢(𝑥, 𝑡) = 𝑒𝑥 (1 +
(2𝑡)2

2!
+
(2𝑡)4

4!
+
(2𝑡)6

6!
+ ⋯) = 𝑒𝑥 𝑐𝑜𝑠ℎ(2𝑡) 

2.5. Solve Nonlinear PDE by NTHPM  

     In the NTHPM can be used for solving various types of nonlinear PDEs. To 

illustrate the basic idea of suggested method, we consider general nonlinear 

PDEs with the initial conditions of the form: 

𝐿𝑢(𝑥, 𝑡) + 𝑅𝑢(𝑥, 𝑡) + 𝑁𝑢(𝑥, 𝑡) = 𝑔(𝑥, 𝑡) ,                                     (2.13) 

Subject to ICs:  𝑢(𝑥, 0) = ℎ(𝑥)       ,   𝑢𝑡(𝑥, 0) = 𝑓(𝑥) .  
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where L is the 2nd order linear differential operator 𝐿 =
𝜕2

𝜕𝑡2
 , R is the linear 

differential operator of less order than L ; N represents the general nonlinear 

differential operator and 𝑔(𝑥, 𝑡)is the source term. 

    Taking the new transformation on both sides of equation (2.13) to get: 

𝕋[𝐿𝑢(𝑥, 𝑡)] + 𝕋[𝑅𝑢(𝑥, 𝑡)] + 𝕋[𝑁𝑢(𝑥, 𝑡)] = 𝕋[𝑔(𝑥, 𝑡)] ,                           (2.14) 

Using the differentiation property of the new transform, we have: 

𝕋[𝑢(𝑥, 𝑡)] = ℎ(𝑥) +
𝑓(𝑥)

𝑣
+
1

𝑣2
𝕋[𝑔(𝑥, 𝑡) − 𝑅𝑢(𝑥, 𝑡) − 𝑁𝑢(𝑥, 𝑡)]          (2.15) 

Operating with the inverse of new transformation on both sides of equation 

(2.15) gives: 

𝑢(𝑥, 𝑡) = 𝐺(𝑥, 𝑡) − 𝕋−1 [
1

𝑣2
𝕋[𝑅𝑢(𝑥, 𝑡) − 𝑁𝑢(𝑥, 𝑡)]]                                (2.16) 

where G(x, t) represents the term arising from the source term and the 

prescribed initial conditions. Now, we apply the HPM. 

𝑢(𝑥, 𝑡) = ∑𝑝𝑛𝑢𝑛(𝑥, 𝑡)

∞

𝑛=0

                                                                                    (2.17) 

The nonlinear term can be decomposed as: 

𝑁𝑢(𝑥, 𝑡) = ∑𝑝𝑛𝐻𝑛(𝑢)

∞

𝑛=0

                                                                                    (2.18) 

for He's polynomials Hn(u) (see [48-49]) that are given by: 

 𝐻𝑛(𝑢0, 𝑢1, …… , 𝑢𝑛) =
1

𝑛!

𝜕𝑛

𝜕𝑝𝑛
[𝑁(∑ 𝑝𝑖𝑢𝑖

∞
𝑖=0 )], 𝑛 = 0,1,2,3, …                 (2.19)   
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Substituting equation (2.17), (2.18) and (2.19) in equation (2.16) to get: 

∑ 𝑝𝑛𝑢𝑛(𝑥, 𝑡)
∞
𝑛=0 = G(x, t) − p (𝕋−1 [

1

v2
𝕋[R∑ pnun(x, t)

∞
n=0 +N∑ pnHn(u)

∞
n=0 ]])  (2.20)  

Comparing the coefficient of powers of p, to get: 

𝑝0: 𝑢0(𝑥, 𝑡) = 𝐺(𝑥, 𝑡) 

𝑝1: 𝑢1(𝑥, 𝑡) = −𝕋
−1 [

1

𝑣2
𝕋[𝑅𝑢0(𝑥, 𝑡) + 𝐻0(𝑢)]], 

𝑝2: 𝑢2(𝑥, 𝑡) = −𝕋
−1 [

1

𝑣2
𝕋[𝑅𝑢1(𝑥, 𝑡) + 𝐻1(𝑢)]],                                                                                               

𝑝3: 𝑢3(𝑥, 𝑡) = −𝕋
−1 [

1

𝑣2
𝕋[𝑅𝑢2(𝑥, 𝑡) + 𝐻2(𝑢)]], 

and so on. 

2.6. Applications 

     In this section, NTHPM is applied for solving various types of nonlinear 

wave-like equations with variable coefficients. 

Example 2.4[10]  

    Consider the following 2D- nonlinear wave-like equations with variable 

coefficients. 

𝑢𝑡𝑡 =
𝜕2

𝜕𝑥𝜕𝑦
(𝑢𝑥𝑥𝑢𝑦𝑦) −

𝜕2

𝜕𝑥𝜕𝑦
(𝑥𝑦𝑢𝑥𝑢𝑦) − 𝑢                                       

with the ICs:  𝑢(𝑥, 𝑦, 0) = 𝑒𝑥𝑦 ,    𝑢𝑡(𝑥, 𝑦, 0) = 𝑒
𝑥𝑦  

Taking new transformation on both sides, subject to the IC, we get: 

 𝕋[𝑢(𝑥, 𝑦, 𝑡)] = 𝑒𝑥𝑦 +
𝑒𝑥𝑦

𝑣
+

1

𝑣2
𝕋 [

𝜕2

𝜕𝑥𝜕𝑦
(𝑢𝑥𝑥𝑢𝑦𝑦) −

𝜕2

𝜕𝑥𝜕𝑦
(𝑥𝑦𝑢𝑥𝑢𝑦) − 𝑢 ]              

Taking inverse of new transform, we have: 
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 𝑢(𝑥, 𝑦, 𝑡) = (1 + 𝑡)𝑒𝑥𝑦 − 𝕋−1 [
1

𝑣2
𝕋 [

𝜕2

𝜕𝑥𝜕𝑦
(𝑢𝑥𝑥𝑢𝑦𝑦) −

𝜕2

𝜕𝑥𝜕𝑦
(𝑥𝑦𝑢𝑥𝑢𝑦) − 𝑢]]       

By HPM, we have: 

 𝑢(𝑥, 𝑡) = ∑ 𝑝𝑛𝑢𝑛(𝑥, 𝑡)
∞
𝑛=0                                                                                  

Substation equation (2.13) in the equation (2.14), to get: 

∑𝑝𝑛𝑢𝑛(𝑥, 𝑡)

∞

𝑛=0

= (1 + 𝑡)𝑒𝑥𝑦

+ 𝑝(𝕋−1 [
1

𝑣2
𝕋 [∑𝑝𝑛𝐻𝑛(𝑢)

∞

𝑛=0

−∑𝑝𝑛𝐾𝑛(𝑢)

∞

𝑛=0

−∑𝑝𝑛𝑢𝑛(𝑥, 𝑦, 𝑡)

∞

𝑛=0

]]) 

Where 𝐻𝑛(𝑢) and  𝐾𝑛(𝑢) are the He's polynomials having the value 𝐻𝑛(𝑢) =

𝜕2

𝜕𝑥𝜕𝑦
(𝑢𝑥𝑥𝑢𝑦𝑦) and 𝐾𝑛(𝑢) =

𝜕2

𝜕𝑥𝜕𝑦
(𝑥𝑦𝑢𝑥𝑢𝑦) 

The first few components of 𝐻𝑛(𝑢) and  𝐾𝑛(𝑢) are given by:  

 𝐻0(𝑢) =
𝜕2

𝜕𝑥𝜕𝑦
(𝑢0𝑥𝑥𝑢0𝑦𝑦) =

𝜕2

𝜕𝑥𝜕𝑦
[(1 + 𝑡)2𝑥2𝑦2𝑒2𝑥𝑦] 

 𝐻1(𝑢) =
𝜕2

𝜕𝑥𝜕𝑦
(𝑢1𝑥𝑥𝑢0𝑦𝑦 + 𝑢0𝑥𝑥𝑢1𝑦𝑦) 

           =
𝜕2

𝜕𝑥𝜕𝑦
[−2(1 + 𝑡) (

𝑡2

2!
+
𝑡3

3!
) 𝑥2𝑦2𝑒2𝑥𝑦] 

𝐻2(𝑢) =
𝜕2

𝜕𝑥𝜕𝑦
(𝑢2𝑥𝑥𝑢0𝑦𝑦 + 𝑢1𝑥𝑥𝑢1𝑦𝑦 + 𝑢0𝑥𝑥𝑢2𝑦𝑦) 

And so on  

 𝐾0(𝑢) =
𝜕2

𝜕𝑥𝜕𝑦
(𝑥𝑦(𝑢0𝑥𝑢0𝑦)) =

𝜕2

𝜕𝑥𝜕𝑦
[(1 + 𝑡)2𝑥2𝑦2𝑒2𝑥𝑦] 

 𝐾1(𝑢) =
𝜕2

𝜕𝑥𝜕𝑦
(𝑥𝑦(𝑢1𝑥𝑢0𝑦 + 𝑢0𝑥𝑢1𝑦)) 
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            =
𝜕2

𝜕𝑥𝜕𝑦
[−2(1 + 𝑡) (

𝑡2

2!
+
𝑡3

3!
) 𝑥2𝑦2𝑒2𝑥𝑦] 

 𝐾2(𝑢) =
𝜕2

𝜕𝑥𝜕𝑦
(𝑥𝑦(𝑢2𝑥𝑢0𝑦 + 𝑢1𝑥𝑢1𝑦 + 𝑢0𝑥𝑢2𝑦)) 

: 

Comparing the coefficients of various powers of p, to get: 

𝑝0: 𝑢0(𝑥, 𝑦, 𝑡) = ((1 + 𝑡)𝑒
𝑥𝑦 

𝑝1: 𝑢1(𝑥, 𝑦, 𝑡) = 𝕋
−1 [

1

𝑣2
𝕋[𝐻0(𝑢) + 𝐾0(𝑢) − 𝑢0(𝑥, 𝑦, 𝑡)]] 

                       = −(
𝑡2

2!
+
𝑡3

3!
) 𝑒𝑥𝑦 

 𝑝2: 𝑢2(𝑥, 𝑦, 𝑡) = 𝕋
−1 [

1

𝑣2
𝕋[𝐻1(𝑢) + 𝐾1(𝑢) − 𝑢1(𝑥, 𝑦, 𝑡)]]                   

                        = (
𝑡4

4!
+
𝑡5

5!
) 𝑒𝑥𝑦 

𝑝3: 𝑢3(𝑥, 𝑦, 𝑡) = 𝕋
−1 [

1

𝑣2
𝕋[𝐻2(𝑢) + 𝐾2(𝑢) − 𝑢2(𝑥, 𝑦, 𝑡)]] 

                       = −(
𝑡6

6!
+
𝑡7

7!
) 𝑒𝑥𝑦 

And so on  

Therefore the solution is given by: 

𝑢(𝑥, 𝑦, 𝑡) = 𝑢0(𝑥, 𝑦, 𝑡) + 𝑢1(𝑥, 𝑦, 𝑡) + 𝑢2(𝑥, 𝑦, 𝑡) + 𝑢3(𝑥, 𝑦, 𝑡) + ⋯ 

             = 𝑒𝑥𝑦 (1 + 𝑡 −
𝑡2

2!
−
𝑡3

3!
+
𝑡4

4!
+
𝑡5

5!
−
𝑡6

6!
−
𝑡7

7!
+⋯)                 

So,  𝑢(𝑥, 𝑦, 𝑡) = 𝑒𝑥𝑦(cos 𝑡 + sin 𝑡) 
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Example 2.5[10] 

Consider the following nonlinear 1D- equation with variable coefficients. 

𝑢𝑡𝑡 = 𝑢
2
𝜕2

𝜕𝑥2
(𝑢𝑥𝑢𝑥𝑥𝑢𝑥𝑥𝑥) + 𝑢𝑥

2
𝜕2

𝜕𝑥2
(𝑢𝑥

3) − 18𝑢5 + 𝑢                          

with ICs:  𝑢(𝑥, 0) = 𝑒𝑥,         𝑢𝑡(𝑥, 0) = 𝑒
𝑥  

By applying NTHPM, we get: 

∑𝑝𝑛𝑢𝑛(𝑥, 𝑡)

∞

𝑛=0

= (1 + 𝑡)𝑒𝑥

+ 𝑝(𝕋−1 [
1

𝑣2
𝕋 [∑𝑝𝑛𝐻𝑛(𝑢)

∞

𝑛=0

−∑𝑝𝑛𝐾𝑛(𝑢)

∞

𝑛=0

+ 18∑𝑝𝑛𝐽𝑛(𝑢)

∞

𝑛=0

−∑𝑝𝑛𝑢𝑛(𝑥, 𝑦, 𝑡)

∞

𝑛=0

]])                

Where 𝐻𝑛(𝑢), 𝐾𝑛(𝑢)and 𝐽𝑛(𝑢) are He's polynomials. First few components of 

He's polynomials are given by: 

 𝐻0(𝑢) = 𝑢0
2 𝜕2

𝜕𝑥2
(𝑢0𝑥𝑢0𝑥𝑥𝑢0𝑥𝑥𝑥) = 9(1 + 𝑡)

5𝑒5𝑥 

 𝐻1(𝑢) = 2𝑢0𝑢1
𝜕2

𝜕𝑥2
(𝑢0𝑥𝑢0𝑥𝑥𝑢0𝑥𝑥𝑥) + 𝑢0

2 𝜕2

𝜕𝑥𝜕𝑦
(𝑢1𝑥𝑢0𝑥𝑥𝑢0𝑥𝑥𝑥 +

𝑢0𝑥𝑢1𝑥𝑥𝑢0𝑥𝑥𝑥 + 𝑢0𝑥𝑢0𝑥𝑥𝑢1𝑥𝑥𝑥) = 45(1 + 𝑡)
4 (

𝑡2

2!
+
𝑡3

3!
) 𝑒5𝑥 

: 

and 

 𝐾0(𝑢) = (𝑢0𝑥)
2 𝜕2

𝜕𝑥2
[(𝑢0𝑥)

3] = (1 + 𝑡)2𝑒2𝑥
𝜕2

𝜕𝑥2
[(1 + 𝑡)3𝑒3𝑥] 

            = 9(1 + 𝑡)5𝑒5𝑥 
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 𝐾1(𝑢) = 2𝑢0𝑥𝑢1𝑥
𝜕2

𝜕𝑥2
(𝑢0𝑥)

3 + 3(𝑢0𝑥)
2 𝜕2

𝜕𝑥2
[(𝑢0𝑥)

2𝑢1𝑥] 

            = 45(1 + 𝑡)4 (
𝑡2

2!
+
𝑡3

3!
) 𝑒5𝑥 

: 

and  

 𝐽0(𝑢) = (𝑢0)
5 = (1 + 𝑡)5𝑒5𝑥 

 𝐽1(𝑢) = 5(𝑢0)
4𝑢1 = 5(1 + 𝑡)

4 (
𝑡2

2!
+
𝑡3

3!
) 𝑒5𝑥 

: 

Comparing the coefficients of various powers of p, we get: 

 𝑝0: 𝑢0(𝑥, 𝑡) = (1 + 𝑡)𝑒𝑥 

 𝑝1: 𝑢1(𝑥, 𝑡) = 𝕋−1 [
1

𝑣2
𝕋[𝐻0(𝑢) + 𝐾0(𝑢) − 18𝐽0(𝑢) + 𝑢0(𝑥, 𝑦, 𝑡)]] 

                    = (
𝑡2

2!
+
𝑡3

3!
) 𝑒𝑥 

 𝑝2: 𝑢2(𝑥, 𝑡) = 𝕋−1 [
1

𝑣2
𝕋[𝐻1(𝑢) + 𝐾1(𝑢) − 18𝐽1(𝑢) + 𝑢1(𝑥, 𝑦, 𝑡)]] 

                     = (
𝑡4

4!
+
𝑡5

5!
) 𝑒𝑥 

and so on, therefore the solution is given by: 

𝑢(𝑥, 𝑡) = 𝑢0(𝑥, 𝑡) + 𝑢1(𝑥, 𝑡) + 𝑢2(𝑥, 𝑡) + 𝑢3(𝑥, 𝑡) + ⋯ 

                = 𝑒𝑥 (1 + 𝑡 +
𝑡2

2!
+
𝑡3

3!
+
𝑡4

4!
+

𝑡5

5!
+
𝑡6

6!
+
𝑡7

7!
+⋯) = 𝑒𝑥+𝑡      

This is the exact solution. 
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Example 2.6[10] 

 Consider the following nonlinear 1D -3rd order wave-like equation with 

variable coefficients. 

   𝑢𝑡𝑡 = 𝑥
2 𝜕

𝜕𝑥
(𝑢𝑥𝑢𝑥𝑥) − 𝑥

2(𝑢𝑥𝑥
2 ) − 𝑢       ,         0 < 𝑥 < 1 , 𝑡 > 0        

With ICs:  𝑢(𝑥, 0) = 0,         𝑢𝑡(𝑥, 𝑦, 0) = 𝑥
2 

By applying NTHPM, we get: 

∑𝑝𝑛𝑢𝑛(𝑥, 𝑡)

∞

𝑛=0

= 𝑥2𝑡

+ 𝑝(𝕋−1 [
1

𝑣2
𝕋 [𝑥2∑𝑝𝑛𝐻𝑛(𝑢)

∞

𝑛=0

− 𝑥2∑𝑝𝑛𝐾𝑛(𝑢)

∞

𝑛=0

−∑𝑝𝑛𝑢𝑛(𝑥, 𝑦, 𝑡)

∞

𝑛=0

]])   

Where 𝐻𝑛(𝑢) and 𝐾𝑛(𝑢) are He's polynomials. First few components of He's 

polynomials are given by: 

 𝐻0(𝑢) =
𝜕

𝜕𝑥
(𝑢0𝑥𝑢0𝑥𝑥) = 4𝑡

2 

 𝐻1(𝑢) =
𝜕

𝜕𝑥
(𝑢1𝑥𝑢0𝑥𝑥 + 𝑢0𝑥𝑢1𝑥𝑥) = −8

𝑡4

3!
 

 𝐻2(𝑢) =
𝜕2

𝜕𝑥
(𝑢2𝑥𝑢0𝑥𝑥 + 𝑢1𝑥𝑢1𝑥𝑥 + 𝑢0𝑥𝑢2𝑥𝑥) 

: 

And 

 𝐾0(𝑢) = (𝑢0𝑥𝑥)
2 = 4𝑡2 

 𝐾1(𝑢) = 2𝑢0𝑥𝑥𝑢1𝑥𝑥 = −8
𝑡4

3!
 

 𝐾2(𝑢) = (𝑢1
2)𝑥𝑥 + 2(𝑢0)𝑥𝑥(𝑢2)𝑥𝑥 

: 
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Comparing the coefficients of various powers of p, to get: 

 𝑝0: 𝑢0(𝑥, 𝑡) = 𝑥2𝑡 

 𝑝1: 𝑢1(𝑥, 𝑡) = 𝕋−1 [
1

𝑣2
𝕋[𝑥2𝐻0(𝑢) − 𝑥

2𝐾0(𝑢) − 𝑢0(𝑥, 𝑡)]] = −𝑥
2 𝑡

3

3!
 

 𝑝2: 𝑢2(𝑥, 𝑦, 𝑡) = 𝕋
−1 [

1

𝑣2
𝕋[𝑥2𝐻1(𝑢) − 𝑥

2𝐾1(𝑢) − 𝑢1(𝑥, 𝑡)]] = 𝑥
2 𝑡

5

5!
 

:  

Therefore, the solution is given by: 

𝑢(𝑥, 𝑦, 𝑡) = 𝑢0(𝑥, 𝑦, 𝑡) + 𝑢1(𝑥, 𝑦, 𝑡) + 𝑢2(𝑥, 𝑦, 𝑡) + 𝑢3(𝑥, 𝑦, 𝑡) + ⋯ 

             = 𝑥2 (𝑡 −
𝑡3

3!
+
𝑡5

5!
−⋯) = 𝑥2 sin 𝑡                                       

This is the exact solution.  

2.7. Solve Autonomous Equation by NTHPM 

       In this section the proposed method will be used to solve one of the most 

important of amplitude equations is the autonomous equation which describes 

the appearance of the stripe pattern in two dimensional systems. Moreover, 

this equation was applied to a number of problems in variety systems, e.g., 

Rayleigh-Benard convection, Faraday instability, nonlinear optics, chemical 

reactions and biological systems [60]. The approximate solutions of the 

autonomous equation were presented by differential transformation method 

[18], reduce differential transformation [8]. Here a reliable couple NTHPM is 

applied for solving autonomous equation.  
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       To illustrate the ideas of NTHPM, firstly rewrite the initial value problem 

in autonomous equation in the form: 

 𝑢𝑡(𝑥, 𝑡) = 𝑐𝑢𝑥𝑥(𝑥, 𝑡) + 𝑐1𝑢(𝑥, 𝑡) − 𝑐2𝑢
𝑛(𝑥, 𝑡)                                       (2.20𝑎) 

 With the IC:          𝑢 (𝑥, 𝑡) = 𝑔(𝑥)                                                                (2.20𝑏)  

 where 𝑐1 and 𝑐2 are real numbers and c and n are positive integers. 

