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List of symbols and abbreviations:

Yy Density of fluid

p Pressure of fluid

) Electrically conductivity

B, Applied magnetic field strength

g Acceleration due to gravity

Ky Thermal conductivity

Ko Porosity parameter

C, Specific heat at constant pressure

Qo Constant heat addition/absorption

o Constant viscosity

0 Non- dimensional temperature

) Wave number

Re Reynolds number

M Hartmann number

Kk Non-dimensional parameter of porous medium

Gr Grashof number

Pr Prandtl number

Br Brinkman number

A wave length

Ec Eckert number

Fr Fraud number

E; Gives the rigid nature of the wall (depends upon the wall
tension)

E, Gives the Stiffness property of the wall

Es Describe the dissipative feature of the wall
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ABSTRACT

In This Thesis we discussed the peristaltic flow of some viscoelastic non-
Newtonian fluids namely (Walter’s-B fluid, blood model, Williamson fluid and
Jeffrey fluid) under the influence of constant and variable viscosity, velocity slip
and non-slip conditions effects, magneto hydrodynamics field, compliant walls,
porous space and heat/mass transfer for different two- dimensional channels such
as straight and inclined tapered and curved channels.

The solutions for previous models of fluids have been considered and analyzed
under the assumption of long wave length and low Reynolds number
approximations.

The motion, temperature and concentration equations have been derived. These
equations are solved analytically by means of the regular perturbation method. The
salient features of pumping characteristic, friction force and trapping are analyzed
through study the effects of dimensionless numbers that controlled the governing
equations of flow.

Five problems have been discussed through our work which may followed by:

In the first problem, the peristaltic flow of an incompressible Walter’s —B fluid
through porous medium under the effects of uniform magnetic field in a straight
asymmetric tapered channel is considered. It is found that the velocity of the fluid
Is increased near the center of the channel under the effect of short memory
coefficient.

In the second problem, the peristaltic flow of blood with variable viscosity
through porous medium in straight asymmetric tapered channel under the effects of
uniform field and heat transfer is considered. It is found that the Reynolds parameter
model of viscosity has wobbling behavior on the velocity of the fluid and we found
that the temperature of the fluid enhanced under the increasing of source\sink
parameter.

In the third problem, the peristaltic flow of Williamson fluid through porous
medium in an inclined asymmetric tapered channel under the effects of inclined
magnetic field and heat transfer are considered. It is found that the velocity of the
fluid increased under the effect of inclination angle of magnetic field, also we found
the temperature will be increased under the influence of Brinkman number.

In the fourth problem, the peristaltic flow of Jeffrey fluid through porous
medium in an inclined symmetric tapered channel under the effects of inclined
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magnetic field and heat transfer are considered. With the helping of wall properties.
It is found that the velocity and temperature of the fluid will be increased under the
effects of wall properties and inclination of the channel.

In the last problem, the peristaltic flow of Jeffrey fluid with variable viscosity
with temperature in symmetric curved channel under the effects of radial magnetic
field and heat/mass transfer are considered. It is found that cultivator coordinate
parameter has oscillatory behavior on the velocity of the fluid, also it is found the
curves is not symmetric in the case of curved channel and these are symmetric in
the case of straight channel for large values of cultivator parameter. Also through
this work the concentration of the fluid material is decreased with an increase of
Schmidt number.

It is worth mentioning that the magnetic field and porous medium causes
blocking to the flow of previous fluids in all above problems.

This study is done by using “MATHEMATICA” program computer to plot the
figures and obtaining the numerical results.
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INTRODUCTION

Peristaltic pumping has been the object of scientific and engineering research in
recent years. The word peristaltic comes from a Greek word “PERISTALTIKOS”
which means clasping and compressing. The phenomenon of peristalsis is defined
as expansion and contraction of an extensible tube in a fluid generate progressive
waves which propagate along the length of the tube, mixing and transporting the
fluid in the direction of wave propagation. Peristaltic pumping is a form of fluid
transport that occurs when a progressive wave of area contraction or expansion
propagates along the length of a distensible tube containing the fluid. It is an
inherent property of many tubular organs of the human body. It plays an
indispensable role in transporting many physiological fluids in the body in various
situations such as urine transport from the kidney to the bladder through the ureter,
Vasomotion of small blood vessels, as well as mixing and transporting the contents
of the gastrointestinal passage, the transport of the spermatozoa in cervical canal,
transport of bile in the bile duct, transport of cilia. peristalsis play an indispensable
role in transporting physiological fluids inside living bodies, and many
biomechanical and engineering devices have been desighned on the basis of the
principle of peristaltic pumping to transport fluids with out internal moving parts.
The need for peristaltic pumping also arises in circumstances where is desirable to
avoid using any internal moving parts such as pistons, in pumping process. See
figs.(A-D), [96].

For example, the blood pump in dialysis is designed to prevent the transported
fluid from being contaminated and peristaltic pumping mechanism have been
utilized for the transport of slurries, sensitive or corrosive fluids, sanitary fluid,
noxious fluids in the nuclear industry and many others. In some cases, the transport
of fluids is possible without moving internal mechanical components as in the case
with peristaltically operated. There are many other important applications of this
principle. The study of peristalsis in the context of fluid mechanics has received
considerable attention in the last three decades, mainly because of its relevance to
biological systems and industrial applications, (see [98]).

Some authors have borrowed the idea and used it in applications where the
material being pumped must not be contaminated (e.g. blood) or is corrosive and
should not be in contact with the moving parts of ordinary pumping machinery.
Also, peristaltic motion has even been found to play a role in nerve regeneration.
In addition peristaltic pumping occurs in many practical applications involving bio-
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mechanical systems. For example, the heart machine and other pump instruments.
(see fig.(E)), [11].

During the last 40 years researchers have extensively focused on the peristaltic
flow of Newtonian fluids (see for example [23] and several references there in).
Especially, peristaltic pumping occurs in many practical applications involving
biomechanical systems, such as roller and finger pumps. In particular, the peristaltic
pumping of corrosive fluids and slurries could be useful as it is desirable to prevent
their contact with mechanical parts of the pump. In these investigations, solutions
for peristaltic flow with various considerations of the nature of the fluid, the
geometry of the channel and the propagating waves were obtained for various
degree of approximations. Much attention has been confined to symmetric channel
or tubes, but there exist also flow situations where the channel flow may not be
symmetric. Mishra and Rao[69] studied the peristaltic flow of a Newtonian fluid in
an asymmetric channel in a recent research. In another attempt, Rao and Mishra[83]
discussed the non- linear and curvature effects on peristaltic flow of a Newtonian
fluid in an a symmetric channel when the ratio of channel width to the wave length
is small. Very recently, Haroun[39] extended the analysis of reference [69] for
third order fluid. An example for a peristaltic type motion is the intra-uterine fluid
flow due to myometrium contraction, where the myometrium contractions may
occur in both symmetric and asymmetric directions. An interesting study made by
Eytan and Elad[31] whose results have been used to analyze the fluid flow pattern
in a non- pregnant uterus. In another paper, Eytan et al. [32] discussed the
characteristic of non- pregnant women uterine contractions as they are composed
of variable amplitudes and arrange of different wave lengths.

Although most prior studies of peristaltic motion have focused on Newtonian
fluids, there are also studies involving non-Newtonian fluids, in which the shear
stress may depend upon the shear rate (the relation between shear stress and shear
rate is not linear), both shear stress and shear rate may be time dependent and the
fluid may have viscous as well as elastic characteristics (sajid [93], khan [57]).
Because of the different rheological properties of non- Newtonian fluids, there
exists no single universal constitutive relationship between stress and rate of strain
by which all the non -Newtonian fluids can be examined. Therefore, several models
of non-Newtonian fluids have been suggested and considered. Complexity in non-
Newtonian fluids starts due to the non-linear terms appearing in their constitutive
relationships. Several researchers considered various models under different
approximations and geometries by assuming the fluid content as a Newtonian fluid
which is suitable in some particular cases like urine transport. (joseph [54]).

However, most of the biological and industrial fluids are constituted of Newtonian
Vil



and non-Newtonian fluids behaving collectively as a non-Newtonian mixture. The
examples of non-Newtonian fluids includes semi-solid food called bolus in
esophagus, semi-liquid food (chyme) in stomach and in testiness, blood in arteries
or veins, cervical mucus in bones and semen and ovum in reproductory tracts.
Where as in case of industrial fluids, waste inside the sanitary ducts, toxic materials,
metal alloys, oil and grease in automobiles or mechanics, nuclear slurries inside the
nuclear reactors and many others.

To investigate the non-Newtonian characteristics of the physiological fluids,
different non-Newtonian fluids namely Walters-B, Jeffrey and Williamson fluids
have been considered in the present study. Walter’s B fluid (Walter’s,[113]) is a
viscolastic fluid model defines both viscous, as well as, elastic characteristic.
Physically it describes the elastic nature of the physiological fluids. Walter’s B fluid
model has been widely studied by various researchers through different
configurations. (See [19])

The non-Newtonian fluids which exhibit the characteristics of relaxation or
retardation times belong to rate type fluids. Jeffrey fluid model is considered one
of some important types of this kind of non-Newtonian fluids. This model shows
the behavior of linearly viscoelastic fluids due to its various applications industry.
(See [44], [27], [76]).

In non-Newtonian fluids, the most commonly encountered fluids are pseudo
plastic fluids. The study of the boundary layer flow of pseudo plastic fluids is of
great interest due to its wide range of applications in industry such as extrusion of
polymer sheets, emulsion coated sheets like photographic films, solutions and melts
of high molecular weight polymers, etc. The Navier stokes equations alone are
insufficient to explain the rheological properties of fluids. Therefore rheological
models have been proposed to overcome this deficiency. To explain the behavior
of pseudo plastic fluids many models have been proposed like Williamson fluid.
Williamson [116] discussed the flow of pseudo plastic materials and proposed a
model equations to describe the flow of pseudo plastic fluids and experimentally
verified the results. Lyubimov and Perminov [62] discussed the flow of a thin layer
of a Williamson fluid over an inclined surface in the presence of gravitational field.
Depra and Scarpi [24] developed the perturbation solution for Williamson fluid
injected into a rock fracture. Peristaltic flow of a Williamson fluid has been
discussed by Nadeem et al. [75]. Gramer et al. [37] showed that this model fits the
experimental data of polymer solutions and particle suspensions better than other
models. For pseudo plastic fluids the power law model predicts that the apparent
/effective viscosity should decrease in definitely with increase in shear rate, which
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means infinite viscosity at rest and zero viscosity as the shear rate approaches
infinity. A real fluid has both minimum and maximum effective viscosities
depending upon the molecular structure of the fluid. In the Williamson fluid model,
both the minimum (,) and maximum viscosities (z,) are considered, so, for

pseudo plastic fluids (for which the apparent viscosity does not go to zero at
infinity), it will give better results.

Consideration of porous medium is that a matter which contains a number of
small holes distributed through the matter. Flows through porous medium occur in
filtration of fluids and seepage of water in river beds. Movement of underground,
water and oils are some important examples of flows through porous medium. An
oil reservoir mostly contents of sedimentary formation such as limestone and
sandstone in which oil is entrapped. Another example of flow through porous
medium is the seepage under a dam which is very important. There are examples
of natural porous medium such as beach sand, rye bread, wood, filter, loaf of bread,
human lung, gallbladder and bile with stones, in petroleum production engineering
and in many other processes as well (Fig. F,(1),(2)), [92].

The subject dealing with the motion of electrically conducting fluids in the
presence of magnetic field is termed as magneto hydrodynamics (MHD) or hydro
magnetics .Examples of such fluids includes plasmas, liquid metals and salt water
or electrolytes. The field of MHD was initiated by Hannes Alfven [18] for which
he received the Nobel Prize in physics in 1970.

Some clinical of magnetic field is applied in the medical field in the form of
device called magnetic resonance imaging (MRI). Now MRI is widely used for
diagnosis of brain, vascular, diseases and all the body. In actual practice a rapidly
alternating current. Although these flow probes can measure blood flow through
large vessels accurately and instantaneously, they have several limitations. The
cross- sectional area of the vessel must be known in order to compute volume flow
(flux). Also, the blood vessel must be dissected free to place the transducer around

it. (Fig. (9)), [26].

Heat transfer analysis is prevalent in the study of peristaltic flows due to its large
number of applications in processes like hemodialysis (method used removing
waste products from blood in the case of renal failure of kidney) and oxygenation.
Bio heat is currently considered as heat transfer in the human body. In view of
thermotherapy (application of heat to the body for treatment, examples pain relief,
increase of blood flow and others) and the human thermoregulation system (ability
of living body to maintain body temperature within certain limits in case of
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surrounding temperature variations) as mentioned by Srinvas and Kothandapani
[101], Bio heat transfer has attracted many biomedical experts. Heat transfer
analysis is important especially in case of non-Newtonian peristaltic rheology as
there involves many intricate processes like heat conduction in tissues, heat transfer
during perfusion (process of delivery of blood to capillary bed) of arterial-venous
blood, metabolic heat generation and heat transfer due to some external interactions
like mobile phones and radioactive treatments. It is also helpful in the treatment of
disease like removal of undesirable tissues in cancer.

Dissipative heat transfer is the most important and essential feature of peristaltic
flows as suggested by Shapiro et al. [96]. In Peristaltic flows when the fluid is
forced to flow due to the sinusoidal displacements of the tract boundaries, the fluid
gains some velocity as well as kinetic energy. The viscosity of the fluid takes that
Kinetic energy and converts it into internal or thermal energy of the fluid.
Consequently, the fluid is heated up and heat transfer occurs. This phenomenon is
modelled by the energy equation with dissipation effects. For two dimensional
flows the energy equation reduces to a second order partial differential equation
that is at most parabolic in nature.

Moreover, due to the intricate nature of the bio-fluid dynamics, both heat and
mass transfer occur simultaneously giving complex relations between fluxes and
driving potentials as debated by srinivas and Kothandapani [102] and Eckert and
Drake [28]. The mass flux caused by the temperature gradient called soret effect or
thermal-diffusion is often negligible in heat and magnitude. However, for the non-
Newtonian fluids with light or medium molecular weight, it is not appropriate to
neglect soret effects. Therefore, in the present study, due attention has been given
to the combined effects of heat and mass transfer with soret effect, also further, in
the present study the Duffer effect (energy flux caused by the composition
gradients) has been considered.

On the interaction of a fluid with the solid surface, the conditions where the
molecules of the fluid near to the surface stick with the surface having the same
velocity, is called no-slip condition. While in the case of many polymeric liquids
with high molecular weight, the molecules near to the surface show slip or stick-
slip on the surface. Navier [79] suggested the general slip boundary condition
defining that the difference of fluid velocity and the velocity of the surface is
proportional to the shear stress at that surface. The coefficient of proportionality is
the slip parameter having the dimension of length. The slip condition is of great
importance especially when fluids with non-Newtonian or elastic characters are
considered. In such cases, the slippage may occur under a large tangential traction.
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Both non-slip and slip boundary conditions have been considered in the present
study.

The structure of this thesis consists of six Chapters which are:

Chapter one:  Elementary concepts and basic definitions, which are used
In our study are presented.

Chapter two: In this chapter, a theoretical study is presented for
peristaltic flow of an incompressible Walter’s-B fluid
through porous medium under the effects of uniform
(MHD) field and non-slip boundary conditions on the
velocity in two- dimensional a symmetric tapered channel.

Chapter three This chapter concerns with the theoretical study of the
incompressible conducting fluid with (MHD) field
considered by the (blood)of human, (non-Newtonian fluid)
through porous medium under the effects of heat transfer
and variable viscosity in the form of a well known Reynolds
model of viscosity in a two- dimensional a symmetric
tapered channel.

Chapter four : In this chapter, we consider a mathematical model to study
the peristaltic flow of Williamson fluid (theoretical tool of
studying with constant viscosity and incompressible fluid
under the combined effects of inclined magnetic field and
heat transfer through porous medium in an inclined two-
dimensional asymmetric tapered channel.

Chapter five:  The aim of this chapter is to investigate the theoretical study
of the mathematical model of incompressible Jeffrey fluid
with constant viscosity under the combined effects of
inclined magnetic field, heat transfer and wall properties.
Through porous medium in an inclined tapered two-
dimensional channel with flexible walls.

It is worth mentioning that the intrauterine fluid flow in a sagittal cross-section
of the uterus discloses a narrow channel enclosed by two fairly parallel walls with
wave trains having different amplitudes and phase difference, so with the aid of
sufficient study support, a theoretical investigation on the peristaltic motion of
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Walters-B fluid, Williamson fluid and Jeffrey fluid in a tapered channel or non-
uniform asymmetric channel is carried out, therefore to the best of our familiarity,
so far no attempt has been made to examine the peristaltic transport of above fluids
in such channel which may help to imitate intra-uterine fluid motion in a sagittal
cross-section of the uterus.

Chapter six: This chapter is devoted to study the peristaltic flow of
Jeffrey fluid under the effect of radial magnetic field in
a curved channel, the variation of viscosity to
temperature will be used.
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Elementary concepts and basic definition

Introduction

In this chapter, a brief history related to important contributions for
understanding fluid mechanics development, is given as well as some
elementary concepts and basic definitions that will be used in our work will be
presented.

1.1Basic Definitions and Fluid Properties
This section contains some basic definitions related to fluid mechanics.

1.1.1 FEluid mechanics:[90]

The word fluid means a substance having particles which readily change
their relative positions. The subject of fluid mechanics deals with the behavior
of fluids when subjected to a system of forces;

1- Statics: it deals with the fluid elements which are at rest relative to each

other.

2- Kinematics: it deals with the effect of motion, i.e., translation, rotation

and deformation on the fluid elements.

3- Dynamics: it deals with effect of applied forces on fluid elements.

1.1.2 Density: [90]
The density of substance is defined as the mass per unit volume and is

denoted by the symbol p. It has dimension%, i.e.

p=1 (1-2)

1%
where m and v represents the mass and the volume, respectively.

1.1.3 Pressure: [90]
The pressure is defined as the normal compressive force per unit area and is

denoted by the symbol P . It has the dimension%, I.e.
p _force _F_ma

area A A
Where a is the acceleration, F is the normal force, A is the area.

(1-2)

1.1.4 Shear stress: [25]
It is defined as the force per unit area and is denoted by the symbol . It has

the dimensionlz, I.e.
LT
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fz% (1-3)

where F and Ais the applied force and the cross- sectional area of material
with area parallel to the applied force vector, respectively.

1.1.5 Shear strain : [25]

It is also known as shear a deformation of solid bodies is displaced parallel
places in the body, quantitatively it is the displacement of any plane relatives to
second plan divided by the perpendicular distance between planes the force
causing such deformation.

1.1.6 Stream function: [63]

It is defined as a scalar function of space and time such that it is partial
derivative with respect to any direction gives the velocity in the direction
perpendicular to the previous direction. It is denoted mathematically by v,
where:
w=w(s,t)=w(x,y,z,t). For two dimensional, unsteady flows we have:

u=¥ y=.9% (1-4)

'
where uandv are the velocity components in the xand vy directions,
respectively.

1.1.7 Stream line: [63]
It is an imaginary line drawn through the flow field such the tangent at any
point is in the direction of the velocity vector.

1.1.8 Viscosity: [20]
Among all the fluid properties, viscosity is the most important property,

which is the resistance of a fluid to motion its internal friction. A fluid at a
static state is by definition unable to resist even the slightness amount of shear
stress. Application of shear force results in a continual and permanent
distortion known as flow.

1.1.9 Dynamic viscosity: [20]
It is defined as the tangential force required per unit area to sustain a unit

velocity gradient and is denoted by the symbol x, it has dimensionll_\A—T, . e.
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T
U= ..(1-5)
d
Yoy
1.1.10 Kinematic viscosity: [20]
It is defined as the ratio of dynamic viscosity to density of fluid and is

2

denoted by, it has dimension';—, le.

v=H .(1-6)
o
where x and pis the dynamic viscosity and the density, respectively.

1.1.11 Newtonian and non Newtonian fluids: [20]
The Newton law of viscosity states that the shear stress r of fluid element

on a layer is directly proportional to the rate of strain, i.e., r « g_u
y
which may be written as :
du

= p{— (1-7
iy (1-7)

where j—urepresents the rate of shear deformation of rate of shear and is often
y

called the velocity gradient.

Many common fluids such as: air, water, light soils and gasoline are
Newtonian fluids under normal conditions. However, there are certain fluids
which exhibits non Newtonian fluids, therefore, do not follow Newton's law of
viscosity. Common examples of non Newtonian fluids are: human blood,
lubricating oils, clay suspension in water, sewage sludge. There is however,
evidence to believe that Newtonian fluids may exhibit non Newtonian
characteristics under conditions of higher shear stress, and hence the
classification of fluid may change with the conditions of flow.

A general relationship between shear stress and velocity gradient (rate of
shear strain) for non Newtonian fluids may be written as:

T :A(g—;)n +B (power law fluids) ...(1-8)

where A, B and n are constants. For Newtonian fluids B =0, A= andn=1.
These relationships can be seen in the graph below for several categories.
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Shear stress

Mewtonian Fluid

Dilatant

f_- Idel fluid

Fig (1-1): Shear stress versus rate of shear stress

Shear strain rate

Below are a brief descriptions of the physical properties of the several
categories:

Plastic: shear stress must reach a certain minimum before flow
commences.

Bingham plastic: As with the plastic above a minimum shear stress must
be achieved with this classification n=1. An example is sewage sludge.
Pseudo plastic: No minimum shear stress necessary and the viscosity
decrease with the rate of shear, for example, colloidal substances like
clay, milk, and cement.

Thixotropic substance: viscosity increase with length of time shear force
Is applied, for example, thixotropic jelly paints.

Rheopeetic substances: viscosity increase with length of time shear force
is applied.

Viscoelastic materials: similar to Newtonian but if there is a sudden
large change in shear they behaved like plastic.

There is also one more category which is not real, it does not exist- known
as the ideal fluid. This is a fluid which is assumed to have no viscosity. This is
a useful concept when theoretical solutions are being considered it does help
achieve some practically useful solutions.
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In this thesis we used non Newtonian fluids of type pseudo plastic and
viscoelastic materials.

1.1.12 Steady and unsteady flow: [59]

A flow is considered to be steady when the velocity gradient depends only
upon the shear stress, is a single valued function of the latter, and means time
independent fluid. Also, the properties of fluid does not depend on time, i.e.,
M _ 0, P _ 0, % _ 0 otherwise, the flow is unsteady.
ot ot ot

In this thesis we used study flow in our analysis.

1.1.13 Compressible and incompressible flow: [63]

Fluid mechanics deals with both incompressible and compressible fluids,
that is, with fluids of constant and variable densities. Althrough there is no
such thing in reality as an incompressible fluid, this term is applied where the
change in density with pressure is so small as to be negligible. This is usually
the case with all liquids, gases, too, may be considered as incompressible when
the pressure variation is small compared with the absolute pressure.

1.1.14 Laminar and turbulent flow: [63]

Laminar flow in which fluid particles move along smooth paths in laminar
or layers, with one layer gliding smoothly over an adjacent layer and it occurs
for values of Reynolds number from 0 to 2000, and we say that the flow is
irregular parts and when Reynolds number is greater than 4000, and we say
that the flow is transition if the values of Reynolds number is between 2000
and 4000.

In this thesis our problems deal with incompressible and laminar flow

1.2 Continuity Equation: [68]

The continuity equation embodies the principle of conservation of mass
according to which fluid matter can be neither created nor destroyed, which
mean that, the mass per unit time entering the tube must flow out at same rate.
The equation of continuity may be equivalently obtained in any appropriate
coordinate system. The general equation of continuity which is applicable to
any type of flow and for any fluid whether compressible or incompressible is :

Dp =-
—+pVu =0 ..(1-9
or P (1-9)

where p is the density, u = (u,v,w) is the velocity vector, 5:(?,%,?) is the
X Z
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gradient vector, and %=§+J V is the substantial derivative. Its expansions is
in the three most commonly used coordinate systems (rectangular, cylindrical,
and spherical).

1.2.1 Continuity equation in Cartesian coordinates: [68]
The equation of continuity in three- dimensions is:

() + 5 (00) + 2 (aw) =0 +(1-10)

If the fluid is incompressible (o= constant), the continuity equation may be
written as:
ou 8v 8W

= =0 ..(1-11)

x oy oz
In two- dimensions, the continuity equation takes the form:
U LN g (1-12)
x ay
For one dimension, say in the x-direction:
ou

=0 ..(1-13
= (1-13)

1.2.2 _Continuity equation in cylindrical coordinates: [69]
The equation of continuity in cylindrical coordinates is:

10 0
-v 2 (W) +—(ow) = ...(1-14
at+r8r pm)+r80( )+8z( )=0 ( )

If the fluid is incompressible ( p = constant), the continuity equation may be
written as:

u odu lov_ow _, ..(1-15)

r or rofé oz

In polar coordinates, the continuity equation takes the form:

u ou o ..(1-16)

1.3 Navier-Stokes Equations: [115]

The system of partial differential equations that describe the fluid motion
is called the Navier stokes equations or the momentum equations. The
general technique for obtaining the equations governing fluid motion is to
consider a small control volume through which the fluid moves, and
required that mass and energy are conserved, and that the rate of change of
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the two components of linear momentum are equal to the corresponding
components of applied force.
The Navier-Stokes equations for incompressible fluid are:

p%zplz _Vp + iV (1-17)

where v?is the Laplacian operator, F is the body force.

1.3.1 Navier-Stokes equations in Cartesian coordinates
The Navier-Stokes equations in Cartesian coordinates are:

8—u+u 8_u+v 6_u+W a_ ) 1o +uVu

ot ox oy oz 0 OX

N N N oV 1 0p

—+U—+V —+W —=F -= +uV?

ot ox oy oz ' poy

ow +U ow +V w +W W _ ] 1 +uViw ...(1-18)
ot OX oy 0z p 0z

Where (u,v,w) are the components in the x,yand z directions, respectively,
(F.,F, ,F,)are the body forces in the x,y and z directions, respectively, vis

x1h oy
i . i i ) 62 82 62
the kinematic viscosity, and V?=——+

P Laplacian operator in

Cartesian Coordinates.

