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ABSTRACT 

     In This Thesis we discussed the peristaltic flow of some viscoelastic non-

Newtonian fluids namely (Walter’s-B fluid, blood model, Williamson fluid and 

Jeffrey fluid) under the influence of constant and variable viscosity, velocity slip 

and non-slip conditions effects, magneto hydrodynamics field, compliant walls, 

porous space and heat/mass transfer for different two- dimensional channels such 

as straight and inclined tapered and curved channels. 

     The solutions for previous models of fluids have been considered and analyzed 

under the assumption of long wave length and low Reynolds number 

approximations. 

     The motion, temperature and concentration equations have been derived. These 

equations are solved analytically by means of the regular perturbation method. The 

salient features of pumping characteristic, friction force and trapping are analyzed 

through study the effects of dimensionless numbers that controlled the governing 

equations of flow. 

      Five problems have been discussed through our work which may followed by: 

      In the first problem, the peristaltic flow of an incompressible Walter’s –B fluid 

through porous medium under the effects of uniform magnetic field in a straight 

asymmetric tapered channel is considered. It is found that the velocity of the fluid 

is increased near the center of the channel under the effect of short memory 

coefficient. 

      In the second problem, the peristaltic flow of blood with variable viscosity 

through porous medium in straight asymmetric tapered channel under the effects of 

uniform field and heat transfer is considered. It is found that the Reynolds parameter 

model of viscosity has wobbling behavior on the velocity of the fluid and we found 

that the temperature of the fluid enhanced under the increasing of source\sink 

parameter. 

     In the third problem, the peristaltic flow of Williamson fluid through porous 

medium in an inclined asymmetric tapered channel under the effects of inclined 

magnetic field and heat transfer are considered. It is found that the velocity of the 

fluid increased under the effect of inclination angle of magnetic field, also we found 

the temperature will be increased under the influence of Brinkman number. 

     In the fourth problem, the peristaltic flow of Jeffrey fluid through porous 

medium in an inclined symmetric tapered channel under the effects of inclined 
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magnetic field and heat transfer are considered. With the helping of wall properties. 

It is found that the velocity and temperature of the fluid will be increased under the 

effects of wall properties and inclination of the channel. 

     In the last problem, the peristaltic flow of Jeffrey fluid with variable viscosity 

with temperature in symmetric curved channel under the effects of radial magnetic 

field and heat/mass transfer are considered. It is found that cultivator coordinate 

parameter has oscillatory behavior on the velocity of the fluid, also it is found the 

curves is not symmetric in the case of curved channel and these are symmetric in 

the case of straight channel for large values of cultivator parameter. Also through 

this work the concentration of the fluid material is decreased with an increase of 

Schmidt number. 

     It is worth mentioning that the magnetic field and porous medium causes 

blocking to the flow of previous fluids in all above problems. 

     This study is done by using “MATHEMATICA” program computer to plot the 

figures and obtaining the numerical results. 
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INTRODUCTION 

     Peristaltic pumping has been the object of scientific and engineering research in 

recent years. The word peristaltic comes from a Greek word “PERISTALTIKOS” 

which means clasping and compressing. The phenomenon of peristalsis is defined 

as expansion and contraction of an extensible tube in a fluid generate progressive 

waves which propagate along the length of the tube, mixing and transporting the 

fluid in the direction of wave propagation. Peristaltic pumping is a form of fluid 

transport that occurs when a progressive wave of area contraction or expansion 

propagates along the length of a distensible tube containing the fluid. It is an 

inherent property of many tubular organs of the human body. It plays an                       

indispensable role in transporting many physiological fluids in the body in various 

situations such as urine transport from the kidney to the bladder through the ureter, 

Vasomotion of small blood vessels, as well as mixing and transporting the contents 

of the gastrointestinal passage, the transport of the spermatozoa in cervical canal, 

transport of bile in the bile duct, transport of cilia.  peristalsis play an indispensable 

role in transporting physiological fluids inside living bodies, and many 

biomechanical and engineering devices have been desighned on the basis of the 

principle of peristaltic pumping to transport fluids with out internal moving parts. 

The need for peristaltic pumping also arises in circumstances where is desirable to 

avoid using any internal moving parts such as pistons, in pumping process. See 

figs.(A-D), [96].  

     For example, the blood pump in dialysis is designed to prevent the transported 

fluid from being contaminated and peristaltic pumping mechanism have been 

utilized for the transport of slurries, sensitive or corrosive fluids, sanitary fluid, 

noxious fluids in the nuclear industry and many others. In some cases, the transport 

of fluids is possible without moving internal mechanical components as in the case 

with peristaltically operated. There are many other important applications of this 

principle. The study of peristalsis in the context of fluid mechanics has received 

considerable attention in the last three decades, mainly because of its relevance to 

biological systems and industrial applications, (see [98]).  

     Some authors have borrowed the idea and used it in applications where the 

material being pumped must not be contaminated (e.g. blood) or is corrosive and 

should not be in contact with the moving parts of ordinary pumping machinery. 

Also, peristaltic motion has even been found to play a role in nerve regeneration. 

In addition peristaltic pumping occurs in many practical applications involving bio-
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mechanical systems. For example, the heart machine and other pump instruments. 

(see fig.(E)), [11]. 

     During the last 40 years researchers have extensively focused on the peristaltic 

flow of Newtonian fluids (see for example [23] and several references there in). 

Especially, peristaltic pumping occurs in many practical applications involving 

biomechanical systems, such as roller and finger pumps. In particular, the peristaltic 

pumping of corrosive fluids and slurries could be useful as it is desirable to prevent 

their contact with mechanical parts of the pump. In these investigations, solutions 

for peristaltic flow with various considerations of the nature of the fluid, the 

geometry of the channel and the propagating waves were obtained for various 

degree of approximations. Much attention has been confined to symmetric channel 

or tubes, but there exist also flow situations where the channel flow may not be 

symmetric. Mishra and Rao[69] studied the peristaltic flow of a Newtonian fluid in 

an asymmetric channel in a recent research. In another attempt, Rao and Mishra[83] 

discussed the non- linear and curvature effects on peristaltic flow of a Newtonian 

fluid in an a symmetric channel when the ratio of channel width to the wave length 

is small. Very recently, Haroun[39] extended the analysis of reference [69]  for 

third order  fluid. An example for a peristaltic type motion is the intra-uterine fluid 

flow due to myometrium contraction, where the myometrium contractions may 

occur in both symmetric and asymmetric directions. An interesting study made by 

Eytan and Elad[31] whose results have been used to analyze the fluid flow pattern 

in a non- pregnant uterus. In another paper, Eytan et al. [32] discussed the 

characteristic of non- pregnant women uterine contractions as they are composed 

of variable amplitudes and arrange of different wave lengths. 

     Although most prior studies of peristaltic motion have focused on Newtonian 

fluids, there are also studies involving non-Newtonian fluids, in which the shear 

stress may depend upon the shear rate (the relation between shear stress and shear 

rate is not linear), both shear stress and shear rate may be time dependent and the 

fluid may have viscous as well as elastic characteristics (sajid [93], khan [57]). 

Because of the different rheological properties of non- Newtonian fluids, there 

exists no single universal constitutive relationship between stress and rate of strain 

by which all the non -Newtonian fluids can be examined. Therefore, several models 

of non-Newtonian fluids have been suggested and considered. Complexity in non-

Newtonian fluids starts due to the non-linear terms appearing in their constitutive 

relationships. Several researchers considered various models under different 

approximations and geometries by assuming the fluid content as a Newtonian fluid 

which is suitable in some particular cases like urine transport. (joseph [54]). 

However, most of the biological and industrial fluids are constituted of Newtonian 
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and non-Newtonian fluids behaving collectively as a non-Newtonian mixture. The 

examples of non-Newtonian fluids includes semi-solid food called bolus in 

esophagus, semi-liquid food (chyme) in stomach and in testiness, blood in arteries 

or veins, cervical mucus in bones and semen and ovum in reproductory tracts. 

Where as in case of industrial fluids, waste inside the sanitary ducts, toxic materials, 

metal alloys, oil and grease in automobiles or mechanics, nuclear slurries inside the 

nuclear reactors and many others. 

     To investigate the non-Newtonian characteristics of the physiological fluids, 

different non-Newtonian fluids namely Walters-B, Jeffrey and Williamson fluids 

have been considered in the present study. Walter’s B fluid (Walter’s,[113]) is a 

viscolastic fluid model defines both viscous, as well as, elastic characteristic. 

Physically it describes the elastic nature of the physiological fluids. Walter’s B fluid 

model has been widely studied by various researchers through different 

configurations. (See [19]) 

     The non-Newtonian fluids which exhibit the characteristics of relaxation or 

retardation times belong to rate type fluids. Jeffrey fluid model is considered one 

of some important types of this kind of non-Newtonian fluids. This model shows 

the behavior of linearly viscoelastic fluids due to its various applications industry. 

(See [44], [27], [76]). 

     In non-Newtonian fluids, the most commonly encountered fluids are pseudo 

plastic fluids. The study of the boundary layer flow of pseudo plastic fluids is of 

great interest due to its wide range of applications in industry such as extrusion of 

polymer sheets, emulsion coated sheets like photographic films, solutions and melts 

of high molecular weight polymers, etc. The Navier stokes equations alone are 

insufficient to explain the rheological properties of fluids. Therefore rheological 

models have been proposed to overcome this deficiency. To explain the behavior 

of pseudo plastic fluids many models have been proposed like Williamson fluid. 

Williamson [116] discussed the flow of pseudo plastic materials and proposed a 

model equations to describe the flow of pseudo plastic fluids and experimentally 

verified the results. Lyubimov and Perminov [62] discussed the flow of a thin layer 

of a Williamson fluid over an inclined surface in the presence of gravitational field. 

Depra and Scarpi [24] developed the perturbation solution for Williamson fluid 

injected into a rock fracture. Peristaltic flow of a Williamson fluid has been 

discussed by Nadeem et al. [75]. Gramer et al. [37] showed that this model fits the 

experimental data of polymer solutions and particle suspensions better than other 

models. For pseudo plastic fluids the power law model predicts that the apparent 

/effective viscosity should decrease in definitely with increase in shear rate, which 



X 
 

means infinite viscosity at rest and zero viscosity as the shear rate approaches 

infinity. A real fluid has both minimum and maximum effective viscosities 

depending upon the molecular structure of the fluid. In the Williamson fluid model, 

both the minimum ( ) and maximum viscosities (
0 ) are considered, so, for 

pseudo plastic fluids (for which the apparent viscosity does not go to zero at 

infinity), it will give better results. 

     Consideration of porous medium is that a matter which contains a number of 

small holes distributed through the matter. Flows through porous medium occur in 

filtration of fluids and seepage of water in river beds. Movement of underground, 

water and oils are some important examples of flows through porous medium. An 

oil reservoir mostly contents of sedimentary formation such as limestone and 

sandstone in which oil is entrapped. Another example of flow through porous 

medium is the seepage under a dam which is very important. There are examples 

of natural porous medium such as beach sand, rye bread, wood, filter, loaf of bread, 

human lung, gallbladder and bile with stones, in petroleum production engineering 

and in many other processes as well (Fig. F,(1),(2)), [92]. 

     The subject dealing with the motion of electrically conducting fluids in the 

presence of magnetic field is termed as magneto hydrodynamics (MHD) or hydro 

magnetics .Examples of such fluids includes plasmas, liquid metals and salt water 

or electrolytes. The field of MHD was initiated by Hannes Alfven [18] for which 

he received the Nobel Prize in physics in 1970. 

     Some clinical of magnetic field is applied in the medical field in the form of 

device called magnetic resonance imaging (MRI). Now MRI is widely used for 

diagnosis of brain, vascular, diseases and all the body. In actual practice a rapidly 

alternating current. Although these flow probes can measure blood flow through 

large vessels accurately and instantaneously, they have several limitations. The 

cross- sectional area of the vessel must be known in order to compute volume flow 

(flux). Also, the blood vessel must be dissected free to place the transducer around 

it. (Fig. (g)), [26]. 

     Heat transfer analysis is prevalent in the study of peristaltic flows due to its large 

number of applications in processes like hemodialysis (method used removing 

waste products from blood in the case of renal failure of kidney) and oxygenation. 

Bio heat is currently considered as heat transfer in the human body. In view of 

thermotherapy (application of heat to the body for treatment, examples pain relief, 

increase of blood flow and others) and the human thermoregulation system (ability 

of living body to maintain body temperature within certain limits in case of 
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surrounding temperature variations) as mentioned by Srinvas and Kothandapani 

[101], Bio heat transfer has attracted many biomedical experts. Heat transfer 

analysis is important especially in case of non-Newtonian peristaltic rheology as 

there involves many intricate processes like heat conduction in tissues, heat transfer 

during perfusion (process of delivery of blood to capillary bed) of arterial-venous 

blood, metabolic heat generation and heat transfer due to some external interactions 

like mobile phones and radioactive treatments. It is also helpful in the treatment of 

disease like removal of undesirable tissues in cancer. 

      Dissipative heat transfer is the most important and essential feature of peristaltic 

flows as suggested by Shapiro et al. [96]. In Peristaltic flows when the fluid is 

forced to flow due to the sinusoidal displacements of the tract boundaries, the fluid 

gains some velocity as well as kinetic energy. The viscosity of the fluid takes that 

kinetic energy and converts it into internal or thermal energy of the fluid. 

Consequently, the fluid is heated up and heat transfer occurs. This phenomenon is 

modelled by the energy equation with dissipation effects. For two dimensional 

flows the energy equation reduces to a second order partial differential equation 

that is at most parabolic in nature. 

     Moreover, due to the intricate nature of the bio-fluid dynamics, both heat and 

mass transfer occur simultaneously giving complex relations between fluxes and 

driving potentials as debated by srinivas and Kothandapani [102] and Eckert and 

Drake [28]. The mass flux caused by the temperature gradient called soret effect or 

thermal-diffusion is often negligible in heat and magnitude. However, for the non-

Newtonian fluids with light or medium molecular weight, it is not appropriate to 

neglect soret effects. Therefore, in the present study, due attention has been given 

to the combined effects of heat and mass transfer with soret effect, also further, in 

the present study the Duffer effect (energy flux caused by the composition 

gradients) has been considered. 

     On the interaction of a fluid with the solid surface, the conditions where the 

molecules of the fluid near to the surface stick with the surface having the same 

velocity, is called no-slip condition. While in the case of many polymeric liquids 

with high molecular weight, the molecules near to the surface show slip or stick- 

slip on the surface. Navier [79] suggested the general slip boundary condition 

defining that the difference of fluid velocity and the velocity of the surface is 

proportional to the shear stress at that surface. The coefficient of proportionality is 

the slip parameter having the dimension of length. The slip condition is of great 

importance especially when fluids with non-Newtonian or elastic characters are 

considered. In such cases, the slippage may occur under a large tangential traction. 
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Both non-slip and slip boundary conditions have been considered in the present 

study. 

The structure of this thesis consists of six Chapters which are: 

 

Chapter one: 

 

 

Chapter two: 

 

 

 

 

 

Chapter three 

 

 

 

 

 

 

 

Chapter four : 

 

 

 

 

 

 

Chapter five: 

Elementary concepts and basic definitions, which are used 

in our study are presented. 

 

In this chapter, a theoretical study is presented for 

peristaltic flow of an incompressible Walter’s-B fluid 

through porous medium under the effects of uniform 

(MHD) field and non-slip boundary conditions on the 

velocity in two- dimensional a symmetric tapered channel.  

 

This chapter concerns with the theoretical study of the 

incompressible conducting fluid with (MHD) field 

considered by the (blood)of human, (non-Newtonian fluid) 

through porous medium under the effects of heat transfer 

and variable viscosity in the form of a well known Reynolds 

model of viscosity in a two- dimensional a symmetric 

tapered channel.  

 

In this chapter, we consider a mathematical model to study 

the peristaltic flow of Williamson fluid (theoretical tool of 

studying with constant viscosity and incompressible fluid 

under the combined effects of inclined magnetic field and 

heat transfer through porous medium in an inclined two-

dimensional asymmetric tapered channel.  

 

The aim of this chapter is to investigate the theoretical study 

of the mathematical model of incompressible Jeffrey fluid 

with constant viscosity under the combined effects of 

inclined magnetic field, heat transfer and wall properties. 

Through porous medium in an inclined tapered two-

dimensional channel with flexible walls. 

 

     It is worth mentioning that the intrauterine fluid flow in a sagittal cross-section 

of the uterus discloses a narrow channel enclosed by two fairly parallel walls with 

wave trains having different amplitudes and phase difference, so with the aid of 

sufficient study support, a theoretical investigation on the peristaltic motion of 
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Walters-B fluid, Williamson fluid and Jeffrey fluid in a tapered channel or non-

uniform asymmetric channel is carried out, therefore to the best of our familiarity, 

so far no attempt has been made to examine the peristaltic transport of above fluids 

in such channel which may help to imitate intra-uterine fluid motion in a sagittal 

cross-section of the uterus.  

  

Chapter six: This chapter is devoted to study the peristaltic flow of 

Jeffrey fluid under the effect of radial magnetic field in 

a curved channel, the variation of viscosity to 

temperature will be used.  
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Introduction  

     In this chapter, a brief history related to important contributions for 

understanding fluid mechanics development, is given as well as some 

elementary concepts and basic definitions that will be used in our work will be 

presented. 

 

1.1 Basic Definitions and Fluid Properties  

     This section contains some basic definitions related to fluid mechanics. 

 

1.1.1 Fluid mechanics:[90] 

     The word fluid means a substance having particles which readily change 

their relative positions. The subject of fluid mechanics deals with the behavior 

of fluids when subjected to a system of forces; 

1- Statics: it deals with the fluid elements which are at rest relative to each 

other. 

2- Kinematics: it deals with the effect of motion, i.e., translation, rotation 

and deformation on the fluid elements. 

3- Dynamics: it deals with effect of applied forces on fluid elements. 

 

1.1.2 Density: [90]  

     The density of substance is defined as the mass per unit volume and is 

denoted by the symbol  . It has dimension
3

M

L
, i.e. 

                                                                                                                ...(1-1)
m


 

where m and    represents the mass and the volume, respectively. 

 

1.1.3 Pressure: [90] 

     The pressure is defined as the normal compressive force per unit area and is 

denoted by the symbol P . It has the dimension
2

M

LT
, i.e. 

                                                                                         ...(1-2)
force F ma

P
area A A

  

Where a  is the acceleration, F is the normal force, A  is the area.  

 

1.1.4 Shear stress: [25] 

     It is defined as the force per unit area and is denoted by the symbol .  It has 

the dimension
2

M

LT
, i.e. 
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                                                                                                                 ...(1-3)
F

A
 

where F and A is the applied force and the cross- sectional area of material 

with area parallel to the applied force vector, respectively. 

 

1.1.5 Shear strain : [25] 

     It is also known as shear a deformation of solid bodies is displaced parallel 

places in the body, quantitatively it is the displacement of any plane relatives to 

second plan divided by the perpendicular distance between planes the force 

causing such deformation. 

 

1.1.6 Stream function: [63] 

    It is defined as a scalar function of space and time such that it is partial 

derivative with respect to any direction gives the velocity in the direction 

perpendicular to the previous direction. It is denoted mathematically by  , 

where:  

( , ) ( , , , )s t x y z t    . For two dimensional, unsteady flows we have: 

, v = -                                                                                               ...(1-4)u
y x

  

 

where u and v  are the velocity components in the x and y directions, 

respectively. 

 

1.1.7 Stream line: [63] 

     It is an imaginary line drawn through the flow field such the tangent at any 

point is in the direction of the velocity vector. 

 

1.1.8 Viscosity: [20] 

     Among all the fluid properties, viscosity is the most important property, 

which is the resistance of a fluid to motion its internal friction. A fluid at a 

static state is by definition unable to resist even the slightness amount of shear 

stress. Application of shear force results in a continual and permanent 

distortion known as flow. 

 

1.1.9 Dynamic viscosity: [20] 

     It is defined as the tangential force required per unit area to sustain a unit 

velocity gradient and is denoted by the symbol , it has dimension
M

LT
, i. e. 
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                                                                                                         ...(1-5)
du

dy


 

 

1.1.10  Kinematic viscosity: [20]  

     It is defined as the ratio of dynamic viscosity to density of fluid and is 

denoted by , it has dimension
2L

t
, i.e. 

                                                                                                                ...(1-6)







where   and    is the dynamic viscosity and the density, respectively. 

 

1.1.11 Newtonian and non Newtonian fluids: [20] 

     The Newton law of viscosity states that the shear stress  of fluid element 

on a layer is directly proportional to the rate of strain, i. e. , 
du

dy
   

which may be written as : 

                                                                                                           ...(1- 7)
du

dy
 

where 
du

dy
represents the rate of shear deformation of rate of shear and is often 

called the velocity gradient. 

     Many common fluids such as: air, water, light soils and gasoline are 

Newtonian fluids under normal conditions. However, there are certain fluids 

which exhibits non  Newtonian fluids, therefore, do not follow Newton's law of 

viscosity. Common examples of non Newtonian fluids are: human blood, 

lubricating oils, clay suspension in water, sewage sludge. There is however, 

evidence to believe that Newtonian fluids may exhibit non Newtonian 

characteristics under conditions of higher shear stress, and hence the 

classification of fluid may change with the conditions of flow. 

     A general relationship between shear stress and velocity gradient (rate of 

shear strain) for non  Newtonian fluids may be written as: 

         (power law fluids)                                                                 ( )  ...(1-8)
du nA B
dy

    

where A, B and n are constants. For Newtonian fluids 0,  A =   and n =1.B   

These relationships can be seen in the graph below for several categories. 
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Fig (1-1): Shear stress versus rate of shear stress 

 
 

     Below are a brief descriptions of the physical properties of the several 

categories: 

 Plastic: shear stress must reach a certain minimum before flow 

commences. 

 Bingham plastic: As with the plastic above a minimum shear stress must 

be achieved with this classification n=1. An example is sewage sludge. 

 Pseudo plastic: No minimum shear stress necessary and the viscosity 

decrease with the rate of shear, for example, colloidal substances like 

clay, milk, and cement. 

 Thixotropic substance: viscosity increase with length of time shear force 

is applied, for example, thixotropic jelly paints. 

 Rheopeetic substances: viscosity increase with length of time shear force 

is applied. 

 Viscoelastic materials: similar to Newtonian but if there is a sudden 

large change in shear they behaved like plastic. 

 

     There is also one more category which is not real, it does not exist- known 

as the ideal fluid. This is a fluid which is assumed to have no viscosity. This is 

a useful concept when theoretical solutions are being considered it does help 

achieve some practically useful solutions. 
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     In this thesis we used non Newtonian fluids of type pseudo plastic and 

viscoelastic materials.   

 

1.1.12  Steady and unsteady flow: [59] 

     A flow is considered to be steady when the velocity gradient depends only 

upon the shear stress, is a single valued function of the latter, and means time 

independent fluid. Also, the properties of fluid does not depend on time, i.e., 

0,  0,  0
u P

t t t

  
  

  
  otherwise, the flow is unsteady. 

    In this thesis we used study flow in our analysis. 

 

1.1.13 Compressible and incompressible flow: [63] 

     Fluid mechanics deals with both incompressible and compressible fluids, 

that is, with fluids of constant and variable densities. Althrough there is no 

such thing in reality as an incompressible fluid, this term is applied where the 

change in density with pressure is so small as to be negligible. This is usually 

the case with all liquids, gases, too, may be considered as incompressible when 

the pressure variation is small compared with the absolute pressure. 

 

1.1.14  Laminar and turbulent flow: [63] 

     Laminar flow in which fluid particles move along smooth paths in laminar 

or layers, with one layer gliding smoothly over an adjacent layer and it occurs 

for values of Reynolds number from 0 to 2000, and we say that the flow is 

irregular parts and when Reynolds number is greater than 4000, and we say 

that the flow is transition if the values of Reynolds number is between 2000 

and 4000. 

     In this thesis our problems deal with incompressible and laminar flow 

 

1.2 Continuity Equation: [68] 

     The continuity equation embodies the principle of conservation of mass 

according to which fluid matter can be neither created nor destroyed, which 

mean that, the mass per unit time entering the tube must flow out at same rate. 

The equation of continuity may be equivalently obtained in any appropriate 

coordinate system. The general equation of continuity which is applicable to 

any type of flow and for any fluid whether compressible or incompressible is : 

0                                                                                                              ...(1-9)
D

u
Dt


  

where   is the density, ( , , )u u v w is the velocity vector, ( , , )
x y z

  
 

  
 is the 
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gradient vector, and .
D

u
Dt t


  


 is the substantial derivative. Its expansions is 

in the three most commonly used coordinate systems (rectangular, cylindrical, 

and spherical).  

 

1.2.1 Continuity equation in Cartesian coordinates: [68] 

     The equation of continuity in three- dimensions is: 

( ) ( ) ( ) 0                                                             ...(1-10)
p

u v w
t x y z

  
   

   
   

         

If the fluid is incompressible (  = constant), the continuity equation may be 

written as:  

0                                                                                           ...(1-11)
u v w

x y z

  
  

  
          

In two- dimensions, the continuity equation takes the form: 

0                                                                                                     ...(1-12)
u v

x y

 
 

 
 

For one dimension, say in the x-direction: 

0                                                                                                              ...(1-13)
u

x





 

 

1.2.2   Continuity equation in cylindrical coordinates: [69] 

     The equation of continuity in cylindrical coordinates is: 

1 1
( ) ( ) ( ) 0                                                    ...(1-14)

p
ru v w

t r r r z
  



   
   

   
         

If the fluid is incompressible (  = constant), the continuity equation may be 

written as:  

1
0                                                                                  ...(1-15)

u u v w

r r r z

  
   
  

 

In polar coordinates, the continuity equation takes the form: 

1
0                                                                                           ...(1-16)

u u v

r r r 

 
  
 

 

 

1.3 Navier-Stokes Equations: [115] 

     The system of partial differential equations that describe the fluid motion 

is called the Navier stokes equations or the momentum equations. The 

general technique for obtaining the equations governing fluid motion is to 

consider a small control volume through which the fluid moves, and 

required that mass and energy are conserved, and that the rate of change of 
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the two components of linear momentum are equal to the corresponding 

components of applied force. 

     The Navier-Stokes equations for incompressible fluid are: 

2                                                                             ...(1-17)
Du

F p u
Dt

     

where 2 is the Laplacian operator, F is the body force. 

 

1.3.1 Navier-Stokes equations in Cartesian coordinates  

     The Navier-Stokes equations in Cartesian coordinates are: 

21
- u +x

u u u u p
u v w F

t x y z x


    
    

    
 

2

2

1
- v

1
- w

 +  

 +                                               ...(1-18)

y

z

v v v v p
u v w F

t x y z y

w w w w p
u v w F

t x y z z









    
    

    

    
    

    

 

Where ( , , )u v w  are the components in the , yx and z directions, respectively, 

( , , )x y zF F F are the body forces in the , yx  and z directions, respectively,  is 

the kinematic viscosity, and 
2 2 2

2

2 2 2x y z

  
   

  
  Laplacian operator in 

Cartesian Coordinates. 

 

1.3.2 Navier-Stokes equations in Cylindrical coordinates  

     The Navier-Stokes equations in cylindrical coordinates are: 
2

2

2 2

2

2

2

1 2
(     

1 2
(

1
                                                                                  ...(1-19)

r

z

Du v p u v
F u

Dt r r r r

Dv uv p v v
F v

Dt r r r r

Dw p
F w

Dt z




 


  




 
      

 

 
      

 


   



 

where ( , , )u v w  are the component in the ,    and  zr  directions, respectively, 

( , , )r zF F F  are the body forces in the ,    and  zr  directions, respectively, the 

operators 2    and  
D

Dt
  have the following meaning: 

2 2 2
2

2 2 2 2

                                                                         ...(1- 20)

1 1
                                                                  

D v
u w

Dt t r r z

r r r r z





   
   
   

   
    

   
     ...(1- 21)
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1.4 Peristaltic Phenomenon:[96] 

     Peristaltic pumping has been the object of scientific and engineering 

research in recent years. The word peristaltic comes from a Greek word            

“peristaltikos” which means clasping and compressing. The phenomenon of 

peristalsis is defined as expansion and contraction of an extensible tube in a 

fluid generate progressive waves which propagate along the length of the tube, 

mixing and transporting the fluid in the direction of wave propagation. 

Peristaltic pumping is a form of fluid transport that occurs when a progressive 

wave of area contraction or expansion propagates along the length of a 

distensible tube containing the fluid. It is an inherent property of many turbuler 

organs of the human body. It plays an indispensable role in transporting many 

physiological fluids in the body in various situations, such as urine transport 

from the kidney to the bladder through the ureter, vasomotion of small blood 

vessels, as well as, mixing and transporting the contents of the gastrointestinal 

passage, the transport of the spermatozoa in cervical canal, transport of bile in 

the bile duct, transport of cilia peristaltic play an indispensable role in transport 

physiological fluids inside living bodies, and many bio- mechanical and 

engineering devices have been designed on the basis of the principle of 

peristaltic pumping to transport fluids without internal moving parts. The need 

for peristaltic pumping also arises in circumstances where it is desirable to 

avoid using any internal moving parts such as pistons, in pumping process. A 

mathematical model to understand fluid mechanics of this phenomenon has 

been developed using lubrication theory, provided that the fluid inertia effects 

are negligible and the flow is of the low Reynolds number. 

 

1.5 Porous Medium: [92] 

      A porous medium is a matter which contains a number of small holes 

distributed throughout the matter. Flows through porous medium occur in 

filtration of fluids and seepage of water in river beds, movement of 

underground water and oils are some important examples of flows through 

porous medium. An oil reservoir mostly contains of sedimentary formation 

such as limestone and sandstone in which oil is entrapped another example of 

flow through porous medium see page under a dam which is very problem. 