Taking new transformation on both sides of the equation (2.20a) and using the 

linearity property of the new transformation gives:                

 𝕋{𝑢𝑡(𝑥, 𝑡)} = 𝑐𝕋{𝑢𝑥𝑥(𝑥, 𝑡)} + 𝑐1𝕋{𝑢(𝑥, 𝑡)} − 𝑐2𝕋{𝑢
𝑛(𝑥, 𝑡)}                  (2.21) 

By applying the differentiation property of new transform, we have                                                                                 

𝑣𝕋{𝑢(𝑥, 𝑡)} − 𝑣𝑢(𝑥, 0)

= 𝑐𝕋{𝑢𝑥𝑥(𝑥, 𝑡)} + 𝑐1𝕋{𝑢(𝑥, 𝑡)} − 𝑐2𝕋{𝑢
𝑛(𝑥, 𝑡)}                  (2.22) 

Thus, we get: 

 (𝑣 − 𝑐1)𝕋{𝑢(𝑥, 𝑡)} = 𝑣𝑔(𝑥) + 𝑐𝕋{𝑢𝑥𝑥(𝑥, 𝑡)} − 𝑐2𝕋{𝑢
𝑛(𝑥, 𝑡)}              

      𝕋{𝑢(𝑥, 𝑡)} =
𝑣𝑔(𝑥)

𝑣−𝑐1
+

𝑐

𝑣−𝑐1
𝕋{𝑢𝑥𝑥(𝑥, 𝑡)} −

𝑐2

𝑣−𝑐1
𝕋{𝑢𝑛(𝑥, 𝑡)}                 

Taking the inverse of new transformation on equation (2.22), we obtain:                                                                                       

   𝑢(𝑥, 𝑡) = 𝕋−1 {
𝑣𝑔(𝑥)

𝑣−𝑐1
} + 𝕋−1 (

𝑐

𝑣−𝑐1
𝕋{𝑢𝑥𝑥(𝑥, 𝑡)} −

𝑐2

𝑣−𝑐1
𝕋{𝑢𝑛(𝑥, 𝑡)}) (2.23) 
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In the HPM, the basic assumption is that the solutions can be written as a 

power series in p:                                                                                                                                                                       

𝑢(𝑥, 𝑡) = ∑𝑝𝑛𝑢𝑛(𝑥, 𝑡)                                                                                     (2.24)

∞

𝑛=0

 

and the nonlinear term N(u) = 𝑢𝑛, 𝑛 > 1  can be presented by an infinite 

series as:                                                        

          𝑁(𝑢) = ∑ 𝑝𝑛𝐻𝑛(𝑥, 𝑡)                                                                         (2.25)
∞
𝑛=0  

where p ∈ [0,1] is an embedding parameter. Hn(u) is He polynomials. Now, 

substituting (2.24) and (2.25) in (2.23), to get:                                                                                                                            

∑𝑝𝑛𝑢𝑛(𝑥, 𝑡) =

∞

𝑛=0

𝕋−1 {
𝑣𝑔(𝑥)

𝑣 − 𝑐1
}

+ 𝑝𝕋−1 (
𝑐

𝑣 − 𝑐1
𝕋 {∑𝑝𝑛

∞

𝑛=0

𝑢𝑥𝑥(𝑥, 𝑡)}   −
𝑐2

𝑣 − 𝑐1
𝕋 {∑𝑝𝑛𝐻𝑛

∞

𝑛=0

} )   

Comparing the coefficient of powers of p, the following are obtained.                                

𝑝0: 𝑢0(𝑥, 𝑡) = 𝕋
−1 {

𝑣𝑔(𝑥)

𝑣 − 𝑐1
}             

𝑝1: 𝑢1(𝑥, 𝑡) = 𝕋
−1 (

𝑐

𝑣 − 𝑐1
𝕋{𝑢0𝑥𝑥(𝑥, 𝑡)} −

𝑐2
𝑣 − 𝑐1

𝕋{𝐻0}) 

𝑝2: 𝑢2(𝑥, 𝑡) = 𝕋
−1 (

𝑐

𝑣 − 𝑐1
𝕋{𝑢1𝑥𝑥(𝑥, 𝑡)} −

𝑐2
𝑣 − 𝑐1

𝕋{𝐻1}) 

 𝑝3: 𝑢3(𝑥, 𝑡) = 𝕋−1 (
𝑐

𝑣 − 𝑐1
𝕋{𝑢2𝑥𝑥(𝑥, 𝑡)} −

𝑐2
𝑣 − 𝑐1

𝕋{𝐻2})                 
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      Proceeding in this same manner, the rest of the components un(x, t) can be 

completely obtained and the series solution is thus entirely determined. 

Finally, we approximate the analytical solution 𝑢(𝑥, 𝑡) by truncated series: 

𝑢(𝑥, 𝑡) =  lim
𝑁→∞

(∑𝑢𝑛(𝑥, 𝑡)

𝑁

𝑛=0

)                                                                      

The above series solutions generally converge very rapidly.                                                                                          

2.8. Illustrative Examples 

     In this section, some non-linear autonomous equations with IC are 

presented to show the advantages of the proposed method. 

Example 2.7 [1] 

 Consider linear 1D, 2nd order autonomous equation.  

 𝑢𝑡(𝑥, 𝑡) =  𝑢𝑥𝑥(𝑥, 𝑡) − 3𝑢(𝑥, 𝑡)                                                                       (2.26)                                                                                                      

With IC:    𝑢(𝑥, 𝑡) = 𝑒2𝑥                       

 Taking the new transformation on both sides of equation (2.26), we have 

 𝕋{𝑢𝑡(𝑥, 𝑡)} = 𝕋{𝑢𝑥𝑥(𝑥, 𝑡)} − 3𝕋{𝑢(𝑥, 𝑡)}                                                                                                                                                                                               

By applying the differentiation property of new transformation, we get:                                                                                 

𝑣𝕋{𝑢(𝑥, 𝑡)} − 𝑣𝑢(𝑥, 0) = 𝕋{𝑢𝑥𝑥(𝑥, 𝑡)} − 3𝕋{𝑢(𝑥, 𝑡)}                           

 Thus, we have:              

 (𝑣 + 3)𝕋{𝑢(𝑥, 𝑡)} = 𝑣𝑒2𝑥 + 𝕋{𝑢𝑥𝑥(𝑥, 𝑡)}                                                 
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    𝕋{𝑢(𝑥, 𝑡)} =
𝑣𝑒2𝑥

𝑣+3
+

1

𝑣+3
𝕋{𝑢𝑥𝑥(𝑥, 𝑡)}                                                          (2.27) 

Taking the inverse new transformation on equation (2.27), to get:                                                                                     

      𝑢(𝑥, 𝑡) = 𝕋−1 {
𝑣𝑒2𝑥

𝑣+3
} + 𝕋−1 (

1

𝑣+3
𝕋{𝑢𝑥𝑥(𝑥, 𝑡)})                                 

Now, applying the HPM, we get:                                                                                          

∑𝑝𝑛𝑢𝑛(𝑥, 𝑡) =

∞

𝑛=0

𝑒2𝑥−3𝑡 + 𝑝𝕋−1 (
1

𝑣 + 3
𝕋 {∑𝑝𝑛

∞

𝑛=0

𝑢𝑥𝑥(𝑥, 𝑡)})           

Comparing the coefficients of powers of p, we have:                                                                                             

𝑝0: 𝑢0(𝑥, 𝑡) =  𝑒
2𝑥−3𝑡            

𝑝1: 𝑢1(𝑥, 𝑡) = 𝕋
−1 (

1

𝑣 + 3
𝕋{𝑢0𝑥𝑥(𝑥, 𝑡)}) = 𝕋

−1 (
1

𝑣 + 3
𝕋{4𝑒2𝑥𝑒−3𝑡})

= 4𝑒2𝑥𝕋−1 (
𝑣

(𝑣 + 3)2
) = 4𝑡𝑒2𝑥−3𝑡 

𝑝2: 𝑢2(𝑥, 𝑡) = 𝕋
−1 (

1

𝑣+3
𝕋{𝑢1𝑥𝑥(𝑥, 𝑡)}) = 𝕋

−1 (
1

𝑣+3
𝕋{16𝑡𝑒2𝑥𝑒−3𝑡})                      

     = 𝕋−1 (
1

𝑣+3
∗
16𝑒2𝑥𝑣

(𝑣+3)2
) = 𝕋−1 (8𝑒2𝑥 ∗

2!𝑣

(𝑣+3)2+1
) = 8𝑡2𝑒2𝑥−3𝑡            

 𝑝3: 𝑢3(𝑥, 𝑡) = 𝕋−1 (
1

𝑣 + 3
𝕋{𝑢2𝑥𝑥(𝑥, 𝑡)}) 

                     = 𝕋−1 (
1

𝑣+3
𝕋{32𝑒2𝑥𝑡2𝑒−3𝑡}) = 32𝑒2𝑥𝕋−1 (

1

𝑣+3
∗

2!𝑣

(𝑣+3)3
) 

= 32𝑒2𝑥𝕋−1 (
2! 𝑣

(𝑣 + 3)4
)  =

32

3
𝑒2𝑥𝕋−1 (

3! 𝑣

(𝑣 + 3)3+1
) =  

32

3
𝑡3𝑒2𝑥−3𝑡 
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And so on, therefore the solution u(x, t) is given by:                                                                                                                     

 𝑢(𝑥, 𝑡) = 𝑒2𝑥−3𝑡 (1 + 4𝑡 + 8𝑡2 +
32𝑡3

3
+⋯) 

= 𝑒2𝑥−3𝑡 (1 + (4𝑡) +
(4𝑡)2

2!
+
(4𝑡)3

3!
+ ⋯) = 𝑒2𝑥+𝑡             

Example 2.8 [1] 

 Consider nonlinear 1D, 2nd order autonomous equation.                                             

𝑢𝑡(𝑥, 𝑡) = 5𝑢𝑥𝑥(𝑥, 𝑡) + 2𝑢(𝑥, 𝑡) + 𝑢
2(𝑥, 𝑡)                                                   (2.28) 

With the IC:          𝑢 (𝑥, 𝑡) = 𝛽                                               

where 𝛽 is arbitrary constant. Taking the new transformation on both sides of 

equation (2.28), we have:                                                                                                                                              

𝕋{𝑢𝑡(𝑥, 𝑡)} = 5𝕋{𝑢𝑥𝑥(𝑥, 𝑡)} + 2𝕋{𝑢(𝑥, 𝑡)} + 𝕋{𝑢
2(𝑥, 𝑡)}                    

𝑣𝕋{𝑢(𝑥, 𝑡)} − 𝑣𝑢(𝑥, 0) = 5𝕋{𝑢𝑥𝑥(𝑥, 𝑡)} + 2𝕋{𝑢(𝑥, 𝑡)} + 𝕋{𝑢
2(𝑥, 𝑡)}  

 (𝑣 − 2)𝕋{𝑢(𝑥, 𝑡)} = 𝑣𝛽 + 5𝕋{𝑢𝑥𝑥(𝑥, 𝑡)} + 𝕋{𝑢
2(𝑥, 𝑡)}                       

   𝕋{𝑢(𝑥, 𝑡)} =
𝑣𝛽

𝑣 − 2
+

5

𝑣 − 2
𝕋{𝑢𝑥𝑥(𝑥, 𝑡)} +

1

𝑣 − 2
𝕋{𝑢2(𝑥, 𝑡)}              (2.29) 

 Taking the inverse new transformation on equation (2.29), we obtain:                                                                                     

 𝑢(𝑥, 𝑡) = 𝕋−1 {
𝑣𝛽

𝑣−2
} + 𝕋−1 (

5

𝑣−2
𝕋{𝑢𝑥𝑥(𝑥, 𝑡)} +

1

𝑣−2
𝕋{𝑢2(𝑥, 𝑡)})      

 Now, applying the HPM, we get:                                                                                            
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∑𝑝𝑛𝑢𝑛(𝑥, 𝑡) = 𝛽

∞

𝑛=0

𝑒2𝑡 + 𝑝𝕋−1 (
5

𝑣 − 2
𝕋 {∑𝑝𝑛

∞

𝑛=0

𝑢𝑥𝑥(𝑥, 𝑡)} +
1

𝑣 − 2
𝕋 {∑𝑝𝑛𝐻𝑛

∞

𝑛=0

})    

Comparing the coefficients of powers of p, we have:                                                                                             

𝑝0: 𝑢0(𝑥, 𝑡) = 𝛽𝑒
2𝑡 

𝑝1: 𝑢1(𝑥, 𝑡) = 𝕋
−1 (

5

𝑣 − 2
𝕋{𝑢0𝑥𝑥(𝑥, 𝑡)} +

1

𝑣 − 2
𝕋{𝐻0(𝑢)}) 

𝑝2: 𝑢2(𝑥, 𝑡) = 𝕋
−1 (

5

𝑣−2
𝕋{𝑢1𝑥𝑥(𝑥, 𝑡)} +

1

𝑣−2
𝕋{𝐻1(𝑢)})                                                                            

 𝑝3: 𝑢3(𝑥, 𝑡) = 𝕋−1 (
5

𝑣 − 2
𝕋{𝑢2𝑥𝑥(𝑥, 𝑡)} +

1

𝑣 − 2
𝕋{𝐻2(𝑢)}) 

: 

First, compute An to the nonlinear part N(u) ,  we have: 

𝑁(𝑢) = 𝑁(∑𝑝𝑛𝐻𝑛

∞

𝑛=0

)

= 𝑢0
2 + 𝑝 (2𝑢0𝑢1) + 𝑝

2(2𝑢0𝑢2 + 𝑢1
2) + 𝑝3(2𝑢0𝑢3 + 2𝑢1𝑢2) + ⋯  

So,  

𝐻0 = 𝑢0
2 

𝐻1 = 2𝑢0𝑢1 

𝐻2 = 2𝑢0𝑢2 + 𝑢1
2                                                                                                         

and so on. 

Moreover, the sequence of the parts un is: 

𝑢0(𝑥, 𝑡) = 𝛽𝑒
2𝑡       
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 𝑢1(𝑥, 𝑡) = 𝕋
−1 (0 +

1

𝑣−2
𝕋{𝛽2𝑒4𝑡})  

               = 𝕋−1 (
1

𝑣−2
∗
𝛽2𝑣

𝑣−4
) = 𝛽2𝕋−1 (

𝑣

(𝑣−2)(𝑣−4)
)       

           = 𝛽2𝕋−1 (
𝑣

2(𝑣−4)
−

𝑣

2(𝑣−2)
) = 𝛽2 [

1

2
𝑒4𝑡 −

1

2
𝑒2𝑡] =

𝛽2

2
𝑒2𝑡(𝑒2𝑡 − 1) 

 𝑢2(𝑥, 𝑡) = 𝕋
−1 (0 +

1

𝑣−2
𝕋 {2𝛽𝑒2𝑡 ∗

𝛽2

2
𝑒2𝑡(𝑒2𝑡 − 1)}) 

= 𝕋−1 (
1

𝑣−2
𝕋{𝛽3(𝑒6𝑡 − 𝑒4𝑡)}) = 𝕋−1 (

𝛽3

𝑣−2
(
𝑣

𝑣−6
−

𝑣

𝑣−4
))                                                                       

= 𝛽3𝕋−1 (
𝑣

(𝑣−2)(𝑣−6)
−

𝑣

(𝑣−2)(𝑣−4)
 )   

 = 𝛽3𝕋−1 ((
𝑣

4(𝑣−6)
−

𝑣

4(𝑣−2)
) − (

𝑣

2(𝑣−4)
−

𝑣

2(𝑣−2)
) ) 

= 𝛽3 [(
1

4
𝑒6𝑡 −

1

4
𝑒2𝑡) − (

1

2
𝑒4𝑡 −

1

2
𝑒2𝑡)] = 𝛽3 [

1

4
𝑒6𝑡 −

1

2
𝑒4𝑡 +

1

4
𝑒2𝑡] 

 = 
𝛽3

4
𝑒2𝑡(𝑒4𝑡 − 2𝑒2𝑡 + 1) =

𝛽3

4
𝑒2𝑡(𝑒2𝑡 − 1)2 

𝑢3(𝑥, 𝑡) =
𝛽4

8
𝑒2𝑡(𝑒2𝑡 − 1)3 

 Therefore the solution u(x, t) is given by: 

𝑢(𝑥, 𝑡) = 𝑒2𝑡 (𝛽 +  
𝛽

2

2
(𝑒2𝑡 − 1) + 

𝛽3

4
(𝑒2𝑡 − 1)2 + 

𝛽4

8
(𝑒2𝑡 − 1)3 +⋯)   

           =  
2𝛽𝑒2𝑡

2+ 𝛽(1−𝑒2𝑡)
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2.9. Convergence of the Solution for Linear Case    

   Now, we need to show the convergence of series form to the exact form for 

3D- PDEs. 

Lemma 2.1     If  f  be continues function then  

𝜕

𝜕𝑡
∫𝑓(𝑡 − 𝜏)𝑑𝜏

𝑡

0

= 𝑓(𝑡) 

Proof 

Suppose that  

         ∫𝑓(𝑥)𝑑𝑥 = 𝐹(𝑥) + 𝑐 

Assume that 𝑥 = 𝑡 − 𝜏  then   𝑑𝑥 = −𝑑𝜏  then  

 
𝜕

𝜕𝑡
∫ 𝑓(𝑡 − 𝜏)𝑑𝜏
𝑡

0
= −

𝜕

𝜕𝑡
∫ 𝑓(𝑥)𝑑𝑥
0

𝑡
=

𝜕

𝜕𝑡
∫ 𝑓(𝑥)𝑑𝑥
𝑡

0
=

𝜕

𝜕𝑡
[𝐹(𝑥)|0

𝑡 ] =

𝜕

𝜕𝑡
[𝐹(𝑡) − 𝐹(0)] =

𝜕

𝜕𝑡
𝐹(𝑡) −

𝜕

𝜕𝑡
𝐹(0) = 𝑓(𝑡) 

 𝑠𝑜,        
𝜕

𝜕𝑡
∫ 𝑓(𝑡 − 𝜏)𝑑𝜏
𝑡

0
= 𝑓(𝑡) 

Lemma 2.2  Let 𝕋 is new transformation. Then 

 
𝜕

𝜕𝑡
(𝕋−1 {

1

𝑢
 𝕋 {𝑓(𝑋, 𝑡)}}) = 𝑓(𝑋, 𝑡)  , where 𝑋 = (𝑥, 𝑦, 𝑧) 

Proof 

    Using properties 2 and 3 of NT, and lemma (2.1), we have:  

 
𝜕

𝜕𝑡
(𝕋−1 {

1

𝑢
 𝕋 {𝑓(𝑋, 𝑡)}}) =

𝜕

𝜕𝑡
(𝕋−1 {

1

𝑢
 𝕋 {1}𝕋 {𝑓(𝑋, 𝑡)}}) =

𝜕

𝜕𝑡
(𝕋−1{𝕋 {1 ∗

𝑓(𝑋, 𝑡)}}) =
𝜕

𝜕𝑡
(1 ∗ 𝑓(𝑋, 𝑡)) =

𝜕

𝜕𝑡
(∫ 𝑓(𝑋, 𝑡 − 𝜏)𝑑𝜏

𝑡

0
) = 𝑓(𝑋, 𝑡) 
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Theorem 2.1 (Convergence Theorem)  

     If the series form given in equation (2.6) with p = 1, i.e., 

𝑢(𝑥, 𝑦, 𝑧, 𝑡) = ∑𝑢𝑛(𝑥, 𝑦, 𝑧, 𝑡)

∞

𝑛=0

                                                                    (2.30) 

is convergent. Then the limit point converges to the exact solution of equation 

(2.1), where un (n = 0, 1, …) are calculated by NTHPM, i.e.,  

𝑢0(𝑥, 𝑦, 𝑧, 𝑡) + 𝑢1(𝑥, 𝑦, 𝑧, 𝑡) = 𝕋−1 {𝑓 +
1

𝑣𝛼
 𝕋 {−𝑅[𝑢0]}}  

                      𝑢𝑛(𝑥, 𝑦, 𝑧, 𝑡)       = −𝕋−1 {
1

𝑣𝛼
𝕋{𝑅[𝑢𝑛−1]}} , 𝑛 > 1

}
 
 

 
 

 

Proof 

  Suppose that equation (2.30) converges to the limit point say as:  

𝑤(𝑥, 𝑦, 𝑧, 𝑡) = ∑𝑢𝑛(𝑥, 𝑦, 𝑧, 𝑡)

∞

𝑛=0

                     

Now, from right hand side of equation (2.1) we have: 

 𝛼
𝜕𝑤

𝜕𝑡
= 𝛼 

𝜕

𝜕𝑡
 ∑ 𝑢𝑛(𝑥, 𝑦, 𝑧, 𝑡)

∞
𝑛=0  = 𝛼 

𝜕

𝜕𝑡
 [𝑢0 + 𝑢1 + ∑ 𝑢𝑛(𝑥, 𝑦, 𝑧, 𝑡)

∞
𝑛=2 ] 

=  𝛼 
𝜕

𝜕𝑡
 [𝕋−1 {𝑓 +

1

𝑣𝛼
 𝕋 {−𝑅[𝑢0]}} −∑𝕋−1 {

1

𝑣𝛼
[𝕋{𝑅[𝑢𝑛−1]}]}

∞

𝑛=2

]

=  𝛼 
𝜕𝑓

𝜕𝑡
− 𝑅[𝑢0] − 

𝜕

𝜕𝑡
  (∑𝕋−1 {

1

𝑣
[𝕋{𝑅[𝑢𝑛]}]}

∞

𝑛=2

)

= 0 − 𝑅[𝑢0] −∑
𝜕

𝜕𝑡
 (𝕋−1 {

1

𝑣
[𝕋{𝑅[𝑢𝑛]}]})

∞

𝑛=0

                        (2.31) 

By lemma (2.2), the equation (2.31) becomes: 
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𝛼
𝜕𝑤

𝜕𝑡
= −∑𝑅[𝑢𝑛]

∞

𝑛=0

= − 𝑅 [∑𝑢𝑛

∞

𝑛=0

] = −𝑅𝑤 = 𝑤𝑥𝑥 +𝑤𝑦𝑦 +𝑤𝑧𝑧 

Then w(x, y, z, t) satisfies equation (2.1). So, it is exact solution. 

2.10. Convergence of the Solution for Nonlinear Case         

      Now, we must prove the convergence of solution of equation (2.13) to the 

exact solution when we used the NTHPM, the solution is given in equation 

(2.32), where un,, (n= 0, 1, …), are calculated by new transformation, i.e., 

𝑢(𝑥, 𝑦, 𝑧, 𝑡) =  𝑢0(𝑥, 𝑦, 𝑧, 𝑡) + 𝑢1(𝑥, 𝑦, 𝑧, 𝑡) + ⋯ =∑𝑢𝑛(𝑥, 𝑦, 𝑧, 𝑡)

∞

𝑛=0

     (2.32) 

𝑢0 = 𝑓(𝑥, 𝑦, 𝑧)                                                                              

𝑢𝑛 = −𝕋
−1 {

𝕋{𝑅[𝑢𝑛−1] + 𝐴𝑛−1}

𝑣
}  , 𝑛 ≥ 1                          

                                                         

}                 (2.33) 

and An, (n = 0, 1, …), are defined as  

 𝐴𝑛 = 𝑢𝑛
𝜕𝑢0

𝜕𝑧
+ 𝑢𝑛−1

𝜕𝑢1

𝜕𝑧
+⋯+ 𝑢0

𝜕𝑢𝑛

𝜕𝑧
= ∑ 𝑢𝑘  

𝜕𝑢𝑛−𝑘

𝜕𝑧

𝑛
𝑘=0                           (2.34) 

Now we proof the convergence in the following theorem.  

