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Abstract

In this thesis, a new method based on a combined form of the new transform
with homotopy perturbation method is proposed to solve some types of partial
differential equations, for finding exact solution in a wider domain. It can be used
to solve the problems without any discretization, or resorting to the frequency
domain or restrictive assumptions and it is free from round-off errors. This method
is called the new transform homotopy perturbation method.

In this thesis, we focuse on some basic concepts of the partial differential
equations.The first objective is implement suggested method in order to solve
some types of PDEs with initial condition such that: Klein-Gordan equation, wave-
like equations, autonomous equation, system of two or three non-linear equations,
Burgers' equations, coupled Hirota Satsuma KdV type Il, and RLW equation.
Finally, The proposed method is used to solve application model which is soil
moisture equation where traditional HPM leads to an approximate solution. The
second aim which is the convergence of the series solution is studied, the series
solution converge to to the exact form is proved.Some examples are provided to

illustrate the reliability and capability of the suggested method.The practical results



show that the proposed method is efficient tool for solving those types of partial

differential equations.






Introduction

Many phenomena that arise in mathematical physics and engineering
fields can be described by partial differential equations (PDESs). In physics for
example, the heat flow and the wave propagation phenomena are well
described by PDEs [45,55]. So, it is a useful tool for describing natural
phenomena of science and engineering models. Most of engineering
problems are nonlinear PDEs, and it is difficult to solve them analytically.
The obtaining of the exact solution of nonlinear PDEs in physics and
mathematics is still a significant problem that needs new efficient
implemented methods to get exact solutions. Various powerful mathematical
methods have been proposed for obtaining exact and approximate analytic
solutions. Some of the classic analytic methods are perturbation techniques
[8] and Hirota’s bilinear method [46]. Perturbation techniques were generated
useful solutions in describing both quantitative and qualitative properties of
the problem, which is an advantage compared to numerical solutions.
However, some drawbacks were obvious for complex equations due to either
such parameters cause a divergence of solutions as the quantities

increase/decrease, or the non-existence of small or large perturbation
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parameters. In problems where these quantities do not exist, the parameter
has to be artificially introduced which may lead to incorrect results [17].
Perturbation techniques are therefore found to be mainly suitable for weakly
nonlinear problems.

In recent years, many researchers have paid attention to study the
solutions of non-linear PDESs by using various methods. Among these are the
Adomian Decomposition Method (ADM) [2,38,39], tanh method, Homotopy
Perturbation Method (HPM) [43], Homotopy Analysis Method (HAM) [35],
the Differential Transform Method (DTM) [9], Cubic Trigonometric B-
Spline Method [29,30], Laplace Decomposition Method [26,43], Variational
Iteration Method (VIM) [37, 56], parallel processing [39,40,49] and semi
analytic technique [41, 42, 48, 50].

In this thesis we suggested a new method based on combine two efficient
methods to get exact solution for some types of PDEs such autonomous
equation which describes the appearance of the stripe pattern in two
dimensional systems. Moreover, this equation was applied to a number of
problems in variety systems, e.g., Rayleigh-Benard convection, Faraday
instability, nonlinear optics, chemical reactions and biological systems. The

approximate solutions of the autonomous equation were presented by



Introduction

differential transformation method [1], reduce differential transformation

[31].

The system of PDEs arises in in many areas of mathematics, engineering
and physical sciences. These systems are too complicated to be solved
exactly so it is still very difficult to get exact solution for most problems. A
vast class of analytical and numerical methods has been proposed to solve
such problems. But many systems such as system of high dimensional
equations, the required calculations to obtain its solution in some time may
be too complicated. Recently, many powerful methods have been presented,
such as the coupled method [27,30]. Herein we solved such systems by
proposed method and we get exact solution without using computer
programming and calculating.

This thesis is organized as follows:

In Chapter one, a brief review of basic definitions and concepts relate to the
work is introduced. It includes an overview of PDEs and their types.

Chapter two contains the implementation of proposed method based on
coupled two efficient methods such Homotopy Perturbation Method (HPM)
and new transform defined by Luma and Alaa in [51], that we will say the
New Transform Homotopy Perturbation Method (NTHPM) for obtaining

exact solutions to some types of PDEs such as: Klein-Gordan equation,
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wave-like equations, autonomous equation, 3D-PDEs, and other 3 order
PDEs.

Chapter three contains the implementation of NTHPM for solving some types
of system of PDEs. The efficiency of the proposed method is verified by the
examples. The convergence of series solution to the exact analytic solution
function is proved.

In chapter four the proposed method are successfully implemented to solve
1D, 2D, and 3D soil moisture model equation to determine the moisture
content in soil.

Finally, in chapter five the conclusions and future works are given.






Chapter One
Preliminaries

1.1. Introduction

This chapter includes some basic definitions and concepts related to the
problems for this thesis. An overview of differential equations and their types is
introduced. In addition, we review some traditional techniques such as HPM for
solving partial differential equations, for comparison with the proposed approach

NTHPM illustrated by examples.
1.2. Overview of Differential Equations

Differential equations are used in different field of science and engineering. It's a
relation involving an unknown function (or functions say dependent variables) of
one or several independent variables and their derivatives with respect to those
variables. Many real phenomena in various fields such as engineering, physical,
biological and chemical are modeled mathematically by using differential equations
[47, 48, 50, 60]. Commonly, most real science and engineering processes including
more than one independent variable and the corresponding differential equations
are called partial differential equations (PDEs). However, the PDEs have been

reduced to ordinary differential equations (ODEs) using simplified assumptions.
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Where ODE is a differential equation for a function of single independent variable
[47].

The order of a PDE is the order of the highest partial derivative that appears in
the equation. A PDE s are classified as homogeneous or inhomogeneous. A PDE of
any order is called homogeneous if every term of the PDE contains the dependent
variable or one of its derivatives; otherwise, it is called an inhomogeneous PDE
[55].

In research field, there are several types of PDEs which depends on the

application that are used. Each application has its own special governing equations
and properties that should considered individually.
A PDE is called linear if the power of the dependent variable and each partial
derivative contained in the equation is one and the coefficients of the dependent
variable and the coefficients of each partial derivative are constants or independent
variables. However, if any of these conditions is not satisfied, the equation is called
nonlinear [55]. Also, it can consider a semi linear, if it is linear in partial
derivative only. In addition, it can consider a quasi linear, if it is linear in the first
partial derivatives or it is nonlinear in dependent variable [60].

The general form of quasi linear 2" order inhomogeneous PDE with two
independent variables can write as [Hoffman, 2001]:[55]

Auxx + Buxy + Cuyy + Dux+ Euy+ Fu=aG (1.1)
Where A, B, C, D, E, and F are the coefficients and the inhomogeneous term G

may depend on x and y. The above equation (1.1) can be classified to:

7
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1) Elliptic, when B? — 4AC < 0;

2) Parabolic, when B2 — 4AC = 0;

3) Hyperbolic, when B2 — 4AC > 0.

A solution of a PDE is a function satisfies the equation under discussion and
satisfies the given conditions as well. In order to find the solution of PDEs, initial
and / or boundary conditions used to solve PDEs, so the PDEs with initial
conditions (ICs) is said to be initial value problem (I\VPs), the PDEs with boundary
conditions (BCs) is said to be boundary value problems (BVPs), but the PDEs with
initial and boundary conditions is said to be initial-boundary value problems, the
boundary conditions (BCs) which can be classify into three types:[60]

1) Dirichlet boundary condition: numerical values of the function are specific of

the boundary of the region.

2) Neumann boundary condition: specifies the values that the derivative of a

solution to take on the boundary of the domain.

3) Mixed boundary conditions: defines a BVP in which the solution of the given
equation is required to satisfy different boundary conditions on disjoint parts of the
boundary of the domain where the condition is stated. In effect, in a mixed BVP,
the solution is required to satisfy the Dirichlet or Neumann boundary conditions in

a mutually exclusive way on disjoint parts of the boundary.[60]
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An elliptic partial differential equation with mixed boundary conditions is called
a Robbins problem [60].

Some types of differential equation, such as nonlinear differential equation
cannot be easy to solve, so we use numerical or approximate solution. In this thesis
we suggest an efficient method to solve important types of PDEs to get exact
solution.

We are beginning with Homotopy Perturbation Method (HPM).

1.3. Some Basic Concepts of the Homotopy Perturbation Method

The HPM was first proposed by He J. Huan in 1999 [13] for solving
differential and integral equations, non-linear and has been successfully applied to
solve non-linear differential equations, and other fields for more details see [15]. It
IS a combine of traditional perturbation method with homotopy method and it
suggested to overcome the difficulty arising in calculating Adomian polynomials.
This method has many advantages such as it is applied directly to the nonlinear
problems without linearizing the problem. In this section, some basic concepts of

this method have been explained.
Definition 1.1 [20]

Let X and Y are two topological spaces. Two continuous functions f: X — Y and
g:X » Y are said to be homotopic, denoted by =~ g , if 3 a continuous function
H:X x[0,1] = Y ,such that:

H(x,v) = f(x),Vx € X
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H(x,1) =g(x),VxeX
In this case, H is said to be a homotopy.
Now, to illustrate definition (1.1), consider the following examples.

Example 1.1[20]

Let Xand Y be any topological spaces, f be the identity function and g be the zero
function, then define H: X x [0,1] = Y by:

H(x,p) =x(1—p),Vx € X,Vp € [0,1]

Then H is a continuous function and

H(x,0)=x=f(x),Vx€X

Hx,1)=0=gkx),Vxe X

Therefore f = g .

Remark

Let f:R —» R and g: R — R be continuous functions. Define
H:R x[0,1] = R by
Hx,p)=AQ-p)f(x) +pg(x),Vx€R Vpe€[01]
Then, H(x,0) = f(x),Vx €R
and,H(x,1) = g(x),Vx €R
Therefore = g .
Now, to illustrate the basic idea of the HPM, we consider the following

nonlinear differential equation:

10
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A(u) =f(x), xeQ (1.2)

where A is differential operator, f is a known function of x. The operator A can
generally speaking be divided into two operators L and N, where L is a linear
operator, and N is a nonlinear operator. Therefore equation (1.2) can be rewritten as
follows:

L(u)+N(u)-f(x)=0
According to [16], we can construct a homotopy # Qx[0,1] —— R which satisfies
the homotopy equation:
H(,p) = (1 = p)IL(v) — L(ug)] + p[A(w) = f(x)] =0
Or
H(,p) = Lw(x)) — L(uo(x)) + pL(up(x)) + p[N(w(x)) = f()] =0  (1.3)
where p €[0,1], up is an initial approximation solution of equation (1.2).
Obviously, from equation (1.3) we have:

H(v,0)=L(V)—L(up)=0

H(\v,1)=A(v)-f(X)=0
The changing process of p from zero to unity is just that of v(x, p) from ug(x) to
u(x).
Therefore, L(v) — L(ug) = A(v) - (X), xeQ
and up(X) zu(x), xeQ
Assume that the solution of equation (1.2) can be written as a power series in p as

follows:

11
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v(X, p) = Xizo ini(X) = vy + pvy + pu, + - (1.4)

Setting p =1 in equation (1.4), can get:

(0]

u(x) = E vi(x) = lirr%v=170+v1+v2+--- (1.5)
p—)
i=0

This is the solution of equation (1.2)
To illustrate the efficiency of method, consider the following examples.
Example 1.2[55]
Consider 2" order linear homogeneous Klein-Gordan equation.
Uppr = Uy T U +2Uu —o<x<o ,t>0
Subjectto the IC: u(x,0) = e*, u;(x,0) =0
Using the HPM we have
Hw,p) = (1 = p) (W — Ugee) + D(Wer — Vx — Vx — 2V)
= Vg — Ugee + P(Uoee — Ve — Vx — 2V) =0
P%: Vore — Ugee = 0
Vot = Upe = Vo =Ug = €”

pl: Vite = (UOxx + vox + 2V — uon) =e* +e* + 2e* = 4e”*

£2
vy = 4te* = v, = 4Eex
2 tz X tz X tz X tz X
P :tht:(lex+v1x+2v1):4Ee +4Ee +8§e =16§e
3 £
Vyr = 16§ex = v, = 16Eex

12
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3. — —_ t4 X t4 X t4 X — t4 X

p -Ugtt—(UZxx+U2x+2U2)—16;6 +16e* +32-e* =64_e
t> t6

v3t=64aex=v3=64aex

And so on, to get

u(x,t) = liI’I}U=UO+v1+v2+v3+...
p-

2 4 6
u(x t)=€x+4t—ex+16t—ex+64t—ex+---
’ 2! 4! 6!
2t)2  (20)* (20)°
(2t) +( ) +( )
2! 4! 6!

u(x,t) =e”* <1 + + ) = e* cosh(2t)

Example 1.3[60]

Consider the following 3" order nonlinear PDE.

1
ut+§u§=uxxt , —o<x<ow , t>0

Subject to the initial condition (IC): u(x,0) = x

Using the HPM we have:

1
H@.p) = (1= p) (e = o) +P (Ve + 5 () = Vixr)

1
=V —Upt TP (uOt + E (Vz)x - vxxt) =0

p%: v — Uge = 0 » Vo =X
1 1
P iV = —|Upe T E(UO)’C ~ Voxxt , V= —Xxt
2 1 2
PV = — E(Zvovl)x — Vixxt , V=Xt

13
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3 1 2 3
p°i VU3 = — E(Zvovz + V1) x — Vaxxt , V3= —xt

And so on, to get:

X
u(n ) = Y PO =x Y (-t =
n=0 n=0

This is exact solution
Example 1.4[60]
Consider the following 3" order linear PDE.