There are examples of natural porous medium such as beach sand, wood, filter, 

human hung, gall bladder and bile with stones, in petroleum production 

engineering and in many other processes as well. The Navier- Stokes equations 

with porous medium are given by: 
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2

0

                                                                      ...(1-22)u
Du

F p u
Dt k


         

where 0k  is the permeability 

 

1.6 Basic Definitions on the Electrostatic Field:[36] 

     Through this section, we will introduce the most important definitions, 

which will be used in our work later. 

 

1.6.1 Electrostatic Field 

     The electrostatic field, denoted by E, is defined as the force that is exerted 

on a unit charge, in the field and it’s vector in the same direction as the force. 

lim                                                                                                  ...(1-23) 
0

F
E

qq


 
    

where q is the charge, and F is the force. 

 

1.6.2 Current Density  

     We define a current density, denoted by J as the flow of charges across a 

unit cross- sectional area per second. 

 

1.6.3 Electrical Conductivity  

     Which is denoted by   and it is the ratio of current density J to electrostatic 

field E. 

     (volamp)                                                                                           ...(1.24)
J

E
   

1.6.4 Ohm’s Law 

     It is describes the conduction current, and is given by: 

( )                                                                                            ...(1-25)J E V B      

Where  is electrical conductivity, E is the electrostatic field, v is velocity and 

B is magnetic field. 

 

1.6.5 Lorentz Force  

     It is denoted by F, on a charge moving q in a magnetic field B with velocity 

v is given by:  

 J = qv  then F = J B                                                                                   ...(1-26) 

F qv B

If

 


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1.7 Magneto Hydrodynamics (MHD): [91]  

     It is the branch of continum mechanics which deals with the motion of 

electrically conducting fluid in the presence of magnetic field. The motion of 

conducting material across the magnetic lines of force creates potential 

differences which, in general, cause electric currents to flow. The magnetic 

field associated with these currents modify the magnetic field which creates 

them. In other words, the fluid flow alters the electromagnetic state of the 

system. On the other hand, the flow of electric current across a magnetic field 

is associated with a body force that is called Lorentz force, which influence the 

fluid flow. It is this intimate interdependence of hydrodynamics and 

electrodynamics which really defines and characterizes MHD.  

     The MHD Navier- Stokes equations represented by: 

In the x-direction: 

2) - u ( )           (  +                      ...(1-27)x xJ B
u u u u p

u v w F
t x y z x

    
    

    
    

 

In the y- direction: 

2) - ( )      (  +                          ...(1-28)y yv J B
v v v v p

u v w F
t x y z y

    
    

    
    

        

In the z-direction: 

2) - ( )(  +                          ...(1-29)z zw J B
w w w w p

u v w F
t x y z z

    
    

    
    

 

where ( ) ,  ( ) ,  ( )x y zJ B J B J B   are the components of Lorentz force 

(electromagnetic force) in the x-direction, y-direction and z-direction 

respectively, B is the magnetic field, J is the current density or conduction 

current and   is dynamic viscosity. 

 

1.8 Heat Transfer: [115] 

     When a temperature difference exists in a medium or between media, heat 

transfer must occur. Heat transfer is energy in transit due to a temperature 

difference. Three different types of heat transfer process are known when a 

temperature gradient exists in a stationary medium, which may be a solid or a 

fluid, we use the term conduction for the heat transfer that occurs across the 

medium. The term convection refers to heat transfer that occurs between a 

surface and a moving fluid when they are at different temperatures. The third 

kind of heat transfer is termed thermal radiation. Heat transfer is termed 

thermal radiation. All surfaces of finite temperature emit energy in the form of 

electromagnetic waves. Owing to radiation between two surfaces at different 
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temperatures when there is an absence of an intervening medium and heat 

transfer occurs. 

 

1.8.1 Specific Heat of Fluid at Constant Pressure  

     It is denoted by C  which is defined as the ratio of heat flow to mass and 

temperature difference it is expressed by the equation: 

                                                                                                          ...(1-30)
dQ

C
dT

   

1.8.2 Thermal Conductivity 

     It is denoted by 1k , which is defined as the flow in a unit time across unit 

area through unit thickness when a temperature difference of unity is 

mentioned between opposite forces. 

 

1.8.3 Thermal Diffusivity 

     It is defined as: 

1                                                                                                         ...(1-31)
k

k
C 

   

where, 1k is thermal conductivity,   is density, and C is specific heat.        

     The thermal diffusivity is, therefore, the ratio of heat conducted through the 

material to the heat stored per unit volume. The larger of the thermal diffusivity 

makes the propagation of heat into the material faster. If the thermal diffusivity 

is small, it means that a big part of the heat is absorbed by conducted through.  

 

1.8.4 Heat Flux 

     The heat flux Q is defined by the Fourier’s law as, the rate of heat flow is 

proportional to the area of flow A and to the temperature difference dT, across 

the layer, and inversely proportional to the thickness dx, and varies only in one 

direction, say x it is expressed by the equation; 

1                                                                                                     ...(1-32)
dT

Q k A
dx

   

Where, 1k is thermal conductivity and the negative sign indicates that the 

temperature change in the direction of heat flow (-dT). 

1.8.5 Heat Capacity 

       It is denoted by C  , which is defined by the product of density and 

specific heat. 
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1.8.6 Joulean Heating  

     The Joulean heating is defined as the ratio of the square of conducting 

current to the electrical conductivity and is given by: 
2( )

joulean heating =
J

  
1.9 The Energy Equation: [36] 

     The magneto fluid dynamic (MFD) energy equation is represented by a 

nonlinear partial differential equation and is given by : 
2

2

1

( )
                                                                    ...(1-33)

DT J
C k T PR

Dt
 


    

Where  

                                                                                                  ...(1-34)( . ) , 
DT

u T
Dt t


  


      

PR is rate at which heat is added by chemical reaction, radiation and 

electromagnetic action and  
2( ) 2 .                                                                                     ...(1-35)u D D       

where 
1

( . ( . ) )
2

TD u u     is the deformation tensor. Here,   is the second 

coefficient of viscosity, and if stokes hypothesis is assumed to hold then 

2

3
    

     Also, here  is called the dissipation function. It can be shown that  , 

which represents the rate at which work is converted into heat, is always 

greater or equal to zero. 

For incompressible flows, the divergence of the velocity field .u , 

is identically zero, so any questions about the validity of stokes hypotheses are 

irrelevant. Also, when the density of the material particle is constant, the term 

expressing work done by compressing the fluid is absent. The internal 

generation due to viscous dissipation is frequently small allowing us to ignore

 . With these assumptions the energy equation reduces to: 

2

1                                                                                              ...(1-36)
DT

C k T
Dt

    

     It is clearly that while T depends on the velocity field, the velocity field 

does not depend on temperature. 

 

1.10 Flexible Wall: [71] 

     The governing equation of motion of the flexible wall may be expressed as: 

0( )                                                                                                   ...(1-37)L H P P   
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Where 0 P is the pressure on the outside of the wall due to tension in the 

muscles, and L is an operator that is used to represent the motion of the 

stretched membrane with damping forces such that: 
2 2

12 2
                                                                              ...(1-38)L k m C

x t t

  
   

  
 

Here, k is the elastic tension in the membrane, 1m is mass per unit area and C is 

the coefficient of viscous damping forces. 

 

1.11 Dimensions: [90]  

     A dimension is the measure by which a physical variable is expressed 

quantitatively in fluid mechanic, there are only three primary dimensions from 

which all the dimensions can be derived, namely; mass (m), Length (l) and 

time (t). All other variables in fluid mechanics can be expressed in terms of m, 

l and t. for example, acceleration has the dimension lt-2. Force is directly 

related to mass, length and time by Newton’s second law, force =mass 

×acceleration (f=m×a), and from this we see that, the force has the dimension 

mlt-2.  

 

1.12 Dimensional Analysis: [114] 

     The method of dimensional analysis aims to deriving similarity parameters, 

which can be used to apply data measured with a model configuration to the 

geometrical similar full- scale configuration there by the number of necessary 

experiments can be reduced, which depends on the number of the physical 

quantities influencing the problem. The dimensional analysis also offers the 

advantage, that the  physical quantities can be combined in such a way, that the 

results are independent of the measuring units. The physical quantities are 

combined in a product such that dimension less combinations result. 

 

1.13 Dimensional Parameters: [114] 

     If the number of variable affecting a flow problem are known, these can be 

arranged into a suitable dimensionless parameters by the method of 

dimensional analysis. From experience and judgment, less important 

parameters may be dropped out. Thus we are left with the most important 

parameters which have a far greater influence upon the phenomenon than the 

parameters dropped out. 

     There are some important parameters of dimensionless number in fluid 

mechanics, which are: 
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1.13.1 Reynolds Number  

     It is denoted by (Re) it is the most common dimensionless number in fluid 

mechanics. Low Re flows involve small sizes, low speeds and high kinematic 

viscosity such as bacteria swimming through mucous. High Re flows involve 

large sizes, high speeds and low kinematics viscosity such as an ocean linear 

steaming at full speed. And represented the ratio of inertia force to the viscous 

force, given by : 

inertia force
Re                                                                                  ...(1-39)

 force

ca

viscous




     

where ,  c a  represents, uniform velocity, dimension of the channel, 

respectively. 

 

1.13.2  Prandtl’s Number  

      It is a ratio of two molecular transport properties. Therefore a fluid 

property and independent of flow geometry, denoted by Pr, is a dimensionless 

and represents the ratio of kinematic viscosity to the thermal diffusivity and 

given by: 

1 1

Pr                                                                                  ...(1- 40)
C

kk k
C






 



  


 

1.13.3  Schmidt’s Number 

     It is denoted by Sc, which relates viscous diffusion to mass diffusion, and 

given by: 

                                                                                                 ...(1-41)Sc
D D

 


   

where D is the coefficient of mass diffusivity has dimension L2T-1. 

 

1.13.4 Grashof’s Number  

     It is denoted by Gr, which is a measure of buoyancy or free convection 

effects in a flow, and given by: 
2

1 0( )
                                                                                       ...(1-42)

g a T T
Gr

c

 




  

Where 0T a temperature at lower wall of channel is, 1T  is a temperature at upper 

wall of channel, g is an acceleration due to gravity,   is a coefficient of linear 

thermal expansion of fluid and c is a wave velocity. 
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1.13.5  Darcy Number 

    In fluid dynamics through porous medium. The Darcy number, denoted by 

Da, represented the relative effect of the permeability of the medium versus it 

is cross- sectional commonly the diameter squared. The number is named after 

Henry Darcy and is found from non- dimensionalzing the differential form of 

Darcy’s law. This number should not be confused with the Darcy friction 

factor. Which applies to pressure drop in pipe. It is defined as: 

0

2
                                                                                                            ...(1-43)

k
Da

a
  

Where 0k  is the permeability of the medium and a is the diameter of the 

particle. 

 

1.13.6  Soret’s Number 

     The soret effect is mass flux due to temperature gradient and appears in the 

species continuity equation when you have a multi-component mixture where 

each species has its own diffusion velocity. The soret number, denoted by Sr, 

relates thermal diffusion coefficient to ordinary diffusion coefficient and given 

by: 

1 0

1 0

( )
                                                                                           ...(1-44)

( )
m T

m

D k T T
Sr

T c c





 

where mD the coefficient of mass diffusivity is, mT is mean fluid temperature, 

Tk is the thermal diffusion ratio. 

 

1.13.7  Froude Number 

    The Froude number, denoted by Fr, is the dimensionless nuber and 

represents the ratio of inertia force to the gravity force and given by: 
2inertia force

                                                                                  ...(1-45)
gravity force

c
Fr

gd
    

where g, d represents, gravity of acceleration and dimension of the channel. 

 

1.13.8  Eckert Number: [28] 

     The Eckert number Ec is a dimensionless number used in fluid dynamics. It 

expressed the relationship between a flow’s kinetic energy and enthalpy, and is 

used to characterize dissipation. It is defined as: 
2

                                                                                                     ...(1-46)
c

Ec
C T




 

where T is characteristic temperature difference of the flow. 
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1.13.9 Hartman number: [55] 

     Denoted by (M), it is the dimensionless number and represents the ratio of 

magnetic force to the inertia force, or the square root of Stuart number 

(interaction parameter) product the Reynolds number is given by  

0                                                                                                      ...(1-47)M B l



  

Where l is a characteristic length. 

 

1.14 Regular Perturbation Expansions: [13] 

     Perturbation methods, also known as asymptotes allow the simplification of 

complex mathematical problems. Use of perturbation theory will allow 

approximate solutions to be determined for problems which cannot solved by 

traditional analytical methods. Second order ordinary linear differential 

equations are solved by engineers and scientists routinely. However in many 

cases, real life situations can require much more difficult mathematical models, 

such as non-linear differential equations. 

We are all familiar with the principle of the Taylor expansion. For an analytic 

function f(x), we can expand close to a point (x=a) as: 

1
( ) ........                                                                ...(1- 48)

2
( ) ( ) ( ) f af a x f a f a            

for general function f(x) there are many ways this expansion can fail, including 

lack of convergence of the series or simply an in ability of the series to capture 

the behavior of the function, but the paradigm of the expansion in which a 

small change to x makes a small change to f(x) is powerful one, and the basis 

of regular perturbation expansions. 

        The basic principle and practice of the regular perturbation expansion is: 

1 Set 0   and solve the resulting system (solution 0f for definiteness) 

2 Perturb the system by allowing  to be nonzero (but small in some sense) 

3 Formulate the solution to the new perturb bed system as series:    

      2

0 1 2 ..........f f f     

4 Expand the governing equation as a series in , collecting terms with 

equal powers of , solve them in turn as far as the solution is required. 
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Introduction 

     Peristaltic transport is a form of material transport induced by a progressive 

wave of contraction and expansion along the length of distensible tube mixing and 

transporting the fluid in the direction of the wave propagation. This kind of 

phenomenon is termed as peristaltic. It plays an indispensable role in transporting 

many physiological fluids in the body under various situations as urine transport 

from kidney to bladder, the movement of chyme in the gastrointestinal tracts, 

transport of spermatozoa in the ductus efferent's of the male reproductive  tract, 

movement of ovum in the fallopian tubes, swallowing of food through esophagus 

and the vasomation of small blood vessels many modern mechanical devices have 

been designed on the principle of peristaltic pumping to transport the fluids without 

internal moving parts, for example the blood pump in the heart-lung machine and 

peristaltic transport of naxious fluid in nuclear industry. The mechanism of 

peristaltic transport has attracted the attention of many investigators since its 

investigation by Latham [61], Burns and Pareks[23], Shapero et all.[96], Fung and 

Yih [34], Takabatake and Ayukawa [109], Akram and Nedeem [12], Mekheimer 

and Elkot [67], Mekheimor and al –Arabi[66], Mekheimer[64], Nadeam and Akbar 

[73], Kothandapani et al.[58], of peristaltic flow for different fluids have been 

reported under various conditions with reference to physiological and mechanical 

situations. Most of these investigations are confined to the peristaltic flow only in 

a symmetric channel or tube. 

      Among the many suggested models, Walters [113] has developed a physically 

accurate mathematical model for the rhedogical equation of state of a viscoelastic 

fluid with short memory. This model has been shown to capture the characteristic 

of actual viscoelastic polymer solutions, hydrocarbons, paints and other chemical 

engineering fluids. The Walter’s–B fluid model generates highly non-linear flow 

equations which have order higher than that of the Navier-stokes equations. It also 

incorporates elastic properties of the fluid which are important in extensional 

behavior of polymers. Peristalsis of Walters-B fluid with wall properties has never 

been addressed previously. Thus Margiam Javed et al. [53] is undertaking to fill 

this void by incorporating velocity slip and temperature jump conditions. 

      In the present study, and the purpose of this chapter is to investigated the 

peristaltic transport of Walters-B fluid under the effect of magnetic field through a 
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porous medium in a tapered a symmetric channel. Regular perturbation technique 

are used under long-wave length (wave number is small) and law-Reynolds 

assumption. Series solutions for stream function, axial velocity and pressure rise 

are given, numerical computations have been performed for pressure rise per wave 

length. The influence of the physical parameters of the problem are discussed and 

illustrated graphically. 

of the Problem odelMMathematical  The 1-2 

     Let us consider the MHD flow of an incompressible and electrically conducting 

walters –B fluid through a porous medium of two–dimensional tapered a symmetric 

channel. We assume that infinite wave train traveling with velocity c along the       

non–uniform walls. We choose a rectangular coordinate system for the channel 

with X along the direction of wave propagation and parallel to the center line and 

Y transverse to it. The wall of the tapered a symmetric channel are given in fig.      

(2-1) by the equations: [58] 

1 1

2 2

2
( , ) sin[ ( ) ]......  wall

2
( , ) sin[ ( )].......  wall                                 .........(2 -1)

H x t d m x a x ct lower

H x t d m x a x ct upper










     

   

                          

where 
1 2,a a are the amplitudes of the waves, 2d  is the width of the channel at the 

inlet, ( 1)m m   is the non-uniform parameters, the phase difference   varies in the 

range 0    , 0  represents to symmetric channel in which the waves are out of 

phase and when    the waves are in phase, and further 
1 2, ,a a d and  satisfies the 

condition :   

2 2 2

1 2 1 22 cos (2 )                                                                           .........(2 2)a a a a d    

of the Problem quationsEing overnGThe 2 -2 

    The constitutive equations for Walters-B fluid are: [53] 

    
1

0 1 0

,                                                                                                 ....

2 2 ,                                                               

......(2 3)S PI

e
e k

t




 



  

 



                       .........(2 4)
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1 1
1 1 1

( ) ,                                                                                          

( . ) ( ) ( ) ,                                                

.........(2 5)

  

T

T

e V V

e e
V e e V V e

tt





   


      




  .........(2 6)
 

 

Fig. (2-1): physical Sketch of the problem   

In which S is the Cauchy stress tensor, -PI is the spherical part of the stress due to 

constrain of incompressibility,  is the extra stress tensor, 
0  is the coefficient of 

viscosity, 
1e is the rate of strain tensor and

t




denotes the convicted differentiation 

of a tensor quantity in relation to the material motion, 
0k is the short memory 

coefficient. ( )V  is the fluid velocity gradient in the Cartesian coordinated system

( , ) and ( )TX Y V is the transpose of the fluid velocity gradient in the Cartesian 

coordinates ( , )X Y , they are defined as: 

,     ( )                                                .........(2 - 7)

U U U V

X Y X XTV V
V V U V

X Y Y Y

      
   
         

      
   
      
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1

Then

2 ( )

e =                                                                     .........(2 -8)

( ) 2

U U V

X Y X

U V V

Y X Y

   
 

   
   

 
   

 

Also we have: 

2 2 2

1

2 2 2

1

2 ( )
e

=                                                     .........(2 - 9)

( ) 2

2 ( )

( . ) ( )

( ) 2

(

U U V

X t Y t X t

t V U V

X t Y t Y t

U U V

X Y X
V e U V

X Y V U V

X Y Y

U

   
 

       
    

 
      

   
 

       
     

 
   



2 2 2 2 2 2

2 2 2

2 2 2 2 2 2

2 2 2

)2 ( )( )

( )( ) ( )2

2 2 ) ( )

( ) 2 2 )

U U V
V U V

X Y X X Y Y X

V U V
U V U V

X Y X Y X Y Y

U U V U V U
U V U U V V

X Y X Y Y XX X Y

V U V U V V
U U V V U V

X Y Y X X YX Y Y

      
   

       
       

   
       

      
   

       
      
            

1

                                                                                                                       .........(2 -10)

2 ( )

( )

( ) 2

U U V U U

X Y X X Y
e V

V U V

X Y Y








     
 

      
   

 
   

V V

X Y

 
 
 
  
 
  

2 2

2 2

2( ) ( ) 2

              ..........(2 -11)

2 ( ) 2( )

U V U V U U V U V V

X X Y X X Y Y Y Y X

U V U U V V U V U V

X X X Y Y X Y X Y Y

          
    

          
          

    
          
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1

2 ( )

( )     

( ) 2

U V U U V

X X X Y XTV e
U V V U V

Y Y X Y Y

      
  

       
      

  
      

 

2 2

2 2

0 0 0

0 1

0 0 0

2( ) ( ) 2

         ..........(2 -12)

2 ( ) 2( )

4 2 2

2

2 2 ) 4

U V V U U U U V V V

X X X Y X Y X X X Y

U U V V V U U U V V

X Y Y X Y Y Y Y X Y

U U V

X Y X
e

V U V

X Y Y

  



  

          
    

          
          

    
          

   


  
   


  

                                        .........(2 -13)

Now, write                                                                        .........(2 -14)
XX XY

Y X Y Y

 


 







 
  
 
 

 

And substitute (2-9), (2-10), (2-11), (2-12), (2-13) into eq. (2-4), thus we have the 

components of shear tensor    as follows: 

2 2 2
2

0 0 2
4 2 (2 2( ) 4( ) 2

( )                                                                                                  .........(2 15)

XX

U U U U U V
k U V

X X t X Y X XX

V U

X Y

 
     

     
      

 
 

 

 

2 2

0 0

2 2 2

0 0 2

2 ( ) 2 ( 2 ( )

( )  ( ) ( ) 2 )                          ....(2 16)

4 2 (2 2( )

XY Y X

Y Y

U V U V U U
k U V

Y X Y t X t X Y X Y

U V V U V U U V V V

Y X Y Y X X Y X X Y

V V V V
k U V

Y Y t X Y Y

  

 

       
       

         

         
      

         

   
    

     

24( ) 2 ( )

                                                                                                                       .........(2 17)

V U U V

Y Y Y X

   
 

   


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2-3 Calculation of Lorentz Force: [60] 

     To calculate the Lorentz force ( )J B , we will apply a magnetic field just in Y -

direction. The effect of this force on the fluid flow, will be analyzed. Now, apply 

magnetic field in Y -direction 0(0, ,0)B  and to calculate Lorentz force we start with: 

0

0

0

0                                                                             .........(1)

0 0

 ( )                                               

By definition (1.6.4)  we have :

i j k

V B U V B U k

B

J V B B U k 

  

  

2

0 0

0

                                      .........(2)

0 0                                                                 .........(3)  

0 0

and so;

 i

i j k

J B U B B U

B

    

where J  is the induced current and B is the magnetic field. It is observed that the 

effect of the magnetic field is appear on the flow in the X -direction only. 

2-4 Basic Equations of the Problem 

     The equations governing of the non Newtonian incompressible viscous 

Walter’s-B fluid are:  

The continuity equation is given by: 

0                                                                                               .........(2 18)
U V

X Y

 
  

 
 

The momentum equations are given by: 

2

0
0( ) ( ) ( ) .  

                                                                                                                           .........(2 19)

(

U U U P
U V B U UXX XY Kt X Y X X Y

V


   



     
       

     







0) ( ) ( )                .........(2 20)
V V P

U V VXY Y Y Kt X Y Y X Y


 

    
       

    
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of the Problem Solution of5 Method -2 

     In order to simplify the governing equations of continuity and motion, we may 

introduce the following dimensionless transformations as follows: 

1 2
1 2

2

1 2

0 0

2
20

0

0 0 0

, , , , , ,

, , , , ,

,Re , , , ,                  .........(2 - 21)

X Y ct U V H H
x y t u v h h

d c c d d

d P a a m d d
a b m

c d d d c

k ced d
M B d k k u v

d K y x

  


   

  

   

  

      


     

 
     

 

 

Where a, b are the amplitudes of the waves at the lower and upper walls of 

is stream function.channel,  

Substituting (2-21) into Equations.(2-18),(2-19) and (2-20)we get: 

From eq. (2-18) we have: 

 0     

0                                                                                        .........(2 - 22)

U V

X Y

c u c v

x d y





 
 

 

 
 

 

Multiplying both sides of (2-22) by ( )
c

  yields to:  

0                                                                                                     .........(2 - 23)
u v

x y

 
 

 
 

From eq. (2-19): 

2 0
0

2

0 0 0

2 2

2 0
0

( ) ( ) ( ) . 

(  )  

.

XX XY

xx xy

U U U P
U V B U U

Kt X Y X X Y

C C CC u C u C u P
Cu C v

t x d y d x d x d y

C
B Cu u

K


   

  
   

  




     
       

     

     
     

     

 
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2 2 2

0 0 0

2 2

2 0
0

(  )  

.

xx xy

C C CC u C u C C u P
u v

t x d y d x d x d y

C
B Cu u

K

  
  

   




     
     

     

 

 

2
20 0 0 0
02 2

(  )  .

                                                                                                                     .........(

xx xy

C C C CC u u u P
u v B Cu u

t x y d x d x d y K

   
   
 

     
       

     

2 - 24)

Now multiplying both sides of equation (2-24) by 
2

0

( )
d

C
 we have to get: 

2 2 2 2

0 0

2

0 0 0

2 2
2 0
0

0 0

2 2

0

0 0

(  )  

.

(  )  + .

xx xy

xx xy

C CC d u u u P d d
u v

C t x y x d C x d C y

Cd d
B uC u

C K C

B dCd d du u u P d
u v u u

dt x y x x y K

 
  
    




 


  

  

     
     

     

 

    
      

    

 

Which may be written as: 

2 2Re (  )  + .
u u u P

u v M u K u
xx xyt x y x x y

   
     

      
     

 

That is: 

2 2Re (  )  + ( )        .........(2 - 25)
u u u P

u v M K u
xx xyt x y x x y

   
     

      
     

 

From eq. (2-20): 

0

2

0 0 0 0

3 2

2 2 2

0 0 0 0

3 2

( ) ( ) ( )

( )

( )

xy yy

xy yy

V V V P
U V VXY Y Y Kt X Y Y X Y

C C CC v C v C v P
Cu C v C v

t x d y d y d x d y K

C C C CC v C v C v P
u v v

t x y d y d x d y K


  

     
    

  

      
  

   

     
      

     

     
      

     

     
      

     
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2

0 0 0 0

3 2
( )    

                                                                                                                       .........(2 -

xy yy

C C C CC v v v P
u v v

t x y d y d x d y K

     
 

 

     
      

     

26)

Now multiplying both sides of (2-26) by 
3

0

( )
d

C 
 will produce: 

2 3 3

0 0

2

0 0

3 3

0

0 0

2 2 2
2

2 2

0

( )  

.

( )  .

xy

yy

xy yy

C CC d v v v P d
u v

C t x y y d C x d

Cd d
v

C y K C

Cd d v v v P d d d
u v v

t x y y x y K

  


    

 


   


   

   

    
     

    






     
      

     

 

Which can be written as: 

3 2 2 2Re ( )   v               .........(2 - 27)xy yy

v v v P
u v k

t x y y x y
     

     
      

     

From eq. (2-15) we have: 

2 2 2 2 2 2 2
20 0

0 2 2 2 2

2 2 2 2 2 2 2
20 0

0 2 2 2 2

2

4
2 (2 2( ) 4 ( )

2 ( ).

4
2 (2 2( ) 4 ( )

2 (

xx

xx

C C u C u C u C u C u
k u v

d x x t x d x y x

v C C u C C v

x d y x

C C u C u C u C d u C u
k u v

d x x t x d x y x

v C d u

x d y

  


    

  

  

 


     

 

    
    

      

  
 

  

    
    

      

 
 

 

2
2

2
)).

C v

x








 

2 2 2 2
20 0

0 2 2

2

4
2 (2 2( ) 4( ) 2 (

))                                                                                                          .........(2

xx

C C u C u u u u v u
k u v

d x x t x x y x x y

v

x

 


 



      
      

        




- 28)
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Multiplying both sides of (2-28) by 
0

( )
d

C
 we get: 

2 2 2 2
20

0 2 2

0 0

2

2 2 2 2
2 20

2 2

0

4
2 (2 2( ) 4( ) 2

( )).

4 2 (2 2( ) 4( ) 2 ( )) 

xx

xx

C d u C d d u u u u
k u v

C x C d x t x x y x

v u v

x y x

k Cu d u u u u v u v
u v

x d x t x x y x x y x




   



  
 

    
     

      

  


  

       
      

         

 

Thus we have: 

2 2 2
2 2 2

2
4 2 (2 2( ) 4( ) 2 ( ))

                                                                                                                    .........(2

xx

u u u u u v u v
K u v

x x t x x y x x y x
   

       
      

         

- 29)

 

From eq. (2-16): 

2 2

0 0

2 2 2 2

0
0 0 2

2 ( ) 2 ( 2 ( )

( )  ( ) ( ) 2 ).

2 ( ) 2 ( 2

(

XY

xy

U V U V U U
k U V

Y X Y t X t X Y X Y

U V V U V U U V V V

Y X Y Y X X Y X X Y

C C u C v C u C v C u C u
k

d d y x d y t x t x d y

C C
u v

x d

 

  
 

   





       
      

         

         
     

         

     
     

       

 




2 2 2 2 2

0
0 0 2

)( )  ( ) (

) 2 )

2
2 ( ) 2 ( (

)( )  

xy

C u C v C v C u C v C u C u

y d y x d y d y x x d y

C v C v C v

x x d y

C C u C d v C u C d v C u u C
k u

d d y x d y t x t d x y

C d C u C d v C d v
v

x d y d y x d

  

  

  

 


 

      

   

      
   

       

  
 

  

     
     

       

    
  

    

2 2

2

( ) (

2
) ).

C u C d v C u C u C

y d y x x d y

d v C d v v

x d x y

   

  

   
  

   

  


  
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2 2 2 2 2

0
0 0 2

2
2

0
0

2
2 ( ) 2 (

( )( )  ( ) (

2
) ).

2 (

xy

xy

C C u C d d v C u C d d v C u u
k

d d y d x d y t d x t d x y

C C u C d d v C v C u C d d v C u C u
u v

x y d y d x y d y d x x d y

C d d v C v v

d x d x y

C C u

d d y


 

     

      


  


  

     
     

       

        
     

        

  


  


 



2 2 2 2 2
2 2

0

2 2

2
2 2

2 2 2
2 20 0

0

2
) 2 (

( )( )  ( ) (

2
) ).