Theorem 2.2 (Convergence Theorem) 

     If the series (2.32) which was calculated by NTHPM, is convergent then 

the limit point converges to the exact solution for the equation (2.13). Suppose 

that the limit point is:  

𝑤(𝑥, 𝑦, 𝑧, 𝑡) = ∑𝑢𝑛(𝑥, 𝑦, 𝑧, 𝑡) 

∞

𝑛=0

                                                              

Now, from left hand side of equation (2.13), we have: 
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𝜕𝑤

𝜕𝑡
=  

𝜕

𝜕𝑡
 ∑𝑢𝑛(𝑥, 𝑦, 𝑧, 𝑡)

∞

𝑛=0

 =  
𝜕

𝜕𝑡
 [𝑢0(𝑥, 𝑦, 𝑧, 𝑡) +∑𝑢𝑛(𝑥, 𝑦, 𝑧, 𝑡)

∞

𝑛=1

] 

 =   
𝜕

𝜕𝑡
 [𝕋−1{𝑓} −∑𝕋−1 {

𝕋{𝑅[𝑢𝑛−1] + 𝐴𝑛−1}

𝑣
}

∞

𝑛=1

] 

=
𝜕

𝜕𝑡
 [𝕋−1{𝑓} −∑𝕋−1 {

𝕋{𝑅[𝑢𝑛]}

𝑣
}

∞

𝑛=0

−∑𝕋−1 {
𝕋{𝐴𝑛}

𝑣
}

∞

𝑛=0

] 

=  
𝜕𝑓

𝜕𝑡
− 

𝜕

𝜕𝑡
  ∑𝕋−1 {

𝕋{𝑅[𝑢𝑛]}

𝑣
}

∞

𝑛=0

−
𝜕

𝜕𝑡
∑𝕋−1 {

𝕋{𝐴𝑛}

𝑣
}

∞

𝑛=0

  

=  
𝜕𝑓

𝜕𝑡
−∑

𝜕

𝜕𝑡
[𝕋−1 {

𝕋{𝑅[𝑢𝑛]}

𝑣
}]

∞

𝑛=0

−∑
𝜕

𝜕𝑡
[𝕋−1 {

𝕋{𝐴𝑛}

𝑣
}]

∞

𝑛=0

              (2.35) 

By lemma (2.2) and equation (2.35), we get: 

 
𝜕𝑤

𝜕𝑡
=   0 −   ∑𝑅[𝑢𝑛]

∞

𝑛=0

−∑𝐴𝑛

∞

𝑛=0

                                                              (2.36) 

However, from equation (2.34), we have: 

∑𝐴𝑛

∞

𝑛=0

=∑∑𝑢𝑘  
𝜕𝑢𝑛−𝑘
𝜕𝑧

𝑛

𝑘=0

∞

𝑛=0

= 𝑢0
𝜕𝑢0
𝜕𝑧

+ 𝑢0
𝜕𝑢1
𝜕𝑧

+ 𝑢1
𝜕𝑢0
𝜕𝑧

+ 𝑢0
𝜕𝑢2
𝜕𝑧

+ 𝑢1
𝜕𝑢1
𝜕𝑧

+ 𝑢2
𝜕𝑢0
𝜕𝑧

+ 𝑢0
𝜕𝑢3
𝜕𝑧

+ 𝑢1
𝜕𝑢2
𝜕𝑧

+ 𝑢2
𝜕𝑢1
𝜕𝑧

+ 𝑢3
𝜕𝑢0
𝜕𝑧

+⋯ 

 = 𝑢0 (
𝜕𝑢0

𝜕𝑧
+
𝜕𝑢1

𝜕𝑧
+
𝜕𝑢2

𝜕𝑧
+
𝜕𝑢3

𝜕𝑧
+⋯) + 𝑢1 (

𝜕𝑢0

𝜕𝑧
+
𝜕𝑢1

𝜕𝑧
+
𝜕𝑢2

𝜕𝑧
+
𝜕𝑢3

𝜕𝑧
+⋯) +

𝑢2 (
𝜕𝑢0

𝜕𝑧
+
𝜕𝑢1

𝜕𝑧
+
𝜕𝑢2

𝜕𝑧
+
𝜕𝑢3

𝜕𝑧
+⋯) + 𝑢3 (

𝜕𝑢0

𝜕𝑧
+
𝜕𝑢1

𝜕𝑧
+
𝜕𝑢2

𝜕𝑧
+
𝜕𝑢3

𝜕𝑧
+⋯) +⋯ 
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= (𝑢0 + 𝑢1 + 𝑢2 + 𝑢3 +⋯) (
𝜕𝑢0

𝜕𝑧
+
𝜕𝑢1

𝜕𝑧
+

𝜕𝑢2

𝜕𝑧
+
𝜕𝑢3

𝜕𝑧
+⋯) =

(∑ 𝑢𝑛
∞
𝑛=0 ) (∑  

𝜕𝑢𝑛

𝜕𝑧
∞
𝑛=0 ) = (∑ 𝑢𝑛

∞
𝑛=0 ) (

𝜕

𝜕𝑧
∑  𝑢𝑛
∞
𝑛=0 )                                  (2.37)  

Then substitute equation (2.37) in equation (2.36) to obtain:  

 
𝜕𝑤

𝜕𝑡
= −𝑅[∑ 𝑢𝑛

∞
𝑛=0 ] − (∑ 𝑢𝑛

∞
𝑛=0 ) (

𝜕

𝜕𝑧
∑  𝑢𝑛
∞
𝑛=0 ) = −𝑅[𝑤] − 𝑤

𝜕𝑤

𝜕𝑧
 

 𝑡ℎ𝑒𝑛   
𝜕𝑤

𝜕𝑡
 =  [

𝜕2𝑤

𝜕𝑥2
+
𝜕2𝑤

𝜕𝑦2
+
𝜕2𝑤

𝜕𝑧2
] − 𝑤

𝜕𝑤

𝜕𝑧
 

Then w(x, y, z, t) is satisfy equation (2.13). So, its exact solution. 
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3.1. Introduction 

      The system of PDEs arises in many areas of mathematics, engineering 

and physical sciences. These systems are too complicated to be solved 

exactly so it is still very difficult to get closed-form solutions for most 

problems. A vast class of analytical and numerical methods has been 

proposed to solve such problems. Such as the ADM [24, 57], VIM [6, 54], 

HPM [3, 7, 8, 59], HAM [5] and DTM [28]. But many systems such that 

system of high dimensional equations, the required calculations to obtain 

its solution in some time may be too complicated. Recently, many powerful 

methods have been presented, such as the coupled method [10, 32, 52].  

      In this chapter, new coupled method based on HPM and new transform 

NTHPM, is presented to solve systems of PDEs. The efficiency of the 

NTHPM is verified by some examples. 

 

 

  

Chapter Three 

   Solving System of Partial Differential 

Equations by New Couple Method 
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3.2. Solving System of Nonlinear PDEs by NTHPM  

     This section consist the procedure of the NTHPM to solve system of 

nonlinear PDEs. Firstly, writes the system of nonlinear PDEs as follows: 

 𝐿[𝑢(𝑥, 𝑦, 𝑡)] + 𝑅[𝑢(𝑥, 𝑦, 𝑡)] + 𝑁[𝑢(𝑥, 𝑦, 𝑡)] = 𝑔1(𝑥, 𝑦, 𝑡)                          

 𝐿[𝑤(𝑥, 𝑦, 𝑡)] + 𝑅[𝑤(𝑥, 𝑦, 𝑡)] + 𝑁[𝑤(𝑥, 𝑦, 𝑡)] = 𝑔2(𝑥, 𝑦, 𝑡)                 (3.1𝑎) 

With IC: 

 𝑢(𝑥, 𝑦, 0) = 𝑓(𝑥, 𝑦)                                                               

 𝑤(𝑥, 𝑦, 0) = 𝑔(𝑥, 𝑦)                                                                                      (3.1𝑏) 

where all 𝑥, 𝑦 𝑖𝑛 𝑅 , L is a linear differential operator (𝐿 =
𝜕

𝜕𝑡
), R is a 

remained of the linear operator, N is a nonlinear differential operator and 

𝑔1(𝑥, 𝑦, 𝑡), 𝑔2(𝑥, 𝑦, 𝑡) are the nonhomogeneous part. 

We construct a homotopy u(x, p): 𝑅𝑛× [0, 1] → R, using the homotopy 

perturbation technique which satisfies 

𝐻(𝑢(𝑥, 𝑦, 𝑡), 𝑝) = (1 − 𝑝)[𝐿(𝑢(𝑥, 𝑦, 𝑡)) − 𝐿(𝑢(𝑥, 𝑦, 0))] + 𝑝[𝐴(𝑢(𝑥, 𝑦, 𝑡)) −

𝑔1(𝑥, 𝑦, 𝑡)] = 0   

𝐻(𝑤(𝑥, 𝑦, 𝑡), 𝑝) = (1 − 𝑝)[𝐿(𝑤(𝑥, 𝑦, 𝑡)) − 𝐿(𝑤(𝑥, 𝑦, 0))] + 𝑝[𝐴(𝑣(𝑥, 𝑦, 𝑡)) −

𝑔1(𝑥, 𝑦, 𝑡)] = 0                                                                                                      (3.2)                                                                                         

Where 𝑝 ∈ [0,1] is an embedding parameter and the operator A defined as:  

𝐴 = 𝐿 + 𝑅 + 𝑁. 

Obviously, if p = 0, the system (3.2) becomes: 

 𝐿(𝑢(𝑥, 𝑦, 𝑡)) = 𝐿(𝑢(𝑥, 𝑦, 0)), and  𝐿(𝑤(𝑥, 𝑦, 𝑡)) = 𝐿(𝑤(𝑥, 𝑦, 0)).  
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It is clear that, if 𝑝 = 1 then the homotopy system (3.2) convert to the main 

system (3.1). In topology, this deformation is called homotopic.  

Substitute equation (3.1b) in system (3.2) and rewrite it as: 

𝐿(𝑢(𝑥, 𝑦, 𝑡)) − 𝐿(𝑓(𝑥, 𝑦)) − 𝑝𝐿(𝑢(𝑥, 𝑦, 𝑡)) + 𝑝𝐿(𝑓(𝑥, 𝑦)) +

𝑝𝐿(𝑢(𝑥, 𝑦, 𝑡)) + 𝑝𝑅(𝑢(𝑥, 𝑦, 𝑡)) + 𝑝𝑁(𝑢(𝑥, 𝑦, 𝑡)) − 𝑝𝑔1(𝑥, 𝑦, 𝑡) = 0     

𝐿(𝑤(𝑥, 𝑦, 𝑡)) − 𝐿(𝑔(𝑥, 𝑦)) − 𝑝𝐿(𝑤(𝑥, 𝑦, 𝑡)) + 𝑝𝐿(𝑔(𝑥, 𝑦)) +

𝑝𝐿(𝑤(𝑥, 𝑦, 𝑡)) + 𝑝𝑅(𝑤(𝑥, 𝑦, 𝑡)) + 𝑝𝑁(𝑤(𝑥, 𝑦, 𝑡)) − 𝑝𝑔2(𝑥, 𝑦, 𝑡) = 0     

Then 

𝐿(𝑢(𝑥, 𝑦, 𝑡)) − 𝐿(𝑓(𝑥, 𝑦)) + 𝑝[𝐿(𝑓(𝑥, 𝑦)) + 𝑅(𝑢(𝑥, 𝑦, 𝑡)) +

𝑁(𝑢(𝑥, 𝑦, 𝑡)) − 𝑔1(𝑥, 𝑦, 𝑡)] = 0     

 𝐿(𝑤(𝑥, 𝑦, 𝑡)) − 𝐿(𝑔(𝑥, 𝑦)) + 𝑝[𝐿(𝑔(𝑥, 𝑦)) + 𝑅(𝑤(𝑥, 𝑦, 𝑡)) +

𝑁(𝑤(𝑥, 𝑦, 𝑡)) − 𝑔2(𝑥, 𝑦, 𝑡)] = 0                                                                    (3.3) 

Since 𝑓(𝑥, 𝑦) and 𝑔(𝑥, 𝑦) are independent of the variable 𝑡 and the linear 

operator L dependent on t so, 𝐿(𝑓(𝑥, 𝑦)) = 0, 𝐿(𝑔(𝑥, 𝑦)) = 0, i.e., system  

(3.3) becomes: 

𝐿(𝑢(𝑥, 𝑦, 𝑡)) + 𝑝[𝑅(𝑢(𝑥, 𝑦, 𝑡)) + 𝑁(𝑢(𝑥, 𝑦, 𝑡)) − 𝑔1(𝑥, 𝑦, 𝑡)] = 0             

𝐿(𝑤(𝑥, 𝑦, 𝑡)) + 𝑝[𝑅(𝑤(𝑥, 𝑦, 𝑡)) + 𝑁(𝑤(𝑥, 𝑦, 𝑡)) − 𝑔2(𝑥, 𝑦, 𝑡)] = 0    (3.4) 

According to the classical perturbation technique, the solution of system 

(3.4) can be written as a power series of embedding parameter p, in the 

form: 
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𝑢(𝑥, 𝑦, 𝑡) = ∑𝑝𝑛𝑢𝑛(𝑥, 𝑦, 𝑡)

∞

𝑛=0

  

𝑤(𝑥, 𝑦, 𝑡) = ∑𝑝𝑛𝑤𝑛(𝑥, 𝑦, 𝑡)

∞

𝑛=0

                                                                        (3.5) 

For most cases, the series form in (3.5) is convergent and the convergent 

rate depends on the nonlinear operator 𝑁(𝑢(𝑥, 𝑦, 𝑡)) and 𝑁(𝑤(𝑥, 𝑦, 𝑡)). 

Taking the NT (with respect to the variable t) for the system (3.4) to get: 

𝕋{𝐿(𝑢)} + 𝑝 𝕋{𝑅(𝑢) + 𝑁(𝑢) − 𝑔1} = 0 

𝕋{𝐿(𝑤)} + 𝑝 𝕋{𝑅(𝑤) + 𝑁(𝑤) − 𝑔2} = 0                                                   (3.6) 

Now by using the differentiation property of NT and IC in (3.1b), so 

system (3.6) becomes: 

𝑣𝕋{𝑢} − 𝑣𝑓(𝑥, 𝑦) + 𝑝 𝕋{𝑅(𝑢) + 𝑁(𝑢) − 𝑔1} = 0  

𝑣𝕋{𝑤} − 𝑣𝑔(𝑥, 𝑦) + 𝑝 𝕋{𝑅(𝑤) + 𝑁(𝑤) − 𝑔2} = 0                                  

Hence: 

 𝕋{𝑢} = 𝑓(𝑥, 𝑦) + 𝑝
1

𝑣
𝕋{𝑔1 − 𝑅(𝑢) − 𝑁(𝑢)}                                 

𝕋{𝑤} = 𝑔(𝑥, 𝑦) + 𝑝
1

𝑣
𝕋{𝑔2 − 𝑅(𝑤) − 𝑁(𝑤)}                                           (3.7) 

By taking the inverse of NT on both sides of system (3.7), to get: 

 𝑢(𝑥, 𝑦, 𝑡) = 𝑓(𝑥, 𝑦) + 𝑝 𝕋−1 {
1

𝑣
𝕋{𝑔1(𝑥, 𝑦, 𝑡) − 𝑅(𝑢(𝑥, 𝑦, 𝑡)) − 𝑁(𝑢(𝑥, 𝑦, 𝑡))}} 

 𝑤(𝑥, 𝑦, 𝑡) = 𝑔(𝑥, 𝑦) + 𝑝 𝕋−1 {
1

𝑣
𝕋{𝑔2(𝑥, 𝑦, 𝑡) − 𝑅(𝑤(𝑥, 𝑦, 𝑡)) − 𝑁(𝑤(𝑥, 𝑦, 𝑡))}}  (3.8) 

Then, substitute system (3.5) in system (3.8) to get: 
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∑𝑝𝑛𝑢𝑛 =

∞

𝑛=0

𝑓(𝑥, 𝑦) + 𝑝𝕋−1 {
1

𝑣
𝕋 {𝑔1(𝑥, 𝑦, 𝑡) − 𝑅 (∑𝑝𝑛𝑢𝑛

∞

𝑛=0

) − 𝑁(∑𝑝𝑛𝑢𝑛

∞

𝑛=0

)}} 

∑𝑝𝑛𝑤𝑛 =

∞

𝑛=0

𝑔(𝑥, 𝑦) + 𝑝𝕋−1 {
1

𝑣
𝕋 {𝑔2(𝑥, 𝑦, 𝑡) − 𝑅 (∑𝑝𝑛𝑤𝑛

∞

𝑛=0

) − 𝑁(∑𝑝𝑛𝑤𝑛

∞

𝑛=0

)}}          (3.9) 

The nonlinear part can be decomposed, as will be explained later, by 

substituting system (3.5) in it as: 

𝑁(𝑢) = 𝑁(∑𝑝𝑛𝑢𝑛(𝑥, 𝑦, 𝑡)

∞

𝑛=0

) = ∑𝑝𝑛𝐻𝑛

∞

𝑛=0

 

𝑁(𝑤) = 𝑁(∑𝑝𝑛𝑤𝑛(𝑥, 𝑦, 𝑡)

∞

𝑛=0

) = ∑𝑝𝑛𝐾𝑛

∞

𝑛=0

      

Then system (3.9) becomes:              

∑𝑝𝑛𝑢𝑛 =

∞

𝑛=0

𝑓(𝑥, 𝑦) + 𝑝𝕋−1 {
1

𝑣
𝕋 {𝑔1(𝑥, 𝑦, 𝑡) − 𝑅 (∑𝑝𝑛𝑢𝑛

∞

𝑛=0

) −∑𝑝𝑛𝐻𝑛

∞

𝑛=0

}} 

∑𝑝𝑛𝑤𝑛 =

∞

𝑛=0

𝑔(𝑥, 𝑦) + 𝑝𝕋−1 {
1

𝑣
𝕋 {𝑔2(𝑥, 𝑦, 𝑡) − 𝑅 (∑𝑝𝑛𝑤𝑛

∞

𝑛=0

) −∑𝑝𝑛𝐾𝑛

∞

𝑛=0

}}     (3.10) 

By comparing the coefficient with the same power of p, in both sides of the 

system (3.10) we have: 

𝑢0 = 𝑓(𝑥, 𝑦), 𝑤0 = 𝑔(𝑥)  

 𝑢1 = 𝕋−1 {
1

𝑣
𝕋{𝑔1(𝑥, 𝑦, 𝑡) − 𝑅(𝑢0) − 𝐻0}} ,  𝑤1 = 𝕋

−1 {
1

𝑣
𝕋{𝑔2(𝑥, 𝑦, 𝑡) − 𝑅(𝑤0) − 𝐾0}}      

 𝑢2 = −𝕋
−1 {

1

𝑣
𝕋{𝑅(𝑢1) + 𝐻1}},        𝑤2 = −𝕋

−1 {
1

𝑣
𝕋{𝑅(𝑤1) + 𝐾1}}  

 𝑢3 = −𝕋
−1 {

1

𝑣
𝕋{𝑅(𝑢2) + 𝐻2}},       𝑤3 = −𝕋

−1 {
1

𝑣
𝕋{𝑅(𝑤2) + 𝐾2}} 

 : 
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 𝑢𝑛+1 = −𝕋
−1 {

1

𝑣
𝕋{𝑅(𝑢𝑛) + 𝐻𝑛}} ,    𝑤𝑛+1 = −𝕋

−1 {
1

𝑣
𝕋{𝑅(𝑤𝑛) + 𝐾𝑛}} 

According to the series solution in system (3.5), when at p=1 we can get 

 𝑢(𝑥, 𝑦, 𝑡) =  𝑢0(𝑥, 𝑦, 𝑡) + 𝑢1(𝑥, 𝑦, 𝑡) + ⋯ = ∑ 𝑢𝑛(𝑥, 𝑦, 𝑡)
∞
𝑛=0  

    𝑤(𝑥, 𝑦, 𝑡) =  𝑤0(𝑥, 𝑦, 𝑡) + 𝑤1(𝑥, 𝑦, 𝑡) + ⋯ = ∑ 𝑤𝑛(𝑥, 𝑦, 𝑡)
∞
𝑛=0     

3.3. Illustrative Examples for System of 1D-PDEs 

      In this section, the NTHPM can be used to solve system of 1D, 

nonlinear PDEs.  

Example 3.1 [7] 

Consider the following system of 1D, nonhomogeneous nonlinear PDEs. 

𝜕𝑢

𝜕𝑥
− 𝑤

𝜕𝑢

𝜕𝑡
+ 𝑢

𝜕𝑤

𝜕𝑡
= −1 + 𝑒𝑥 sin(𝑡) 

𝜕𝑤

𝜕𝑥
+
𝜕𝑢

𝜕𝑡

𝜕𝑤

𝜕𝑥
+
𝜕𝑤

𝜕𝑡

𝜕𝑢

𝜕𝑥
= −1 − 𝑒−𝑥 cos(𝑡) 

Subject to IC:    𝑢(0, 𝑡) = sin(𝑡)    ,   𝑤(0, 𝑡) = cos(𝑡) 

𝑢0 = sin(𝑡)                   ,                𝑤0 = cos(𝑡) 

𝑢1 = 𝕋
−1 {

1

𝑣
𝕋 {𝑤0

𝜕𝑢0
𝜕𝑡

− 𝑢0
𝜕𝑤0
𝜕𝑡

− 1 + 𝑒𝑥 sin(𝑡)}}

= 𝕋−1 {
1

𝑣
𝕋{𝑒𝑥 sin(𝑡)}} 

= 𝕋−1 {
1

𝑣
∗
𝑣 sin(𝑡)

𝑣 − 1
} = sin(𝑡)𝕋−1 {

𝑣

𝑣 − 1
− 1} = 𝑒𝑥 sin(𝑡) − sin(𝑡) 
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𝑤1 = 𝕋
−1 {

1

𝑣
𝕋 {−

𝜕𝑢0
𝜕𝑡

𝜕𝑤0
𝜕𝑥

−
𝜕𝑤0
𝜕𝑡

𝜕𝑢0
𝜕𝑥

− 1 − 𝑒−𝑥 cos(𝑡)}}

= 𝕋−1 {
1

𝑣
𝕋{−1 − 𝑒−𝑥 cos(𝑡)}} 

= 𝕋−1 {−
1

𝑣
−
𝑣 cos(𝑡)

𝑣(𝑣 + 1)
} = −𝑥 + cos(𝑡)𝕋−1 {

−𝑣

𝑣 + 1
+ 1}

= −𝑥 + 𝑒−𝑥 cos(𝑡) − cos(𝑡) 

𝑢2 = 𝕋
−1 {

1

𝑣
𝕋 {(𝑤1

𝜕𝑢0
𝜕𝑡

+ 𝑤0
𝜕𝑢1
𝜕𝑡
) − (𝑢1

𝜕𝑤0
𝜕𝑡

+ 𝑢0
𝜕𝑤1
𝜕𝑡
)}} 

= 𝕋−1 {
1

𝑣
𝕋{−2 + 𝑒𝑥 + 𝑒−𝑥 − 𝑥 cos(𝑡)}}

= 𝕋−1 {
−2

𝑣
+

1

𝑣 − 1
+

1

𝑣 + 1
−
cos(𝑡)

𝑣2
} 

= 𝕋−1 {
−2

𝑣
+

𝑣

𝑣 − 1
− 1 −

𝑣

𝑣 + 1
+ 1 −

cos(𝑡)

𝑣2
}

= −2𝑡 + 𝑒𝑥 − 𝑒−𝑥 −
𝑥2

2!
cos(𝑡) 

𝑤2 = −𝕋
−1 {

1

𝑣
𝕋 {(

𝜕𝑢1
𝜕𝑡

𝜕𝑤0
𝜕𝑥

+
𝜕𝑢0
𝜕𝑡

𝜕𝑤1
𝜕𝑥

) + (
𝜕𝑤1
𝜕𝑡

𝜕𝑢0
𝜕𝑥

+
𝜕𝑤0
𝜕𝑡

𝜕𝑢1
𝜕𝑥
)}} 

= 𝕋−1 {
1

𝑣
𝕋{−cos(𝑡) − 𝑒−𝑥 cos2(𝑡) − 𝑒𝑥 sin2(𝑡)}} 

= −𝕋−1 {−
cos(𝑡)

𝑣
−
𝑣 cos2(𝑡)

𝑣(𝑣 + 1)
−
𝑣 sin2(𝑡)

𝑣(𝑣 − 1)
} 
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= 𝕋−1 {
cos(𝑡)

𝑣
+ cos2(𝑡) (

−𝑣

(𝑣 + 1)
+ 1) + sin2(𝑡) (

𝑣

(𝑣 − 1)
− 1)} 

= 𝑥 cos(𝑡) − 𝑒−𝑥 cos2(𝑡) + cos2(𝑡) + 𝑒𝑥 sin2(𝑡) − sin2(𝑡) 

= 𝑥 cos(𝑡) − 𝑒−𝑥 cos2(𝑡) + 𝑒𝑥 sin2(𝑡) + cos(2𝑡) 

and so on,  therefore 

 𝑢(𝑥, 𝑡) = ∑ 𝑢𝑛(𝑥, 𝑡) = sin(𝑡) + 𝑒
𝑥 sin(𝑡) − sin(𝑡) + ⋯ = 𝑒𝑥 sin(𝑡)∞

𝑛=0  

 𝑤(𝑥, 𝑡) = ∑ 𝑤𝑛(𝑥, 𝑡) = cos(𝑡) + 𝑒
−𝑥 cos(𝑡) − cos(𝑡) − 𝑥 +⋯ =∞

𝑛=0

𝑒−𝑥 cos(𝑡) 

This is the exact solution. 