U + Uy = 2Uspe —o<x<o ,t>0
Subject to the IC: u(x,0) = e™
Using HPM we have:

Hw,p) = (1 = p)(W; — ugr) + p(Ve + vy — 20x4¢)

= V; — Uge + P(Uor + Vx — 2Vxxe) =0

Vot — Uge = 0 , Vg=e

. J— J— X — —-X
D iV = 2V0xxt — Vox — Uor » V3 = te  =p(t)e

+2
D?: Vyr = 2V1xx¢ — Vix , Up = (Zt + ?> e =p,(t)e™

3 2 t3 —-X —-X
D% Vst = 2Vpxxt — Vo , U3 =4t + 2t +§ e * =ps(t)e

And so on, where p,,(t) is a polynomial which has the following form:

n
p,(t) = 271t +Z anjtj; Apo s Apgy eee een e , Appn > 0
j=0

By induction, we get:

14
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Up = pp(t)e™

And

Va1 = Lt [2Vnaxe — Vna] = L' 2L () + pr(®)]e™
= [2p,(t) + L' pp(B)]e™ = ppiq(H)e™

It is easy to see that p,, (t) - +oo (n = +o0) forany t > 0. Therefore, the infinite

series:
z vy, = 1+an(t)]e x
n=0 n=1

Is divergent.

We note that in example 1.3, the PDE is nonlinear and the method gave the exact
solution, in example 1.4, the PDE is linear but the method miss fire to get the exact
solution. For these reasons we suggest efficient method based on coupled new
transformation with HPM and denoted by NTHPM. Now, firstly introduce the new

transformation proposed by luma-Alaa [51].

1.4. New Transformation

In this section, a new integral transformation is introduced. The
domain of the new transformation (NT) is wider than of the domain of
other transformation; therefore, it is more widely used to solve problems.

Definition 1.2 [51]

The new transformation of a function f(t) is defined by:

15
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fay =@} = | et () dr,

e}

0

(1.6)

Where u is a real number, for those values of u which the improper integral is

finite. A list of the NT for common functions is presented in the Table (1.1).

Table 1.1: New transformation for some common functions[51]

f(t) f) = T{f ()} D¢
|
t", o1, hiad u#0
un
t*, a>0 I'(a+1)/u? u=0
gt u ueR\[0,a] a>0 ueR\[a,0]
u-a a<0
. au
sin(at) 2 1 12 u+0
2
cos(at) u u+0
a’ + u?
] —au
sinh(at) 2 — 12 lu|l > |aj
cosh(at) S lul > |af
aZ — uZ
ua(t)=u(t-a)=H(t-a) gau u>0
5(t-a) ed/u u>0

1.4.1. The General Properties of the New Transformation

If the new transformation T{f} and T{g} of the functions f (t) and g(t) are well-

defined and a, b are constants, then the following properties are hold:

1. Linearity property: T{af(t) + bg(t)} = aT{f(t)} + bT{g(t)}

16
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2. Convolution property: (f * g)(t) = fotf(r)g(t —1)dt (1.8)
3. T{t"} = :—n L v£0, n=0123,.. (1.9)
4. Differentiation property: T{f'} = v(T{f} — f(0)) (1.10)

For more details see [51].
1.4.2. The Advantages of the New Transform

The NT has many interesting properties which make it rival to the Laplace
Transform (LT). Some of these properties are:

The domain of the NT is wider than or equal to the domain of LT as illustrate in

Table (1.2). This feature makes the NT more widely used for problems.

Depending on [51], the NT has the duality with LT, therefore, the NT can be

solve all the problems which be solved by LT.

The unit step function in the t-domain is transformed to unity in the u-domain.

The differentiation and integration in the t-domain are equivalent to

multiplication and division of the transformed function F(u) by u in the u-

domain.

By Linear property (1.7), we have that for any constant aeR, T{a} = aT{1} =

a, and hence, T~ 1{a} = a, that is, we don’t have any problem when we dealing

with the constant term( the constant with respect to the parameter u).

17
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Table 1.2: The domain of Laplace and new transformation[51]

Laplace

New Transform

LL (1)

n!/s"*1

Domain

[T (I

nt/u"

Domain

u=0

I"(a+1)/s**!

I'(a+1)/u?

u=0

eat

1/(s-a)

u/(u-a)

ueR/[0,a] if
a>0 ueR/[a,0]
if a<0

sin(at)

al(s’+a?)

au/(u?+a?)

u=0

cos(at)

s/(s®+a?)

u?/(u?+a?)

u=0

sinh(at)

a/(s*-a?)

au/(u*-a)

u[>lal

cosh(at)

s/(s*-a?)

u?/(u®-a?)

u[>lal

ua(t):u(;a):H(t- o5/

o(t-a)
In(at) a>0

g u>0

e-as

e/u
(In(a/s)-y) /s

In(a/u)-y

u>0
u>0

o)

Yy = —f e tintdt = 0.5772 ...

In the next chapter, we will use a combination of new transformation (NT)

and the HPM to solve types of PDEs and get exact solution without needing

computer calculations.

18
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Chapter Two

Couple New Transform with HPM to Solve

Some Types of Partial Differential Equations

2.1. Introduction

In this chapter, we will introduce an approach in obtaining the exact
solution of non-linear partial differential equations. The new approach based
on combine two methods, new transform with HPM and denoted by NTHPM.
Then applied it to solve some important model equations. The exact solutions
of these equations are compared to the HPM. The comparisons show the
efficiency of the proposed NTHPM against the other methods. The method is

strongly and powerful to treatment the nonlinear term of nonlinear equations.

2.2. New Transformation—Homotopy Perturbation Method

The NTHPM is a new method to solve differential equation; it
successfully applied to solve types of PDEs. This method is powerful to obtain
the exact solution without using computer calculating. The method suggested
firstly by Tawfiq and Jabber in 2018 [18] to solve groundwater equation. The
NTHPM has many merits and has many advantages over the HPM and ADM.

In the present work, the suggested method is used to solve of 1D, 2D, and 3D;
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Chapter Two NTHPM to Solve Types of PDEs

2" and 3' order non-linear PDEs equations, and comparison has been made to

the results obtained by the HPM and NTHPM.

2.3. Solve Linear PDEs by NTHPM

In this section, we will use a combination of new transform (NT) and the
HPM to get the new transform that has played an important role because its
theoretical interest also in such method that allows to solve in the simplest

form; it used have to accelerate the convergence of power series.

To illustrate the ideas of NTHPM to find the exact solution of linear three
dimensions 2" order PDEs of the form:
Uyy T Uyy T U, =AU X,Y,ZERE&E>0 (2.1)
with initial condition (IC): u(x,y, z,0) = f(x,y, z); o is constant.
Firstly, rewrite equation (2.1) as following:
Llu(x,y,z,t)] + Rlu(x,y,z,t)] = g(x,y,z,t) (2.2)

where L: is the linear differential operator (L = a%), R: is the remainder of

the linear operator, g(x, y, z, t) is the inhomogeneous part.

We construct a Homotopy as:

Hu(x,y,z,t),p) = (1 = p)[L(u(x,y,2t)) — L(u(x,y,z 0))] +
plAlu(x,y, z, )] —g(x,y,z, )] =0 (2.3)

Where pe]0, 1] is an embedding parameter and A defined as A= L+ R.
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Chapter Two NTHPM to Solve Types of PDEs

It is clear that, if p =1, then the homotopy equation (2.3) is converted to the
differential equation (2.2).
Substituting equation (2.2) into equation (2.3) and rewrite it as:

L(w) — L(f) —pL(uw) + pL(f) + pL(w) + pR(u) —pg =0
Then
Lw) - L) +plL(H) +RW) —g] =0 (2.4)
Since f(X, y, z) is independent of the variable t and the linear operator L
dependent on t so, L(f(x, y, z)) =0, i.e., the equation (2.4) becomes:
L(w)+pRwW)—-pg=0 (2.5)
According to the classical perturbation technique, the solution of the equation

(2.5) can be written as a power series of embedding parameter p, as follows:

u(x,y,zt) = z p"u,(x,y,2,t) (2.6)
n=0

The convergence of series (2.6) at p =1 is discussed and proved in [8,25],
which satisfies the differential equation (2.2).
The final step is determining the parts u, (n= 0,1, 2,...) to get the solution
ulx,y,zt).

Here, we couple the NT with HPM as follows:
Taking the NT (with respect to the variable t) for the equation (2.5) to get:
T{L(W}+p T{RW)} —p T{g} =0 (2.7)
Now by using the differentiation property of NT (property 4) and equations

(2.2), (2.7) becomes:
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Chapter Two NTHPM to Solve Types of PDEs

vaT{u} —vaf(x) +p T{R(w)} —p T{g} =0 (2.8)
Hence:
T} = f(ry,2) - poed) TN} (2.9)

va va

Taking the inverse of the NT on both sides of equation (2.9), to get:

1 (T{R(uCxy,z.t) 1 (Tg(xy.zt
u(x,y,z,t) = f(x,y,z) —pT 1{ { (u;ayz )}}+p'I[‘ 1{%} (2.10)

Then substituting equation (2.6) into equation (2.10) to obtain:

T {R(Z%o:O pnun)} + ,]I,_l T{g(x' Y, Z, t)}
va p va

z p"u, = f(x,y,2) —pT™* { } (2.11)
n=0

By comparing the coefficient of powers of p in both sides of the equation
(2.11), we have:

uO = f(x; y; Z)
2y = T {T{R [uo]}} - {'ﬂ‘{g(x, ¥,2, t)}}

v va

S {T{R [ul]}}

va

(2.12)

va

- {T{R [uz]}}

T{R [un]}}

— -1
Upsp = —T { va
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Chapter Two NTHPM to Solve Types of PDEs

2.4. lllustrative Application
Here, the NTHPM may be used to solve the 2" order-PDE with initial
condition as following:

Example 2.1[60]

Let us consider the following 3D - PDE

Upx T Uyy U =aUe 5 allx,y,zinR&E>0

Subjectto IC:  u(x,v,2,0) = f(x,y,2z) = 5sin(ax) sin(by) sin(cz),

where a, b, ¢ and a are constants. According to the equation (2.12) the power
series of p get as follows:

p°:uo(x,y,2,t) = 5sin(ax) sin(by) sin(cz)

pliy (x,,2,£) = —(5 sin(ax) sin(by) sin(cz)) (é) (a® + b? + c2)

2

5 a2> (a? + b? + c?)?

p?:uy(x,y,z,t) = (5sin(ax) sin(by) sin(cz)) < ‘

3

3! a3

p3:us(x,y,zt) = —(5sin(ax) sin(by) sin(cz)) < > (a® + b? + ¢?)3

4

p*:u,(x,y,z,t) = (5sin(ax) sin(by) sin(cz)) <4't a4> (a? + b% + ¢?)*

5

p>:us(x,y,zt) = —(5sin(ax) sin(by) sin(cz)) <5'ta5> (a? + b? + c?)5

n

p™u,(x,v,zt) = (—1)"(5 sin(ax) sin(by) sin(cz)) ( ‘ ) (a? + b% + c?)"

n! a”

Thus, we get the following series form:
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o

(x,y,z,t) = z u,(x,y,2,1t)

n=0

tn
n! an

= Z(—l)nS sin(ax) sin(by) sin(cz) ( ) (a? + b? + c*)"

So, the closed form of the above series is:
u(x,y,z,t) = 5sin(ax) sin(by) sin(cz) e_é(a2+b2+cz)
This gives an exact solution of the problem.
Example 2.2[60]
Consider the following 3D-PDE
Uyy T Uyy + Uy, + ¥ =auy; allx,y,zinR&t >0
with IC: u(x,y,z,0) = f(x,y,z) = d, where d is constants.
From equation (2.12), we get the power series of p as follows:

pY:iug(x,y,zt) =d

Pl (x,y,2,t) = = (€**Y)

N

£2
p :uz(x,y,z, t) = ﬁ(ex-'_y)

3. _i x+y
p -ug(X,y,Z,t)—6a3 (8 )
P16 Y,2,t) = o (e¥*7)
PA T % 24q*
n t" x+y
P (5,7, 7, 8) = o ()

Thus, the following series form is obtained:
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(0]

ulx,y,zt) = z u,(x,y,z,t) =d +

n=0

n+1

N t ( x+y)
(n+ 1! antt ¢
n=0

Therefore, the closed form of the above series is:
t
u(x,y,z,t) = e*tVy (ea — 1) +d
Example 2.3[55]
Consider another linear homogeneous Klein-Gordan equation
Upp = Uyy T Uy +2u —o<x<o , t>0
Subject to the ICs:
u(x,0) =e*,u;(x,0) =0
Taking new transformation on both sides, subject to the IC, to get:
1
Tu(x,y, t)] = e* + ﬁ']l"[uxx +u, + 2u |
Taking inverse of new transformation, we get:
1
u(x,y,t) =e*+T?! [;T[uxx + u, + 2u]]

by HPM, we get:

u(x, t) = Z p™u, (x,t)
n=0

Using equation (2.11) in equation (2.10), to get:
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Z p™u,(x,t) = e*
n=0

+p <’]I‘1

+2 Z p"u, (x,y,t)
n=0

1
ﬁT

Z P Unxx (X, Y, 1) + Z P Uy (x,y,t)
n=0 n=0

D

pOiuy(x,t) = e*

2t)?
priui(x, t) =( ) e*
2!
(2t)*
piu,(x, t) = 2 e*
2t)°
p3:us(x, t) =—( 6') e*

2002 (2t ()¢
(Zt!) +(:!) +(6t!) +.-->:excosh(2t)

u(x,t) =e* <1 +

2.5. Solve Nonlinear PDE by NTHPM

In the NTHPM can be used for solving various types of nonlinear PDEs. To
illustrate the basic idea of suggested method, we consider general nonlinear
PDEs with the initial conditions of the form:

Lu(x,t) + Ru(x,t) + Nu(x,t) = g(x,t), (2.13)

Subjectto ICs: u(x,0) = h(x) , u:(x,0) = f(x).