2
( ) 2 ( 2xy

v C u C v C u u
k

x d y t d x t d x y

C C u v C C v u v C C u u
u v

d x y y x d y y x d x y

v C v v

x d x y

C C u v C u v u
k

d d y x d y t x t x


  

 
  

 


 
  



    
   

      

        
     

        

  


  

    
    

      

2 2 2 2

( )

( ) ( ) ( ) 2 ).               ........(2 - 30)

u
u v

y x y

u v v u v u u v v v

y x y y x x y x x y
   

  
 

  

         
     

         

 

we get: 
0

( )
d

C
30) by-2. (sides of eqMultiplying both  

2 2 2
2 20

0

0 0

2 2 2 2

2 2
2 20

0

2
( ) 2 ( 2 (

)( ) ( ) ( ) 2 ).

2
2( ) ( 2 (

xy

xy

C d u v C d u v u u
k u

d C y x d C y t x t x y x

u v v u v u u v v v
v

y y x y y x x y x x y

k Cu v u v u u
u

y x d y t x t x y


  

  

   

   


      
     

        

          
      

          

      
     

       

2 2 2 2

2 2
2 2

2 2 2 2

)(

) ( ) ( ) 2 ).

2( ) ( 2 ( )(

) ( ) ( ) 2 ).     

xy

u
v

x y y

v v u v u u v v v

x y y x x y x x y

u v u v u u u
k u v

y x y t x t x y x y y

v v u v u u v v v

x y y x x y x x y

   

   

   

 
 

  

        
    

        

        
       

          

        
    

        
                 .........(2 - 31) 
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From eq. (2-17): 

2 2 2
2

0 0 2

2 2 2 2 2 2

0
0 0 2 2 2

2

0 0
0

4 2 (2 2( ) 4( ) 2 ( )

2
4 2 ( 2( ) 4

( ) 2 ( )).

4
2 (

Y Y

yy

yy

V V V V V U U V
k U V

Y Y t X Y Y Y Y XY

C C v C v C v C v C
k Cu C v

d d y d y t d x y d y d

v C u C u C v

y d y d y x

C C v
k

d y

 

     
  

 





 




       
      

        

   
    

     

   
 

   


 



2 2 2 2 2 2 2
2

2 2 2 2 2

2

2 2 2 2 2 2 2
20 0

0 2 2 2 2 2

2 2
2

2 2

2 2( ) 4 ( )

2 ( ))

4
2 (2 2( ) 4 ( )

2 ( )).

yy

C v C v C v C v
u v

y t x y y y

C C u u v

d d y y x

C C v C v C v C v C v
k u v

d y y t x y y y

C u u v

d y y x

   



 


    






   
   

     

  


  

    
     

      

  


   

2 2 2 2
20 0

0 2 2 2

2

4 1
2 (2 2( ) 4( ) (

)).                                                                                                      .........(2 -

yy

C C v C v v v v u u
k u v

d y y t x y y y y y

v

x

 


  



      
     

        





32)

 

:implies to 
0

( )
d

C
32) by -Multiplying both sides of (2 

2 2 2 2
20

0 2 2 2

0 0

2

2 2 2
2 20

2 2 2

0

2
20

0

4 2
2 (2 2( ) 4( ) (

)). 

2
4 2 (2 2( ) 4( ) ( )).

4 2 (2

yy

yy

yy

C d v C d v v v v u u
k u v

C y C y t x y y y y y

v

x

k Cv d d v v v v u u v
u v

y d y t x y y y y y x

k Cv v

y d




    



  
  

  


      
     

        






       
      

         

 
 

 

2 2
2 2

2 2

2
2( ) 4( ) ( )).

v v v u u v
u v

y t x y y y y y x




     
    

       
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Which can be written as  

2 2 2
2 2 2

2

2 2 2
2 2 2

2

4 2 ( (2 2( ) 4( ) ) 2 ( )).

4 2 [ (2 2 2 4( ) 2 ) 2( ) ]

                                                  

yy

yy

v v v v v u u v
K u v

y y t x y y y y y x

v v v v v u v u
K u v

y y t x y y y y x y

   

  

       
      

         

       
      

         

                                                                     .........(2 - 33)

 

Now, under the assumption of long wave length ( 1)   and low Reynolds number, 

the Eqs.  (2-25), (2-27) can be written as: 

2 2
(                                                                                   .........(2 - 34))

 = 0                                                                            

xy

p
k u

x y

p

y

M
 

 
 







                              .........(2 - 35)

Introduce the stream function ,u v
y x

  
 
 

in eqs. (2-31), (2-34) we have: 

2 2

2 2 3 3 2 2 3
2 3

2 2 2 2 2 2

3
3

(                                                                              ) .........(2 - 36)

2( ) 2 ( 2

xy

xy

p
k

x y
M

y

K
y x y t x t x y y y x y

y




       
     




 
 

 






       
      

           

 



3 3 2 2
3 3

3 3 2 2
2 )                         ..........(2 -37)

x x y x x y x x y

      
  
     

  
        

 

onditionsCoundary Bnd alow Folume Vf oRate 6 -2 

]58n laboratory frame, the dimensional volume flow rate is:[I      

2

1

( , )

( , )

( , ) ( , , ) ,                                                               .........(2 -38)

H X t

H X t

Q X t U X Y t dY   

     In which 1H  and 2H are functions of X  and t . In wave frame, the dimensional 

volume flow rate is  

2

1

( )

( )

( , ) ,                                                                                  .........(2 -39)

H X

H X

q U X Y dY   
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If we introduce the wave frame having coordinates ( , )X Y  which travel in the X -

direction with the same wave velocity C. Then the unsteady flow in the laboratory 

frame ( , )X Y  can be treated as steady. The coordinates and velocities in the two 

frames are related by: 

,   y ,   ( ,y) ( , , ),   ( ,y) ( , , )     .........(2 - 40)x X Ct Y u x U X Y t v x V X Y t      

Substituting Eq. (2-40) in Eq. (2-38) we obtain: 

2 1,                                                                          .........(2 - 41)Q q C H C H    

The time averaged flow over a period 2( )T
C

  at a fixed position X is defined as: 

2

2 0

1
,                                                                                       .........(2 - 42)

T

Q Qd t
T

   

If we substitute Eq. (2-41) into (2-42) and by integration, we get: 

2 1

2 2
sin[ ( )] - sin[ ( ) ]                                  .........(2 - 43)Q q a c x ct ac x ct

 


 
      

If we find the dimensionless mean flow F, in the laboratory frame and , in the 

wave frame, according to: ,  =
Q q

F
cd cd


 

 one can find eq.(2-43) to be: 

( , ) sin[2 ( ) ] sin[2 ( )]                            .........(2 44)F x t a x t b x t           

In which, 

2

1

( )

2 1

( )

( ) - ( )                                                                   .........(2 45)
h x

h x

F dy h h
y


 


 


  

Here it is pointed out that the conditions on   satisfy Eq.(2-45) and the conditions 

on 
y




are no-slip. 
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Selecting 2( )
2

F
h  , then we have 1( )

2

F
h


 . The boundary conditions in 

dimensionless stream function will take the following form: 

 

 

2

1

,  0,    
2

 ,  0,                                                                      .........(2 46)
2

F
at y h

y

F
at y h

y








  



 
   



 

In which  

2

1

 1 sin(2 ( ))

 1 sin(2 ( ) )                                                       

h mx b x t and

h mx a x t



 

   

     
 

the non-dimensional expression for the average rise in pressure p  is given as 

follows: 

1 1

0

0 0

(  )                                                                                   .........(2 47)y

p
p dxdt

x



  

 
 

of the problem erturbation AnalysisP7 -2 

     It is clear that from the resulting equation of motion Eq. (2-35), p is independent 

of y and the Eq. (2-36) is nonlinear. It seems to be impossible to obtain the general 

solution in closed form for orbitary values of all parameters arising in this nonlinear 

equation. We seek the solution of the problem as a power series expansion in terms 

of small parameter . (regular perturbation technique), thus we expand , , xyF and 

p as follows: 

0 1

0 1

0 1

0 1

.............

..............

( ) ( ) ..........

........                                                                                                   ........(2

xy xy xy

F F F

p p p

  



   



  

  

  

   48)

 

Now substituting Eq. (2-48) back into Eqs. (2-36) and (2-37), (2-44) and (2-46). 

Thus we get: 
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2 20 01 1
0 1

2 2 32 2 3
20 0 01 1 1

0 1 2 2 2 2 2 2

3 23 2
3 0 01 1

2 2

[( ( (

( (

( ) ) ) ] )( ).

That is

) ) 2[( ) ( ) 2 [ ( )

( ) 2 ( )

xy xy

xy xy

x x y y y

y y x x y y

x x x x

p p
M K

K
t t

t t y y

 
    

    
       

  
   

   
 

    

    

     

  

   

   

      
 

   
   

2 2

0 01 1

2 2

3 3 33 3
30 0 0 0 01 1 1 1

2 2 3 3 3

3 2 23 3 2
3 30 0 0 01 1 1 1

3 2 2 2 2

.( ) ( )

 ( ) ( ).( ) ( )(

) ( ).( ) 2 ( )( 

y y y y

y y y y x x

x x x x x

x x x x y

y x y x y

  
  

       
     

      
     

  

   

       

     

      

    

  

     
    

     
    

2

1 )]                                                                                                     .........(2 - 49)
x

y

y











  

Now, collecting the coefficient of like power of , thus one can get the zeroth and 

first order equations as: 

2-7-1 Zero's- order system (0)( )  

20
0 1

2 2 2

1

0( )                                                                             .........(2 - 50)

    ( );

xy

p
N

x y y

where N M k




 
 

  

 

 

2

0
0 2

( ) 2                                                                                              .........(2 -51)
xy y








 

Differentiating eq. (2-50) with respect to y implies to: 

22
2 0

0 12 2
0 ( )                                                                   N

xyy y





 
 

 

Which can be written as: 

4 2
20 0

14 2
0 2( )                                                                                 .........(2 -52)N

y y

  
 

 
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With the corresponding boundary conditions: 

 

 

0 0
0 2

0 0
0 1

, 0,  
2

, 0,                                                                              .....
2

  ....(2 - 53)

F
at y h

y

F
at y h

y








  



 
  



   

2-7-2 First order system (1)( )  

21 1
1 1

3 3 2 22

0 0 0 0 0 01
1 2 2 3 2

                                                                                     ( ) .... . ..(2 - 54)

( ) 2 2 [ 2 ]            

p
N

x y yxy

K
xy y y x y x y x y y




     


  
 

  

     
   

        
        ........(2 - 55)

Differentiating eq. (2-54) with respect to y, we have:  

3 3 2 24 2 2
2 0 0 0 0 0 01 1

14 2 2 2 3 2
0 2 2 [ 2 ]            .......(2 -56)N K

y y y y x y x y x y y

              
    

          

 

 

1 1
1 2

1 1
1 1                                                                                   ..  

, 0,  
2

, 0,     .......(2 - 57)
2

The corresponding boundary conditions are :

F
at y h

y

F
at y h

y








  



 
  



 

2-8 Solution of the Problem 

     In this section we have given the solution of the zero and first order systems: 

2-8-1   Solution for the zeroth order system (0)( )  

      It is found that the solution of equation (2-52) under the associated boundary 

condition (2-53) is given by:  

1 1

0 2 1 2 2 3 4

1
1 2 2

1

                                                                      .........(2 -58) 

2
( ; );                                                 

2

n y n y
n e a n e a a a y

N
where n n

N




   

 
  

,( 1,2,3,4)ia i   are constants can be obtained by using the boundary conditions in 

Eq.(2-53).  
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2-8-2 Solution of the first order system (1)( )  

   If we solve the equation (2-56) under the associated boundary conditions (2-57) 

we can find the solution of the first order system as follows: 

1 1

1 1 2 1

1

( )2 2

1 1 2 3 4 0 1 1 2 6 12 2

1 1

2 2

1 4 5 1 1 5 1 1 2 1 1 1 1 1

22 2

3 5 1 1 5 1 1 2 1 1 1 1 1

( (2 ( ( ) ( 5

2 ) (23 5 6 2 2 (5 2 ) ( 5 2 ))

( 23 5 6 2 2 (5 2 ) ( 5 2 ))

n y n y
n y h h n

h

n
n n

n n

n n

e e
c c c c y e F e h h h n

n y h h n n y h y y h n n y h n n y

h h n n y h y y h n n y h n n y e





        

          

           1

2 1

2 2

6 1 1 2 1 1 4 1 1 5 1 1 3

22 2 2

5 1 1 5 1 1 2 1 1 1 1 1

2 2 2

6 1 1 2 1 1 4 1 5 1 1 5 1

2 1

( ( 2 )( 5 2 ) ( 13 2 2 (5 2 ))

(33 5 10 2 2 2 (5 2 ) 2 ( 5 2 ))

( (2 )( 5 2 ) ( 33 2 5 10 2

2 (5

n

h n

n n

n n

n

h h n h n n y h y y h n n y h

h n n y h y y h n n y h n n y e

h h n h n n y h y h n n y h n y

h n

            

         

           

1 1 2 1

2 2

1 1 1 1 3 1 1 5 1 1

2 3

1 1 2 1 1 1 2 1

2 ) 2 ( 5 2 ) (13 2 2 (5 2 )))
   

(8( ( 2 ) (2 )) )

                                                                                                 

h n h n

n nn y h n n y h y y h n n y K

e h n h n e h n h n

        

     

                    .........(2 - 59)

 

2 cos(2 ( ) );
3

2 cos(2 ( ));
4

sin(2 ( )) sin(2 ( ) );
5

2 cos(2 ( )) 2 cos(2 ( ) );  
6

where

h m a x t

h m b x t

h b x t a x t

h b x t a x t

  

 

  

    

    

  

    

    

 

And 1 2 3 4, , , c c c c are constants can be determinates by using the boundary conditions 

in Eq. (2-57) and software of “MATHEMATICA” program. 

2-9 Results and Discussion 

     In this section, the numerical and computational results are discussed for the 

problem of peristaltic transport of an incompressible non Newtonian Walter’s-B 

fluid under the effect of normal magnetic field through porous medium in a tapered 

asymmetric channel with the help of using non-slip conditions. Analytical results 

are shown by using regular perturbation technique for small value of wave number       

 under the assumption of long wave length and low Reynolds number 

approximations, and using series for stream functions, axial velocity, pressure 
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gradient and mean flow rate F. The effects of some important various parameters 

are displayed graphically. 

1 Pumping characteristics -9-2 

       We plot the expression for p in Eq. (2-47) against   for various values of 

parameters of interest in Figs. (2-2)- (2-7). Numerical calculations for several 

values of Hartmann number (M), the phase difference ( ), the non- uniform 

parameter of the channel (m), porosity parameter (K), the amplitudes of upper and 

lower walls   ( &a b ) have been carried out. The effect of these parameters on p

have been evaluated numerically using “MATHEMATICA” programm and the 

results are presented graphically. In fig. (2-2), the effect of Hartmann number M on 

p are seen, observed that in the pumping 0p  and the co-pumping ( 0p  )for the 

Walters-B fluid, an increase in M causes decreasing in the pumping 0p   and 

increasing in pumping 0p  . In Fig. (2-3), the effect of phase difference   on p is 

showed, observed that an increase in   causes increasing in the co-pumping (  

0p  ) and decreasing in the pumping 0p  . The effects of non-uniform 

parameter m as well as the amplitude of lower wall of channel a are plotted 

respectively in Figs.(4) and (5), it examined that an increase in m and a causes an 

increase in the pumping  0p   and decrease in the free pumping 0p   and co-

pumping 0p  . The influence of amplitude of upper wall of channel  b and 

porosity parameter K on p are illustrated respectively in Figs.(6) and (7), it noticed 

that there is rise up in the pumping  0p   and free pumping  0p   and the 

pumping will be reduce in the region of 0p  with an increase of privous 

parameters. 

distribution 2 Velocity-9-2 

     Influences of geometric parameters on the velocity distribution have been 

illustrated in Figs.(2-8)-(2-17), these figures are scratched at the fixed values of 

x=0.3, the change in values of m on the axial velocity u is shown in fig.(2-8), it can 

be found that the axial velocity u decrease with an increase in m at the center of 

channel but after y=0.6, y=-0.7 of the upper and lower parts of the channel 

respectively, the velocity u will be increased. Fig.(2-9) shows the influence of  on 

the axial velocity u, it observed that an increase in   causes an increase in magnitude 
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of u  at the core and walls of  the channel opposite behavior is seen for  the effect 

of a on the axial velocity u, it which is plotted in .Fig.(2-10), (2-11) illustrated the 

influence of  b on the axial velocity u, it is examined that an increase in b results an 

increase in u at the center and walls of channel , but after y=0.5, The velocity will 

be reduce at the upper wall of channel. The influence of M on the axial velocity u 

is shown in Fig. (2-12), it noticed that an increase in M yield an decrease in u at the 

center of channel, but the flow of fluid will be inflected after the values of y=o.4, 

y=-o.5 at the upper and lower sides of the channel and so the velocity will be 

increased. Similar behavior is shown for the effect of k on the axial velocity, and 

its effects is plotted in figure (2-13), we can say that the reason behind this behavior 

is due to the obstruction that is obtained by the porosity parameter, also because of 

resistive nature of the Lorentz force when the magnetic field of strength B0 is 

applied in the normal direction of the flow fluid. Figure (2-14) give the impact of 

volume flow rate   on the velocity, which in turn increase the amount of velocity 

at all regions of flow. Conversely conduct is observed for the effect of t on the 

velocity of fluid and it is noted it’s graph in figure (2-15). In figure (2-16), the 

impact of perturbation parameter ( ) is noticed, it is examined that the fluids flow 

will be increase at center but it is decreased after y=0.6 and y=-0.6 of both sides of 

channel, which can say that the velocity of fluid in the non-Newtonian case is much 

more that in new case of the fluid. Like manar is showed for the effect of K on the 

axial velocity, its graph can be seen in figure (2-17). 

2-9-3 Trapping phenomenon  

     The phenomenon of trapping is another interesting topic in peristaltic transport. 

The formation of an internally circulating bolus of fluid through closed stream lines 

is called trapping and this trapped bolus is pushed a head along with the peristaltic 

waves. The trapping for different values of m, ,a, b, M, K and   are shown in 

Figs.(2-18)-(2-27). The stream lines for different values of m are shown in Fig.(2-

18), it has been noticed that the bolus decreasing in size in the lower and upper wall 

of the tapered channel with increasing m. the streams for different values of   are 

shown in fig.(2-19), it is examined that the size of bolus increase with an  increase 

of  . Effect of a are shown in fig.(2-20), it is noticed that the size of bolus reduced 

in the lower and upper part of channel with an increase of a, but the wobbling impact 

is shown on internal bolus. Figs. (2-21) and (2-22) shows the effects of b and   
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respectively and it is observed that the size and number of trapping bolus increase 

with an increase of these parameters. The influences of M and K are plotted in 

figures (2-23) and (2-24) respectively, an increase in the magnitude of these last 

parameters results small size and number of bolus in both parts of channel. Opposite 

behavior is noted for the effects of  and K  and their graph are noticed in figs.       

(2-25) and (2-26) respectively. Figure (2-27) give the behavior of parameter t on 

bolus, which is showed that the bolus is unchanged in shape with an increase of t, 

we can explain this case because of steady treatment. 

2-10 Concluding Remark 

     In this chapter, we investigated the peristaltic transport of Walters –B fluid 

through a porous medium in a tapered a symmetric channel under the influence of 

magnetic field. The channels a symmetry is produced by choosing the peristaltic 

waves train on the non- uniform walls to have different amplitudes and phases, 

along-wave length and low Reynolds number approximations are adopted. A 

regular perturbation method is employed to obtain the expression for stream 

function, axial velocity and pressure gradient.  Numerical study has been conducted 

for average rise in pressure over a wave length. The effects of Hartmann number 

(M), porosity parameter (k), wave amplitudes (a &b), non-uniform parameter (m) 

and phase angle   on the pressure rise, axial velocity and stream lines are also 

investigated in detail. It found that: 

1.  The pressure rise over a wave length p increase with an increase of m, a in the 

pumping 0p  while the situation is reversed in the free pumping 0p  and Co-

pumping 0p   

2. The pressure rise over a wave length p increase with an increase in b, k in the 

pumping 0p  and free pumping p o  while the situation is reversed in the Co-

pumping 0p   

3. The pressure rise over a wave length p increase with an increase of M in the 

pumping 0p  while the situation is conversely in the pumping 0p   and Co-

pumping 0p   
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4.  The pressure rise over a wave length p increase with an increase in  in the Co-

pumping 0p   and it's conversely in the pumping 0p  . 

5. The lines of pressure rise against mean volume rate   is intersected lines. 

6.  The relation between pressure rise and volume flow rate   is some what to be 

linear by the effect of M and to be non-linear by the effect of a, m, k, b, . 

7.   The axial velocity u increased at all regions of flow with an increase of   and    

but the case is conversed with an increase of a, t. 

8.  The axial velocity u increase at the center of channel with an increase of , ,K b

but the flow is reflected at the walls of channel. Opposite behavior is noted with an 

increase of m, k, and M. 

9.  The size of trapping bolus increased with an increase of ,   and K  but they have 

small volume with an increase of m and M. 

10. The number and size of bolus is rise up with an increase of b and   but the 

conversely statement is seen with an increase of k. 
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Introduction  
      Peristalsis is now well known to physiologists to be one of the major 

mechanism for fluid transport in many biological systems. In the living systems 

peristalsis is the mechanism to propel food stuffs through esophagus and the 

vasomotion of small blood vessels. Engineers developed pumps having 

industrial and physiological applications adapting the principle of peristalsis. 

Also, finger and roller pumps are frequently used for pumping corrosive or very 

pure materials so as to prevent direct contact of the fluid with the pumps internal 

surfaces. The problem of the mechanism of peristaltic transport has attracted. 

The attention of many investigators and the first investigation of Latham [61]. 

The fundamental studies on peristaltic transport were performed by fung and 

Yih[34] using laboratory frame of reference. And then by Shapiro et al.[96] 

using wave frame of references. A number of analytical, numerical and 

experimental studies of peristaltic flows of different fluids have been reported 

by [21, 109, 110, 104, 106, 107, 108], the peristaltic fluid flow through channels 

with flexible walls has been studied by Ravi Kumar et al   [86, 87]. 

      Peristalsis is an important physiological mechanism for mixing and 

transporting fluids, which is generated by a progressive wave of area contraction 

or expansion moving on the wall of the tube containing fluid. The peristaltic 

fluid flows involving Newtonian and non-Newtonian fluids have been studied 

by [111, 72, 14, 38, 7, 39] and others. The magneto hydrodynamic (MHD) flow 

of the fluid in a channel with peristalsis is of interest in connection with certain 

flow problems of the movement of conductive physiological fluids e.g. The 

blood and blood pump machines, and with the need for theoretical research on 

the operation of peristaltic MHD compressor. Blood is regarded as a suspension 

of small cells in plasma. Moreover, it is known that in blood flows in two layers, 

arteries, a core layer and the plasma layer near the wall consisting of suspension 

of cells in the plasma. The red blood cells, which contain iron, are magnetic in 

nature, the core may be treated as magnetic field. Abd El Hakeem et al [8] has 

been studied by effects of a magnetic field on trapping through peristaltic motion 

for generalize Newtonian fluid in a channel. Non-linear peristaltic flow of a non-

Newtonian fluid has been studied by [51, 47]. Recently, the study of (MHD) 

flow of electrically conducting fluids on peristaltic motion has become a subject 

of growing interest for researchers and clinicians. This is due to the fact that such 

studies are useful particularly for pumping of blood and magnetic resonance 

imaging. Theoretical work of Agarwal and Anwaruddin [11] explored the effect 

of magnetic field on the flow of blood in atherosclerotic vessels of blood pump 

during cardiac operations ALi et al. [15] observed that an impulsive magnetic 

field can be used for a therapeutic treatment of patients who have stone 

fragments in their urinary tract. Many authors [23, 77] suggested the presence 

of red blood cell slip at the vessel wall. Misra and Kar [70] solved the problem 

of blood flow through a stenos vessel by taking into considering the slip velocity 
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at the wall by using the momentum integral technique. While flowing through 

the arterial tree, blood carries a large quantity of heat to different parts of the 

body on the skin surface, the transfer of heat can take place by any of the four 

processes: radiation, evaporation, conduction and convection. It may further be 

mentioned that blood flow enhances when a man performs hard physical work 

and also when the body is exposed to excessive heat environment. In case like 

these, blood circulation cannot remain normal. In order to take care of the 

increase in blood flow, the dimensions of the artery have to increase suitably. It 

is known that when the temperature of the surrounding-exceeds 20 0c , heat 

transfer takes place from the surface of the skin by the process of evaporation 

through sweating and when the temperature is below 20 0c , the human body 

loses heat by conduction and radiation. Blood flow with radiative heat transfer 

was discussed by Ogulu and Bestman [80] on the basis of a theoretical study. 

The study of heat transfer analysis is an important area in connection with 

peristaltic motion, which has industrial applications such as sanitary fluid 

transport, blood pumps in heat lungs machine and transport of corrosive fluids 

where the contact of fluid with the machinery parts is prohibited. In the above 

mentioned studies fluids viscosity is assumed to be constant. There are few 

attempts [24] in which the effects of variable viscosity in the  peristaltic 

mechanisms have been considered. These studies considered the viscosity to be 

a function of space variable in the form of an exponential function. In a typical 

situation must of the fluids have temperature dependent viscosity and this 

properly varies significantly when large temperature difference exists. Recently, 

Sinha et al. [98] have examined the peristaltic motion of (MHD) flow of blood 

with variable viscosity depend on space with effect of slip conditions on the 

velocity and temperature, therefore there is no attempt is available in the 

literature which deals with the problem of peristaltic transport in an asymmetric 

capillary blood vessel with variable viscosity and the effect of non-slip 

conditions on the velocity and temperature. 

      So, in the present work, the aim of this chapter is to examine the peristaltic 

motion of (MHD) flow of blood and heat transfer in a tapered asymmetric 

channel through porous medium with variable viscosity and non-slip conditions 

on the velocity and temperature. The energy equation is formulated by including 

a heat source term which simulates either absorption or generation the governing 

equations of motion and energy are simplified using long wave length and low 

Reynolds number approximation. The nonlinear differential equation are solved 

analytically by using of perturbation method for small values of Reynolds model 

viscosity parameter. Series solutions for stream function, axial velocity and 

pressure gradient are given by using the regular perturbation technique. 

Numerical computations have been performed for the pressure rise per wave 

length. The effects of the physical parameters on these distributions are 

discussed and illustrated graphically through a set of figures.  
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of the Problem odelM MathematicalThe 1 -3 

       Let us consider the MHD flow of blood and heat transfer through a porous 

medium of two –dimensional tapered a symmetric channel. We assume that 

infinite wave train traveling with speed c along the non –uniform walls. We 

choose a rectangular coordinate system for the channel with X along the 

direction of wave propagation and parallel to the center line and Y transverse to 

it. The wall of the tapered a symmetric channel are given in eq. (2-1) by               

fig. (2-1). 

3-2 The Governing Equations of the Problem 

     It is well known that the second grade fluid has extra stress tensor  of the 

following form: [98] 

2 ( )                                                                                                       ......(3-1)Y e 

where ( )Y  is the viscosity function and  e is the strain. 

The Rivilin-Ericksen tensors are given by: 
 

1 [ ( ) ]                                                                                    ......(3- 2)
2

Te V V   

where ( V ) is the fluid velocity gradient in the Cartesian coordinates ( , )X Y  

and  ( )TV is the transpose of the fluid velocity gradient in the Cartesian 

coordinates (x,y), they defined as: 
 

 

,     ( )                                               ......(3 - 3)

Then

1 ( )
2

e =                     

1 ( )
2

U U U V

X Y X XTV V
V V U V

X Y Y Y

U U V

X Y X

U V V

Y X Y

      
   
         

      
   
      

   
 

   
   

 
   

                                     ......(3 - 4)

 

 

Now, substituting equation (3-4) into (3-1), we get: 
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1 ( )
2

2 ( )                                              . ....(3 - 5)

1 ( )
2

U U V

X Y X
Y

U V V

Y X Y

 

   
 

   
   

 
   

 

Thus the components of stress will be: 
 

2 ( )

( )( )

2 ( )                                                                                               .....(3 - 6)

XX

XY Y X

Y Y

U
Y

X

U V
Y

Y X

V
Y

Y

 

  

 






 
  

 






 

 

3-3 Basic Equations of the Problem  

     In the laboratory frame, the equations governing of the two-dimensional 

motion of an incompressible MHD flow of blood and heat transfer through a 

porous medium with the effect of variable viscosity depend on space. 

0                                                                                                                 ......

 ( ) 2 ( ( ) )

 [ ( )( )

(3 7)
U V

X Y

U U U P U
U V Y

t X Y X X X

V U
Y

Y X Y

 



 
 

 

     
     

     

  
 

  



2

0 1 0

0

( )
] ( ) .                                        .....(3 8)

Y
B U g T T U

k


  


    

 

0

2

1

( ) 2 ( ( ) )

( )
 [ ( )( )] .                                                                                     

( ) [

 ......(3 9)

V V V P V
U V Y

t X Y Y Y Y

V U Y
Y V

kX X Y

T T T T
C U V k

t X Y


 






     
     

     

  
  

  

   
  

  



2

02 2
]                                                         

( ) ( )
.......(3-10)     

T
Q

X Y


 

 

 

in which ( , )U V  are velocity component in the direction of the laboratory frame, 

( , )X Y , 
1  is the Coefficient of thermal expansion,   is variable viscosity. 