1.3.2 Navier-Stokes equations in Cylindrical coordinates
The Navier-Stokes equations in cylindrical coordinates are:

Du v? 10op , U 2o0v

— L 2T pVu-—-52

Dt r " por ol r’ r*oo

D—V+ﬂ:F9—i6—p+u(V?v +V_+£2ﬂ

Dt r rp oo r r-oe

DWw o 1P, v ..(1-19)
Dt p 0z

where (u,v,w) are the component in the r,0 and zdirections, respectively,
(F.,F,,F,) are the body forces in the r,6 and zdirections, respectively, the

operators % and V? have the following meaning:

D_o. ,9,v0 49 ..(1-20)
Dt ot or roo o

2 2 2
o 10 18 0 (1-21)

"o o o et
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1.4 Peristaltic Phenomenon:[96]

Peristaltic pumping has been the object of scientific and engineering
research in recent years. The word peristaltic comes from a Greek word
“peristaltikos” which means clasping and compressing. The phenomenon of
peristalsis is defined as expansion and contraction of an extensible tube in a
fluid generate progressive waves which propagate along the length of the tube,
mixing and transporting the fluid in the direction of wave propagation.
Peristaltic pumping is a form of fluid transport that occurs when a progressive
wave of area contraction or expansion propagates along the length of a
distensible tube containing the fluid. It is an inherent property of many turbuler
organs of the human body. It plays an indispensable role in transporting many
physiological fluids in the body in various situations, such as urine transport
from the kidney to the bladder through the ureter, vasomotion of small blood
vessels, as well as, mixing and transporting the contents of the gastrointestinal
passage, the transport of the spermatozoa in cervical canal, transport of bile in
the bile duct, transport of cilia peristaltic play an indispensable role in transport
physiological fluids inside living bodies, and many bio- mechanical and
engineering devices have been designed on the basis of the principle of
peristaltic pumping to transport fluids without internal moving parts. The need
for peristaltic pumping also arises in circumstances where it is desirable to
avoid using any internal moving parts such as pistons, in pumping process. A
mathematical model to understand fluid mechanics of this phenomenon has
been developed using lubrication theory, provided that the fluid inertia effects
are negligible and the flow is of the low Reynolds number.

1.5 Porous Medium: [92]

A porous medium is a matter which contains a number of small holes
distributed throughout the matter. Flows through porous medium occur in
filtration of fluids and seepage of water in river beds, movement of
underground water and oils are some important examples of flows through
porous medium. An oil reservoir mostly contains of sedimentary formation
such as limestone and sandstone in which oil is entrapped another example of
flow through porous medium see page under a dam which is very problem.
There are examples of natural porous medium such as beach sand, wood, filter,
human hung, gall bladder and bile with stones, in petroleum production
engineering and in many other processes as well. The Navier- Stokes equations
with porous medium are given by:
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DU -
p—=pF -Vp+uViu-—u ..(1-22)
Dt K,

where k, is the permeability

1.6 Basic Definitions on the Electrostatic Field:[36]
Through this section, we will introduce the most important definitions,
which will be used in our work later.

1.6.1 Electrostatic Field
The electrostatic field, denoted by E, is defined as the force that is exerted
on a unit charge, in the field and it’s vector in the same direction as the force.

= lim (1-23)
where Aq is the charge, and F is the force.
1.6.2 Current Density

We define a current density, denoted by J as the flow of charges across a
unit cross- sectional area per second.

1.6.3 Electrical Conductivity

Which is denoted by & and it is the ratio of current density J to electrostatic
field E.

a:JE (volamp) (1.24)

1.6.4 Ohm’s Law

It is describes the conduction current, and is given by:
J =o(E 4V xB) ..(1-25)
Where o is electrical conductivity, E is the electrostatic field, v is velocity and
B is magnetic field.

1.6.5 Lorentz Force
It is denoted by F, on a charge moving g in a magnetic field B with velocity
Vv is given by:
F=qv xB
If J=qv thenF=JxB ...(1-26)
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1.7 Magneto Hydrodynamics (MHD): [91]

It is the branch of continum mechanics which deals with the motion of
electrically conducting fluid in the presence of magnetic field. The motion of
conducting material across the magnetic lines of force creates potential
differences which, in general, cause electric currents to flow. The magnetic
field associated with these currents modify the magnetic field which creates
them. In other words, the fluid flow alters the electromagnetic state of the
system. On the other hand, the flow of electric current across a magnetic field
Is associated with a body force that is called Lorentz force, which influence the
fluid flow. It is this intimate interdependence of hydrodynamics and
electrodynamics which really defines and characterizes MHD.

The MHD Navier- Stokes equations represented by:

In the x-direction:

ou ou ou ou op )

—+U —+V —+W —)=pF, -—+ 1V JxB (1-27
p(6t+6x+6y+ az)pxax LV U+ xB), (1-27)
In the y- direction:

N N NV op

4+ —+V —+W —) = -—+ VZV J xB ...(1-28
p(6t+6x+8y+ aZ)/oyayﬂ +(I xB), (1-28)
In the z-direction:

ow ow ow op

u v W = -+ VW +(J xB ..(1-29
p(6t+6x+8y+ az)pzazﬂ +( xB), (1-29)

where (JxB),, JxB),, IxB),are the components of Lorentz force

(electromagnetic force) in the x-direction, y-direction and z-direction
respectively, B is the magnetic field, J is the current density or conduction
current and x is dynamic viscosity.

1.8 Heat Transfer: [115]

When a temperature difference exists in a medium or between media, heat
transfer must occur. Heat transfer is energy in transit due to a temperature
difference. Three different types of heat transfer process are known when a
temperature gradient exists in a stationary medium, which may be a solid or a
fluid, we use the term conduction for the heat transfer that occurs across the
medium. The term convection refers to heat transfer that occurs between a
surface and a moving fluid when they are at different temperatures. The third
kind of heat transfer is termed thermal radiation. Heat transfer is termed
thermal radiation. All surfaces of finite temperature emit energy in the form of
electromagnetic waves. Owing to radiation between two surfaces at different

10
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temperatures when there is an absence of an intervening medium and heat
transfer occurs.

1.8.1 Specific Heat of Fluid at Constant Pressure
It is denoted by C  which is defined as the ratio of heat flow to mass and

temperature difference it is expressed by the equation:

dQ
_aQ .(1-
C, =5 (1-30)
1.8.2 Thermal Conductivity
It is denoted by k,, which is defined as the flow in a unit time across unit

area through unit thickness when a temperature difference of unity is
mentioned between opposite forces.

1.8.3 Thermal Diffusivity
It is defined as:

k=K
C

where, k,is thermal conductivity, p is density, and C P Is specific heat.

.(1-31)

The thermal diffusivity is, therefore, the ratio of heat conducted through the
material to the heat stored per unit volume. The larger of the thermal diffusivity
makes the propagation of heat into the material faster. If the thermal diffusivity
Is small, it means that a big part of the heat is absorbed by conducted through.

1.8.4 Heat Flux

The heat flux Q is defined by the Fourier’s law as, the rate of heat flow is
proportional to the area of flow A and to the temperature difference dT, across
the layer, and inversely proportional to the thickness dx, and varies only in one

direction, say x it is expressed by the equation;

dT
=—k,A— ..(1-32

Where, k,is thermal conductivity and the negative sign indicates that the

temperature change in the direction of heat flow (-dT).
1.8.5 Heat Capacity
It is denoted bprp, which is defined by the product of density and

specific heat.

11



Elementary concepts and basic definition

1.8.6 Joulean Heating
The Joulean heating is defined as the ratio of the square of conducting
current to the electrical conductivity and is given by:

2
joulean heating = )
O

1.9 The Energy Equation: [36]
The magneto fluid dynamic (MFD) energy equation is represented by a
nonlinear partial differential equation and is given by :

2
pcp%:¢+(‘2 +k, VT +PR ..(1-33)
Where
2=y, (1-34)

PR is rate at which heat is added by chemical reaction, radiation and
electromagnetic action and
¢=A(V-u)’+2uD.D ..(1-35)

where D =%(V.u +(Vu)") is the deformation tensor. Here, A is the second

coefficient of viscosity, and if stokes hypothesis is assumed to hold then
l:—gy

Also, here ¢is called the dissipation function. It can be shown that ¢,
which represents the rate at which work is converted into heat, is always
greater or equal to zero.
For incompressible flows, the divergence of the velocity fieldvu,
Is identically zero, so any questions about the validity of stokes hypotheses are
irrelevant. Also, when the density of the material particle is constant, the term
expressing work done by compressing the fluid is absent. The internal
generation due to viscous dissipation is frequently small allowing us to ignore
¢ . With these assumptions the energy equation reduces to:

DT
<, o0
It is clearly that while T depends on the velocity field, the velocity field
does not depend on temperature.

=k, VT ..(1-36)

1.10 Elexible Wall: [71]
The governing equation of motion of the flexible wall may be expressed as:
L(H)=P -P, ..(1-37)

12
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Where P, is the pressure on the outside of the wall due to tension in the

muscles, and L is an operator that is used to represent the motion of the
stretched membrane with damping forces such that:

a—2+m a—2+C o ...(1-38)
ox ? tot? ot

Here, k is the elastic tension in the membrane, m,is mass per unit area and C is

the coefficient of viscous damping forces.

L=—k

1.11 Dimensions: [90]

A dimension is the measure by which a physical variable is expressed
quantitatively in fluid mechanic, there are only three primary dimensions from
which all the dimensions can be derived, namely; mass (m), Length (I) and
time (t). All other variables in fluid mechanics can be expressed in terms of m,
| and t. for example, acceleration has the dimension It2. Force is directly
related to mass, length and time by Newton’s second law, force =mass
xacceleration (f=mxa), and from this we see that, the force has the dimension
mit2.

1.12 Dimensional Analysis: [114]

The method of dimensional analysis aims to deriving similarity parameters,
which can be used to apply data measured with a model configuration to the
geometrical similar full- scale configuration there by the number of necessary
experiments can be reduced, which depends on the number of the physical
quantities influencing the problem. The dimensional analysis also offers the
advantage, that the physical quantities can be combined in such a way, that the
results are independent of the measuring units. The physical quantities are
combined in a product such that dimension less combinations result.

1.13 Dimensional Parameters: [114]

If the number of variable affecting a flow problem are known, these can be
arranged into a suitable dimensionless parameters by the method of
dimensional analysis. From experience and judgment, less important
parameters may be dropped out. Thus we are left with the most important
parameters which have a far greater influence upon the phenomenon than the
parameters dropped out.

There are some important parameters of dimensionless number in fluid
mechanics, which are:
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Elementary concepts and basic definition

1.13.1Reynolds Number

It is denoted by (Re) it is the most common dimensionless number in fluid
mechanics. Low Re flows involve small sizes, low speeds and high kinematic
viscosity such as bacteria swimming through mucous. High Re flows involve
large sizes, high speeds and low kinematics viscosity such as an ocean linear
steaming at full speed. And represented the ratio of inertia force to the viscous

force, given by :
o inertia force _ pra
viscous force  u
where c,a represents, uniform velocity, dimension of the channel,

respectively.

..(1-39)

1.13.2 Prandtl’s Number

It is a ratio of two molecular transport properties. Therefore a fluid
property and independent of flow geometry, denoted by Pr, is a dimensionless
and represents the ratio of kinematic viscosity to the thermal diffusivity and
given by:

y7i
pre¥ _ %? _HL, ..(1-40)
k' k/ k,
~,
1.13.3 Schmidt’s Number

It is denoted by Sc, which relates viscous diffusion to mass diffusion, and
given by:

sc=H =V (1-41)
pD D

where D is the coefficient of mass diffusivity has dimension L2T™.

1.13.4Grashof’s Number

It is denoted by Gr, which is a measure of buoyancy or free convection
effects in a flow, and given by:
Gr = 9p2°a(, T, (1-42)

Cu

Where T,a temperature at lower wall of channel is, T, is a temperature at upper
wall of channel, g is an acceleration due to gravity, « is a coefficient of linear
thermal expansion of fluid and c is a wave velocity.
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Elementary concepts and basic definition

1.13.5_Darcy Number

In fluid dynamics through porous medium. The Darcy number, denoted by
Da, represented the relative effect of the permeability of the medium versus it
IS cross- sectional commonly the diameter squared. The number is named after
Henry Darcy and is found from non- dimensionalzing the differential form of
Darcy’s law. This number should not be confused with the Darcy friction

factor. Which applies to pressure drop in pipe. It is defined as:
K, ]
Da=—¢ ..(1-43)

Where k, is the permeability of the medium and a is the diameter of the
particle.

1.13.6 Soret’s Number

The soret effect is mass flux due to temperature gradient and appears in the
species continuity equation when you have a multi-component mixture where
each species has its own diffusion velocity. The soret number, denoted by Sr,
relates thermal diffusion coefficient to ordinary diffusion coefficient and given
by:

_ Dka (Tl _To) _
Sr T o) ..(1-44)
where D, the coefficient of mass diffusivity is, T_is mean fluid temperature,

k, is the thermal diffusion ratio.

1.13.7 Eroude Number
The Froude number, denoted by Fr, is the dimensionless nuber and
represents the ratio of inertia force to the gravity force and given by:
_inertiaforce  c?
" gravity force gd
where g, d represents, gravity of acceleration and dimension of the channel.

..(1-45)

1.13.8 Eckert Number: [28]

The Eckert number Ec is a dimensionless number used in fluid dynamics. It
expressed the relationship between a flow’s kinetic energy and enthalpy, and is
used to characterize dissipation. It is defined as:

CZ
TCAT
where AT is characteristic temperature difference of the flow.

Ec ..(1-46)
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Elementary concepts and basic definition

1.13.9Hartman number: [55]

Denoted by (M), it is the dimensionless number and represents the ratio of
magnetic force to the inertia force, or the square root of Stuart number
(interaction parameter) product the Reynolds number is given by

M =\/%BOI (1-47)

Where | is a characteristic length.

1.14 Regular Perturbation Expansions: [13]

Perturbation methods, also known as asymptotes allow the simplification of
complex mathematical problems. Use of perturbation theory will allow
approximate solutions to be determined for problems which cannot solved by
traditional analytical methods. Second order ordinary linear differential
equations are solved by engineers and scientists routinely. However in many
cases, real life situations can require much more difficult mathematical models,
such as non-linear differential equations.

We are all familiar with the principle of the Taylor expansion. For an analytic
function f(x), we can expand close to a point (x=a) as:

f (a+x)=f (a)+sf ’(a)+%f "(@) 4o .(1-48)

for general function f(x) there are many ways this expansion can fail, including
lack of convergence of the series or simply an in ability of the series to capture
the behavior of the function, but the paradigm of the expansion in which a
small change to x makes a small change to f(x) is powerful one, and the basis
of regular perturbation expansions.
The basic principle and practice of the regular perturbation expansion is:
1 Set £=0 and solve the resulting system (solution f,for definiteness)

Perturb the system by allowing &to be nonzero (but small in some sense)
3 Formulate the solution to the new perturb bed system as series:

2
fo+ef +&f,+.

4 Expand the governing equation as a series ing, collecting terms with
equal powers of ¢, solve them in turn as far as the solution is required.
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Effect of magnetic field on peristaltic flow of Walters —B fluid through a porous medium in a
tapered asymmetric channel.

Introduction

Peristaltic transport is a form of material transport induced by a progressive
wave of contraction and expansion along the length of distensible tube mixing and
transporting the fluid in the direction of the wave propagation. This kind of
phenomenon is termed as peristaltic. It plays an indispensable role in transporting
many physiological fluids in the body under various situations as urine transport
from kidney to bladder, the movement of chyme in the gastrointestinal tracts,
transport of spermatozoa in the ductus efferent's of the male reproductive tract,
movement of ovum in the fallopian tubes, swallowing of food through esophagus
and the vasomation of small blood vessels many modern mechanical devices have
been designed on the principle of peristaltic pumping to transport the fluids without
internal moving parts, for example the blood pump in the heart-lung machine and
peristaltic transport of naxious fluid in nuclear industry. The mechanism of
peristaltic transport has attracted the attention of many investigators since its
investigation by Latham [61], Burns and Pareks[23], Shapero et all.[96], Fung and
Yih [34], Takabatake and Ayukawa [109], Akram and Nedeem [12], Mekheimer
and Elkot [67], Mekheimor and al —Arabi[66], Mekheimer[64], Nadeam and Akbar
[73], Kothandapani et al.[58], of peristaltic flow for different fluids have been
reported under various conditions with reference to physiological and mechanical
situations. Most of these investigations are confined to the peristaltic flow only in
a symmetric channel or tube.

Among the many suggested models, Walters [113] has developed a physically
accurate mathematical model for the rhedogical equation of state of a viscoelastic
fluid with short memory. This model has been shown to capture the characteristic
of actual viscoelastic polymer solutions, hydrocarbons, paints and other chemical
engineering fluids. The Walter’s—B fluid model generates highly non-linear flow
equations which have order higher than that of the Navier-stokes equations. It also
incorporates elastic properties of the fluid which are important in extensional
behavior of polymers. Peristalsis of Walters-B fluid with wall properties has never
been addressed previously. Thus Margiam Javed et al. [53] is undertaking to fill
this void by incorporating velocity slip and temperature jump conditions.

In the present study, and the purpose of this chapter is to investigated the
peristaltic transport of Walters-B fluid under the effect of magnetic field through a
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Effect of magnetic field on peristaltic flow of Walters —B fluid through a porous medium in a
tapered asymmetric channel.

porous medium in a tapered a symmetric channel. Regular perturbation technique
are used under long-wave length (wave number is small) and law-Reynolds
assumption. Series solutions for stream function, axial velocity and pressure rise
are given, numerical computations have been performed for pressure rise per wave
length. The influence of the physical parameters of the problem are discussed and
illustrated graphically.

2-1 The Mathematical Model of the Problem

Let us consider the MHD flow of an incompressible and electrically conducting
walters —B fluid through a porous medium of two—dimensional tapered a symmetric
channel. We assume that infinite wave train traveling with velocity ¢ along the
non-uniform walls. We choose a rectangular coordinate system for the channel
with x along the direction of wave propagation and parallel to the center line and
Y transverse to it. The wall of the tapered a symmetric channel are given in fig.
(2-1) by the equations: [58]

where a ,a,are the amplitudes of the waves, 2d is the width of the channel at the
inlet, m’(m’ <<1)is the non-uniform parameters, the phase difference 4 varies in the
range o< ¢ <, ¢ =0represents to symmetric channel in which the waves are out of
phase and when ¢ =~ the waves are in phase, and further 4 a,,d and gsatisfies the
condition :

a’+a’+2aacosgp<(2d) L. (2-2)

2-2 The Governing Equations of the Problem

The constitutive equations for Walters-B fluid are: [53]
S=-Pl+¢, (2-3)

Z=2770e1—2k0%, ......... (2-4)
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e=W +W), (2-5)
%:%ﬂ\/_.wel—el(vv_)—(vv_fel, ......... (2-6)

Fig. (2-1): physical Sketch of the problem

In which s is the Cauchy stress tensor, -Pl is the spherical part of the stress due to
constrain of incompressibility, ¢ is the extra stress tensor, ,_ is the coefficient of

viscosity, e, is the rate of strain tensor andﬁdenotes the convicted differentiation

of a tensor quantity in relation to the material motion, k_ is the short memory
coefficient. (W_) is the fluid velocity gradient in the Cartesian coordinated system
(Y,Y_) and (W_)T is the transpose of the fluid velocity gradient in the Cartesian

coordinates (Y,Y_) , they are defined as:

YY) NN

wo=| %X gy o oX X 2-7)
XN N NN
oX o X o
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Then
Zai (aiJra‘/_)
e=| _OX_ o Xt 2-8)
u o
(—=+—=) 2—
&  oX oY
Also we have;
5 o’U (aZLT oA )
o8 _ oX ot & ot oXeét (2-9)
ot (82\/ aZLT) oA
oxot of ot o ot
V Ve, =U—=+ =) _" _ ¢
oX X'l v & o
oxX  of o
— 9 —0 ..U o — 0.0 o
—+V —)2——= —+V —=)(—=+—==
(Uax a{)ax (Uax a{)( ax)
— 9 —0.,N N — 9 —0 . N
— 4V =) (—+—= — 4V —=)2——
(Uax a{)(a ) (Uax a{) o
"2 . 211 _ _ 2 . Y
o0 Y a9V oY g2V VY,
oX OX oY oX OX oY o oX o
_ _ 2 _ VA A _ v
u ayz U 5_U_+V 8_2\/_+V 832) 8_2\/_ ai’z)
oX OX oY o oX OX oY
......... (2-10)
U U o (au U
va % G| x &
e(W)=| _77 _ _ —
& U o N
oxX o oY oX  of
2Ly WA UL F N
_ oX oX & oX oX o & o & oX (2-11)
VN Ul N N, VA N,
OX oX oX o & oX o oX of o
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— ——— + —— —
oX & o oX o o oY o oX
U ou
4n, — 2n, —+ 21, —
anx 7708{ 7706)(

Now, write ¢ = (C:XX gwj ......... (2-14)
é/YX CW

And substitute (2-9), (2-10), (2-11), (2-12), (2-13) into eq. (2-4), thus we have the
components of shear tensor E as follows:

- U U —azu — U v
=4 _2k2__2 ) 4=
$ %% 7705)( ( oX ot (U 8)(8{) ( ) ax
& U
Ny 2-15
(ax a{) ( )
F_F 2 (Q_+£)_2k(azu N _zaUaJ+(Ua w2
X T ovx = AT T orot oxot  ox or ox
U VAR VA S AN S V. N N
(=+=) —=(=+=)—=(=+=)-2=—=) (2-16)
& ox’ o ‘o ox’' o X oX or

o o — oA aJ U
Cov =41, —-2k,2——==+2U X v +V —2) 4( —) - _(3{_+8X_)

......... (2-17)

21



Effect of magnetic field on peristaltic flow of Walters —B fluid through a porous medium in a
tapered asymmetric channel.

2-3 Calculation of Lorentz Force: [60]

To calculate the Lorentz force (J xB), we will apply a magnetic field just in v~ -
direction. The effect of this force on the fluid flow, will be analyzed. Now, apply

magnetic field in v~ -direction (0,B,,0) and to calculate Lorentz force we start with:

By definition (1.6.4) we have:
J= (70/_><§) = GBOUE

......... )
and so;
ik
JxB=[0 0 oUB/J=-oB2UF . 3)
0 B 0

0

where J is the induced current and B is the magnetic field. It is observed that the
effect of the magnetic field is appear on the flow in the X -direction only.

2-4 Basic Equations of the Problem

The equations governing of the non Newtonian incompressible viscous
Walter’s-B fluid are:

The continuity equation is given by:
au
__+
X

)}
2|
|
(e»]
i
N
|
=
&

The momentum equations are given by:

U - —aJ __85 0 2 _77_0_
,0(at UOX_ V8{)_ " (Cxx) (§xy)GBU KU
......... (2-19)
N —&N &N, P
P(E‘FU iﬂl y)=—§+—(§xy) _(QVYY )—— --------- (2—-20)
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2-5 Method of Solution of the Problem

In order to simplify the governing equations of continuity and motion, we may
introduce the following dimensionless transformations as follows:

X:X—,y=Y—,t=£,u:g,V:V—,h1:i,h2=i

A d A C oc d d

d’°P _ a ., a m'A d - . d

= a=—=+b=-—2m= {=—2C0=—
P S Td T d IR

2

M= [“BdRe=Pd K& (o 0" v, v 2-21)

Tlo Tlo od K oy OX

Where a, b are the amplitudes of the waves at the lower and upper walls of
channel, y is stream function.

Substituting (2-21) into Equations.(2-18),(2-19) and (2-20)we get:
From eq. (2-18) we have:

y
X
cou cov _

Aox  d oy

Multiplying both sides of (2-22) by (/%) yields to:

o))

From eq. (2-19):

U —aU —aU oP

o — o ,— o= My
— +U +tV =)=——+—(xx)+—= () —0oB;U —2U.
p(ﬁt P 8{) X oX (Cxx) G{(CXY) 0 K
2
p(C:_a_u+Cu98_u+C5V Ea_u):_c_zoa_P_Fﬁi i +Czoi Ny
A ot A OX d oy d° ox Ad ox d® oy

~oBZXCu - ey
K
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C?éu C? ou C? Caéu, CpoP nC o
p——+—U—+—V——)=—"TF—+ —
Aot A ox A doy d2 ox  Ad ox

~oB/Cu - Ui
K

Cn, O

d2 ay Xy

Cox t

p—(—+u—+va—u)=—CZO@+%ci XX+CZOi§Xy—aB§Cu—n"Cu.
A ot OX oy d® ox Ad ox d® oy K

......... (2-24)
2
Now multiplying both sides of equation (2-24) by (g ) we have to get:
o
2 2 2 2
pc_ d (a_u+ua_u+va_u):—a_P+£d_i xx+CZO d i oy
ACny ot X oy o ad Cp, ox d? Cn, oy
2 2
—oBuC 0" _ncd
Cn, K nC
2 2
mdd_d_u+u8_u+\/8_u):_£+§ié’xx+ié’xy_aBOd u_d_u_
n, A dt OX oy OX OX oy o K
Which may be written as:
Re5(a—u+ua—u+va—u):—a—P+5i§ +i§ ~M U -K™.
ot ox o oy X OX XX gy TXY
That is:
Reé(a—u+ua—u+va—u):—a—P+5i§ +i§ ~(M?+K*u ... (2-25)
ot OX oy OX ox XX gy XY
From eq. (2-20):
N O~ N L B N S
—tU —+V =) =———+ — + = -0
,0(at = 6{) PR (Exy) 8{(§YY) "
2
pCION o CON 5 CONy  InC P nC O, nC O . ey,
A ot A OX d oy d® oy Ad ox d® oy K
2 2 2
p(C sov C°6 ov C5VQ)Z_AU%C£+EE X +@i y_nOCé'V
Aot A x4 oy d* oy ad ox ¥ d*ey 7 K
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2
oC 5(@“]@_'_\/@): /177%C oP 770C 0 X +770C23i _770C5V
A ot X oy day/waydayWK
......... (2-26)
3
Now multiplying both sides of (2-26) by (Ci ) will produce:
0
2 3 3
L% d (_ G vy P Cmy 4 0 +CZO
A AnC ox oy oy ad ACn, ox d
d° 0, Cno d°
ACn,oy ™Y K ACnq,
2 2
pCd 5d2 5V+uﬂ+vﬂ):_@+d_2igxy+d_ig —62d—v
n, A° ot 0 oy oy A% oX A oy K
Which can be written as:
Re53(ﬂ+uﬂ+vﬂ)_—@ 52ig”xy+§ig“yy—52k2v ......... (2-27)
ot X oy oy X oy
From eg. (2-15) we have:
2 2 2 2 2 2 2
£§XX:4770C8_U_2k0(2C_2 ou +2C_2u6u2+C o ou y—4 Cz(a_u)
d A OX A° ox ot A5 OX Ad  oOxoy A
ov CoCou CoCoov
2 (Em I,
X Adoy A A X
2 2 2 2 2
nC, Al A, oCF 0 LT 0, cid, duy , cz(a_u)
d A OX A° oxot A% oX ﬂdl oX oy A
X CN oy,
ox Ad A oy /12
2 2 2
MC WG U gy C . 0U 5 YLy Y (—) - ﬂ(a—“+
d A X A2 oxat X ay X oy
i o (2-28)
OX
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d
Multiplying both sides of (2-28) by (77_0) we get:
0

2 2 2 2
G =X LN 5 &8 o o Ty gy
A Cu, X A pCd . axat X2 oxoy  ox
N ML 2Ny
oX oy OX
2 2 2 2
¢, =40 oKL 5 TU 5 TU Ly Ty gy N (M OV
OX nd A°° oxot OX OX 0y OX OX oy OX
Thus we have:
o 2 2 2
VY LB e R T A NRYRCA R W TCLE GO L A LR Lo
OX OX ot OX OX oy OX ox oy OX
......... (2-29)