27



Chapter Two NTHPM to Solve Types of PDEs

where L is the 2" order linear differential operator L = :—; , R is the linear
differential operator of less order than L ; N represents the general nonlinear
differential operator and g(x, t)is the source term.

Taking the new transformation on both sides of equation (2.13) to get:
T[Lu(x,t)] + T[Ru(x,t)] + T[Nu(x,t)] = T[g(x,t)], (2.14)

Using the differentiation property of the new transform, we have:

B f 1
Tlu(x,t)] = h(x) + — + ﬁ']l"[g(x, t) — Ru(x,t) — Nu(x,t)] (2.15)

Operating with the inverse of new transformation on both sides of equation

(2.15) gives:
ulx,t) =G, t) — T ! [%']I‘[Ru(x, t) — Nu(x, t)] (2.16)

where G(x, t) represents the term arising from the source term and the

prescribed initial conditions. Now, we apply the HPM.

u(x, t) = z p"u,(x,t) (2.17)
n=0

The nonlinear term can be decomposed as:

Nu(x,t) = Z p"H,(u) (2.18)

n=0
for He's polynomials H,(u) (see [48-49]) that are given by:
an o
Hy, (g, Uy, won ooy Upy) = %ﬁ[N(Zhop‘ui)], n=0123,.. (2.19)
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Substituting equation (2.17), (2.18) and (2.19) in equation (2.16) to get:
S0P un (6, 8) = G 8) — p (T [V—lzqr[R $°  pug (%, 0) + N szzoann(u)]]) (2.20)
Comparing the coefficient of powers of p, to get:

pO:iug(x,t) = G(x, t)

ptius(x,t) = —T1 viz T[Ruy(x,t) + Ho(u)]-

~

p2iuy(x,t) = —T1 viz T[Ru,(x,t) + Hl(u)]-

p3ius(x,t) = —T1 -viz']l"[Ruz(x, t) + Hz(u)]-

and so on.
2.6. Applications

In this section, NTHPM is applied for solving various types of nonlinear

wave-like equations with variable coefficients.
Example 2.4[10]

Consider the following 2D- nonlinear wave-like equations with variable
coefficients.
02 02
Ute = axdy (Urrttyy) — axdy (yueuy) —u

with the ICs: u(x,y,0) = e, u,(x,y,0) =e*¥

Taking new transformation on both sides, subject to the IC, we get:

1 R

xy 62
Tulx,y, t)] =™ + 87 +5T [m (Uaxtlyy) = 2x3y (xyuruy) —u ]

Taking inverse of new transform, we have:
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ulx,y,t) = (1 +t)e™ =T I L [axay( wxcllyy) — axay (xyuxuy) - u]l
By HPM, we have:

u(x,t) = Yn=o P un (1, 1)

Substation equation (2.13) in the equation (2.14), to get:

Z p"u,(x,t) = (1 +t)e™
n=0

Where H, (u) and K, (u) are the He's polynomials having the value H,,(u) =

Ha(W) = ) P Ka () = ) Pun(6,y,6)
=0 n=0 n=0

2 2
ai—ay (Urxttyy) and K, (u) = az_ay (xyuyuy)

The first few components of H,,(u) and K, (u) are given by:
Ho(u) 9xdy ( OxxuOyy) [(1 + t)zx yZBny]

62
Hi(u) = % (ulxxuOyy + quxulyy)

= % [—2(1 +t) (;—2' + ;—3') nyZery]

2
H2 (u) = m (uZxxuOyy + ulxxulyy + ququyy)

And so on

Ko(u) = i (xY(UOxUOy)) a;y [(1+ t)?x? y282xy]

2
K;(u) = (xy(ulxuoy + quuly))
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62

_ _ 2t 2 2 2xy
_axay 2(1+t)(2!+3!)xye ]

62
K,(u) = %0y (xy(uquOy T UipUqy + quuZy))

Comparing the coefficients of various powers of p, to get:

P uo(x, y,t) = (1 + t)e™”
1
priu(x,y,t) =T! [;']I‘[Ho(u) + Ko(u) —uo(x,y, t)]]

2 3
- _ (t_ n t_) o XY
21 31

Py (7,0 = T[S TIHL ) + Ky () = 1 (2,0

4 5
4! 5!

1
pus(x,y,t) =T ;T[Hz(u) + K(w) —uy(x,y, t)]]

6 7
= — (t_ + t_) exy
6! 7!

And so on

Therefore the solution is given by:

ulx,y,t) =ug(x,y,t) +uy (x, y,t) + u,(x, y, t) + us(x,y, t) + -
3 4 5 6 7
t t t t t + )

2
=e(14t-S-S+Z 4+ -2
2! 3! 4! ! !

So, u(x,y,t) =e*(cost + sint)
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Example 2.5[10]

Consider the following nonlinear 1D- equation with variable coefficients.

a2 02

Uy = U 9x2 (U U Uex) + UE %2 (u3) —18u° +u

with ICs: u(x,0) = e”*, u(x,0) =e*

By applying NTHPM, we get:

z pMu,(x,t) = (1 +t)e*
n=0

+p (’JI‘1

- i P un(x,y, t)]

n=0

1
?T

i P H () i PR () + 18 i P (W)
n=0 n=0 n=0

|

Where H,,(u), K,,(u)and J, (u) are He's polynomials. First few components of

He's polynomials are given by:
2 07 5_5x
HO(u) = Uy %2 (UOxquxquxx) = 9(1 + t) e
62 2 62
Hy (u) = 2u0u1 %2 (UOxquxUOxxx) + Up 9x0y (ulxquxquxx +

t?2  t?
UoxUpxxUoxxx T UoxUoxxUixxx) = 45(1 + t)4 (; + ;) e

and

Ko(w) = (t00)? 25 [(uox)®] = (1 + )26 2 [(1 + 1)%e™]

= 9(1 + t)%e>*
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R 92
Kl (u) = 2quulx ﬁ (qu)3 + 3(u0x)2 ﬁ [(qu)zulx]

=451+ t)* (ﬁ + f) e>*

2! 3!

and
Jow) = (up)® = (1 +t)°e>*

Ji() = 5(ug)*uy = 5(1 + t)* (f + t3) e>*

20 | 31

Comparing the coefficients of various powers of p, we get:

pOiug(x,t) = (1 + t)e”

plian () = T [ S TTHo@) + Ko() = 18]0() + uo(x,y, 9|
=(G+5)e

P00 0) = T[S TIH, @) + K, (0) = 18], () + 1,Co . 0|

4 5
- (5+5)e
4! 5!
and so on, therefore the solution is given by:
ulx, t) =uglx,t) +u(x, t) +u,(x,t) +us(x, t) + -+

2 3 4 5 6 7
=ex(1+t+t_+t_+t_+t_+t_+t_+.,,) X+t
2! 3! 4! 5! 6! 7!

I
®

This is the exact solution.
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Example 2.6[10]

Consider the following nonlinear 1D -3™ order wave-like equation with

variable coefficients.
utt=x2;—x(uxuxx)—x2(u,zcx)—u ) 0<x<1,t>0
With ICs: u(x,0) =0, u.(x,v,0) = x2

By applying NTHPM, we get:

(0]
Z p"u, (x, t) = x%t
n=0

+p| T! x? Z p"Hp(w) — x* Z p K, (w) — Z P un(x,y, t)]
n=0 n=0 n=0

Where H,,(u) and K, (u) are He's polynomials. First few components of He's

1
ﬁT

polynomials are given by:
d
Hy(u) = x (UpxUoxx) = 4t2

0 t*
Hl (u) = o (ulxqux + quulxx) = _8;

62
HZ (u) = I (u2xu0xx T Ui Uppx + qu“Zxx)

And

Ko(u) = (qux)Z = 4t?
4
Kl(u) = 2UguxUsyx = _8;

K,(u) = (u%)xx + 2(Uo) xx (U2) xx
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Comparing the coefficients of various powers of p, to get:

p%:uy(x, t) = x%t

ptiu(x,t) =T1 [U%T[szo(u) — x%Ky(u) — ug(x, t)]] = —x%—

Py, ) = T [ STy () - 27K, (0) — 06, 0] = ¥ 5

Therefore, the solution is given by:

ulx,y,t) =uglx,y,t) +u, (x, y,t) + u,(x, y, t) + us(x, y, t) + -

This is the exact solution.

2.7. Solve Autonomous Equation by NTHPM

In this section the proposed method will be used to solve one of the most
important of amplitude equations is the autonomous equation which describes
the appearance of the stripe pattern in two dimensional systems. Moreover,
this equation was applied to a number of problems in variety systems, e.g.,
Rayleigh-Benard convection, Faraday instability, nonlinear optics, chemical
reactions and biological systems [60]. The approximate solutions of the
autonomous equation were presented by differential transformation method
[18], reduce differential transformation [8]. Here a reliable couple NTHPM is

applied for solving autonomous equation.
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To illustrate the ideas of NTHPM, firstly rewrite the initial value problem
In autonomous equation in the form:

U (X, t) = CUyr (x, ) + cqu(x, t) — cu™(x, t) (2.20a)

With the IC: u(x,t) =gkx) (2.20b)

where c; and c, are real numbers and ¢ and n are positive integers.
Taking new transformation on both sides of the equation (2.20a) and using the

linearity property of the new transformation gives:

T{u:(x, t)} = cT{u,, (x, )} + ¢, T{u(x, t)} — c, T{u"(x, t)} (2.21)

By applying the differentiation property of new transform, we have

vT{u(x, t)} — vu(x,0)

= cT{uy, (x,t)} + c; T{u(x, t)} — c, T{u"(x,t)} (2.22)

Thus, we get:

(v — c)T{ulx, )} = vg(x) + cT{ue (x, )} — c, T{u" (x, 1)}

T{u(x, )} = 29 + = T, (v, )} - 2 T (x, 1)}

vV—C1

Taking the inverse of new transformation on equation (2.22), we obtain:

u(x, t) = T-1 {m} +T1 (U_— Tt (x, 0} = 72 T{u"(, t)}) (2.23)

v—Cq v—
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In the HPM, the basic assumption is that the solutions can be written as a

power series in p:

u(x,t) = z p"u,(x,t) (2.24)
n=0

and the nonlinear term N(u) = u™, n > 1 can be presented by an infinite

series as:

N(u) = Xn=op"Hn(x, 1) (2.25)

where p € [0,1] is an embedding parameter. H,(u) is He polynomials. Now,

substituting (2.24) and (2.25) in (2.23), to get:

g weeo] s lgn)

Comparing the coefficient of powers of p, the following are obtained.

vg(x)}

U—Cl

puy(x, t) = ']I“l{

pliu (x,t) =T 1 (v—']I‘{qux(x t)

p?iu,(x,t) =T (U—’]I‘{ulxx

3. ,t =']I'_1<
p°:uz(x,t) I
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Proceeding in this same manner, the rest of the components un(x, t) can be
completely obtained and the series solution is thus entirely determined.

Finally, we approximate the analytical solution u(x, t) by truncated series:

N
u(x, t) = 1\1,1_r>r010 (2 u, (x, t))

n=0

The above series solutions generally converge very rapidly.

2.8. lllustrative Examples

In this section, some non-linear autonomous equations with IC are

presented to show the advantages of the proposed method.
Example 2.7 [1]

Consider linear 1D, 2" order autonomous equation.

ur(x,t) = Uy (x, t) — 3ul(x, t) (2.26)
With IC:  u(x,t) = e?*

Taking the new transformation on both sides of equation (2.26), we have
T{ue (x, )} = Tlu (x, )} — 3T{u(x, t)}

By applying the differentiation property of new transformation, we get:
vT{u(x, t)} — vu(x, 0) = T{u,,(x, t)} — 3T{u(x, t)}

Thus, we have:

(v + 3)T{u(x, t)} = ve®* + T{u,,(x,t)}
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v L Ly (x,0) (2.27)

v+3 v+3

T{u(x, )} =
Taking the inverse new transformation on equation (2.27), to get:
B 1L
ulx,t) =T {v+3} +T (v+3 T{uax (x, t)})

Now, applying the HPM, we get:

(0] 1 [0 0]
Z pu, (x,t) =e?* 3t + pT1 (v——FST {z P" Usx (X, t)})
n=0 n=0

Comparing the coefficients of powers of p, we have:

PP ug(x, t) = e**73¢

1 1
pliu (x,t) =T 1 (m T{u, ., (x, t)}) =71 (v—-|—3 ']I‘{4ezxe‘3t}>

— 462x']1"—1( ) — 4t62x_3t

(v +3)2

p2iu,(x,t) =T (ﬁ T{u,, (%, t)}) =Tt (v—; ']I‘{16te2xe‘3t})

_ -1 (1 16€2xv)_ —1( 2x 2y )_ 2 ,2x-3t
=T (v+3*(v+3)2 =T (8e TSR = 8t%e

1
p3ius(x,t) =T1 (v—-I—S T{u,, (x, t)})

_ T-1 (ﬁ'ﬂ'{3262xt26_3t}) — 32e2xT-1 (L* 2w )

v+3  (v+3)3

2'v 32 3lv 32
=32 Zx']I'—l ( ) —_ ZXT—l ( ) — —t3 2x—-3t
¢ w+3)t) 3¢ w+3)p1) - 3¢
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And so on, therefore the solution u(x, t) is given by:

— ,2x-3t 2, 32t3
u(x,t) =e (1+4t+8t +T+"')

4t)%  (4t)3
— er—3t (1 + (4t) + ( 2') + ( 3') + > = 82x+t

Example 2.8 [1]
Consider nonlinear 1D, 2" order autonomous equation.