     In order to simplify the governing equations of motion, and temperature, we 

may introduce the following dimensionless transformations as follows: 
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2

1 2 1 2
1 2

0

2
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0

0 0 0 0 0

2

1 0

0

,  ,   ,   ,   ,   ,   ,   ,   ,   ,  
  

( )   
, ,   ( )  ,   ,   Re ,   ,   ,   

  ( ) 
 , r

 

 

X Y ct U V H H d P a a
x y t u v h h p a b

d c c d d c d d

m T T d c d d
m y M B d k

d T k

g T d
G r P

c

Y

    

   
  

   

 



         

 
      

 

2
0 0

1 1 0

,                                                                                   
( )

  
.....(3 -11)

 

C Q d

k k T


 

 

In which 
0T  is the temperature of the lower wall and upper wall and   is 

source\sink parameter.   

Substituting Eq. (3-11) into Eqs.  (3-7)- (3-10) we get: 

Eq. (3-7) is transformed automatically. 

From eq. (3-8): 

2

0

1 0

0

2

0
.0 02

2

0 12

( ) 2 ( ( ) ) [ ( )( )]

( )
( ) . 

1 1
(  ) 2 ( . ( ) ) +  [
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        
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
  

      
    
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 
  
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0
0

0

2 2

0
0 02 2

2 0
0 12

0
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0
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2
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0
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


  
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 
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0

2
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0 1 02 2 2

0
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u
y y

x y

yC v C u
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x d y K

 

 
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 

 

 

 
   
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Thus we have after some simplification: 

2

0
0 02 2

2
(  ) ( . ( ) ) + [ . ( )

CC u u u P C u
u v y y

t x y d x x x y


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2 0
0 1 02 2

0

. ( )1
( )] ( ) .                             .......(3-12)

yC v u
B Cu g T Cu

x y K

 
   

 

 
   

 

Now multiplying both sides of equation (3-12) by 
2

0

( )
d

C 
 we have: 

2 2 2

0
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2 2 2
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0 1 02
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Thus we obtain that: 

2 2
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Which can be written as: 
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2
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 ...(3-13)

From eq. (3-9): 
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Thus we have after some simplification: 
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Now multiplying both sides of (3-14) by 
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Which can be written as: 
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

   

    
    

    


          

Thus we have: 

2 2 2 2
2

0 0 0 0 0 02 2

1 1

. ( ) [ ]           ......(3-17)
C d d

C T uT vT T T Q
k t x y x y k



    
 



    
    

    

Multiplying both sides of (3-21) by 
0

1
( )
T

 we get: 

2 2 2 2
2

0 02 2

1 0 1 0

22 2 2
20 0

2 2

1 0 0 1

1 1
( ) [ ] .

( ) [ ]

C d d d
C T u v Q

k T dt x y x y k T

Q dC d d
C u v

k dt x y x y T k





    
 



     
 

 

   
    

   

   
    

   

 

Thus we have after some simplification: 

2 2
0 2

2 2

0 1

( ) [ ]
pCCd d

u v
k t x y x y

     
 

 

    
    

    
 

Which can be written as: 

2 2
2

2 2
Re Pr( ) [ ]                                            ......(3-18)u v

t x y x y

    
  

    
    

    

Now, under the assumption of length ( 1)   and low Reynolds number, the 

Eqs.  (3-13), (3-15) and (3-18) can be written as: 
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2 2

2

0 [ ( ). ] ( )                               .....(3 -19)

0                                                                                                     .....(3 - 20)

0 =

p u
y M u Gr k y u

x y y

p

y

  
  

     
  






2

                                                                                           .....(3 - 21)
y






Introduce the stream function ,u v
y x

  
 
 

into eq. (3-19) then we have: 

2
2 2

2
0 [ ( ). ] ( )                      .....(3 - 22)

p
y k y Gr

x y y y y

  
   

    
     

    
 

3-4 Rate of Volume Flow and Boundary Conditions  

     In order to discuss the results quantitatively, we assume the instantaneous 

volume rate of the flow F(x, t) is periodic in (x-t), [58] 

( , ) sin(2 ( ) ) sin(2 ( ))                                    .....(3 23)F x t a x t b x t           

In which     is the mean flow rate in the wave frame, F is the mean flow rate in 

the laboratory frame and  

2

1

2

1

2 1    = ( ) ( )

h

h

h

h

F udy

dy h h
y


 




 







 

Selecting
2( )

2

F
h  , we have  

1( )
2

F
h


  

The boundary conditions in dimensionless stream function with now take the 

following form: 

 

 

2

1

, 0   and  = 0   
2

                                                    ......(3 24) 

, 0  and = 0  
2

F
at y h

y

F
at y h

y


 


 

 
   

 
  

    
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2

1

In which   

1 sin(2 ( ))  

1 sin(2 ( ) )

h mx b x t

h mx a x t



 

   

     

  

 The non-dimensional expression for the average rise pressure p  is given in eq. 

(2-47): 

3-5 Reynolds Model of Viscosity  

     The Reynolds model of viscosity is used to describe the function of space (y) 

which is defined as: [98] 

( )                                                                                                     .....(3- 25)yy e  

Using the maclaurin series expansion the above expression can be written as: 

( ) 1 ,    for <<1                                                                           ......(3- 26)y y     

   = 0Here   Corresponds to the constant viscosity case where  is Reynolds 

model viscosity parameter. 

Compensating equation (3-26) into equation (3-22) we have: 

2
2 2

2
0 - [( ). )                           ......1 ] (1 (3- 27)

p
k M Gr

x y y y y
y y

  
 

    
    

    
    

3-6 Perturbation Analysis of the Problem  

     It is clear that the resulting equation of motion Eq.(3-27) is not linear because 

it contains unknown   of some powers which must be solved to yield the 

desired stream function of fluid which is we have in our problem "blood" and to 

yield the  desired velocity profiles. Due to that non linearity it is difficult to solve 

it. However, the Reynolds model viscosity parameter  is considered to be very 

small, so in order to solve Eq. (3-27) with the help of boundary conditions (3-

24), we consider the perturbation technique as a power series expansion in small 

parameter   and writing , F, and P as: 

0 1

0 1

0 1

.....

......

......                                                                                       ......(3- 28) 

F F F

p p p

  





  

  

  

Now substituting Eq. (3-28) into Eq. (3-27) and (3-24) we see that: 
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 
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y
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y
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   

 


     
    

   


 


   

       
 

        

   
  

    

  

     

   ......(3 - 29)

 

Thus if we collect the Coefficient of like power of , one can gets the zeroth-

order and first-order equation as: 

3-6-1 Zero's- order system (0)( )  

3

0 0 0

3

2 2

1

( )
1

.......(3 - 30)Grθ                                                               

   N = (k +M )

p
N

x y y

where

   
  

  

Differentiating eq. (3-30) with respect to y will give: 

4 2

0 0
14 2

0  + Gr                                                                              ....(3-31)N
y y y

    
 
  

Along with the corresponding boundary conditions: 
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 

 
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





  



 
  



3-6-2 First order system (1)( )  

3 23
20 0 01 1 1

13 3 2 2

            

                                                ......(3-33)
p

y N k y
x y y y y y

       
    
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Differentiable eq. (3-33) with respect to y we have:  

4 3 24 2
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14 4 3 2 2

            

 0 2 +                                    ......(3-34)y N k y
y y y y y y
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The corresponding boundary conditions are :

F
at y h

y

F
at y h

y








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

 
  



 

3-7 Solution of the Problem 

     In this section, let us give the solution of the temperature and motion 

equations: 

 3-7-1 Solution of temperature equation  

     The solution of temperature in Eq. (3-21) that satisfy the boundary conditions 

(3-24) is found in the form of: 

2

1 2   ;                                                                                ......(3-36)
2

y
c y c





  

1 2,c c are constants can be determinates by using the boundary conditions in 

Eq.(3-24) such that: 

1 1 2

2 1 2

1
;

2

1
( )                                                                                         ......(3 - 37)

2

c h h

c h h



 

 
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3-7-2   Solution of motion equations 

(0)( )1   Solution for the zeroth order system   

We substitute Eq. (3-36) into Eq. (3-31) and solve the resulting equation one can 

find the solution of the zeroth order system which is: 

2 2 31 1
0 3 2 2 1 2 4 1 2 2 2 2

1 1 2

1

1 1 1
   ;            ......

4 4 6

1
    ( ; ;  , ( 1,2,3,4)

(3-38)
n y n y

i

a a e n ae n a y Gr h n y Gr h n y Gr n y

where n N n a i
N

   


      

  

 

, (i =1, 2,3, 4)ia  are constants can be determinates by using the boundary 

conditions in Eq. (3-32) such that: 

1 1 2 1 1 1 2 1 1 1 2 1

1 1 2 1

1 1 2 1 1 1

3 2 2 3

0 1 2 1 2 2 1 2 2 2 2
1 3

1 1 1 1 2 1 2 1 2 2 2

3 2 2 3

0 1 2 1 2 2 1 2 2 2 2
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(1)( )2   Solution of the first order system  

   We substitute the expression for 
0  into Eq. (3-34) and solve the resulting 

equation one can find the solution of the first order system in the form: 

1 1

1 2 1 1 2

2 2 2 2 2 2 2 3

1 1 1 1 1 1 1 0 1 2 2

( ) ( )2 2 2 2 2 2 3

1 1 1 1 1 1 0 1 2 2
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        

        
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1 1 2 1

1 1 2 1 1 1 2 1 3 4/ ( 2 ) (2 )) ;                                           .......(3- 40)
h n h n

e h n h n e h n h n b yb       

b1, b2, b3, b4 are constants can be determinates by using the boundary conditions in Eq. (3-35) 

and using “MATHEMATICA” program software.  

3-8 Results and Discussion   

     In this section, the numerical and computational results are discussed for the 

problem of peristaltic transport of incompressible non-Newtonian and 

electrically conducting which is consider by "blood" with variable viscosity of 

space in a tapered asymmetric channel through porous medium with the effect 

of heat transfer. The numerical evaluations of the analytical results which is 

showed by using the perturbation technique for small values of Reynolds model 

viscosity parameter under the assumption of long wave length and low Reynolds 

number approximation. Some important results are displayed graphically in 

figures (3-2)-(3-28). 

haracteristicCPumping  1  -8-3 

      We plot the expression for p in Eq. (2-47) against   for various values of 

parameters of interesting in Figs. (3-2)- (3-10). Numerical calculations for 

several values of the Hartmann number (M),  the phase difference , the non- 

uniform parameter of the channel (m), the porosity parameter (K), the 

amplitudes of upper and lower walls of the channel ( &a b ), the source/ sink 

parameter (  ), Garshof number (Gr) and Reynolds model of viscosity have 

been carried out. Pumping regions can be divided into three regions which are 

(retrograde pumping that is described by ( 0,  0)p    ,co-pumping or 

augmented pumping described by ( 0,   0)p     and free pumping described 

by ( 0p  ). In fig.(3-2), The effects of non-uniform parameter m on p  against 

   is seen, observed that pressure rise increase in the retrograde pumping region 

and decrease in the augmented pumping. The effects of a and b on p  are seen, 

observed that pressure rise  behaved similar to effect of       (m) and we noted 

there is slightly increase on the free pumping region and their behavior are 
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displayed in figures (3-3) and (3-4) respectively. Figure (3-5) illustrated the 

influence of   on pressure rise and it is noticed that pressure rise decrease in the 

retrograde pumping region and increase in the co-pumping region. The impacts 

of M and K are noticed in figures (3-6) and (3-7) respectively, it is examined 

that in back ward pumping region or retrograde pumping, the pumping rate 

enhances with an increase of M and k while in augmented pumping region, the 

pumping decrease via M and k. currents are induced in the tissue or medium by 

the moving ions. This interaction serves as a basis of magnetically induced blood 

flow. Figures (3-8) and (3-9) displayed the effects of parameters   and Gr 

respectively, it is noticed that the pressure rise increase in the all regions of 

pumping with an increase of these parameters. The impact of   on p is seen in 

figure (3-10), it is observed that the pumping reduced in the case of variable 

viscosity in the retrograde pumping and there is no change in pressure rise in all 

regions of pumping. However, we can see small distance between the curves for 

different values of . 

istributionD 2 Velocity-8-3 

     Influences of geometric parameters on the velocity distribution have been 

illustrated in Fig.(3-11)-(3-20). These figures are scratched at the fixed values 

of x=0.3, t=0.5. The change in values of m on the axial velocity u is shown in 

fig.(3-11), it is interesting to note that an increase in m causes an increase in the 

magnitude of u at the boundaries, however, at the center of the channel the 

magnitude of u gets decrease. A similar behavior is seen for the case of the 

Hartmann parameter and it is projected in figure (3-12), this observation agrees 

with the theory because with the increase in Hartmann number, the Lorentz force 

increase, it is well known that Lorentz force opposes the flow, this implies that 

if we increase the strength of magnetic field, the flow of blood will be impeded. 

From figure (3-13), it appears that the velocity profile traces a parabolic path, it 

increases with an increase of Reynolds parameter ( ) in the upper wall and 

converse in behavior is observed at the lower part of channel. Figure (3-14), 

shows that with an increase in mean volume flow rate   , the axial velocity 

increases. The influence of the amplitudes of the upper wall b on the velocity is 

depicted in figure (3-15) for a fixed values of other parameters it could be 

observed that an increase in the value of upper amplitude b increases the 

magnitude of the velocity at the center and the lower wall of channel and 

decreases at the upper wall of channel. Figure (3-16) displays the effect of lower 
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amplitude a of the channel, it observed that an increase in this parameter lead to 

drop in value of velocity at the center and walls of channel. The axial velocity 

for the phase angle   is shown in figure (3-17), it has been noticed that an 

increase in   values results as rising up in the magnitude of axial velocity at the 

center and lower wall of channel and hardily reduction in the upper part of 

channel. A similar manner of behavior of Hartmann parameter that is the effect 

of porous parameter (k), which is procure obstruction in the flow of blood, and 

is plotted in the figure (3-18). The effects of Grashof- number Gr and source/sink 

parameter   are illustrated in figures (3-19) and (3-20) respectively, it can be 

increase at the center of channel and decrease at the walls with an increase of 

these parameters. However, increase in velocity behind enhancing Grashof no. 

back to fact is the decreased viscosity results in increased velocity, on the other 

hand we can say that the velocity will be extended after rising up the value of   

since the manner of velocity and temperature are interdependent because the last 

one is increased the temperature. With the effects of m, a, b, M, k, Gr and   we 

observed that for any values of these parameters, the axial velocity vanishes at 

points of inflexion. 

 henomenon P 3 Trapping-8-3 

      The formation of an internally circulating bolus under certain conditions due 

to splitting of some streamlines is named as trapping phenomenon. Physically 

this phenomenon appears in thrombus in blood and the movement of food bolus 

in the gastrointestinal tract. The trapping for different values of m,  , a, b, M, 

, K and    are shown in Figs.(3-21)-(3-30) at fixed values of   ( t=0.5 ). The 

stream lines for different values of m are shown in Fig.(3-21), it has been noticed 

that the size and number of bolus increase in the lower and upper of the tapered 

channel. The stream lines for different values of   are shown in fig.(3-22), it is 

examined that the size and number of bolus increase in the both parts of channel 

with an increasing of  . Fig.(3-23), showed the effect of parameter (a) on 

trapping, it is found that the bolus decrease in number but it is increase in size 

with an increase of a. The influences of parameters b, Gr,   and   on the 

trapping are plotted in figures (3-24), (3-25), (3-26) and (3-27)respectively, 

which is noticed that an increase on the values of this parameters lead to rise up 

in the size and number of the trapping bolus in the walls of the channel. Figures 

(3-28) and (3-29) displayed the impact of parameters M and k on trapping, which 
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is increasing in these parameters causes reduce in size and number of bolus in 

the upper and lower sides of channel. The effect of Reynolds model  on 

trapping is shown in figure (3-30), it is showed that an increase in this parameter 

yields decreasing in the number and size of circulation bolus in the walls of 

channel, in this case we can say that the bolus in the case of constant viscosity 

is bigger than variable viscosity. 

haracteristics  CTemperature 4   -8-3 

    The expressions for temperature are given by Eq.(3-36). To explicitly see the 

effects of various parameters on temperature for fixed values of (x=0.3, t=0.5), 

eq. (3-36) has been solved by exact solution and the results of these parameters 

presented graphically by using “MATHEMATICA” program and illustrated in 

fig. (3-31)- (3-35). Figure (3-31) emphasizes that as heat generates during blood 

flow in arterioles, there is a significant rise in thickness of  the boundary layer 

enhanced by appreciable extend. It is also noticed from this figure that the 

maximum value of temperature attains in the central and walls of the of the 

channel. Further it can be noticed that the increase of m,   lead to similar 

behavior of effect   on temperature and showed it in figs.(3-32) and (3-33) 

respectively. Fig.(3-34) display the influence of parameter (a) on temperature 

profile, it is examined that an increase in a causes conversely behavior as the 

effect of above parameters. The effect of b on temperature is plotted in Fig.(3-

35), we note that an increasing in b causes similar behavior as the effect of a on 

temperature. In all figures of temperature profile the curves are parabolic. 

3-9 Concluding Remarks 

In this chapter, we investigated the peristaltic transport of electrically conducting 

fluid which is considered by 'blood" through porous medium in the tapered 

asymmetric channel under the effect of magnetic fields and heat transfer by 

using variable viscosity, velocity non slip conditions. The channel asymmetry is 

produced by choosing the peristaltic waves drain on the non-uniform walls to 

have different amplitudes and phases. Along wave length and low Reynolds 

number approximations are adopted. A regular perturbation method for small 

values of Reynolds model viscosity parameter is employed to obtain the 

expression for stream function, axial velocity and pressure rise . numerical study 

has been conduct for average rise in pressure over a wave length. The effects of 

Hartmann number (M), porosity parameter (K), wave amplitudes (a& b), 
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channel non-uniform parameter (m), phase difference   and source/sink 

parameter   are also investigated in details, it found that : 

1. The pressure rise p increase in the pumping ( 0,  0)p     with an 

increase of m, a, b, M, k,   and Gr and decrease with an increase of ,   

2. The pressure rise p increase in the pumping ( 0, > 0)p    with an 

increase of Gr, ,  and decrease with an increase of m, a, b, k, M. 

3. The pressure rise p increase in the pumping ( 0)p   with an increase of 

m, a,   and Gr and decreasing with an increase of M, k.          

4. The relation between mean flow rate    and p is linear in the case of 

increasing of Gr and  in   and it is seen nonlinear in the case of rising 

values of M, k, m, a and b, ,    . 

5. It is observed that the curves pumping is intersected at different points by 

increasing of M, k, m, a, b,  and    and they are parallel curves in the 

sense of enhancing value of  and Gr . 

6. At the center and walls of channels (upper and lower parts), we found that 

axial velocity increase in magnitude with an increase of   , b, Gr ,  ,   

and decrease with an increase of m, a, M, k  

7. The effect of Reynolds model   has oscillating influence on the velocity 

at the upper and lower parts of channel. 

8. Velocity profiles have inflexion points at the upper and lower parts of 

channel at different values of increasing of m, a, b, M, Gr,   and k,  . 

9. Velocity profiles at most are parabolic and symmetric with an increasing 

of m, M, Gr,   and ,   ,k. 

10.   The temperature profile increases with an increase of m, ,    while the                      

temperature decrease with an increase of a, b. 

11.  The curves of temperature profiles at all figures are parabolic. 

12. The size and number of the trapped bolus increase with an increase of  

, ,    , b, Gr decrease with an increase of m, M, k, . 

13.   The influence of a on trapping bolus is wobbling that is these bolus 

decrease in number with an increase of a but its size be extended.                                  
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Fig.(3-31) : Effect of source/ sink parameter 
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Fig.(3-33) Effect of phase difference parameter  

on temperature 
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Fig.(3-34)  Effect of( a )on temperature 

 

0.2, 0.5, , 0.1, 1, 0.3
6

m t b x        

 0.1

 0.2

 0.3b

b

b





  
Fig.(3-35)  Effect of (b) on temperature.     
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Introduction 

     Peristaltic is well known mechanism for pumping biological and industrial 

fluids. Even though it is observed in living systems for many centuries, the 

mathematical modeling of peristaltic transport has begun with important works 

by fung and Yih[35] using laboratory frame of reference. Many of the 

contributors to the area of peristaltic pumping have either followed Shapiro, [95] 

or fung, [33]. Most of the studies on peristaltic flow deal with Newtonian fluids. 

The complex rheology of biological fluids has motivated investigations 

involving different non Newtonian fluids. Peristaltic flow of non Newtonian 

fluids. Peristaltic flow of Non Newtonian fluids in a tube was first studies by 

Raju and Devanathan [82]. Ravi Kumar et al. [87] studied the unsteady 

peristaltic pumping in a finite length tube with permeable wall. Y. V. K. Ravi 

Kumar et. al. [88] studied the peristaltic pumping of a magneto hydrodynamic 

casson fluid in an inclined channel. Ravi Kumar et.al.  [89] Studied the peristaltic 

pumping of a Jeffrey fluid under the effect of a magnetic field in an inclined 

channel. Mekheimer[64].studied the peristaltic transport of MHD flow in an 

inclined planner channel. Hayat et.al. [46] extended the idea of Elshehawey et. 

al. [30] for partial slip condition. Srinivas et al. [101] studied the peristaltic 

transport in an asymmetric channel with heat transfer. Srinivas et al. [103] 

studied the non-linear peristaltic transport in an inclined asymmetric channel. 

Vajravelu et al. [111] analyzed peristaltic transport of a casson fluid in contact 

with a Newtonian fluid in circular tube with permeable wall. Nadeem and Akram 

[75] discussed peristaltic flow of a Williamson fluid in an asymmetric channel. 

It is observed that most of the physiological fluids for example, blood cannot be 

described by Newtonian model. Hence, several non Newtonian models are being 

proposed by various researchers to investigate the flow behavior in 

Physiological system of a living body. Among them Williamson model is 

expected to explain most of the features of a physiological fluid. Moreover, this 

model is nonlinear and Newtonian fluid model may be deduced as a special case 

of this model.  

     In this chapter, we will present the peristaltic motion of MHD flow and heat 

transfer of Williamson fluid in an inclined tapered asymmetric channel through 

porous medium with the effects of non-slip conditions. By using the perturbation 

technique for small values of weissenberg number, the nonlinear governing 

equations are solved under long wave length and low Reynolds number 

assumption. The stream function, temperature distribution, coefficient of heat 

transfer, frictional forces at the walls of channel, pressure gradient and pressure 

rise are calculated. Effect of involved parameters on the flow characteristics 

have been plotted and examined. 
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4-1 The Mathematical Model of the Problem 

     Let us consider the MHD flow and heat transfer of Williamson fluid through 

a porous medium of two –dimensional inclined tapered a symmetric channel. 

We assume that infinite wave train traveling with velocity c along the non –

uniform walls. We choose a rectangular coordinate system for the channel with 

X along the direction of wave propagation and parallel to the center line and Y

transverse to it. The wall of the tapered a symmetric channel are given in fig.    

(4-1) by the eq. (2-1). 

 

 

Fig. (4-1): physical structure of the problem 

4-2 The Governing Equations  

     The constitutive equations for a Williamson fluid is given by: [75] 

1

0= -[ ( )(1 ) ]                                                                     ......(4 -1)y y   




     

where  is the extra stress tensor,  is the infinite shear rate viscosity, 0  is the 

zero shear rate viscosity,  is the time constant and y is defined as : 

1 1
                                                                         ......(4 - 2)

2 2i j

y y yij ji    
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  Here  is the second invariant strain tensor, which is given by 2

1( )Tr A  

where   

1 ( )                                                                                              ......(4 -3)TA V V  

We consider the constitutive equation (4-3), the case for which 0   and 

1y  .Thus, the component of extra stress tensor therefore can be written as  

1

0 0= - [(1 ) ]  = - [(1 )]                                                              ......(4 - 4)y y y y   

The above model is reduced to the Newtonian model if 0  . 

Let ( , v)V u  be the velocity vector in the Cartesian coordinates in the two-

dimension ( , )X Y . 

The strain is defined by: 

1
( )

21 [( ) ( ) ]                              .. ....(4 - 5)
2 1

( )
2

U U V

X Y X
e V V

U V V

Y X Y



   
 

       
   

 
   

 

The shear strain is defined by: 

2 2
2

1 1

2

2                                                                     .. ....(4 - 6)

2

1
  ( )  

2
and

ij ji
i j

U U V

X Y X
e

U V V

Y X Y

y y y



 

   
      

   
 

   

  

 

Thus: 

2
2

1 1 2 2
1

11 11 12 21 21 12 22 22

2 2 2 2

11 12 12 22

2 2 2

11 12 22

1
( )  ( )

2

1
        = (( ) ( ))

2

1
        = (( ) ( ) ( ) ( ) )

2

1
        = (( ) 2( ) ( ) )

2

i i i i
i

y y y y y

y y y y y y y y

y y y y

y y y



 

  

  

 
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2 2 2

2 2 2

2 2 2

1 1
= (4)( ) ( ) (4)( )

2 2

= 2( ) ( ) 2( )

= 2(( ) ( ) ) ( )

U U V V

X Y X Y

U U V V

X Y X Y

U V U V

X Y Y X

   
  

   

   
  

   

   
  

   

 

Hence, we have: 

2 2 2

0

2(( ) ( ) ) ( )                                                        ......(4 - 7)

-2 [(1 )                                                                                 XX

U V U V
y

X Y Y X

U
y

X
 

   
   

   


  



0

0

.....(4 - 7a)

- [(1 ).(  )                                                                    .....(4 - 7b)

- [(1 ).2                                                             

XY

Y Y

U V
y

Y X

V
y

Y

 

 

 
   

 


  


                    .....(4 - 7c)

 

4-3 Calculation of Lorentz Force [59] 

     To calculate the Lorentz force ( )J B , we will apply a magnetic field in the 

XY -direction. The effect of this force on the fluid flow, will be analyzed. Now, 

apply magnetic field in XY -direction 0 1 0 1( sin , cos ,0)B B   and to calculate 

Lorentz force we start with: 

0 1 1

0 1 0 1

0 1 1

0 ( cos - sin )                       ......(4 -8a)

sin cos 0

   ( ) ( cos - sin )                                            ......(4 -8b)Let

i j k

k

k

e e e

V B U V B U V e

B B

J V B B U V e

 

 

   

  

  

 

Then by Ohm’s law one has: 

0 1 1

0 1 0 1

2 2

0 1 1 1 0 1 1 1

0 0 ( cos - sin )   

sin cos 0

         = - cos ( cos - sin )  sin ( cos - sin )  

                                                                                     

i j k

i j

e e e

J B B U V

B B

B U V e B U V e

  

 

       

 



                                 ......(4 -8c) 
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Where , , )( i j ke e e  are the unit vectors, J  is the induced current density. We 

observed that the effect of magnetic field is appear on the flow in the XY -

direction due to the inclination angle 1 of magnetic field.  

4-4 Basic Equations of the Problem 

     The basic equations governing the non Newtonian incompressible 

Williamson fluid under the effect of MHD flow and heat transfer in the inclined 

direction through porous medium in the laboratory frame ( , )X Y  

The continuity equation is given by: 

0                                                                                               ......(4 9)
U V

X Y

 
  

 
 

The momentum equations are: 

2 0
0

0

sin              

( )

cos ( cos sin )                             ......(4 -10) 

XX XY

g
k

U U U P
U V t t

t X Y X X Y

B U V U


 



   

     
     

     

   

 

2 0
0

0

                                       

( )

+ sin ( cos sin ) cos  . ......(4 11)

XY Y Y

V V V P
U V t t

t X Y Y X Y

B U V V g
k




     

     
     

     

   

 

The temperature equation is given by: 

2 2
2 2

1 0 02 2

2 2 20
0

0

( ) [ ] 2 [(  ) + (  ) ] +  
( ) ( )

2(  ) ( cos sin )  + ( )                                   ......(4 -12) 
k

T T T T T U V
C U V k

t X Y X Y X Y

U V
B U V U

Y X





  

  

      
    

      

 
  

 

 

Where U is the axial velocity, V is transverse velocity, Y is transverse 

coordinates,  is the inclination angle of channel,   is the inclination angle of 

magnetic field. 

4-5 Method of Solution of the Problem   

     In order to simplify the governing equations of motion, temperature, we may 

introduce the following dimensionless transformation: 
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2
1 2 1 2

1 2
0

2
020

0
1 0 0 0 0 1

2

1 0 0

,  ,  ,  ,   ,    ,    ,  ,    ,     ,

,     ,   ,    Re ,   ,   ,    r ,

,    t =
( ) xx

H H a aX Y ct U V d P
x y t u v h h p a b

d c c d d c d d

CT Tm d cd d
m M B d k P

d T T k k

c
Ec

C T T c

   

   
 

  





         

 
      






2

0 0 0

2

Re
,     t = ,    t = ,    = ,   

  ,We =  ,Fr =   ,B r = Pr Ec                                                                       . .....(4-13)

XX XY Y Yxy yy

d d d g
t t t

c c c Fr

d c c
y y

c d gd




  

 





 

Where 
1T is the temperature of the upper wall, 

0T  is the temperature of the lower 

wall, we is Deisenberg number. 

Substituting (4-13) into equations (4-9)-(4-12) we get: 

Eq. (4-9) is transformed automatically.  

From eq. (4-10) we have: 

2

0

0

2
20 0 0

02 2 2

0

2 2

0

0

sin .

sin .

( ) cos ( cos sin ) 

( ) B

( cos sin ) 

(

XX XY

xx xy

g
k

g
k

U U U P
U V t t B U V

t X Y X X Y

U

C C CC u C u C u P
Cu C v t t Cos

t x d y d x x d y

Cu C v Cu

C u C u
u

t x


 


 

    

  
   

  

  


 

     
       

     

 

     
      

     

  

 
 

 

2
20 0 0

02 2 2
) Bxx xy

C C CC u P
v t t Cos

y d x x d y

  
 

 

   
    

   

0

2
20 0 0

02 2 2

0

0

0

sin .

sin .                                                      .