From eqg. (2-16):
— LYY U o U — o 0

v =2n(——=+—=)-2k ((——+——=-2——+ — 4V —
xe =4 ) T G axa o Ve Y &
v, NV ,NU NV, VN NV, NN
& L&Y & A0

& ox o AN X’ X o ox’& = oX of

2 2 2

0 oo CM L CONVy gy LU [ CO v _,CaucCau

d o oy A ox ad oyt A7 oxat A ox d oy

C o0 Co6 o0,Lou Codov, Coov Cou Coov, Caou C au
i B G e B G B
A ox d oy doy A oX d oy doy A ox° Aox doy

Coov, ,CoNCs

+ )22 S E 2 )
A OX A ox d oy

2 2 2 2
e, G, CHN 5 £F S Ctd Y Xlwa, C
d doy A A0oX Ad oyot A° Aoxot Ad ox oy A
o Cd o0,Cou Cdov, Cdov Cou Cdov, Cou,Cou C
oy ) T ) T (L S ) e (S

dA oy doy AAox’ d Aoy doy AAox Aox daoy A
dov, 2c%d%av ov

o d 2oy
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nC Cou Cddov C?20d0u C?%dd v 2C%du du
A =2t T )~ 2Kyt e e T
d y doy AA4dox Adoyot A°Ad oxot  Ad ox oy
(i 0., Cou Cddov, Cov Cou Cddov, Cou C ou

o
B B Bvg B eI vt
x oy'daoy AAidox’ Aoy doy Aidaox’ Adx d oy

Cddov, *,ovov
AAdox” ad - ox oy’

2 2 2 2
1C o 5y C (@ 20 g CT O CT L 0v KT,
d d oy OX Ad oyot Ad  oxot  Ad Ox oy
CC 2y 2y, ¥ CC u ov) CCaudu,
adox  oyoey  ox’ Adoy oy ox' Adox oy

52V —Zczgzﬁﬂ
OX d OX 8y )
2 2
770C é/xy :2770C (a_u+5za—v)—2k C_(8U +52 82\/ ou ou (U 0 0

: S2 (U Y )
d d oy X ad "oy ot Xot X oy X oy
(8_u+52@ —@(a—“mz—)—a—”(a—“+52—)—252@@). ........ (2-30)
oy oX oy oy OX  OXx oy OX OX oy
Multiplying both sides of eq. (2-30) by(ndC ) we get:
0
2 2
- :%d_(a_u_FgZﬂ _2k0C_ d (8u +6? oV _28_u8_u+(ui
d Cn, oy OX Ad Cn, oyt oxXot  oOx oy OX

Oy oy N Oy O N

oy oy ox oy oy oX OX oy OX OX oy

2
(Xy:Z(a—u+5zﬁ)—2k°C 5(au +06° oy —Za—ua—u+(ui+vi)(a—u+
oy OX nd oyot oxot  Ox oy OX oy oy

PN RC I R L AP L R )

ox oy oy oX OXx oy OX oX oy

. 2

¢ =2 MMy s DY 52 OV udu, 0, 0y,

g oy OX oy ot oxot  ox oy ox oy oy
52ﬂ)—ﬂ(a—”wzﬂ)—a—“(a—“mzﬂ)—zazﬂ@). ......... (2-31)

ox oy oy oX  OX oy OX OX oy
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From eq. (2-17):

N a%/ — —N N au U v

=4 _—2k2 +2 ——+V A=) -2 =(=+—
Cov o=~ o (Uaxa{ a{_Z) (a{) a{(a{ +ax)
e, _y, (ﬁﬁ—zk €6 N ,,C8 0N g CsN, T
g v Ty A T Y ey Y ey e

C@u C ou C56v

770C 4nC ov Cza?v c? ov C* ov, ,C? ov,,
=7 =" — -2k, (2— +2(5U——+—V—)—-4—(—) -
d é,yy ﬂ, ay ( 12 ayat /12 axay-i_iZVayZ) /12 (ay)
,CC U U 2OV
d 5 ay(ay ™ )
ﬁ _4770Cﬂ_2k zc_zﬂ 22 i C_2 ﬂ_4c_2@2_
d é/yy l ay O( 22 ayat—i_ /12 axay—i_/lZVayZ) /12 (ay)

2
2(3_2/1_28_u8_u 52ﬂ))_
d? A% oy oy ox
nC, _4C v _, C° 0oV o gy Louou
d C:yy 2« ay 02/2( 5y81’+ ( axay ayZ) (ay) 526}/ 6}’
+5° ﬂ)). ......... (2-32)

OX
Multiplying both sides of (2-32) by ( dC) implies to:

0
2

gyyzmnod—ﬂ 5 C° d (252" 42 o )_ 4Oy 2 0u

A Cmdy CaaC oyat oxay ay &y 5tey oy
, OV
+58—X)).

6 =t X KE LD OV o DYy Ty g Xy 2 )
oy m, A°d " oyot OX 3)/ 5)/ oy ooy oy OX
<, 46 KL 520 OV o, OV )— (Xyz_2 M U 2V

o nd oyt xoy ay oy’ Stey oy ox
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Which can be written as

ov o ov v |, 52
=455 2K (5%(2 2(u 4y 2Z (152 D).
Sy & ( (ayat+(aay 8y) (8y)) ay(ay X))
c _45%_2“52(2 N, O v du ov

dy ot axéy ay ay dy ox 5)’

Now, under the assumption of long wave length (s <<1) and low Reynolds number,
the Egs. (2-25), (2-27) can be written as:

op O 2 2
—_ = -M“+ku 2-34
ox oy ¥ ( ) (239
p
P-o (2-35)
oy
. oy -0y .
Introduce the stream function u :5,v Y in egs. (2-31), (2-34) we have:
op 0 2 2\ OW
el —(M K)=—"/— 2-36
ox ay é/xy ( + )8y ( )
2 2 3

C, = Oy 528‘/’) 2K (5 Y g a;// _o5 9V 5‘§+55W a"”z—

y dy 2 oy 2ot Ox ot OX 0y oy oy Oxoy
5207 53‘/’_56‘/’8‘/’ FW Y omlv Oy, (2-37)

oy ox®  ox oy’ ox ox oy ox % ox oy

2-6 Rate of VVolume Flow and Boundary Conditions

In laboratory frame, the dimensional volume flow rate is:[58]

o
QX )= j uxy.,tbdy, (2-38)
L

In which H 1 and H 2are functions of X and t . In wave frame, the dimensional
volume flow rate is

Ho (X)

g= [ UXY)av, L (2-39)

Hy(X)
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If we introduce the wave frame having coordinates (X_,Y_) which travel in the X -
direction with the same wave velocity C. Then the unsteady flow in the laboratory

frame (X_,Y_) can be treated as steady. The coordinates and velocities in the two
frames are related by:

Substituting Eqg. (2-40) in Eq. (2-38) we obtain:

Q=q+CH.-CH.,, .. (2-41)

The time averaged flow over a period (T, = %) at a fixed position X is defined as:

— 1"z -
Q=T—2£th, ......... (2-42)

If we substitute Eq. (2-41) into (2-42) and by integration, we get:

Q=q-ag sin[%”(;—ctT]-alc sin[%”(;—ct_)+¢] ......... (2-43)
If we find the dimensionless mean flow F, in the laboratory frame and @, in the
wave frame, according to: F = Q , 0= 9_ one can find eq.(2-43) to be:
—cd —cd

F(x,t)=0+asin[2z(x —t)+¢]+bsin[2z(x -t)] ... (2—-44)
In which,

hZ(X)aW
F=[ ZSdy =p(h)-w(r) (2—45)

hy (x)

Here it is pointed out that the conditions on y satisfy Eq.(2-45) and the conditions
6;// _ |
on are no-slip.
oy P
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F
Selectingz//(hz):? then we havey/(hl):7. The boundary conditions in

dimensionless stream function will take the following form:

l//:%’ gy—sz, at (y =h,)

~F &
V=" WW:O a (y=h) L (2 46)
In which

h, =1+mx +bsin(2z(x —t))and
h, =—1-mx —asin(2z(x —t)+¢)

the non-dimensional expression for the average rise in pressure Ap is given as

follows:

1
9
Ap=(] &pdxdt Vo (2-47)
0

O e

2-7 Perturbation Analysis of the problem

It is clear that from the resulting equation of motion Eq. (2-35), p is independent
of y and the Eq. (2-36) is nonlinear. It seems to be impossible to obtain the general
solution in closed form for orbitary values of all parameters arising in this nonlinear
equation. We seek the solution of the problem as a power series expansion in terms

of small parameter s . (regular perturbation technique), thus we expand v, F, ¢, and
p as follows:

F=F+0F+. .
Coy = (G )o+(Cy )1+

Now substituting Eq. (2-48) back into Egs. (2-36) and (2-37), (2-44) and (2-46).
Thus we get:
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By, W00 VRO T A
(aX +58X) 8y[(é/xy)o_l_é‘(é,xy)l] (M +K )(ay +5ay )

That is
3

0 0 0 0’ o a
(€)o+ 816, ) =25+ 075 =8 (L5673 ~2KIS(S 5+ 65

_53(812/10 +58!2//1) 25(6‘% 8'//1)(8l//o+58%)+5(61//o+58%)
ox’ot ox’ot ox oy aay oy oy’

3
(al//o iy an ) - 53(51//0 al/’l)(a l//0+551//1)_5(8l//0+58l//1)(5 Yo

8X8y2 axay 8y ' 3 3 ay3
a1/11)4_53(8'//0_|_5al//1)( al//o +95 al/’l ) 253(81//0 alrlll)(al//o
Xy ox‘oy ox* ox oy
o° Vi
+5 S (2-49)
Ox 0y

Now, collecting the coefficient of like power of &, thus one can get the zeroth and
first order equations as:

2-7-1 Zero's- order system (5©)

®_0 0 _
> _ay(;xy)O R e (2-50)
where N 2*=(M?+k?);

8‘”0 ......... 2-51
(Cy )o ay (2-51)

Differentiating eq. (2-50) with respect to y implies to:

__2 _ 282‘//0
0_8y2(§xy)0 Nl ayz

Which can be written as:

o* o’
o-2Cty w0
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With the corresponding boundary conditions:

_i o,

Vo= 2" oy =0, at(y:hz)
F,
1//0:70,%:0, at(y=h) . (2-53)

2-7-2 First order system (s®)

P _ 0 N2 ]
= (gx ), =N, ~ vorn.(2-54)
3 3 2
Gy 1= 2 & A 2K [ 6‘/’02—6'/’0 a‘/’; 2.0, Yoy (2-55)

63/ oy oxoy® oOx oy oXoy oy?
leferentlatmg eq. (2-54) with respect to y, we have:
2 A2 3 3 2

0 28% leawzl_ZK 82[8% 01/102_8%89//30 2@%8%] ....... (2-56)

oy oy oy° oy oxoy° ox oy oxoy oy’
The corresponding boundary conditions are :

F 0
h=B 20 a(y -n)
z//lz_TFl,%:O,at(y:hl) ......... (2-57)

2-8 Solution of the Problem

In this section we have given the solution of the zero and first order systems:

2-8-1 Solution for the zeroth order system (s©)

It is found that the solution of equation (2-52) under the associated boundary
condition (2-53) is given by:

¥, =nzenlyaﬁnze_nlyaz+a3 +a,y (2-58)
N 2
where(n, =—=:n, =—);
( 1 ﬁ 2 NlZ)

a ,(i —=1,2,3,4) are constants can be obtained by using the boundary conditions in
Eq.(2-53).
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2-8-2 Solution of the first order system (s®)

If we solve the equation (2-56) under the associated boundary conditions (2-57)
we can find the solution of the first order system as follows:

enly e_nly n
_ Yy 2,2 (hy+hy)n
l//l——nz C,+—5—C,+Cy+C,Y +E"™Fy n (2™ (—(h, —h,)hn, (-5+
1 1

2n,y ) +h,(23-5h,n, —=6n,y +2h.n’y —2nly +h,n,(5-2n,y)+hn (-5+2n,y)) +

h,(-23+5h.n, +6n,y —2h,n’y +2n]y +h,n,(5-2ny)+hn (-5+2ny))+e°™"

(=hg(=2+h,n, —h,n)(-5+2n,y ) +h,(-13+2n,y +2n°y *+h.n,(5-2n,y))+h,

(33—5h.n, —10n,y +2h.n’y +2n]y * +2h,n,(5-2n,y )+ 2hn,(-5+2n,y )) +e>""

(=hg(2+hn, —h,n)(-5+2n,y ) +h,(-33+2n]y > +5h.,n, +10n,y —2h.n’y +

2h,n, (5-2n,y )+ 2h,n,(-5+2n,y ) +h,(13—2n,y —2n2y > +h.n,(5-2n,y )))K
(8" (=2 +h,n, —h,n,) +e*"(2—hn, —h,n,))°)

where

=-m —2arcos(2z(x —t)+¢);
h
h

=m + 2bzrcos(2z(x —1));

o N W

=bsin(2z(x —t))—asin(2z(x —t) +¢);

h6 =2bmcos(2z(x —t))—2azcos(2z(x —t) +¢);

And c,,c,,C,,C,are constants can be determinates by using the boundary conditions
in Eq. (2-57) and software of “MATHEMATICA” program.

2-9 Results and Discussion

In this section, the numerical and computational results are discussed for the
problem of peristaltic transport of an incompressible non Newtonian Walter’s-B
fluid under the effect of normal magnetic field through porous medium in a tapered
asymmetric channel with the help of using non-slip conditions. Analytical results
are shown by using regular perturbation technique for small value of wave number
o under the assumption of long wave length and low Reynolds number
approximations, and using series for stream functions, axial velocity, pressure
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gradient and mean flow rate F. The effects of some important various parameters
are displayed graphically.

2-9-1 Pumping characteristics

We plot the expression for apin Eq. (2-47) against ¢ for various values of
parameters of interest in Figs. (2-2)- (2-7). Numerical calculations for several
values of Hartmann number (M), the phase difference (4), the non- uniform
parameter of the channel (m), porosity parameter (K), the amplitudes of upper and
lower walls (a&b) have been carried out. The effect of these parameters on ap
have been evaluated numerically using “MATHEMATICA” programm and the
results are presented graphically. In fig. (2-2), the effect of Hartmann number M on
Apare seen, observed that in the pumping ap >oand the co-pumping (ap <o)for the
Walters-B fluid, an increase in M causes decreasing in the pumping ap >0 and
increasing in pumping ap <o. In Fig. (2-3), the effect of phase difference 4 onapis
showed, observed that an increase in 4 causes increasing in the co-pumping (
Ap <0) and decreasing in the pumpingap >o0. The effects of non-uniform
parameter m as well as the amplitude of lower wall of channel a are plotted
respectively in Figs.(4) and (5), it examined that an increase in m and a causes an
increase in the pumping ap >0 and decrease in the free pumping ap =0 and co-
pumping ap <o. The influence of amplitude of upper wall of channel b and
porosity parameter K on apare illustrated respectively in Figs.(6) and (7), it noticed
that there is rise up in the pumping ap >0 and free pumping ap =0 and the
pumping will be reduce in the region of Ap <owith an increase of privous
parameters.

2-9-2 Velocity distribution

Influences of geometric parameters on the velocity distribution have been
illustrated in Figs.(2-8)-(2-17), these figures are scratched at the fixed values of
x=0.3, the change in values of m on the axial velocity u is shown in fig.(2-8), it can
be found that the axial velocity u decrease with an increase in m at the center of
channel but after y=0.6, y=-0.7 of the upper and lower parts of the channel
respectively, the velocity u will be increased. Fig.(2-9) shows the influence of son

the axial velocity u, it observed that an increase in 4 causes an increase in magnitude
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of u at the core and walls of the channel opposite behavior is seen for the effect
of a on the axial velocity u, it which is plotted in .Fig.(2-10), (2-11) illustrated the
influence of b on the axial velocity u, it is examined that an increase in b results an
increase in u at the center and walls of channel , but after y=0.5, The velocity will
be reduce at the upper wall of channel. The influence of M on the axial velocity u
Is shown in Fig. (2-12), it noticed that an increase in M yield an decrease in u at the
center of channel, but the flow of fluid will be inflected after the values of y=0.4,
y=-0.5 at the upper and lower sides of the channel and so the velocity will be
increased. Similar behavior is shown for the effect of k on the axial velocity, and
its effects is plotted in figure (2-13), we can say that the reason behind this behavior
Is due to the obstruction that is obtained by the porosity parameter, also because of
resistive nature of the Lorentz force when the magnetic field of strength By is
applied in the normal direction of the flow fluid. Figure (2-14) give the impact of
volume flow rate & on the velocity, which in turn increase the amount of velocity
at all regions of flow. Conversely conduct is observed for the effect of t on the
velocity of fluid and it is noted it’s graph in figure (2-15). In figure (2-16), the
impact of perturbation parameter (&) is noticed, it is examined that the fluids flow
will be increase at center but it is decreased after y=0.6 and y=-0.6 of both sides of
channel, which can say that the velocity of fluid in the non-Newtonian case is much
more that in new case of the fluid. Like manar is showed for the effect of kK on the
axial velocity, its graph can be seen in figure (2-17).

2-9-3 Trapping phenomenon

The phenomenon of trapping is another interesting topic in peristaltic transport.
The formation of an internally circulating bolus of fluid through closed stream lines
is called trapping and this trapped bolus is pushed a head along with the peristaltic
waves. The trapping for different values of m,4,a, b, M, K and ¢ are shown in
Figs.(2-18)-(2-27). The stream lines for different values of m are shown in Fig.(2-
18), it has been noticed that the bolus decreasing in size in the lower and upper wall
of the tapered channel with increasing m. the streams for different values of 4 are
shown in fig.(2-19), it is examined that the size of bolus increase with an increase
of 4. Effect of a are shown in fig.(2-20), it is noticed that the size of bolus reduced
in the lower and upper part of channel with an increase of a, but the wobbling impact
Is shown on internal bolus. Figs. (2-21) and (2-22) shows the effects of b and &
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respectively and it is observed that the size and number of trapping bolus increase
with an increase of these parameters. The influences of M and K are plotted in
figures (2-23) and (2-24) respectively, an increase in the magnitude of these last
parameters results small size and number of bolus in both parts of channel. Opposite
behavior is noted for the effects of K and sand their graph are noticed in figs.
(2-25) and (2-26) respectively. Figure (2-27) give the behavior of parameter t on
bolus, which is showed that the bolus is unchanged in shape with an increase of t,
we can explain this case because of steady treatment.

2-10 Concluding Remark

In this chapter, we investigated the peristaltic transport of Walters —B fluid
through a porous medium in a tapered a symmetric channel under the influence of
magnetic field. The channels a symmetry is produced by choosing the peristaltic
waves train on the non- uniform walls to have different amplitudes and phases,
along-wave length and low Reynolds number approximations are adopted. A
regular perturbation method is employed to obtain the expression for stream
function, axial velocity and pressure gradient. Numerical study has been conducted
for average rise in pressure over a wave length. The effects of Hartmann number
(M), porosity parameter (k), wave amplitudes (a &b), non-uniform parameter (m)
and phase angle 4 on the pressure rise, axial velocity and stream lines are also

investigated in detail. It found that:

1. The pressure rise over a wave length ap increase with an increase of m, a in the
pumping Ap >oWwhile the situation is reversed in the free pumping ap =oand Co-
pumping Ap <0

2. The pressure rise over a wave length apincrease with an increase in b, k in the
pumping Ap >oand free pumping ap =o while the situation is reversed in the Co-
pumping Ap <0

3. The pressure rise over a wave length apincrease with an increase of M in the
pumping ap =owhile the situation is conversely in the pumpingap >0 and Co-
pumping Ap <0
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4. The pressure rise over a wave length apincrease with an increase iny in the Co-
pumping Ap <o and it's conversely in the pumping ap >o0.

5. The lines of pressure rise against mean volume rate ¢ is intersected lines.

6. The relation between pressure rise and volume flow rate ¢ is some what to be
linear by the effect of M and to be non-linear by the effect of a, m, k, b, .

7. The axial velocity u increased at all regions of flow with an increase of 4 and &
but the case is conversed with an increase of a, t.

8. The axial velocity u increase at the center of channel with an increase of 5,K.b

but the flow is reflected at the walls of channel. Opposite behavior is noted with an
increase of m, k, and M.

9. The size of trapping bolus increased with an increase of J,K and ¢but they have
small volume with an increase of m and M.

10. The number and size of bolus is rise up with an increase of b and ¢ but the
conversely statement is seen with an increase of k.
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Fig.(2-18)x :Stream lines for
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Fig.(2-19) :xStream lines for
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Fig.(2-20) :xStream lines for
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Fig.(2-21) :xStream lines for
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Fig.(2-22) :xStream lines for
m =041t = 0.5,¢=”2,a =03b=02M =16= 0.0001,? =2,K =1
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Fig.(2-23) :xStream lines for
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Fig.(2-24) :xStream lines for
m =0.4,t =0.5,¢=”2,a=0.3,b =0.2,M =0.1,5 =0.000Lk =2,0=1
(@)K =1 (b)K =4,(c)K =6
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Fig.(2-25) :Stream lines for
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Fig.(2-26) :Stream lines for
m =0.4,t :0.5,¢:”2,a:0.3,b =0.2,M =5k =2,K =1,6=1
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Fig.(2-27) :xStream lines for
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Peristaltic Transport of MHD flow of blood and heat transfer in a tapered asymmetric
channel through porous medium: effect of variable viscosity, velocity-non slip and
temperature-non slip

Introduction

Peristalsis is now well known to physiologists to be one of the major
mechanism for fluid transport in many biological systems. In the living systems
peristalsis is the mechanism to propel food stuffs through esophagus and the
vasomotion of small blood vessels. Engineers developed pumps having
industrial and physiological applications adapting the principle of peristalsis.
Also, finger and roller pumps are frequently used for pumping corrosive or very
pure materials so as to prevent direct contact of the fluid with the pumps internal
surfaces. The problem of the mechanism of peristaltic transport has attracted.
The attention of many investigators and the first investigation of Latham [61].
The fundamental studies on peristaltic transport were performed by fung and
Yih[34] using laboratory frame of reference. And then by Shapiro et al.[96]
using wave frame of references. A number of analytical, numerical and
experimental studies of peristaltic flows of different fluids have been reported
by [21, 109, 110, 104, 106, 107, 108], the peristaltic fluid flow through channels
with flexible walls has been studied by Ravi Kumar et al [86, 87].

Peristalsis is an important physiological mechanism for mixing and
transporting fluids, which is generated by a progressive wave of area contraction
or expansion moving on the wall of the tube containing fluid. The peristaltic
fluid flows involving Newtonian and non-Newtonian fluids have been studied
by [111, 72, 14, 38, 7, 39] and others. The magneto hydrodynamic (MHD) flow
of the fluid in a channel with peristalsis is of interest in connection with certain
flow problems of the movement of conductive physiological fluids e.g. The
blood and blood pump machines, and with the need for theoretical research on
the operation of peristaltic MHD compressor. Blood is regarded as a suspension
of small cells in plasma. Moreover, it is known that in blood flows in two layers,
arteries, a core layer and the plasma layer near the wall consisting of suspension
of cells in the plasma. The red blood cells, which contain iron, are magnetic in
nature, the core may be treated as magnetic field. Abd El Hakeem et al [8] has
been studied by effects of a magnetic field on trapping through peristaltic motion
for generalize Newtonian fluid in a channel. Non-linear peristaltic flow of a non-
Newtonian fluid has been studied by [51, 47]. Recently, the study of (MHD)
flow of electrically conducting fluids on peristaltic motion has become a subject
of growing interest for researchers and clinicians. This is due to the fact that such
studies are useful particularly for pumping of blood and magnetic resonance
imaging. Theoretical work of Agarwal and Anwaruddin [11] explored the effect
of magnetic field on the flow of blood in atherosclerotic vessels of blood pump
during cardiac operations AL. et al. [15] observed that an impulsive magnetic
field can be used for a therapeutic treatment of patients who have stone
fragments in their urinary tract. Many authors [23, 77] suggested the presence
of red blood cell slip at the vessel wall. Misra and Kar [70] solved the problem
of blood flow through a stenos vessel by taking into considering the slip velocity
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at the wall by using the momentum integral technique. While flowing through
the arterial tree, blood carries a large quantity of heat to different parts of the
body on the skin surface, the transfer of heat can take place by any of the four
processes: radiation, evaporation, conduction and convection. It may further be
mentioned that blood flow enhances when a man performs hard physical work
and also when the body is exposed to excessive heat environment. In case like
these, blood circulation cannot remain normal. In order to take care of the
increase in blood flow, the dimensions of the artery have to increase suitably. It
Is known that when the temperature of the surrounding-exceeds 20°% , heat
transfer takes place from the surface of the skin by the process of evaporation
through sweating and when the temperature is below 20°% , the human body
loses heat by conduction and radiation. Blood flow with radiative heat transfer
was discussed by Ogulu and Bestman [80] on the basis of a theoretical study.
The study of heat transfer analysis is an important area in connection with
peristaltic motion, which has industrial applications such as sanitary fluid
transport, blood pumps in heat lungs machine and transport of corrosive fluids
where the contact of fluid with the machinery parts is prohibited. In the above
mentioned studies fluids viscosity is assumed to be constant. There are few
attempts [24] in which the effects of variable viscosity in the peristaltic
mechanisms have been considered. These studies considered the viscosity to be
a function of space variable in the form of an exponential function. In a typical
situation must of the fluids have temperature dependent viscosity and this
properly varies significantly when large temperature difference exists. Recently,
Sinha et al. [98] have examined the peristaltic motion of (MHD) flow of blood
with variable viscosity depend on space with effect of slip conditions on the
velocity and temperature, therefore there is no attempt is available in the
literature which deals with the problem of peristaltic transport in an asymmetric
capillary blood vessel with variable viscosity and the effect of non-slip
conditions on the velocity and temperature.

So, in the present work, the aim of this chapter is to examine the peristaltic
motion of (MHD) flow of blood and heat transfer in a tapered asymmetric
channel through porous medium with variable viscosity and non-slip conditions
on the velocity and temperature. The energy equation is formulated by including
a heat source term which simulates either absorption or generation the governing
equations of motion and energy are simplified using long wave length and low
Reynolds number approximation. The nonlinear differential equation are solved
analytically by using of perturbation method for small values of Reynolds model
viscosity parameter. Series solutions for stream function, axial velocity and
pressure gradient are given by using the regular perturbation technique.
Numerical computations have been performed for the pressure rise per wave
length. The effects of the physical parameters on these distributions are
discussed and illustrated graphically through a set of figures.
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3-1 The Mathematical Model of the Problem

Let us consider the MHD flow of blood and heat transfer through a porous
medium of two —dimensional tapered a symmetric channel. We assume that
infinite wave train traveling with speed c along the non —uniform walls. We
choose a rectangular coordinate system for the channel with X along the
direction of wave propagation and parallel to the center line and y transverse to
it. The wall of the tapered a symmetric channel are given in eq. (2-1) by
fig. (2-1).