Up (X, £) = Sy (x, ) + 2ulx, t) + u?(x, t) (2.28)
With the IC: u(x,t)=p

where g is arbitrary constant. Taking the new transformation on both sides of

equation (2.28), we have:
T{us(x, t)} = 5T{ue (x, )} + 2T{u(x, t)} + T{u?(x, t)}
vT{u(x, )} — vu(x, 0) = 5T{u,, (x, )} + 2T{u(x, t)} + T{u(x, t)}
(v — 2)T{u(x, t)} = vB + ST{u,, (x, t)} + T{u?(x, t)}

vp 5 1 5
T{u(x,t)} = — + — T{u,, (x,t)} + UTZT{u (x,t)} (2.29)

Taking the inverse new transformation on equation (2.29), we obtain:

uCet) = T-H{ZE 4+ T (2 Tl (v, 0} + = T (v, 1)})

v—2

Now, applying the HPM, we get:
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Z pnun(x’ t) — '3 e2t 4+ p’JI‘—l (m'ﬂ‘{z pn uxx(x, t)} + TZT[Z ann )
n=0 n=0 v n=0

Comparing the coefficients of powers of p, we have:

p°:uy(x, t) = Be?t

5 1
ptiu,(x,t) =T ! (m T{u,, . (x, )} + mT{HO (u)})
p%iu,(x,t) = T! (% T{uy, ., (x, )} + ﬁT{Hl (u)})

5 1
p3ius(x,t) =T1 <m T{u,,  (x, )} + ET{HZ(u)})

First, compute A, to the nonlinear part N(u) , we have:

N(u) =N (i p”Hn>
n=0

= ud +p Quouy) + p2QRuguy + u?) + p3Quous + 2uquy) + -

So,
HO - u(z)
H1 - 2u0u1

H, = 2uyu, + u?

and so on.

Moreover, the sequence of the parts uj is:
up(x, t) = pe*
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u(x,t) = T-1 (0 + ﬁ'ﬂ'{ﬁze‘“})
=T (50 = T (Gems)

=,82']I'_1( v v )='82[%e4t_162t]=ﬁ_262t(62t_1)

2(v-4) 2(w-2) 2 2

u,(x,t) =T 1 (0 +— {Z,BeZt £ e?t(e?t — 1)})

(LT - et))) = T (f_ S(G5- ,,L))
=pT! ((v—Z)v(v—6) B (v—2)17(v—4) )
=FT <(4(vv—e) B 4(vv—2)) B (Z(vv—4) B 2<vv—2)) )

[ =30 (o2 e 2ot

3
_ ﬁ:eZt(e“t—Z 2t 4 1) _B Zt(BZt 1)2

4
us(x,t) = %e”(e” - 1)3

Therefore the solution u(x, t) is given by:

B2 B3 Bt
ulx,t) = e* (ﬁ + S (e D+ (e - 1) + (e~ 1)° +)

_ Zﬁezt
24 B(1-e?t)
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2.9. Convergence of the Solution for Linear Case

Now, we need to show the convergence of series form to the exact form for
3D- PDEs.

Lemma2.1 If f be continues function then

a t
= re-var=rw
0

Proof

Suppose that

[f(x)dx =F(x) +c

Assume that x =t — 7 then dx = —dt then

2 —0dr = -2 [? f)dx = = [} f(0)dx = = [F@)[§] =
Z[F(t) = F(0)] = = F(t) == F(0) = f(t)

s0, g fy fE=D)dr=F(©

Lemma 2.2 Let T is new transformation. Then

0

E(T_l {% T {f (X, t)}}) = f(X,t) ,where X = (x,y,2)

Proof

Using properties 2 and 3 of NT, and lemma (2.1), we have:

0

s Ervwol) =5 fromvac) < fo -

FOON) =5 L f O 0) = 2 (fy FO6t = Ddt) = (0
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Theorem 2.1 (Convergence Theorem)

If the series form given in equation (2.6) withp =1, i.e.,

(00]

u(x,y,zt) = Z u,(x,y,z1t) (2.30)

n=0
Is convergent. Then the limit point converges to the exact solution of equation

(2.1), where u, (n=0, 1, ...)are calculated by NTHPM, i.e.,

1 )
uo(x,v,z,t) +u (x,y,z,t) = T1 {f + — T {—R[uo]}} L
u,(x,y,z,t) = -T1 {%T{R [un_l]}} ,n > 1J

Proof

Suppose that equation (2.30) converges to the limit point say as:

(0.0]

w(x,y,zt) = z u,(x,y,21t)

n=0

Now, from right hand side of equation (2.1) we have:

a‘;_‘:: =a % Z;’{’:Oun(x,y,z, t) =« % [uO +u1 +Z;’l°=2un(x,y,z, t)]
a (0]
= ag [T {f 4T {—R[uo]}} DL [T{R[un_ll}]}]
9 (1
= «Z Rl - o ( > [T{R[un]}]})
o 0 1
= 0= Rlug] - Zﬁ (T (S rR ) (231)

By lemma (2.2), the equation (2.31) becomes:
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ow -
a—>= —ER[un] —_R
n=0

Then w(x, v, z, t) satisfies equation (2.1). So, it is exact solution.

(0]
z un] = —RwW = Wy, + Wy, + Wy,
n=0

2.10. Convergence of the Solution for Nonlinear Case

Now, we must prove the convergence of solution of equation (2.13) to the
exact solution when we used the NTHPM, the solution is given in equation

(2.32), where u,,, (=0, 1, ...), are calculated by new transformation, i.e.,

0

ulx,y,zt) = uy(x,y,z,t) +u (x,y,z,t) + - = z u,(x,y,z,t) (2.32)

n=0
uO = f(x' y; Z)
T{R|u,_ A, _
" =—']I“1{ {R[uy 1v]+ n 1}} a1 (2.33)
and A,, (n=0, 1, ...), are defined as
An = un% + un_l % + -+ uO % = 7]2':0 uk al;nz—k (2'34)

Now we proof the convergence in the following theorem.
Theorem 2.2 (Convergence Theorem)

If the series (2.32) which was calculated by NTHPM, is convergent then
the limit point converges to the exact solution for the equation (2.13). Suppose

that the limit point is:

(e0)

w(x,y,z,t) = Z u,(x,y,z1t)

n=0

Now, from left hand side of equation (2.13), we have:
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(0]

0N a0 = 2 uorn0 + Y w0
at ot uy,\x,y, z, ot Ug\X, Y, Z, ] un xX,¥,2Z,
n=

n=0

Ty i ot {T{R [tna] + An_l}}

(%

at

- T{R[u, = T{A,
gy S (TR (14
n=0

n=0

-3 S e

LAf o0 T{R[u, = 9 T{A,}
- G2 T 2 a )] e

n=0
By lemma (2.2) and equation (2.35), we get:

- o- iR[un] —iAn (2.36)

=0 n=0

at

However, from equation (2.34), we have:

n=0 n=0 k=0
du, ou, dug ou, ou, du,
—an +an +ula '|"Lloa +u16 +UZE
N du, N ou, N duy N du, N
Y075, THig, T, Ty,

0z 0z 0z 0z

0z 0z 0z 0z
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0 d d 0
=(u0+U1+UZ+u3+"')(auZO+ u1+ uz-l- u3+"')=

0z 0z 0z

(o) o Oup 0 0 woo
Eioun) (Bio 32) = (Bio n) (= o tn ) (2.37)
Then substitute equation (2.37) in equation (2.36) to obtain:

O o RIEZo0un] — (T un) (2 Tiino tn) = —R[W] — w2

ow 22w 9%w  9%w ow
then 5t = |5+ 55+ 53] —wi

Then w(x, y, z, t) is satisfy equation (2.13). So, its exact solution.
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Chapter Three

Solving System of Partial Differential

Equations by New Couple Method

3.1. Introduction

The system of PDEs arises in many areas of mathematics, engineering
and physical sciences. These systems are too complicated to be solved
exactly so it is still very difficult to get closed-form solutions for most
problems. A vast class of analytical and numerical methods has been
proposed to solve such problems. Such as the ADM [24, 57], VIM [6, 54],
HPM [3, 7, 8, 59], HAM [5] and DTM [28]. But many systems such that
system of high dimensional equations, the required calculations to obtain
its solution in some time may be too complicated. Recently, many powerful

methods have been presented, such as the coupled method [10, 32, 52].

In this chapter, new coupled method based on HPM and new transform
NTHPM, is presented to solve systems of PDEs. The efficiency of the

NTHPM is verified by some examples.
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3.2. Solving System of Nonlinear PDEs by NTHPM

This section consist the procedure of the NTHPM to solve system of
nonlinear PDEs. Firstly, writes the system of nonlinear PDEs as follows:
LluCx,y, )] + R[u(x,y, )] + N[u(x, y, )] = g1(x, ¥, t)

Liw(x,y, Ol + Rlw(x,y, )] + N[w(x, y, )] = g,(x, y,t) (3.1a)
With IC:
ulx,y,0) = f(x,y)

w(x,y,0) = g(x,y) (3.1b)
where all x,yinR,L is a linear differential operator (L =%), Ris a

remained of the linear operator, N is a nonlinear differential operator and
g1(x,y,t), g»(x,y,t) are the nonhomogeneous part.

We construct a homotopy u(x, p): R™"x [0, 1] — R, using the homotopy
perturbation technique which satisfies

Hu(x,y,t),p) = (1 = p)[L(u(x,y, ) — L(ulx, y,0))] + p[A(u(x, y, 1)) -
g1(x,y,)] =0

Hw(x,y,0),p) = A = p)[Lw(x,y,6)) — L(w(x,y, 0))] + p[A(w(x,y,6)) —

g1(x,y, )] =0 (3.2)

Where p € [0,1] is an embedding parameter and the operator A defined as:
A=L+R+N.

Obviously, if p = 0, the system (3.2) becomes:

L(u(x,y,t)) = L(u(x, v, 0)), and L(w(x,y,t)) = L(w(x, v, 0)).
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It is clear that, if p = 1 then the homotopy system (3.2) convert to the main
system (3.1). In topology, this deformation is called homotopic.

Substitute equation (3.1b) in system (3.2) and rewrite it as:

L(u(x,y,t)) = L(f(x,y)) = pL(u(x, y, 1)) + pL(f (x,y)) +
pL(u(x,y,0)) + pR(u(x,y,t)) + pN(u(x,y,t)) — pgs(x,y,t) = 0
Lw(x,y, ) = L(g(x, ) — pL(w(x,y, ) + pL(g(x,y)) +
pL(w(x,y,t)) + pR(w(x,y,t)) + pN(w(x,y,t)) — pgz(x,y,t) = 0
Then

L(u(xy, ) = L(f(x,3) + p[L(f (6, ) + R(u(x,y, 1)) +

N(u(x,y, ) — g1(x,y,t)] = 0

Lw(xy,t) = L(g(x, ) +p[L(g(x,»)) + R(w(x,y, ) +

N(W(x, vy, t)) —g.(x,y, t)] =0 (3.3)
Since f(x,y) and g(x,y) are independent of the variable ¢t and the linear
operator L dependent on t so, L(f(x,¥)) = 0,L(g(x,¥)) = 0, i.e., system
(3.3) becomes:

L(u(x,y, t)) + p[R(u(x,y,t)) + N(u(x,y,t)) — 9:(x,y, )] = 0

L(W(x, y, t)) + p[R(W(x, vy, t)) + N(W(x, Y, t)) — g,(x,y, t)] =0 (34
According to the classical perturbation technique, the solution of system
(3.4) can be written as a power series of embedding parameter p, in the

form:
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w5y, ) = ) phun(xy,0)
n=0

Wy, 0 = ) P 0) (35)
n=0

For most cases, the series form in (3.5) is convergent and the convergent
rate depends on the nonlinear operator N (u(x,y,t)) and N(w(x, y, t)).
Taking the NT (with respect to the variable t) for the system (3.4) to get:
T{L(w)} +p T{R(wW) + N(u) — g1} =0

T{Lw)}+p T{R(W) + N(w) —g,} =0 (3.6)
Now by using the differentiation property of NT and IC in (3.1b), so

system (3.6) becomes:

vT{u} = vf(x,y) + p T{R(W) + N(w) — g1} =0
vT{w} —vg(x,y) + p T{R(W) + N(w) — g} = 0

Hence:

T{u} = f(x,) + p~ T{g; — R(w) — N(w)}

T(w} = g(x,3) +p o Tlg, — ROW) —~ N(w)) (3.7)
By taking the inverse of NT on both sides of system (3.7), to get:

u(xy,t) = f(x,y) +p T {%T{gl(x, 7, t) = R(u(x,y, 1)) = N(ulx,y, t))}}

W(X, Y t) = g(x, J’) + p T {%T{QZ(XI Y t) - R(W(x’ Y t)) - N(W(x' Y t))}} (38)

Then, substitute system (3.5) in system (3.8) to get:
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[ee] 1 [ee] [ee]
Z ptu, =f(x,y) +pT~! {;T {gl(x, y,t) —R (Z p”un> - N (Z p”w)}}
n=0 n=0 n=0
Z p"w, =g(x,y) +pT~! {%T {gz(x, y,t) — R (Z ann> - N (Z p”w)}} (3.9)
n=0 n=0 n=0

The nonlinear part can be decomposed, as will be explained later, by

substituting system (3.5) in it as:

(0]

NG =N (Z P (2., t)) = i p"H
n=0

n=0

0

Nw) = N (Z Wy (X, Y, t)) - i K,
n=0

n=0

Then system (3.9) becomes:

(0] 1 (o) [oe]
z ptu, =f(x,y) +pT! ;T 191(x,y,t) — R <Z p”un> - Z ann}
n=0
[oe) 1 [oe] [00]
Z p"w, =g(x,y) + pT~! {;T‘gz(x, y,t) —R (Z p”w) - Z p"K, } (3.10)
n=0 n=0

n=0
By comparing the coefficient with the same power of p, in both sides of the

system (3.10) we have:
up=f(xy),  wo=gKx)

w =17 £ 7{g, (7,0 = Rwo) — Hol, wi = 17 £ T{g, (03,6 = Rowo) — Ko}

uy = —T {%T{R(ul) + Hl}}, wy, = —T! {iT{R(Wl) + Kl}}

uz = —T* {%T{R(uz) + Hz}}, ws = —T ET{R(WZ) + Kz}}
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_1\1 —
tnir = =T ETRA) + B, waer = =T TR + K]
According to the series solution in system (3.5), when at p=1 we can get
U(X,y, t) = uO(xJ Y, t) + ul(xJ Y t) + = Z%;O un(xly' t)

W(X,y, t) = Wo(x,y, t) + Wl(x,y, t) + o= Z;?:O Wn(xryr t)
3.3. Hlustrative Examples for System of 1D-PDEs

In this section, the NTHPM can be used to solve system of 1D,

nonlinear PDEs.