( cos sin ) 

( ) B

( cos sin ) .......(4 -14)

xx xy

g
k

g
k

Cu C v Cu

C C CC u u u P
u v t t Cos

t x y d x x d y

Cu C v Cu


 


 

  

  
  
 

  

  

     
      

     

  

 

Multiplying both sides of eq. (4-14) by 
2

0

( )
d

C 
we obtain: 

2 2 2 2

0 0

2 2

0 0 0

( ) xx xy

C CC d u u u P d d
u v t t

C t x y x C x d C y

 

    

     
     

     
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2 2 2
2 0
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0 0 00
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d d d
Cos Cu C v Cu

C C C
 


    

  
     

2
2 2

0

0 0

2 2 2
2

0

0 0

2 2 2 2
2 20 0

0 0

2 2

0

0

sin .
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d du u u P
u v t t u
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d d
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
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


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  
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 

 
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 



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       

     

 

     
       
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 
0

sin .

That is  

2 2 2 2

2
sin .

Re ( ) cos cos sin  xx xy

u u u P
u v t t M u M v

t x y x x y

K u 

    



     
       

     

 

Which can be written as  

2 2 2 2 2

sin .                                                                                               

Re ( ) ( cos ) cos

sin      .......(4 -15) 

xx xy

u u u P
u v t t M K u M

t x y x x y

v 

   

 

     
        

     



 

From eq. (4-11) we have: 
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0

2
20 0 0
02 2 3 2

0

0
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cos  .

( . )
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 
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  
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2 2 2
20 0 0
02 2 2 3 2

0

0

2
20 0 0
02 3 2

2 2

0

( )

sin ( cos sin ) cos  .

( ) sin cos

sin

xy yy

xy yy

C C CC d v C d v C d v P
u v t t B

t x y d y d x d y

Cu C v C v g
k

C C CC d v v v P
u v t t B

t x y d y d x d y

Cu B C

  
 

   


      

  
   

 

  

     
      

     

  

     
      

     

 0

0

) cos  .                                                ......(4 -16)v C v g
k


   

Now, multiplying both sides of (4-16) by 
3

0

( )
d

C 
 we get: 

2 3 3 3

0 0

2 2

0 0 0

3 3 3
2 2 2

0 0 0

0 0 0

3

0

2 23 2

0

3 2

0

( )

sin cos sin  cos  

.

( )

xy yy

xy yy

C CC d d v v v P d d
u v t t

C t x y y d C x d C y

d d d
B Cu B C v C v g

C C C

d

C

B dCd d v v v P d d
u v t t

t x y y x y

 

      

         
   





   

     
     

     

   

     
      

      0

2 2 2 2
20

0 0 0

sin cos

sin  cos .

d
u

B d d d d gd d
v v

k C

 
 

 
   

    



 

 

3 2 2 2 2

2 2 2

Re ( ) sin cos

sin  v cos .

That is :

xy yy

v v v P
u v t t M u M

t x y y x y

k v

      

   

     
       

     

 

 

Which can be written by the form: 

3 2 2 2

2 2 2

Re ( ) sin cos (

sin + ) cos .                                                                         .....(4 -17)

xy yy

v v v P
u v t t M u M

t x y y x y

k v

     

   

     
       

     



 

From eq. (4-12): 

2 2
2 2

1 0 02 2

2 2 20
0

0

( ) [ ] 2 [(  ) + (  ) ] +  
( ) ( )

2(  ) ( cos sin )  + ( ) .
k

T T T T T U V
C U V k

t X Y X Y X Y

U V
B U V U

Y X





  

  

      
    

      

 
  

 
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2 2 2
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k
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
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

 
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0 02 2 2

2 2 2 2 2 20

0
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2
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k
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x
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




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 
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
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






  
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      
      

      
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
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2 2 2 2 2 2 2 2 2 2
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0
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2
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0 0 02
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2
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k
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t x y d x y x y
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



       




 

 


        

  

      
      

      

 
   
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2 2 20

0

0
1 0

1 0
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  therefore  ( )                                   ......(4 18)Now,since 

k
C u

T T
T T T

T T




 


     
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Thus we obtain: 

2
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t x y d x


   
 


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       
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0

2
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k
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
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  


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2 01
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C T T u v T T

t x y d x y

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 

 

    
      
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2
2 2 2 2 2 2 2 2 2 20

0 02

2 2 2 2 2 2 20
0

0

(( ) ( ) ) ( ) cos 2 cos

sin sin  + .                                                            ......(4 -19)
k

Cu v v u
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x y d x y
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


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   

   
    

   



 

Multiplying both sides of eq. (4-19) by 
2

1 1 0

( )
( )

d

k T T
implies to: 
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22 2
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


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 

 


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 


2
2

1 1 0
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d
u

k T T

 

22 2 2 2
2 20 0

2 2 2
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2
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0

1 1 0

22 2
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1
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1
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1
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k t x y x y C k T T x

CCv v u
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v
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









 

 

     
 

  


     

 
 



     
    

      

  
    
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
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Thus we have: 

2 2 2
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2 22 2
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 



  

 

      
 

 

  




     
    

      

  
    
    

 

2
2 2 2 2 2

1 0

( cos 2 cos sin sin  ). 
( )

C
u uv v

C T T

      


 

Which can be written as the form; 

2 2
2 2 2 2

2 2

2 2 2 2 2 2 2 2 2 2

RePr (   ) [ ] 2 Pr(( ) ( ) ) Pr

( ) Pr Pr( cos 2 cos sin sin  ). 

u v
u v Ec Ec

t x y x y x y

v u
k Ec u M Ec u uv v

x y

    
  

      

      
      

      

 
    
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That is: 

2 2
2 2 2 2 2

2 2

2 2 2 2 2 2 2 2 2 2

RePr (   ) [ ] 2 (( ) ( ) ) (

) ( cos ) 2 cos sin sin  )

                                                                   

u v v
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u
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y

    
   

     

       
      

       


    


                                                  . .....(4 - 20)

From eq. (4-7) we have: 

2 2 2

2 2 2 2

2(( ) ( ) ) ( )  

( ) 2(( ) ( ) ) ( )

That is :
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y

X Y Y X
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y
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   
   

   

   
   

   
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2 2 2 2 2

2 2
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y

x y d y x
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y

d x y d y d x
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y

d x y d y x
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y
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  

 













   
   

   

   
   

   

   
   

   

   
   

  

2)                                 ........(4 - 21)
x

 

Now, multiplying both sides of eq.(4-21) by (
2

2

d

C
) we have: 

2 2
2 2 2 2 2

2 2
( ) 2 (( ) ( ) ) ( )  

C d u v u v
y

C x y y x




    
   

   
 

Thus we have: 

2 2 2 2 2 2( ) 2 (( ) ( ) ) ( )  
u v u v

y
x y y x

 
    

   
   

 

which may written as: 

2 2 2 2 2( ) 2 (( ) ( ) ) ( )                                                ......(4 - 22)
u v u v

y
x y y x

 
    
   

   
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From eq. (4-7a): 

0

0

-2 [(1 ) ,

-2 [(1 )

-2 [(1 )                                                                       ......(4 - 23)

XX

o
xx

o o
xx

U
y

X

C C u
y

x
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y

x

 


 

 

 


 


  




  




  



 

Multiplying both sides of eq. (4-23) by (
0C




) we obtain: 

-2[(1 )
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xx
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u
y

x

C u
y

d x






  



 
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

 

Thus we have: 

-2[(1 )]                                                                                    ......(4 - 24)xx

u
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x


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From eq. (4-7b): 

0

0
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y
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
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 
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0
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- [(1 ). ( )                                                        .....(4 - 25)
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
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 
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Multiplying both sides of eq. (4-25) by (
0

d
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) we get: 
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Thus we have: 

2-[(1 ). ( )                                                                    ......(4 - 26)xy
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y x
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 
  
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From eq. (4-7c): 
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0
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-2 [(1 ).                                                                      ......(4 - 27)
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Multiplying both sides of (4-27) by (
0

d
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) we get: 
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

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Thus we have:  

-2 [(1 ).                                                                                 . ......(4 - 28)yy

v
We y

y
 


 



Now, under the assumption of long wave length ( 1)  and low Reynolds 

number, the eqs. (4-15), (4-17), (4-20), (4-22), (4-24), (4-26) and (4-28) can be 

written as: 

2 2 2
                                                      ........(4 - 29)0 ( cos ) sin

0                                                                                            

xy

p

x y

p

y

M k u   
 

 





     

 

2 2 2 2 2
2

2

                   .........(4 - 30)

0 Br( ) + Br( cos )                                                         .......(4 - 31)

                                                       

yy

u

y

u
M k u

y






 







  

                                                          .........(4 - 32)

 

 

2[1 ]                                                                                            .........(4 - 33)

[1 ]                                                           

xx

xy

u

y

u

y

we y

we y

















  

                                   .........(4 - 34)

 0                                                                                                                .........(4 - 35)yy 
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Introducing the stream functions ( , u v
y x

  
  
 

) in eqs. (4-29)- (4-34) 

implies to: 

2 2 2

2 2
2 2 2 2 2

2 2

                                                 ........(4 - 36)0 ( cos ) sin

0 + Br( ) + Br( cos )(  )                                           .........(4 - 37

xy

p

x y

y y

M k
y

M k
y


   

  


 

 

 

 


     




  



2

2

2 2

2

)

                                                                                                            .........(4 -38)

= -2[1+ we ]                                           xx

y

y x y

y


 


 



 

  



2 2

2 2

                                       .........(4 - 39)

= -[1+ we ]                                                                                      .........(4 - 40)xy
y y

 


 

 

 

4-6 Rate of Volume Flow and Boundary Conditions 

     In order to discuss the results quantitatively we assume that the instantaneous 

volume rate of the flow F(x, t), is periodic in (x-t), as: [58] 

( , ) sin(2 ( ) ) sin(2 ( ))                                    ......(4 41)F x t a x t b x t           

In which   is the mean flow rate in the wave frame, F is the mean flow rate in 

the laboratory frame: 

2

1

2

1

2 1    = ( ) ( )

h

h

h

h

F udy

dy h h
y


 




 







 

Selecting 2( )
2

F
h  , then implies  1( )

2

F
h


  

The boundary conditions in dimensionless stream function will now take the 

following form: 

 

 

2

1

, 0   and  = 1   
2

                                                   ......(4 42) 

, 0  and = 0  
2

F
at y h

y

F
at y h

y y


 

 


 
   

 
   

     
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2

1

 In which   

1 sin(2 ( ))  

1 sin(2 ( ) )

h mx b x t

h mx a x t



 

   

     

 

The non-dimensional expression for the average rise pressure p  is given as in 

eq. (2-47): 

The frictional force 
1F   at the lower wall 

1y h  across the wave length is given 

by: 

1

2

1 1 0.5

0

( ( ) )                                                                                 ......(4 - 43)t

P
F h dx

x



 



The coefficient of heat transfer at the upper wall is given by: 

22( ) ( )                                                                                         ......(4 - 44)x y hZ h y   

4-7 Perturbation Analysis of the Problem 

     It is clear that the resulting equation of motion Eq.(4-40) and equation of heat 

which is expressed by the eq.(4-41) are not linear because it contains unknown 

  of some powers which must be solved to yield the desired stream function of 

fluid and the heat transfer of fluid. Due to that non linearity it is difficult to solve 

it. Thus we use the perturbation technique to find the solution. We expand 

, ,  and F P   for series of small weissenberg number, thus we write: 

0 1

0 1

0 1

0 1

...

....

....                                                                                    

 ....                                                            

We

F F WeF

p p Wep

We

  

  

  

  

  

                               .......(4 - 45) 

Now substituting Eq.(4-45) into Eq. (4-36),(4-37),(4-38),(4-39) and  (4-40) , 

thus we get: 

2 2
2 2 2 2

2 2

2 2
2 2 2 2

0 1 0 1 0 12 2

[ (

[ (

( ) ] cos ) sin

( ) ( ) ( ( )) ] cos )

p

x y y y y

x y y y

We M K

p Wep We We We M K

  
  

    

    
 

    

   
 

   

  

    

 

0 1

2 22 2
2 2 2 20 01 1

0 1 2 2 2 2
[ (

( ) sin .

( ) ( ) ] cos )

y

x y y y y y

We

p Wep We We We M K

   

  






    
 

     

 

    
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0 1( ) sin .
y y

We
 

 
 

 
   

2 2 22 2 2
2 2 20 0 01 1 1

0 1 2 2 2 2 2 2

2 2 2 0 1

2 2 22 2 2
2 2 30 0 01 1 1

0 1 2 2 2 2 2

[

(

[

( ) (( ) 2 ( ) ( ) )]

cos )( ) sin .

( ) ( ) 2( ) ( ) (

x y y y y y y y

y y

x y y y y y y y

p Wep We We We We

M K We

p Wep We We We We

    

 
  

    

      
 

       

 

 

      


       

    

  

     2

2

2 2 2 0 1(

) ]

cos )( ) sin .                                               ........(4 - 46)
y y

M K We
 

  



 

 
  

Also, we have from eq. (4-37): 

2 2
2 2 2 2 2

2 2

2 2
2 2 2 2 2

0 1 0 02 2

2 22 2
2 2 2 2 20 0 01 1 1

2 2 2 2

2 2

0 1

2 2

[( (

( (

( (

0 Br ) Br cos )( )

0 ( ) Br ( )) Br cos )( ( ))

0 Br ) Br cos )( )

0

y y y

y y y

y y y y y y

y y

M K

We We M K We

We We M K We

We

 


      

    


 

  

  

  

  

    

     

 

 

  

     

     

 
2 2 2 2

2 2 2 2 20 0 1 1

2 2 2 2
( (Br[ ) 2 ( ) ( ) ] Br cos

y y y y
We We M

   


   

   
  

 

2 2 2 20 0 1 1)[( ) 2 ( ) ( ) ]                                             ......(4 - 47)
y y y y

K We We
      

   
  

Now, collecting the coefficient of like powers of We, thus one can gets the zeroth 

and first order equations as: 

4-7-1 Zero's- order system (0)( )We  

               ….(4-48) 

Differentiating eq. (4-53) with respect to y we have: 

2 22

0 0
12 2 2

0 ( )                                                                             ......(4 - 49)N
y y y

  
 
  

 

 

 

2

0 0 0

2

2 2 2

1

)
1

( sin                                                                       .......(4 -53)

    ( cos )

p
N

x y y y

where N M k

 
 



  
  

   

 
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which can be written as: 

4 2

0 0
14 2

0 ( )                                                                                    ......(4 -50)N
y y

  
 

 

Also we have: 

2 2
2 20 0 0

12 2
0 Br( ) + Br ( )                                                            ......(4 -51)N

y y y

    
 
  

Along with the corresponding boundary conditions: 

 

 

0 0
0 0 2

0 0 0
0 1

, 0,  
2

, 0,                                                               .. 
2

1 , 

0, ....(4 - 52)

F
at y h

y

F
at y h

y y


 

 



  



  
  

 





   

4-7-2 First order system (1)( )We  

22
201 1 1

12 2
                                                                    . .. ( ( ) ..(4 -53)

p
N

x y y y y

    
 

    


Differentiable eq. (4-58) with respect to y we have:  

22 2 2
201 1

12 2 2 2
0 ( ( ) )                                                                    .. . ...(4 -54)N

y y y y

   
  
   

22 2

0 01 1 1
12 2 2

0 2Br( ) 2Br (  )                                         .......(4 -55) 

Also we have :

N
y y y y y

      
  
    

 

 

1 1
1 1 2

1 1 1
1 1                                                                 

, 0,  0   
2

, 0, 0      ...... (4 - 56) 
2

The corresponding boundary conditions are :

F
at y h

y

F
at y h

y y


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 



   



  
   

 

 

4-8 solution of the problem 

4-8-1   Solution for the zeroth order system (0)( )We  

 We solve Eq. (4-50) and we can find the solution of the zeroth order system 

which is: 

1 1

0 3 2 2 1 2 4

1 1 2

1

;                                                                    ......(4 -57) 

1
( ; );                                                 

n y n y
a a e n a e n a y

where n N n
N




   

 
 

 



Effect of inclined magnetic field on peristaltic flow of Williamson fluid through porous 

medium in an inclined tapered a symmetric channel 

 

86 
 

Also, if we solve the equation (4-51), we can obtain the solution of temperature 

of the zeroth order system which is:  

1 1 1 12 22 2 2 2 2 2

0 2 4 1 2 1 4 1 2 2 1 2 1 1 2

2 2 2

4 1 1 2

1 1
  

2 2

1
 + yc

2

2 2 - -

  y + c ;                                                                               ......(4 58)

n y n y n y n y
n na a Bre n n a a Bre n n a Bre n a Bre n

a Br n

  
  



,( 1,2,3,4)ia i   and ,( 1,2)jC j  are constants can be obtained by using the 

boundary conditions in Eq.(4-52) that is:  

1 1 2 1

1 2 1

1 1 2 1

1 1 2 1

1 1 2 1

1 1 2 1

0
1

1 1 2 1 1 1 2 1 2

( )

0
2

1 1 2 1 1 1 2 1 2

0 1 2 1
3

1 1 2 1 1 1 2 1

0 1 2
4

;
( ( 2 ) (2 ))

;
( ( 2 ) (2 ))

( ) ( )
;

2( ( 2 ) (2 ))

( ) (

h n h n

h h n

h n h n

h n h n

h n h n

h n h n

f
a

e h n h n e h n h n n

e f
a

e h n h n e h n h n n

e e f h h n
a

e h n h n e h n h n

e e f h h
a




     

 
     

 


     

 


1 1 2 1

1 2 1 1 2 1 1 2 1

1 1 2 1 2 1 1 1 2

1

1 1 2 1 1 1 2 1

( ) ( 2 ) (2 )2 2

1 4 2 1 2 1 4 1 1 1 2 1

2 2 22 2 2 2 3 2 2 2

2 2 1 2 1 1 2 1 2 1 2 2 1

)
;

( ( 2 ) (2 ))

1
(2 ( 2 ) 4 (

2

( )) 2 (

h n h n

h h n h h n h h n

h n h n h n h n h

n

e h n h n e h n h n

c a Brh h h n a Bre n a e a e h n

a e e h n n a Bre n n a Bre h n n a Brn e

   



     

      

     1

1 1

1 1 1 1 1 1 1 1 1 1

4

2 2

2 1 2

2 2 2 42 2 2 2 2

2 1 1 4 2 1 2 2 1 1 2

2

) ;

( 2 ( ) ( ) );

n

h n

h n h n h n h n h n

e h n n

c Bre n a e h a e a a e n a a e n n







    

 

4-8-2 Solution of the first order system (1)( )We  

   If we solve the equation (4-54) we can find the solution of the first order 

system which is: 

1 1 1 12 4 22 4 2 2 4 2

2 1 2 1 1 2 1 2
1 3 42

1

( 3 ( ))
 ;              ....(4 -59)

3

n y n y n y n y
n n

n

e a n a e n e e b b
b yb


   

  

Also, if we solve the equation (4-55) we can find the solution of temperature of 

the first order system which is: 

1 1 1

1 1 1

3 3 23 5 3 3 5 3 3

1 2 1 2 1 1 2 1 1 2 1 1 4 1 2 2

1

2 3 2 3 2

1 2 2 2 4 1 2 4 1 1 1 2 4 1 2 1 2 4 2

2 3 2 3 2

2 1 2 4 1 2 1 2 4 4 1 3 4 + yc

1
 (4 4 3a ( 3 ) 3a

9

( 3 ) 6 (3 (3 - 2a a )) + 6 (3

(3 - 2a a )) - 9 y ) + c

n y n y n y

n y n y n y

n n n n n

n n n n n

n n

Br a e n a e n e b a a n
n

e b a a n e a b a n b n e a b

a n b n a b n

 

 

      

   

                                         ......(4 60)

,( 1,2,3,4)  and C ,( 3,4)i jb i j  are constants can be determinates by using the 

boundary conditions in Eq.(4-56). 
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4-8-3 Solution of the heat transfer coefficient z(x) 

     If we solve the equation (4-44), we obtain the solution of heat transfer 

coefficient z(x) at the upper wall
2y h , which is: 

1 1 1 1

1 1 1 1 1

1 1

3 3 3 5 3 2 3 2

2 2 1 2 2 1 2 4 1 1

3 22 2 4 2

1 2 2 1 2 4 1 2 4 1 1 1 2

4 33 5 3 2 3 2

1 1 2 1 1 2 4 1

1
( )  (3C 4  a ( 3 2 4

3

) 2a ( 3a (3 3 2 ) )

(4 )( 3 2 6

n y n y n y n y

n y n y n y n y n y

n y n y

n n n

n n n n n

n n n n

z x e e a Br n we Bre n a we a e

n we Bre e b b e n a e n we e

a Bre we a Bre n a we a


     

     

    1 1

1 1 1 1

2

1 1 2 4 1 1

22 2 2

4 1 4 4 1 4 2 1 4 1

(

) 3( 2  ( ))))

( 2 cos(2 ( ));                                                                             ......(4

n y n y

n y n y n y n y

n n nBre a b e we

b n we C e we a Bre n y a Br we b b e b e n y

m b t x 



      

   61)

 

4-9 Results and Discussion 

     In this section, the numerical and computational results are discussed for the 

problem of peristaltic transport of incompressible Non Newtonian Williamson 

fluid under the effect of inclined magnetic field through porous medium in an 

inclined tapered asymmetric channel with help of using heat transfer and non-

slip conditions. The numerical evaluations of the analytical results which is 

showed by using the perturbation technique for small values of wiessenberg 

number under the assumption of long wave length and low Reynolds number 

approximation. The effect of some important parameters are displayed 

graphically. 

4-9-1 Pumping Characteristic   

     Figure (4-2)-(4-5) shows the variation of p against time mean flow rate . 

The whole region is considered into five parts (1) peristaltic pumping region 

where ( 0,  0)p    , (2) augmented pumping (co-pumping ) region where 

( 0,  0)p     , (3) when ( 0,  0)p     , then it is retrograde pumping region. 

There is a co-pumping region where ( 0,  0)p    . (5) ( 0)p  Corresponds to 

the free pumping region. The expression for p via  is showed in eq. (2-47). 

The effects of sundry parameters on p have been evaluated numerically using 

(MATHIMATICA) program and the results are presented graphically impact of 

Hartmann number (M), the inclination angle of channel ( ) , inclination of 

magnetic  field  and the parameter ( ) have been come out. Figure (4-2) shows 

the impact of M on pressure rise p , it can be seen from the graph that in the 

retrograde region of pumping ( 0,  0)p    . The pumping rate increase and 

the case is conversed in the co-pumping ( 0,  0)p     and free pumping as 

well as when ( 2,0)  . Figure (4-3) displayed the effect of   on pressure rise, 

it is noticed that the greater influence of   is showed in the augmented region 
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and free region of pumping and the pumping rate is increased in these regions. 

Figures (4-4) and (4-5) illustrated the effects of  and ( ) on p  respectively, it 

is seen that the relation between pressure rise p and flow rate  is linear and 

the rate of pumping is enhanced in all regions with an increase of these 

parameters. 

4-9-2 Frictional force characteristic  

     We found the expression for frictional force 1F at lower wall across one wave 

length is given by eq. (4-43) against  for various values of parameters of 

interest in figures (4-6)-(4-14). The effects of these parameters on 1F have been 

evaluated numerically using (MATHEMATICA)program and the results are 

presented graphically impact of Hartmann number (M), non-uniform parameter 

(m), the phase difference ( ) , the porosity parameter(k), the amplitudes of upper 

and lower walls of the channel (a &b), the inclination angle of the channel ( ) , 

the inclination of magnetic field ( )  and the parameter ( ) have been carried 

out. Frictional force regions can be divided in three types which are 

1( 0,  0)F    , 1( 0,  0)F    and 1( 0)F   . In fig. (4-6), the effects of non-

uniform parameter (m) on 1F   are seen, observed that frictional force decrease in 

both of regions 1( 0,  0)F    and 1( 0,  0)F     increase by clear way in the 

region 1( 0)F   . Figures (4-7) and (4-8) illustrated the influence of ( ) and b 

respectively, it is noticed that the frictional force in the regions 1( 0,  0)F   

and 1( 0)F   . The effect of (a) is displayed in figure (4-9), it is observed that an 

increase in this parameter lead to decreasing in frictional force in the region 

1( 0,  0)F    and it is increasing in the regions of 1( 0,  0)F    and 1( 0)F  

which has similar influence of (b) and ( ) .the effects of M and k are illustrated 

in figure (4-10) and (4-11) respectively, it is noted that an increase in these 

parameters lead to rise up in frictional force at the region 1( 0)F    and it is 

reduced at the regions of 1( 0,  0)F    and 1( 0,  0)F     figures (4-12), (4-

13) and (4-14) displayed the effects of ( ,  and )   respectively and we observed 

that if we increase these parameters then the frictional force increase at the 

regions  1( 0,  0)F     and 1( 0,  0)F     decrease in the region 1( 0)F   . 
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4-9-3 Velocity distribution  

     Influences of various parameters on the velocity distribution have been 

illustrated in Fig. (4-15)- (4-20). These figures are scratched at the fixed values 

of x=0.3, t=0.5.  The change in values of (m and ) on the axial velocity u is 

shown in fig. (4-15), it can be found that the axial velocity u decrease at the 

central line and increase at the edges of the walls and the flow of fluid is reflected 

at two points which are (0.5981, 0.3765) and (-0.3194, 0.5093). Fig. (4-16) 

shows the influence of ( & )a b on the axial velocity u, it observed that an increase 

in previous parameters causes reduce in velocity at the central line and the walls. 

The effects of M and k on velocity distribution are plotted in figures (4-17), it is 

noticed that an increase in these parameters lead to decrease in velocity at the 

central line and increase at the ends of the walls of the channel and through this 

effect of these parameters, there are two points of inflexion of flow which are 

(0.513, 0.4355) and (-0.447, 0.4355). Fig.(4-18) showed the effect of  on the 

axial velocity u which is noticed that its behavior is opposite of behavior of M 

and k on velocity and the flow has two points of inflexion which are (0.4839, 

0.4371) and (-0.434, 0.44). The impact of , a and b are displayed in figure (4-

19), it examined that the axial velocity is increase at the center and the walls of 

the channel and then taken to be decrease at the edges of the walls. Figure            

(4-20) displayed the influence of perturbation parameter (We) on u it is show 

that the velocity is rise up at the upper wall and decrease at the lower wall of the 

channel and the flow are reversal points at the central region which is pointed at 

(0.008681, 0.5594). The graphs of velocity distribution of all parameters can be 

described by parabolic paths. 

4-9-4 Trapping phenomenon 

     The trapping for different values of m, , a, b, M, K,   and   are shown in 

Figs.(4-21)-(4-29) at fixed values of ( t=0.5). The stream lines and different 

circulation bolus are seen for different values of parameters of interesting by 

various graphs. The effect of non- uniform parameter on the trapping are shown 

in fig. (4-21), it is examined that the size of trapped bolus increase but whenever 

we raise the values of m more than the previous the size of bolus began to reduce 

but increase in number. Fig. (4-22) shows the stream lines pattern for different 

values of phase , we observed that the size of the trapped bolus increase by 

increasing . The influence of upper and lower amplitudes of channel ( & )a b  as 

well as the Williamson parameter (we) are shown in figures (4-23), (4-24) and 

(4-25) respectively, it is found that the bolus is taken to decrease in size in both 

sides of channel with an increase of these parameters. The stream lines for the 

different values of Hartmann number M are plotted in fig. (4-26) for the fixed 
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values of all other parameters. One could observe that the volume of the bolus 

decreases along wave length. The stream lines for different values of k are shown 

in fig. (4-27), it is also observed that the size and number of circulation bolus 

decrease as (k) increased. Figures (4-28) and (4-29) are shown the impacts of 

inclination angle of magnetic field (  ) and the mean of the flow rate on the 

pattern of the stream lines, we found that an increase in these parameters results 

that the volume and number of bolus can be growing in the upper and lower 

walls of the channel. 

 4-9-5 Temperature characteristics   

    The expressions for temperature of the fluid under the effect of peristaltic is 

illustrated in figures. (4-30)- (4-38) for the fixed values of t=0.5. The effects of 

non-uniform parameter (m) on the temperature are shown in fig. (4-30), we note 

that the magnitude of temperature decrease at the center and lower wall of the 

channel, but the flow is reflected at a point of inflexion in the upper wall and the 

temperature will be increased. The temperature distribution for  is plotted in fig 

(4-31), it is seen that the temperature enhanced with an increase in . Figure (4-

32) displayed the effect of a on temperature and it is observed that the 

temperature is decreased at the central region and the walls, but there is 

reflection in the flow at the upper wall of channel and then the temperature is 

rise up at this point. The effect of parameter (b) on temperature is illustrated in 

figure (4-33) which is noted that an increase in this parameter causes in the value 

of temperature at the center and walls of channel. The effects of parameters M 

and k are shown in figures (4-34) and (4-35) respectively, it is examined that an 

increase in these parameters lead to increase in temperature distribution at the 

center and walls of channel, but there is two points which the flow is conversed 

at the upper wall which made the temperature will be reduced. The influence of 

 and Br are plotted in figs. (4-36) and (4-37) respectively, it is found the 

temperature will be raise up with an increase of previous parameter. Fig.(4-38) 

is made to study the impact of( ) On temperature distribution, it is noticed that 

the magnitude of temperature decrease at the core and the walls of channel but 

at the ends of upper wall of the channel, the temperature distribution will be 

taken to increase with increase in   . 

4-9-6 Heat transfer coefficient  

     In fig. (4-39)- (4-46), the variation of heat transfer coefficient z(x) for fixed 

values of (t=0.5) and for variations values of emerging parameter is analyzed. 