3-2 The Governing Equations of the Problem
It is well known that the second grade fluid has extra stress tensor z of the
following form: [98]

r=240 ) (3-1)
where y’(Y_) Is the viscosity function and e is the strain.
The Rivilin-Ericksen tensors are given by:

e:%[wl(vv_f] ...... (3-2)
where (w ) is the fluid velocity gradient in the Cartesian coordinates (XY)

and (W ) is the transpose of the fluid velocity gradient in the Cartesian
coordinates (x,y), they defined as:

N NN
w=| XXy X (3-3)
NN R
oxX o X o
Then
U U
x AT
o= ox SoXe (3-4)
y(ﬁ XN XN
2 ox o

Now, substituting equation (3-4) into (3-1), we get:
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LV
v oX & 0
r=2u'(Y) - _ ....(3-5)
yd. o X
2' oX o
Thus the components of stress will be:
o U
3% =2u'(Y )ﬁ
U
T =T =M (Y )(?+a?)
NV
TYY :2/,1(Y )? ..... (3'6)

3-3 Basic Equations of the Problem

In the laboratory frame, the equations governing of the two-dimensional
motion of an incompressible MHD flow of blood and heat transfer through a
porous medium with the effect of variable viscosity depend on space.

Xt G-
WL ) P i

%[,u' _)(% %:)] oB2U + pgay (T -T,) “k(YO_)LT ..... (3-8)
p(%lﬁa%;_%:) S{—E 2—( (Y)—)+

g )(%+§)}—”X_)_ ------ (3-9)
7, (S0 oV ) - 1[;;)2 af:r)zl Q@ (3-10)

in which U V) are velocity component in the direction of the laboratory frame,
(X Y), o, is the Coefficient of thermal expansion, . is variable viscosity.

In order to simplify the governing equations of motion, and temperature, we
may introduce the following dimensionless transformations as follows:
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_ _ _ _ _ _ y—
X:X_a YZY—, t:ﬂ’ u:!a V:V_! hlzi! hzzix :d P ) _ﬁ, b:a_Z,
A d A c oc d d C A, d
' _ TvE 2
MO Bl S O U B SN -LL R VY PSR
d Ty Hy A Hy Hy ko
C 2
Gl’ngal(.r)d lP IUO p, :Qod ..... (3 11)
C K k, (Ty)

In which T is the temperature of the lower wall and upper wall and £ is
source\sink parameter.

Substituting Eq. (3-11) into Egs. (3-7)- (3-10) we get:
Eq. (3-7) is transformed automatically.

From eg. (3-8):

o -+USU; V) -- jxizai—(u'(v_)%:) —[u(v)(%: %:)]—GB(?U
+pgay(T —T,)- f Iy}

S 2 S 2 S 3
(1) 2" 98—“)] oBICU + pgan (T —To)—%:y)c:u.

pC L 2—“ +c Sy %Zy—“): S22 (ﬂoﬂ(y)—)+@[uoﬂ(y)
i—‘zdlzv—x (didlgy—“)]— BZCu +pga1¢9(ro)—%§y)Cu.

N = S S () 5 5 Lo y)
(j,_g" ji;: 2‘;)] oBZCu +pga1:9(l'0)—%:y)Cu.

Thus we have after some simplification:

PRy Dy Dy G P X0 ), 0
( aX +Vay) dg 8X+ﬂ,2 (IUOIU(y) ) ay[luol'l(y)
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C,ov 1oau
G 526y)] oBZCu + pga,O(T,) - “Oé‘(y)c:u ....... (3-12)
0
Now multiplying both sides of equation (3-12) by (COI : ) We have:
C d? ou ., ou, oP 2 d? Cyod2
P e o T ay)_ ox 22 H0C 4 ox (() ) 2 C 1
1 éu d’ #-#(Y) d*

 uy )L+ vl oBZcu s pgao,) L - LetWey,
oy X &% oy C 4, N YCu K, C 4,
Thus we obtain that:

M’dd du  ou ou, P, z_ My, 0 TN
w2t - +Vay) = 20 ((y) )"‘ay[ﬂ(Y)( o ay)]

2

LA +Gr6?—dK—y(y)u.

0
Which can be written as:

RS (G+u Sy S0 == TL 426" 2 (uly) 5 + 2 Ly (6" Ss SO0 4 +Gre

oy x

K Zu(y. (3-13)
From eq. (3-9):
N —~—&N N, 0P y(Y)—
—+U — — )=+ 2= e ST,
p(6t+ e a{) Y ((Y) ) [,U(Y)(ax a{)] K.
Csav . Coov CSov AuC oP Céov, 10
A T CuTa_ Cévd——) o = ——( Ho-H ()——) ——
oy d* oy doy A O
Coov C auy wpuy)
[ﬂo#(Y)(l 17 ay)] . P IC v,
(c Sov C6 N o501 @) 1ﬂosc:@+2c:52yoi( ( )@)+i
Aot A ox Ad oy d* oy d
C58v L C auy Honuly)
[45-12(y ) (=5 T ot 7 ay)] . ===2C v
C?5ov C?% ov c25 v, Aul oP d g
bl ') __o_ -
A R B Y L Y I T 8y((y)8y)
Cdov C ouy pppu(y)
. —- 2 P2 IC v,
[,Uo,u(Y)(ﬁzla - 6’y)] .
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Thus we have after some simplification:

Cl ov v ov AuC P 2C u, 8 N. 0
—+U—+V —)=— ——=— —)+—[ 4. :
P (at ™ - ) FERe 4 3 (#(y)5 ) o [ 1. 12Cy)

Cddo C 6_u)]_ ”0'”(3')(;5\,_

22 adox  ad oy K,

LIS v N AuC P 2y D O
7 (at +U6X+V8y)— g 8y+ o ay(ﬁt()/)(3,y)+a)([/to-ﬂ(Y)-

C e Mgy tWes, (3-14)
ad 5 ox oy K,
3
Now multiplying both sides of (3-14) by (Ci ) we get:
Ho
2 3 3
%Zd (ﬂﬂjﬂﬂ,ﬂ):_a_PJer_i(ﬂ(y)@)_F%
uC ot ox oy oy Ad ACy, oy o
d* o sV ou uu(y) d?
— (0 —+ )] -& Cov .
7C 1 ox MO S ST C 1
Thus we have:
pCd d? _ov ov oV oP , O ov , O , OV
e S(—+U 4V —) =—— 4+ 252 — )+ 82— (67 =
L (8t+u8x+vay) ay+ ay(ﬂ(Y)ay)Jr ax[ﬂ(Y)( v
ou,, d?
+ =)=V u(y).
" kg
Which can be written as:
ov ov ov oP 0 ov 0 ov ou
ReS (= +U —+V —) = ——+ 2562 — )48 — pu(y) (P —=—+ =) -
R e R el L\ R L D Civsy
K252u(y)v. (3-15)
From eqg. (3-10):
o —oI 0T oT o7
—+U —+V =) =k,[—+—]+
pc”(at OX a{) 1[ax_2 3{—2] R
Caor C oT 10T 107 10T,
2 U 4CN ) =k [+ =
,Ocp(/1 o +/1U5X + q ay) 1[/12 8X2+d2 8y2]+Q°
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CoT C or _d 1T 16T 107
i v 2 =k [t
iAot A ox A day A2ox? d2aoy

cCaT ot  ar 10T 107
Z(—+u—+v =k [5—+—>—]+
o7 G ay) 7 5 dza'yz] 2

C oT oT oT 1d20T 107
P, — (U ——+V ——) =K\ [~ + 5
Aot ox oy AZdZox? dZ oy

Cor o oT. Kk 0T 0T

pCpI(gt +u v +V ay):d2 ax2+W]+Q° ..... (3-16)

1+Q,

1+Q,

[0

d 2
Multiplying both sides of (3-16) by (k—) we get
1

2 2
cdrar o, 8T)2[5282T2+6_2T2]+Q0d_
*" Ak, ot ox oy ox? oy Kk,

_T0

oC

Now since @ = T

=T T, =0T, =T =0T, +T, =0T =T,00
0
Thus we have:

cd’
Ak,

06 oo 06 %0 00 d?
,d: (I-OE‘FUTO&'FVTOE):[52TOW+TOW]+QOk—1 ...... (3'17)
Multiplying both sides of (3-21) by (Ti) we get:
0

Cd?’_ 1,d0 00 0’0 0% d? 1

00,
— T, = (—+U—+v —) =[6*—+—]+Q, —.—
I e L Ve e
2 2 2 2
o COT @0, 20 00, 250 50) Qg
YA K, g dt ox oy X2 oy? Tk,

Thus we have after some simplification:

£Cd d_,UOCp (89+u oo Y 66') _[57 6262' +i62’]+'8
L, A k, ot X oy ox? oy
Which can be written as:
2 2
Z—Xngv %):[52%+%]+ﬂ ...... (3-18)
Now, under the assumption of length (s <<1) and low Reynolds number, the
Egs. (3-13), (3-15) and (3-18) can be written as:

Re6Pr(% +Uu
ot
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O:_a_p a[ (y) W] M U +GI‘(9 k ﬂ(y)u ..... (3'19)
op

0==—"2 3-20
o (3-20)
00

O=——>+p, 3-21
ay2 ﬂ ( )

oy -0y

Introduce the stream function u ZE’V N into eq. (3-19) then we have:

p v 2 0Y
O=——"+— —=]- —+Gre . 3-22
x ay[(y)éy] #(Y)ay ﬂay+r (3-22)

3-4 Rate of VVolume Flow and Boundary Conditions

In order to discuss the results quantitatively, we assume the instantaneous
volume rate of the flow F(x, t) is periodic in (x-t), [58]

F(x,t) =@ +asin(2z(x —t)+4) +bsin@z(x —t)) .. (3—23)

In which &’ is the mean flow rate in the wave frame, F is the mean flow rate in
the laboratory frame and

= (Y ay —y(h,)—w(h
jay y =y (h,)—w(h)

hy
: F —F
Selectingy (h,) = - We have y(h,)= -

The boundary conditions in dimensionless stream function with now take the
following form:

l; (ZZI/ 0 andg=0at(y =h,)
...... (3-24)
—F [
=0and@#=0 at h,
A an at(y = )_
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In which

h, =1+mx +bsin(2z(x —t))

h, =-1-mx —asin(2z(x —t)+¢)

The non-dimensional expression for the average rise pressure ap is given in eq.
(2-47):

3-5 Reynolds Model of Viscosity

The Reynolds model of viscosity is used to describe the function of space (y)
which is defined as: [98]

py)=e™ (3-25)
Using the maclaurin series expansion the above expression can be written as:

wy)=1l-ay, fore<<z2 . (3-26)

Here o« =0 Corresponds to the constant viscosity case where «is Reynolds
model viscosity parameter.

Compensating equation (3-26) into equation (3-22) we have:

o 0 o’y oy oy
0=-a—x+5[(1—ay).y]—k2(l—ay)——l\/l25+Gr0 ...... (3'27)

oy

3-6 Perturbation Analysis of the Problem

It is clear that the resulting equation of motion Eq.(3-27) is not linear because
it contains unknown w of some powers which must be solved to yield the
desired stream function of fluid which is we have in our problem "blood" and to
yield the desired velocity profiles. Due to that non linearity it is difficult to solve
it. However, the Reynolds model viscosity parameter « is considered to be very
small, so in order to solve Eq. (3-27) with the help of boundary conditions (3-
24), we consider the perturbation technique as a power series expansion in small
parameter & and writingy , F, and P as:

Y=y, tay, +..
F=F+aF+....
p=pytap+e. (3-28)

Now substituting Eq. (3-28) into Eq. (3-27) and (3-24) we see that:
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o
OX

0=- +—[(1—

a"’] l-ay) M2 tero
oy’ 8y oy

op aaw_ @_w]_kz[a_w_ay@_w]_,\,lz@_hem

x oy Pyt Yy

op Oy Oy 81// , Y 61// 2 Oy
PDP_oV_ ] M 2= +Gré
X oy? at(y8y ay) [ay 8y]

op, tap) _Swotay) & o’ .
o = 8y3 a(y. & (W0+a¥/1)+8y (Wo+aW1))

K 2[5(% vay)-ay g(wo fay)]-M 2(5(% +ay,)+Gro.

Mo, 00 _ Yo, O Vo, gy Vi Vo Oy 20V

- +a —a(y. ay
x x oyt oyt oy? oy eyt oyl oy
+a%_ay%_a2y%]_m2(%+a%)+Gr9.

oy oy oy

3 3 3 2 2
(%+Q%):6W£+aal/j _aly. 61//0 ayal//31+81//20+a81//21)_k2[61//o
X X oy oy oy’ oy oy oy oy
_,_a%_ayaayﬂ_azy%]—M2(%+a%)+6r6’. ...... (3-29)

Thus if we collect the Coefficient of like power of &, one can gets the zeroth-
order and first-order equation as:

3-6-1 Zero's- order system (o)

3
Po _ O ”’30_Nla"”°)+Gre ....... (3-30)
OX oy oy
where N, = (k’+M?)
Differentiating eq. (3-30) with respect to y will give:
4 2
oziy“?—Nlaay‘/’; +Gr2y—9 ..(3-31)

Along with the corresponding boundary conditions:
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WO:%,%:O,at(y :hz)
F, 0
WO:TO,ﬁzo,at(y —h,) ..(3-32)

3-6-2 First order system (@)

3 3 2
%:al//l_ a‘//o_al//o_N 6W1+k2yal//o (3-33)

oy Tyt )y

Differentiable eq. (3-33) with respect to y we have:

OV TV W N VA yay W Ve (3-34
oy oy oy oy oy oy
The corresponding boundary conditions are:
W, :%,%zo,al(y =h,)
z,//lz_?':l,%lilllzo,at(y “h) (3-35)

3-7 Solution of the Problem

In this section, let us give the solution of the temperature and motion
equations:

3-7-1 Solution of temperature equation

The solution of temperature in Eq. (3-21) that satisfy the boundary conditions
(3-24) is found in the form of:

J— y2
0= > +C,y +C, 5 (3-36)

c,,C,are constants can be determinates by using the boundary conditions in
Eq.(3-24) such that:

1 .
C, = _Ehlhzﬂ’
c, 2%(h1ﬂ+h2ﬂ) ...... (3-37)
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3-7-2 Solution of motion equations

1 Solution for the zeroth order system (»©)

We substitute Eq. (3-36) into Eg. (3-31) and solve the resulting equation one can
find the solution of the zeroth order system which is:

w,=a,+ag vn,+ag"’ n,+a,y +%Gr hn,y Zﬂ-l-%Gr h,n,y 2/3—%Gr ny°g (3-38)

where (n, = Nl;nZ:Ni; a,(i=1234)

1
a,(i=1,23,4) are constants can be determinates by using the boundary
conditions in Eq. (3-32) such that:

~ 12f , +Grh’n, B —-3Grh’h,n, B +3Grh,h’n, B —Grh’n, A
12(-2e"™ +2¢"" +e"™™hn, +e"™™hn, —e"™h,n, —e""h,n)n,Grh’n,A
_ eMnagf, +Grh'n,f-3Grh/h,n,p +3Grhhin, A —Grh;n, B
2 12(-2e"™ 4+ 2e"™™ 4e"™hn, +e""hn, —e""h,n, —e""h,n)nGrhin, A

a, = é(Gf0 +3Grh,h’n, B —Grh’n,pB) +

e —e"m 1e"Mh n +e""h,n )(12f , +Grh’n, B —3Grh/ h,n, B+ 3Grhh’n, 5 -Grhln,p)
12(-2e"™ +2e"" +e"™hn, +e""hn, —e"™h,n, —e""h,n,)

1
a, = —EGrhlhznzﬂ—

@"™ +e"™)n, (12f , +Grh’n, B —3Grhh,n, B +3Grh,h n, 3 -Grhon, )
12(-2e"™ +2¢"" +e"™™hn, +e"™™hn, —e"™h,n, —e™"h,n,)

..(3-39)

2 _Solution of the first order system («®)

We substitute the expression for  into Eq. (3-34) and solve the resulting
equation one can find the solution of the first order system in the form:

y, =e "™ (—®™n,(n7(3+2ny —2n%y *)+k *(7—6n,y +2n2y ?))(12F, +Gr (h, —h,)’n, )
—e MM (n?(3-2ny —2n2y ?)+k*(7+6n,y +2n,%y ?))(12F, +Gr (h, —h,)*n,B) + 4e ™ "=*)
y ?(-12Fk ’n> +Gm,(24n2(2+h,n, —h,n,) +k ?(=h’n} + hin? —4hZn’ —4hZn’y +h’n}
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(-3h, +4y)+hn, (-36-12h,n, +3n’n} +8n,y —3n%y ) -6(12+n’y *)+h,n,

(36+8n,y +3n.y 2)))B) e ")y *(12F k °n* +Gm,(24n(2—h,n,—h,n,) +k °

(h’n’—hin’ +h’n’(3h, —4y)+4h’n’y +h,n, (-36+8ny —3n’y *)-6(12+nS’y *)+hn,
(36—12h,n, —3hn’ +8n,y +3n,’y ?))) B) +96e ™ "**)n * (=2 +h,n, —h,n, )b, —96e ")
n2(=2—hn, +h,n )b, +96e""™n*(~2+hn, —h,n, )b, —96e""n*(~2~h,n, +h,n,)b,))
fe"(=2+hn, —h,n)+e"™(2+hn,—h,n))+b,+yb,; .. (3-40)

b1, b2, b3, bs are constants can be determinates by using the boundary conditions in Eq. (3-35)
and using “MATHEMATICA” program software.

3-8 Results and Discussion

In this section, the numerical and computational results are discussed for the
problem of peristaltic transport of incompressible non-Newtonian and
electrically conducting which is consider by "blood" with variable viscosity of
space in a tapered asymmetric channel through porous medium with the effect
of heat transfer. The numerical evaluations of the analytical results which is
showed by using the perturbation technique for small values of Reynolds model
viscosity parameter under the assumption of long wave length and low Reynolds
number approximation. Some important results are displayed graphically in
figures (3-2)-(3-28).

3-8-1 Pumping Characteristic

We plot the expression for apin Eq. (2-47) against ¢’ for various values of
parameters of interesting in Figs. (3-2)- (3-10). Numerical calculations for
several values of the Hartmann number (M), the phase differencey, the non-
uniform parameter of the channel (m), the porosity parameter (K), the
amplitudes of upper and lower walls of the channel (a&b), the source/ sink
parameter ( g), Garshof number (Gr) and Reynolds model of viscosity have
been carried out. Pumping regions can be divided into three regions which are
(retrograde pumping that is described by (ap >0, & <0),co-pumping or
augmented pumping described by (ap <0, ¢ >0) and free pumping described
by (ap =0). In fig.(3-2), The effects of non-uniform parameter m on ap against
@' is seen, observed that pressure rise increase in the retrograde pumping region
and decrease in the augmented pumping. The effects of a and b on ap are seen,
observed that pressure rise behaved similar to effect of (m) and we noted
there is slightly increase on the free pumping region and their behavior are
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displayed in figures (3-3) and (3-4) respectively. Figure (3-5) illustrated the
influence of 4 on pressure rise and it is noticed that pressure rise decrease in the
retrograde pumping region and increase in the co-pumping region. The impacts
of M and K are noticed in figures (3-6) and (3-7) respectively, it is examined
that in back ward pumping region or retrograde pumping, the pumping rate
enhances with an increase of M and k while in augmented pumping region, the
pumping decrease via M and k. currents are induced in the tissue or medium by
the moving ions. This interaction serves as a basis of magnetically induced blood
flow. Figures (3-8) and (3-9) displayed the effects of parameters s and Gr
respectively, it is noticed that the pressure rise increase in the all regions of
pumping with an increase of these parameters. The impact of . on apis seenin
figure (3-10), it is observed that the pumping reduced in the case of variable
viscosity in the retrograde pumping and there is no change in pressure rise in all
regions of pumping. However, we can see small distance between the curves for
different values of . .

3-8-2 Velocity Distribution

Influences of geometric parameters on the velocity distribution have been
illustrated in Fig.(3-11)-(3-20). These figures are scratched at the fixed values
of x=0.3, t=0.5. The change in values of m on the axial velocity u is shown in
fig.(3-11), it is interesting to note that an increase in m causes an increase in the
magnitude of u at the boundaries, however, at the center of the channel the
magnitude of u gets decrease. A similar behavior is seen for the case of the
Hartmann parameter and it is projected in figure (3-12), this observation agrees
with the theory because with the increase in Hartmann number, the Lorentz force
increase, it is well known that Lorentz force opposes the flow, this implies that
if we increase the strength of magnetic field, the flow of blood will be impeded.
From figure (3-13), it appears that the velocity profile traces a parabolic path, it
increases with an increase of Reynolds parameter (. ) in the upper wall and
converse in behavior is observed at the lower part of channel. Figure (3-14),
shows that with an increase in mean volume flow rate @', the axial velocity
increases. The influence of the amplitudes of the upper wall b on the velocity is
depicted in figure (3-15) for a fixed values of other parameters it could be
observed that an increase in the value of upper amplitude b increases the
magnitude of the velocity at the center and the lower wall of channel and
decreases at the upper wall of channel. Figure (3-16) displays the effect of lower
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amplitude a of the channel, it observed that an increase in this parameter lead to
drop in value of velocity at the center and walls of channel. The axial velocity
for the phase angle 4 is shown in figure (3-17), it has been noticed that an
increase in 4 values results as rising up in the magnitude of axial velocity at the
center and lower wall of channel and hardily reduction in the upper part of
channel. A similar manner of behavior of Hartmann parameter that is the effect
of porous parameter (k), which is procure obstruction in the flow of blood, and
is plotted in the figure (3-18). The effects of Grashof- number Gr and source/sink
parameter g are illustrated in figures (3-19) and (3-20) respectively, it can be
increase at the center of channel and decrease at the walls with an increase of
these parameters. However, increase in velocity behind enhancing Grashof no.
back to fact is the decreased viscosity results in increased velocity, on the other
hand we can say that the velocity will be extended after rising up the value of g
since the manner of velocity and temperature are interdependent because the last
one is increased the temperature. With the effects of m, a, b, M, k, Grand g we
observed that for any values of these parameters, the axial velocity vanishes at
points of inflexion.

3-8-3 Trapping Phenomenon

The formation of an internally circulating bolus under certain conditions due
to splitting of some streamlines is named as trapping phenomenon. Physically
this phenomenon appears in thrombus in blood and the movement of food bolus
in the gastrointestinal tract. The trapping for different values of m, 4,a, b, M, g
, Kand ¢’ are shown in Figs.(3-21)-(3-30) at fixed values of (t=0.5). The
stream lines for different values of m are shown in Fig.(3-21), it has been noticed
that the size and number of bolus increase in the lower and upper of the tapered
channel. The stream lines for different values of 4 are shown in fig.(3-22), it is
examined that the size and number of bolus increase in the both parts of channel
with an increasing of 4. Fig.(3-23), showed the effect of parameter (a) on
trapping, it is found that the bolus decrease in number but it is increase in size
with an increase of a. The influences of parameters b, Gr, g and ¢ on the
trapping are plotted in figures (3-24), (3-25), (3-26) and (3-27)respectively,
which is noticed that an increase on the values of this parameters lead to rise up
in the size and number of the trapping bolus in the walls of the channel. Figures
(3-28) and (3-29) displayed the impact of parameters M and k on trapping, which
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IS increasing in these parameters causes reduce in size and number of bolus in
the upper and lower sides of channel. The effect of Reynolds model . on
trapping is shown in figure (3-30), it is showed that an increase in this parameter
yields decreasing in the number and size of circulation bolus in the walls of
channel, in this case we can say that the bolus in the case of constant viscosity
Is bigger than variable viscosity.

3-8-4 Temperature Characteristics

The expressions for temperature are given by Eq.(3-36). To explicitly see the
effects of various parameters on temperature for fixed values of (x=0.3, t=0.5),
eg. (3-36) has been solved by exact solution and the results of these parameters
presented graphically by using “MATHEMATICA” program and illustrated in
fig. (3-31)- (3-35). Figure (3-31) emphasizes that as heat generates during blood
flow in arterioles, there is a significant rise in thickness of the boundary layer
enhanced by appreciable extend. It is also noticed from this figure that the
maximum value of temperature attains in the central and walls of the of the
channel. Further it can be noticed that the increase of m, 4 lead to similar
behavior of effect s on temperature and showed it in figs.(3-32) and (3-33)
respectively. Fig.(3-34) display the influence of parameter (a) on temperature
profile, it is examined that an increase in a causes conversely behavior as the
effect of above parameters. The effect of b on temperature is plotted in Fig.(3-
35), we note that an increasing in b causes similar behavior as the effect of a on
temperature. In all figures of temperature profile the curves are parabolic.

3-9 Concluding Remarks

In this chapter, we investigated the peristaltic transport of electrically conducting
fluid which is considered by 'blood" through porous medium in the tapered
asymmetric channel under the effect of magnetic fields and heat transfer by
using variable viscosity, velocity non slip conditions. The channel asymmetry is
produced by choosing the peristaltic waves drain on the non-uniform walls to
have different amplitudes and phases. Along wave length and low Reynolds
number approximations are adopted. A regular perturbation method for small
values of Reynolds model viscosity parameter is employed to obtain the
expression for stream function, axial velocity and pressure rise . numerical study
has been conduct for average rise in pressure over a wave length. The effects of
Hartmann number (M), porosity parameter (K), wave amplitudes (a& b),
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channel non-uniform parameter (m), phase difference 4 and source/sink
parameter g are also investigated in details, it found that :

1.

The pressure rise apincrease in the pumping (ap >0, & <0) with an
increase of m, a, b, M, k, s and Gr and decrease with an increase of 4,«
The pressure rise apincrease in the pumping (ap <0, >0) with an
increase of Gr, ¢, pand decrease with an increase of m, a, b, k, M.

The pressure rise apincrease in the pumping (ap =0) with an increase of
m, a, g and Gr and decreasing with an increase of M, k.

The relation between mean flow rate ' and apis linear in the case of
increasing of Gr and in g and it is seen nonlinear in the case of rising
values of M, k, m,aand b, ¢, «.

It is observed that the curves pumping is intersected at different points by
increasing of M, k, m, a, b, «and¢ and they are parallel curves in the
sense of enhancing value of gand Gr.

At the center and walls of channels (upper and lower parts), we found that
axial velocity increase in magnitude with an increase of 4 , b, Gr, g, ¢
and decrease with an increase of m, a, M, k

The effect of Reynolds model .. has oscillating influence on the velocity
at the upper and lower parts of channel.

Velocity profiles have inflexion points at the upper and lower parts of
channel at different values of increasing of m, a, b, M, Gr, g and k, ~ .
Velocity profiles at most are parabolic and symmetric with an increasing
of m, M, Gr, g and ¢,« k.

10. The temperature profile increases with an increase of m, ¢, g while the

temperature decrease with an increase of a, b.

11. The curves of temperature profiles at all figures are parabolic.
12.The size and number of the trapped bolus increase with an increase of

#, 3,0 , b, Gr decrease with an increase of m, M, Kk, « .