Example 3.1 [7]

Consider the following system of 1D, nonhomogeneous nonlinear PDEs.

du 6u+ ow 1+ e¥ sin(t
o Wat uat— e” sin(t)

ow Jdudw JOwou

Ty T T 1 _pX
gx Totax oo L€ cos(®)

Subjectto IC:  u(0,t) = sin(t) , w(0,t) = cos(t)

Uy = sin(t) ) wo = cos(t)

=T1 ']1‘{ Po _ 1y 20 _ 1 4 e t}
u; = ST iwo—, Ug PR e” sin(t)

=T {% T{e* sin(t)}}

=Tt {% * v;iil(lt)} = sin(¢t)T™! {% o 1} = e*sin(t) — sin(t)
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1 ouy 0w ow, du
_ e )t OUgOWp  OWoOUy
wp =T { T{ ot 0x ot Ox 1—e cos(t)}}

=T1 {% T{—-1—e™* cos(t)}}

=T"1 {—% — ;(:]O—j_(%} = —x + cos(t) T! {v_—:l + 1}

= —x + e ¥ cos(t) — cos(t)

_ -1 1'11‘{( au0+ 6u1> 6W0+ ow, }
Y2 = Y15 TV gy (s Fra at)

_T_l{—z 1 N 1 cos(t)}
B v v—1 v+1 2

(2 v % cos(t)
=T~ {—+ -1- +1- }
v v-—1 v+1 V2

xZ

=—-2t+eX¥—e™* —5cos(t)

1 ou, 0wy Ouy 0wy ow; 0uy  0dwy duy
— _Tm—1)_
wp =T {vT{ ot ax ot a2’ TGt ax T o 6x}

=T! {% T{— cos(t) — e™ cos?(t) — e* Sinz(t)}}

R cos(t) wcos?(t) wvsin?(t)
T {_ v _v(v+1)_v(v—1)}
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—v
(v+1)

_ -1 {coi (t)

+ cos?(t) ( + 1) + sin?(t) ((v i D~ 1)}

= x cos(t) — e ™ cos?(t) + cos?(t) + e* sin?(t) — sin?(t)
= x cos(t) — e ™ cos?(t) + e* sin?(t) + cos(2t)
and so on, therefore
u(x, t) = Yoo Un(x, t) = sin(t) + e* sin(t) — sin(t) + --- = e* sin(t)

w(x, t) = Yoo wn(x, t) = cos(t) + e ¥ cos(t) —cos(t) —x + - =

e cos(t)
This is the exact solution.

Example 3.2 [3]

Consider a system of 1D, 3'Y order nonlinear KdV equations (typel).

ou d3%u ou ow 0
at  9x3 dx ax
ow = d3u ow

—+ — — =0

at T 0x3 T 5]

Subject to IC: u(x, 0) = 3 — 6 tanh? (E) , w(x,0) = —3iv/2 tanh? (g)
We have the following terms:
0. _ a2 _ 2 (% 0. — i 2 (X
p”:uy(x,t) =3 — 6tanh (2), p%:wy(x,t) = —3iv2 tanh (2)
1)1 (03 G} a
e e |
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_ 1
w =T {;']1‘{(—6 tanh S )sech?(3) + 12 tanh(%) sech*(3)) + (~18 tanh(2) sech?(5) +

36 tanh3(’2—c)sech2(§)) + (—18 tanh3 (g) sechz(g))}}
=T 1T{12t h3(%) sech?(2) + 12 tanh(%) sech*(=
U = = an (2) sec (2) an (2) sec (2)

x x
—18 tanh(i )sech? (E)}}

=111 x 20Xy _ ad 2(%
—T {U'II‘{lz tanh(3) sech?(%) — 18 tanh)sech (2)}}
= (—6 tanh (g) sech? (g)) t
1 (03u, ow,
1., — _m—=1)_ il
P wq T {vr]r{ax3 +u0 Ox }}

Wy = —T-1 {%'H‘{(—&\/f tanh? &)sech?(Z) +12iVZ tanh(3) sech*(D) ) +

(—9ivZ tanh(3) sech? () + 18iv2 tanh? (g)sechz(’z—‘))}}
w, = —T! {%']I‘ {121’\/7 tanh3(§) sechz(g) + 12iV2 tanh(g) sech“(g) —
9iv2 tanh(’z—c)sech2 (g)}}

=-T1 {lqr {12ivZ tanh(3) sech?(3) — 9iv2 tanh(f)sechz(f)}}

v 2 2 2 2
. X X

= (—31\/5 tanh (E) sech? (E)) t

and so on, therefore
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u = 3 — 6tanh? (g) — (6 tanh (g) sech? (g)) t4

w = —3iv/2 tanh? (g) - (3i\/§ tanh (g) sech? (g)) Et e

The above series closed to exact solution:
u = 3 — 6tanh? (x+t) ) = —3iy/2 tanh? (x+t)

Example 3.3 [3]

Consider a system of 1D, 3" order nonlinear KdV equations (type 2).

ou 9d3u ow

a——axa—z o Uax =0
ow ou

Z_uZ=0

at ox

Subject to ICs: u(x,0) = —tanh (\7—5) , w(x,0) = _g - —t nh? («/5)

Now, we solve the system by using our suggested method to get:

O:uy(x, t) = —tanh(i) %:wy(x, t) = —l—ltanh2<x>
p' 0 ) \/§ ’p' 0 4 6 2 \/§

Ly, =T 111‘ o 2% 4 ow Oikg +u IWo
pith = 9x? 05x T M0 o

= ’ﬂ"‘l{i'ﬂ‘{(—g_tanhz( =)sech?(5) + 2= sech®( ﬁ)) (?sechz( =)+

ﬁ_tanhz(ﬁ)sechz(\;{—g)) (\/—_tanh2 (\/_) sechz(@))}}
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u;, =T 1 l'ﬂ‘{i tanh? (i) sechz(i) + isech‘*(i
v (343 V3 YEEYE] V3

_|_L hzi}
3\/gsec (\/§

= T-1 ET{? sechz(\/_) + —sechz(ﬁ)}}

= (Gseek? (35))

w; = —T1 {%']1‘ {(% tanh <%> sechz(% )}}
= (Ltanh(i) sechz(i ) t

V3 V3 V3

and so on, therefore

u = —tanh (%) + (\% sech? (\%)) t4

1 1 X 1 x x
W= - Etanh2 <\/§> + (Etanh(\/—g) sechz(\/—§ )t + o

The above series closed to exact solution:

—t+x 1 1 —t+x
u= —tanh( ) , W= ————tanh? (—)
V3

6 2
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3.4. lllustrative Examples for System of 2D-PDEs

In this section, the NTHPM will be used to solve system of 2D,

nonlinear PDEs.

Example 3.4 [7]

Consider the following system of 2D, nonhomogeneous nonlinear PDEs.

ou Ju Jdwou

ow ow 6u6w_1 .
ot “ox atay 7

Subject to ICs:

fr,y) =ulxy,0)=x+y—-1, gl,y) =wkx,y 0 =x—-y+1

_ dulx.yt)

L[U(X,y,t)] _T ) R[u(x'y't)] :01
du ow du

N[u(x,y,t)]:—wa—ga , gy, t)=1—x+y+t

N[W(x,y,t)]z—ua—w—a—ua—w , g,yt)=1—x—y—t

Also, compute the nonlinear of N(w) to get:

oW oo oUW _ oo
UGy = Zn=oKam @w) 5070 = Inzo Kgmy (W)
_ auo _ aWO auo
He0) = wo 7 v Heo =307
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auO aul _ an 6u0 6W0 6u1
Hey = wyi—= ax + Woor He,y = at dy ot ay
And so on
6WO duy 0w,
K =u , K = —
(1,0) ° 9x (2,0) Jat dy
adwy ow, du, 0wy  Ouy 0wy

K = , K =
1y =t g - T @D ™ 3¢ ay T dy

And so on.
Moreover, we have the sequence of u, , w, as:

Ug=x+y—-1, wy=x—-y+1

1 ou ow, du
']I'{ 0 0 dUp

=']I‘_1— 1-— }
W { L e T x+y+t}

S S LI ¢
=T {v’]l‘{2+t}}—’]I‘ {v+v2}—2t+

1 u u ow,; du ow, 0u
1)t 0 1 10Uy o 0Uyq
T {vT{(Wl ax T Y S5 5 T o oy }}

-t gl oa- 252
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_ -1 1'11‘{ 6W0+ owy N 6u16W0+6u06W1}
Wz = % (s ox U0 ax) Jdt dy Jdt ady

Y L t? e 2,1 Ny t?> 3
= ; — +t+z = {——+—+v—}—— t+z+§

"y = T {—']I‘{ dug +w, ou, +wg ou, ow, duy, O0w;0u; 0J0wydu, }}

w23 o o) T G 3y o oy T o oy

=T1 11r 2 t+t2+t3 —']1“1{ 2 1+2+1}
B v 3 v vz p3 vt

t2 t3 t*
=—2t—z+§+a

awy
0x

1
+u +u
1ax 0

1 aw, Ju, 0w, 0duy; 0wy Jduy 0w,
i |
Ws {v (, o Y Sy T oy T oy

B T TR TR
tZ 3 t4 t5
) g T
Wy =2t—or=o+ oty
Qe — e —
Us T T3 12760 T
A R
Ws= Tt T e

tZ2 t3 t* > t¢ t7
Yo =TTt 12 %0 6 T
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t2 5t3 t* 5 6 7

T T VAT R T

And so on. Therefore

2 tZ t3

0o t
u(x’y’t)zz:n:Oun(xlth)=x+y_1+2t+z—z—;—2t—
—+—+—=—+-=x+y+t—-1

. t2 tz2 t3  t? ot
w(x,y,t) = LnzoWn (X, Y, ) =x—y+1———2t+ -+ -+ ——+

This is the exact solution.
Example 3.5 [22]

Consider the following 2D, nonlinear system of Burgers' equations

ou ou ou 1 (0%u  d%u

—tu—Ftw—=—-|—+—), 3.11
ot T 0x T dy R (axz T 6y2) ( )
ow ow ow 92w . 9%w

a TUR TV = (5 a—yz)’

Subiject to the ICs:
u(x,y,0)=x+y, wx,y,00=x—y ;(x,y,t) € R? X [O,iz).

To solve equation (3.11) by using NTHPM, we construct the following

homotopy
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at ox dy R \9x%2 0y2?

2 2
H(u,p) :(1_p)(¢;_1;_%)+p<a_u+ua_u+wa_u_l(a_u+a_u)> =0

w  dwg ow 1 (0%w  d%w\\ _
H(Wp)_(l_p)(at 6t)+p<_+ ax+W5_E(_+ )>_0

dx?2 dy?2

Or equivalent:

du _ dug ( ou ou 1 (azu azu) auo)
ot ot P u6x+W6y R toz) T

Applying NT on both sides of above system, to get:

T{au}_T ou, au+ ou 1[0%u azu +6u0
ot~ |oc “ax TVWay TR\ax2 Ty2) T o

{2 (2 g 2 LTy 20 dwe))
_T{at pu6x+W6y x\oz T t

dy? at

Now by using the differentiation property of NT we obtain:

) o (120 2L (F, 000y o))
v’]I‘{u}—Uu(X,y.O)+T{at p uax+Way R ax2+6y2 LT

vT{w} = vw(x,,0) + T{Z2 - p (uZ +w a_W_%(f;ZTV:JraaZTva)JF%)}

By applying inverse of NT we have:

at

u(x,y,t) = u(x, }’;0)+T_1{1T{au° p(ua—u+wa_u_(az_u+32u)+%)}}

w(x,y,t) =w(x,y,0)+T" {T{a;;o p(uz—:+wa—w—(%+y—w)+%)}} (3.12)
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Suppose the series solution has the form:
u= uO +pu1 +p2u2 + ---

Substituting the system (3.12) into the system (3.13) and comparing

coefficients of the terms with the identical powers of p, this lead to

(1, (0
uo(x,y,t) = u(x,y,0) + T {;T{%}}

p =
wo(x,y,t) =w(x,y,0) + T ! ET{%}}

( 11 ou ou ou 0%u 0%u
J w(x,y,t)=T 1{;T{—a—t°— Uo Sy ~ ”Oa_yo+ (axzo + 6y20)}
1

p =
I =141 {_%_ wo _ .\, o (HZWO 62Wo)}
kWI(x’y, t)=T {UT e " Mo, ~Wo, +(52 t 72
( 1 ou, ou, ou, oug (0%u; 0%y,
=T_1 —TA< - - _— _ -
2 % uy(x,y,t) [v { Up 5~~~ Wo 3y 2 3y +<6x2 + 377 >}
p =

.y, 0) = T 1 T ow, aw, ow, owy  [0%w, N 92w,
kWZ X, y, - v uO ax ul ax WO ay Wl ay axz ay2

And so on, we have

j-1
_ 1 auj_k_l Ouj_k_l Ozuj_l azu]'_l i
vrrent l{vT{k 0<_uk ax T oy oz 0y? S =12
1 = ow, ow 0w 0%w
e j—k—1 j—k—1 /-1 /j-1 .
wi(x,y,t) =T 1 ;']]" 2 (—uk F wy, 3y ) + < 9x + 3y7 > ,Jj=12,..