Example 3.2 [3]            

Consider a system of 1D, 3rd order nonlinear KdV equations (type1). 

 
𝜕𝑢

𝜕𝑡
−
𝜕3𝑢

𝜕𝑥3
− 𝑢

𝜕𝑢

𝜕𝑥
−𝑤

𝜕𝑤

𝜕𝑥
= 0  

 
𝜕𝑤

𝜕𝑡
+

𝜕3𝑢

𝜕𝑥3
+ 𝑢

𝜕𝑤

𝜕𝑥
= 0         

Subject to IC:  𝑢(𝑥, 0) = 3 − 6 tanh2 (
𝑥

2
) , 𝑤(𝑥, 0) = −3𝑖√2 tanh2 (

𝑥

2
)     

We have the following terms:  

 𝑝0: 𝑢0(𝑥, 𝑡) = 3 − 6 tanh2 (
𝑥

2
) , 𝑝0: 𝑤0(𝑥, 𝑡) = −3𝑖√2 tanh

2 (
𝑥

2
) 

 𝑝1: 𝑢1 = 𝕋
−1 {

1

𝑣
𝕋{

𝜕3𝑢0

𝜕𝑥3
+ 𝑢0

𝜕𝑢0

𝜕𝑥
+𝑤0

𝜕𝑤0

𝜕𝑥
}} 
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𝑢1 = 𝕋
−1 {

1

𝑣
𝕋{(−6 𝑡𝑎𝑛ℎ3(

𝑥

2
)𝑠𝑒𝑐ℎ2(

𝑥

2
) + 12 𝑡𝑎𝑛ℎ(

𝑥

2
) 𝑠𝑒𝑐ℎ4(

𝑥

2
)) + (−18 tanh (

𝑥

2
) 𝑠𝑒𝑐ℎ2(

𝑥

2
) +

36 𝑡𝑎𝑛ℎ3(
𝑥

2
)𝑠𝑒𝑐ℎ2(

𝑥

2
)) + (−18 𝑡𝑎𝑛ℎ3 (

𝑥

2
) 𝑠𝑒𝑐ℎ2(

𝑥

2
))}}  

𝑢1 = 𝕋−1 {
1

𝑣
𝕋 {12 tanh3(

𝑥

2
) sech2(

𝑥

2
) + 12 tanh(

𝑥

2
) sech4(

𝑥

2
)

− 18 tanh(
𝑥

2
)sech2(

𝑥

2
)}} 

         = 𝕋−1 {
1

𝑣
𝕋 {12 tanh(

𝑥

2
) sech2(

𝑥

2
) − 18 tanh(

𝑥

2
)sech2(

𝑥

2
)}} 

         = (−6 tanh (
𝑥

2
) sech2 (

𝑥

2
)) 𝑡 

𝑝1: 𝑤1 = −𝕋
−1 {

1

𝑣
𝕋 {
𝜕3𝑢0
𝜕𝑥3

+ 𝑢0
𝜕𝑤0
𝜕𝑥

}} 

𝑤1 = −𝕋−1 {
1

𝑣
𝕋{(−6𝑖√2 𝑡𝑎𝑛ℎ3(

𝑥

2
)𝑠𝑒𝑐ℎ2(

𝑥

2
) + 12𝑖√2 𝑡𝑎𝑛ℎ(

𝑥

2
) 𝑠𝑒𝑐ℎ4(

𝑥

2
)) +

(−9𝑖√2 𝑡𝑎𝑛ℎ (
𝑥

2
) 𝑠𝑒𝑐ℎ2(

𝑥

2
) + 18𝑖√2 𝑡𝑎𝑛ℎ3(

𝑥

2
)𝑠𝑒𝑐ℎ2(

𝑥

2
))}}  

𝑤1 = −𝕋
−1 {

1

𝑣
𝕋{12𝑖√2 tanh3(

𝑥

2
) sech2(

𝑥

2
) + 12𝑖√2 tanh(

𝑥

2
) sech4(

𝑥

2
) −

9𝑖√2 tanh(
𝑥

2
)sech2(

𝑥

2
)}}  

     = −𝕋−1 {
1

𝑣
𝕋{12𝑖√2 tanh(

𝑥

2
) sech2(

𝑥

2
) − 9𝑖√2 tanh(

𝑥

2
)sech2(

𝑥

2
)}} 

      = (−3𝑖√2 tanh (
𝑥

2
) sech2 (

𝑥

2
)) 𝑡 

and so on,  therefore 
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   𝑢 = 3 − 6 tanh2 (
𝑥

2
) − (6 tanh (

𝑥

2
) sech2 (

𝑥

2
)) 𝑡 + ………  

   𝑤 = −3𝑖√2 tanh2 (
𝑥

2
) − (3𝑖√3 tanh (

𝑥

2
) sech2 (

𝑥

2
)) 𝑡 + ……… 

The above series closed to exact solution: 

𝑢 = 3 − 6 tanh2 (
𝑥+𝑡

2
)     ,     𝑤 = −3𝑖√2 tanh2 (

𝑥+𝑡

2
)      

Example 3.3 [3]  

Consider a system of 1D, 3rd order nonlinear KdV equations (type 2).  

𝜕𝑢

𝜕𝑡
−
𝜕3𝑢

𝜕𝑥3
− 2𝑤

𝜕𝑢

𝜕𝑥
− 𝑢

𝜕𝑤

𝜕𝑥
= 0         

𝜕𝑤

𝜕𝑡
− 𝑢

𝜕𝑢

𝜕𝑥
= 0         

Subject to ICs: 𝑢(𝑥, 0) = − tanh (
𝑥

√3
) , 𝑤(𝑥, 0) = −

1

6
−

1

2
tanh2 (

𝑥

√3
)  

Now, we solve the system by using our suggested method to get:  

𝑝0: 𝑢0(𝑥, 𝑡) =  − tanh (
𝑥

√3
)  ,  𝑝0: 𝑤0(𝑥, 𝑡) = −

1

6
−
1

2
tanh2 (

𝑥

√3
) 

𝑝1: 𝑢1 = 𝕋
−1 {

1

𝑣
𝕋{
𝜕3𝑢0
𝜕𝑥3

+ 2𝑤0
𝜕𝑢0
𝜕𝑥

+ 𝑢0
𝜕𝑤0
𝜕𝑥

}} 

= 𝕋−1 {
1

𝑣
𝕋{(−

4

3√3
tanh2(

𝑥

√3
)sech2(

𝑥

√3
) +

2

3√3
sech4(

𝑥

√3
)) + (

1

6√3
sech2(

𝑥

√3
) +

1

2√3
tanh2(

𝑥

√3
)sech2(

𝑥

√3
)) + (

1

√3
tanh2 (

𝑥

√3
) sech2(

𝑥

√3
))}}  



MTHPSolving System of PDEs by N                                     Chapter Three               

59 
 

𝑢1 = 𝕋
−1 {

1

𝑣
𝕋 {

2

3√3
tanh2(

𝑥

√3
) sech2(

𝑥

√3
) +

2

3√3
sech4(

𝑥

√3
)

+
1

3√3
sech2(

𝑥

√3
)}} 

              = 𝕋−1 {
1

𝑣
𝕋{

2

3√3
sech2(

𝑥

√3
) +

1

3√3
sech2(

𝑥

√3
)}} 

              = (
1

√3
sech2 (

𝑥

√3
)) 𝑡 

  𝑝1: 𝑤1 = 𝕋
−1 {

1

𝑣
𝕋{𝑢0

𝜕𝑢0

𝜕𝑥
}}    

𝑤1 = −𝕋
−1 {

1

𝑣
𝕋 {(

1

√3
tanh (

𝑥

√3
) sech2(

𝑥

√3
))}}

= (
1

√3
tanh(

𝑥

√3
) sech2(

𝑥

√3
)) 𝑡 

and so on,  therefore 

𝑢 = − tanh (
𝑥

√3
) + (

1

√3
sech2 (

𝑥

√3
)) 𝑡 + ………  

𝑤 = −
1

6
−
1

2
tanh2 (

𝑥

√3
) + (

1

√3
tanh(

𝑥

√3
) sech2(

𝑥

√3
)) 𝑡 + ……… 

The above series closed to exact solution: 

𝑢 = − tanh (
−𝑡 + 𝑥

√3
)     ,     𝑤 = −

1

6
−
1

2
tanh2 (

−𝑡 + 𝑥

√3
) 
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3.4. Illustrative Examples for System of 2D-PDEs 

      In this section, the NTHPM will be used to solve system of 2D, 

nonlinear PDEs. 

Example 3.4 [7]  

Consider the following system of 2D, nonhomogeneous nonlinear PDEs. 

𝜕𝑢

𝜕𝑡
− 𝑤

𝜕𝑢

𝜕𝑥
−
𝜕𝑤

𝜕𝑡

𝜕𝑢

𝜕𝑦
= 1 − 𝑥 + 𝑦 + 𝑡 

𝜕𝑤

𝜕𝑡
− 𝑢

𝜕𝑤

𝜕𝑥
−
𝜕𝑢

𝜕𝑡

𝜕𝑤

𝜕𝑦
= 1 − 𝑥 − 𝑦 − 𝑡 

Subject to ICs: 

𝑓(𝑥, 𝑦) = 𝑢(𝑥, 𝑦, 0) = 𝑥 + 𝑦 − 1 ,   𝑔(𝑥, 𝑦) = 𝑤(𝑥, 𝑦, 0) = 𝑥 − 𝑦 + 1 

𝐿[𝑢(𝑥, 𝑦, 𝑡)] =
𝜕𝑢(𝑥,𝑦,𝑡)

𝜕𝑡
                       ,              𝑅[𝑢(𝑥, 𝑦, 𝑡)] = 0 , 

𝑁[𝑢(𝑥, 𝑦, 𝑡)] = −𝑤
𝜕𝑢

𝜕𝑥
−
𝜕𝑤

𝜕𝑡

𝜕𝑢

𝜕𝑦
          ,    𝑔(𝑥, 𝑦, 𝑡) = 1 − 𝑥 + 𝑦 + 𝑡 

𝑁[𝑤(𝑥, 𝑦, 𝑡)] = −𝑢
𝜕𝑤

𝜕𝑥
−
𝜕𝑢

𝜕𝑡

𝜕𝑤

𝜕𝑦
         ,    𝑔(𝑥, 𝑦, 𝑡) = 1 − 𝑥 − 𝑦 − 𝑡 

First, compute the nonlinear of  𝑁(𝑢) to get: 

𝑤
𝜕𝑢

𝜕𝑥
= ∑𝐻(1,𝑛)

∞

𝑛=0

(𝑢, 𝑤)      ,       
𝜕𝑤

𝜕𝑡

𝜕𝑢

𝜕𝑦
= ∑𝐻(2,𝑛)

∞

𝑛=0

(𝑢, 𝑤) 

Also, compute the nonlinear of  𝑁(𝑤) to get: 

 𝑢
𝜕𝑤

𝜕𝑥
= ∑ 𝐾(1,𝑛)

∞
𝑛=0 (𝑢,𝑤)     ,      

𝜕𝑢

𝜕𝑡

𝜕𝑤

𝜕𝑦
= ∑ 𝐾(2,𝑛)

∞
𝑛=0 (𝑢, 𝑤) 

 𝐻(1,0) = 𝑤0
𝜕𝑢0

𝜕𝑥
                       ,    𝐻(2,0) =

𝜕𝑤0

𝜕𝑡

𝜕𝑢0

𝜕𝑦
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 𝐻(1,1) = 𝑤1
𝜕𝑢0

𝜕𝑥
+𝑤0

𝜕𝑢1

𝜕𝑥
     , 𝐻(2,1) =

𝜕𝑤1

𝜕𝑡

𝜕𝑢0

𝜕𝑦
+
𝜕𝑤0

𝜕𝑡

𝜕𝑢1

𝜕𝑦
 

And so on  

𝐾(1,0) = 𝑢0
𝜕𝑤0
𝜕𝑥

                     ,       𝐾(2,0) =
𝜕𝑢0
𝜕𝑡

𝜕𝑤0
𝜕𝑦

 

𝐾(1,1) = 𝑢1
𝜕𝑤0
𝜕𝑥

+ 𝑢0
𝜕𝑤1
𝜕𝑥

   ,     𝐾(2,1) =
𝜕𝑢1
𝜕𝑡

𝜕𝑤0
𝜕𝑦

+
𝜕𝑢0
𝜕𝑡

𝜕𝑤1
𝜕𝑦

 

And so on. 

Moreover, we have the sequence of  𝑢𝑛  , 𝑤𝑛 as: 

𝑢0 = 𝑥 + 𝑦 − 1    ,      𝑤0 = 𝑥 − 𝑦 + 1 

𝑢1 = 𝕋
−1 {

1

𝑣
𝕋 {𝑤0

𝜕𝑢0
𝜕𝑥

+
𝜕𝑤0
𝜕𝑡

𝜕𝑢0
𝜕𝑦

+ 1 − 𝑥 + 𝑦 + 𝑡}} 

     = 𝕋−1 {
1

𝑣
𝕋{2 + 𝑡}} = 𝕋−1 {

2

𝑣
+

1

𝑣2
} = 2𝑡 +

𝑡2

2!
 

𝑤1 = 𝕋
−1 {

1

𝑣
𝕋 {𝑢0

𝜕𝑤0
𝜕𝑥

+
𝜕𝑢0
𝜕𝑡

𝜕𝑤0
𝜕𝑦

+ 1 − 𝑥 − 𝑦 − 𝑡}} 

     = 𝕋−1 {
1

𝑣
𝕋{−𝑡}} = 𝕋−1 {−

1

𝑣2
} = −

𝑡2

2!
 

𝑢2 = 𝕋
−1 {

1

𝑣
𝕋 {(𝑤1

𝜕𝑢0
𝜕𝑥

+ 𝑤0
𝜕𝑢1
𝜕𝑥
) + (

𝜕𝑤1
𝜕𝑡

𝜕𝑢0
𝜕𝑦

+
𝜕𝑤0
𝜕𝑡

𝜕𝑢1
𝜕𝑦
)}} 

     = 𝕋−1 {
1

𝑣
𝕋 {−

𝑡2

2!
− 𝑡}} = 𝕋−1 {−

1

𝑣3
−

1

𝑣2
} = −

𝑡3

3!
−
𝑡2

2!
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𝑤2 = 𝕋
−1 {

1

𝑣
𝕋 {(𝑢1

𝜕𝑤0
𝜕𝑥

+ 𝑢0
𝜕𝑤1
𝜕𝑥

) + (
𝜕𝑢1
𝜕𝑡

𝜕𝑤0
𝜕𝑦

+
𝜕𝑢0
𝜕𝑡

𝜕𝑤1
𝜕𝑦

)}} 

= 𝕋−1 {
1

𝑣
𝕋{−2 + 𝑡 +

𝑡2

2!
}} = 𝕋−1 {−

2

𝑣
+
1

𝑣2
+
1

𝑣3
} = −2t +

𝑡2

2!
+
𝑡3

3!
 

𝑢3 = 𝕋−1 {
1

𝑣
𝕋 {(𝑤2

𝜕𝑢0
𝜕𝑥

+ 𝑤1
𝜕𝑢1
𝜕𝑥

+ 𝑤0
𝜕𝑢2
𝜕𝑥

) + (
𝜕𝑤2
𝜕𝑡

𝜕𝑢0
𝜕𝑦

+
𝜕𝑤1
𝜕𝑡

𝜕𝑢1
𝜕𝑦

+
𝜕𝑤0
𝜕𝑡

𝜕𝑢2
𝜕𝑦

)}} 

= 𝕋−1 {
1

𝑣
𝕋{−2 − 𝑡 + 𝑡2 +

𝑡3

3!
}} = 𝕋−1 {−

2

𝑣
−
1

𝑣2
+
2

𝑣3
+
1

𝑣4
}

= −2𝑡 −
𝑡2

2!
+
𝑡3

3!
+
𝑡4

4!
 

𝑤3 = 𝕋−1 {
1

𝑣
𝕋 {(𝑢2

𝜕𝑤0
𝜕𝑥

+ 𝑢1
𝜕𝑤1
𝜕𝑥

+ 𝑢0
𝜕𝑤2
𝜕𝑥

) + (
𝜕𝑢2
𝜕𝑡

𝜕𝑤0
𝜕𝑦

+
𝜕𝑢1
𝜕𝑡

𝜕𝑤1
𝜕𝑦

+
𝜕𝑢0
𝜕𝑡

𝜕𝑤2
𝜕𝑦

)}} 

= 𝕋−1 {
1

𝑣
𝕋{𝑡 −

𝑡3

3!
}} = 𝕋−1 {

1

𝑣2
−
1

𝑣4
} =

𝑡2

2!
−
𝑡4

4!
 

𝑢4 =
𝑡2

2!
+
𝑡3

3!
−
𝑡4

4!
−
𝑡5

5!
     

𝑤4 = 2𝑡 −
𝑡2

2!
−
𝑡3

2
+
𝑡4

4!
+
𝑡5

5!
 

𝑢5 = 2t +
𝑡2

2!
−
2𝑡3

3
−
𝑡4

12
+
𝑡5

60
+
𝑡6

6!
         

𝑤5 = −
𝑡2

2!
+
𝑡4

12
−
𝑡6

6!
 

𝑢6 = −
𝑡2

2!
−
𝑡3

3!
+
𝑡4

12
+
𝑡5

60
−
𝑡6

6!
−
𝑡7

7!
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𝑤6 = −2𝑡 +
𝑡2

2!
+
5𝑡3

3!
−
𝑡4

12
−
𝑡5

30
+
𝑡6

6!
+
𝑡7

7!
 

And so on. Therefore 

  𝑢(𝑥, 𝑦, 𝑡) = ∑ 𝑢𝑛(𝑥, 𝑦, 𝑡) = 𝑥 + 𝑦 − 1 + 2𝑡 +
𝑡2

2!
−
𝑡2

2!
−
𝑡3

3!
− 2𝑡 −∞

𝑛=0

𝑡2

2!
+
𝑡3

3!
+
𝑡4

4!
+⋯ = 𝑥 + 𝑦 + 𝑡 − 1 

 𝑤(𝑥, 𝑦, 𝑡) = ∑ 𝑤𝑛(𝑥, 𝑦, 𝑡) = 𝑥 − 𝑦 + 1 −
𝑡2

2!
− 2𝑡 +

𝑡2

2!
+

𝑡3

3!
+
𝑡2

2!
−
𝑡4

4!
+∞

𝑛=0

2𝑡 −
𝑡2

2!
−
𝑡3

2
+
𝑡4

4!
+
𝑡5

5!
+⋯ = 𝑥 − 𝑦 − 𝑡 + 1 

This is the exact solution. 

Example 3.5 [22] 

Consider the following 2D, nonlinear system of Burgers' equations 

𝜕𝑢

𝜕𝑡
+ 𝑢

𝜕𝑢

𝜕𝑥
+𝑤

𝜕𝑢

𝜕𝑦
=

1

𝑅
(
𝜕2𝑢

𝜕𝑥2
+
𝜕2𝑢

𝜕𝑦2
),                                                        (3.11)   

𝜕𝑤

𝜕𝑡
+ 𝑢

𝜕𝑤

𝜕𝑥
+𝑤

𝜕𝑤

𝜕𝑦
= (

𝜕2𝑤

𝜕𝑥2
+
𝜕2𝑤

𝜕𝑦2
),       

Subject to the ICs:      

𝑢(𝑥, 𝑦, 0) = 𝑥 + 𝑦  , 𝑤(𝑥, 𝑦, 0) = 𝑥 − 𝑦   ; (𝑥, 𝑦, 𝑡) ∈ 𝑅2 × [0 ,
1

√2
). 