13. The influence of a on trapping bolus is wobbling that is these bolus

decrease in number with an increase of a but its size be extended.
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Effect of inclined magnetic field on peristaltic flow of Williamson fluid through porous
medium in an inclined tapered a symmetric channel

Introduction

Peristaltic is well known mechanism for pumping biological and industrial
fluids. Even though it is observed in living systems for many centuries, the
mathematical modeling of peristaltic transport has begun with important works
by fung and Yih[35] using laboratory frame of reference. Many of the
contributors to the area of peristaltic pumping have either followed Shapiro, [95]
or fung, [33]. Most of the studies on peristaltic flow deal with Newtonian fluids.
The complex rheology of biological fluids has motivated investigations
involving different non Newtonian fluids. Peristaltic flow of non Newtonian
fluids. Peristaltic flow of Non Newtonian fluids in a tube was first studies by
Raju and Devanathan [82]. Ravi Kumar et al. [87] studied the unsteady
peristaltic pumping in a finite length tube with permeable wall. Y. V. K. Ravi
Kumar et. al. [88] studied the peristaltic pumping of a magneto hydrodynamic
casson fluid in an inclined channel. Ravi Kumar et.al. [89] Studied the peristaltic
pumping of a Jeffrey fluid under the effect of a magnetic field in an inclined
channel. Mekheimer[64].studied the peristaltic transport of MHD flow in an
inclined planner channel. Hayat et.al. [46] extended the idea of Elshehawey et.
al. [30] for partial slip condition. Srinivas et al. [101] studied the peristaltic
transport in an asymmetric channel with heat transfer. Srinivas et al. [103]
studied the non-linear peristaltic transport in an inclined asymmetric channel.
Vajravelu et al. [111] analyzed peristaltic transport of a casson fluid in contact
with a Newtonian fluid in circular tube with permeable wall. Nadeem and Akram
[75] discussed peristaltic flow of a Williamson fluid in an asymmetric channel.
It is observed that most of the physiological fluids for example, blood cannot be
described by Newtonian model. Hence, several non Newtonian models are being
proposed by various researchers to investigate the flow behavior in
Physiological system of a living body. Among them Williamson model is
expected to explain most of the features of a physiological fluid. Moreover, this
model is nonlinear and Newtonian fluid model may be deduced as a special case
of this model.

In this chapter, we will present the peristaltic motion of MHD flow and heat
transfer of Williamson fluid in an inclined tapered asymmetric channel through
porous medium with the effects of non-slip conditions. By using the perturbation
technique for small values of weissenberg number, the nonlinear governing
equations are solved under long wave length and low Reynolds number
assumption. The stream function, temperature distribution, coefficient of heat
transfer, frictional forces at the walls of channel, pressure gradient and pressure
rise are calculated. Effect of involved parameters on the flow characteristics
have been plotted and examined.
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4-1 The Mathematical Model of the Problem

Let us consider the MHD flow and heat transfer of Williamson fluid through
a porous medium of two —dimensional inclined tapered a symmetric channel.
We assume that infinite wave train traveling with velocity ¢ along the non —
uniform walls. We choose a rectangular coordinate system for the channel with
X along the direction of wave propagation and parallel to the center line and Y

transverse to it. The wall of the tapered a symmetric channel are given in fig.
(4-1) by the eq. (2-1).

Fig. (4-1): physical structure of the problem

4-2 The Governing Equations

The constitutive equations for a Williamson fluid is given by: [75]

e T Y (4-1)

where 7is the extra stress tensor, ., is the infinite shear rate viscosity, 4, is the

zero shear rate viscosity, I"is the time constant and y is defined as :

y =\/EiZJZYij Yiji = EH ...... 4-2)
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Herel] is the second invariant strain tensor, which is given by [1=Tr(A?)
where

A=W +W) (4-3)
We consider the constitutive equation (4-3), the case for which »_ =0 and

I'y <1.Thus, the component of extra stress tensor therefore can be written as

r=-p[Q-Ty) ly =-p[@+TY)YY (4-4)
The above model is reduced to the Newtonian model ifT"=0.

Let Vv =(u,v) be the velocity vector in the Cartesian coordinates in the two-
dimension(X,Y ).

The strain is defined by:

a1l a
A v X 2° X
e:%[(W)Jr(W)T]: o ey (4-5)
1.0 oV oY
S =
2 o oX oY
The shear strain is defined by:
U VY2
~ 2— -+ ——
y=2e=| _OX o X (4-6)
A o/ o/
—t+—= 2—
oY X oY
L] 1 ZT.

( 2_32 L] ° [ ] [ ]
y) _zizz‘i(yilyli +Yi2Yai)

1 [ ] [ ] L] [ ] [ ] L] L] L]
:E((y11y11+y12y WF Y uYntYnYn)

- %((; 11)2 + (); 12)2 + 0; 12)2 + 0; 22)2)

= (V)27 + (V)
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_1 6LT 2 (’17 a/_ 2 1 6‘/_ 2
_5(4)(ax_) +H(=+=) +§(4)(?)

& oX

AU, U W, N
_Z(ax_) +(a{_+ax_) +2(a{_)
A, N A0
= 2((—ax—) +(8{_) )+(_8{_ +—ax—)

Hence, we have:

>/T=\/2((§U7:)2 +(%:)2)+(%:+?7:)2 ------ (4-7)
3% = 24, [(A+ ryT)SUT: ..... (4-7a)
XV = -,uo[(1+FyT).(%:+2\/7:) ..... (4-7Db)
v = -,uo[(1+FyT).2%: ..... (4-7c)

4-3 Calculation of Lorentz Force [59]

To calculate the Lorentz force (3 xB), we will apply a magnetic field in the
XY -direction. The effect of this force on the fluid flow, will be analyzed. Now,
apply magnetic field in XY -direction (B,sine,B,cose;,0) and to calculate
Lorentz force we start with:

e, e, e,
VxB= U vV 0[=B,U cose, -V sina)e, . (4-8a)
B,sina;, B,cose; O
Let J =0 xB)=0B,(U cose, -V sina)e, ... (4-8b)
Then by Ohm’s law one has:
€, €, e,
JxB=| 0 0 oB,(U cose, -V sina,)
B,sing, B,cosa, 0

=-0B; cose; (U cosa, -V sing)e; + 0B sing, (U cose, -V sina,)e;
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Where (g, .e;.e,) are the unit vectors, J is the induced current density. We

observed that the effect of magnetic field is appear on the flow in the XY -
direction due to the inclination angle «,of magnetic field.

4-4 Basic Equations of the Problem

The basic equations governing the non Newtonian incompressible
Williamson fluid under the effect of MHD flow and heat transfer in the inclined

direction through porous medium in the laboratory frame (X,Y )
The continuity equation is given by:

U v
-t —

— =0 (4-9)

R

The momentum equations are:

—au P - o -
( — +U Y &1)2—6 a—txx —-—=tx
6X oY oX oX
—~oBZcos ,B(U COS ,B—V sin ) — foyg - -pgsine L (4-10)
Ko
_ A 5 ) )
p( _+U N a\/_)=—a— a—tXY — a—tYT
8X oY o oX
+aB§sinﬂ(Jcosﬂ—v_sinﬁ)—k—°\7+pg cosa. (4-11)
0
The temperature equation is given by:
T —aT —aT T o U N
—+U —— 4V =) =k [———+ —==]+2u,[(—=)* + (—=)?]+
pCp(ﬁt ox PY ) 1[5()( )2 o )2] ,uo[(ax ) (8{ )1+ 1,
U 2 207 VAR 2, My iry\2
—+—)"+0B cos -V sin +=y)) L 4-12
(a{ v ) o U cos s B) |(O(U) (4-12)

Where U is the axial velocity, v is transverse velocity, Y is transverse
coordinates, «is the inclination angle of channel, g is the inclination angle of
magnetic field.

4-5 Method of Solution of the Problem

In order to simplify the governing equations of motion, temperature, we may
introduce the following dimensionless transformation:
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Ec=ﬁ, txxzﬂiocfx, txyzﬂd—oct'y, tyyzﬂd—oct'y, ,7:%1;/;9:—;9,
3;:(2—y7,We=1;—C,Fr=;—;,Br=PrEc ...... (4-13)

Where T, is the temperature of the upper wall, T, is the temperature of the lower
wall, we is Deisenberg number.

Substituting (4-13) into equations (4-9)-(4-12) we get:
Eq. (4-9) is transformed automatically.

From eq. (4-10) we have:

U —adU —aU oP 0 - o - ) — —
—+U —+V —)=————txx ——txy —oB; cos cos -V sin
P VY ) o Y T oBecoshU cosp 2

—ﬂU—pgsina

kO
2

oM oy E M s E N =—C—’2‘08—P—%ﬂtxx —“0(2: itxy —oB,Cos
A ot A OX d oy d2 ox A% ox d? oy

(Cucosp—-Covsinp) —f—"Cu — pgsina.
0

2 2 2
pCi Clydu CFouy Cupd Cup 0y HC Oy _ piop
Aot A ox A oy d® ox A ox d® oy
(Cucosg—-Covsinp) —f—OCu — pgsina.
0

C? ou ou ou Cu,oP Cu, 0 ulC 0
~(=—+U—+v —)=—"L0— 200 ¢t O~ t 5B, Cos
P G M V)T T o 4 4T gy O Cosh
(Cucosg—-Covsinp) —%Cu -pgsine. L. (4-14)
0
2
Multiplying both sides of eq. (4-14) by (COI ) we obtain:
Ho

2 2 2
A & & @):_@_%Litxx_c_ﬁz‘od_itxy
Cu, 0t ox oy ox A2 Cpup, oX d2 Cu, oy

CZ
7
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) d2 ) ,uo d2 - 2
—oB,Cos S (Cucos f—-Cov sin f) ——Cu ——— pg sina :
C 4y ko Cuy Hy
2
pedd vy 8_u):_£_52i . —itXy —oB,Cos d° ey cos B+
u Aot ox oy’ x o ox oy C 14,
2 2 2
oB,°Cos BI—c v sin gy~ 4 u ~ 299 gin g,
C Ko Hy
242 292
Reﬁ(a—u+ua—u+va—u):—a—P—§2ixx—itxy—aBod coszﬁu+o-l3(’oI cos
ot OX oy OX OX oy oy Uy
2 2
sin Sov —d—u—pgd sina.
Ko C 14,
That is
Re5(8—u+u6—u+va—u)=—@—§2it _ 94 —M ?cos® fu +M ?cos Bsin B
ot ox oy’ ox  oax X ooy ™
~K % +7nsina.
Which can be written as
Red(a—u+ua—u+va—u):—ﬁ—5Zi _ % —(M ?cos® B+K *u +M *cos 5
ot ox oy oX ox oy ¥
sin pov +nsine. (4-15)
From eg. (4-11) we have:
p(a/_ +U —— V—a/_):_ag_ i — a—t_W+GBZSin,B(U_COSﬂ—V_Sin,B)
a X o o ’
~ oy pg cosa.
kO
2
pCLN Y oq CNy_ CHP pC Oy MC Oy - g
A7 at 27 x 1 oy d® oy ad ax ¥ d? oy
sin #(Cu cos f—C ov sinﬂ)—%C&v + pg COS .
0
2 2 2
oGV Cd v CTd vy Chm@P uC 0 HC O, | oo
Aot AP X A Aoy d® oy Ad ox d? oy

sin #(Cu cos f—C dv sin ) —%Cﬁv + pg COSx .

0
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2 2 2
Cdov Cd ov Cd vy CAgdP uC 0, uC 0, | po

—+Z—u—+ —
a2 2y d° oy ad ox ¥ dZoy ™

sin S(Cu cos f—C ov sin f5) —%C&v + pg COSx .

0

cd v v v, CluoP ul o, ul

— fU—4V —) =TT ¢ —t,, +oBZsin Scos
P G N )T AT oy ad v dz gy v oBesinfeesp
Cu —aBﬁsinzﬁC&/)—%Cﬁv +pgcose. (4-16)

0

3
Now, multiplying both sides of (4-16) by (Cdi ) we get:

Ho

2 3 3 3
L0 O N o N P Cup & 0 Cup 8 0
A2 ACu, ot ox oy oy Ad AC p, Ox d? CAu, dy
3 3 3

+oBZsin Scos SCu —oB/Zsin? fC &v — uC v + pg COS
0B, sin fcos fC C Au, 0B, pC C Au, Ky C 1, rY 2
d3
CApy

3 2 24 2
’DCdd—3ﬂJruﬂwﬂ):—@—d—zitX —d—ityy+GBOd d—sinﬂcosﬂu—
u Aot ax oyl oy APox M Aoy A

2.1 2 2 2
oB,d d—5vsin2,6’—d—d— +pgd d—COSa
Hy A ko A Cuy 4
That is:
Re53(ﬂ+u N v Q)z—a—P—ézitx —5ityy +M ?5sin Scos pfu —M 25°
ot ooax oyl oy o oox Y oy
sin® Bv—k25% —ndcosa.
Which can be written by the form:
Re53(ﬂ+u N v ﬂ) :—ﬁ—ﬁzitXy —5ityy +M ?5sin fcos fu — (M 2
ot ox oy oy OX oy
sin® B+k*)ov —nscosee. (4-17)

From eq. (4-12):

oT —~aoT T, 0T 07T o, N
pCp( o +U X +V 8{_)—kl[a(x—)z +8(Y_)2]+2H0[(F) +(3{_) 1+ 14

o
- —

Y

)2 +oBZ(U cos B -V sin f)? +%(J)2_

o))
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C aT 10T 10T 10T 167 C?, au
C (-—+CU=—+C & =—) =K, [ 5 — + ]+ 2u,(= (=—)* +
Gt T T d oy Mgt e EG)

C25% ,ov ., Coov Cauy, ) .U
— it R B2(Cu cos B —C &v sin +20C 2,
E (ay))+”°(/1@x+day)+a o B B) .

cor C oT 1 oT 1d%0T 107 C?  ou
P, (——+—u—+C == )_kl[?d_zy+d_28y2]+2ﬂo(7(a_x

d V—)= )2+
ot A4 ox o Aad oy
c2d? v Cddav Cau,,

(X)) + 4 ( 5)

v 9 = - +oB2(C2?%cos? B—2C %6uv cos Bsin B+
d2 22 ay lzd ax o 0( ﬁ ﬂ ﬂ

e
d
Czéz\/zsinzﬂ+%czu2.
0

2
,OC (gal+gual+gv ai):k_é 2821-2_’_82]-2 ZIUOS ((a_u)2+(_)2)+
Paet A ax A ey dit oaxE oyt AR Sax oy
2
uC? 20V 0u

5)2 +0B(C?cos® f—20BZC *suv cos Bsin f+oB.C2 5V ?

ov

[6 1+

d? X

sin® g+ 2ec .
0

C.oT of oT, Kk
= +u +V =—1
o S Y ay) d2

;0T 9T . 2uC® Uy, OV,
ax2+ay2]+ 2 ((ax) +(8y))+
, OV aou

2
ygﬁ (0 a_x+@)2+GBSC U’ cos® f—~20BC *Suv cos fsin f+0BC 54 ?

[5

sin® g+ 2ec .
k0

Now,since H:T ull therefore 0T =(T,-T, )06 . (4-18)

1 _To

Thus we obtain:

C 00 00 06 k 0°0
pcpz((rl _TO)E +u(T, —To)&JrV (T —To)a) = d—§[520—1 —To)y+

2
C2 (52ﬂ+8_u

820 2;”0 ’ ou )2)+1u0
d OX

, OV
(Tl _TO)8y2]+ 12 ((&) +(§

—20B(C ?suv cos Bsin B+ oBC 2% *sin® B + %C U2,

0

)2 +oBZCu’cos® B

00 20, k,

C 00 , 0°0  0%0
o —(T,-T)(— +u—+v —) =
m((rl 0)(6t oX ay) d?

2u?
ax2+8y2

(I-l _To)[5 12

1+
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ou ov 8u
=)+ ( )?)+ (52 —)?+0B2Cu?cos? f—20BC?suv cos B

x' oy ox oy
sin f+oBZC 252\/Zsin2ﬂ+%C w2 (4-19)

0

2

Multiplying both sides of eq. (4-19) by (—3— ) implies to:

kl(Tl_TO)
o, STy @ Dy O (52 00 00 2
) k(I'lT)at "x Ny oy 4
d? 2 d? Zav au |,

RO S A DY AL

d? Ho~2 2 d’
——  _+Rocyri__—
kl(Tl_TO) I(0 k1(T1_T0)

6y —)?+(cBC%?cos’ B

—20B/C ?suv cos Bsin B+oB.C25% *sin® B)

Cd®uy 90 ., 90 2826’ 0’0 dZCp,uO ou
p/ik (8t OX 8y) [5 8y Y Cp k, (T, T)(((?X)
(8y)) ﬂfzg o 1_|_ )(522)\2 au) +0oB.C?(u?cos® f—28uv cos Bsin B

d° 4G, ,°C, uC’ 1
kl(rl_TO)IUOCp kOCp ky (T, -T,)

Thus we have:

+0v %sin® B)

C 2 2 2
m_dhd_(% +u%+v%):[528_02+6_92]+252 C p(( )
AR oxZ oy C(I'lT)k ox

oy 4 M ¢’ (2 Myz g2 C*® M€, . oBid®uC,
oy k, C,(T,-T,)  ox oy C,(T,-T,) k, n K,
C2

Cp(Tl_TO)

Which can be written as the form;

(U?cos® B—248uv cos Ssin B +03 2sin® B).

06 2829 0° > AUy, OV,
RePré(—+ 8_x 5) [5 8y —1+26°Ec Pr((ax) +(8y) )+EcPr

(528\/ au) +k *Ec Pru®+M 2Ec Pr(u?cos’ 8 —23uv cos #sin S+ 54 *sin® B).
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That is:

2
RePr5(—+ 2—9 ) [5269 0°0
X

oy oy *
+§u)2 +Br(k?+M ?cos® B)u® —2uvM *Brscos Bsin B+M *Brs¥ *sin’ )

2 NV o 2 OV
]255(( ) (ay))+Br(5&

o(4-20)
From eq. (4-7) we have:

- ], N, U N,

Y—\/Z((a?) +(?))+(?+6?)

Thatis:

T2_ aT 2 a\/_g 5U 6\/

(y) _2((ax_) +(a{_))+(a{_ )

2 .,C?ou,, Cou Cdov,,

(y) = ( (—) (@)) (day SIr

C2 oy = oS (e gy, S Cdd v,

— () —2/12((8)() (ay)) (d Y lzdﬁx)

C oye _pCl (Mo, Moy, C AU oV,

—= () =2 «ax) +(ay)) (OI 5 8x)

C* oy _oC% (e, CPu, vy, _
—= () —2/12((6)() (6y))+ (ay ax) ........ (4-21)
Now, multiplying both sides of eq.(4-21) by (2—22) we have:

* 2 C d? ou oA

(y) = lzcz((—) (ay)) (5+5 &)

Thus we have:

‘N2 _ o2 8_U2 QZ 0_U 2@2

(y)y =26 ((ﬁx) +(8y) )+(8y +0 ax)

which may written as:

. _ 2 8_U2 QZ 8_“ 2@2 i
(y)—\/25 ((ax) +(8y) )+(8y +6 ax) ...... (4-22)
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From eq. (4-7a):

o = 2ufA+TY) S

C *.C au
Bt = 2@+ Ty) =22

,uC 1 C KNG
=—7 =2==[1+T'y)— L.
) LA+ Ty)—

Multiplying both sides of eq. (4-23) by (—

Hy

) we obtain:

=-2[(1+r§)a—”
I'c *. ou
LA D

Thus we have:

* .. ou
t.. =-2[1+We —
o = 2( y)]ax

From eq. (4-7Db):

XV :',Uo[(1+FY)(8{— ox )

,uOC . C au ,Cd ov

q ‘/lo[(1+r)’)(d oy 78_

\a
ﬂ%

“e Cou_ Cddav
2 =-u[(L+Ty ==
Hol(L+ )(OI ~ 73

4O, e S Q2
Hold+Ty) (ay )

HC
d

528\/

Tyy =-“§—[(1+F3;)-(5 ) (4-25)

Multiplying both sides of eg. (4-25) by (-

Hy

) we get:
o0u L0V
:-[(1+Fy).(5+5 8_x)

rc *, ,ou _,0v
=‘[(1+d—Y)-(W+5 G_X)
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Thus we have:

7, ={@+We Q).(gy—”mz g"—x) ...... (4-26)
From eq. (4-7¢):
oo
T = 2u0+TY).2 5
C * Cov
“g—rw =-2y0[(1+ry)75 ...... (4-27)
Multiplying both sides of (4-27) by (—9—) we get:
Hy
ulC d v
7 =2 [A+Ty). 2L
Y JIne oy
rc *
= 28]+ —=y). 2L
[@+ r Y) &
Thus we have:
‘, :—25[(1+We3;).% o (4-28)

Now, under the assumption of long wave length (5 <<1)and low Reynolds

number, the egs. (4-15), (4-17), (4-20), (4-22), (4-24), (4-26) and (4-28) can be
written as:

op 0

Oz—a—x—arw—(M2c052ﬁ+k2)u+nsina ........ (4-29)
p
o=-% (4-30)
oy
29
0= Br(—) +Br(M *cos* g+k*u*> (4-31)
oy 2
ou
=— 4-32
Py (4-32)
r = l+wey] M (4-33)
» v
* ,ou
=-1+wevy|]— . 4-34
5y =lLswey ] (4-34)
0, =0 (4-35)
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Introducing the stream functions (u :aay—'//,v :—Z—XW) in eqgs. (4-29)- (4-34)
implies to:
0:_2_5_5% —(M 20052ﬂ+k2)gy—w+nsina ........ (4-36)
O:—i+Br( 7)? +Br(M ?cos® S +k Wy (4-37)
oy *? oy
N
y::Bf; ......... (4-38)
_ o’y Oy
=-2[1+we—4]1——— 4-39
T =2 v ] oy (4-39)
= [1+we ay_‘”]_‘f ......... (4-40)

4-6 Rate of Volume Flow and Boundary Conditions

In order to discuss the results quantitatively we assume that the instantaneous
volume rate of the flow F(x, t), is periodic in (x-t), as: [58]
F(x,t)=60+asin(z(x —-t)+¢)+bsinz(x -t)) ... (4-41)
In which ¢’is the mean flow rate in the wave frame, F is the mean flow rate in
the laboratory frame:

h,
F= judy

by

= | Ty =y v h)

hy

Selectingy (h,) :%, then implies y(h,) = %

The boundary conditions in dimensionless stream function will now take the
following form:

F 0
a;’;/ 0 and@=1at(y =h,)

_F oy 66
w=""Y _0and%=0at(y =h
6)/ ay ( 1)
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In which
h, =1+ mx +bsin(2z(x —t))
h, =—1-mx —asin(2z(x —t) +¢)

The non-dimensional expression for the average rise pressure Ap is given as in
eq. (2-47):

The frictional force F at the lower wall y =h, across the wave length is given
by:

F/= j(h (— )dx)t s (4-43)
The coeff|C|ent of heat transfer at the upper wall is given by:
Z =(h,), (6y )y:h2 ...... (4-44)

4-7 Perturbation Analysis of the Problem

It is clear that the resulting equation of motion Eq.(4-40) and equation of heat
which is expressed by the eq.(4-41) are not linear because it contains unknown
w of some powers which must be solved to yield the desired stream function of

fluid and the heat transfer of fluid. Due to that non linearity it is difficult to solve
it. Thus we use the perturbation technique to find the solution. We expand
w,F,P and @ for series of small weissenberg number, thus we write:

=y, tWey, +

F=F+WeF +...

p=p,+Wep, +

0=0,+Web +... L. (4-45)
Now substituting Eq.(4-45) into Eq. (4-36),(4-37),(4-38),(4-39) and (4-40) ,
thus we get:

op % v, .
—=—[—5+W M 2 K
> oy [8y e( ) 1- (M ?cos® B + )ay +nsina

2 2

0 0 .0
&(po +Wep1):5 ay (V/o +Wez//1)+We( (‘//o +We‘//1))] (M cos ﬁ"'K )
i(l,// +Wew,) +nsina
ay 0 1 '
8 v, % % %
—(p0 +Wep1)_ 5 ay — 0 +Weay—21+We(ay—2°+We 6y—21)2]_(M 2cos” f+K?)
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(al//0 +We a'//1) +7nsina.
oy oy

0 0 821//0 % 82W0 2 821//0 R % 2, W, s
i — 2P0 oWe 2L aWe (2202 4 aNe 02 P Z 71y2y
aX (p0+Wep1) ay[ayz + eay2+ e((ayz) + eayz 6y2 +6Ne)(ay2))]

(M %cos® B+ K 2)(81//0 +We a;y/l) +nsina.

oy
0 8 l//o al//l l//o l//oal//l 6!//1
— +Wep,) =—I] +We +We +2 e -
aX(IOO P.) o oy Y. (8y) W)ay % NV)(ay)]
oy, ov. .
M %cos? f+K? 0 yWe L) +psine. 4-46
( B ) Y y )+nsina (4-46)

Also, we have from eq. (4-37).

29 v, o\,
0= + Br Br(M 2 cos? K
pve [( —)? + Br( B+K?)( ay)

_ % +We9)+Br( O (W, +Wew))? + Br(M 2cos’ A+ K )(—((//O Wey))?

2
%% pwel o 1t Br(a Vo twe "”21)2 +Br(M *cos®* B+ K 2)(61’”O +We 6””1)2

oy ° oy’ oy ° oy oy oy
0%6), 0 9 RV
2

0=

o:

o) 4 e ay‘”o zy‘/’uwe) (‘Zy‘/’l) 1+ Br(M 2 cos’ 3

Woyz | aye Vo V4 L T 4-47
+K)[(ay) eayay+W)(ay)] (4-47)

Now, collecting the coefficient of like powers of We, thus one can gets the zeroth
and first order equations as:

4-7-1 Zero's- order system we©)

ap—oz 0 (6 WO) N aﬁ+7]5|n05
x oy oy’
where N, =(M *cos® f+k?) ..(4-48)

Differentiating eq. (4-53) with respect to y we have:
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which can be written as:

3"y, Oy,
0= -N— L 4-50
(8y4) Y (4-50)

Also we have:

— 8290

2

0

"Wy y2 Wy 2
B +BN,(—)" . 4-51
+ Ir(ayz) r (ay) (4-51)

Along with the corresponding boundary conditions:

4-7-2 First order system e®)

o0 _ 9 vy, OV N 4-53
8X ay ayz +(ay2) 1ay ( )
Differentiable eq. (4-58) with respect to y we have:

0% & 0* 0°
0= 7 G+ (NN w859
Also we have:
2 2 2
0= 0 921+ZBI’(8 '//20 0 l/jzl)+ZBl’N 1(8W0 %) ....... (4-55)
oy oy“ oy oy oy

The corresponding boundary conditions are :

vi=1, Y _0 g-0 at(y =h,)

L2 oy
-F oy, 006,
:—’—:0’—:0 at :h ...... 4'56
4 5 '3 oy (y 1) ( )

4-8 solution of the problem

4-8-1 Solution for the zeroth order system (we)

We solve Eq. (4-50) and we can find the solution of the zeroth order system
which is:

vo=a,+ae n,+ae™n,+ay; L. (4-57)
where(n, =N ,;n, :i);
Nl
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Also, if we solve the equation (4-51), we can obtain the solution of temperature
of the zeroth order system which is:

0, = 2a,a,Bre ™ n,n, - 2aa,Bre™ nn, —%azzBre W n’n? -%afBreZ"lynfnz2 -
%afBr n12 y2 +Cp +YCy;
a,(i =1234) and C,,(j =1,2)are constants can be obtained by using the

boundary conditions in Eq.(4-52) that is:

p— fo ,
- (e i (=2+hn, —hyn,) +e P (2+hn, —h,n))n, |

(hy+hy)n
e \mtha 1f0

&

T €""(-2+hn, —h,n,)+e"™(2+hn, —h,n))n, |
) "™ +e"™™)f (h, +h,)n, .
2(e"™™ (-2+hn, —h,n,) +e""(2+hn, —h,n,))’

N "™ +e"m )fo(t]ln+ h)n, :

€™ (-2+hn, —h,n,) +e""(2+hn, —h,n,))

8

1 2 2 ~(hy+hy)n (hy+2hy)n (2h,+h,)n
Cl=§(2+a4 Brh,(-2h, + h,)n,;” —4a,Bre """ n, (-ae ™ "™ +ae " ™h,n,

+a,(e™™ +e"™™h,n ))n, +a’Bre?"