The heat transfer is actually defines the rate of heat transfer or heat flux at the 

upper wall. It is oscillatory. This is expected due to propagation of sinusoidal 
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waves along the channel walls. The effect of (m) on heat transfer coefficient is 

shown in figure (4-39), it is noted that the heat coefficient is decreasing with an 

increase of m. figure (4-40) displayed the effect of a on z(x), which is observed 

that an increase in this parameter lead to increase in heat coefficient in the 

portions of 0.8 1x    and  0.2 x < 0.6  and it is decreasing in the regions of  

0.6 < x < 0.8   and  1 x <1.2 . The effects of b and   are shown in figures (4-

41) and (4-42), we noticed that heat coefficient decrease in the portion of 

0.4 < x < 0.8    and increase in the region of  0.8 < x <1.2   with an increase of 

these above parameters. The influence of M, k, Br are illustrated in figures (4-

43) and (4-44) and (4-45) respectively. It is observed that their manners is similar 

to effect of (b) and .In the sometime the behavior of   on heat coefficient is 

opposite to behavior of M and k and it is displayed in figure (4-46). 

4-9-7 Pressure gradient distribution 

     Effect of various parameters on the pressure gradient versus x have been 

illustrated in fig. (4-47)- (4-56). These figures are scratched at the fixed values 

of (t=0.5). From figure (4-47) displays the effect of parameter (m) on pressure 

gradient, it is noticed that an increase in m leads to reduce in pressure gradient 

in the portion of -0.4 < x < 0.4  and increase in the region of0.4 < x < 0.8. Figure 

(4-48) illustrated the effect of the parameter , it is observed that the pressure 

gradient decrease in the region of 0 < x < 0.6 and rise up at the regions of 

0.6 < x < 0.8and -0.2 < x < 0 . The effects of (a & b) are shown in figures (4-49) 

and (4-50) respectively, it is noticed that pressure increase in the region of 

0 < x < 0.4and decrease in the regions of -0.4 < x < 0  and 0.6 < x < 0.8 . Figure 

(4-51) and (4-52) illustrates the impacts of M and k on pressure gradient, it is 

observed that pressure increase in the portion 0 < x < 0.4 and decrease in the 

portions of -0.4 < x < 0 and 0.4 < x < 0.8 . The effect of  on pressure is displayed 

in figure (4-53), which is behaved opposite to behavior of M on pressure. The 

influence of  and    are shown in figures (4-54) and (4-55) respectively, it is 

noticed that an increase in these parameters causes an increase in pressure in all 

regions of flow. The effect of   is plotted in fig. (4-56), it is observed that 

pressure is reduced with an increase of . 

4-10 Concluding Remarks 

     In this chapter , we investigated the peristaltic transport of Williamson fluid 

under the influence of inclined magnetic field through porous medium as well 

as effects of non-slip conditions and heat transfer are considered in an inclined 

tapered asymmetric channel. Along wave length and low Reynolds number 

approximations are adopted. A regular perturbation method for small values of 
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weissenberg number is employed to obtain the expression for stream function, 

axial velocity, temperature and pressure rise. The effects of Hartmann number 

(M), porosity parameter (k), wave amplitudes (a& b), channel non- uniform 

parameter (m), phase difference ( ), inclination angle of channel ( ), 

inclination angle of magnetic field   and others are also investigated in details, 

it found that: 

1. The pressure rise p  against  increase in the pumping ( 0,  0)p   

with an increase of M,  and   . 

2. The pressure rise p  against  increase in the pumping ( 0,  0)p   

with an increase of ,  and     and decrease with an increase of M. 

3. The pressure rise p  against  increase in the pumping ( 0)p   with an 

increase of ,  and     and decrease with an increase of M. 

4. The relation between pressure rise p and mean flow rate  is linear with 

an increase of  and    and the curves of pumping is parallel. 

5. The relation between pressure rise p and mean flow rate  is nonlinear 

with an increase of  and M  and the curves of pumping is intersected. 

6. The frictional force 1F at lower wall of channel across one wave length 

against mean flow  increase in the region 
1( 0,  0)F    with an 

increase of , , , ,b    and decrease with an increase of m, a, M, k. 

7. The frictional force 1F at lower wall of channel across one wave length 

against mean flow  increase in the region 
1( 0,  0)F    with an 

increase of , , ,a    and decrease with an increase of m, , b, M, k. 

8. The frictional force 1F at lower wall of channel across one wave length 

against mean flow  increase in the region 
1( 0)F   with an increase of 

, , ,m a M k and decrease with an increase of , , ,    , b. 

9. The relation between 1F and mean flow rate  is linear with an increase 

of , , , , ,m M k    and the graphs are parallel curves or lines. 

10. The relation between 1F and mean flow rate  is non-linear with an 

increase of , ,a b and the graphs are intersected curves or lines. 

11. The graphs of frictional force 1F   and pressure rise p against mean flow 

rate  across one wave length are converse in direction. 
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12. The pressure gradient ( )
dP

dx
increase in magnitude with an increase of 

 and   and decrease with an increase of  , but the impact of other 

partient parameters is oscillatory or wobbling. 

13. The axial velocity increase at central region of channel with an increase 

of , , ,a b  and decrease with an increase of (m, ),(a, b) and (M, k). 

14.    The axial velocity is rise up at the upper wall with an increase of            

(We )and decrease at the lower wall. 

15. There are some inflexion points that objections the flow of fluid with an 

increase of (m, ), (M, k), We and  . 

16.  The profiles of velocity are parabolic. 

17. The temperature distribution is rise up at the center region or core of the 

channel with an increase of m, a and  . 

18. There are some points of deviation that change the flow of the fluid and 

it’s temperature can be change as we have seen with an increase of (m,

, a) by clear way at the upper wall of channel. 

19. The profiles of temperature distribution are parabolic under the impact of 

b, M, k, Br,  and    .  

20. Heat transfer coefficient z(x) at the upper wall of channel is decreasing 

function of m. 

21. At the region,  0.8 < x <1.2 , we observed that the temperature coefficient 

is increased with an increase of a, b, M, k, Br,    and decrease with an 

increase of  .  

22.  At the region,  0.4 < x < 0.8 , z(x) will be we increase at the  increasing of 

  and decrease with an increase of b, M, k, Br,  . 

23. The size of trapped bolus increase with an increase of  and decrease with 

an increase of a, We, b, M . 

24. The size and number of trapped bolus increase with an increase of and  

 and decrease with an increase of k. 

25. The influence of m on size and number of circulation bolus is an even or 

irregular. 
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Fig.(4-20) effect of We  on velocity  
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(4-40) Effect of (a) on heat transfer  
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(4-42) Effect of (  ) on heat transfer   
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(4-44) Effect of K on heat transfer   

0.2, 0.5, , 0.2, 0.1,
6

0.0001, 2, 1, 1,
3

m t a b

We M Br



 

    

    

 

1

2

3

B

r

r

Br

B







 
(4-45) Effect of Br on heat transfer   
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(4-47) Effect of m on gradient.   
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(4-48) Effect of  on gradient.   
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(4-49) Effect of a on gradient.   
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(4-50) Effect of b on gradient.   
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(4-51) Effect of M on gradient.   
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(4-52) Effect of k on gradient.   
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(4-53) Effect of  on gradient.   
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(4-54) Effect of  on gradient.   
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(4-55) Effect of  on gradient.   
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(4-56) Effect of  on gradient.   
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Introduction 

     Fluid transport subject to the sinusoidal waves travelling on the walls of the 

channel/ tube. Motivations about the peristalsis is due to its vast occurring in 

many physiological mechanisms such as passage of urine from kidney to bladder, 

spermatozoa transport in the duct us efferent of the male reproductive tract, blood 

circulation in the small blood vessels, food stuffs through esophagus and 

alimentary canal etc. utility of such flows persuaded engineers to exploit these in 

many industrial applications. These include roller finger pumps, heart lung 

machines and corrosive fluids transport in nuclear industry. It is now well 

established fact that most of the fluids occurring in physiology and in industry are 

of non Newtonian type. Blood, bile, chyme, cosmetic products, mud at low shear 

rate etc, are examples of non Newtonian fluids. There are numerous studies 

available now on the peristaltic motion of viscous and non Newtonian fluids in a 

planar channel (see [1, 2, 3, 4, 5, 9]) and many refs. There in. little attention has 

been given to the peristalsis in an inclined channel, for example [40, 41]. The 

porous medium and heat transfer effects are quite important in the biological 

tissue. Especially such considerations are significant in blood flow simulation 

related to tumors and muscles, drugs transport, production of osteo inductive 

material, nutrients to brain cells etc. MHD peristaltic flows have acquired a lot of 

credence due to their applications. The effects of MHD on the peristaltic flow of 

Newtonian and non Newtonian fluids for different geometries have been 

discussed by many researches ([6], [48], [65] and [100] ) with a view to 

understand some practical phenomena such as blood pump machine and Magnetic 

Resonance Imaging (MRI) which is used for diagnosis of brain, vascular diseases 

and all the human body. In the studies ([6], [48], [65] and [100] ), the uniform 

MHD has been used. There are a few attempts in which induced magnetic field is 

used. They are mentioned in the works of ([26], [43], [50], and [39] ). Rathad et 

al. [84] studied the influence of wall properties on MHD peristaltic transport of 

dusty fluid. A new model for study the effect of wall properties on peristaltic 

transport of a viscous fluid has been investigated by Mokhtar and Haroun [10], 

Srnivas et al. [100] studied the effect of slip, wall properties and heat transfer on 

MHD peristaltic transport. Sreenadh et al. [99] studied the effects of wall 

properties and heat transfer on the peristaltic transport of food bolus through 

esophagus. The purpose of this chapter is to examine the effects of heat transfer 
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on the peristaltic transport of an incompressible Jeffrey fluid with constant 

viscosity in an inclined non uniform planar channel under the assumptions of long 

wave length and low Reynolds number and by helping of wall properties and slip 

conditions inclined magnetic field is consider through porous medium. The flow 

is investigated in a wave frame of reference moving with velocity of wave. The 

governing momentum and temperature is solved by exact way using 

“MATHIMATICA“software program. Numerical results are obtained for stream 

trapping bolus, velocity, temperature and pressure gradient and illustrated by 

graph by using different parameters.  

5.1 The Mathematical model of the Problem 

     Let us consider the inclined magnetic field and heat transfer of an 

incompressible Jeffrey fluid with constant viscosity in a flexible inclined planar 

channel  with flexible induced by sinusoidal waves trains propagating with 

constant speed C along the channel walls through a porous medium of two-

dimensional symmetric channel. We assume that infinite wave train traveling 

along the non-uniform walls. We choose a rectangular coordinate system for the 

channel with X along the direction of wave propagation and parallel to the center 

line and Y transverse to it. The lower and upper walls of the channel have the 

same temperature (T0).   

The wall deformation is given by  

2
( , ) ( sin[ ( )])                                                          ......(5.1)H x t d m x a x ct




   

 
Where a is the amplitudes of the waves,  is the wave length, 2d is the width of 

the channel at the inlet, ( 1)m m   is the non-uniform parameters, X is the axial 

coordinates, t is the time (see fig. (5-1)). 
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Figure 5-1 Diagrammatic of the problem 

5-2-1 Basic Equations of the Problem 

     The basic equations governing the non Newtonian incompressible Jeffrey fluid 

are given by: 

The continuity equation is given by: 

0                                                                                                          ......(5 2)
U V

X Y

 
  

 
  

The momentum equations are: 

2 2
20
02 2

1

0

0

( ) ( cos ( cos sin )
1

sin .                                                                                                     ......(5 3)

(

U U U P U U
U V B U V

t X Y X X Y

U g
K

V

t


    




 



     
       

     

  





2 2
20
02 2

1

0

0

) ( )  sin ( cos sin )
1

cos                                                                                                      ......(5 4)

V V P V V
U V B U V

X Y Y X Y

V g
K


   




 

    
       

    

  

                   

The temperature equation is given by: 

2 2
2 2 2

1 0 02 2
( ) [ ] 2 [ ( ) (  ) ]+ ( )

( ) ( )

T T T T T U V V U
C U V k

t X Y X Y X Y X Y
  
        

      
        

 

 
2 2 20

0

0

+   + ( cos sin )                                                                         ......(5-5)U B U V
K


          

Where   is the inclination angle of magnetic field,   inclination angle of channel.  
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5-2-2 Flexible wall 

The governing equation of motion of the flexible wall may be expressed as: [71] 

0                                                                                                       ......(5 - 6)L P P    

Where L  is an operator, which is used to represent the motion of stretched 

membrane with viscosity damping forces such that: 

2 2

2 2
                                                                         ......(5 - 7)

1
L m C

tX t


       
 

Where  is the elastic tension in the membrane, 
1

m  is the mass per unit area, C is 

the coefficient of viscous damping forces. 

Continuity of stress at Y H  and using momentum equation, yield: 

2 2
20

2 2

1

0

0

( ) ( ) ( ) cos
01

( cos sin ) sin .                                                                               ......(5 8)

P U U U U U
L H U V B

X X t X YX Y

U V U g
K


  




   

             
     

   

      

5-3 Method of solution of the Problem  

In order to simplify the governing equations of motion and temperature, we may 

introduce the following dimensionless transformations as follows: 

2

2 22 2
2 20 0

1

1 0 0 0

2 2

0

,  , ,  ,   ,   , ,    , , Re , 

Fr =  , r , , ,  ,  ,  Br = Pr,

Re
= ,u =  ,v = -  ,Ec =  ,       

X Y d U V d P m ct a cd
x y u v p m t b

d c c c d d

C T T B dc d Hp
P k h M Ec

gd k k d T

gd c

Fr c y x C T

 


     

 
 



  





         


     

 


 
                                                       .. ....(5 - 9) 

 

Substituting (5-9) into equations (5-1)-(5-8), we have: 

From equation (5-3): 

2 2 2
20 0
02 2 2 2 2

1

(  ) ( )  cos
1

CC u C u C u P C u C u
Cu C v B

t x d y d x x d y

 
   

   

     
      

      
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0

0

2 2 2 2 2

0 0

2 2 2 2 2 2

1

2 2 2 0
0 0

0

( cos sin ) sin .   

( ) ( )
1

cos cos sin sin .

Cu C v Cu g
K

CC u C u d C u P C u d C u
u C v

t x d y d x x d d y

B Cu B C v Cu g
K


    

 


    


       

  

     
     

      

   

 

2 2
20 0

2 2

1

2 2 2 0
0 0

0

2

2 2

1
( ) ( )

1

cos cos sin sin                           ......(5 -10)

C CC u u u P u u
u v

t x y d x d x y

B Cu B C v Cu g
K

 
 

 


       

     
     

      

   

Multiplying both sides of (5-10) by 
2

0

( )
 

d

C
we get: 

2 2 2 2 2
20

2 2 2

0 1 0

2 2 2 2
2 2 2

0 0

0 0 0 0 0

2 2
2 2 2 2

02 2

0 1 0

1
( . ) ( ) 

1

cos cos sin sin . 

1
. ( . ) ( ) cos

1

CC d u u u P d u u
u v

C t x y x d C x y

d d d d
B Cu B C v Cu g

C C K C C

Cd d u u u P u u
u v B d

t x y x x y


  
   


      

   

 


   

     
      

      

  

     
      

       0

u







    

2 2
2 2

0

0

2 2
2 2 2 2

2 2

1

2

2 2
2

2

1

cos sin sin .

1
Re ( ) ( ) cos cos

1

sin sin

1
Re ( ) (

1

Thus we have :

which can be written as :

d gd
B d v u

K C

u u u P u u
u v u

t x y x x y

v K u

u u u P u u
u v

t x y x x


  



      


  

 


 

     
       

      

 

     
     

      

2 2 2 2

2
) ( cos ) cos

sin sin                                                                                                            ......(5 -11)

K u
y

v

    

  

  



 

From equation (5-4): 

2 2
20
02 2

1

( ) ( )  sin ( cos sin )
1

V V V P V V
U V B U V

t X Y Y X Y


    



     
       

     
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Multiplying both sides of (5-12) by 
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From Eq. (5-5) we have: 
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Now, since  

0
0

0

                                                                                       .......(5 15)
T T

then T T
T

 

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Thus we can write eq. (5-14) by: 

 

                                                                                                             …… (5-16) 
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From equation (5-8): 
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Multiplying both sides of (5-18) by 
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Thus we can write eq. (5-20) by: 
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The general solution of the governing equations (5-12)-(5-21) in the general case 

seems to be impossible , therefore we shall confine the analysis under the 

assumption of small dimensionless wave length ( 1)   and low Reynolds number 
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approximation, thus we can write the above equations in the form of stream 

function : 
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                                                  ……(5-26) 

   …....(5-27) 

The corresponding dimensionless boundary conditions are given by: 
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5-4 Solution of the problem 

     Equation (5-26) shows that p dependents on x only. Thus if we diff. equation 

(5-25) with respect to y, we have the closed form solution as follows: 
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Now, if we substitute the expression for   into eq. (5-26) and solve the resulting 

equation we can find the following equation solution of temperature as follows: 
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, ( 1,2)ic i   are constants can be obtained by using the boundary conditions (5-29) 

such that: 
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5-5 Results and Discussion  

     In this section, the numerical and computational results are discussed for the 

problem of an incompressible Jeffrey fluid with constant viscosity in an non-

uniform planner channel through porous medium with the effects of heat transfer 

and inclined magnetic field by helping of wall properties and slip conditions on 

the velocity. The numerical evaluations of the analytical results and some 

important results displayed graphically in figures (5-2)-(5-43). 

(MATHEMATICA) program is used to find out numerical results and 

illustrations. The analytical solutions of the momentum equations and temperature 

equation are found by using long wave length and low Reynolds number. The 

obtained solutions are discussed graphically under the variations of various 

pertinent parameters in the present section. The graphs for the trapping bolus, 

velocity distribution, temperature distribution and pressure gradient are sketching 

for various physical parameters. 

5-5-1 Velocity Distribution   

      Influence of different parameters on the velocity distribution have been 

illustrated in figures (5-2)-(5-13). These figures are scratched at the fixed values 

of x= (0.8), t= (0.01). Figure (5-2) displays the effect of ( 1E ) on velocity 

distribution, it is noticed that the velocity distribution increase at the central line 

of channel with an increase of ( 1E ). The effects of ( 2E ) and ( 3E ) on velocity 

distribution are illustrated in figures (5-3) and (5-4) respectively, it observed that 

an increase in these parameters lead to increase in velocity profiles which is the 

same behavior of effect ( 1E ) on velocity. It is due to the fact that less resistance is 
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offered to the flow because of the wall elastance and thus velocity increase. 

Figure (5-5) showed the impact of parameter (b ) on velocity distribution, it 

observed that velocity increase at the core part of channel and decrease at the 

edges of the walls. The influences of Hartmann number M on velocity is plotted 

in figures (5-6), it is noticed that the velocity distribution decrease in the central 

region and walls of channel with an increase of M, in fact it is due that magnetic 

field applied in transverse direction yield resistance to fluid particles which 

decreases the velocity. Figure (5-7), showed the impact of porous parameter (k) 

on velocity which an increase in this parameter causes decreasing in value of 

velocity, since it forms disruption in flow of fluid which less the velocity of the 

fluid. The influences of    1, , ,  and m     are illustrated in figures (5-8), (5-9), (5-

10),(5-11) and (5-12) respectively, which is noticed that an increase in these 

parameters lead to increase in velocity of the fluid. Figure (5-13), display the 

effect of Jeffrey parameter ( 1 ) on axial velocity, it is observed that there is an 

increase in velocity distribution in the central region and walls of channel with an 

increase of ( 1 ). It is possible only when there is increase in relaxation time and 

decrease in retardation time, However, in this case we can say that for Newtonian  

fluid ( 1 0  ) the velocity is less than Newtonian fluid. All graphs of velocity 

profiles in all of its figures can be described as parabolic.  

 

5-5-2 Trapping Phenomenon   

     The effects of various parameters like 1 2 3 1 1, , , , , , , , , ,   and  E E E b M m k     on 

trapping can be seen through figures (5-14)-(5-25). Figure (5-14) show that the 

number and size of bolus trapping increasing in the upper and lower part of 

channel with an increase of ( 1E ). Figure (5-15) is plotted for the effect of ( 2E ) on 

trapping, it can be seen that there is a similar behavior of effect ( 1E ) on trapping 

with an increase of ( 2E ), where as the effect of ( 3E ) on trapping has opposite 

behavior of effects of ( 1E ) and ( 2E ) and it is shown in figure (5-16). However we 

can say that the properties of walls have oscillatory mannor. The influence of 

parameter (b ) on trapping is illustrated in figure (5-17) and it is noticed that there 

is decreasing in number and size of bolus in the upper and lower parts of channel 

with an increase of (b ). The impact of parameters M  and k are seen in figures 
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(5-18) and (5-19) respectively and it is noticed that there is decreasing in number 

and size of bolus in the upper and lower parts of channel with an increase of 

previous parameters. It means that the bolus size gets bigger in case of flow 

through porous medium. Figure (5-20) displays the effect of parameter ( 1 ) on 

trapping and it is observed that there is increase in number and size of bolus in the 

upper and lower walls of channel with an increase of ( 1 ). That is found bolus size 

is small in the case Newtonian fluid     ( 1 0  ). The influence of parameter ( ) on 

trapping are shown in figure (5-21), it is observed that an increase in ( ) lead to 

increase in number of circulation bolus in the both walls of channel. From figure 

(5-22), it is observed that an increase in the channel inclination angle decreases 

the size of the trapped bolus. It is further noted that the effect of channel 

inclination angle on the size of bolus largely, depends on the value of Grashoof 

number for (  of Gr ). Figure (5-23) displays the effect of magnetic field 

inclination angle ( ) on trapping, an increase in this parameter results an increase 

in the size and number of trapped bolus, this is mainly due to the fact that 

magnetic field inclination angle when increased results in a decrease in the 

retarding effects of the Lorentz force and the applied magnetic field will be 

decrease and has small influence on the flow. Figure (5-24) shows the impact of 

parameter m on trapping and it is observed there is increase in size and number of 

bolus in the two parts of wall of channel. The effect of parameter ( 1 ) on trapping 

iis shown in figure (5-25) and it is found that there is clear increasing of number 

and size of bolus in the both sides of channel with an increase of previous 

parameter. 

5-5-3 Temperature characteristics 

     The expression for temperature are given by eq. (5-33), the effects of various 

parameters on temperature for fixed values of (x= (0.8), t= (0.01)) are shown. The 

eq. (5-26) has been evaluated by using software "MATHEMATICA" and the 

results are presented in figures (5-26)-(5-32). As temperature is the average 

kinetic energy of the particles and. Kinetic energy depends on velocity, therefore 

increase in velocity by  1 2 3,   and E E E  leads to temperature enhancement and they 

are plotted in figures  (5-26), (5-27) and (5-28) respectively. The influence of (b) 

on temperature is shown in figure (5-29) which is observed, that there is 

increasing in the value of temperature at the core of channel and decreasing in 
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temperature at the edges of the walls with an increase of (b). Figures (5-30) and 

(5-31) display the impacts of parameters M  and k respectively, it is noticed that 

there is decreasing in temperature profile at the central region of channel with an 

increase values of these parameters. It is reveals the fact that temperature is the 

average kinetic energy of the particles and kinetic energy depends upon the 

velocity. The reason behind this fact is that applied magnetic field is opposing in 

nature. Figure (5-32) illustrated the effect of parameter (Br) on temperature, it is 

noticed that an increase in (Br) causes increase in temperature distribution, it is 

due the fact that Brinkman number (Br) is the product of the Prandtl number (Pr) 

and the Eckert number (Ec), which is occurs due to the viscous dissipation effects 

and the temperature enhances. The effects of , ,  and  m    are shown in figures (5-

33), (5-34), (5-35), (5-36) respectively, it is noticed that an increase in these 

parameters lead to increase in value of temperature. Figure (5-37) showed the 

impact of 1  on temperature, it observed that an increase in Jeffrey parameter 1  

yields a height magnitude of temperature that is we can say the temperature of 

Jeffrey fluid is larger than Newtonian fluid 1( 0)  . The impact of slip-parameter 

on velocity ( 1 ) plotted in figure (5-38), it is noticed that an increase in ( 1 ) 

results increase in temperature profiles in the center of the channel and small 

decreasing in the value of temperature at the walls. It is interesting to mention that 

all graphs of temperature profiles are parabolic. 

 

5-5-4 pressure gradient distribution  

     Effects of various parameters on the pressure gradient have been illustrated in 

figures (5-39)-(5-42). These figures are scratched at the fixed value of                 

t= (0.01). The effects of ( 1E ) and ( 2E ) are shown in figures (5-39) and (5-40) 

respectively, it is observed that an increase in these parameters lead to decreasing 

in pressure gradient, where as the greater impact is noticed near the regions of

0.2 0.8 x  . The effect of parameter (b) is plotted in figure (5-41) which is noted 

that there is similar behavior of effects of   ( 1E ) and ( 2E ) in pressure gradient. 

Figure (5-42) displays the impact of 3E  on pressure gradient which is observed 

that there is decreasing in pressure gradient at the region of  0.6 < x <1   , and 

increasing in pressure gradient at the region of   0 < x < 0.4  . It is found that the 

nature of pressure gradient in all cases is oscillatory. 
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5-6 Concluding Remarks  

     The present study deals with the combined effect of inclined magnetic field 

and wall properties on the peristaltic transport of an incompressible Jeffrey fluid 

with constant viscosity through porous medium of an inclined non-uniform 

symmetric channel, we obtained the Exact solution of the problem under the 

approximation of long wave length and low Reynolds number assumptions. 

(MATHEMATICA PROGRAM) is used to find the solution of governing 

equations of momentum and temperature and find The numerical results for the 

streamlines, velocity, temperature and pressure gradient for different values of  of 

pertinent parameters, and we observed the following main findings : 

1. At the upper and lower part of channel, we observed that the number and 

size of trapping bolus increase with an increase of value 

1 2 1 1, , , , ,   and  E E m     but the reverse rotation obtained with an increase of 

3, , , , E b M k  . 

2. The axial velocity increase at the central region of channel with an increase 

of 1 2 3 1 1, , , , , , , ,   and E E E b m     and its decrease with an increase of 

 and  M k  

3. The temperature distribution increase at the central region of channel with 

an increase of 1 2 3 1 1, , , , , , , , ,   and E E E b m Br     and its decrease with an 

increase of ,  M k  

4. The graphs of velocity and temperature distribution noticed to be parabolic. 

5. The axial pressure gradient with x increase in the regions of [0.2,0.8]x   

with an increase of 1 2,   and bE E  and it is decreasing in the regions of 

[0,0.2)  and [0.8, 1]x   with an increase of previous parameters. 

6. The axial pressure gradient with x increase at the region of [0,0.4]x   with 

an increase of 3E and it is decreasing in the region of  [0.6, 1]x   with an 

increase of previous parameter. 

7. The action of pressure gradient is wobbling.
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Fig.(5-2) :velocity profile for various values of E1 
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Fig.(5-3) :velocity profile for various values of E2. 
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Fig.(5-4) :velocity profile for various values of E3. 
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Fig.(5-5) :velocity profile for various values of b.  
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Fig.(5-6) :velocity profile for various values of M.  
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Fig.(5-7) :velocity profile for various values of 1 .  
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Fig.(5-8) :velocity profile for various values of  
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Fig.(5-9) :velocity profile for various values of .  
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Fig.(5-10) :velocity profile for various values of  . 
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Fig.(5-11) :velocity profile for various values of m . 
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Fig.(5-12) :velocity profile for various values of k . 
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Fig.(5-13) :velocity profile for various values of 1  . 
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Fig.(5-14) : Stream lines in the wave frame for various values of  E1 . 
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Fig.(5-15) : Stream lines in the wave frame for various values of  E 
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Fig.(5-16) : Stream lines in the wave frame for various values of  E3 
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Fig.(5-17) : Stream lines in the wave frame for various values of  b. 
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Fig.(5-18) : Stream lines in the wave frame for various values of  M. 
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Fig.(5-19) : Stream lines in the wave frame for various values of  1 . 
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Fig.(5-20) : Stream lines in the wave frame for various values of   . 
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Fig.(5-21) : Stream lines in the wave frame for various values of   . 
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Fig.(5-22) : Stream lines in the wave frame for various values of   . 

1 2 3 1 10.01, 0.3, 0.2, 0.1, 0.3, 0.9, 0.2, 1, , 0.2, 1, 0.1
3

( ) , ( ) , ( )
4 3 2

t E E E b M m k

a b c

   

    

           

  

 

 
Fig.(5-23) : Stream lines in the wave frame for various values of  m. 
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Fig.(5-24) : Stream lines in the wave frame for various values of  k. 
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Fig.(5-25) : Stream lines in the wave frame for various values of  1 . 
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Fig.(5-26):Temperature profile for various of E1. 
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Fig.(5-27):Temperature profile for various values of E2. 
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Fig.(5-28):Temperature profile for various values of E3. 
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Fig.(5-29):Temperature profile for various values of b.  

1 2 3

1

1 1

0.01, 0.3, 0.2, 0.1, 0.9,

0.2, 1, , , 0.1,
3 3

0.1, 0.9, 0.1, 0.8

t E E E M

m

k x

    

 

    

    

   

 

1

1.

M

5

2

 

M

M





  
Fig.(5-30):Temperature profile for various values of M. 
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Fig.(5-31):Temperature profile for various values of 1 .  