From above system, we obtain the following recurrent relations:
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j-1
1 OU;_p— OU;_j— 0%u;_, 0%u;_
. —T-1]= _ j—k-1 j—k-1 j—1 j-1
w(x,y,t) =T <UT{ ( U —gr— ~ Wk gy >+< 5 oy >}

aW] k—1 —w aWj_k_l N aZWj_1+aZWj_1
oy dx? dy?

p—l

Jj-

)1
wi(x,y,t) =T <;']I‘{
k=0

Starting with
u0=x+y ,W0=X—y

Then we get the following results:

_m—1)1mf dug - dup oug (azuo azuo)}
ul(x'y't) =T {vT{ ot o ox Wo oy + 0x2 t dy?

0 - ) (D) = (= ) (D) + 0} —T‘l{—z—x}——th
=T y y = =

_ 1)l Owe . Owp owy (62W0 azwo)}
Wl(x'y't) =T {VT{ ot o ox Wo oy + 0x2 t dy?

Wy = T-1 {iqr{o YA = (x—y)(=1) + 0}} =1 (-2} = 2y

—m-1)lmf_ . Ou1 . OUp
u,(x,y,t) =T {UT{ Up—— — Uy Woay

u; =T} {%T{—(x +y)(=2t) — (=2xt)(1) — (x = ¥)(0) = (=2y5) (D) + 0}}

{4_96 4_Y}

v2  p?

1
=T {;']I‘{th + 2yt + 2xt + Zyt}} =T~

= 2xt? + 2yt?
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1 an aWO an aWO azwl azwl
£) =T 1]=T]— - - -
w2(%,y,6) {v { YoTgx TG T W0 oy e oy + 0x2 + 0y?

1
wy =T7! {; T{—(x + y)(0) — (=2xt)(1) — (x —y)(=28) — (=2yt)(-D) + 0}}

4x 4y

1
=T 1 {;']I‘{th + 2xt — 2yt — Zyt}} =T {; — ﬁ}

= 2xt? — 2yt?
uz; = T1 {% T{—(x + y)(2t%) — (—2xt)(—2t) — (2xt? + 2yt?)(1) — (x — y)(2t?)

— (=2yt)(0) — (2xt? — 2yt®)(1) + O}}

1
=T ! {; T{—2xt? — 2yt? — 4xt? — 2xt? — 2yt? — 2xt? + 2yt? — 2xt? + Zytz}}

1 —24x
=T1 {;']I‘{—letZ}} = T‘l{ — } = —4xt3

wsy =T {%T{—(X +y)(2t?) — (=2xt)(0) — (2xt* + 2yt?)(1) — (x — y)(—2t?)

— (=2yt)(=2t) — 2xt? — 2yt?)(—-1) + 0}}

=T1 {% T{—2xt? — 2yt? — 2xt? — 2yt? + 2xt? — 2yt? — 4yt? + 2xt? — 2yt2}}

= —4yt3

—24y}

=T 1 1']T 12yt2}; =T71
B {; = yt}}— {v3
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U, = T-1 {%'H‘{—(x + ) (=4t — (=2xt) (262) — (2xt% + 2yt2) (=2t) —
(~4xt)(1) - (2 = Y)(0) - (~2y) (2t = (2xt? = 2712)(0) — (~2yt) (D} =
T-1 {% T{4xt3 + 4yt3 + 4xt3 + 4xt3 + 4yt3 + 4xt3 + 4yt3 + 4yt3}} =

-1\1 _1 (96x 96y
T-1 {;’ﬂ“{16xt3 + 16yt3}} =1 {7» + v—4} = 4xt* + 4yt

w, =T {% T{—(x + y)(0) — (—2xt)(2t?) — (2xt? + 2yt?)(0) — (—4xt3)(1) —

(x — y)(—4t3) = (=2yt)(—2t?) — (2xt* — 2yt*)(=2t) — (—4yt3)(—1)}}

=T ! {% T{4xt3 + 4xt3 + 4xt3 — 4yt3 — 4yt3 + 4xt3 — 4yt3 — 4yt3}} =

9%6x 96y
o gt

T-1 {%’]1"{16xt3 - 16yt3}} - T—l{ } = dxtt — 4yet

Ug = —8xt5 ) Wg = —8yt5
ug = 8xt® + 8yt®,  wg = 8xt® — 8yt®

And so on, the solution of the system (3.11) can be obtained by setting p =

1,1.e.,

u(x,y, t) = lirqun(x,y,t) =Uy+ U +U; + U3+ Uy +Us +Ug +
p—)

u(x,y,t) = x +y — 2xt + 2xt? + 2yt? — 4xt3 + 4xt* + 4yt* — 8xt> + 8xt® + 8yt®
u(x,y,t) = (x+y)(1 +2t% + 4t* + 8t® + ---) — 2xt(1 + 2t + 4t* + 8t° + --+)

x+y 2xt x+y—2xt
wWry D =T E T T 1o
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Also by similar way, we get:

w(x,y,t) = lirrivn(x,y,t) =wo+w;+wy +ws+w, +wg+wg + -
p—)

w(x,y,t) =x —y — 2yt + 2xt? — 2yt? — 4yt3 + 4xt* — 4yt* — 8yt> + 8xt® — 8yt®
w(x,y,t) = (x —y)(1 + 2t + 4t* + 8t® + ) — 2yt (1 + 2t* + 4t* + 8t° + --+)

xX—y 2yt x—y—2yt
AC A R v A W v A ¥S.

3.5. Solving System for 3Equations Nonlinear 1D-PDEs

In this section, the procedure of NTHPM will be used to solve system
of 1D, for 3 equations nonlinear PDEs.
Firstly the system is written as follows:
Llu(x,y, )] + R[u(x,y, )] + N[u(x, y, )] = g1(x, ¥, t)
Liw(x,y, )] + Rlw(x,y, )] + Nlw(x,y, )] = g2 (x, y, t) (3.14)
Llz(x,y, )] + R[z(x,y, )] + N[z(x,y, )] = g3(x, ¥, 1)
Subject to IC:
ulx,y,0) = f(x,y)
w(x,y,0) = g(x,y)
z(x,y,0) = h(x,y)
Where all x,y € R,L is a linear differential operator (L = %), Ris a

remained of the linear operator; N is a nonlinear differential operator and
91, 92, g3 1S the nonhomogeneous part.
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We construct a homotopy as: u(x, p): R"x [0, 1] —R,

Hy(u(x,y,6),p) = (1 — p)[L(u(x,y, 1)) — L(u(x,y,0))] + p[A(u(x,y, 1)) — g (x, ¥, t)] =

0

Hy(w(x,y,t),p) = (1 — p)[L(w(x,y,t)) — L(w(x,y,0))] + p[A(w(x,y,1)) — g2(x, ¥, 0)] =

0
H3(z(x,y,t),p) = (1 = )[L(z(x,y,8)) = L(2(x,y,0))] + p[A(z(x,y,t)) — g3 (%, ¥, )] = 0
Where p € [0,1] is an embedding parameter and the operator A defined as:
A=L+R+N.

Obviously, if p = 0, then the above system becomes

L(u(x,y,t)) = L(u(x,y,0)), L(w(x,y,t)) = L(w(x,¥,0)) and L(z(x, y, t)) = L(z(x,,0)).
Substitute ICs in above system and rewrite it as:

L(uCx,y,0) = L(f(x,3)) — pL(u(x,y, ) + pL(f (x,3)) + pL(u(x,y, 1)) +
pR(u(x,y,0)) + pN(u(x,y,1)) = pgi(x,y,t) = 0

Lw(xy,0) = L(g(x,y) —pL(w(x,y,8)) + pL(g(x, ) + pL(w(x,y,1)) +
pR(w(x,y,8)) + pN(w(x, y,8)) — pg2(x,y,t) = 0

L(z(x,y,t)) = L(h(x,¥)) — pL(z(x,y,t)) + pL(h(x,y)) + pL(z(x,y,0)) +
pR(z(x,y,t)) + pN(z(x,y,1)) — pgs(x,y,t) = 0

Then

L(u(x,y,)) = L(f (6, ) + p[L(f(x,3)) + R(u(x, y, £)) + N(u(x, ,1)) —
91(x,y,0)] =0

Lw(x,y,t)) = L(gCe,») +p[L(g(x,¥) + R(w(x,y,0)) + N(w(x,y,0)) -

g2(x,y, )] =0 (3.15)
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L(z(x,y,6)) = L(h(x,)) + p[L(h(x,y)) + R(z(x,y,t)) + N(z(x, y,t)) —
gs(x,y,0)] = 0

Since f(x,v),g(x,y) and h(x,y) are independent of the variable t and the
linear operator L dependent on t so, L(f(x,¥)) = 0,L(g(x,y)) = 0, and

L(h(x,y)) = 0; i.e., the system (3.15) becomes:

Lu(x,y,t)) + p[R(u(x,y,t)) + N(u(x,y,t)) — g1 (x,y, )] = 0
Lw(x,y,0)) + p[R(w(x,y,£)) + N(w(x, ¥, 1)) — g2(x,y, )] = 0
L(z(x,y,t)) + pIR(z(x, ¥, 1)) + N(z(x,y,1)) — gs(x,y, )| = 0 (3.16)
According to the classical perturbation technique, the solution of the above
system can be written as a power series of embedding parameter p, as the

form

(ee)

w5y, = ) phun(xy,0)

n=0

(ee)

w(x,y,t) = Z p"wy(x,y,t) (3.17)

n=0

206,7,6) = ) P (.0
n=0

For most cases, the series form in (3.17) is convergent and the convergent
rate depends on the nonlinear operator.

Taking the NT (with respect to the variable t) for the system (3.16) to get:
T{L(W)} +p T{R(wW) + N(w) —g} =0

T{LW)}+p T{R(W) + N(w) —g} =0 (3.18)
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T{L(2)} +p T{R(2) + N(2) — g} =0

Now by using the differentiation property of NT and IC, the above system
becomes:

vT{u} —vf(x,y) + p T{IRW) + N(w) — g1} = 0

vT{w} —vg(x,y) + p TIRW) + N(w) — g} =0

vT{z} — vh(x,y) + p T{R(z) + N(z) — g3} =0

Hence:

T{u} = f(x,) + p=T{g; — R(w) — N(w)}

T{w} = g(x,y) +p=T{g, — R(W) — N(w)}

1
T{z} = h(x,y) + p_T{gs — R(2) - N(2)}
By taking the inverse of new transform on both sides of the above system,
to get:

u(nyf t) = f(x’J’) + p T_l {%T{g1(x»y, t) - R(u(x'y' t)) - N(u(x:)’» t))}}

W(X,y, t) = g(x’J’) +p T ET{QZ(X»J’J) - R(W(x:% t)) -

N(wCsy,0)} (3.19)

1
z(x,y,t) = h(x,y) +p T {; T{gs(x,y,t) — R(z(x,y,)) — N(z(x,y, t))}}

Then, substitute system (3.17) in the system (3.19) to get:

(e} 1 [ee] [ee]
z ptu, =f(x,y) + pT~* {;T {gl(x, y,t)—R <Z p”un> - N (Z p”w)}}
n=0 n=0

n=0

(00} 1 o] (00}
Z = g(x,y) +pT! { T {gz(x,y, 5 —R(Ep wn> (Zp w)}} (3:20)

n=0
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(e} 1 [ee] [o¢]
Z p"z, =h(x,y) + pT~* {;T {gg (x,y,t) — R (Z pnzn> -N (Z pnzn)}}
n=0 n=0 n=0

The nonlinear part can be decomposed, as will be explained later, by

substituting system (3.17) in it as:

N@) =N (i P un(x,y, t)) = i p"Hy
n=0

n=0
Nw) =N (i pwn(x,y, t)) = i p"Ky
n=0 n=0
N(z)=N (i P"zn(x,y, t)) = i P"n
n=0 n=0

Then the system (3.20) becomes:

oo

Z P"uy, = f(x,y) + pT~! {%T {gl(x. y,t) =R (i p”un> - i ann}}

n=0 n=0 =0

[0/0) 1 [o/e) 0
Z p'w, =g(x,y) +pT™? {;T {92 (x,y,t) — R <Z p”w) - Z ann}} (3.21)
n=0 n=0 n=0
[0/0) 1 (o] [o/e)
Z p"z, =h(x,y) + pT~* {;T {gg (x,y,t) —R (Z pnzn> - Z p"]n}}
n=0 n=0 n=0

By comparing the coefficient with the same power of p, in both sides of the

system (3.21) we have:

uOZf(ny)l Wozg(x»)’)» Zozh(x»y)

u = T {1 T{g: (5, 7,6) = Riuwo) — Ho3l,
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1
w; =T " {;']I‘{gz(x, y,t) — R(wg) — Ko}}

1
Z1 = T! {;T{gi%(x'yJ t) - R(ZO) _]0}}

STRGw) + H},

wy = T TR + 1)
o= T TG + 1)
= 1 (R + )

ws = —T1 {%T{R(Wz) + KZ}}

73 = ~T7 L TR () + 1)

And so on, therefor
Upt1 = _T_l {i T{R(un) + Hn}}

Wnsr = =T ETR ) + K}

Znt+1 = T {% T{R(Zn) +]n}}

According to the series solution in system (3.17), when at p=1, we can get:

[00]

U(X,y, t) = uO(x'yi t) +u1(x'y' t) + o= z un(xry' t)

n=0
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W(X,y, t) = Wo(x,y, t) + Wl(x,y, t) + = Z Wn(xryl t)
n=0

[00]

Z(X,y, t) = ZO(ny' t) +Z1(X,y, t) + = Zzn(xryi t)

n=0

Example 3.6 [7]

Consider the following nonlinear system of inhomogeneous PDEs.

ou 0dzow 10z0%u

_______ — =4
ot “oaxac 20taxz o

ow 0z0*u _ o

ot ot ox?