-2h;n 2.
e "h,n)n;;

"n2n? —2a’Bre”™™h,n’n’ +a’Bm e "™ + 2

c, =Bre?""n’(a%”""h, +2a,e"" (a, +ae*"™)n, - (a,> —a,e ""™)n;n,?);

4-8-2 Solution of the first order system we®)

If we solve the equation (4-54) we can find the solution of the first order
system which is:

-2ny 2,42 2,4ny 4 2 ny 2ny
- " (a;nn, +ae"™n'n,-3%™ (€™b,+b,))

3n/
Also, if we solve the equation (4-55) we can find the solution of temperature of
the first order system which is:

W, = +b, +yb,; ....(4-59)

1 34 -3n
_ -3ny 25,3 343Ny 45,43 2ny 3
491——9—Br (4a,e "™ n’n; +4a,e”™ n’n, +3a,e "' nn,(-3p, +aa,n,;n,)—3a,
1

€ n r]1nZ (_3b2 + a2a4nfn2) - 69 " (3a4b1 + a:lnlznz (3)4 - 2a1a2nfn22)) + 6e o (3a4b2
+a2n12n2(3b4 - 2a1a2n13n22)) - 9a4b4n13y2) +C; +yC,
b,,(i =1,2,3,4) andC,,(j =3,4)are constants can be determinates by using the
boundary conditions in Eq.(4-56).
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4-8-3 Solution of the heat transfer coefficient z(x)

If we solve the equation (4-44), we obtain the solution of heat transfer
coefficient z(x) at the upper wally =h,, which is:

1 _
Z(x)= 3* W (3C,e°™ —4a,’Br n’nive —aZBre™ n’n,?(-3-2a,nwe +4age"’

nZnwe)+2a,Bre™ nn,(-3a,e™ n, + (30, —30,e™ n, +2a%e* n'nl)we) +e*"
(4a’Bre*™ n’nive +a’Bre*™ n’n?)(-3+ 2a,nwe —6a,Bre*™ n,n, (a,n, +be"™we
+b,nwe) - 3(-C e™we +a,’Bre"'n’y +2a,Brwe (b, +be’™ +b,e"™ nly))))

(m+2bzcosr(t -x);, L (4-61)

4-9 Results and Discussion

In this section, the numerical and computational results are discussed for the
problem of peristaltic transport of incompressible Non Newtonian Williamson
fluid under the effect of inclined magnetic field through porous medium in an
inclined tapered asymmetric channel with help of using heat transfer and non-
slip conditions. The numerical evaluations of the analytical results which is
showed by using the perturbation technique for small values of wiessenberg
number under the assumption of long wave length and low Reynolds number
approximation. The effect of some important parameters are displayed
graphically.

4-9-1 Pumping Characteristic

Figure (4-2)-(4-5) shows the variation of Ap against time mean flow rate&’.
The whole region is considered into five parts (1) peristaltic pumping region
where (Ap >0, 8 >0), (2) augmented pumping (co-pumping ) region where
(Ap <0, & >0),(3)when (Ap >0, & <0) , then it is retrograde pumping region.
There is a co-pumping region where (Ap <0, & <0). (5) (Ap =0) Corresponds to
the free pumping region. The expression for Ap via ¢'is showed in eq. (2-47).
The effects of sundry parameters on Ap have been evaluated numerically using
(MATHIMATICA) program and the results are presented graphically impact of
Hartmann number (M), the inclination angle of channel («), inclination of

magnetic field B and the parameter (r7) have been come out. Figure (4-2) shows
the impact of M on pressure rise Ap, it can be seen from the graph that in the
retrograde region of pumping (Ap >0, &' <0). The pumping rate increase and
the case is conversed in the co-pumping (Ap <0, & >0) and free pumping as
well as when 6" € (-2,0) . Figure (4-3) displayed the effect of g on pressure rise,

it is noticed that the greater influence of g is showed in the augmented region
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and free region of pumping and the pumping rate is increased in these regions.
Figures (4-4) and (4-5) illustrated the effects of «and (;7) on Ap respectively, it
Is seen that the relation between pressure rise Ap and flow rate ¢'is linear and

the rate of pumping is enhanced in all regions with an increase of these
parameters.

4-9-2 Frictional force characteristic

We found the expression for frictional force F,at lower wall across one wave
length is given by eq. (4-43) against ¢ for various values of parameters of
interest in figures (4-6)-(4-14). The effects of these parameters on F,"have been
evaluated numerically using (MATHEMATICA)program and the results are
presented graphically impact of Hartmann number (M), non-uniform parameter
(m), the phase difference (¢), the porosity parameter(k), the amplitudes of upper
and lower walls of the channel (a &b), the inclination angle of the channel («),
the inclination of magnetic field () and the parameter () have been carried
out. Frictional force regions can be divided in three types which are

(F' >0, >0), (F <0, &<0)and (F =0). In fig. (4-6), the effects of non-
uniform parameter (m) on F," are seen, observed that frictional force decrease in
both of regions (F' >0, & >0)and (F, <0, # <0) increase by clear way in the
region (F' =0). Figures (4-7) and (4-8) illustrated the influence of (¢)and b
respectively, it is noticed that the frictional force in the regions (F, <0, ' <0)
and(F, =0). The effect of (a) is displayed in figure (4-9), it is observed that an
increase in this parameter lead to decreasing in frictional force in the region
(F/ >0, & >0)and it is increasing in the regions of (F, <0, & <0)and (F =0)
which has similar influence of (b) and (¢) .the effects of M and k are illustrated
in figure (4-10) and (4-11) respectively, it is noted that an increase in these

parameters lead to rise up in frictional force at the region (F'=0) and it is
reduced at the regions of (F' >0, & >0)and (F, <0, & <0) figures (4-12), (4-

13) and (4-14) displayed the effects of (77, and S) respectively and we observed
that if we increase these parameters then the frictional force increase at the

regions (F' >0, & >0) and (F, <0, & <0) decrease in the region (F =0).
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4-9-3 Velocity distribution

Influences of various parameters on the velocity distribution have been
illustrated in Fig. (4-15)- (4-20). These figures are scratched at the fixed values
of x=0.3, t=0.5. The change in values of (m and¢) on the axial velocity u is
shown in fig. (4-15), it can be found that the axial velocity u decrease at the
central line and increase at the edges of the walls and the flow of fluid is reflected
at two points which are (0.5981, 0.3765) and (-0.3194, 0.5093). Fig. (4-16)
shows the influence of (a&b)on the axial velocity u, it observed that an increase
In previous parameters causes reduce in velocity at the central line and the walls.
The effects of M and k on velocity distribution are plotted in figures (4-17), it is
noticed that an increase in these parameters lead to decrease in velocity at the
central line and increase at the ends of the walls of the channel and through this
effect of these parameters, there are two points of inflexion of flow which are
(0.513, 0.4355) and (-0.447, 0.4355). Fig.(4-18) showed the effect of S on the
axial velocity u which is noticed that its behavior is opposite of behavior of M
and k on velocity and the flow has two points of inflexion which are (0.4839,
0.4371) and (-0.434, 0.44). The impact of ¢’ , a and b are displayed in figure (4-
19), it examined that the axial velocity is increase at the center and the walls of
the channel and then taken to be decrease at the edges of the walls. Figure
(4-20) displayed the influence of perturbation parameter (We) on u it is show
that the velocity is rise up at the upper wall and decrease at the lower wall of the
channel and the flow are reversal points at the central region which is pointed at
(0.008681, 0.5594). The graphs of velocity distribution of all parameters can be
described by parabolic paths.

4-9-4 Trapping phenomenon

The trapping for different values of m,¢, a, b, M, K, 8" and g are shown in
Figs.(4-21)-(4-29) at fixed values of ( t=0.5). The stream lines and different
circulation bolus are seen for different values of parameters of interesting by
various graphs. The effect of non- uniform parameter on the trapping are shown
in fig. (4-21), it is examined that the size of trapped bolus increase but whenever
we raise the values of m more than the previous the size of bolus began to reduce
but increase in number. Fig. (4-22) shows the stream lines pattern for different
values of phase¢, we observed that the size of the trapped bolus increase by
increasing ¢ . The influence of upper and lower amplitudes of channel (a&b) as
well as the Williamson parameter (we) are shown in figures (4-23), (4-24) and
(4-25) respectively, it is found that the bolus is taken to decrease in size in both
sides of channel with an increase of these parameters. The stream lines for the
different values of Hartmann number M are plotted in fig. (4-26) for the fixed
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values of all other parameters. One could observe that the volume of the bolus
decreases along wave length. The stream lines for different values of k are shown
in fig. (4-27), it is also observed that the size and number of circulation bolus
decrease as (K) increased. Figures (4-28) and (4-29) are shown the impacts of
inclination angle of magnetic field () and the mean of the flow rate on the
pattern of the stream lines, we found that an increase in these parameters results
that the volume and number of bolus can be growing in the upper and lower
walls of the channel.

4-9-5 Temperature characteristics

The expressions for temperature of the fluid under the effect of peristaltic is
illustrated in figures. (4-30)- (4-38) for the fixed values of t=0.5. The effects of
non-uniform parameter (m) on the temperature are shown in fig. (4-30), we note
that the magnitude of temperature decrease at the center and lower wall of the
channel, but the flow is reflected at a point of inflexion in the upper wall and the
temperature will be increased. The temperature distribution for ¢ is plotted in fig

(4-31), it is seen that the temperature enhanced with an increase in¢g . Figure (4-

32) displayed the effect of a on temperature and it is observed that the
temperature is decreased at the central region and the walls, but there is
reflection in the flow at the upper wall of channel and then the temperature is
rise up at this point. The effect of parameter (b) on temperature is illustrated in
figure (4-33) which is noted that an increase in this parameter causes in the value
of temperature at the center and walls of channel. The effects of parameters M
and k are shown in figures (4-34) and (4-35) respectively, it is examined that an
increase in these parameters lead to increase in temperature distribution at the
center and walls of channel, but there is two points which the flow is conversed
at the upper wall which made the temperature will be reduced. The influence of
¢ and Br are plotted in figs. (4-36) and (4-37) respectively, it is found the
temperature will be raise up with an increase of previous parameter. Fig.(4-38)
is made to study the impact of( #) On temperature distribution, it is noticed that
the magnitude of temperature decrease at the core and the walls of channel but
at the ends of upper wall of the channel, the temperature distribution will be
taken to increase with increase in g .

4-9-6 Heat transfer coefficient

In fig. (4-39)- (4-46), the variation of heat transfer coefficient z(x) for fixed
values of (t=0.5) and for variations values of emerging parameter is analyzed.
The heat transfer is actually defines the rate of heat transfer or heat flux at the
upper wall. It is oscillatory. This is expected due to propagation of sinusoidal
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waves along the channel walls. The effect of (m) on heat transfer coefficient is
shown in figure (4-39), it is noted that the heat coefficient is decreasing with an
increase of m. figure (4-40) displayed the effect of a on z(x), which is observed
that an increase in this parameter lead to increase in heat coefficient in the
portions of 0.8<x <1 and 0.2<x<0.6 and it is decreasing in the regions of
0.6<x<0.8 and 1<x<1.2. The effects of b and &' are shown in figures (4-
41) and (4-42), we noticed that heat coefficient decrease in the portion of
0.4<x<0.8 and increase in the region of 0.8<x<1.2 with an increase of
these above parameters. The influence of M, k, Br are illustrated in figures (4-
43) and (4-44) and (4-45) respectively. It is observed that their manners is similar
to effect of (b) andé#'.In the sometime the behavior of B on heat coefficient is

opposite to behavior of M and k and it is displayed in figure (4-46).

4-9-7 Pressure gradient distribution

Effect of various parameters on the pressure gradient versus x have been
illustrated in fig. (4-47)- (4-56). These figures are scratched at the fixed values
of (t=0.5). From figure (4-47) displays the effect of parameter (m) on pressure
gradient, it is noticed that an increase in m leads to reduce in pressure gradient
in the portion of -0.4 < x < 0.4 and increase in the region 0f0.4 < x <0.8. Figure
(4-48) illustrated the effect of the parameter¢, it is observed that the pressure
gradient decrease in the region of 0<x<0.6 and rise up at the regions of
0.6<x<0.8and -0.2< x <0. The effects of (a & b) are shown in figures (4-49)
and (4-50) respectively, it is noticed that pressure increase in the region of
0 <x <0.4and decrease in the regions of -0.4<x<0 and 0.6<x <0.8. Figure
(4-51) and (4-52) illustrates the impacts of M and k on pressure gradient, it is
observed that pressure increase in the portion 0<x <0.4 and decrease in the
portions of -0.4 < x <0and 0.4 < x <0.8. The effect of S on pressure is displayed
in figure (4-53), which is behaved opposite to behavior of M on pressure. The
influence of nand « are shown in figures (4-54) and (4-55) respectively, it is
noticed that an increase in these parameters causes an increase in pressure in all
regions of flow. The effect of ¢  is plotted in fig. (4-56), it is observed that
pressure is reduced with an increase of ¢’ .

4-10 Concluding Remarks

In this chapter , we investigated the peristaltic transport of Williamson fluid
under the influence of inclined magnetic field through porous medium as well
as effects of non-slip conditions and heat transfer are considered in an inclined
tapered asymmetric channel. Along wave length and low Reynolds number
approximations are adopted. A regular perturbation method for small values of
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weissenberg number is employed to obtain the expression for stream function,
axial velocity, temperature and pressure rise. The effects of Hartmann number
(M), porosity parameter (k), wave amplitudes (a& b), channel non- uniform
parameter (m), phase difference (¢), inclination angle of channel («),
inclination angle of magnetic field g and others are also investigated in details,
it found that:

1. The pressure rise Ap against &'increase in the pumping (Ap >0, &' <0)
with an increase of M, nand «.

2. The pressure rise Ap against @' increase in the pumping (Ap <0, ' >0)
with an increase of g,7and o and decrease with an increase of M.

3. The pressure rise Ap against &' increase in the pumping (Ap =0) with an
increase of «,nand g and decrease with an increase of M.

4. The relation between pressure rise Ap and mean flow rate ¢'is linear with
an increase of  and « and the curves of pumping is parallel.

5. The relation between pressure rise Ap and mean flow rate 6'is nonlinear
with an increase of #and M and the curves of pumping is intersected.

6. The frictional force F,'at lower wall of channel across one wave length

against mean flow ¢'increase in the region (F' >0, & >0)with an
increase of ¢,b,n,a, fand decrease with an increase of m, a, M, k.

7. The frictional force F,'at lower wall of channel across one wave length

against mean flow @'increase in the region (F' <0, & <0)with an
increase of a,n,a, #and decrease with an increase of m, ¢, b, M, k.

8. The frictional force F,'at lower wall of channel across one wave length

against mean flow @' increase in the region (F' =0)with an increase of
m,a,M ,k and decrease with an increase of ¢,7,«, 3, b.

9. The relation between F,and mean flow rate ¢'is linear with an increase
of m,M ,k,n,«, fand the graphs are parallel curves or lines.

10.The relation between F,and mean flow rate @'is non-linear with an
increase of ¢,a,b and the graphs are intersected curves or lines.

11.The graphs of frictional force F and pressure rise Ap against mean flow
rate @' across one wave length are converse in direction.
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12.The pressure gradient ((;—P)increase in magnitude with an increase of
X

nand eand decrease with an increase of &', but the impact of other
partient parameters is oscillatory or wobbling.

13.The axial velocity increase at central region of channel with an increase
of S,0',a,b and decrease with an increase of (m,¢),(a, b) and (M, K).

14. The axial velocity is rise up at the upper wall with an increase of
(We )and decrease at the lower wall.

15.There are some inflexion points that objections the flow of fluid with an
increase of (m,¢), (M, k), Weand 2.

16. The profiles of velocity are parabolic.

17.The temperature distribution is rise up at the center region or core of the
channel with an increase of m,aand 5.

18.There are some points of deviation that change the flow of the fluid and
it’s temperature can be change as we have seen with an increase of (m, ¢
, @) by clear way at the upper wall of channel.

19.The profiles of temperature distribution are parabolic under the impact of
b, M, k, Br, gand ¢ .

20.Heat transfer coefficient z(x) at the upper wall of channel is decreasing
function of m.

21.At the region, 0.8<x <1.2, we observed that the temperature coefficient
is increased with an increase of a, b, M, k, Br, & and decrease with an
increase of 5.

22. At the region, 0.4<x<0.8, z(x) will be we increase at the increasing of
S and decrease with an increase of b, M, k, Br, ¢'.

23.The size of trapped bolus increase with an increase of ¢ and decrease with
an increase of a, We, b, M .

24.The size and number of trapped bolus increase with an increase of 9" and
S and decrease with an increase of k.

25.The influence of m on size and number of circulation bolus is an even or
irregular.
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(4-50) Effect of b on gradient.
m = 0.4t =o.5,¢=%,a=o.3,|v| =2,0'=0.1

We =O.0001,77=l,a=£,ﬂ=%,k =1,

%
dx

02 04 06

(4-52) Effect of k on gradient.
m =0.4,t =0.5,¢ = ”6 ,a=0.3b =0.2,0 =01

f/M—Z

oek=3

W670000177716177r

02 04 06 08 ?7 — 3
(4-54) Effect of 7 on gradient.

m =04,t =0.5¢ = ”6 ,a=0.3b =020 =0.1

:3700001,37/0477r M =2k =1

6'=03

(4-56) Effect of 0’ on gradient.
m =0.4,t =05,4=7(,a=03b =02,7=1,

We=0.0001,ﬁ=%,a=%,iv| —2k =1

&

25
20
15
s 10
0s M =1
00
05
04 02 00 02 04 06 0.

(4-51) Effect of M on gradient.
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Effects of inclined magnetic field and wall properties on the peristaltic transport of Jeffrey fluid
through porous medium in an inclined symmetric channel.

Introduction

Fluid transport subject to the sinusoidal waves travelling on the walls of the
channel/ tube. Motivations about the peristalsis is due to its vast occurring in
many physiological mechanisms such as passage of urine from kidney to bladder,
spermatozoa transport in the duct us efferent of the male reproductive tract, blood
circulation in the small blood vessels, food stuffs through esophagus and
alimentary canal etc. utility of such flows persuaded engineers to exploit these in
many industrial applications. These include roller finger pumps, heart lung
machines and corrosive fluids transport in nuclear industry. It is now well
established fact that most of the fluids occurring in physiology and in industry are
of non Newtonian type. Blood, bile, chyme, cosmetic products, mud at low shear
rate etc, are examples of non Newtonian fluids. There are numerous studies
available now on the peristaltic motion of viscous and non Newtonian fluids in a
planar channel (see [1, 2, 3, 4, 5, 9]) and many refs. There in. little attention has
been given to the peristalsis in an inclined channel, for example [40, 41]. The
porous medium and heat transfer effects are quite important in the biological
tissue. Especially such considerations are significant in blood flow simulation
related to tumors and muscles, drugs transport, production of osteo inductive
material, nutrients to brain cells etc. MHD peristaltic flows have acquired a lot of
credence due to their applications. The effects of MHD on the peristaltic flow of
Newtonian and non Newtonian fluids for different geometries have been
discussed by many researches ([6], [48], [65] and [100] ) with a view to
understand some practical phenomena such as blood pump machine and Magnetic
Resonance Imaging (MRI) which is used for diagnosis of brain, vascular diseases
and all the human body. In the studies ([6], [48], [65] and [100] ), the uniform
MHD has been used. There are a few attempts in which induced magnetic field is
used. They are mentioned in the works of ([26], [43], [50], and [39] ). Rathad et
al. [84] studied the influence of wall properties on MHD peristaltic transport of
dusty fluid. A new model for study the effect of wall properties on peristaltic
transport of a viscous fluid has been investigated by Mokhtar and Haroun [10],
Srnivas et al. [100] studied the effect of slip, wall properties and heat transfer on
MHD peristaltic transport. Sreenadh et al. [99] studied the effects of wall
properties and heat transfer on the peristaltic transport of food bolus through
esophagus. The purpose of this chapter is to examine the effects of heat transfer
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on the peristaltic transport of an incompressible Jeffrey fluid with constant
viscosity in an inclined non uniform planar channel under the assumptions of long
wave length and low Reynolds number and by helping of wall properties and slip
conditions inclined magnetic field is consider through porous medium. The flow
Is investigated in a wave frame of reference moving with velocity of wave. The
governing momentum and temperature is solved by exact way using
“MATHIMATICA “software program. Numerical results are obtained for stream
trapping bolus, velocity, temperature and pressure gradient and illustrated by
graph by using different parameters.

5.1 The Mathematical model of the Problem

Let us consider the inclined magnetic field and heat transfer of an
incompressible Jeffrey fluid with constant viscosity in a flexible inclined planar
channel with flexible induced by sinusoidal waves trains propagating with
constant speed C along the channel walls through a porous medium of two-
dimensional symmetric channel. We assume that infinite wave train traveling
along the non-uniform walls. We choose a rectangular coordinate system for the
channel with X along the direction of wave propagation and parallel to the center
line and Y transverse to it. The lower and upper walls of the channel have the
same temperature (To).

The wall deformation is given by
_— — . 271- — -
H(xt)=Fd +m'x +asm[7(x -ct)p L. (5.1

Where a is the amplitudes of the waves, 4 is the wave length, 2d is the width of
the channel at the inlet, m’(m’<<1)is the non-uniform parameters, X is the axial

coordinates, t is the time (see fig. (5-1)).

104



Effects of inclined magnetic field and wall properties on the peristaltic transport of Jeffrey fluid
through porous medium in an inclined symmetric channel.

Figure 5-1 Diagrammatic of the problem

5-2-1 Basic Equations of the Problem
The basic equations governing the non Newtonian incompressible Jeffrey fluid

are given by:

The continuity equation is given by:

_ _ T D 211 11 _ _
p(Q_JrU ol 6\1):_ P | _t a_Uz +6_UZ —oBZcos AU cos B-V sin p)
ot oX oY oX 1+4, 5X oY
_thyg +pgsine. (5-3)
KO
Py Ry S L o aa\/z)+aB§sinﬁ(ljcos,B—V_sinﬁ)

= +
ot oxX  of & 1+4 ox’ of

The temperature equation is given by:

oT —oT —oT T o7 ., N, YRR U
/)Cp(at- +U ax— +V W_)_kl[a(x_)z +8(Y—)2]+2:U0[(a?) +(?) ]+:u0(a?+7)
+ %Uz +oBZUcosp-V sing? L (5-5)

0

Where s is the inclination angle of magnetic field, « inclination angle of channel.
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5-2-2 Flexible wall

The governing equation of motion of the flexible wall may be expressed as: [71]

L*=P-P, (5-6)
Where L* is an operator, which is used to represent the motion of stretched
membrane with viscosity damping forces such that:

2 2
L*:—T a_2+m’aT2+C'i ...... (5'7)
oxX 1 at ot

Where z is the elastic tension in the membrane, m,'is the mass per unit area, C is
the coefficient of viscous damping forces.

Continuity of stress at Y =+H and using momentum equation, yield:

_ P ) aqy _ _
i—L*(H)Z P _ (a_Uz+a_Uz)—p(£_+U N v Q_)—JBZCOSﬂ
dX oX  1+4 oX° o ot oX B 0
(leOSﬂ—V_Sinﬂ)—%U+pg sine. (5-8)

0

5-3 Method of solution of the Problem

In order to simplify the governing equations of motion and temperature, we may
introduce the following dimensionless transformations as follows:

X Y . d U vV d?p m'A . ct a d
XZ_,y:_,gz_,uz_, VZ_) p= 1m=_at=_ abz_aRez_a
A d A c oc HAC d A d 7
2 2 IR 242
Fr=C—,Pr:'uCIO kzzd—,h:i,H:T—_To, Mzz—GBod , Br=a, =EcPr,
gd k, Ko d T, Ho
2
_Rengd _5_(0,\/__8(0 =< (5-9)
Fr cu oy OX C,T,
Substituting (5-9) into equations (5-1)-(5-8), we have:
From equation (5-3):
2 2 2
pCI G C s Coy HCP sy C U C AU e
A ot A OX d oy d° ox 1+A4 A°0ox° d°oy
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(Cucos f—Cov sin ) —%Cu + pgsina.
0
2 2 2 2 2
p(C:_a_u+C:_ua_u+C d_gv a_u):—@@_k Ho (C_za_uzd_z_F%G_UZ
Aot A ox Ad oy d® ox 1+4 A°ox°d° d°oy

)

—oB/ cos® fCu +oB/ cos Bsin AC &v —%Cu + pg sina.