To solve equation (3.11) by using NTHPM, we construct the following 

homotopy 
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 𝐻(𝑢, 𝑝) = (1 − 𝑝) (
𝜕𝑢

𝜕𝑡
−
𝜕𝑢0

𝜕𝑡
) + 𝑝 ( 

𝜕𝑢

𝜕𝑡
+ 𝑢

𝜕𝑢

𝜕𝑥
+ 𝑤

𝜕𝑢

𝜕𝑦
−

1

𝑅
(
𝜕2𝑢

𝜕𝑥2
+
𝜕2𝑢

𝜕𝑦2
)) = 0        

 𝐻(𝑤, 𝑝) = (1 − 𝑝) (
𝜕𝑤

𝜕𝑡
−
𝜕𝑤0

𝜕𝑡
) + 𝑝( 

𝜕𝑤

𝜕𝑡
+ 𝑢

𝜕𝑤

𝜕𝑥
+ 𝑤

𝜕𝑤

𝜕𝑦
−

1

𝑅
(
𝜕2𝑤

𝜕𝑥2
+
𝜕2𝑤

𝜕𝑦2
)) = 0 

Or equivalent: 

𝜕𝑢

𝜕𝑡
=

𝜕𝑢0

𝜕𝑡
− 𝑝 (𝑢

𝜕𝑢

𝜕𝑥
+𝑤

𝜕𝑢

𝜕𝑦
−

1

𝑅
(
𝜕2𝑢

𝜕𝑥2
+
𝜕2𝑢

𝜕𝑦2
) +

𝜕𝑢0

𝜕𝑡
)                                  

𝜕𝑤

𝜕𝑡
=

𝜕𝑤0

𝜕𝑡
− 𝑝 (𝑢

𝜕𝑤

𝜕𝑥
+𝑤

𝜕𝑤

𝜕𝑦
−

1

𝑅
(
𝜕2𝑤

𝜕𝑥2
+
𝜕2𝑤

𝜕𝑦2
) +

𝜕𝑤0

𝜕𝑡
)                         

Applying NT on both sides of above system, to get: 

𝕋 {
𝜕𝑢

𝜕𝑡
} = 𝕋{

𝜕𝑢0
𝜕𝑡

− 𝑝 (𝑢
𝜕𝑢

𝜕𝑥
+ 𝑤

𝜕𝑢

𝜕𝑦
−
1

𝑅
(
𝜕2𝑢

𝜕𝑥2
+
𝜕2𝑢

𝜕𝑦2
) +

𝜕𝑢0
𝜕𝑡
)}        

 𝕋 {
𝜕𝑤

𝜕𝑡
} = 𝕋 {

𝜕𝑤0

𝜕𝑡
− 𝑝 (𝑢

𝜕𝑤

𝜕𝑥
+𝑤

𝜕𝑤

𝜕𝑦
−

1

𝑅
(
𝜕2𝑤

𝜕𝑥2
+
𝜕2𝑤

𝜕𝑦2
) +

𝜕𝑤0

𝜕𝑡
)}                

 Now by using the differentiation property of NT we obtain: 

𝑣𝕋{𝑢} = 𝑣𝑢(𝑥, 𝑦, 0) + 𝕋 {
𝜕𝑢0

𝜕𝑡
− 𝑝 (𝑢

𝜕𝑢

𝜕𝑥
+𝑤

𝜕𝑢

𝜕𝑦
−

1

𝑅
(
𝜕2𝑢

𝜕𝑥2
+
𝜕2𝑢

𝜕𝑦2
) +

𝜕𝑢0

𝜕𝑡
)}    

 𝑣𝕋{𝑤} = 𝑣𝑤(𝑥, 𝑦, 0) + 𝕋 {
𝜕𝑤0

𝜕𝑡
− 𝑝 (𝑢

𝜕𝑤

𝜕𝑥
+ 𝑤

𝜕𝑤

𝜕𝑦
−

1

𝑅
(
𝜕2𝑤

𝜕𝑥2
+
𝜕2𝑤

𝜕𝑦2
) +

𝜕𝑤0

𝜕𝑡
)}             

By applying inverse of NT we have:  

  𝑢(𝑥, 𝑦, 𝑡) = 𝑢(𝑥, 𝑦, 0) + 𝕋−1 {
1

𝑣
𝕋{

𝜕𝑢0

𝜕𝑡
− 𝑝 (𝑢

𝜕𝑢

𝜕𝑥
+ 𝑤

𝜕𝑢

𝜕𝑦
− (

𝜕2𝑢

𝜕𝑥2
+
𝜕2𝑢

𝜕𝑦2
) +

𝜕𝑢0

𝜕𝑡
)}} 

 𝑤(𝑥, 𝑦, 𝑡) = 𝑤(𝑥, 𝑦, 0) + 𝕋−1 {
1

𝑣
𝕋{

𝜕𝑤0

𝜕𝑡
− 𝑝 (𝑢

𝜕𝑤

𝜕𝑥
+𝑤

𝜕𝑤

𝜕𝑦
− (

𝜕2𝑤

𝜕𝑥2
+
𝜕2𝑤

𝜕𝑦2
) +

𝜕𝑤0

𝜕𝑡
)}}      (3.12) 
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Suppose the series solution has the form: 

𝑢 = 𝑢0 + 𝑝𝑢1 + 𝑝
2𝑢2 +⋯   

𝑤 = 𝑤0 + 𝑝𝑤1 + 𝑝
2𝑤2 +⋯                                                                  (3.13) 

Substituting the system (3.12) into the system (3.13) and comparing 

coefficients of the terms with the identical powers of p, this lead to 

 𝑝0 = {
𝑢0(𝑥, 𝑦, 𝑡) = 𝑢(𝑥, 𝑦, 0) + 𝕋

−1 {
1

𝑣
𝕋{

𝜕𝑢0

𝜕𝑡
}}                                           

𝑤0(𝑥, 𝑦, 𝑡) = 𝑤(𝑥, 𝑦, 0) + 𝕋
−1 {

1

𝑣
𝕋 {

𝜕𝑤0

𝜕𝑡
}}                                

 

 𝑝1 =

{
 
 

 
 𝑢1(𝑥, 𝑦, 𝑡) = 𝕋−1 {

1

𝑣
𝕋 {−

𝜕𝑢0

𝜕𝑡
− 𝑢0

𝜕𝑢0

𝜕𝑥
− 𝑣0

𝜕𝑢0

𝜕𝑦
+ (

𝜕2𝑢0

𝜕𝑥2
+
𝜕2𝑢0

𝜕𝑦2
)}}  

𝑤1(𝑥, 𝑦, 𝑡) = 𝕋−1 {
1

𝑣
𝕋 {−

𝜕𝑤0

𝜕𝑡
− 𝑢0

𝜕𝑤0

𝜕𝑥
− 𝑤0

𝜕𝑤0

𝜕𝑦
+ (

𝜕2𝑤0

𝜕𝑥2
+
𝜕2𝑤0

𝜕𝑦2
)}}

 

𝑝2 =

{
 
 

 
 𝑢2(𝑥, 𝑦, 𝑡) = 𝕋−1 {

1

𝑣
𝕋 {−𝑢0

𝜕𝑢1
𝜕𝑥

− 𝑢1
𝜕𝑢0
𝜕𝑥

− 𝑤0
𝜕𝑢1
𝜕𝑦

− 𝑣1
𝜕𝑢0
𝜕𝑦

+ (
𝜕2𝑢1
𝜕𝑥2

+
𝜕2𝑢1
𝜕𝑦2

)}}  

𝑤2(𝑥, 𝑦, 𝑡) = 𝕋−1 {
1

𝑣
𝕋 {−𝑢0

𝜕𝑤1
𝜕𝑥

− 𝑢1
𝜕𝑤0
𝜕𝑥

− 𝑤0
𝜕𝑤1
𝜕𝑦

− 𝑤1
𝜕𝑤0
𝜕𝑦

+ (
𝜕2𝑤1
𝜕𝑥2

+
𝜕2𝑤1
𝜕𝑦2

)}}

 

And so on, we have 

𝑝𝑗 =

{
 
 
 

 
 
 
𝑢𝑗(𝑥, 𝑦, 𝑡) = 𝕋

−1 {
1

𝑣
𝕋{∑(−𝑢𝑘

𝜕𝑢𝑗−𝑘−1

𝜕𝑥
− 𝑤𝑘

𝜕𝑢𝑗−𝑘−1

𝜕𝑦
)

𝑗−1

𝑘=0

+ (
𝜕2𝑢𝑗−1

𝜕𝑥2
+
𝜕2𝑢𝑗−1

𝜕𝑦2
)}} , 𝑗 = 1,2, … 

𝑤𝑗(𝑥, 𝑦, 𝑡) = 𝕋
−1 {

1

𝑣
𝕋{∑(−𝑢𝑘

𝜕𝑤𝑗−𝑘−1

𝜕𝑥
− 𝑤𝑘

𝜕𝑤𝑗−𝑘−1

𝜕𝑦
)

𝑗−1

𝑘=0

+ (
𝜕2𝑤𝑗−1

𝜕𝑥2
+
𝜕2𝑤𝑗−1

𝜕𝑦2
)}} , 𝑗 = 1,2, …

 

From above system, we obtain the following recurrent relations: 
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𝑢𝑗(𝑥, 𝑦, 𝑡) = 𝕋
−1 {

1

𝑣
𝕋{∑(−𝑢𝑘

𝜕𝑢𝑗−𝑘−1

𝜕𝑥
− 𝑤𝑘

𝜕𝑢𝑗−𝑘−1

𝜕𝑦
)

𝑗−1

𝑘=0

+ (
𝜕2𝑢𝑗−1

𝜕𝑥2
+
𝜕2𝑢𝑗−1

𝜕𝑦2
)}}  

𝑤𝑗(𝑥, 𝑦, 𝑡) = 𝕋−1 {
1

𝑣
𝕋{∑(−𝑢𝑘

𝜕𝑤𝑗−𝑘−1

𝜕𝑥
− 𝑤𝑘

𝜕𝑤𝑗−𝑘−1

𝜕𝑦
)

𝑗−1

𝑘=0

+ (
𝜕2𝑤𝑗−1

𝜕𝑥2
+
𝜕2𝑤𝑗−1

𝜕𝑦2
)}}

 

Starting with 

𝑢0 = 𝑥 + 𝑦         ,   𝑤0 = 𝑥 − 𝑦 

Then we get the following results: 

 𝑢1(𝑥, 𝑦, 𝑡) = 𝕋
−1 {

1

𝑣
𝕋{−

𝜕𝑢0

𝜕𝑡
− 𝑢0

𝜕𝑢0

𝜕𝑥
− 𝑤0

𝜕𝑢0

𝜕𝑦
+ (

𝜕2𝑢0

𝜕𝑥2
+
𝜕2𝑢0

𝜕𝑦2
)}} 

= 𝕋−1 {
1

𝑣
𝕋{0 − (𝑥 + 𝑦)(1) − (𝑥 − 𝑦)(1) + 0}} = 𝕋−1 {−

2𝑥

𝑣
} = −2𝑥𝑡 

 𝑤1(𝑥, 𝑦, 𝑡) = 𝕋
−1 {

1

𝑣
𝕋 {−

𝜕𝑤0

𝜕𝑡
− 𝑢0

𝜕𝑤0

𝜕𝑥
−𝑤0

𝜕𝑤0

𝜕𝑦
+ (

𝜕2𝑤0

𝜕𝑥2
+
𝜕2𝑤0

𝜕𝑦2
)}} 

 𝑤1 = 𝕋−1 {
1

𝑣
𝕋{0 − (𝑥 + 𝑦)(1) − (𝑥 − 𝑦)(−1) + 0}} = 𝕋−1 {−

2𝑦

𝑣
} = −2𝑦𝑡 

 𝑢2(𝑥, 𝑦, 𝑡) = 𝕋
−1 {

1

𝑣
𝕋{−𝑢0

𝜕𝑢1

𝜕𝑥
− 𝑢1

𝜕𝑢0

𝜕𝑥
− 𝑤0

𝜕𝑢1

𝜕𝑦
− 𝑤1

𝜕𝑢0

𝜕𝑦
+ (

𝜕2𝑢1

𝜕𝑥2
+
𝜕2𝑢1

𝜕𝑦2
)}} 

𝑢2 = 𝕋−1 {
1

𝑣
𝕋{−(𝑥 + 𝑦)(−2𝑡) − (−2𝑥𝑡)(1) − (𝑥 − 𝑦)(0) − (−2𝑦𝑡)(1) + 0}}

= 𝕋−1 {
1

𝑣
𝕋{2𝑥𝑡 + 2𝑦𝑡 + 2𝑥𝑡 + 2𝑦𝑡}} = 𝕋−1 {

4𝑥

𝑣2
+
4𝑦

𝑣2
}

= 2𝑥𝑡2 + 2𝑦𝑡2 
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𝑤2(𝑥, 𝑦, 𝑡) = 𝕋
−1 {

1

𝑣
𝕋{−𝑢0

𝜕𝑤1
𝜕𝑥

− 𝑢1
𝜕𝑤0
𝜕𝑥

− 𝑤0
𝜕𝑤1
𝜕𝑦

− 𝑤1
𝜕𝑤0
𝜕𝑦

+ (
𝜕2𝑤1
𝜕𝑥2

+
𝜕2𝑤1
𝜕𝑦2

)}} 

𝑤2 = 𝕋−1 {
1

𝑣
𝕋{−(𝑥 + 𝑦)(0) − (−2𝑥𝑡)(1) − (𝑥 − 𝑦)(−2𝑡) − (−2𝑦𝑡)(−1) + 0}}

= 𝕋−1 {
1

𝑣
𝕋{2𝑥𝑡 + 2𝑥𝑡 − 2𝑦𝑡 − 2𝑦𝑡}} = 𝕋−1 {

4𝑥

𝑣2
−
4𝑦

𝑣2
}

= 2𝑥𝑡2 − 2𝑦𝑡2 

𝑢3 = 𝕋−1 {
1

𝑣
𝕋{−(𝑥 + 𝑦)(2𝑡2) − (−2𝑥𝑡)(−2𝑡) − (2𝑥𝑡2 + 2𝑦𝑡2)(1) − (𝑥 − 𝑦)(2𝑡2)

− (−2𝑦𝑡)(0) − (2𝑥𝑡2 − 2𝑦𝑡2)(1) + 0}} 

= 𝕋−1 {
1

𝑣
𝕋{−2𝑥𝑡2 − 2𝑦𝑡2 − 4𝑥𝑡2 − 2𝑥𝑡2 − 2𝑦𝑡2 − 2𝑥𝑡2 + 2𝑦𝑡2 − 2𝑥𝑡2 + 2𝑦𝑡2}} 

= 𝕋−1 {
1

𝑣
𝕋{−12𝑥𝑡2}} = 𝕋−1 {

−24𝑥

𝑣3
} = −4𝑥𝑡3 

𝑤3 = 𝕋−1 {
1

𝑣
𝕋{−(𝑥 + 𝑦)(2𝑡2) − (−2𝑥𝑡)(0) − (2𝑥𝑡2 + 2𝑦𝑡2)(1) − (𝑥 − 𝑦)(−2𝑡2)

− (−2𝑦𝑡)(−2𝑡) − (2𝑥𝑡2 − 2𝑦𝑡2)(−1) + 0}} 

 = 𝕋−1 {
1

𝑣
𝕋{−2𝑥𝑡2 − 2𝑦𝑡2 − 2𝑥𝑡2 − 2𝑦𝑡2 + 2𝑥𝑡2 − 2𝑦𝑡2 − 4𝑦𝑡2 + 2𝑥𝑡2 − 2𝑦𝑡2}} 

= 𝕋−1 {
1

𝑣
𝕋{−12𝑦𝑡2}} = 𝕋−1 {

−24𝑦

𝑣3
} = −4𝑦𝑡3 
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𝑢4 = 𝕋−1 {
1

𝑣
𝕋{−(𝑥 + 𝑦)(−4𝑡3) − (−2𝑥𝑡)(2𝑡2) − (2𝑥𝑡2 + 2𝑦𝑡2)(−2𝑡) −

(−4𝑥𝑡3)(1) − (𝑥 − 𝑦)(0) − (−2𝑦𝑡)(2𝑡2) − (2𝑥𝑡2 − 2𝑦𝑡2)(0) − (−2𝑦𝑡3)(1)}} =

𝕋−1 {
1

𝑣
𝕋{4𝑥𝑡3 + 4𝑦𝑡3 + 4𝑥𝑡3 + 4𝑥𝑡3 + 4𝑦𝑡3 + 4𝑥𝑡3 + 4𝑦𝑡3 + 4𝑦𝑡3}} =

𝕋−1 {
1

𝑣
𝕋{16𝑥𝑡3 + 16𝑦𝑡3}} = 𝕋−1 {

96𝑥

𝑣4
+
96𝑦

𝑣4
} = 4𝑥𝑡4 + 4𝑦𝑡4  

 𝑤4 = 𝕋
−1 {

1

𝑣
𝕋{−(𝑥 + 𝑦)(0) − (−2𝑥𝑡)(2𝑡2) − (2𝑥𝑡2 + 2𝑦𝑡2)(0) − (−4𝑥𝑡3)(1) −

(𝑥 − 𝑦)(−4𝑡3) − (−2𝑦𝑡)(−2𝑡2) − (2𝑥𝑡2 − 2𝑦𝑡2)(−2𝑡) − (−4𝑦𝑡3)(−1)}} 

 = 𝕋−1 {
1

𝑣
𝕋{4𝑥𝑡3 + 4𝑥𝑡3 + 4𝑥𝑡3 − 4𝑦𝑡3 − 4𝑦𝑡3 + 4𝑥𝑡3 − 4𝑦𝑡3 − 4𝑦𝑡3}} =

𝕋−1 {
1

𝑣
𝕋{16𝑥𝑡3 − 16𝑦𝑡3}} = 𝕋−1 {

96𝑥

𝑣4
−
96𝑦

𝑣4
} = 4𝑥𝑡4 − 4𝑦𝑡4 

𝑢5 = −8𝑥𝑡
5 ,         𝑤5 = −8𝑦𝑡

5 

𝑢6 = 8𝑥𝑡
6 + 8𝑦𝑡6 , 𝑤6 = 8𝑥𝑡

6 − 8𝑦𝑡6        

And so on, the solution of the system (3.11) can be obtained by setting 𝑝 =

1, i.e., 

𝑢(𝑥, 𝑦, 𝑡) = lim
𝑝→1

𝑢𝑛(𝑥, 𝑦, 𝑡) = 𝑢0 + 𝑢1 + 𝑢2 + 𝑢3 + 𝑢4 + 𝑢5 + 𝑢6 +⋯ 

𝑢(𝑥, 𝑦, 𝑡) = 𝑥 + 𝑦 − 2𝑥𝑡 + 2𝑥𝑡2 + 2𝑦𝑡2 − 4𝑥𝑡3 + 4𝑥𝑡4 + 4𝑦𝑡4 − 8𝑥𝑡5 + 8𝑥𝑡6 + 8𝑦𝑡6  

𝑢(𝑥, 𝑦, 𝑡) = (𝑥 + 𝑦)(1 + 2𝑡2 + 4𝑡4 + 8𝑡6 +⋯) − 2𝑥𝑡(1 + 2𝑡2 + 4𝑡4 + 8𝑡6 +⋯) 

𝑢(𝑥, 𝑦, 𝑡) =
𝑥 + 𝑦

1 − 2𝑡2
−

2𝑥𝑡

1 − 2𝑡2
=
𝑥 + 𝑦 − 2𝑥𝑡

1 − 2𝑡2
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Also by similar way, we get: 

𝑤(𝑥, 𝑦, 𝑡) = lim
𝑝→1

𝑣𝑛(𝑥, 𝑦, 𝑡) = 𝑤0 +𝑤1 +𝑤2 +𝑤3 +𝑤4 +𝑤5 +𝑤6 +⋯ 

𝑤(𝑥, 𝑦, 𝑡) = 𝑥 − 𝑦 − 2𝑦𝑡 + 2𝑥𝑡2 − 2𝑦𝑡2 − 4𝑦𝑡3 + 4𝑥𝑡4 − 4𝑦𝑡4 − 8𝑦𝑡5 + 8𝑥𝑡6 − 8𝑦𝑡6 

𝑤(𝑥, 𝑦, 𝑡) = (𝑥 − 𝑦)(1 + 2𝑡2 + 4𝑡4 + 8𝑡6 +⋯) − 2𝑦𝑡(1 + 2𝑡2 + 4𝑡4 + 8𝑡6 +⋯) 

𝑤(𝑥, 𝑦, 𝑡) =
𝑥 − 𝑦

1 − 2𝑡2
−

2𝑦𝑡

1 − 2𝑡2
=
𝑥 − 𝑦 − 2𝑦𝑡

1 − 2𝑡2
 

3.5. Solving System for 3Equations Nonlinear 1D-PDEs 

      In this section, the procedure of NTHPM will be used to solve system 

of 1D, for 3 equations nonlinear PDEs. 

Firstly the system is written as follows: 

 𝐿[𝑢(𝑥, 𝑦, 𝑡)] + 𝑅[𝑢(𝑥, 𝑦, 𝑡)] + 𝑁[𝑢(𝑥, 𝑦, 𝑡)] = 𝑔1(𝑥, 𝑦, 𝑡) 

𝐿[𝑤(𝑥, 𝑦, 𝑡)] + 𝑅[𝑤(𝑥, 𝑦, 𝑡)] + 𝑁[𝑤(𝑥, 𝑦, 𝑡)] = 𝑔2(𝑥, 𝑦, 𝑡)                  (3.14) 

𝐿[𝑧(𝑥, 𝑦, 𝑡)] + 𝑅[𝑧(𝑥, 𝑦, 𝑡)] + 𝑁[𝑧(𝑥, 𝑦, 𝑡)] = 𝑔3(𝑥, 𝑦, 𝑡) 

Subject to IC: 

 𝑢(𝑥, 𝑦, 0) = 𝑓(𝑥, 𝑦)  

 𝑤(𝑥, 𝑦, 0) = 𝑔(𝑥, 𝑦)                                                                                          

𝑧(𝑥, 𝑦, 0) = ℎ(𝑥, 𝑦) 

Where all 𝑥, 𝑦 ∈  𝑅 , L is a linear differential operator (𝐿 =
𝜕

𝜕𝑡
), R is a 

remained of the linear operator; N is a nonlinear differential operator and 

𝑔1, 𝑔2, 𝑔3 is the nonhomogeneous part. 
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We construct a homotopy as: u(x, p): 𝑅𝑛× [0, 1] →R,  

𝐻1(𝑢(𝑥, 𝑦, 𝑡), 𝑝) = (1 − 𝑝)[𝐿(𝑢(𝑥, 𝑦, 𝑡)) − 𝐿(𝑢(𝑥, 𝑦, 0))] + 𝑝[𝐴(𝑢(𝑥, 𝑦, 𝑡)) − 𝑔1(𝑥, 𝑦, 𝑡)] =

0     

𝐻2(𝑤(𝑥, 𝑦, 𝑡), 𝑝) = (1 − 𝑝)[𝐿(𝑤(𝑥, 𝑦, 𝑡)) − 𝐿(𝑤(𝑥, 𝑦, 0))] + 𝑝[𝐴(𝑤(𝑥, 𝑦, 𝑡)) − 𝑔2(𝑥, 𝑦, 𝑡)] =

0    

 𝐻3(𝑧(𝑥, 𝑦, 𝑡), 𝑝) = (1 − 𝑝)[𝐿(𝑧(𝑥, 𝑦, 𝑡)) − 𝐿(𝑧(𝑥, 𝑦, 0))] + 𝑝[𝐴(𝑧(𝑥, 𝑦, 𝑡)) − 𝑔3(𝑥, 𝑦, 𝑡)] = 0 

Where 𝑝 ∈ [0,1] is an embedding parameter and the operator A defined as: 

 𝐴 = 𝐿 + 𝑅 + 𝑁. 