1 2 3

1 1

0.01, 0.3, 0.2, 0.1, 0.2,

0.9, 1, , , 0.1,
3 3

0.1, 0.9, 0.1, 0.8

t E E E b

M m

k x

   

 

    

    

   

 

 

1.0 0.5 0.5 1.0
y

0.05

0.10

0.15

0.20

0.25

0.30

y

1.0 0.5 0.5 1.0
y

0.1

0.2

0.3

0.4

y

1.0 0.5 0.5 1.0
y

0.1

0.2

0.3

0.4

y

1.0 0.5 0.5 1.0
y

0.1

0.2

0.3

0.4

y

1.0 0.5 0.5 1.0
y

0.05

0.10

0.15

0.20

0.25

0.30

y

1.0 0.5 0.5 1.0
y

0.05

0.10

0.15

0.20

0.25

0.30

0.35

y



Effects of inclined magnetic field and wall properties on the peristaltic transport of Jeffrey fluid 

through porous medium in an inclined symmetric channel. 

 

311 

 

1

2

3



 



  
Fig.(5-32):Temperature profile for various values of .  
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Fig.(5-33):Temperature profile for various values of  
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Fig.(5-34):Temperature profile for various values of   
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Fig.(5-35):Temperature profile for various values of m. 
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Fig.(5-36):Temperature profile for various values 1 .
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Fig.(5-37):Temperature profile for various values of k. 
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Fig.(5-38):Temperature profile for various values 

of 1 .  
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Fig.(5-39) :pressure gradient profile for various 

values of 1E .  
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Fig.(5-40) :pressure gradient profile for various values 

of 2E .  
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Fig.(5-41) :pressure gradient profile for various values 

of 3E .  
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Fig.(5-42) :pressure gradient profile for various values 

of
 
b . 
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Introduction  

      Peristaltic transport of fluid is quite popular topic of research amongst the 

mathematicians, physiologists and engineers. Such popularity of this topic is due to 

occurrence of peristalsis in the physiological and engineering processes. The 

peristaltic pumping is a mechanism for fluid transport induced by progressive wave 

of contraction and relaxation along the distensible tube. Fluid transport in view of 

peristalsis is an important biological mechanism responsible for various 

physiological functions of the organs in the human body. Particularly such 

mechanism is in urine passage from kidney to bladder through ureter, chyme 

movement in the gastrointestinal tract, ovum movement in the female fallopian 

tube, transport of spermatozoa in ducts efferent of male reproductive tract, transport 

of lymph in lymphatic vessels such as arterioles, capillaries, venules and in 

esophagus during food swallowing process. Practically the peristaltic pumps are 

designed by engineers for pumping corrosive fluids without contact with the walls 

of the pumping machinery. In nuclear industry the peristaltic pumping has been 

found in corrosive fluid or sensitive fluids, transport of slurries and noxious fluids. 

Latham [61], Jaffrin and Shapiro [96], Shapiro et al. [95] and Fung [33] were the 

first who made a detailed analysis on peristaltic pumping. It is also noted that initial 

attempts for peristalsis have been made for viscous liquids. This is not adequate 

since most of the materials in the physiological and engineering processes are non-

Newtonian. There are three types of non-Newtonian fluids (i.e.), 1. Differential 

type. 2. Rate type. 3. Integral type. The non-Newtonian fluids which exhibit the 

characteristic of relaxation or retardation times are belong to rate type fluids. 

Maxwell fluid is one of the subclass of rate type fluids which contains only 

relaxation time behavior. The only draw back of this fluid model is that it does not 

explain the retardation time behavior. Therefore to fill this gap, Jeffrey fluid model 

is considered this model shows the behavior of linearly viscoelastic fluids due to its 

large number of application in polymer industries. Moreover the Jeffrey fluid model 

is comparatively simple linear model using time  derivatives instead of convective 

derivatives for example the oldroyd-B fluid model does, it represents a different 

rheological behavior from that of the Newtonian fluid. In view of diverse 

characteristics of non-Newtonian materials, various constitutive equations have 

been suggested. Among such constitutive equations there is one for Jeffrey fluid 
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which has been already utilized for peristaltic transport in both symmetric and 

asymmetric channel (see [44, 51, 27, 76, 60].  

     Influence of applied magnetic field on peristaltic activity is important in 

connection with certain problems of the movement of the conductive physiological 

fluids, e.g. , blood and the blood pump machines, magnetic drug targeting and 

relevant process of human digestive system. Such consideration is also useful in 

treating gastro paresis, chronic constipation and morbid obesity,  

    Impact of heat transfer in peristaltic transport of fluid is quite significant in food 

processing, oxygenation, hem dialysis, tissues conduction, heat convection for 

blood flow from the pores of tissues and radiation between environment and its 

surface. Mass transfer is useful in the a fore mentioned processes. Especially mass 

transfer cannot be under estimated when nutrients diffuse out from the blood to 

neighboring tissues. Further mass transfer involvement is quite prevalent in 

distillation, chemical impurities diffusion, membrane separation and combustion 

process. It should be noted that relationships between fluxes and driving potentials 

occur when both heat and mass transfer act simultaneously. Here temperature 

gradient generates energy flux. However mass flux and composition gradients are 

due to temperature gradient (which is called soret effect).  

     It is noted that all the a fore mentioned studies on peristaltic transport have been 

conducted for peristalsis in straight channels which is not realistic always since 

most of the pipes, arteries and glandular ducts are curved. Thus some advancements 

have been made for peristalsis using curvilinear coordinates. Sato et al.[94] initiated 

such analysis for peristaltic transport of viscous fluids. Ali et al. [16] extend the 

work of sato et al. in wave frame of reference. Later some attempts [17, 99, 42] 

have been presented to address. The curvature effects on peristalsis of fluids in a 

channel. In these attempts mostly the constant magnetic field are considered. 

Recently, Hayat et al. [45] is given in their work to explore the characteristics of 

radial magnetic field on peristaltic transport of Jeffrey fluid in a curved channel. 

Heat transfer is characterized there by utilizing convective condition. Hayat et al. 

[52] investigated the effect of radial magnetic field on the peristaltic flow of Jeffrey 

liquid in curved channel with complaint walls. 
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     In all of previous studies, the viscosity is assumed to be constant. Now our work, 

we investigated the effect of radial magnetic field on the peristaltic flow of Jeffrey 

fluid in curved channel under the effect of variable viscosity to the temperature. We 

will study the effect of heat and mass transfer such as the effect of viscous 

dissipation and thermophoresis are considered in the transport equations which can 

be described by Brownian number (Br), Schmidt number (Sc) and soret number 

(Sr). Non-slip boundary conditions on velocity, temperature, and conservation are 

considered. The equations are simplified by using long wave length and low 

Reynolds number. The non-linear differential equations are solved analytically by 

using regular perturbation method for small values of Reynolds model viscosity 

parameter for temperature. Series solutions for stream function, axial velocity 

pressure gradient, temperature and conservation are given by using the regular 

perturbation technique. The effects of the physical parameters are considered to 

study the rate of temperature which is named by (heat transfer coefficient) and the 

effects of these parameters on above distributions are also discussed and illustrated 

graphically through a set of figures.  

6-1   Mathematical Formulation 

Consider two- dimensional motion of an viscous incompressible Jeffrey fluid in a 

curved channel of width (2 )a , center at 0 and radius at R as shown in figure (6-1). 

The flow is generated due to the transverse deflections of sinusoidal waves of small 

amplitudes (b) that are imposed on the flexible walls of the channel. The inertial 

effects are assumed to be small. The lower and upper walls of the channel are 

maintained at the same temperature 
0T  and concentration 

0C . The equations of the 

walls of channel are described as follows: 

2
( , ) cos( ( ))                                                        ......(6 -1)r H X t a b X Ct




  

Where X  is the axial distance, r is the radial distance, a is the radius of the stationary 

curved channel, b is the wave amplitude,   is the wave length, t is the time and the 

wave length is large compared with the channel width (a) that is ( 1)
a


 . 
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                                                  Fig (6-1) : geometry of the problem 

 

6-2  Constitutive Equations  

The constitutive equations for a Jeffrey fluid with variable viscosity of temperature 

can be written by : [78] 

2

1

,                                                                                           .....(6 - 2)

( )                                                                          
1

P I S

S




 



  

 


      .......(6 -3)

Where   and S Cauchy stress tensor and extra stress tensor, respectively, P  is the 

pressure, I  is the identity tensor, 
1  is the ratio of relaxation to retardation times, 

2  is the retardation time, 


 is the shear rate and dots over the quantities indicate  

differentiation with respect to time. 

Let [ ( , , ), ( , , ), 0]V U r X t V r X t  be the velocity vector in the curvilinear 

coordinates ( , )r X . 

( ) ( )                                         .....(6 - 4)

V R V U

r r R X r R
gradV V

U R U V

r r R X r R

 
 
 
 
 
 

 


   
  

 


   

The strain E is defined by : 

1 [( ) ( ) ]                                                                                    ......(6 -5)
2

E V V    

The shear strain or shear rate 


 is defined by : 



Effect of radial magnetic field on peristaltic transport of Jeffrey fluid variable viscosity 
in curved channel with heat and mass transfer properties 

 

 

832 

 

2

2                       . ....(6 - 6)

2( )

V U R V U

r r r R X r R
E

U R V U R U V

r r R X r R r R X r R




   
  

      
   

   
       

So, we have: 

2 ,   ,  2( )  ....(6 - 7)rr rX Xr XX

V U R V U R U V

r r r R X r R r R X r R
   
      

      
       

Now, define   as follows: 

  ( . ).   ( . )  ,                                                            

. ,                                                         

 ......(6 -8)  

in which 

D
V V

Dt t t

R
V U V

r R X r

   
    

      
 

 
  

  
                          

( )

      = 2[ ( )] ,                                                                 ......(6 -10)

  ......(6 -9)

Thus we have :

rr rr
rr

R
U V

t r R X r

R V
U V

t r R X r r

 



   
  
   

   
 

    

( )

        = [ ( )]( ),                              ......(6 -11)

( )

        = 2[ ( )](

rX rX
rX

XX XX
XX

R
U V

t r R X r

R U R V U
U V

t r R X r r r R X r R

R
U V

t r R X r

R R U V
U V

t r R X r r R X r

 

 

 

 

  
  
   

    
   

       

  
  
   

   
  

      
),                                     ......(6 -12)

R

 

The components of shear tensor (S) are : 

2

1

( )
( )

1

rr rX

Xr XX

rrrr rr

S S
S

S S

T
S


  



 

 
  
 

 

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2

1

2

1

2

1

1

( )
 = (2 2 [ ( )] ) 

1

2 ( )
= (1 [ ( )]                                             . .....(6 -13)

1

( )
( )

1

( )
     = ((

1

rX rXrX

T V R V
U V

r t r R X r r

T R V
U V

t r R X r r

T
S

T U R V

r r R X












  







 

    
  

      

   
  

     

 


 
 

   
2

2

1

) [ ( ]

( )
    = (1 [ ])( )       .......(6 -14)

1

U R
U V

r R t r R X r

T R U R V U
U V

t r R X r r r R X r R








  
  

    

    
    

        

 

2

1

2

1

2

1

( )
( )

1

( )
       = (2( ) [ ](2(

1

         )))

2 ( )
       = (1 [ ])( ),          .......(6 -15) 

1

XX XXXX

T
S

T R U V R R U
U V

r R X r R t r R X r r R X

V

r R

T R R U V
U V

t r R X r r R X r R


  













 

 


    
    

         



   
   

       

6-3  Calculation of Lorentz Force  

Fluid in this problem is flowing under the influence of radially varying magnetic 

field of the form [52]: 

0

 
                                                                                                             .....(1)

r

RB
B e

R r



  

The type of magnetic field given through eq.(1) satisfies the Maxwell equations. 

Velocity field for present flow configuration is taken of the form :
 
 

[ ( , , ), ( , , ), 0]V V r X t U r X t                                                                            

where  and  VU are the axial and radial components of the velocity respectively. 

The Lorentz force  F in view of the magnetic and velocity fields mentioned above 

takes the following form: 
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0

0

0

0                                               ......(2)

0 0

                                                                                      ......(3)

r X Z

Z

Z

e e e
R

J V B V U U B e
R r

R
B

R r

R
J U B e

R r
 

    




  


Utilization of ohms law gives the following expression : 

2 2

0 0

0

0 0 ( )                     ......(4)

0 0

r X Z

X

e e e

R R
F J B U B U B e

R r R r

R
B

R r

 


    
 



 

That is  

2 2

00, ( ) , 0                                                                              .......(5)
R

F U B
R r


 

   
 

where  
0B  is the strength of applied magnetic field, 

r
e  is the unit vector in the radial 

direction, J  is the current density and   is the electric conductivity of fluid, B is 

the magnetic field. It is observed that the effect of magnetic field appear in the flow 

of axial direction.
 

6-4   Basic Equations 

The basic equations governing the non-Newtonian in compressible viscous Jeffrey 

fluid are given by: 

The continuity equation is given by: 

0                                                                          . ......(6 -16) 
R U V V

r R X r r R

 
  

   

The momentum equations are given by: 
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 
2

                                                                                                                                 

1
( ) ( )

1
  

rr Xr

XX

V V R V U P R
V U r R S S

t r r R X r R r r R r r R X

S
r R


     

       
         



 

2

2 2 2

0

   

                                                                                 

.......(6 -17)

.......(6 -18)

. 1
( )

( )

( ) ( ) B   

XX

Xr

U U R U U V R P R
V U S

t r r R X r R r R X r R X r R

R
r R S U

r r R





    
      

         


 

 

The temperature equation is given by : 

2 2
2

1 2 2

1
( ) [ ( ) ]

( ) ( )                                           .......(6 -19)

p

rr XX Xr

RU T T R T
C V T k

t r r R X r R r r Rr X

V U R V U
S S S

r r r R X r R


     
     

       

  
   

    

The concentration equation is given by : 

2 2
2

2 2

2 2
2

2 2

1
[ ] [ ( ) ]

1
[ ( ) ]                                                                      .......( )        6 - 20T

m

R C C R
V U C D C

t r r R X r R r r Rr X

DK T T R T

T r R r r Rr X

     
     

       

  
 

   

 

Where D is the diffusion coefficient of the diffusing species, 
mT the mean fluid 

temperature,
TK is the thermal diffusion ratio, T and C denote the fluid temperature 

and concentration respectively.  

6-5  Method of Solution : 

In order to simplify the governing equations of motion, temperature and 

concentration we may introduce the following dimensionless transformations as 

follows: 

2

0

2 2 2
02 0 0 0

0 0 0 0 1 00

,  ,  ,   ,   ,    ,    ,   ,   ,   ,   

Re ,  ,   S =  ,  ,  = ,   r ,    Ec =  ,  

X r U V ct H b a R a P
x r u v t h K p

a c c a a a c

CB a T T C Cca aS C
M P

C T k C TC





 
     


 

  

         

 
   
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0 0
1 2 3

0 0 0

( )
( ) =  , Pr. , = Sr =  ,  = SC = ,u = - ,   v =  ......( )6 21T

m

DK TT K
Ec Br

D r r K xT C

   
    

 

 
 

  


In which  is the amplitude ratio or the occlusion parameter, K is the curvature 

parameter, Sc is the Schmidt number, Sr is the soret number, 

Now substituting (6-21) into equations (6-13)-(6-15) and into equations (6-16)-(6-

20) we have: 

From eq.(6-16) we have: 

0

. 0
( ) ( )

R U V V

r R X r r R

ak C u C v C v

a r k x a r a r k

 



 
  

   

 
  

   

 

. 0
( ) ( )

. 0                                                            ......(6 - 22)
( ) ( )

k C u C a v C a v

r k x a r a r k

k C u C v C v

r k x r r k

  

  

 
  

   

 
  

   

 

Multiplying both sides of (6-22) by ( )
C

  we get : 

0                                                                       ......(6- 23)
( ) ( )

k u v v

r k x r r k

 
  

   
  

From equation (6-17) we have: 

 
2

2 2

0

3

0 0 0

1
( ) ( )

1

( )
( . )

( ) ( )

1 1 1 1
( ) .

( ) ( ) ( )

rr

Xr XX

rr xr

V V R V U P R
V U r R S

t r r R X r R r r R r r R

S S
X r R

CC v C v ak C v Cu P
C v Cu

t a r a r k x a r k a r

C C Cak
a r k S S

a r k a r a a r k x a a r k



  
 

 

  



    
       

        




 

   
     

     

  
   

     
xxS

a
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 

2 2 2 2 2
2 0

2 3

0 0 0

2 2

2 2 2 2 2
2 0

2 3

0

2

( )
( ) ( )

( ) .
( ) ( ) ( )

( )
( ) ( )

( )

rr xr xx

CC a v C a v k C a v C P
v u u

t a r r k x a r k a r

C C Ck
r k S S S

a r k r r k a x a r k

CC a a v C a v k C a a v C P
v u u

a t a r r k a x a r k a r

C

a r k




    

  






    



   
     

     

 
  

    

   
     

     


 

 

0 0

2

2 2
2 2 2 0 0

3 2

0 0

2

( ) .
( ) ( )

( )
( ) ( ) ( )

( ) .                                    .......(6 - 24
( ) ( )

rr xr xx

rr xr xx

C Ck
r k S S S

r r k a x a r k

C CC v v k v u P
v u

a t r r k x r k a r a r k

C Ck
r k S S S

r r k a x a r k

 



 
   

 



 
  

   

   
     

      

 
  

   
)

Now, multiplying both sides of (6-24) by 
3

( )
a

C 
 we get: 

2C


a

3a

C

2
02 2 2( )

( ) ( )

Cv v k v u P
v u

t r r k x r k r


  



   
     

     

3

2

0

.
( )

a

a r k C 

 
0

( )
( )

rr

Ck
r k S

r r k




 

  a

3a

0C 

0

xr

C
S

x








 2a

3

.
( )

a

r k 0C 

 
2

2 2 2

0

2

.

 ( ) ( )
( ) ( )

.
( ) ( )

 

xx

rr

xr xx

S

Ca a v v k v u P
v u r k S

t r r k x r k r r

k
S S

r k x r k




   

 




    
       

      




  

Which is can be written as: 

 
2

2 2 2

2

 Re ( ) ( )
( ) ( ) ( )

.                                                                   ......(6 - 25)
( ) ( )

rr

xr xx

v v k v u P
v u r k S

t r r k x r k r r k r

k
S S

r k x r k


   




    
      

       


 

  

From eq.(6-18) we have:  
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Now, multiplying both sides of eq.(6-26) 
2

0
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a

C 
we get: 
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


 2a

2

2
.

( )

a

r k 0C 
 2 2 2

0( ) ( ) B
( )

xr

k
r k S C

r r k



 

 

2

.
a

u
C 0

.


 

 

0

2 2
2 2 0

2

0

.
( )

( ) ( ) ( ) ( )

B1
. ( ) ( ) .

( ) ( )

xx

xr

Ca a u u k u u v k P k a
v u S

t r r k x r k r k x r k x

ak
r k S u

r k r r k



  





    
      

        


 

  

 

Which can be written as: 
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 

2

2 2 2

. 1
Re ( ) .

( ) ( ) ( ) ( ) ( )

( ) ( ) .                                                                .....(6 - 27)
( )

xx

xr

u u k u u v k P k
v u S

t r r k x r k r k x r k x r k

k
r k S M u

r r k

 
    

      
         


 

 

From eq. (6-19) we have:  

2 2
2

1 2 2

2
2

1 2 2

2

0 0

2 2

1
( ) [ ( ) ]

( ) ( )

1 1 1 1 1
( ) [ ( )

( ) ( ) ( )

1
] ( )

rr XX Xr

rr xx

R T T R T
C V U T k

t r r R X r R r r Rr X

V U R V U
S S S

r r r R X r R

C T T ak T T T ak
C C v Cu k

t a r a r k x a r a r k a r a r k

C CT
S S

x a a







 
 

 



     
     

       

  
   

    

    
    

       


 



0 ( )
( ) ( )

(

rx

CC v C u ak C v Cu
S

a r a a r a r k x a r k

C T C
C

t a


 






  
  

    






a
v

2
2

1 2 2 2

2

0

2 2

1 1
) [ ( )

( ) ( ) ( )

1
] ( )rr xx

T k C T T T k
u k

r r k x a r a r k r r k

CT C
S S

x a a

 





   
   

      


 



a 0 ( )
( ) ( )

rx

Cv C u k C a v Cu
S

r a a r r k x a r k



  

  
  

    

 

2 2
2

1 2 2 2 2 2

2

0 0

2

2

1

2 2

1 1 1
[ ) [ ( )

( ) ( ) ( )

] ( ) ( ).
( ) ( )

1
[ ) [ (

( ) ( ) (

rr xx rx

C T T k T T T k a
C v u k

t r r k x a r a r k r r k a

C CT C v C u k C a a v C u
S S S

x a r a a r r k a x a r k

C T T k T k T T k
C v u

t r r k x a r r k r r






 

 

  




    
    

       

   
    

     

    
    

       

2
2 2

2

20 0

) ]
)

( ) ( )                  .....(6 - 28)
( ) ( )

rr xx rx

T

k x

C CC v C u k v u
S S S

a r a a r r k x r k



 









  
   

    

 

Now, multiplying both sides of (6-28) by 
2

1

( )
a

k
 we get : 

2 2 2
2 2

2 2

1

1
. [ ) [ ( ) ]

( ) ( ) ( )

a C T T k T T T k T
C v u

k t r r k x r r k r r k x
 


     
     

        
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2 2
20

1 1

2 2 2
2 20

2 2

1 0

2 2
20 0

1 1

( ) ( )
( ) ( )

1
[ ) [ ( ) ]

( ) ( ) ( )

( ) ( )     
( ) ( )

rr xx rx

rr xx rx

C C a v C C a u k v u
S S S

a k r a a k r r k x r k

C a T T k T T T k T
C v u

k t r r k x r r k r r k x

C Ca v u k v u
S S S

k r k r r k x r k



 





 

 

 




  
   

    

     
     

        

  
   

    

0
0 0 0 0 0

0

                      . .....(6 - 29)

                    ......(6 3Now, since   0)
T T

T T T T T T T T
T

   


           

Thus, we can write eq.(6-29) by the following form: 

2 2
20

0 0 0 0 02

1 0

2 22
2 20 0

0 2

1 1

2 2

0
0 0 2

1 0

1
[ ) [ ( )

( ) ( )

] ( ) ( ).
( ) ( )

1
 [ ) [

( ) ( )

rr xx rx

C a k k
C T vT uT T T

k t r r k x r r k r r k

C Cv u k v u
T S S S

x k r k r r k x r k

C a k
C T v u T

k t r r k x r r k





     


 

 
  

    


 

    
    

       

   
    

     

   
   

     

2
2 2

2

2 2
20 0

1 1

( ) ]

( ) ( )               .......(6 - 31)  
( ) ( )

rr xx rx

k

r r k x

C Cv u k v u
S S S

k r k r r k x r k

 


 
 

 


  

  
    

    

Multiplying both sides of eq.(6-31) by 
0

1
( )
T

 we obtain: 

 

2 2 2
2 20

2 2

1 0

2 2
20 0

1 0 1 0

1
[ ) [ ( ) ]

( ) ( )

1 1
( ) ( ).

( ) ( )
rr xx rx

C a k k
C v u

k t r r k x r r k r r k x

C Cv u k v u
S S S

k T r k T r r k x r k



      
 

 

 
 

     
     

        

  
   

    
 

2 2
0 2 2

2 2

0 1

2 2
20 0

1 0 1 0

1
[ ) [ ( ) ]

( ) ( )

1 1
( ) ( ).

( ) ( )
rr xx rx

CCa a k k
v u

k t r r k x r r k r r k x

C CC Cv u k v u
S S S

k T C r k T C r r k x r k



 

 

      


 

 
 

     
     

        

  
   

    

 

2 2
0 2 2

2 2

0 1

1
[ ) [ ( ) ]

( ) ( )

CCa a k k
v u

k t r r k x r r k r r k x

      


 

     
     

        
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2 2
0 0 2

0 1 0 1

( ) ( ).  ....(6 -32)
( ) ( )

rr xx rx

C CC v C u k v u
S S S

C T k r C T k r r k x r k

 

 

 
 

  
   

    

 Which is can be written as: 

2 2
2 2

2 2

2

1
RePr [ ) [ ( ) ]

( ) ( )

Ec Pr ( ) Ec Pr ( ).                   .......(6 - 33)
( ) ( )

rr xx rx

k k
v u

t r r k x r r k r r k x

v u k v u
S S S

r r r k x r k

     
 

 

     
     

        

  
   

    

 

From eq.(6-20) we have: 

2 2 2
2

2 2 2

2
2

2

2

2 2

1
[ ] [ ( ) ] [

1
( ) ]

1 1 1 1 1
[ ] [ (

( ) ( )

T

m

R C C R C DK T
V U C D

Tt r r R X r R r r Rr X r

T R T

r R r r R X

C C C ak C C C a
C v Cu D

t a r a r k x a r a r k a r


 

      
     

        

 
 

   

    
    

      

k

a

2

2 2

2 2 2 2

)
( )

1 1 1 1
] [ (

( )

T

m

r k

C DK T T a

x T a r a r k a r



  
  

   

k

a

2
2

2 2

2
2

2 2 2 2

2 2 2
2

2 2 2 2 2 2

2

2 2 2

1
) ]  

( )

1 1 1
[ ] [ ( )

( ) ( ) ( )

1 1 1
] [ ( ) ] 

( ) ( )

1 1
[ ] [ (

( ) ( )

T

m

T

xr k

C C C a C k C C C C k
v u D

t a r r k x a r a r k r r k

C DK T T k T

x T a r a r k r r k x

C C C k C C C k
v u D

t r r k x a r a r k r



   









    
    

       

   
  

     

    
    

      

2 2
2

2 2 2

2 2 2
2

2 2 2 2 2 2

1
) ]

( )

1 1 1
[ ( ) ] 

( ) ( )

T

m

a C

r k a x

DK T T k a T

T a r a r k r r k a x








 

  
 

    

 

2 2
2 2

2 2 2

2 2
2 2

2 2 2

1
[ ] [ ( ) ]

( ) ( ) ( )

1 1
[ ( ) ]                                                      ..........(6 - 34)  

( ) ( )

T

m

C C C k C D C C k C
v u

t r r k x a r r k r r k x

DK T T k T

T a r r k r r k x






     
     

        

  
 

    

 

Multiplying both sides of (6-34) by 
2

( )
a

D
we get: 
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2 2 2
2 2

2 2 2

2 2 2
2 2

2 2

0

0

1 1
[ ] [ ( ) ]

( ) ( ) ( )

1
[ ( ) ].                                                       ......(6 - 35)

( ) (

 

)

 Since 

T

m

C a C C k C C C k C DK
v u

D t r r k x r r k r r k x T a

a T T k T

D r r k r r k x

T T

T








     
     

        

  
 

    


 0

0 0

0

  and =     thus    and 
C C

T T C C
C

  


     

So, we can write (6-35) by the following form: 

2 2
2 2

0 0 0 0 02

2 2 2
2 2

0 0 0 02 2 2

2 2
2 2

0 0 2

1
[ ] [ ( )

( ) ( ) ( )

1 1
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( ) ( )

1
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T

m

C a k k
C v C uC C C

D t r r k x r r k r r k

DK k
C T T T

x T D r r k r r k x

C a k k
C v u C

D t r r k x r r k r r k

    




   


     


 

    
    

       

   
  

     

     
    

       

2

2

2 2
2 2

0 2 2

]

1 1
[ ( ) ].                                     ........(6 - 36)  

( ) ( )

T

m

x

DK k
T

T D r r k r r k x



  




  
  

    

Multiplying both sides of (6-36) by 
0

1
( )
C

 we get : 

2 2 2
2 20

2 2

0

2 2
2 20 0

2 2

00

1
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( ) ( ) ( )

1 1
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T

m
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D t r r k x r r k r r k x

TDK k

T D r r k r r k xC
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

  

   


 

     
     

        

  
 

    

 

2 2
2 20
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0
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1
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1
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T

m
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D t r r k x r r k r r k x
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D r r k r r k xT C
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

  

    




     
     

        

  
 

    

 

Which can be written as: 

2 2
2 2

2 2

1
Re [ ] [ ( ) ]

( ) ( ) ( )

k k
Sc v u

t r r k x r r k r r k x

     
 

     
     

        
 

2 2
2 2

2 2

1
. [ ( ) ].                                                      ....(6 -37)

( ) ( )

k
Sr Sc

r r k r r k x

  


  
 
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From eq.(6-13) we have: 

2

1

0 0
2

1
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2

1
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



    
 

  

   


  
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  

     
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  

     

 
  
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a
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C
v
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



a
  

v

r





 

0 0
2

1

0 0
2

1

2 ( )
 S = (1 [ ( ) )]  

1 ( )

2 ( )
 S = (1 [ ( ) )]               .........(6 - 38)   

1 ( )

rr

rr

C C k C C C v
u v

a t r k x r r

C C C k v
u v

a t r k x r r

   


    

   


  

   
  

     

   
  

     

Multiplying both sides of (6-38) by 
0

a

C 
we get: 

02
 S =rr



11

C


0

a

C 
2

2

1

( )(1 [ ( ) )]  
( )

2
S = ( )(1 [ ( ) )]                          ........(6 - 39)

1 ( )
rr

C a k v
u v

a t r k x r r

C k v
u v

a t r k x r r

  


  
 



   
  

    

   
  

     

From eq.(6-14) we have: 

2

1

0 0
2

1

( )
 = (1 [ ])( )

1

( )
 = (1 [

1

rX

rx

T R U R V U
S U V

t r R X r r r R X r R

C C a
S

a t






   


 

    
    

        


 

 

k

a

1 1
])(

( )

C u
Cu C v

x a r a rr k

a




  
 

  

k

a

0 0
2

1

. )
( )( )

= ( )(1 [ ])(
1 ( ) ( )

1
. ).