0

C? ou ou

2 2
p—(—+u—+va—u):—ﬂ°?£+ ! ﬂo?(528u2+au2)
2ot ax oy d? ox 1+4 d ox
—~oB/ cos® fCu +oBZ cos Bsin ~-20Cu+pgsine -
B cos* ACU +0B c0s fsin iC o —+ i (5-10)
0
2
Multiplying both sides of (5-10) by ( d c ywe get:
Hy
2 2 2 2 2
pC_d (a—u+ua—u+v.6—u):—£+ L ,uOC23 d (528u2+au2)—o-
A uC ot ox oy ox 1+4 d? uC - ox® oy
B Zcos® ACu o +0B/ cos fsin fC & g’ ~#cu 2 + pg sina d”
’ e ’ uC Ky o ul P .,UoC
2 2
pcd d— a—u+ua—u+v.a—u):—a—P+ ! (526u2+6u2)—2802d20052ﬁu+£
My, A ot OX oy ox 1+4 ox° oy Mo Mo

2 2
BZd % cos Bsin Bév —dK—u +’Ogd sina.
0
Thus we have:
2 2
Reg(a_u_i_u a_u+v 6_U):_@+ 1 (52 ou + 0 uz)—/lzCOSZﬁU +ﬂ25003ﬂ
ot OX oy

ox 1+4, ox*? oy
sin v —Ku +nsina
which can be written as :

ou

2 2
Reé(a—u+u—+va—u):— 20U 0
ot OX oy

—+ o) + — cos” B+ K ) + 1o cos
P 1+/11( PV ayz) (u B U+ B

singv +psine (5-11)

From equation (5-4):
p(a/_ Ryay) a‘/_) __P ayz + a3/2)+ oBZsin AU cos B-V sin f)
ot oX oY & 1+ 5X o
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>~
——V — pg cos
(Vg cosa
2
pCBN o CON o5 CON,_ AUC P m COOY CEY,
A ot A ox d oy d° oy 144 A ox? d? oy
oB/sin B(Cucos B —C &v sinﬂ)—K—OCcSv — pg cosa
0
(Cﬁﬂ Cﬁ N, _C252 ﬂ)__ﬂ‘/‘oc oP | _Ho (Cﬁﬁﬂ (262\/)
P e T e d Ty T At oy 1eA AT 2
oBZsin B(Cu cos B —C &v sin ﬁ)—%c&/ — pg cosa
0
2 2 2
pCLO [ CP0 v Ciod vy ZuC P COn oY OV,
a4 xd 4y d® oy 1+4d X2 oy
oB/sin B(Cu cos B) — oBZsin® fC ov —%C&/ — pg CoS
0
2
PR A AW A l,uosC@Jr 1y (3_25(528_2\/2+82v2
7o U d® oy 1+4d ox? oy
— oBZsin® fC & —%Cé‘v —pgcosa. (5-12)
0
3
Multiplying both sides of (5-12) by (/1OI c )we get:
0
pC7%5 d? (_ Q+v—) }/Q/a e 262\/+62V)+O-BZ
A A2 et x oy 1%%@0 ox2 oyl °
. d° d? ,4/ d° ?
sin Bcos B2u ~ oBZsin? 2’V —— N ———— pg coSot ——
lﬂog/ Q/ Ko ﬂ/Q/ Au
2 2 2
peddl jov v vy P8 0y oY 0B’ d—smﬁcosﬁu
Hy A ot X 8y o 1+4 ox* oy Hy
292
_ o8, 5d5| ,Bv—— d__pgd d—COSa
Hy Ko 4 uC 4

2
Reés(%w% %)——gy—P 15%(5222\’ sy)wozésmﬂcowu Ho'S
X X

sin” v —K 25% —ndcosa.
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2
Re(f%*“éﬂ*v %):_Zy_P+1§ﬂl(52 SQVZ +2y2vz)+ﬂ0253inﬂcosﬂ“ -
X + X

(4, sin® B+K*)6N —pdcosee. L. (5-13)

From Eq. (5-5) we have:

o A,
—+—)
oxX o

oT
X

T o o ., N,
+V 8{—)=k1[?+8{—2]+2ﬂo[(8?) H?) 1+ 14

or  —~
oC —+U
P(at

+ %UZ +oB2(U cos -V sin f)?

0

coT 1T 16T 10T 167 c? ou
——+CU=—+CW =) =k [5—+—= + 20, = (=) +
o T T aay) Nl gyt Al 7 (G0
C25% ov ., CoN C sy, ty oo, o .
— )]+ ——+——)"+ ==CU"+oB (Cucosf—-Covsin p)".
E (ay)] o T ox dé’y) K. oB ( B B)
CoT C oT _d1 o 1d20T 107 C? au
——+Uu—+C =V )=k [ —+— + 24, = (—)*
A T T ad e Tl e gy e Al )
2 2
bE L ey (BLAY C Ny M 224 5B2(C 22 cos? B 2C 2y
d2 2% oy Zdox doy K,
cos Ssin B+C 254 ?sin® )

o SO .C T CoaTy K
P iAot A ox A oy d

0T Oy 2 e Xy

o
[ ox? oy’ A% T Uox oy

2
'uéi (52?+2y—u)2 + %Czu2 +oBZC u?cos® f—20B25C v cos Bsin ff+oBC?
X 0
S %sin® B.

o S, +V6T)_£5262T+82T]+2,u0 (e oy

pAat  ax oy dPT ox? ooyl AT Uox oy

2

”(‘;Cz (52?+2y—“)2+ %Czu2 +oB.C’cos’ f—20B2SC v cos fsin S+ oBC?
X 0

S5 %sin® B.

. (5-14)
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Now, since

Q:TT_TO then oT =T L. (5-15)
0

Thus we can write eq. (5-14) by:

C 00 060 00 _ﬁ ) 0’0 0%0. 2ul? au,
pcpz((.ro)a‘*'ua-o)_‘i'v(ro)a)—d2[5 (.ro)axz‘{'(.ro)ayg]"' /12 [(aX) +

2

(@)2]+£( 2 V. au) + £0.c2? + 6B C % cos? B - 26B25C v cos Bsin B +
2

oy d x oy K,

oBC 5% *sin® B.

Cory20,,99,, 00y kK o\ 00 00, 2uC® ouy, o,
5 TG+ S S = I G 3l ()
”OS (24 au) + o c2y? 4 6B 2C U2 cos? f—20B25C v cos Asin B+ oBC 2
d OX K,

o% %sin® B
...... (5-16)
Multiplying both sides (5-16) by ( (T )) we get:
1
L, 99, 0’0 %0, 2uC’ d’
©, 9 w15 1+ ()

K(r)at "y Xyt A K,

ou \, ? o d? 2OV OUy, My 2,2 d’ 2~ 2

[(a_x) (ay)] dz (K(I'))(5 8x+8y) + KoC (K 0_0))+( oB,C
oL

2L Loy Xy

u®cos’ B—20B.SC v cos Bsin B+oB.C 25% ?sin® B)(

2 2
e _d_ﬂo( %W%):[(szafﬁf
AR ot ey ox2 oy

I+ 22 C, K, (M)
2 /JOCZ& 1 2@ 6_”2 ic_p,uoc2 2
+(5)]+ < C(G))(§8x+8y)+KCp K ((T))U+ oB,C*(u’

cos® #—2uv §cos Bsin B+ 0% *sin® B)( (zr))ﬂoc
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”Cﬂ—f”;;—cﬂdz(aat—%g—f 5) 022 2;9] Z(CC:F )>“° 1Ly
(Cpccro))(uZcoszﬂ—Zuv5COSﬂsinﬂ+52vZsinzﬂ)-

RePr5(— ug 25):[5229 2;—0] +25°EC Pr[( ) (ay )?]+EcPr
(528V a .,

—)* +KZEcPru® + u,°Ec Pr(u®cos” # — 2uv §¢os Asin f + 5 2sin® )
ay 0

20 0 zae 5% 20 Ay,
RePr5(— ua—X 6y) [5 5'y] 25Br[( ) (8y)] Br(o 8X 6y)
+K?Bru® + u,"Br (u” cos ﬂ—2uv§cos/33mﬁ+52vzsm B)

.......... (5-17)

From equation (5-8):

2 2 o) 2 7 T
0 0 +m ) O —l-C'—)( )= P_ Hy (aU o°U aJ

X ax?  tal oX  1+4 X’ o & X

Ql\&

) — 0802cosﬂ(LTcosﬂ—\/_sin,B)—%LT+pg sine.
0

10 1 ¢ /Czﬁz C du C82 C?adu

o e S e Gy = D) -

A OX A% ox? A° ot A ot 1+4, 4 ox? d?oy? A ot
+Cu Cau Cﬁvga—) aBzcosﬂ(Cucosﬁ—Cﬁvsinﬂ)—ﬂCu+ gsina
7 ox doy’ 0" K, PR

3 2 3 2 2 2 2

L 10 O 8 Oy OO az C &

A AT 0X i@t@x /18X8t 1/11/1d8 d@y

ou C? ou C%d au .
—t—U—+——V —)- B cos A(Cu cos B —-C v sin Cu+ Sinc.
~ V% T 7 ) B B~ B) - K, oo

& _,C* & ,C & C .0
———+m, = +C h — (8 —+
(/13ax3 L% atlox faxat)( )= 1+ ﬂﬁdz( ox

—)- (—

i)_ C_(a_“ au
oy Tt ox

Y gy—u)—aBo2 cos” ACu + 0B cos Bsin AC o —%Cu +pgsina ...(5-18)

0

111



Effects of inclined magnetic field and wall properties on the peristaltic transport of Jeffrey fluid
through porous medium in an inclined symmetric channel.

2
Multiplying both sides of (5-18) by ( dc )ywe get:
0
2 3 2 3 2 2 2
d (—_26_3+m1,C_3 62 LC C2 0 )(d )_ 4, C d (526u2
1C A% oX AP ot%ox | AZoxot 1+4d% uC " ox
8u C d? éu g, ou d?
—)- — +U—+Vv —)—oB?cos’ BZcos
) /1 C(at o Va) OCOS'BCU;JOC+O-O B
2 2
sinﬂ ~Hocy d + pg sina
HC Ke 4L HC
—rd? &° ,C*d?> ¢° ,C d?* ¢? 282u o
Tt g ————+C'— ) (dh) = (0" = +-3)-
A” uC ox A” uC ot ox A° uC oxot 1+ /11 ox° oy
2 2.4 2 2.4 2 2 2
pgd—(a—uw N v a—u)—GBOd coszﬁu+GBOOI cos Ssin Sv —d—u + pg sina
Ay ot OX oy Hy Hy Ko HC
3 3 3 3 3 2 2 2
(_—Zd—a—3+ml'%d—f—+c 12d 0 )()_ (28u2+au2)_
2% uC ox 2B ot2ox A 144 ox? oy
'OCdd—a—u+ua—u+va—u)—aBzd cos® AU + Bozdzcosﬂsinﬂﬁv—£u+pgdzsina
My A0 X 0 0 Ko HC
...... (5-19)
Thus we can write eg. (5-20) by:
3 3 2
1
ElirEt BT )= 0 ) Rea® i X
o Potox Coxat 1+4 o2 oy’ o x dy
y COS” QU+ g cos psin v —k U +ysine L (5-20)
where
— d?  C d3 1 d3
E,=———)E,=m'=— E,=C'—>— .. (5-21)
A uC 2ou 2
and
h(x,t)=f@+mx +bsinz(x -t)) ... (5-22)

The general solution of the governing equations (5-12)-(5-21) in the general case
seems to be impossible , therefore we shall confine the analysis under the
assumption of small dimensionless wave length (5 <<1) and low Reynolds number
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approximation, thus we can write the above equations in the form of stream
function :

oP 1 o  ,00 209 i
- —u?=*cos’ f-k* L +pysine ... 5-23
X Tri oy Moy S AT g e 2

Which can be written as:

oP 1 83(p 2 2 2 8(p -
= —(yy cos” p+k °)—+npsine .. 5-24
8X 1+ﬂ1 ay3 (IUO ﬂ )ay 77 o ( )
P_o (5-25)
oy
0= 29+ BrZ 2y + Br(scos? p+k 2 22)?
oo o (5-26)
ol ok 0° 1 & 0 .
€55 +Erna +E36Xat)(h):may—gg—(,uzcoszﬂ+kZ)Wgowysma
(5-27)
The corresponding dimensionless boundary conditions are given by:
0 ol
§:$ﬂ1ay¢;1 at y:$h
0 0 0’ 1 0 0 :
(E16x3+E28t28x +E38X5t)(h)=—1+ﬂql f (yzcoszﬂ+k2)§+nsma,
at y=xh (5-28)
=0, at y=xh (5-29)

5-4 Solution of the problem

Equation (5-26) shows that p dependents on x only. Thus if we diff. equation
(5-25) with respect to y, we have the closed form solution as follows:
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_e\/myMal ef\/my\Ma

N,@+4) N+ A)
where (N, =k > +m,*;m, = y, cos j3)
a,,a,,a;,a, are constants can be obtained by using the boundary conditions
(5-28) such that:

("R L ) (L N B e e N B 2))
_(8o(E, + E,)7° cos[27z(~t +X )] —4bE ,z° sin[2z (-t +X ) +7sin &))

NG (e B2y e R N (14 2) +
(—1+e™ETYN B2 (14 1,)72);

@ Z+a,+ya,, (5-31)

"R A4 )2 NS BT A N AP A) e (1N B2 (L4 )
_(B(E,+ E,)7°cos[27(~t + X )] —4bE z° sin[2z (-t +X ) +7sin &x))
2 INL (L4 N B+ 2 ) ((L+e B2y N BT 4, +

2+e "R N A W 2) + (e NN 2 2) D))

3, =0;

8b(E, +E,) 7’ cos[277(-t +X )] —4bE 7z’ sin[2z (-t +X ) +7sina)) |
a, = . . (5-32)
1

Now, if we substitute the expression for ¢ into eq. (5-26) and solve the resulting
equation we can find the following equation solution of temperature as follows:

2a2e’ﬁ“/ﬁ ~ 2a1ex/N;1y\/1+:ﬂa _azze—z\/N;ly\/lTj
NI )" N @+ 2" 2N+ 4)

fetye, (5-33)

0= %al(_zaiazy ? _a4N 1Y 2+

aizez\/N_ﬁyﬁ
2N+ A4)

¢,,(i =1,2) are constants can be obtained by using the boundary conditions (5-29)
such that:
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C,=- L (3 +a,)e A (LN g (4eM N N e L A+
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a, I+ 4 —ae" M a g pae™WilA g (5-34)

5-5 Results and Discussion

In this section, the numerical and computational results are discussed for the
problem of an incompressible Jeffrey fluid with constant viscosity in an non-
uniform planner channel through porous medium with the effects of heat transfer
and inclined magnetic field by helping of wall properties and slip conditions on
the velocity. The numerical evaluations of the analytical results and some
important  results  displayed  graphically in  figures  (5-2)-(5-43).
(MATHEMATICA) program is used to find out numerical results and
illustrations. The analytical solutions of the momentum equations and temperature
equation are found by using long wave length and low Reynolds number. The
obtained solutions are discussed graphically under the variations of various
pertinent parameters in the present section. The graphs for the trapping bolus,
velocity distribution, temperature distribution and pressure gradient are sketching
for various physical parameters.

5-5-1 Velocity Distribution

Influence of different parameters on the velocity distribution have been
illustrated in figures (5-2)-(5-13). These figures are scratched at the fixed values
of x= (0.8), t= (0.01). Figure (5-2) displays the effect of (E,) on velocity
distribution, it is noticed that the velocity distribution increase at the central line
of channel with an increase of (E,). The effects of (E,) and (E,) on velocity
distribution are illustrated in figures (5-3) and (5-4) respectively, it observed that
an increase in these parameters lead to increase in velocity profiles which is the
same behavior of effect (E,) on velocity. It is due to the fact that less resistance is
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offered to the flow because of the wall elastance and thus velocity increase.
Figure (5-5) showed the impact of parameter (b ) on velocity distribution, it
observed that velocity increase at the core part of channel and decrease at the
edges of the walls. The influences of Hartmann number M on velocity is plotted
in figures (5-6), it is noticed that the velocity distribution decrease in the central
region and walls of channel with an increase of M, in fact it is due that magnetic
field applied in transverse direction yield resistance to fluid particles which
decreases the velocity. Figure (5-7), showed the impact of porous parameter (k)
on velocity which an increase in this parameter causes decreasing in value of
velocity, since it forms disruption in flow of fluid which less the velocity of the
fluid. The influences of 7,a,m,sandj are illustrated in figures (5-8), (5-9), (5-

10),(5-11) and (5-12) respectively, which is noticed that an increase in these
parameters lead to increase in velocity of the fluid. Figure (5-13), display the
effect of Jeffrey parameter (4) on axial velocity, it is observed that there is an

increase in velocity distribution in the central region and walls of channel with an
increase of (4,). It is possible only when there is increase in relaxation time and

decrease in retardation time, However, in this case we can say that for Newtonian
fluid (4 =0) the velocity is less than Newtonian fluid. All graphs of velocity

profiles in all of its figures can be described as parabolic.

5-5-2 Trapping Phenomenon

The effects of various parameters like E ,E,,E,,b,M,4,n«,B,mk and S on
trapping can be seen through figures (5-14)-(5-25). Figure (5-14) show that the
number and size of bolus trapping increasing in the upper and lower part of
channel with an increase of (E,). Figure (5-15) is plotted for the effect of (E,) on
trapping, it can be seen that there is a similar behavior of effect (E,) on trapping
with an increase of (E,), where as the effect of (E,) on trapping has opposite
behavior of effects of (E,) and (E,) and it is shown in figure (5-16). However we
can say that the properties of walls have oscillatory mannor. The influence of
parameter (b ) on trapping is illustrated in figure (5-17) and it is noticed that there
Is decreasing in number and size of bolus in the upper and lower parts of channel

with an increase of (b ). The impact of parameters M and k are seen in figures
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(5-18) and (5-19) respectively and it is noticed that there is decreasing in number
and size of bolus in the upper and lower parts of channel with an increase of
previous parameters. It means that the bolus size gets bigger in case of flow
through porous medium. Figure (5-20) displays the effect of parameter (4,) on

trapping and it is observed that there is increase in number and size of bolus in the
upper and lower walls of channel with an increase of (4,). That is found bolus size

Is small in the case Newtonian fluid (4 =0). The influence of parameter (;) on
trapping are shown in figure (5-21), it is observed that an increase in () lead to

increase in number of circulation bolus in the both walls of channel. From figure
(5-22), it is observed that an increase in the channel inclination angle decreases
the size of the trapped bolus. It is further noted that the effect of channel
inclination angle on the size of bolus largely, depends on the value of Grashoof
number for (+of Gr). Figure (5-23) displays the effect of magnetic field
inclination angle () on trapping, an increase in this parameter results an increase

in the size and number of trapped bolus, this is mainly due to the fact that
magnetic field inclination angle when increased results in a decrease in the
retarding effects of the Lorentz force and the applied magnetic field will be
decrease and has small influence on the flow. Figure (5-24) shows the impact of
parameter m on trapping and it is observed there is increase in size and number of
bolus in the two parts of wall of channel. The effect of parameter (3,) on trapping

1is shown in figure (5-25) and it is found that there is clear increasing of number
and size of bolus in the both sides of channel with an increase of previous
parameter.

5-5-3 Temperature characteristics

The expression for temperature are given by eq. (5-33), the effects of various
parameters on temperature for fixed values of (x= (0.8), t= (0.01)) are shown. The
eq. (5-26) has been evaluated by using software "MATHEMATICA" and the
results are presented in figures (5-26)-(5-32). As temperature is the average
kinetic energy of the particles and. Kinetic energy depends on velocity, therefore
increase in velocity by E,,E, andE, leads to temperature enhancement and they
are plotted in figures (5-26), (5-27) and (5-28) respectively. The influence of (b)
on temperature is shown in figure (5-29) which is observed, that there is
increasing in the value of temperature at the core of channel and decreasing in
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temperature at the edges of the walls with an increase of (b). Figures (5-30) and
(5-31) display the impacts of parametersM and k respectively, it is noticed that
there is decreasing in temperature profile at the central region of channel with an
increase values of these parameters. It is reveals the fact that temperature is the
average kinetic energy of the particles and kinetic energy depends upon the
velocity. The reason behind this fact is that applied magnetic field is opposing in
nature. Figure (5-32) illustrated the effect of parameter (Br) on temperature, it is
noticed that an increase in (Br) causes increase in temperature distribution, it is
due the fact that Brinkman number (Br) is the product of the Prandtl number (Pr)
and the Eckert number (Ec), which is occurs due to the viscous dissipation effects
and the temperature enhances. The effects of 7,«, fand m are shown in figures (5-
33), (5-34), (5-35), (5-36) respectively, it is noticed that an increase in these
parameters lead to increase in value of temperature. Figure (5-37) showed the
Impact of 4, on temperature, it observed that an increase in Jeffrey parameter 4,

yields a height magnitude of temperature that is we can say the temperature of
Jeffrey fluid is larger than Newtonian fluid (4 =0). The impact of slip-parameter

on velocity (,) plotted in figure (5-38), it is noticed that an increase in (4,)

results increase in temperature profiles in the center of the channel and small
decreasing in the value of temperature at the walls. It is interesting to mention that
all graphs of temperature profiles are parabolic.

5-5-4 pressure gradient distribution

Effects of various parameters on the pressure gradient have been illustrated in
figures (5-39)-(5-42). These figures are scratched at the fixed value of
t= (0.01). The effects of (E,) and (E,) are shown in figures (5-39) and (5-40)
respectively, it is observed that an increase in these parameters lead to decreasing
Iin pressure gradient, where as the greater impact is noticed near the regions of
0.2<x <0.8 . The effect of parameter (b) is plotted in figure (5-41) which is noted
that there is similar behavior of effects of (E,) and (E,) in pressure gradient.

Figure (5-42) displays the impact of E, on pressure gradient which is observed

that there is decreasing in pressure gradient at the region of 0.6<x<1 , and
increasing in pressure gradient at the region of 0<x<0.4 . It is found that the
nature of pressure gradient in all cases is oscillatory.
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5-6 Concluding Remarks

The present study deals with the combined effect of inclined magnetic field
and wall properties on the peristaltic transport of an incompressible Jeffrey fluid
with constant viscosity through porous medium of an inclined non-uniform
symmetric channel, we obtained the Exact solution of the problem under the
approximation of long wave length and low Reynolds number assumptions.
(MATHEMATICA PROGRAM) is used to find the solution of governing
equations of momentum and temperature and find The numerical results for the
streamlines, velocity, temperature and pressure gradient for different values of of
pertinent parameters, and we observed the following main findings :

1. At the upper and lower part of channel, we observed that the number and
size of trapping bolus increase with an increase of value
E,,E,, 4,7 B,m and B but the reverse rotation obtained with an increase of
E;.b.M k, .

2. The axial velocity increase at the central region of channel with an increase
of E,E,E,b,A4,na B mandBand its decrease with an increase of

M and k
3. The temperature distribution increase at the central region of channel with
an increase of E ,E,,E,b,4,na B m,Br and gand its decrease with an

increase of M,k

4. The graphs of velocity and temperature distribution noticed to be parabolic.
5. The axial pressure gradient with x increase in the regions of x €[0.2,0.8]

with an increase of E,E, andb and it is decreasing in the regions of
x €[0,0.2) and[0.8,1] with an increase of previous parameters.

6. The axial pressure gradient with x increase at the region of x <[0,0.4] with
an increase of E.and it is decreasing in the region of x [0.6,1] with an
increase of previous parameter.

The action of pressure gradient is wobbling.
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Fig.(5-4) :velocity profile for various values of Es.
t =0.0L,E, =0.3,E, =0.2,b =0.2,M =0.9,
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Fig.(5-6) :velocity profile for various values of M.
t =0.0L,E, =0.3,E, =0.2,E, =0.1,b =0.2,
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k =09, =01,x =0.8
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Fig.(5-8) :velocity profile for various values of 77
t =0.0L,E, =0.3,E, =0.2,E, =0.1,b =0.2,
M =094 =02,a="24,B="7/4m=01
k =0.9,4=01x =0.8
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Fig.(5-3) :velocity profile for various values of E.
t =0.0LE, =0.3,E, =0.1,b =0.2,M =0.9,

A =02n=La="4,B="74m=0.1,
k =09, =01x =0.8
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Fig.(5-5) :velocity profile for various values of b.
t =0.0L,E, =0.3,E, =0.2,E; =0.1,M =0.9,
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k =0.9,4 =0.1,x =0.8
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Fig.(5-7) :velocity profile for various values ofﬂ,l.
t =0.0L,E, =0.3,E, =0.2,E, =0.1,b =0.2,

M :O.Q,nzl,a:%,ﬂ:%,m =0.1,

k =0.9,8 =0.1,x =0.8
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Fig.(5-9) :velocity profile for various values of & .

t =0.0L,E, =0.3,E, =0.2,E, =0.1,b =0.2,

M =094 =02,7=14=74,m=0.1,

k =09, =0.1,x =0.8
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Fig.(5-10) :velocity profile for various values of /3 .
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Fig.(5-12) :velocity profile for various values of k .
t =0.0L,E, =0.3,E,=0.2,E, =0.1,b =0.2,
M =094 =o.2,77=1,a=%,ﬁ=77,
m =0.1,4 =0.1,x =0.8

m=0.1
m=0.2

% = %>m=0.3
Fig.(5-11) :velocity profile for various values of m .
t =0.0L,E, =0.3,E,=0.2,E, =0.1,b =0.2,
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Fig.(5-13) :velocity profile for various values of /3
t =0.0L,E, =0.3,E,=0.2,E, =0.1,b =0.2,
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Fig.(5-14) : Stream lines in the wave frame for various values of E;.
t=00LE,=02E,=01b=03M =09,4=02n=1a="4, A=/ m=02k =14 =01
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Fig.(5-15) : Stream lines in the wave frame for various values of E

[ 0 0

t=00LE, =03,E,=01b=03M =09,4=02n=1a =74, ="/ m=02k =14 =01

(@)E, =0.1,(b)E,=0.3,(c)E, =05
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Fig.(5-16) : Stream lines in the wave frame for various values of Es
t =0.0L,E, =0.3,E, =0.2,b =0.3,M =0.9,4 =O.2,77=1,a=%,ﬂ=”3,m =02,k =14 =01
(@)E, =0.1,(b)E, =0.3,(c)E, =0.5
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Fig.(5-17) : Stream lines in the wave frame for various values of b.
t =0.0LE, =0.3,E,=0.2,E, =0.1,M =0.9,4, =O.2,r7=1,a=%,,8=”3,m =02,k =1, =01
(@)b =0.1,(b)b =0.2,(c)o =0.3
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Fig.(5-18) : Stream lines in the wave frame for various values of M.
t =0.0LE, =0.3,E, =0.2,E, =0.1b =0.3,4 =02,7=La =74, =74, m =02,k =1, =01
(@M =0.9,(b)M =1,(c)M =15
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Fig.(5-19) : Stream lines in the wave frame for various values of ﬂ.l
t =00LE, =03E, =02,E;=01b =03 M =09,7=La=24,8="4,m=02k =1, =01
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Fig.(5-20) : Stream lines in the wave frame for various values of n.

t =00LE, =03,E, =02,E,=01b =03 M =09,4 =02,a=74,8="74,m =02k =1, =0.1
@n=1Lb)7=2,c)7=3
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Fig.(5-21) : Stream lines in the wave frame for various values of « .
t =0.04,E, =0.3,E, =0.2,E, =0.,b =0.3,M =0.9,4, =0.2,77=J,ﬂ=77,m =02,k =1, =0.1
@a =7/, 0)a =74, (C)a =74
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Fig.(5-22) : Stream lines in the wave frame for various values of /3.
t =0.01,E, =0.3,E, =0.2,E, =0.1,b =0.3,M =0.9, 4, =O.2,77=1,a=%,m =02,k =1, 3 =0.1
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Fig.(5-23) : Stream lines in the wave frame for various values of m.
t=00LE,=03,E,=02E,=01b =03M =09,4 =02,y =La =74, f=7/ k =1 4,=0.1
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Fig.(5-24) : Stream lines in the wave frame for various values of k.

t=00LE, =03, =0.2,E,=01b =03 M =09,4 =02n=La="4,f="/4,m =024 =01
@)k =0.9,(b)k =1,(c)k =15
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Fig.(5-25) : Stream lines in the wave frame for various values of ﬂl :

t =0.0LE, =0.3,E,=02,E,=0.1b =03 M =09,4 =02,n=La="24,f="74,m =02k =1
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Flg (5- 26) Temperature proflle for various of E..
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Frg (5- 28) Temperature profrle for varlous values of Es.
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Frg (5-30): Temperature profrle for varrous values of M.
t =0.0L,E,=03E,=02E;=0.1b =0.2,