Obviously, if p = 0, then the above system becomes 

𝐿(𝑢(𝑥, 𝑦, 𝑡)) = 𝐿(𝑢(𝑥, 𝑦, 0)), 𝐿(𝑤(𝑥, 𝑦, 𝑡)) = 𝐿(𝑤(𝑥, 𝑦, 0)) and 𝐿(𝑧(𝑥, 𝑦, 𝑡)) = 𝐿(𝑧(𝑥, 𝑦, 0)).  

Substitute ICs in above system and rewrite it as: 

𝐿(𝑢(𝑥, 𝑦, 𝑡)) − 𝐿(𝑓(𝑥, 𝑦)) − 𝑝𝐿(𝑢(𝑥, 𝑦, 𝑡)) + 𝑝𝐿(𝑓(𝑥, 𝑦)) + 𝑝𝐿(𝑢(𝑥, 𝑦, 𝑡)) +

𝑝𝑅(𝑢(𝑥, 𝑦, 𝑡)) + 𝑝𝑁(𝑢(𝑥, 𝑦, 𝑡)) − 𝑝𝑔1(𝑥, 𝑦, 𝑡) = 0     

𝐿(𝑤(𝑥, 𝑦, 𝑡)) − 𝐿(𝑔(𝑥, 𝑦)) − 𝑝𝐿(𝑤(𝑥, 𝑦, 𝑡)) + 𝑝𝐿(𝑔(𝑥, 𝑦)) + 𝑝𝐿(𝑤(𝑥, 𝑦, 𝑡)) +

𝑝𝑅(𝑤(𝑥, 𝑦, 𝑡)) + 𝑝𝑁(𝑤(𝑥, 𝑦, 𝑡)) − 𝑝𝑔2(𝑥, 𝑦, 𝑡) = 0  

 𝐿(𝑧(𝑥, 𝑦, 𝑡)) − 𝐿(ℎ(𝑥, 𝑦)) − 𝑝𝐿(𝑧(𝑥, 𝑦, 𝑡)) + 𝑝𝐿(ℎ(𝑥, 𝑦)) + 𝑝𝐿(𝑧(𝑥, 𝑦, 𝑡)) +

𝑝𝑅(𝑧(𝑥, 𝑦, 𝑡)) + 𝑝𝑁(𝑧(𝑥, 𝑦, 𝑡)) − 𝑝𝑔3(𝑥, 𝑦, 𝑡) = 0 

Then 

 𝐿(𝑢(𝑥, 𝑦, 𝑡)) − 𝐿(𝑓(𝑥, 𝑦)) + 𝑝[𝐿(𝑓(𝑥, 𝑦)) + 𝑅(𝑢(𝑥, 𝑦, 𝑡)) + 𝑁(𝑢(𝑥, 𝑦, 𝑡)) −

𝑔1(𝑥, 𝑦, 𝑡)] = 0    

 𝐿(𝑤(𝑥, 𝑦, 𝑡)) − 𝐿(𝑔(𝑥, 𝑦)) + 𝑝[𝐿(𝑔(𝑥, 𝑦)) + 𝑅(𝑤(𝑥, 𝑦, 𝑡)) + 𝑁(𝑤(𝑥, 𝑦, 𝑡)) −

𝑔2(𝑥, 𝑦, 𝑡)] = 0                                                                                                                       (3.15) 
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𝐿(𝑧(𝑥, 𝑦, 𝑡)) − 𝐿(ℎ(𝑥, 𝑦)) + 𝑝[𝐿(ℎ(𝑥, 𝑦)) + 𝑅(𝑧(𝑥, 𝑦, 𝑡)) + 𝑁(𝑧(𝑥, 𝑦, 𝑡)) −

𝑔3(𝑥, 𝑦, 𝑡)] = 0     

Since 𝑓(𝑥, 𝑦), 𝑔(𝑥, 𝑦)  and ℎ(𝑥, 𝑦) are independent of the variable 𝑡 and the 

linear operator L dependent on t so, 𝐿(𝑓(𝑥, 𝑦)) = 0, 𝐿(𝑔(𝑥, 𝑦)) = 0, and 

𝐿(ℎ(𝑥, 𝑦)) = 0; i.e., the system (3.15) becomes: 

𝐿(𝑢(𝑥, 𝑦, 𝑡)) + 𝑝[𝑅(𝑢(𝑥, 𝑦, 𝑡)) + 𝑁(𝑢(𝑥, 𝑦, 𝑡)) − 𝑔1(𝑥, 𝑦, 𝑡)] = 0            

𝐿(𝑤(𝑥, 𝑦, 𝑡)) + 𝑝[𝑅(𝑤(𝑥, 𝑦, 𝑡)) + 𝑁(𝑤(𝑥, 𝑦, 𝑡)) − 𝑔2(𝑥, 𝑦, 𝑡)] = 0        

𝐿(𝑧(𝑥, 𝑦, 𝑡)) + 𝑝[𝑅(𝑧(𝑥, 𝑦, 𝑡)) + 𝑁(𝑧(𝑥, 𝑦, 𝑡)) − 𝑔3(𝑥, 𝑦, 𝑡)] = 0      (3.16)  

According to the classical perturbation technique, the solution of the above 

system can be written as a power series of embedding parameter p, as the 

form 

𝑢(𝑥, 𝑦, 𝑡) = ∑𝑝𝑛𝑢𝑛(𝑥, 𝑦, 𝑡)

∞

𝑛=0

  

𝑤(𝑥, 𝑦, 𝑡) = ∑𝑝𝑛𝑤𝑛(𝑥, 𝑦, 𝑡)

∞

𝑛=0

                                                                     (3.17) 

𝑧(𝑥, 𝑦, 𝑡) = ∑𝑝𝑛𝑧𝑛(𝑥, 𝑦, 𝑡)

∞

𝑛=0

 

For most cases, the series form in (3.17) is convergent and the convergent 

rate depends on the nonlinear operator.  

Taking the NT (with respect to the variable t) for the system (3.16) to get: 

𝕋{𝐿(𝑢)} + 𝑝 𝕋{𝑅(𝑢) + 𝑁(𝑢) − 𝑔} = 0 

𝕋{𝐿(𝑤)} + 𝑝 𝕋{𝑅(𝑤) + 𝑁(𝑤) − 𝑔} = 0                                                  (3.18) 
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𝕋{𝐿(𝑧)} + 𝑝 𝕋{𝑅(𝑧) + 𝑁(𝑧) − 𝑔} = 0 

Now by using the differentiation property of NT and IC, the above system 

becomes: 

𝑣𝕋{𝑢} − 𝑣𝑓(𝑥, 𝑦) + 𝑝 𝕋{𝑅(𝑢) + 𝑁(𝑢) − 𝑔1} = 0  

𝑣𝕋{𝑤} − 𝑣𝑔(𝑥, 𝑦) + 𝑝 𝕋{𝑅(𝑤) + 𝑁(𝑤) − 𝑔2} = 0                                  

𝑣𝕋{𝑧} − 𝑣ℎ(𝑥, 𝑦) + 𝑝 𝕋{𝑅(𝑧) + 𝑁(𝑧) − 𝑔3} = 0  

Hence: 

 𝕋{𝑢} = 𝑓(𝑥, 𝑦) + 𝑝
1

𝑣
𝕋{𝑔1 − 𝑅(𝑢) − 𝑁(𝑢)} 

 𝕋{𝑤} = 𝑔(𝑥, 𝑦) + 𝑝
1

𝑣
𝕋{𝑔2 − 𝑅(𝑤) − 𝑁(𝑤)}                                           

𝕋{𝑧} = ℎ(𝑥, 𝑦) + 𝑝
1

𝑣
𝕋{𝑔3 − 𝑅(𝑧) − 𝑁(𝑧)} 

By taking the inverse of new transform on both sides of the above system, 

to get: 

 𝑢(𝑥, 𝑦, 𝑡) = 𝑓(𝑥, 𝑦) + 𝑝 𝕋−1 {
1

𝑣
𝕋{𝑔1(𝑥, 𝑦, 𝑡) − 𝑅(𝑢(𝑥, 𝑦, 𝑡)) − 𝑁(𝑢(𝑥, 𝑦, 𝑡))}} 

 𝑤(𝑥, 𝑦, 𝑡) = 𝑔(𝑥, 𝑦) + 𝑝 𝕋−1 {
1

𝑣
𝕋{𝑔2(𝑥, 𝑦, 𝑡) − 𝑅(𝑤(𝑥, 𝑦, 𝑡)) −

𝑁(𝑤(𝑥, 𝑦, 𝑡))}} (3.19) 

𝑧(𝑥, 𝑦, 𝑡) = ℎ(𝑥, 𝑦) + 𝑝 𝕋−1 {
1

𝑣
𝕋{𝑔3(𝑥, 𝑦, 𝑡) − 𝑅(𝑧(𝑥, 𝑦, 𝑡)) − 𝑁(𝑧(𝑥, 𝑦, 𝑡))}} 

Then, substitute system (3.17) in the system (3.19) to get: 

∑𝑝𝑛𝑢𝑛 =

∞

𝑛=0

𝑓(𝑥, 𝑦) + 𝑝𝕋−1 {
1

𝑣
𝕋 {𝑔1(𝑥, 𝑦, 𝑡) − 𝑅 (∑𝑝𝑛𝑢𝑛

∞

𝑛=0

) − 𝑁(∑𝑝𝑛𝑢𝑛

∞

𝑛=0

)}} 

∑𝑝𝑛𝑤𝑛 =

∞

𝑛=0

𝑔(𝑥, 𝑦) + 𝑝𝕋−1 {
1

𝑣
𝕋 {𝑔2(𝑥, 𝑦, 𝑡) − 𝑅 (∑𝑝𝑛𝑤𝑛

∞

𝑛=0

) − 𝑁(∑𝑝𝑛𝑤𝑛

∞

𝑛=0

)}}       (3.20) 
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∑𝑝𝑛𝑧𝑛 =

∞

𝑛=0

ℎ(𝑥, 𝑦) + 𝑝𝕋−1 {
1

𝑣
𝕋 {𝑔3(𝑥, 𝑦, 𝑡) − 𝑅 (∑𝑝𝑛𝑧𝑛

∞

𝑛=0

) − 𝑁 (∑𝑝𝑛𝑧𝑛

∞

𝑛=0

)}} 

The nonlinear part can be decomposed, as will be explained later, by 

substituting system (3.17) in it as: 

𝑁(𝑢) = 𝑁(∑𝑝𝑛𝑢𝑛(𝑥, 𝑦, 𝑡)

∞

𝑛=0

) = ∑𝑝𝑛𝐻𝑛

∞

𝑛=0

 

𝑁(𝑤) = 𝑁(∑𝑝𝑛𝑤𝑛(𝑥, 𝑦, 𝑡)

∞

𝑛=0

) = ∑𝑝𝑛𝐾𝑛

∞

𝑛=0

                                       

𝑁(𝑧) = 𝑁(∑𝑝𝑛𝑧𝑛(𝑥, 𝑦, 𝑡)

∞

𝑛=0

) = ∑𝑝𝑛𝐽𝑛

∞

𝑛=0

 

Then the system (3.20) becomes:              

∑𝑝𝑛𝑢𝑛 =

∞

𝑛=0

𝑓(𝑥, 𝑦) + 𝑝𝕋−1 {
1

𝑣
𝕋 {𝑔1(𝑥, 𝑦, 𝑡) − 𝑅 (∑𝑝𝑛𝑢𝑛

∞

𝑛=0

) −∑𝑝𝑛𝐻𝑛

∞

𝑛=0

}} 

∑𝑝𝑛𝑤𝑛 =

∞

𝑛=0

𝑔(𝑥, 𝑦) + 𝑝𝕋−1 {
1

𝑣
𝕋 {𝑔2(𝑥, 𝑦, 𝑡) − 𝑅 (∑𝑝𝑛𝑤𝑛

∞

𝑛=0

) −∑𝑝𝑛𝐾𝑛

∞

𝑛=0

}}     (3.21) 

∑𝑝𝑛𝑧𝑛 =

∞

𝑛=0

ℎ(𝑥, 𝑦) + 𝑝𝕋−1 {
1

𝑣
𝕋 {𝑔3(𝑥, 𝑦, 𝑡) − 𝑅 (∑𝑝𝑛𝑧𝑛

∞

𝑛=0

) −∑𝑝𝑛𝐽𝑛

∞

𝑛=0

}} 

By comparing the coefficient with the same power of p, in both sides of the 

system (3.21) we have: 

𝑢0 = 𝑓(𝑥, 𝑦), 𝑤0 = 𝑔(𝑥, 𝑦), 𝑧0 = ℎ(𝑥, 𝑦)  

 𝑢1 = 𝕋
−1 {

1

𝑣
𝕋{𝑔1(𝑥, 𝑦, 𝑡) − 𝑅(𝑢0) − 𝐻0}},     
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 𝑤1 = 𝕋
−1 {

1

𝑣
𝕋{𝑔2(𝑥, 𝑦, 𝑡) − 𝑅(𝑤0) − 𝐾0}} 

𝑧1 = 𝕋
−1 {

1

𝑣
𝕋{𝑔3(𝑥, 𝑦, 𝑡) − 𝑅(𝑧0) − 𝐽0}} 

 𝑢2 = −𝕋
−1 {

1

𝑣
𝕋{𝑅(𝑢1) + 𝐻1}}, 

 𝑤2 = −𝕋
−1 {

1

𝑣
𝕋{𝑅(𝑤1) + 𝐾1}} 

 𝑧2 = −𝕋
−1 {

1

𝑣
𝕋{𝑅(𝑧1) + 𝐽1}} 

 𝑢3 = −𝕋
−1 {

1

𝑣
𝕋{𝑅(𝑢2) + 𝐻2}},  

 𝑤3 = −𝕋
−1 {

1

𝑣
𝕋{𝑅(𝑤2) + 𝐾2}}                                                    

 𝑧3 = −𝕋
−1 {

1

𝑣
𝕋{𝑅(𝑧2) + 𝐽2}} 

 And so on, therefor  

 𝑢𝑛+1 = −𝕋
−1 {

1

𝑣
𝕋{𝑅(𝑢𝑛) + 𝐻𝑛}} 

 𝑤𝑛+1 = −𝕋
−1 {

1

𝑣
𝕋{𝑅(𝑤𝑛) + 𝐾𝑛}} 

𝑧𝑛+1 = −𝕋
−1 {

1

𝑣
𝕋{𝑅(𝑧𝑛) + 𝐽𝑛}} 

According to the series solution in system (3.17), when at p=1, we can get: 

𝑢(𝑥, 𝑦, 𝑡) =  𝑢0(𝑥, 𝑦, 𝑡) + 𝑢1(𝑥, 𝑦, 𝑡) + ⋯ = ∑𝑢𝑛(𝑥, 𝑦, 𝑡)

∞

𝑛=0
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𝑤(𝑥, 𝑦, 𝑡) =  𝑤0(𝑥, 𝑦, 𝑡) + 𝑤1(𝑥, 𝑦, 𝑡) + ⋯ =∑𝑤𝑛(𝑥, 𝑦, 𝑡)

∞

𝑛=0

          

𝑧(𝑥, 𝑦, 𝑡) =  𝑧0(𝑥, 𝑦, 𝑡) + 𝑧1(𝑥, 𝑦, 𝑡) + ⋯ = ∑𝑧𝑛(𝑥, 𝑦, 𝑡)

∞

𝑛=0

 

Example 3.6 [7] 

Consider the following nonlinear system of inhomogeneous PDEs. 

𝜕𝑢

𝜕𝑡
−
𝜕𝑧

𝜕𝑥

𝜕𝑤

𝜕𝑡
−
1

2

𝜕𝑧

𝜕𝑡

𝜕2𝑢

𝜕𝑥2
= −4𝑥𝑡 

𝜕𝑤

𝜕𝑡
−
𝜕𝑧

𝜕𝑡

𝜕2𝑢

𝜕𝑥2
= 6𝑡 

𝜕𝑧

𝜕𝑡
−
𝜕2𝑢

𝜕𝑥2
−
𝜕𝑤

𝜕𝑥

𝜕𝑧

𝜕𝑡
= 4𝑥𝑡 − 2𝑡 − 2 

Subject to the ICs: 

𝑢(𝑥, 0) = 𝑥2 + 1     ,     𝑤(𝑥, 0) = 𝑥2 − 1         ,        𝑧(𝑥, 0) = 𝑥2 − 1 

𝑢0(𝑥, 0) = 𝑥
2 + 1   ,     𝑤0(𝑥, 0) = 𝑥

2 − 1        ,       𝑧0(𝑥, 0) = 𝑥
2 − 1 

𝑢1 = 𝕋
−1 {

1

𝑣
𝕋 {
𝜕𝑧0
𝜕𝑥

𝜕𝑤0
𝜕𝑡

+
1

2

𝜕𝑧0
𝜕𝑡

𝜕2𝑢0
𝜕𝑥2

− 4𝑥𝑡}} = 𝕋−1 {
1

𝑣
𝕋{−4𝑥𝑡}}

= 𝕋−1 {
−4𝑥

𝑣2
} = −2𝑥𝑡2 

𝑤1 = 𝕋
−1 {

1

𝑣
𝕋 {(

𝜕𝑧0
𝜕𝑡

𝜕2𝑢0
𝜕𝑥2

+ 6t)}} = 𝕋−1 {
1

𝑣
𝕋{6𝑡}}  = 𝕋−1 {

6

𝑣2
} = 3𝑡2 
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𝑧1 = 𝕋
−1 {

1

𝑣
𝕋{(

𝜕2𝑢0
𝜕𝑥2

+
𝜕𝑤0
𝜕𝑥

𝜕𝑧0
𝜕𝑡

+ 4𝑥𝑡 − 2𝑡 − 2)}}

= 𝕋−1 {
1

𝑣
𝕋{4𝑥𝑡 − 2𝑡}} = 𝕋−1 {

4𝑥

𝑣2
−
2

𝑣2
} = 2𝑥𝑡2 − 𝑡2 

𝑢2 = 𝕋
−1 {

1

𝑣
𝕋{(

𝜕𝑧1
𝜕𝑥

𝜕𝑤0
𝜕𝑡

+
𝜕𝑧0
𝜕𝑥

𝜕𝑤1
𝜕𝑡
) +

1

2
(
𝜕𝑧1
𝜕𝑡

𝜕2𝑢0
𝜕𝑥2

+
𝜕𝑧0
𝜕𝑡

𝜕2𝑢1
𝜕𝑥2

)}} 

= 𝕋−1 {
1

𝑣
𝕋{16𝑥𝑡 − 2𝑡}} = 𝕋−1 {

16𝑥

𝑣2
−
2

𝑣2
} = 8𝑥𝑡2 − 𝑡2 

𝑤2 = 𝕋
−1 {

1

𝑣
𝕋 {
𝜕𝑧1
𝜕𝑡

𝜕2𝑢0
𝜕𝑥2

+
𝜕𝑧0
𝜕𝑡

𝜕2𝑢1
𝜕𝑥2

}} = 𝕋−1 {
1

𝑣
𝕋{8𝑥𝑡 − 4𝑡}} 

= 𝕋−1 {
8𝑥

𝑣2
−
4

𝑣2
} = 4𝑥𝑡2 − 2𝑡2 

𝑧2 = 𝕋
−1 {

1

𝑣
𝕋 {(

𝜕2𝑢1
𝜕𝑥2

+ (
𝜕𝑤1
𝜕𝑥

𝜕𝑧0
𝜕𝑡

+
𝜕𝑤0
𝜕𝑥

𝜕𝑧1
𝜕𝑡
)}}

= 𝕋−1 {
1

𝑣
𝕋{8𝑥2𝑡 − 4𝑥𝑡}} 

= 𝕋−1 {
8𝑥2

𝑣2
−
4𝑥

𝑣2
} = 4𝑥2𝑡2 − 2𝑥𝑡2 

𝑢3 = 3𝑡
4 − 6𝑥𝑡2 + 12𝑥2𝑡2 

𝑤3 = 8𝑥
2𝑡2 − 4𝑥𝑡2 

𝑧3 = 8𝑥
3𝑡2 − 4𝑥2𝑡2 

𝑢4 = −5𝑡
4 + 16𝑥𝑡4 + 24𝑥3𝑡2 − 12𝑥2𝑡2 
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𝑤4 = 16𝑥
3𝑡2 − 8𝑥2𝑡2 

𝑧4 = 8𝑡
3 + 4𝑥𝑡4 − 2𝑡4 + 16𝑥4𝑡2 − 8𝑥3𝑡2 

𝑢5 = 60𝑥
2𝑡4 − 10𝑡4 + 48𝑥4𝑡2 − 24𝑥3𝑡2 + 8𝑡3 

𝑤5 = 16𝑡
3 + 32𝑥𝑡4 − 16𝑡4 + 32𝑥4𝑡2 − 16𝑥3𝑡2 

𝑧5 = 64𝑥𝑡
3 − 8𝑡3 − 32𝑥2𝑡4 − 16𝑥𝑡4 + 2𝑡4 + 32𝑥5𝑡2 − 16𝑥4𝑡2 

And so on, thus  

 𝑢(𝑥, 𝑡) = ∑ 𝑢𝑛(𝑥, 𝑡) = 𝑥
2 + 1 − 2𝑥𝑡2 + 8𝑥𝑡2 − 𝑡2 + 3𝑡4 − 6𝑥𝑡2 +∞

𝑛=0

12𝑥2𝑡2 − 5𝑡4 +⋯ = 𝑥2 − 𝑡2 + 1 

 𝑤(𝑥, 𝑡) = ∑ 𝑤𝑛(𝑥, 𝑡) =  𝑥
2 − 1 + 3𝑡2 + 4𝑥𝑡2 − 2𝑡2 + 8𝑥2𝑡2 −∞

𝑛=0

4𝑥𝑡2 +⋯ = 𝑥2 + 𝑡2 − 1 

 𝑧(𝑥, 𝑡) = ∑ 𝑧𝑛(𝑥, 𝑡) =  𝑥
2 − 1 + 2𝑥𝑡2 − 𝑡2 + 4𝑥2𝑡2 − 2𝑥𝑡2 +∞

𝑛=0

8𝑥3𝑡2 − 4𝑥2𝑡2 +⋯ = 𝑥2 − 𝑡2 − 1 

Example 3.7 [3] 

Consider the generalized coupled Hirota Satsuma KdV type II. 