( )

rx

C v C
u

x a r kr k

C C k C u k
S u v

a t r k x r a r r k

C a v C
u

x a r k





 
  

 

 




 

   
   

      




 

 

0 0
2

1

= ( )(1 [ ])(
1 ( ) ( )

rx

C C k C u k
S u v

a t r k x r a r r k

 
  

 

   
   

      
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0 0
2

1

2

1
)

( )

= ( ) (1 [ ])(
1 ( ) ( )

)                                                                                              ......(6
( )

rx

C a a v C
u

a x a r k

C C C a k u k
S u v

a a a t r k x r r r k

v u

x r k

 

 
  

 






 

   
   

      




 
- 40)

Multiplying both sides of (6-40) by 
0

( )
a

C
we have: 

0
=rxS



11

C

 a

a

0 C

2

2

( )(1 [ ])(
( ) ( )

).
( )

C k u k
u v

a t r k x r r r k

v u

x r k

 
 



   
   

     




 

 

22

1

( )
= (1 [ ])(

1 ( ) ( )

)                                                                                                           ......(6 41)
( )

rx

C k u k v
S u v

a t r k x r r r k x

u

r k

   




    
    

       




From eq.(6-15) we have: 

2

1

0 0
2

1

2 ( )
= (1 [ ])( ),

1

2 ( )
= (1 [

1

XX

xx

T R R U V
S U V

t r R X r r R X r R

C C a
S

a t






   


 

   
   

       


 

 

k

a

1 1
])

( )

(

Cu C v
x a rr k

a




 


 

k

a
),

( )( )

C u C v

x a r kr k








 

 

0 0
2

1

2 ( )
= (1 [ ])

1 ( )

( ),
( ) ( )

xx

C C k C C a
S u v

a t r k x a r

k C u C a v

r k x a r k

   


   

 

  
  

    




  

 

0 0
2

1

2
= (1 [ ]) (

1 ( ) ( )

),                                                                                                             .    ....(6 - 42)
( )

xx

C C k C k
S u v

a t r k x r r k

u v

x r k

 


  

  
  

     




 
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Multiplying both sides of (6-42) by 
0

( )
a

C
we get: 

02
=xxS



1 0
1

C a

C  
2

2

1

(1 [ ])( ),
( ) ( ) ( )

2
= ( )(1 [ ])( )        ...(6 - 43)

1 ( ) ( ) ( )
xx

C a k k u v
u v

a t r k x r r k x r k

C k k u v
S u v

a t r k x r r k x r k




  
 



   
   

      

   
   

       

  

The general solution of the governing equations (6-25)-(6-43) in the general case 

seems to be difficult and not easy,  therefore we shall can fine the analysis under 

the assumption of small wave length ( 1)   and low Reynolds number 

approximation, thus we can write the above equations in the form of stream 

function: 

 2 2

0                                                                                                                          ....(6 - 44)

1
. ( ) . .                         

( )
xr

P

r

P k
r k S M

x k r k r r k r








  
  

    
                              . ...(6 - 45) 

 

 

6-6 Rate of Volume Flow and Boundary Conditions: 

      The relation between volume flow rate and time average flow rate is [78]: 

( , ) 2( ( , ) 1)                                                                                 .....(6 - 49)F x t Q h x t  

The  corresponding dimensionless boundary conditions are given by: 

, at r = h = (1+ cos2 (x - t))
2

0, at r = h

= 0, = 0, r = h                                                                                                         ......(6 -50)

F

r

  



 

 





 

The coefficient of heat transfer at the upper wall is given by: 

2

2

1

2 2

2 2

( ) 1
S = 0,  S = 0, S = (- + )                                                       .....(6 - 46)

1 ( )

1 1
0 ( + )                                        

( ) ( )

rr xx rx

rx

r r k r

BrS
r r k r r r k r

   



   

 

   

   
   
     

2 2

2 2

            . .....(6 - 47)

1 1
0 ( - )                                                          ......(6 - 48)

( ) ( )
SrSc

r r k r r r k r

      
  
     
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( )                                                                                                       .....(6 -51)x r r hZ h  

6-7  Reynolds Model of Viscosity  

     The Reynolds model of viscosity is used to describe the variable of viscosity 

with temperature. The Reynolds model of viscosity is defined as: [81] 

( )                                                                                                          .....(6 -52)e   

Using the McLaurin series expansion the above expression can be written as: 

( ) 1 ,    for <<1                                                                                  ....(6 -53)    

   = 0If   Thus the constant viscosity will be achieve. 

Now, Compensating equation (6-53)) into equation (6-46),(3) we have : 

2

2

1

1 1
( )                                                                     ........(6 -54)

1
rxS

r r k r

  



  
  

   
 

Substitute eq. (6-54) into eq. (6-45) and eq. (6-47) we have: 

2
2 2

2

1

2 2
2

2 2

1

1 12
.

( ) ( ) ( )

1 1
.

( ) ( )

( )
( ) .(                

( )
0 .(

1
{ )}  ....(6 - 55)

1

1
)                                             ....(

1

k

K r k r k r k

r k r k

p
r k k M

x r r r r

r r r r
Br

  

  





 



  

 

    
  

    

   
 
   


 




  


6 - 56)

6-8  Perturbation Analysis  

     Equation (6-44) shows that P depends on x only. equation  (6-55) is nonlinear 

and it is not easy to get a closed form solution. However for vanishing  , the 

boundary value problem is agreeable to an easy analytical solution. In this case the 

equation can be solved. So for this analysis we suggests small   for the 

perturbation technique to solve the non-linear problem. Accordingly, we write: 

0 1

0 1

0 1

0 1

.............

..............

..............                                                                                    

 ........ .....                        

F F F

p p p

  





  

  

  

  

                                                             .......(6 - 57) 

 

Now, if we substituting Eq.(6-57) into Eq. (6-55),(6-56),(6-48) and  (6-50) we see 

that:  
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

  
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
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 
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
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
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r
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
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   







     


      
     

 

Thus we have after some simplifications 
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
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     

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   
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     
   
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2 3 20 0 01 1 1 1 1

( )
( ) ( ) } ( )        .....(6 58)

k

r k
r k r k M

r r r r r r r r

      
  



      
 

       
    

Also we have about the equation of temperature: 

2 2
2

0 1 0 1 0 1 0 12 2

1

2
2

0 1 0 1 0 12 2

1
0 ( ) ( ) (1 ( ))( ( ))

( ) 1

2 1
. ( ). ( ) ( ( )) )            ......(6 - 59)

( ) ( )

r r r

r r r
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r k

r k r k

        


     

  

  

  

  

       
 

    
   

and the equation of concentration can be written by: 
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2 2

0 1 0 1 0 1 0 12 2

1 1
0 ( ) ( ) ( ( ) ( ))

( ) ( )

                                                                                                                         ......(6

r r r r
SrSc

r k r k
       

   

   
       

 

- 60)

So, if we collecting the coefficient of powers of  , then we can get the zeroth and 

first order equation with it’s boundary equations: 

6-8-1  Zeros- order system 
(0)( )  

3 2
20 0 0 0 0

3 2

1

1 1 1
{ ( ) )  }+  .M          .......(6 - 61)

1 ( )

p k
r k

x k r r r k r r k r

   



    
    

       

Differentiable eq.(6-61) with respect to (r) we have : 

4 3 2
2 20 0 0 0

4 3 2 2

1

2
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0   (( ). 2  -   +  - k M ( .
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     



     
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   

   
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6-8-2  First order system (1)( )  
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Differentiable eq.(6-66) with respect to (r) we have:  
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6-9 Solution of The Problem 

6-9-1  Solution of the zero’s order
(0)( )    

     The solution of Eq.(6-62), (6-63) and (6-64) subset to the associates boundary 

conditions (6-65) are found to be the form: 
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6- 9-2  Solution of the first order (1)( )  

     The solutions of eq.(6-67), (6-68) and (6-69) subset to the associates boundary 

conditions (6-70) are found to be at the form: 
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Where ( , i =1,2,3,4), (c , 3,4),  (c , 7,8)i j kb j k   are constants can be obtained by 

using “MATHEMATICA” software. 

6-9-3 Solution of heat transfer coefficient z(x) 

     The solution of eq.(6-51) can be found by the form: 
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6-10  Results and Discussion  

     In this section, the numerical and computation results are discussed for the 

problem of an incompressible viscous non-Newtonian Jeffrey fluid with variable 

viscosity of temperature in the curved channel with the effects of radial magnetic 

field and heat/ mass transfer through the graphical illustrations of some important 

results. (MATHEMATICA) program is used to find out numerical and illustrations. 

6-10-1 Velocity distribution  

     Influence of different parameters on the velocity distribution have been 

illustrated in figures (6-2)-(6-8). These figures are scratched at the fixed value of 

(x=0.2, t=0.05). from figure (6-2)(a) displays the effect of Hartmann number 

parameter (M) on velocity u, it is noticed that the velocity increase at upper wall on 

region of [0.5, 1]r   and decrease at lower wall on region of [ 1,0]r    Figure (6-

3)(a), illustrates the effect of the parameter   on velocity, we see that velocity u 
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increase on upper and lower walls of channel with an increase of  . From figure (6-

4)(a), it observed that there is similar behavior of Jeffrey parameter 
1 of parameter 

M on velocity u. Figure (6-5)(a), show that velocity distribution increase at upper 

part of channel and decrease at lower part of channel with an increase of cultivator 

parameter k. Figure (6-6)(a) illustrates that velocity distribution u enhances at the 

central region and walls of the channel with an increase of Q. From figures (6-

2)(b),(6-3)(b),(6-4)(b),(6-5)(b) and (6-6)(b) of effects of 
1, , ,  and QM k   

respectively, observed that the velocity profiles are not symmetric in curved channel 

(for small values of cultivator parameter k ) and it is symmetric in the straight 

channel ( for large values of k). the effect of Brinkman number (Br) on velocity is 

seen in figure (6-7)(a),(b), it is noticed that velocity u increase at core and upper 

wall of channel but the fluid is reflected will be reduced at the point (0.4813,0.8085) 

with an increase of (Br), and it’s graph model parameter ( ) is illustrated and 

displayed in figure (6-8)(a),(b), it is showed that it’s behavior is similar to the 

manner of (Br) on velocity but it’s graph can be seen in the symmetric profile in the 

straight channel. 

6-10-2  Trapping phenomenon 

     The effects of various parameters like 
1 1,  , , , Q,  and M k     on trapping can be 

see through figures (6-9)-(6-15). Figure (6-9) show that the numbered and size of 

trapping bolus decrease with an increase of value of M in the upper and lower part 

of channel. The figures (6-10),(6-11),(6-12),(6-13) illustrates the effects of 

1  , Q,  and     on circulating bolus, it is seen that there is rise up in number and size 

of bolus with an increase of these parameters. Opposite behavior is showed for the 

effects of 
1  and k and their influence are displayed in figures (6-14) and (6-15) 

respectively.  

6-10-3  Temperature characteristics  

     The expressions for temperature are given by eq.(6-72) and (6-78) for zeros and 

first order solution. The effects of various parameters on temperature for fixed 

values of (x=0.2, t=0.05) are shown, the results are presented in fig (6-16)-(6-21). 

From figure (6-16)(a),(b), it can found that temperature profile decrease at the 

center line and walls but the fluid will conversed it’s flow at the upper wall of 

channel which make it’s temperature may be increase  with an increase of  
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Hartmann parameter (M). The effects of parameter   on temperature distribution is 

plotted in fig.(6-17)(a),(b), it is noticed that temperature increase at the central line 

and the walls of channel. Figure (6-18) (a),(b), showed the influence of parameter 

1 , it is observed that an increase in
1  leads to decrease in temperature profile at 

the central line of channel, that is temperature profile   is smaller for non-

Newtonian fluid (
1 0  ) when compared with viscous fluid (

1 0  ). The effect of 

parameter k is noticed in figure (6-19)(a),(b), it is observed that an increase in k 

leads to decrease in temperature profile at the central line of channel with an 

increase of k. Figure (6-20)(a),(b), illustrate the influence of Brinkman number (Br) 

on temperature which is showed that an increase in (Br) results rise up on 

temperature, it is due to the fact that (Br) incorporates viscous dissipation effects 

which extends the fluid temperature. Figure (6-21)(a),(b), displayed the influence 

of temperature (Q) on temperature, which is noticed that the temperature increasing 

with an increase of Q at the central line of channel. In all graphs of temperature 

distribution of effects of all parameters mentioned above that the profiles of 

temperature are not symmetric in curved channel and it is symmetric in straight 

channel. 

6-10-4  Mass transfer distribution   

    The expression for concentration are given by eq.(6-73) and (6-79) for the zeros 

and first order solution. The effects of various parameters on concentration for fixed 

values of (x=0.2, t=0.05) are shown, the results are presented in fig (6-22)-(6-29). 

The profile of concentration is reverse  of profile of temperature       and the 

parameters behaved opposite manner on concentration than a temperature 

distribution. The effects of parameters 
1, , , , , ,  and QM k Br Sr Sc   on concentration 

are considered. The impact of
1, ,  M k are plotted in figures(6-22)(a),(b)-(6-

23)(a),(b),(6-24). It is noticed that an increase in these last parameters lead to an 

increase on magnitude of concentration. Opposite behavior is obtained for the 

parameters   , , ,  and QBr Sr Sc  which is illustrated into figures (6-25)(a),(b)-(6-

29)(a),(b). In fact the reason behind the reducing of concentration when we increase 

the values of (Sc.) is due that the mass diffusion decrease which show decrease in 

concentration. We observed that all graphs of concentration distribution are not 

symmetric in curved channel and it has symmetry characteristic in straight channel. 

It is warth mentioning that the negative values of concentration profiles for some 
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values of parameters agree with natural process when nutrients diffuse out of blood 

to the neighboring tissues. 

6-10-5 Heat transfer coefficient: 

     Figs. (6-30)-(6-35) are drawn to examine the impact of Hartmann number (M), 

inclusion parameter ( ), Jeffrey parameter (
1 ), curvature parameter(k), Brinkman 

number (Br) and flow rate volume parameter (Q) on heat transfer coefficient (Z). it 

is observed that due to contraction and expansion of peristaltic channel walls. The 

behavior of heat transfer coefficient Z is oscillatory. Figure (6-30) shows that 

absolute value of Z increase with an increase in M. However greater impact is 

noticed near 0 < x < 0.4 and -0.4 < x < 0 . Similar behavior is noticed for the impact 

of , Br and Q  which is displayed in figures (6-31), (6-32) and (6-33) respectively. 

The effect of 
1 and k on heat transfer coefficient Z is illustrated in figures (6-34) 

and (6-35) respectively, it is observed that the decreasing response of absolute heat 

transfer coefficient Z with an increase of above parameters. More clear results are 

noticed in the range where 0 < x < 0.4 and -0.4 < x < 0 .   

6-10-6  pressure gradient distribution 

     Effects of various parameters on the pressure gradient versus x have been 

illustrated in figures (6-36)-(6-41). These figures are scratched at the fixed values 

of (r=0.2,t=0.05). from figure (6-36) displays the effect of parameter (M) on 

pressure gradient, it is noticed that an increase in M leads to reduce in pressure 

gradient. Figure (6-37) illustrates the effect of the parameter   on pressure gradient, 

it is observed that pressure gradient increase on the center of channel at the region 

of  0.2  0.2x   and reduce at the edges of walls at the regions of 

 0.4 0.2x    and  0.2  0.4x  . The impact of parameters 
1  and (k) are 

plotted in figures (6-38) and (6-39) respectively which is noticed that an increase 

in these parameters lead to rise in pressure gradient. Similar behavior is obtained 

for the effects of parameter (Br) and Reynolds model ( ) and Brinkman number. 

Their behavior is plotted in figure (6-40) and (6-41). 

6-11  Concluding Remarks  

     The present study deals with the combined effects of radial magnetic field  and 

heat/mass transfer on the peristaltic transport of viscous incompressible Jeffrey 
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fluid  with variable viscosity dependent on temperature in curved channel. We 

obtained the analytical solution of the problem under long wave length and low 

Reynolds number and using perturbation method for Reynolds parameter of 

viscosity. The results are analyzed for different values of parameters namely 

Hartmann number (M), amplitude ratio  , Jeffrey parameter
1 , culvature parameter 

(k), Reynolds perturbation parameter , volume flow rate (Q), Brinkman 

number(Br). Soret number (Sr), Schmidt number (Sc). Thus through our work we 

observe the following notations: 

1. The influence of Hartmann number (M), Jeffrey parameter (
1 ),calvature 

parameter (k), Reynolds parameter of viscosity ( ), Brinkman number (Br) 

on axial velocity is oscillator. 

2. The axial velocity is rise up and enhance with an increase of ,Q  

3. The profiles of axial velocity are parabolic and symmetric for large values of 

culvature parameter (k) (straight channel) and non-symmetric in the curved 

channel. 

4. The size and number of trapping bolus increase with an increase of 

, Q,Br  and   and they are decrease with an increase of  
1,  and kM . 

5. The effect of inclusion parameter or amplitudes ratio  on pressure gradient 

is vacillating. 

6. The pressure gradient increase with an increase of 1, k, Br   and has opposite 

manner with an increase of M . 

7. The temperature distribution increase with an increase of , Br and Q and 

decrease with an increase of  1,  M  and  k . 

8. The concentration distribution decrease with an increase of Sr and Sc. 

Opposite behavior for concentration distribution is noted when compared 

with temperature. 

9. The profiles of temperature and concentration are symmetric and parabolic 

for large values of k (straight channel) and non-symmetric for curved channel 

for small values of k. 

10. The action of heat transfer coefficient is wobbling, that is on region of 

0 0.4x  we see that z(x) is increasing function of M, Br, Q,  . 
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Fig.(6-2-a) Effect  of (M ) on velocity u  

1 10.2, 0.05, 1, 0.1, 0.01, 1.5

0.2 when (k = 2),(curved channel) 
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Fig.(6-2-b) Effect  of (M ) on velocity u  

1 10.2, 0.05, 1, 0.1, 0.01, 1.5

0.2 when (k = 50),(straight channel) 
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Fig.(6-3-a) Effect  of ( ) on velocity u  

1 10.05, 1, 1.5, 0.1, 0.01, 1.5

0.2 when (k = 2),(curved channel) 
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Fig.(6-3-b) Effect  of ( ) on velocity u  

1 10.05, 1, 1.5, 0.1, 0.01, 1.5

0.2 when (k = 50),(straight channel) 
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Fig.(6-4-a) Effect  of ( 1 ) on velocity u  

10.05, 0.2, 1.5, 0.1, 0.01, 1.5

0.2 when (k = 2),(curved channel) 
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Fig.(6-4-b) Effect  of ( 1 ) on velocity u  

10.05, 0.2, 1.5, 0.1, 0.01, 1.5

0.2 when (k = 50),(Straight channel) 
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Fig.(6-5-a) Effect  of ( k ) on velocity u  

1 10.05, 0.2, 0.5, 1, 0.1, 0.01,

1.5 0.2  (curved channel) 
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Fig.(6-5-b) Effect  of ( k ) on velocity u  

1 10.05, 0.2, 0.5, 1, 0.1, 0.01,

1.5, 0.2      (straight channel)
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Fig.(6-6-a) Effect  of (Q ) on velocity u  

1 10.05, 0.2, 1, 1.5, 0.1, 0.01,

0.2,( 1.5) (curved channel) 
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Fig.(6-6-b) Effect  of (Q ) on velocity u  

1 10.05, 0.2, 1, 1.5, 0.1, 0.01,

0.2,( 50) (straight channel) 
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Fig.(6-7-a) Effect  of (
1 ) on velocity u  

10.05, 0.2, 1, 0.5, 0.6, 1.5

0.2,( 2) (curved channel) 
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Fig.(6-7-b) Effect  of (
1 ) on velocity u  

10.05, 0.2, 1, 0.5, 0.6, 1.5

0.2,( 50) straight channel) 
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Fig.(6-8-a) Effect  of ( ) on velocity u  

1 10.05, 0.2, 1, 0.5,, 4, 1.5

0.2,( 2) (curved channel) 
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Fig.(6-8-b) Effect  of ( ) on velocity u  

1 10.05, 0.2, 1, 0.5,, 4, 1.5

0.2,( 50) (Straight channel) 
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Fig(6-9) Stream lines for 
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Fig(6-10) Stream lines for 

0.05, 0.5, 0.1, 0.01, 1, 2, 1.5
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Fig(6-11) Stream lines for 
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Fig(6-12) Stream lines for 

0.05, 0.5, 0.2, 0.1, 1, 2, 1.5
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Fig(6-13) Stream lines for 

10.05, 0.5, 0.2, 0.1, 1, 2, 1.5
1

(a) 0 (b) 0.2,  (c) 0.22
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Fig(6-14) Stream lines for 
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Fig(6-15) Stream lines for 
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Fig.(6-16-a) Effect  of (M ) on temperature  

1 10.2, 0.05, 1, 0.001, 0.01, 1.5

0.2 when (k = 1.5), (curved channel) 
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Fig.(6-16-b) Effect  of (M ) on temperature  

1 10.2, 0.05, 1, 0.001, 0.01, 1.5

0.2 when (k = 50),(straight channel) 
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Fig.(6-17-a) Effect  of ( ) on temperature  

1 11.5, 0.05, 1, 0.001, 0.01,

1.5, 0.2 when (k = 1.5), (curved channel) 
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Fig.(6-17-b) Effect  of ( ) on temperature  

1 11.5, 0.05, 1, 0.001, 0.01,

1.5, 0.2 when (k = 50),(straight channel) 
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Fig.(6-18-a) Effect  of (
1 ) on temperature  

11.5, 0.05, 0.2, 0.001, 0.01,

1.5, 0.2 when (k = 2),(curved channel) 
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Fig.(6-18-b) Effect  of (
1 ) on temperature  
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Fig.(6-19) Effect  of ( k ) on temperature  

1.5, 0.05, 1, 0.2, 0.001,
1

0.01, 1.5, 0.2 , (curved channel) 
1

M t

Q x

  



    

  
 

 

1

1

1

0.01

0.02

0.03









  
Fig.(6-20-a) Effect  of ( Br ) on temperature  
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Fig.(6-20-b) Effect  of ( Br ) on temperature  
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Fig.(6-21-a) Effect  of (Q ) on temperature  
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Fig.(6-21-b) Effect  of (Q ) on temperature  

(straight channel) 
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Fig.(6-24) Effect  of ( k ) on mass transfer  
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Fig.(6-25-a) Effect  of ( ) on mass transfer  
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Fig.(6-25-b) Effect  of ( ) on mass transfer  
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Fig.(6-22-a) Effect  of ( M ) on mass transfer  

2 3

0.05, 1, 0.2, 0.01,
1 1

0.001, 1, 1, 1.5, 0.2 

when (k = 2), (curved channel) 

t

Q x

  

  

   

      

1

1.5

2

M

M

M





  
Fig.(6-22-b) Effect  of ( M ) on mass transfer  
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Fig.(6-23-a) Effect  of (
1 ) on mass transfer  
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Fig.(6-23-b) Effect  of (
1 ) on mass transfer  
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Fig.(6-26-a) Effect  of ( Br ) on mass transfer  

1

2 3

0.2, 0.05, 1.5, 1,

0.001, 1, 1, 1.5, 0.2 

when (k = 2), (curved channel) 

t M

Q x

 

  

   

      

 

1

1

1

0.01

0.02

0.03









  
Fig.(6-26-b) Effect  of ( Br ) on mass transfer  
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Fig.(6-27-a) Effect  of (Sc ) on mass transfer  
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Fig.(6-27-b) Effect  of (Sc ) on mass transfer  
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Fig.(6-28-a) Effect  of (Sr ) on mass transfer  
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Fig.(6-28-a) Effect  of (Sr ) on mass transfer  
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Fig.(6-29-a) Effect  of (Q ) on mass transfer  
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Fig.(6-29-b) Effect  of (Q ) on mass transfer  
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Fig.(6-30) Effect  of ( M ) on heat transfer  
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Fig.(6-31) Effect  of ( ) on heat transfer  
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Fig.(6-32) Effect  of ( Br ) on heat transfer  
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Fig.(6-33) Effect  of (Q ) on heat transfer  
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Fig.(6-34) Effect  of ( 1 ) on heat transfer  
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Fig.(6-35) Effect  of ( k ) on heat transfer  
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Fig.(6-36) Effect  of ( M ) on pressure  gradient.  
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Fig.(6-37) Effect  of ( ) on pressure  gradient.  
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Fig.(6-38) Effect  of ( 1 ) on pressure  gradient.  
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Fig.(6-39) Effect  of ( k ) on pressure  gradient.  
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Fig.(6-40) Effect  of ( Br ) on pressure  gradient.  
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Fig.(6-41) Effect  of ( ) on pressure  gradient.  
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     In the light of the study and results obtained in this thesis, the following future 

work suggestions are given: 

 A study of peristaltic transport of Walter’s –B fluid under the effect of 

inclined magnetic field through a porous medium in an inclined tapered 

asymmetric channel by using the properties of the wall. 

 A study of peristaltic transport of MHD flow of blood and heat\mass transfer 

in a tapered asymmetric channel through porous medium by using the effect 

of variable viscosity with temperature and properties of the wall. 

 A study of peristaltic transport of Williamson fluid with variable viscosity of 

space under the effect of hall magnetic field in a tapered channel. 

 A study of peristaltic transport of Jeffrey fluid under the effect of variable 

viscosity with space of radial direction. 



 المستخلص

دموي،  ب ، مائع-التدفق التمعجي لموائع لزجة لا نيوتنية والتي تحمل اسم )وولتر ناقشناهذه الاطروحة في 

لمائع، اويليامسون، جيفري( تحت تأثير لزوجة ثابتة ومتغيرة، وشروط الانزلاق وعدم الانزلاق على سرعة 

، الجدران المرنة )القابلة للتمدد والتقلص(، الوسط المسامي، وانتقال الحرارة عبر الحقل الهيدرومغناطيسية

 كالقنوات المستقيمة، المائلة، المستدقة، المنحنية. قنوات مختلفة ثنائية البعد

الحلول بالنسبة للموديلات السابقة من الموائع قد أعُتبرت وحُللت تحت تأثير طول موجي طويل وعدد تقريبي 

 لراينولدز صغير 

اشتقاقها. هذه المعادلات التفاضلية  تم قدمعادلات الحركة، معادلات درجة الحرارة )الطاقة(، معادلة التركيز

السمات البارزة لصفات التدفق، قوة الاحتكاك، دالة الجريان،  ا تحليليا بطرق الاضطراب المنتظم.تم حله

 الابعاد التي تسيطر على المعادلات التي تحكم الجريان.الاعداد عديمة خلال دراسة تأثير  جميعها حللت

 قد نوقشت خلال عملنا والتي يمكن ان تتُبع بما يلي: خمسة مسائل 

حت تأثير خلال وسط مسامي ت للأنضغاط ب الغير قابل -المسألة الاولى، تتعلق بالتدفق التمعجي لمائع وولتر

قرب لقد وجدنا بأن سرعة المائع تزداد بال تناظرة ومستقيمة.الحقل المغناطيسي المنتظم في قناة مستدقة غير م

 من مركز القناة تحت تأثير معامل الذاكرة القصير.

المسألة الثانية، تتعلق بالتدفق التمعجي لمائع دموي متغير اللزوجة خلال وسط مسامي في قناة مستدقة غير 

دز من لقد وجدنا بأن معامل راينول تقال الحرارة.متناظرة ومستقيمة تحت تأثير الحقل المغناطيسي المنتظم وان

موديل اللزوجة له سلوك متزعزع على سرعة المائع ووجدنا حرارة المائع تتعزز تحت زيادة مُعامل 

 .مصدرالتشتت الحراري

ير متناظرة غالمسألة الثالثة، تتعلق بالتدفق التمعجي لمائع ويليامسون خلال وسط مسامي في قناة مستدقة 

لقد وجدنا ان سرعة المائع تزداد تحت تأثير  ة تحت تاثير الحقل المغناطيسي المائل وانتقال الحرارة.ومائل

 زاوية ميل الحقل المغناطيسي ، وكذلك وجدنا ان حرارة المائع تزداد تحت تأثيرعدد برينكمان. 

مائلة تحت ستدقة متناظرة والمسألة الرابعة، تتعلق بالتدفق التمعجي لمائع جيفري خلال وسط مسامي في قناة م

لقد وُجد ان سرعة المائع وحرارته مغناطيسي المائل وانتقال الحرارة وبمساعدة خواص الجدار. تاثير الحقل ال

 تزداد تحت تأثير خواص الجدار وزاوية ميل القناة.

اة منحنية ومتناظرة في قن بالنسبة للحرارة المسألة الأخيرة، تتعلق بالتدفق التمعجي لمائع جيفري متغير اللزوجة

لقد وُجد بأن معامل الاحداثي المنحني له  تحت تاثير الحقل المغناطيسي الشعاعي وانتقال الحرارة والكتلة.

سلوك متذبذب على سرعة المائع كذلك وُجدت ان منحنيات السرعة غير متناظرة في حالة القناة المنحنية 

ذات القيم الكبرى من المعامل المنحني. ووُجد ان تركيز المائع يقل وتكون متناظرة في حالة القناة المستقيمة 

 عند زيادة عدد سيكماتد.

من الجدير بالذكر ان الحقل المغناطيسي والوسط المسامي يسبب اعاقة للجريان للأنواع السابقة من الموائع 

 في كل المسائل اعلاه.

 لمخططات والحصول على النتائج العددية.هذه الدراسة قد تمت بأستخدام برنامج ماثماتيكا لرسم ا

 



 جمهورية العراق

 وزارة التعليم العالي والبحث العلمي 

كلية التربية للعلوم الصرفة /ابن الهيثم جامعة بغداد/  

 قسم الرياضيات

 

تأثير معلمات مختلفة على النقل التمعجي لبعض انواع من 

 الموائع في قنوات مستدقة ومنحنية 

 

 أطروحة

 جامعة بغداد / /ابن الهيثمالتربية للعلوم الصرفة مقدمة إلى مجلس كلية 

 وهي جزء من متطلبات نيل شهادة الدكتوراه في علوم فلسفة الرياضيات

 

 من قبل

 تمارا شهاب احمد 

 بإشراف 
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