0z 0%u 6W62_4 P

ot ox? oxot

Subject to the ICs:

u(x,0)=x?+1 , w(x0)=x*>-1 ,  z(x,0)=x%2-1
Ug(x,0) =x2+1, we(x,0)=x>—-1 , zy(x,0)=x%—-1

1 (dzy0w, 10z,0%u 1
e 00Wo 10z 0o 1) e
u, =T {UT{ax 5% +2 5t 9.2 4xt}} T {v']I‘{ 4xt}}

—4x
= ']I“l{ — } = —2xt?

1 0z, 0%u 1 6
=T 1]=— —0 0 =T 1]= =T 1)—_{ = 2
wy =T {v'ﬂ‘{( ot 6t>}} T {v ’]I‘{6t}} T {vz} 3t
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_ [0  W00Z0 L o
1= v dx? Ox Ot x

1 4x 2
=Tt {;']I‘{élxt - Zt}} =T 1! {— — —} = 2xt? — t?

v p?

1 0z, 0w, 0z, 0w 1 0z, 0%u, 0zy,0%u
— 1) 1 0 0 1 = 1 0 0 1
uz =T {UT{ ax ot | ox at’ 29t oxz T ot ox? }}

1 16x 2
=T {=T{l6xt — 2t} =T {—2 - —2} = 8xt? — t?
v v v
_ 1 T 0z, 0%u, N 029 0%uy )| _ -1 1 T{Bxt — 46)
W2 = v |at ax2 = at ax? || X
8x 4
L PR

v: v

1 0%u, 0w, 0z, 0w,y0z,
—m-1)_
=T {vT{<ax2 tox e Y ox ot
1
=Tt {; T{8x2t — 4xt}}

8x% 4x
_ 71 {_2__2} _ 4x2t2 22
v v

u; = 3t* — 6xt? + 12xt?
wy = 8x2t? — 4xt?
z3 = 8x3t% — 4x?t?

u, = —5t* + 16xt* + 24x3t% — 12x?t?
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w, = 16x3t% — 8x2t?

z, = 8t3 + 4xt* — 2t* + 16x*t? — 8x3t?

us = 60x%t* — 10t* + 48x*t% — 24x3t% + 8¢t3

ws = 16t3 + 32xt* — 16t* + 32x*t? — 16x3t?

Zs = 64xt3 — 8t3 — 32x2%t* — 16xt* + 2t* + 32x5t? — 16x*t?
And so on, thus

u(x, t) = Yo ou,(x,t) = x2 + 1 — 2xt? + 8xt? — t? + 3t* — 6xt? +
12x%t2 —5t* 4+ . =x2 —t? +1

w(x, t) = X owy(x, t) = x2 — 1+ 3t% + 4xt? — 2t% + 8x2t? —
4xt? + - =x*+t* -1

z(x,t) = Yooz (x, t) = x% — 1+ 2xt? — t% + 4x%t? — 2xt% +

8x3t? —4x%t? + - =x%—-t*—-1

Example 3.7 [3]

Consider the generalized coupled Hirota Satsuma KdV type II.

ou 103u

——=-—+43u ——3 wz) =0
ot 20x 3+ ( )
ow  d3u ow
—+——3u—=20

at+ax3 0

9z = 03z 0z
—+——-3u—=290

6t+6x3 ox
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Subject to IC:

u(x,0) = —é + 2 tanh?(x), w(x,0) = tanh(x), z(x,0) = gtanh(x)

v 2 0x3 0x

1)1, (103 ) G}
p11u1 =’]I‘ 1{_']1‘{_ u0_3u0 u0+3£(WOZO)}}

=T1 {% T {(8 tanh3(x )sech?(x) — 16 tanh(x) sech*( x)) + (4 tanh(x) sech?(x) —

24 tanh3(x )sech?(x)) + (16 tanh(x) sechz(g))}}
1
u; = T71 {; T{—16 tanh3(x) sech?( x) + 20 tanh( x) sech?( x)
— 16 tanh(x )sech* (x)}}

=T1 {% T{—16 tanh(x) sech?( x) + 20 tanh(x )sech? (x)}}

= (4 tanh(x) sech?(x))t

1., —m-1)1m(_ 29U awy
piw; =T {v']I‘{ ax3+3u0 6x}}

=-T1 {% T{(—4 tanh?(x )sech?(x) + 2 sech*(x)) + (—sech?(x) +

6 tanh? (x )sech?( x))}}

w; = —T1 {% T{2 tanh?(x) sech?(x) + 2 sech*(x) — sechz(x)}}
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= -t {% T{2 sech?(x) — sechz(x)}} = (sech?(x))t

1. _ -1 1 632 62
ptiz; =T {;']I‘{— 6x30 + 3u, a—x"}}
z, =T {%T{(—%tanhz(x)sechz(x) + 2 sech4(x)) +

3

(— g sech?(x) + % tanh?(x )sech?( x))}}
z; = =T {% T {? tanh?(x) sech?(x) + ? sech*(x) — gsech2 (x)}}

_ _m-1)1mf16 2 _8 2 _ (8 2
=T {v']I‘{ ; sech?(x) ; sech (x)}} = (3 sech (x)) t
And so on, so
1
u=-z + 2 tanh?(x) + (4 tanh(x) sech?(x))t + .........
w = tanh(x) + (sech?(x))t + .........
8 8
zZ = §tanh(x) + (§ sech? (x)) t+ o

The above series closed to exact solution as

u=—tanh(t +x), w= —%—%tanhz(t +x), z= gtanh(t + x)
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3.6. Convergence for the Series Solution

In this section the convergence of NTHPM for systems of nonlinear
PDEs is presented. The sufficient condition for convergence of the
method is addressed. Since mathematical modeling of numerous
scientific and engineering experiments lead to system of equations, it is
worth trying new methods to solve these systems. Here we show the

series solution for systems of previous sections closed to exact solution.
Definition 3.1 [33]

A Banach space is a complete, normed, vector space.
All norms on a finite-dimensional vector space are equivalent. Every finite-
dimensional normed space over R or C is a Banach space [50].
Definition 3.2 [34]

Let X isasetand let f: X — X be a function that maps X into itself. Such
a function is often called an operator. A fixed point of f is an element x €

X, for which f(x) = x..
Definition 3.3 [34]

Let (X,d) be a metric space. A mapping T : X — X is a contraction

mapping, or contraction, if there exists a constant ¢, with 0 < ¢ < 1, such

that d(T(x), T(y)) < cd(x,y), V x,y €X.
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Theorem 3.1 [46]

A contractive function T on a Banach space S has a unique fixed point

x* in R2, see [46]

Theorem 3.2 (Sufficient Condition of Convergence)

If X and Y are Banach spaces and N : X — Y is a contractive nonlinear

mapping, that is
Vw,w eX; [[NwW) = NWw)H| <yllw-w'],0<y<1.

Then according to Banach's fixed-point theorem, N has a unique fixed-

point u, thatis N(u) = u.

Assume that the sequence generated by NTHPM can be written as:

And suppose that W, =w, € B,(w) where B.(w) = {w"* € X| |[w* —
w|| < r}, then we have

WTL E BT‘(W))

lim W, =w

n—-oo

Proof

(1) By inductive approach, for n = 1, we have

Wy —wll = [INWp) = NW)I| < yllw, —wl|
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Assume that  ||W,—; — w|| < yllw,—1 — W]

<¥:lwp_ —wll

<¥’llwp_s —wll

<y Hiwe —wll
As induction hypothesis, then
IWh —wll = [[IN(Wp,—1) = NW)I| < yllwp—1 —wll < y"llwe — wl|
Using (i), we have
W, —w|| < y™*lwyg —w| <y™r <r = W, € B.(w)

Because of [|W,, — w|| < y"|lw, — w|| and
lim y™ =0, lim||W,, —w|| =0,
n-co n-co
that is

lim W, =w

n—>00
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Chapter Four
Application Model

4.1. Introduction

To illustrate the importance of suggested method, we use it to solve
soil moisture equation that is equation describe rate of moisture content in
soil. The term moisture content is used in hydrogeology, soil sciences and
soil Mechanics. Here a model of moisture content is derived and used to
build up the one, two and three dimensional space 2" order nonlinear
homogenous PDE. Then NTHPM is used to solve this equation. The
derivation of formulation model is illustrated in section 4.2. Basic idea
for suggested method that be used to solve the model equation is
introduced in section 4.3. Illustrating applicability is presented in section

4.4. While a convergence of the solution is proved in section 4.5.

4.2. Formulation Mathematical Model [22]

Moisture content is the quantity of water contained in a soil called soil
moisture. The saturated zone is one in which the space is occupied by
water. In the unsaturated zone only part of the space is occupied by water.

There is no moisture in the dry soil, so the value of moisture content is

1 when the porous medium is fully saturated by water and its value is 0 in
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the unsaturated porous medium. So, the range of moisture content is [0,
1]. The region of the unsaturated soil is called as unsaturated zone. In
typical soil profiles some distance separates the earth’s surface from the
water table, which is the upper limit of completely water-saturated soil. In
this inverting zone the water saturation varies between 0 and 1 the rest of
the pore space normally being occupied by air. Water flow in this
unsaturated zone is complicated by the fact that the soil’s permeability to
water depends on its water saturation. In many practical situations the
flow of water through soil is unsteady because the moisture content
changes as a function of time and it is slightly saturated because all the
spaces are not completely filed with flowing liquid.

In the formulation model, we assume that the diffusivity coefficient
will be small enough constant and regarded as a perturbation parameter
because of they are equivalent to their average value over the whole range
of moisture content. Additionally, the permeability of the medium is
varied directly to the square of the moisture content.

Darcy’s law gives the motion of water in the isotropic homogeneous
medium as:

V=—KVQ (4.1)
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Where V is volume flux of moisture content, K is coefficients of aqueous

the conductivity, ¢ is a total moisture potential and V is the gradient,

. i) a 0
le, V= (a, E, E)

In any unsaturated porous media, continuity equation governs the motion

of water flow given as (depending on [23]):

d(psO)
ot

—V.M (4.2)

where ps : bulk density for medium on dry weight basis, & : the moisture
content in any position (X, y, z) on a dry weight basis, and M : mass of
flux for moisture in any t > 0.

From (4.1) and (4.2) we get:

a(g_:e) = V.M =—V.(p.V) = V.(p.K.V) (4.3)

Where p indicate the flux density of the medium.
Now, depending on [21] we have ¢ = 1 — gz . Hence,

d(psb)
at

=V.(p. K.V — gz)) (4.4)
Where  indicates the pressure (capillary) potential, g is the gravitation
constant, z is an elevation of the unit of mass for water above a consistent

datum (which is the level of saturation) and the positive direction of the

z-axis is the same as that of gravity. We find
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a0
ps o = V.(p.K.Vip) = V.(p.K.V(gz)) (4.5)

Since V(gz) = (a;{j),"’;g’;),af’j)) = (0,0, g) and divided both sides of

equation (4.5) by ps, we get:

a0 p p

Consider w and @ are single valued function, so equation (4.6) can be

written as
06 p 0y p

According to [21], we have D = £ K Z—lg is called the diffusivity

st

coefficient, which is constant as we assumed, so we get:

p

90
==V (D.VO) — V. (E.K. (0,0, g)) (4.8)

Let D, is the average value of D over the whole range. According to [22]
we have K « 62, i.e., K « K,.0% where Ky is a constant. Hence, equation

(4.8) becomes

a0

E =V. (DaVQ) - V(

p

o K,.62.(0,0, g)) (4.9)

So, equation (4.9) get:
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69+p2 K. 969 D,(V.Veo 4.10

Suppose K; = %. 29. K, and substituting it in equation (4.10) we get:

a0

00
=+ Ki.6.5— =Dy (V.76) (4.11)

0z

Hence, the final form of the equation is

a0 LK 969_ 629+629+629 112
at V7 ez Telox? T ay? | 9z2 (4.12)
We can simplify equation (4.12), by supposing:

f=— =2 z=2 413

x—klyy_klyz_kl (' )
It is clear that:

a8 106 g8 106 a8 106

ox k,0x ' 0y k,0y ' 0z k,0z 114
226 1 226 2%6 1 0%6 0%0 1 0%6 (4.14)
dx2  k?0x2 ' dy? k?oy: ' 0z k?0z2
Substituting equation (4.14) into equation (4.12), we get:
69+966_Da 629+629+629 .
ot 0z k?|9x2 0dy? 0z2 (4.15)
Let ¢ = % , then equation (4.15) will be:

1

ae+969_ 629+629+629 116

ot " "oz “l|axz " ay2 " 072 (4.16)

For simplification, the original symbols will be used instead of the

symbols in equation (4.16), i.e.,
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20 96 920 9%0 020
(4.17)

E-I_ 9z ¢ 6x2+6y2+622
4.3. Solving Model Equation by the NTHPM

The main purpose of this section is discuss the new implementation of
the combine NT algorithm with the HPM to solve the suggested model
equation (4.17).