𝜕𝑢

𝜕𝑡
−
1

2

𝜕3𝑢

𝜕𝑥3
+ 3𝑢

𝜕𝑢

𝜕𝑥
− 3

𝜕

𝑥
(𝑤𝑧) = 0         

𝜕𝑤

𝜕𝑡
+
𝜕3𝑢

𝜕𝑥3
− 3𝑢

𝜕𝑤

𝜕𝑥
= 0         

𝜕𝑧

𝜕𝑡
+

𝜕3𝑧

𝜕𝑥3
− 3𝑢

𝜕𝑧

𝜕𝑥
= 0         
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Subject to IC:  

𝑢(𝑥, 0) = −
1

3
+ 2 tanh2(𝑥) , 𝑤(𝑥, 0) = tanh(𝑥) , 𝑧(𝑥, 0) =

8

3
tanh(𝑥)  

  𝑝1: 𝑢1 = 𝕋
−1 {

1

𝑣
𝕋 {

1

2

𝜕3𝑢0

𝜕𝑥3
− 3𝑢0

𝜕𝑢0

𝜕𝑥
+ 3

𝜕

𝜕𝑥
(𝑤0𝑧0)}} 

 = 𝕋−1 {
1

𝑣
𝕋{(8 tanh3(𝑥 )sech2( 𝑥) − 16 tanh(𝑥) sech4( 𝑥)) + (4 tanh ( 𝑥) sech2(𝑥) −

24 tanh3(𝑥 )sech2( 𝑥)) + (16 tanh(𝑥) sech2(
𝑥

2
))}} 

𝑢1 = 𝕋
−1 {

1

𝑣
𝕋{−16 tanh3(𝑥) sech2( 𝑥) + 20 tanh( 𝑥) sech2( 𝑥)

− 16 tanh(𝑥 )sech4(𝑥)}} 

      = 𝕋−1 {
1

𝑣
𝕋{−16 tanh(𝑥) sech2( 𝑥) + 20 tanh(𝑥 )sech2(𝑥)}} 

      = (4 tanh(𝑥) sech2(𝑥))𝑡 

   𝑝1: 𝑤1 = 𝕋
−1 {

1

𝑣
𝕋{−

𝜕3𝑢0

𝜕𝑥3
+ 3𝑢0

𝜕𝑤0

𝜕𝑥
}}   

= −𝕋−1 {
1

𝑣
𝕋{(−4 tanh2(𝑥 )sech2( 𝑥) + 2 sech4( 𝑥)) + (− sech2(𝑥) +

6 tanh2(𝑥 )sech2( 𝑥))}}  

𝑤1 = −𝕋
−1 {

1

𝑣
𝕋{2 tanh2(𝑥) sech2( 𝑥) + 2 sech4( 𝑥) − sech2(𝑥)}} 
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    = −𝕋−1 {
1

𝑣
𝕋{2 sech2( 𝑥) − sech2(𝑥)}} = (sech2(𝑥))𝑡 

  𝑝1: 𝑧1 = 𝕋
−1 {

1

𝑣
𝕋{−

𝜕3𝑧0

𝜕𝑥3
+ 3𝑢0

𝜕𝑧0

𝜕𝑥
}}                                                          

  𝑧1 = −𝕋
−1 {

1

𝑣
𝕋 {(−

32

3
tanh2(𝑥 )sech2( 𝑥) +

16

3
sech4( 𝑥)) +

(−
8

9
sech2(𝑥) +

16

3
tanh2(𝑥 )sech2( 𝑥))}}  

𝑧1 = −𝕋
−1 {

1

𝑣
𝕋 {
16

3
tanh2(𝑥) sech2( 𝑥) +

16

3
sech4( 𝑥) −

8

3
sech2(𝑥)}} 

      = −𝕋−1 {
1

𝑣
𝕋{

16

3
sech2( 𝑥) −

8

3
sech2(𝑥)}} = (

8

3
sech2(𝑥)) 𝑡 

And so on, so 

𝑢 = −
1

3
+ 2 tanh2(𝑥) + (4 tanh(𝑥) sech2(𝑥))𝑡 + ………  

𝑤 = tanh(𝑥) + (sech2(𝑥))𝑡 + ……… 

𝑧 =
8

3
tanh(𝑥) + (

8

3
sech2(𝑥)) 𝑡 + ……… 

The above series closed to exact solution as 

𝑢 = − tanh(𝑡 + 𝑥) , 𝑤 = −
1

6
−
1

2
tanh2(𝑡 + 𝑥) , 𝑧 =

8

3
tanh(𝑡 + 𝑥)  
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3.6. Convergence for the Series Solution       

      In this section the convergence of NTHPM for systems of nonlinear 

PDEs is presented. The sufficient condition for convergence of the 

method is addressed. Since mathematical modeling of numerous 

scientific and engineering experiments lead to system of equations, it is 

worth trying new methods to solve these systems. Here we show the 

series solution for systems of previous sections closed to exact solution.    

Definition 3.1 [33] 

     A Banach space is a complete, normed, vector space. 

All norms on a finite-dimensional vector space are equivalent. Every finite-

dimensional normed space over R or C is a Banach space [50].  

Definition 3.2 [34] 

     Let X is a set and let 𝑓: 𝑋 → 𝑋 be a function that maps X into itself. Such 

a function is often called an operator. A fixed point of 𝑓 is an element x ∈ 

X, for which f(x) = x . 

Definition 3.3 [34] 

      Let (𝑋, 𝑑) be a metric space. A mapping 𝑇 ∶ 𝑋 → 𝑋 is a contraction 

mapping, or contraction, if there exists a constant 𝑐, with 0 ≤ 𝑐 < 1, such 

that 𝑑(𝑇(𝑥), 𝑇(𝑦)) ≤ 𝑐𝑑(𝑥, 𝑦),    𝑥 , 𝑦 ∈ 𝑋 . 
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Theorem 3.1 [46]  

 A contractive function 𝑇 on a Banach space  𝑆 has a unique fixed point 

𝑥∗ in R2. see [46]                  

Theorem 3.2 (Sufficient Condition of Convergence) 

 If X and Y are Banach spaces and 𝑁 ∶ 𝑋 → 𝑌 is a contractive nonlinear 

mapping, that is 

∀ 𝑤 , 𝑤∗ ∈ 𝑋 ; ‖𝑁(𝑤) − 𝑁(𝑤∗)‖ ≤ 𝛾‖𝑤 − 𝑤∗‖ , 0 < 𝛾 < 1 . 

Then according to Banach's fixed-point theorem, N has a unique fixed-

point u, that is 𝑁(𝑢) = 𝑢 . 

Assume that the sequence generated by NTHPM can be written as: 

𝑤𝑛 = 𝑁(𝑤𝑛−1),       𝑤𝑛−1 = ∑𝑤𝑖

𝑛−1

𝑖=0

 ,     𝑛 = 1,2,3,…… 

And suppose that 𝑊0 = 𝑤0  ∈  𝐵𝑟(𝑤) 𝑤ℎ𝑒𝑟𝑒 𝐵𝑟(𝑤) = {𝑤∗ ∈ 𝑋| ‖𝑤∗ −

𝑤‖ < 𝑟}, then we have 

i. 𝑤𝑛 ∈ 𝐵𝑟(𝑤), 

ii. lim
𝑛→∞

𝑊𝑛 = 𝑤    

Proof 

 (i) By inductive approach, for 𝑛 = 1, we have 

‖𝑊1 −𝑤‖ = ‖𝑁(𝑊0) − 𝑁(𝑤)‖ ≤ 𝛾‖𝑤0 −𝑤‖ 
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Assume that     ‖𝑊𝑛−1 −𝑤‖ ≤ 𝛾‖𝑤𝑛−1 −𝑤‖ 

                                              ≤ 𝛾2‖𝑤𝑛−2 −𝑤‖                                    

                                              ≤ 𝛾3‖𝑤𝑛−3 −𝑤‖                                  

≤ 𝛾𝑛−1‖𝑤0 −𝑤‖                                

As induction hypothesis, then 

‖𝑊𝑛 −𝑤‖ = ‖𝑁(𝑊𝑛−1) − 𝑁(𝑤)‖ ≤ 𝛾‖𝑤𝑛−1 −𝑤‖ ≤ 𝛾
𝑛‖𝑤0 −𝑤‖ 

Using (i), we have  

‖𝑊𝑛 −𝑤‖ ≤ 𝛾
𝑛‖𝑤0 −𝑤‖ ≤ 𝛾

𝑛𝑟 < 𝑟  𝑊𝑛 ∈ 𝐵𝑟(𝑤) 

Because of ‖𝑊𝑛 −𝑤‖ ≤ 𝛾
𝑛‖𝑤0 −𝑤‖ and 

lim
𝑛→∞

𝛾𝑛 = 0,  lim
𝑛→∞

‖𝑊𝑛 −𝑤‖ = 0, 

that is 

lim
𝑛→∞

𝑊𝑛 = 𝑤 
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4.1. Introduction 

      To illustrate the importance of suggested method, we use it to solve 

soil moisture equation that is equation describe rate of moisture content in 

soil. The term moisture content is used in hydrogeology, soil sciences and 

soil Mechanics. Here a model of moisture content is derived and used to 

build up the one, two and three dimensional space 2nd order nonlinear 

homogenous PDE. Then NTHPM is used to solve this equation. The 

derivation of formulation model is illustrated in section 4.2. Basic idea 

for suggested method that be used to solve the model equation is 

introduced in section 4.3. Illustrating applicability is presented in section 

4.4. While a convergence of the solution is proved in section 4.5.  

4.2. Formulation Mathematical Model [22]  

     Moisture content is the quantity of water contained in a soil called soil 

moisture. The saturated zone is one in which the space is occupied by 

water. In the unsaturated zone only part of the space is occupied by water.   

     There is no moisture in the dry soil, so the value of moisture content is 

1 when the porous medium is fully saturated by water and its value is 0 in 

Chapter Four 

                      Application Model  
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the unsaturated porous medium. So, the range of moisture content is [0, 

1]. The region of the unsaturated soil is called as unsaturated zone. In 

typical soil profiles some distance separates the earth’s surface from the 

water table, which is the upper limit of completely water-saturated soil. In 

this inverting zone the water saturation varies between 0 and 1 the rest of 

the pore space normally being occupied by air. Water flow in this 

unsaturated zone is complicated by the fact that the soil’s permeability to 

water depends on its water saturation. In many practical situations the 

flow of water through soil is unsteady because the moisture content 

changes as a function of time and it is slightly saturated because all the 

spaces are not completely filed with flowing liquid.  

       In the formulation model, we assume that the diffusivity coefficient 

will be small enough constant and regarded as a perturbation parameter 

because of they are equivalent to their average value over the whole range 

of moisture content. Additionally, the permeability of the medium is 

varied directly to the square of the moisture content. 

     Darcy’s law gives the motion of water in the isotropic homogeneous 

medium as:        

𝑉 = −𝐾 ∇∅                                                                                                     (4.1)                                                            
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Where V is volume flux of moisture content, K is coefficients of aqueous 

the conductivity,  is a total moisture potential and ∇ is the gradient, 

i.e., ∇ = (
𝜕

𝜕𝑥
,

𝜕

𝜕𝑦
,

𝜕

𝜕𝑧
) . 

In any unsaturated porous media, continuity equation governs the motion 

of water flow given as (depending on [23]):  

𝜕(𝜌𝑠𝜃)

𝜕𝑡
= −∇. 𝑀                                                                                            (4.2) 

where S : bulk density for medium on dry weight basis,  : the moisture 

content in any position (x, y, z) on a dry weight basis, and M : mass of 

flux for moisture in any t ≥ 0.  

From (4.1) and (4.2) we get: 

𝜕(𝜌𝑠𝜃)

𝜕𝑡
= −∇. 𝑀 = −∇. (𝜌. 𝑉) = 𝛻. (𝜌. 𝐾. ∇𝜙)                                      (4.3) 

Where  indicate the flux density of the medium.  

Now, depending on [21] we have  𝜙 = 𝜓 − 𝑔𝑧 . Hence, 

𝜕(𝜌𝑠𝜃)

𝜕𝑡
= 𝛻. (𝜌. 𝐾. ∇(𝜓 − 𝑔𝑧))                                                                (4.4) 

Where  indicates the pressure (capillary) potential, g is the gravitation 

constant, z is an elevation of the unit of mass for water above a consistent 

datum (which is the level of saturation) and the positive direction of the 

z-axis is the same as that of gravity. We find 
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𝜌𝑠
𝜕𝜃

𝜕𝑡
= 𝛻. (𝜌. 𝐾. ∇𝜓) − 𝛻. (𝜌. 𝐾. 𝛻(𝑔𝑧))                                           (4.5) 

Since ∇(𝑔𝑧) = (
𝜕(𝑔𝑧)

𝜕𝑥
,

𝜕(𝑔𝑧)

𝜕𝑦
,

𝜕(𝑔𝑧)

𝜕𝑧
) = (0,0, 𝑔) and divided both sides of 

equation (4.5) by S, we get: 

𝜕𝜃

𝜕𝑡
= 𝛻. (

𝜌

𝜌𝑠
. 𝐾. ∇𝜓) − 𝛻. (

𝜌

𝜌𝑠
. 𝐾. (0,0, 𝑔))                                         (4.6) 

Consider    and   are single valued function, so equation (4.6) can be 

written as  

𝜕𝜃

𝜕𝑡
= 𝛻. (

𝜌

𝜌𝑠
. 𝐾.

𝜕𝜓

𝜕𝜃
∇𝜃) − 𝛻. (

𝜌

𝜌𝑠
. 𝐾. (0,0, 𝑔))                                 (4.7) 

According to [21], we have 𝐷 =
𝜌

𝜌𝑠
. 𝐾.

𝜕𝜓

𝜕𝜃
  is called the diffusivity 

coefficient, which is constant as we assumed, so we get: 

𝜕𝜃

𝜕𝑡
= 𝛻. (𝐷. ∇𝜃) − 𝛻. (

𝜌

𝜌𝑠
. 𝐾. (0,0, 𝑔))                                               (4.8) 

Let Da is the average value of D over the whole range. According to [22] 

we have 𝐾 ∝ 𝜃2, i.e., 𝐾 ∝ 𝐾0. 𝜃2,where K0 is a constant. Hence, equation 

(4.8) becomes  

𝜕𝜃

𝜕𝑡
= 𝛻. (𝐷𝑎. ∇𝜃) − 𝛻. (

𝜌

𝜌𝑠
. 𝐾0. 𝜃2. (0,0, 𝑔))                                    (4.9) 

So, equation (4.9) get: 
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𝜕𝜃

𝜕𝑡
+

𝜌

𝜌𝑠
2𝑔. 𝐾0. 𝜃

𝜕𝜃

𝜕𝑧
= 𝐷𝑎(𝛻. 𝛻𝜃)                                                          (4.10) 

Suppose 𝐾1 =
𝜌

𝜌𝑠
. 2𝑔. 𝐾0 and substituting it in equation (4.10) we get: 

𝜕𝜃

𝜕𝑡
+ 𝐾1. 𝜃.

𝜕𝜃

𝜕𝑧
= 𝐷𝑎(𝛻. 𝛻𝜃)                                                                     (4.11) 

 Hence, the final form of the equation is 

𝜕𝜃

𝜕𝑡
+ 𝐾1. 𝜃.

𝜕𝜃

𝜕𝑧
= 𝐷𝑎 [

𝜕2𝜃

𝜕𝑥2
+

𝜕2𝜃

𝜕𝑦2
+

𝜕2𝜃

𝜕𝑧2
]                                            (4.12) 

We can simplify equation (4.12), by supposing:  

𝑥̅ =
𝑥

𝑘1
  , 𝑦̅ =

𝑦

𝑘1
  , 𝑧̅ =

𝑧

𝑘1
                                                                     (4.13) 

It is clear that: 

𝜕𝜃

𝜕𝑥
=

1

𝑘1

𝜕𝜃

𝜕𝑥̅
    ,

𝜕𝜃

𝜕𝑦
=

1

𝑘1

𝜕𝜃

𝜕𝑦̅
    ,

𝜕𝜃

𝜕𝑧
=

1

𝑘1

𝜕𝜃

𝜕𝑧̅
  

𝜕2𝜃

𝜕𝑥2
=

1

𝑘1
2

𝜕2𝜃

𝜕𝑥̅2
  ,

𝜕2𝜃

𝜕𝑦2
=

1

𝑘1
2

𝜕2𝜃

𝜕𝑦̅2
     ,

𝜕2𝜃

𝜕𝑧2
=

1

𝑘1
2

𝜕2𝜃

𝜕𝑧̅2

                   (4.14) 

Substituting equation (4.14) into equation (4.12), we get: 

𝜕𝜃

𝜕𝑡
+ 𝜃

𝜕𝜃

𝜕𝑧̅
=

𝐷𝑎

𝑘1
2 [

𝜕2𝜃

𝜕𝑥̅2
+

𝜕2𝜃

𝜕𝑦̅2
+

𝜕2𝜃

𝜕𝑧̅2
]                                                    (4.15) 

Let  𝛼 =
𝐷𝑎

𝑘1
2 , then equation (4.15) will be: 

𝜕𝜃

𝜕𝑡
+ 𝜃

𝜕𝜃

𝜕𝑧̅
= 𝛼 [

𝜕2𝜃

𝜕𝑥̅2
+

𝜕2𝜃

𝜕𝑦̅2
+

𝜕2𝜃

𝜕𝑧̅2
]                                                     (4.16) 

For simplification, the original symbols will be used instead of the 

symbols in equation (4.16), i.e., 
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𝜕𝜃

𝜕𝑡
+ 𝜃

𝜕𝜃

𝜕𝑧
= 𝛼 [

𝜕2𝜃

𝜕𝑥2
+

𝜕2𝜃

𝜕𝑦2
+

𝜕2𝜃

𝜕𝑧2
]                                                     (4.17) 

4.3. Solving Model Equation by the NTHPM  

      The main purpose of this section is discuss the new implementation of 

the combine NT algorithm with the HPM to solve the suggested model 

equation (4.17). 

To explain the NTHPM, firstly writes the nonlinear PDE (4.17) as follow:  

𝐿[𝜃(𝑋, 𝑡)] + 𝑅[𝜃(𝑋, 𝑡)] + 𝑁[𝜃(𝑋, 𝑡)] = 𝑔(𝑋, 𝑡)                                  (4.18) 

Subject to IC:  𝜃(𝑋, 0) = 𝑓(𝑋)          

Where 𝑋 ∈ 𝑅𝑛 , L is a linear differential operator  (𝐿 =
𝜕

𝜕𝑡
)  , R is a 

remained of the linear operator, 𝑁 is a nonlinear differential operator and 

𝑔(𝑋, 𝑡) is the nonhomogeneous part. 

We construct a Homotopy as: (𝑋, 𝑝): 𝑅𝑛 × [0,1] → 𝑅 , which satisfies 

 𝐻(𝜃(𝑋, 𝑡), 𝑝) = (1 − 𝑝) ∗ [𝐿(𝜃(𝑋, 𝑡)) − 𝐿(𝜃(𝑋, 0))] +

𝑝 [𝐴 ((𝜃(𝑋, 𝑡))) − 𝑔(𝑋, 𝑡)] = 0                                                               (4.19) 

Where 𝑝 ∈ [0,1] is an embedding parameter and the operator A defined 

as  𝐴 = 𝐿 + 𝑅 + 𝑁. 

Obviously, if 𝑝 = 0, equation (4.19) becomes 𝐿(𝜃(𝑋, 𝑡)) − 𝐿(𝜃(𝑋, 0)). 
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It is clear that, if 𝑝 = 1 then the homotopy equation (4.19) convert to the 

main differential equation (4.18). Substitute IC in equation (4.19) and 

rewrite it as: 

𝐿(𝜃(𝑋, 𝑡)) − 𝐿(𝑓(𝑋)) − 𝑝𝐿(𝜃(𝑋, 𝑡)) + 𝑝𝐿(𝑓(𝑋)) + 𝑝𝐿(𝜃(𝑋, 𝑡)) +

𝑝𝑅(𝜃(𝑋, 𝑡)) + 𝑝𝑁(𝜃(𝑋, 𝑡)) − 𝑝𝑔(𝑋, 𝑡) = 0  

Then  

 𝐿(𝜃(𝑋, 𝑡)) − 𝐿(𝑓(𝑋)) + 𝑝[𝐿(𝑓(𝑋)) + 𝑅(𝜃(𝑋, 𝑡)) + 𝑁(𝜃(𝑋, 𝑡)) −

𝑔(𝑋, 𝑡)] = 0                                                                                                   (4.20) 

Since 𝑓(𝑋)  is independent of the variable 𝑡  and the linear operator 𝐿 

dependent on t so, 𝐿(𝑓(𝑋)) = 0, i.e., (4.20) becomes: 

𝐿(𝜃(𝑋, 𝑡)) + 𝑝[𝑅(𝜃(𝑋, 𝑡)) + 𝑁(𝜃(𝑋, 𝑡)) − 𝑔(𝑋, 𝑡)] = 0                  (4.21) 

According to the classical perturbation technique, the solution of equation 

(4.21) can be written as a power series of embedding parameter p, in the 

form 

𝜃(𝑋, 𝑡) = ∑ 𝑝𝑛𝜃𝑛(𝑋, 𝑡)

∞

𝑛=0

                                                                      (4.22) 

For most cases, the series form (4.22) is convergent and the convergent 

rate depends on the nonlinear operator 𝑁(𝜃(𝑋, 𝑡)). 
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Taking the NT (with respect to the variable 𝑡) for the equation (4.21),  we 

have: 

 𝕋{𝐿(𝜃)} + 𝑝𝕋 {𝑅(𝜃) + 𝑁(𝜃) − 𝑔} = 0                                              (4.23) 

Now by using the differentiation property of LT, so equation (4.23), 

becomes: 

𝑣𝕋{𝜃} − 𝑓(𝑋) + 𝑝𝕋 {𝑅(𝜃) + 𝑁(𝜃) − 𝑔} = 0  

Hence: 

 𝕋{𝜃} = 𝑓(𝑋) + 𝑝
1

𝑣
𝕋{𝑔 − 𝑅(𝜃) − 𝑁(𝜃)}                                             (4.24) 

By taking the inverse of new transformation on both sides of equation 

(4.24), to get: 

𝜃(𝑋, 𝑡) = 𝑓(𝑋)

+ 𝑝 𝕋−1 {
1

𝑣
𝕋{𝑔(𝑋, 𝑡) − 𝑅(𝜃(𝑋, 𝑡)) − 𝑁(𝜃(𝑋, 𝑡))}}  (4.25) 

Then substitute equation (4.22) in equation (4.25) to obtain: 

∑ 𝑝𝑛𝜃𝑛

∞

𝑛=0

= 𝑓(𝑋) + 𝑝𝕋−1 {
1

𝑣
𝕋 {𝑔(𝑋, 𝑡) − 𝑅 (∑ 𝑝𝑛𝜃𝑛

∞

𝑛=0

) − 𝑁 (∑ 𝑝𝑛𝜃𝑛

∞

𝑛=0

)}}  (4.26) 

The nonlinear part can be decomposed, as will be explained later, by 

substituting equation (4.22) in it as: 

𝑁(𝜃) = 𝑁 (∑ 𝑝𝑛𝜃𝑛(𝑋, 𝑡)

∞

𝑛=0

) = ∑ 𝑝𝑛𝐻𝑛

∞

𝑛=0

                                           

Then equation (4.26) becomes: 
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∑ 𝑝𝑛𝜃𝑛

∞

𝑛=0

= 𝑓(𝑋) + 𝑝𝕋−1 {
1

𝑣
𝕋 {𝑔(𝑋, 𝑡) − 𝑅 (∑ 𝑝𝑛𝜃𝑛

∞

𝑛=0

) − ∑ 𝑝𝑛𝐻𝑛

∞

𝑛=0

}}           (4.27) 

By comparing the coefficient with the same power of p, in both sides of 

the equation (4.27) we have: 

 

𝜃0 = 𝑓(𝑋) 

 𝜃1 = 𝕋−1 {
1

𝑣
𝕋{𝑔(𝑋, 𝑡) − 𝑅(𝜃0) − 𝐻0}} 

 𝜃2 = −𝕋−1 {
1

𝑣
𝕋{𝑅(𝜃1) + 𝐻1}} 

 𝜃3 = −𝕋−1 {
1

𝑣
𝕋{𝑅(𝜃2) + 𝐻2}}                                                                

⋮ 

 𝜃𝑛+1 = −𝕋−1 {
1

𝑣
𝕋{𝑅(𝜃𝑛) + 𝐻𝑛}} 

According to the series solution in equation (4.22), and p converges to 1, 

we get: 

𝜃(𝑋, 𝑡) =  𝜃0(𝑋, 𝑡) + 𝜃1(𝑋, 𝑡) + ⋯ = ∑ 𝜃𝑛(𝑋, 𝑡)

∞

𝑛=0

                         (4.28) 

4.4. Experiment Application 

      In this section, the suggested method will be used to solve the one; 

two and three-dimensions model equation, with appropriate initial 

condition: 
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Problem 4.1 

 Here suggested method that can used to solve the 2D model equation 

(1D space) i.e., equation governs the motion of water flow in 1D- 

horizontal:  

 

 
𝜕𝜃

𝜕𝑡
+ 𝜃

𝜕𝜃

𝜕𝑥
= 𝛼 [

𝜕2𝜃

𝜕𝑥2
] 

 𝑓(𝑥) = 𝜃(𝑥, 0) =
𝛾+𝛽+(𝛽−𝛾)e𝜇

𝑒𝜇+1
 

Where    𝜇 =
𝛾

𝛼
(𝑥 − 𝜆), ,  and  are parameters dimension 

We have  

𝐿[𝜃(𝑋, 𝑡)] =
𝜕𝜃(𝑥,𝑡)

𝜕𝑡
   ,    𝑅[𝜃(𝑋, 𝑡)] = − 𝛼 [

𝜕2𝜃

𝜕𝑥2
] ,         

𝑁[𝜃(𝑋, 𝑡)] = 𝜃
𝜕𝜃

𝜕𝑥
    and  𝑔(𝑋, 𝑡)    

First, compute 𝐻𝑛 to the nonlinear part 𝑁(𝜃) we get: 

𝑁(𝜃) = 𝑁 (∑ 𝑝𝑛𝜃𝑛

∞

𝑛=0

) = (∑ 𝑝𝑛𝜃𝑛

∞

𝑛=0

) (
𝜕

𝜕𝑧
[∑ 𝑝𝑛𝜃𝑛

∞

𝑛=0

]) = (∑ 𝑝𝑛𝜃𝑛

∞

𝑛=0

) (∑ 𝑝𝑛
𝜕𝜃𝑛

𝜕𝑥

∞

𝑛=0

)

=  𝜃0

𝜕𝜃0

𝜕𝑥
+ 𝑝 (𝜃0

𝜕𝜃1

𝜕𝑥
+ 𝜃1

𝜕𝜃0

𝜕𝑥
) +  𝑝2 (𝜃0

𝜕𝜃2

𝜕𝑥
+ 𝜃1

𝜕𝜃1

𝜕𝑥
+ 𝜃2

𝜕𝜃0

𝜕𝑥
)

+ 𝑝3 (𝜃0

𝜕𝜃3

𝜕𝑥
+ 𝜃1

𝜕𝜃2

𝜕𝑥
+ 𝜃2

𝜕𝜃1

𝜕𝑥
+ 𝜃3

𝜕𝜃0

𝜕𝑥
) + ⋯  
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So,   

 𝐻0 = 𝜃0
𝜕𝜃0

𝜕𝑥
 

 𝐻1 = 𝜃1
𝜕𝜃0

𝜕𝑥
+ 𝜃0

𝜕𝜃1

𝜕𝑥
 

 𝐻2 = 𝜃2
𝜕𝜃0

𝜕𝑥
+ 𝜃1

𝜕𝜃1

𝜕𝑥
+ 𝜃0

𝜕𝜃2

𝜕𝑥
 

 𝐻3 = 𝜃3
𝜕𝜃0

𝜕𝑥
+ 𝜃2

𝜕𝜃1

𝜕𝑥
+ 𝜃1

𝜕𝜃2

𝜕𝑥
+ 𝜃0

𝜕𝜃3

𝜕𝑥
 

And so on.  

From IC, we can get 

 𝐻0 = −
2 𝛾2 𝑒𝜇 (𝛾+𝛽+(𝛽−𝛾)𝑒𝜇)

 𝛼 (𝑒𝜇+1)3
 

 𝐻1 = 𝑡
2 𝛾3𝛽 𝑒𝜇 (𝛾+𝛽−4𝛾 𝑒𝜇+(𝛾−𝛽)𝑒2𝜇)

 𝛼2 (𝑒𝜇+1)4
 

 𝐻2 = −𝑡2  𝛾4𝛽2 𝑒𝜇 (𝛾+𝛽−(11𝛾+3𝛽)𝑒𝜇+(11𝛾−3𝛽)𝑒2𝜇+(𝛽−𝛾)𝑒3𝜇)

 𝛼3 (𝑒𝜇+1)5
 

 𝐻3 = 𝑡3  𝛾5𝛽3 𝑒𝜇 (𝛾+𝛽−(26𝛾+10𝛽)𝑒𝜇+66𝛾𝑒2𝜇−(26𝛾−10𝛽)𝑒3𝜇+(𝛾−𝛽)𝑒4𝜇)

3 𝛼4 (𝑒𝜇+1)6
 

And so on. 

Moreover, the sequence of parts 𝜃𝑛 is: 

 𝜃0 =
𝛾+𝛽+(𝛽−𝛾)𝑒𝜇

(𝑒𝜇+1)
 

 𝜃1 = 𝑡
2 𝛾2𝛽 𝑒𝜇 

𝛼(𝑒𝜇+1)2
 

 𝜃2 = −𝑡2  𝛾3𝛽2 𝑒𝜇 (1−𝑒𝜇)

𝛼2 (𝑒𝜇+1)3
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 𝜃3 = 𝑡3  𝛾4𝛽3 𝑒𝜇 (1−4 𝑒𝜇+𝑒2𝜇)

3 𝛼3 (𝑒𝜇+1)4
 

 𝜃4 = −𝑡4  𝛾5𝛽4 𝑒𝜇 (1−11 𝑒𝜇+11𝑒2𝜇−𝑒3𝜇)

12 𝛼4 (𝑒𝜇+1)5
 

And so on.  

Substituting the above values in series form (4.28), hence the solution of 

the problem is close to the form: 

 

 𝜃(𝑥, 𝑡) =
𝛾+𝛽+(𝛽−𝛾)e

𝜇− 
𝛾𝛽
𝛼

𝑡

e
𝜇− 

𝛾𝛽
𝛼 𝑡

+1

 

Problem 4.2                            

Here suggested method will be used to solve the 3D model equation (2D 

space) i.e., equation governs the motion of water flow in horizontal and 

vertical:  

𝜕𝜃

𝜕𝑡
+ 𝜃

𝜕𝜃

𝜕𝑥
= 𝛼 [

𝜕2𝜃

𝜕𝑥2
+

𝜕2𝜃

𝜕𝑦2
] 

 𝑓(𝑥, 𝑦) = 𝜃(𝑥, 𝑦, 0) =
𝛾+𝛽+(𝛽−𝛾)e𝜇

𝑒𝜇+1
 

Where    𝜇 =
𝛾

𝛼
(𝑥 + 𝑦 − 𝜆), 𝛼, 𝛽 and 𝜆 are parameters dimension 

We have  

𝐿[𝜃(𝑋, 𝑡)] =
𝜕𝜃(𝑥,𝑦,𝑡)

𝜕𝑡
   ,   𝑅[𝜃(𝑋, 𝑡)] = − 𝛼 [

𝜕2𝜃

𝜕𝑥2
+

𝜕2𝜃

𝜕𝑦2
] ,         
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𝑁[𝜃(𝑋, 𝑡)] = 𝜃
𝜕𝜃

𝜕𝑥
    and   𝑔(𝑋, 𝑡) = 0 

First, compute 𝐻𝑛 to the nonlinear part 𝑁(𝜃) we get: 

 

𝑁(𝜃) = 𝑁 (∑ 𝑝𝑛𝜃𝑛

∞

𝑛=0

) = (∑ 𝑝𝑛𝜃𝑛

∞

𝑛=0

) (
𝜕

𝜕𝑧
[∑ 𝑝𝑛𝜃𝑛

∞

𝑛=0

]) = (∑ 𝑝𝑛𝜃𝑛

∞

𝑛=0

) (∑ 𝑝𝑛
𝜕𝜃𝑛

𝜕𝑥

∞

𝑛=0

)

=  𝜃0

𝜕𝜃0

𝜕𝑥
+ 𝑝 (𝜃0

𝜕𝜃1

𝜕𝑥
+ 𝜃1

𝜕𝜃0

𝜕𝑥
) +  𝑝2 (𝜃0

𝜕𝜃2

𝜕𝑥
+ 𝜃1

𝜕𝜃1

𝜕𝑥
+ 𝜃2

𝜕𝜃0

𝜕𝑥
)

+ 𝑝3 (𝜃0

𝜕𝜃3

𝜕𝑥
+ 𝜃1

𝜕𝜃2

𝜕𝑥
+ 𝜃2

𝜕𝜃1

𝜕𝑥
+ 𝜃3

𝜕𝜃0

𝜕𝑥
) + ⋯  

So,   

 𝐻0 = 𝜃0
𝜕𝜃0

𝜕𝑥
 

 𝐻1 = 𝜃1
𝜕𝜃0

𝜕𝑥
+ 𝜃0

𝜕𝜃1

𝜕𝑥
 

 𝐻2 = 𝜃2
𝜕𝜃0

𝜕𝑥
+ 𝜃1

𝜕𝜃1

𝜕𝑥
+ 𝜃0

𝜕𝜃2

𝜕𝑥
 

 𝐻3 = 𝜃3
𝜕𝜃0

𝜕𝑥
+ 𝜃2

𝜕𝜃1

𝜕𝑥
+ 𝜃1

𝜕𝜃2

𝜕𝑥
+ 𝜃0

𝜕𝜃3

𝜕𝑥
 

And so on.  

From IC, we can get: 

 𝐻0 = −
 𝛾2 𝑒𝜇 (𝛾+𝛽+(𝛽−𝛾)𝑒𝜇)

 𝛼 (𝑒𝜇+1)3
 

 𝐻1 = 𝑡
 𝛾3𝛽 𝑒𝜇 (𝛾+𝛽−4𝛾 𝑒𝜇+(𝛾−𝛽)𝑒2𝜇)

2 𝛼2 (𝑒𝜇+1)4
 

 𝐻2 = −𝑡2  𝛾4𝛽2 𝑒𝜇 (𝛾+𝛽−(11𝛾+3𝛽)𝑒𝜇+(11𝛾−3𝛽)𝑒2𝜇+(𝛽−𝛾)𝑒3𝜇)

8 𝛼3 (𝑒𝜇+1)5
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 𝐻3 = 𝑡3  𝛾5𝛽3 𝑒𝜇 (𝛾+𝛽−(26𝛾+10𝛽)𝑒𝜇+66𝛾𝑒2𝜇−(26𝛾−10𝛽)𝑒3𝜇+(𝛾−𝛽)𝑒4𝜇)

48 𝛼4 (𝑒𝜇+1)6
 

And so on. 

Moreover, the sequence of parts θn is: 

 

 𝜃0 =
𝛾+𝛽+(𝛽−𝛾)𝑒𝜇

(𝑒𝜇+1)
 

 𝜃1 = 𝑡
 𝛾2𝛽 𝑒𝜇 

𝛼(𝑒𝜇+1)2
 

 𝜃2 = −𝑡2  𝛾3𝛽2 𝑒𝜇 (1−𝑒𝜇)

4𝛼2 (𝑒𝜇+1)3
 

 𝜃3 = 𝑡3  𝛾4𝛽3 𝑒𝜇 (1−4 𝑒𝜇+𝑒2𝜇)

24 𝛼3 (𝑒𝜇+1)4
 

 𝜃4 = −𝑡4  𝛾5𝛽4 𝑒𝜇 (1−11 𝑒𝜇+11𝑒2𝜇−𝑒3𝜇)

192 𝛼4 (𝑒𝜇+1)5
 

And so on.  

Substituting the above values in series form (4.28), hence the solution of 

the problem is close to the form: 

 𝜃(𝑥, 𝑦, 𝑡) =
𝛾+𝛽+(𝛽−𝛾)e

𝜇− 
𝛾𝛽
2𝛼

𝑡

e
𝜇− 

𝛾𝛽
2𝛼𝑡

+1

 

Problem 4.3 

Here suggested method will be used to solve the 4D model equation (3D 

space):  

𝜕𝜃

𝜕𝑡
+ 𝜃

𝜕𝜃

𝜕𝑥
= 𝛼 [

𝜕2𝜃

𝜕𝑥2
+

𝜕2𝜃

𝜕𝑦2
+ +

𝜕2𝜃

𝜕𝑧2
] 
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 𝑓(𝑥, 𝑦, 𝑧) = 𝜃(𝑥, 𝑦, 𝑧, 0) =
𝛾+𝛽+(𝛽−𝛾)e𝜇

𝑒𝜇+1
 

Where    𝜇 =
𝛾

𝛼
(𝑥 + 𝑦 + 𝑧 − 𝜆), 𝛼, 𝛽 and 𝜆 are parameters dimension 

We have  

𝐿[𝜃(𝑋, 𝑡)] =
𝜕𝜃(𝑥,𝑦,𝑧,𝑡)

𝜕𝑡
   ,   𝑅[𝜃(𝑋, 𝑡)] = − 𝛼 [

𝜕2𝜃

𝜕𝑥2
+

𝜕2𝜃

𝜕𝑦2
+

𝜕2𝜃

𝜕𝑧2
] ,         

𝑁[𝜃(𝑋, 𝑡)] = 𝜃
𝜕𝜃

𝜕𝑥
    and   𝑔(𝑋, 𝑡) = 0  

First, compute 𝐻𝑛 to the nonlinear part 𝑁(𝜃) we get: 

𝑁(𝜃) = 𝑁 (∑ 𝑝𝑛𝜃𝑛

∞

𝑛=0

) = (∑ 𝑝𝑛𝜃𝑛

∞

𝑛=0

) (
𝜕

𝜕𝑧
[∑ 𝑝𝑛𝜃𝑛

∞

𝑛=0

]) = (∑ 𝑝𝑛𝜃𝑛

∞

𝑛=0

) (∑ 𝑝𝑛
𝜕𝜃𝑛

𝜕𝑥

∞

𝑛=0

)

=  𝜃0

𝜕𝜃0

𝜕𝑥
+ 𝑝 (𝜃0

𝜕𝜃1

𝜕𝑥
+ 𝜃1

𝜕𝜃0

𝜕𝑥
) +  𝑝2 (𝜃0

𝜕𝜃2

𝜕𝑥
+ 𝜃1

𝜕𝜃1

𝜕𝑥
+ 𝜃2

𝜕𝜃0

𝜕𝑥
)

+ 𝑝3 (𝜃0

𝜕𝜃3

𝜕𝑥
+ 𝜃1

𝜕𝜃2

𝜕𝑥
+ 𝜃2

𝜕𝜃1

𝜕𝑥
+ 𝜃3

𝜕𝜃0

𝜕𝑥
) + ⋯  

So,  

 𝐻0 = 𝜃0
𝜕𝜃0

𝜕𝑧
 

 𝐻1 = 𝜃1
𝜕𝜃0

𝜕𝑧
+ 𝜃0

𝜕𝜃1

𝜕𝑧
 

 𝐻2 = 𝜃2
𝜕𝜃0

𝜕𝑧
+ 𝜃1

𝜕𝜃1

𝜕𝑧
+ 𝜃0

𝜕𝜃2

𝜕𝑧
 

And so on. 

From IC, we can get 
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 𝐻0 = −
2 𝛾2 𝑒𝜇 (𝛾+𝛽+(𝛽−𝛾)𝑒𝜇)

3 𝛼 (𝑒𝜇+1)3
 

 𝐻1 = 𝑡
2 𝛾3𝛽 𝑒𝜇 (𝛾+𝛽−4𝛾 𝑒𝜇+(𝛾−𝛽)𝑒2𝜇)

9 𝛼2 (𝑒𝜇+1)4
 

 𝐻2 = −𝑡2  𝛾4𝛽2 𝑒𝜇 (𝛾+𝛽−(11𝛾+3𝛽)𝑒𝜇+(11𝛾−3𝛽)𝑒2𝜇+(𝛽−𝛾)𝑒3𝜇)

27 𝛼3 (𝑒𝜇+1)5
 

 𝐻3 = 𝑡3  𝛾5𝛽3 𝑒𝜇 (𝛾+𝛽−(26𝛾+10𝛽)𝑒𝜇+66𝛾 𝑒2𝜇−(26𝛾−10𝛽)𝑒3𝜇+(𝛽−𝛾)𝑒4𝜇)

243 𝛼4 (𝑒𝜇+1)6
 

And so on. 

Moreover, the sequence of parts θn is: 

 𝜃0 =
𝛾+𝛽+(𝛽−𝛾)𝑒𝜇

(𝑒𝜇+1)
 

 𝜃1 = 𝑡
2 𝛾2𝛽 𝑒𝜇 

3𝛼(𝑒𝜇+1)2
 

 𝜃2 = −𝑡2  𝛾3𝛽2 𝑒𝜇 (1−𝑒𝜇)

9𝛼2 (𝑒𝜇+1)3
 

 𝜃3 = 𝑡3  𝛾4𝛽3 𝑒𝜇 (1−4 𝑒𝜇+𝑒2𝜇)

81 𝛼3 (𝑒𝜇+1)4
 

 𝜃4 = −𝑡4  𝛾5𝛽4 𝑒𝜇 (1−11𝑒𝜇+11𝑒2𝜇−𝑒3𝜇)

972 𝛼4 (𝑒𝜇+1)5
 

And so on.  

Substituting the above values in series form (4.28), hence the solution of 

the problem is close to the form: 

 𝜃(𝑥, 𝑦, 𝑧, 𝑡) =
𝛾+𝛽+(𝛽−𝛾)e

𝜇− 
𝛾𝛽
3𝛼

𝑡

e
𝜇− 

𝛾𝛽
3𝛼𝑡

+1
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       From problems 1, 2, 3, we can see that the proposed NTHPM is 

applied to find the exact solution of the nonlinear 2nd order (2, 3, 4 – D) 

model equations does not require any restrictive assumptions to deal with 

nonlinear terms. 
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5.1. Conclusions 

      In this thesis, the combination of new transform suggested by Luma 

and Alaa with HPM method is proposed to get exact solution of some 

types of non-linear, non-homogenous PDEs; 1D, 2D, and 3D; 2nd or 3rd 

order such as Klein-Gordan equation, wave-like equations, autonomous 

equation, system of two or three non-linear equations, 2D-Burgers' 

equations, coupled Hirota Satsuma KdV type II, and RLW equation. 

Finally, the suggested method is used to solve application model such soil 

moisture equation where traditional HPM leads to an approximate 

solution. So, the results reveal that NTHPM is a powerful method for 

solving those types of PDEs with initial conditions. The basic idea 

described in this thesis is strong enough to be employed to solve other 

types of equations. The advantage of suggested method is capability of 

combining two powerful methods for obtaining exact solutions for those 

types of PDEs, where the HPM was disability to get the exact solution for 

the same problems and solved its approximately.  

Chapter Five 

Conclusions and Future Work 
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Moreover, the research finding how the solution of PDE by MTHPM 

provide the agreement with real life problems. The method attacks the 

problem in a direct way and in a straightforward fashion without using 

linearization, or any other restrictive assumption that may change the 

physical behavior of the model under discussion. 

The experimental results show that the NTHPM is computationally 

efficient for solving those types of problems and can easily be 

implemented without computer. 

The suggested method is free of unnecessary mathematical complexities.  

The fast convergence and simple applicability of NTHPM provid 

excellent foundation for using these functions in analytical solution of 

variety problems.  

The obtained results show that our proposed method has several 

advantages such like being free of using Adomian polynomials when 

dealing with the nonlinear terms like in the ADM and being free of using 

the Lagrange multiplier as in the VIM. 

The results reveal that the presented methods are reliable, effective, very 

accurate and applicable to solve other nonlinear problems. 

The advantage of NTHPM is its capability of combining two powerful 

methods for obtaining exact. 
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5.2. Future Works 

Based on the results of the proposed method and its illustrative, the 

following future works may suggest:  

1- Using NTHPM for solving high dimensions PDEs.  

2- Use NTHPM to solve nonlocal problems. 

3- Use NTHPM to solve integral and integro-differential equations. 

4- Use NTHPM to solve system of integral or integro-differential 

equations. 

5- Use NTHPM to solve differential equations with fractional orders. 
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على اقتران صيغة تحويل جديد مع طريقة  تستندفي هذه الرسالة اقترحنا طريقة جديدة 

الحل المضبوط  لإيجادلحل بعض انواع المعادلات التفاضلية الجزئية  الاضطراب الهوموتوبي 

او اعادة ترتيب تردد  سيمتقويمكن استخدام الطريقة لحل المسائل دون أي في مجال اوسع. 

تقييد بفرضيات و هو حر من اخطاء التدوير. هذه الطريقة تسمى طريقة التحويل الالمجال او 

 الجديد للاضطراب الهوموتوبي.

سيكون التركيز على بعض المفاهيم الاساسية للمعادلات التفاضلية  الهدف الاول في الرسالة

  .الجزئية

حل بعض انواع من المعادلات الى  بالإضافةهو تطبيق الطريقة المقترحة  الهدف الثاني

 التفاضلية الجزئية ذات الشروط الابتدائية مثل

     Klein-Gordan equation, wave-like equations, autonomous equation, 

system of two or three non-linear equations, Burgers' equations, coupled 

Hirota Satsuma KdV type II, and RLW equation. 

اخيرا استخدمت لحل نموذج تطبيقي مثل معادلة رطوبة التربة حيث ان حلها بطريقة الاضطراب 

 صيغةالهوموتوبي التقليدية يؤدي الى الحل التقريبي. ايضا اثبتنا تقارب متسلسلة الحل الى ال

 موثوقية و قابلية الطريقة المقترحة. ايضا تضمنت بعض الامثلة التي توضح.  ةالمضبوط

النتائج العملية اثبتت ان الطريقة المقترحة اداة كفؤة لحل تلك الانواع من المعادلات التفاضلية 

     الجزئية.
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