To explain the NTHPM, firstly writes the nonlinear PDE (4.17) as follow:
LI6(X, )]+ R[O(X,t)] + N[6(X,t)] = g(X,t) (4.18)

Subjectto IC: 6(X,0) = f(X)

Where X € R™, L is a linear differential operator (L =%) , R is a

remained of the linear operator, N is a nonlinear differential operator and

g (X, t) is the nonhomogeneous part.

We construct a Homotopy as: (X, p): R™ X [0,1] = R, which satisfies
H(OX,1),p) = (1 —p) = [L(6(X, ) — L(6(X,0))] +

p [A ((e(x, t))) —g(X, t)] =0 (4.19)
Where p € [0,1] is an embedding parameter and the operator A defined

as A=L+R+N.

Obviously, if p = 0, equation (4.19) becomes L(6(X,t)) — L(6(X,0)).
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It is clear that, if p = 1 then the homotopy equation (4.19) convert to the
main differential equation (4.18). Substitute I1C in equation (4.19) and

rewrite it as:

LOX, 1)) = L(f (X)) = pL(O(X, 1)) + pL(f (X)) + pL(6(X, 1)) +

pR(O(X,t)) + pN(O(X, 1)) —pg(X,t) =0

Then

LOX, ) —L(F ) +p[L(f(X)) + R(6(X, 1)) + N(B(X, 1)) —

g, )] =0 (4.20)
Since f(X) is independent of the variable t and the linear operator L
dependent on t so, L(f (X)) = 0, i.e., (4.20) becomes:

L(BX,t)) +p[R(B(X, 1))+ NO(X,t)) —g(X,t)] =0 (4.21)
According to the classical perturbation technique, the solution of equation
(4.21) can be written as a power series of embedding parameter p, in the

form

O(X,0) = z pn6, (X, 1) (4.22)
n=0

For most cases, the series form (4.22) is convergent and the convergent

rate depends on the nonlinear operator N(6(X, t)).
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Taking the NT (with respect to the variable t) for the equation (4.21), we
have:

T{L(6)} +pT{R(O)+NB)—g}=0 (4.23)
Now by using the differentiation property of LT, so equation (4.23),
becomes:

vT{6} — f(X) + pT{R(6) + N(6) —g} =0

Hence:

T{6} = f(X) +p=T{g — R() — N(6)} (4.24)
By taking the inverse of new transformation on both sides of equation
(4.24), to get:

6(X,t) = f(X)
1
+pT?! {; T{g(X,t) —R(0(X,t)) — N(6(X, t))}} (4.25)

Then substitute equation (4.22) in equation (4.25) to obtain:

[ee] 1 [ee] [oe]
p"0, = f(X) + pT~1{=T {g(X, t)—R ( p”@n) - N( p”Hn)}} (4.26)

The nonlinear part can be decomposed, as will be explained later, by

substituting equation (4.22) in it as:

N(@®) =N (i p"on(X, t)) = i p"Hy

Then equation (4.26) becomes:
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(o] 1 co (o]
> P, = FO0 +pT {;T {g(X, 0 - R (2 p"en> -> p"Hn}} (4:27)

By comparing the coefficient with the same power of p, in both sides of

the equation (4.27) we have:

0o = f(X)

0 =T {1 T{g(X,0) = R(9%) — Ho}
0, =-T! {% T{R(6,) + Hl}}

6y = —T1 {i T{R(6;) + HZ}}

Onir =~ LT{R(6,) + Hy)

According to the series solution in equation (4.22), and p converges to 1,

we get:
O(X,t) = 0,(X, ) + 0,(X, 1) + - = 2 6. (X, ) (4.28)
n=0

4.4. Experiment Application

In this section, the suggested method will be used to solve the one;
two and three-dimensions model equation, with appropriate initial

condition:
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Problem 4.1

Here suggested method that can used to solve the 2D model equation
(1D space) i.e., equation governs the motion of water flow in 1D-

horizontal:

00 00 020
5“95—“@]

F(x) = 0(x,0) = y+B+(B-y)et

el+1

Where u = g(x — 1), a, B and A are parameters dimension

We have

2%6

ax2]"’

L[e(x,t)]=% , R[H(X,t)]z—a[

N[O, 0] =62 and g(X,t)
First, compute H,, to the nonlinear part N (6) we get:

s Gl el G5

_0690+ (9 691+0690)+ 2(9 692+9691+9690>
— 70 a9x p 0 ox 1 ox p % 9x L ox 2 9x

+ 3(0 s 6,9% 4 9% g 69°)+
p O dx L ox 2 d0x 3 0x
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+ 6o 22 691

00,

0 4 6, 22 + G 22

20,

+92 +91

can get

aez

06, 693

+90

2y et (y+B+(B-y)eH)

a(et+1)3

2y3B et (y+B—4y et+(y—Ble?H)

a? (et+1)4

2 viBZ% et (y+B—-(11y+3B)et+(11y-3p)e? +(B—-y)e3H)

a3 (et+1)>

£3 y5B3 et (y+B—-(26y+10B)eH+66ye?t—(26y—10B)e3t+(y—B)e*H)

So,

Hy = 0,22 aeo
Hy = 6, 2% aeo
Hy = 6,25 26,
Hy = 0,22 26,
And so on.
From IC, we
Hy=—
Hy=t

H, =

Hs =

And so on.

3 a% (et+1)°

Moreover, the sequence of parts 6,, is

0, = Y+B+(B-y)et

(ek+1)

91 - tZYZﬁ

eH

a(et+1)2

427

3p% ek (1-eh)

o
N
Il

a? (ek+1)3
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— 3 y*B3 et (1—4 et +e?h)

0 — _pa Y Bt (11 ely11edi-edh)
e 12 a* (et+1)5
And so on.

Substituting the above values in series form (4.28), hence the solution of

the problem is close to the form:

y+ﬁ+(ﬁ—y>e”‘%
6(x,t) = ~3

et atir

Problem 4.2

Here suggested method will be used to solve the 3D model equation (2D
space) i.e., equation governs the motion of water flow in horizontal and

vertical:

a0 a0

Lo _ 920 920
ot " Vox ¢

axz T 5y2

f(x,y) = 0(x,y,0) = LEED

el+1

Where u = g(x +y —A), a, f and A are parameters dimension

We have

00 (x,y,t 0%6 0%6
L6, 0] = =522, RO, 0] = —a |75 +72],
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N[BX, )] =602 and g(X,t) =0
ox

First, compute H,, to the nonlinear part N(6) we get:

(o) G- G5

96, 96, 96, (. 86, 86, 6,
- 9°E+p(9°a 05 ) p (90 ax 01y T2 )

(9 693+9 692+9 700, +o 690)+
+p 05 155 2755 375

So,
a6
HO = 80 a_xo

Hy = 0,22+ 0,22

00, aez

Hy=0,22+0,22+ 6,22

96, 90,

20 06
Hy =032+ 0, >+ 6,2+ 600>

And so on.

From IC, we can get:

2 pU —)el
Hy = — vy et (y+B+(B-y)et)

a (ef+1)3

H =t y3B et (y+B—4y et+(y—p)e?H)
1= 2 a? (el+1)*

H, = —¢2 y*B2 et (y+B—-(11y+3B)e +(11y—3B)e? +(B—y)e3H)
2 8 a3 (el+1)>
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H. = 3 y5B3 eH (y+B—-(26y+10B)eH +66ye?t—(26y—10B)e3t+(y—pB)e*H)
3~ 48 a* (eH+1)6

And so on.

Moreover, the sequence of parts 05 is:

—)el
g, = LB

(et+1)
_ ., Y?Bet
91 - a(et+1)2
9. = _g2 VB et et
g =

4a2 (et+1)3

6. = t3 yiB3 et (1—4 et +e?h)
3T 24 a3 (eH+1)*

9, = —t* y5B% et (1-11 et +11e2H—e3H)
* 192 a* (e*+1)5

And so on.

Substituting the above values in series form (4.28), hence the solution of

the problem is close to the form:

y+B+(B-y)et” S
O(x,y,t) = ~3

e* 2at41

Problem 4.3

Here suggested method will be used to solve the 4D model equation (3D
space):
20 a0 0%6 9°%6 2%6

4+ ==
ot " Vax T Yoz T2 T T a2
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_ _ Y+B+(B-y)et
f(x,y,z)-@(x,y,Z,O)— elh+1

Where u = g(x +y+z—21),a B and 1 are parameters dimension

We have

L[e(x,t)]=% , R[H(X,t)]=—a[

226 220 629]
ox2 = dy? = 9z2]’

N[O, )] =62 and g(X,t) =0
First, compute H,, to the nonlinear part N(6) we get:

s eEr -Gl

_0690+ (9 691+0690)+ 2<0 692+0601+9600>
— 70 a9x p 0 9x 1 ox p % 9x L ox 2 9x

+ 3(0 s 6,992, 4 9% g 69°)+
p O 9x L ox Z 9x 3

ox

So,

90,

a0, 96,
H, =6, ~ + 0, ~

96, 96, 90,
H, =6, -~ + 0, ~ + 6, P
And so on.

From IC, we can get
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__2y?et(y+B+(B-v)et)

3a(et+1)3
H, = t 2B et (+p-ay ef+(y—ple)
1 9 a? (eH+1)*
H, = —¢2 Y*B? et (y+B-(11y+3B)eH+(11y—3B)e*#+(B-y)e’H)
. 27 a3 (eH+1)5
H. = 3 yoB3 et (y+B—-(26y+10B)eH+66y e?H—(26y—10B)e3H+(S—y)e*H)
3~ 243 a* (ef+1)6
And so on.

Moreover, the sequence of parts 60, Is:

—Y)ek
g, = LBV

(et+1)
o. — t 2YBet
1™ " 3a(err1)?
9. = —t2 Y3BZ et (1—eh)
2 9a2 (el+1)3
9 .3 Y4[)’3 eM (1_4e#+62[,l,)
3T 81 a3 (eH+1)*
0, = —t4 Y5B% et (1-11et+11e2H—e3H)
e 972 a* (e#+1)°
And so on.

Substituting the above values in series form (4.28), hence the solution of

the problem is close to the form:

y+B+(B-y)et” 5
0(x,y,z,t) = —F

e? 3at41
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From problems 1, 2, 3, we can see that the proposed NTHPM is
applied to find the exact solution of the nonlinear 2" order (2, 3, 4 — D)
model equations does not require any restrictive assumptions to deal with

nonlinear terms.
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Chapter Five

Conclusions and Future Work

5.1. Conclusions

In this thesis, the combination of new transform suggested by Luma
and Alaa with HPM method is proposed to get exact solution of some
types of non-linear, non-homogenous PDEs; 1D, 2D, and 3D; 2" or 3™
order such as Klein-Gordan equation, wave-like equations, autonomous
equation, system of two or three non-linear equations, 2D-Burgers'
equations, coupled Hirota Satsuma KdV type Il, and RLW equation.
Finally, the suggested method is used to solve application model such soil
moisture equation where traditional HPM leads to an approximate
solution. So, the results reveal that NTHPM is a powerful method for
solving those types of PDEs with initial conditions. The basic idea
described in this thesis is strong enough to be employed to solve other
types of equations. The advantage of suggested method is capability of
combining two powerful methods for obtaining exact solutions for those
types of PDEs, where the HPM was disability to get the exact solution for

the same problems and solved its approximately.
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Moreover, the research finding how the solution of PDE by MTHPM
provide the agreement with real life problems. The method attacks the
problem in a direct way and in a straightforward fashion without using
linearization, or any other restrictive assumption that may change the
physical behavior of the model under discussion.

The experimental results show that the NTHPM is computationally
efficient for solving those types of problems and can easily be
implemented without computer.

The suggested method is free of unnecessary mathematical complexities.
The fast convergence and simple applicability of NTHPM provid
excellent foundation for using these functions in analytical solution of
variety problems.

The obtained results show that our proposed method has several
advantages such like being free of using Adomian polynomials when
dealing with the nonlinear terms like in the ADM and being free of using
the Lagrange multiplier as in the VIM.

The results reveal that the presented methods are reliable, effective, very
accurate and applicable to solve other nonlinear problems.

The advantage of NTHPM is its capability of combining two powerful

methods for obtaining exact.
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5.2. Future Works

Based on the results of the proposed method and its illustrative, the
following future works may suggest:

1- Using NTHPM for solving high dimensions PDEs.

2- Use NTHPM to solve nonlocal problems.

3- Use NTHPM to solve integral and integro-differential equations.

4- Use NTHPM to solve system of integral or integro-differential
equations.

5- Use NTHPM to solve differential equations with fractional orders.
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