Ai=0.2,n=1,a=%,ﬁ=%,m =0.1,

o, =01k =0.9,5 =0.1,x =0.8
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F|g (5- 27) Temperature profrle for varlous values of Ex.
t =0.0LE, =0.3,E, =0.1,b =0.2,M =0.9,
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F|g (5 29) Temperature proflle for varlous values of b.
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Fig.(5-31): Temperature profile for various values of 4, .

t =0.01,E, =0.3,E, =0.2,E; =0.1b = 0.2,

M :0.9,n:1,a:%,,8:%,m —0.1,
o, =0.1,k =0.9,5 =0.1,x =0.8
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Frg (5- 32) Temperature profrle for varlous values of7].
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Frg (5-34): Temperature profrle for varrous values of g
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Fig.(5-36):Temperature profile for various values &; .
t =0.0LE, =0.3,E, =0.2,E, =0.1,b = 0.2,

M =09,4 =02n=1a="24,8="14,
m =0.1k =0.9,8 =0.1,x =0.8
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Fig. (5 38) Temperature proflle for various values
of ﬂl .
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Fig.(5- 33) Temperature profile for various values of &
t =0.0LE, =0.3 E, =0.2,E, =0.1,b = 0.2
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Frg (5-35): Temperature profile for varrous values of m.
t =0.01L,E, =03,E,=02E,=0.1b =0.2,

M :O.9,11:0.2,77:1,a:A,ﬁ:A,
o, =0.1,k =0.9,3 =0.1,x =0.8
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Frg (5- 37) Temperature profrle for varrous values of k.
t =0.04,E, =0.3,E, =0.2,E, = 0.1,b = 0.2,

M =14 =02,7=La=724,8="74%,

m =0.1& =0.1,5 =0.1,x =0.8
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Fig.(5-39) pressure gradient profile for various

values of E1-

t =0.0,E,=0.2E,=0.1b =0.2,M =0.9,4 =0.2,
n=la=74,B="74,m=01k =09,5 =01
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Fig.(5-42) :pressure gradient profile for various values
of b.

t =0.0LE, =0.3,E, =0.2,E; =0.1,M =0.9,4 =0.2,

n=la=74,B=74,m=01k =09, =01
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Effect of radial magnetic field on peristaltic transport of Jeffrey fluid variable viscosity
in curved channel with heat and mass transfer properties

Introduction

Peristaltic transport of fluid is quite popular topic of research amongst the
mathematicians, physiologists and engineers. Such popularity of this topic is due to
occurrence of peristalsis in the physiological and engineering processes. The
peristaltic pumping is a mechanism for fluid transport induced by progressive wave
of contraction and relaxation along the distensible tube. Fluid transport in view of
peristalsis i1s an important biological mechanism responsible for various
physiological functions of the organs in the human body. Particularly such
mechanism is in urine passage from kidney to bladder through ureter, chyme
movement in the gastrointestinal tract, ovum movement in the female fallopian
tube, transport of spermatozoa in ducts efferent of male reproductive tract, transport
of lymph in lymphatic vessels such as arterioles, capillaries, venules and in
esophagus during food swallowing process. Practically the peristaltic pumps are
designed by engineers for pumping corrosive fluids without contact with the walls
of the pumping machinery. In nuclear industry the peristaltic pumping has been
found in corrosive fluid or sensitive fluids, transport of slurries and noxious fluids.
Latham [61], Jaffrin and Shapiro [96], Shapiro et al. [95] and Fung [33] were the
first who made a detailed analysis on peristaltic pumping. It is also noted that initial
attempts for peristalsis have been made for viscous liquids. This is not adequate
since most of the materials in the physiological and engineering processes are non-
Newtonian. There are three types of non-Newtonian fluids (i.e.), 1. Differential
type. 2. Rate type. 3. Integral type. The non-Newtonian fluids which exhibit the
characteristic of relaxation or retardation times are belong to rate type fluids.
Maxwell fluid is one of the subclass of rate type fluids which contains only
relaxation time behavior. The only draw back of this fluid model is that it does not
explain the retardation time behavior. Therefore to fill this gap, Jeffrey fluid model
is considered this model shows the behavior of linearly viscoelastic fluids due to its
large number of application in polymer industries. Moreover the Jeffrey fluid model
is comparatively simple linear model using time derivatives instead of convective
derivatives for example the oldroyd-B fluid model does, it represents a different
rheological behavior from that of the Newtonian fluid. In view of diverse
characteristics of non-Newtonian materials, various constitutive equations have
been suggested. Among such constitutive equations there is one for Jeffrey fluid
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which has been already utilized for peristaltic transport in both symmetric and
asymmetric channel (see [44, 51, 27, 76, 60].

Influence of applied magnetic field on peristaltic activity is important in
connection with certain problems of the movement of the conductive physiological
fluids, e.g. , blood and the blood pump machines, magnetic drug targeting and
relevant process of human digestive system. Such consideration is also useful in
treating gastro paresis, chronic constipation and morbid obesity,

Impact of heat transfer in peristaltic transport of fluid is quite significant in food
processing, oxygenation, hem dialysis, tissues conduction, heat convection for
blood flow from the pores of tissues and radiation between environment and its
surface. Mass transfer is useful in the a fore mentioned processes. Especially mass
transfer cannot be under estimated when nutrients diffuse out from the blood to
neighboring tissues. Further mass transfer involvement is quite prevalent in
distillation, chemical impurities diffusion, membrane separation and combustion
process. It should be noted that relationships between fluxes and driving potentials
occur when both heat and mass transfer act simultaneously. Here temperature
gradient generates energy flux. However mass flux and composition gradients are
due to temperature gradient (which is called soret effect).

It is noted that all the a fore mentioned studies on peristaltic transport have been
conducted for peristalsis in straight channels which is not realistic always since
most of the pipes, arteries and glandular ducts are curved. Thus some advancements
have been made for peristalsis using curvilinear coordinates. Sato et al.[94] initiated
such analysis for peristaltic transport of viscous fluids. Ali et al. [16] extend the
work of sato et al. in wave frame of reference. Later some attempts [17, 99, 42]
have been presented to address. The curvature effects on peristalsis of fluids in a
channel. In these attempts mostly the constant magnetic field are considered.
Recently, Hayat et al. [45] is given in their work to explore the characteristics of
radial magnetic field on peristaltic transport of Jeffrey fluid in a curved channel.
Heat transfer is characterized there by utilizing convective condition. Hayat et al.
[52] investigated the effect of radial magnetic field on the peristaltic flow of Jeffrey
liquid in curved channel with complaint walls.
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In all of previous studies, the viscosity is assumed to be constant. Now our work,
we investigated the effect of radial magnetic field on the peristaltic flow of Jeffrey
fluid in curved channel under the effect of variable viscosity to the temperature. We
will study the effect of heat and mass transfer such as the effect of viscous
dissipation and thermophoresis are considered in the transport equations which can
be described by Brownian number (Br), Schmidt number (Sc) and soret number
(Sr). Non-slip boundary conditions on velocity, temperature, and conservation are
considered. The equations are simplified by using long wave length and low
Reynolds number. The non-linear differential equations are solved analytically by
using regular perturbation method for small values of Reynolds model viscosity
parameter for temperature. Series solutions for stream function, axial velocity
pressure gradient, temperature and conservation are given by using the regular
perturbation technique. The effects of the physical parameters are considered to
study the rate of temperature which is named by (heat transfer coefficient) and the
effects of these parameters on above distributions are also discussed and illustrated
graphically through a set of figures.

6-1 Mathematical Formulation

Consider two- dimensional motion of an viscous incompressible Jeffrey fluid in a
curved channel of width (2a), center at 0" and radius at R as shown in figure (6-1).
The flow is generated due to the transverse deflections of sinusoidal waves of small
amplitudes (b) that are imposed on the flexible walls of the channel. The inertial
effects are assumed to be small. The lower and upper walls of the channel are
maintained at the same temperature 1 and concentration c,. The equations of the

walls of channel are described as follows:

r=f¥H (X t)=FaFb cos(%’”(x_—cf)) ...... (6-1)

Where X is the axial distance, ris the radial distance, @ is the radius of the stationary
curved channel, b is the wave amplitude, A is the wave length, t is the time and the

wave length is large compared with the channel width (a) that is (% <<1).
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Fig (6-1) : geometry of the problem

6-2 Constitutive Equations

The constitutive equations for a Jeffrey fluid with variable viscosity of temperature
can be written by : [78]

r=-Pl+S, (6-2)
S=mztRN e (6-3)

Where : and S Cauchy stress tensor and extra stress tensor, respectively, P is the
pressure, | is the identity tensor, ., is the ratio of relaxation to retardation times,

4, 1s the retardation time, 7 is the shear rate and dots over the quantities indicate

differentiation with respect to time.

Let V =[U(r,X t)V (r,X ,t),0] be the velocity vector in the curvilinear

coordinates (F, X_) .

=
+|<| + |C
o

(gradV)=(W)=| OF T+R

R
+
R
+

3)| 8| 3)| %|

= |
Py

r+R

The strain E is defined by :

E=blv)sx1 (6-5)

The shear strain or shear rate y is defined by :
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) o J R ¥ U

;./:ZE _ ar_ or r+R_8X £+R ....(6-6)
oJ R o/ U R U \Y
=+= ——= 2(= —+=—")
or r+RoX r+R

r+RoX r+R
So, we have:

¥ s s A R N U 77_2( R U V
e T T TR ax reR T

— + = ...(6-7
R oX r+R) ©-7
Now, define 7/ as follows:

DT

6 — v 5% _ =
=—y=(=+V V)y=—=y+VV)y, .. 6-8
Y=o’ = G )r=—r+V.V)y (6-8)
in which
Vv R oglwoe o (6-9)
r+R oX or
Thus we have:
B 8
==y (——U =+
Vit (+R = )7rr
0 R 0
:2—_ U— — )\ 6'10
[at (r+R oX r)]ar ( )
.. - a °
+(——U —+V Z)y
7/rX 8':7/rX (+R ax )7rx
=14 (R Ji_+v_—_)](ﬁ_+_R y_ Y, . (6-11)
ot r+R oX or-or r+RoX r+R

0 0 .
Vo5 Rl o

gl (R g2 _)](_R au . v

_ ), (6-12)
r+R GX r+R ox r+R

The components of shear tensor (S) are :

SW Sﬁ

()
1t /11(7/* 27rr)

rr
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4D 2 (R 2 i)]ﬁ-)

1+4 ° or +R X
_2u(T) o (R 50 ]
n 21(1 12[ "'Vl e (6-13)
u(m) -
Sﬁ_l ﬂ.l(}/rx A’Zyrx)
—f(r) VRN )+ 1[—+( R 72 w9
+ A 8r r+R oX +R oX
M) G0, R g0 o R ¥ U _
1+ 21(“12[ r+RUax W ])( o T+R X F+R) """" (6-14)
u(m) -
ﬁ—l 21(7/ x A 7%x)
SO R YV 8 RGOy —](( R M,
1+/11 r+RoX r+R ot r+R oX r+R oX
)y, 0 R 58 G0, R &V _
144 r ’12[ TR Y ])(F+R X TTeR) T (619

6-3 Calculation of Lorentz Force

Fluid in this problem is flowing under the influence of radially varying magnetic
field of the form [52]:
RB,

B = . 1
R+r ' @)

The type of magnetic field given through eq.(1) satisfies the Maxwell equations.
Velocity field for present flow configuration is taken of the form :

V =N (r,X,t),U(r,X t),0]
where U and Vv are the axial and radial components of the velocity respectively.

The Lorentz force F in view of the magnetic and velocity fields mentioned above
takes the following form:
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o e €z .
J=V xB = Rv O 0j=-"=UBe; .. @)
B, 0 0
R+r
oxJ =— R—GJBoef ...... (3)
R+r z

e e e
- 1._.D -R T R 2 11D 2
F=JxB = 0 0 =oUB,|=—( _)aUBOeY ...... 4)
R+r R+r

R B 0 0

R+r
That is
- _ R 2o 2
F=|0-0o( =-)uB,o( L. (5)

R+r

where B, is the strength of applied magnetic field, €. is the unit vector in the radial

direction, J is the current density and O is the electric conductivity of fluid, B is
the magnetic field. It is observed that the effect of magnetic field appear in the flow
of axial direction.

6-4 Basic Equations

The basic equations governing the non-Newtonian in compressible viscous Jeffrey
fluid are given by:

The continuity equation is given by:

RNV NV V o (6-16)
r+RoX or r+R
The momentum equations are given by:
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_ _ _ _2 _

p(a/_ +V a/_+_R LT&/ _Y ):_GE+ L a{(rJrR)S}Jr_R 9 =
ot or r+R oX r+R or r+Ror "o r+Rox
1

— L 6-17

r+R % (6-17)
U U R —aU UV R P R 0 = 1

pl—+V —+= U—+= =—= —+= —SXX +—=——=
ot or r+R o0X r+R r+RoX r+RoX (r+R)

0 (~— 2 R 2p 211

—{(r+R)*S-}{-o(=~—)B,yY L. 6-18

8r{( ) Xr} (r+R) 0 (6-18)

The temperature equation is given by :

8 RU o 1 o1 R 0T

m (_ — - 1[ _2 — —+ — 2 —

6r +R oX r+R or Tr+R" px
v N, R ¥ U

(S*—Sxx)—+SXr( =) (6-19)

or r+R oX Tr+R

The concentration equation is given by :

o R c_pPC, 1 & R &<

A VA N I - (=

[ Y TR ax]C or T TR or r+R)ax_2]C+

DK, 0T 1 o R )2 a*rz] ....... (6-20)

T, ‘or> r+Rar ‘r+R’ X
Where D is the diffusion coefficient of the diffusing species, t_the mean fluid
temperature, K, 1s the thermal diffusion ratio, T and C denote the fluid temperature

and concentration respectively.

6-5 Method of Solution :

In order to simplify the governing equations of motion, temperature and
concentration we may introduce the following dimensionless transformations as

follows:
_ _ _ _ _ _ =
X:X_’ r:L’u:U_, V:\/_’ t:i' h:i’ ¢:E’ 5:2' K:E’ p:a P,
A a C oc a a A a UL A
2,2 < o -~ _C C 2
Re=F2 W2-PBi8 g2 ® 1y Tl 2B o pro s T
i s u4C T, C, K, CpT0
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POK T, —ge=to 4=V = K v g o
IUOTmCO pD or Frk o

In whichy is the amplitude ratio or the occlusion parameter, K is the curvature

parameter, Sc is the Schmidt number, Sr is the soret number,

y71(2) =@,a1=Pr.Ec =Br,a, =Sr=
Ho

Now substituting (6-21) into equations (6-13)-(6-15) and into equations (6-16)-(6-
20) we have:

From eq.(6-16) we have:

RﬁU&/VZO

r+RoxX or r+R

&k _Cou Cow Co _

a(fr+k) Aox a or a(r+k)

k Cou Caw Ca v _

(r+k) 2ox aAdor aAiA(r+k)

Kk taw v v o (6-22)
(r+k) 2ox Aor A(r+k)

Multiplying both sides of (6-22) by (g) we get :

k o ™ v o (6-23)
(r+k)ox or (r+k)

From equation (6-17) we have:

p Ly, Ry Y, ok, 1 i{(F+R)s}+_R
ot or r+R oX r+R or r+Ror " r+R
0 1
S = .
oX M r+R X
2 2
p(Céﬂ C&/C—gﬂJr ak Cqug_ Cu) :_C/Isy()@Jr
A ot a or a(r+k) A ox a(r+k) a> or
it a0, | A 2 oMl L HCs,
a(r+k)aor a(fr+k)Aox a a(r+k) a
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Claoy Cla o Kk Claav  CP . CiyiP
Pa 2ot a2 or (r+k) A 4 ox_ a(r+k) a® o
IUOC 0 {(r + ) rr} K ﬁisxr o 2IUOC = xx
a’(r+k)or (r+k) Aa ox a“(r+k)
Caa C'a v,k Claa v C' o CAumdP,

+ u
Taidt  a A ar (r+k)/1a/1 ox a(r+k) a® or

2IUOC Q{(r—i_k)srr}-l_ K &isxr_ 2/JOC 2 xx
a“(r+k)or (r+k) Aa ox a“(r+k)
My N K v ut o CwP uC

a ot or (r+k) ox (r+k) a® or a’(r+k)

K _uC 0g  HC
(r+k) da ox ™ a’(r+k) ™

3

0
a—r{(r+k)8ﬂ}+

Now, multiplying both sides of (6-24) by ( ) we get:

f/;ﬁazav L, kg W P )7 .

PA o M v e or & (r+k) CA

2 (r+k)s, )+ — L I S

or "(r+k) A4 %wx " A (rik) S A >

PR N sy N K g N ):—fw —{(r+K)S, } +
My A ot or (r+k) ox (r+k) or

K 52isxr— ° S,

(r+k) ox (r+k)

Which is can be written as:

2
PGNP VUL S TS L M SR
or (r+k) ox (r+k) or (r+k)or
+ K 52isxr— J S,
(r+k) ox (r+k)
From eq.(6-18) we have:

Re & ( {(f+k)S }
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U - R —aU U R 6P R 0 & 1
=+ —+=—"U —=+= =—= =+ = —Sxx +=——=
ot or r+R o0X r+R r+RoxX r+RoX (r+R)
a » 2c R 2 2
—{(r+R)*Sxr;—o(= B,°U
or(F+R) | R B
2
oM g G,k o Cou CuCHh, ok CpdP ok
A ot aor a(r+k) Aox a(r+k) a(r+k) a ox a(r+k)
R — 2-33{(a(r+k»2”°csxr}—o< K _ygicu.
A0X a (a(r+k))- aor a a(r+k)
C?’ou C*A ou k C? ou C?a uv .k CuydP &k

+

pl——+—F—Vv — —U—+—— =— > +
Aot A A or (r+k) A ox  a A(r+k) (r+k) a® ox (r+k)

Ll o4 . L Z.E“OCazi{(wk)str}—a( K_yem cu.
A a ox a(r+k) a a or (r+k)

C?ou C? au k C? ou C? uy k Cu,oP k
pl(——+—Vv —+ —Uu—+— =— > ——+

Aot A or (r+k) 4 ox A (r+k) (r+k) a® ox (r+k)
1uC 0 uLC 0 ) K 2
— s — k)’S, |- B,’Cu.
1 a ox ¥ a(r+k) or (K8, ey B

C? ou au k ou uy k Cu,oP k
p—(—+v —+ u—-+ =— S —+

A ot or (r+k) ox (r+k) (r+k) a® ox (r+k)
1ul 0 1C 0 2 K ‘ono
— —S —_— k)S t— B,Cu. ... 6-26
A a ox XXJraz(r+k)2 ar{(H ) Xr} G((r+k)) o™t ( )

2
Now, multiplying both sides of eq.(6-26) (Ca ywe get:
Ho

of @ jou ko uv oy kP k1
P Qg ot ar (r+k) o (r+k)  (+K)ox (r+k) 2 a
2 2
a0y M .ﬁ[i{(r+k)2sxr}—a(L)2BOZ;Zu.a—.
Cry ox " A (r+k)? Cgy or (r+k) 2 u,
pCaa ou  ou k ou uv k oP k ao

—(—+v—+ u—+ =— —+ ——S,, +
U, A ot or (r+k) ox (r+k) (r+k)ox (r+k)Aox

272

b ks, (X 7B

(r+k) or (r+k) Uy

Which can be written as:
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Re5(gt—u+va—u+ k au_uv .k P k0 1

u + =+t — _Sxx +—2'
or (r+k) ox (r+k) (r+k)ox (r+k) ox (r+k)

0 2
AT+, -

r+ k))Mu .....

From eq. (6-19) we have:

pC(—vi R U—)T—l[_z L1 o R 2<3"‘r

or r+R  oX r+R or r+R’ X’
N U R & U
S.—S__)—+S. (—=+= L
S Xx)ar Xr(ar r+R oX r+R)
CaT g Lol ak 1T 167 1 14T ak

- f‘ R
P (ﬂ at a or +a(r+k) ﬁax) [a2 or? +a(r+k)a or +(a(r+k)

iza"“rz]Jr(,uOCSrr_yOCSXX)C5Q+yOCSm(ga_u+ ak Coov Cu )
A% OX a a o a aor a(r+k) 4 ox a(r+k)

caor Cc Aar k C oT 107 1 oT k

ﬂ: ( d -t DY _)_ [2 2+ 2 _+( )2
Aot ,3( Aor  (r+k) A ox a’or? a’(r+k)aor (r+k)

128"“1'2] ,uo (Srr—Sxx)C A ov LHC s Coou k Caov Cu

A% ox

PO S Gt (r+k) A Aox  a(r +k)

)2

aT K oT 107 1 oT K 1 a
pCp [ + u—)=k[5—5+— +( 2 T a
A at 8r (r+k) ox aor° a‘(r+k)or (r+k) A

]yocg(s s )av ,uo s Cu, k Caaw C_u
X2 a "o aor (r+k)Alaox a(r+k)”

el k oT. k, o7 1 0T K .07

pcm[at 6r+(r+k)uax):a_;[6r2+(r+k)ar+((r+k))58x2]+
“OCC(s,r—sxx)a" JHECg M e K VU (6-28)
a a or (r+k)8x (r+k)

2
Now, multiplying both sides of (6-28) by (:—) we get :

1

a C o7 oT k oT oT 1 T K 0T
FV —+ u—)=[—+ +( ) 6" —
K, Aot or (r+k) ox or (r+k) or (r+k) OX

1+
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2 2
&Ea_(srr_sxx)ﬂJrﬁga_sm(@_qug? k ov__u
a Ak, or a ak, or (r+k)ox (r+k)
C a’ oT oT k oT o°T 1 0T k o°T
pszk—&[—+V—+ Uy =+ i 257 ]+

L M, Ot or (r+k) ox or® (r+k)or (r+k) OX

2 2
ME 8 g g NV HCTg M o kK N U (6-29)
Ak, or k, or (r+k)ox (r+k)
Now,since 0= 10T T =@, =T =0T, T, =T =T,00 ... (6-30)
0
Thus, we can write eq.(6-29) by the following form:
C a’ Hy o 00 o6 k 06 0%0 1 06 K
——— [Ty —+vT,—+ uT,—)=[T,—+ T,—+
pc”/lklyorroat o (r+k) Oax) [r°8r2 (r+k) %or (r+k)
2 2 2
R O ]
X L or K, or (r+k)ox (r+k)

2 2 2
pga_&'ro[%w%Jr k_u%):To[a_er_l %Jr( k )252662)]
AK, oy, ot or (r+k) ox orc (r+k)or ‘r+k OX
2 2

56 g YN HETg (M e K N u (6-31)
k K, or (r+k)ox (r+k)

1

o : 1 .
Multiplying both sides of eq.(6-31) by (T_) we obtain:
0

Calpy 00 20 K

00, 0°6 1 06 K\, 00
—+ Uu—)=[—+ —+( ) 0" —
PAk oy 0t or (r+k) ox® or® (r+k)or  r+k OX

2 2
ﬁgi(sn_sxx)ﬂ_‘_&ism(a_u_‘_y K ﬂ_ u ).
k, T, or k, T, or (r+k)ox (r+k)

1+

C 2 2
oA, 100,00, k00 (00, 1 00, K y500
H, k, Aot or (r+k) ox orc (r+k)or r+Kk OX

21C 21C
ﬁi—pﬂsrr—Sxx)ﬂ+£i—p8m(a—u+§2 K Q_ u ).
k, T,C, or k, T,C, or (r+k)ox (r+k)

1+

C 2 2
oca Ly pg[@+v%+ k u@):[ae 1 6¢9+( k )2526«9
L, k, Aot or (r+k) ox

— + — =1+
orc (r+k)or r+k OX
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2 C 2 C
C My 55 —g YN, C Hbpg M o K N __U 5.3
C T, ki or CT, kg or (r+k)ox (r+k)
Which is can be written as:
2 2

RePr5[%+v%+ K u%)z[a—f+ ! %+( K )252862’]+

ot or (r+k) ox orc (r+k)or ‘r+k OX
ecpros, -s )Y vecprs, (Mayge K M U (6-33)

or or (r+k)ox (r+k)

From eq.(6-20) we have:

_ . _ 2~ 2~
Lwv i, R glg p@C, L X (R IC, DK o7
ot or r+R 0X or r+Ror T1+R° 5X T, or

1 oT R ., 0T
+= —+ (= —
r+R or Tr+R" 5X

]

_ _ _ = _
[E£+C5\/18C+ ak Culg]:D[éaE+ 1 1L +( Ak )?
A ot aor a(r+k) 1ox a’ or? a(r+k)aor A(r+k)
1 6°C, DK, 107 1 10T Ak, 107
ozt v ———+( —77]
A% ox T a’ar? a(r+k)aor A(r+k) A% ox
CoC Ca oC k C oC 1 8°C 1 o k 1
[—+——v + —U—]=D[5—5+— +( —
Aot aAdA o (r+k)A ox a-or- a‘(r+k)or (r+k) A
8°C, DK, 167 1 oT k |, 107
2]+ [_2 2t 3 +( 2 2]
OX T, a“or® a“(r+k)or “(r+k) A°ox
ceée o€k C 1 9°C 1 k . 1a%éC
—[—+v + U—]=D[5—5+— + ) =S —=—l+
Aot or (r+k) ox a~or° a‘(r+k)or (r+k) A°a® ox
DK, .1 67T 1 T k ., 1a%2o67
-7+ +( —Z 77
T, a“ or® a“(r+k)or “(r+k) A%a°ox
_ _ _ o _ -
%[%-FV?-F K u£]=22[82+ ! £+( K )252602]+
r (r+k) ox° a® or° (r+k)or (r+k) OX
DKy 10T , 1 T (kK pgedT, (6-34)

2 z T A 2
T, a o (r+k)or (r+k) OX

m

2

Multiplying both sides of (6-34) by (%) we get:
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C a%® oC aE k 65 ac 1 oC k ,.0C, DK, 1
el | v 1=l +( ) 6" —=1+ Y
A D ot or (r+k) OX or (r+k)8r (r+k) OX T, a
2
a 5"72 ] B SERCY az“rz] ...... (6-35)
D or° (r+k)or “(r+k) OX
Since 0 =110 and(p:C__CO thus T =T,00 and 6C =C 09
TO CO
So, we can write (6-35) by the following form:
~ . -V
Ea_[coﬁgo e, 8(0 k 8(p] c, 0@ 2 1 6(p ( 1252
A D ot °or (r+k) ® ox °or (r+k) °or (r+k)
— 0’0, DK, 1 829 1 ae k 0’0
C, o1+ I.To 7+ +( )' 5T —71
° ox 2 T, or (r+k) (r+k) OX
N - 2
Cag e, o, K o0 gife, 1 do, Kk ysulo
AD “pot or (r+k) ox or®> (r+k)or “(r+k) OX
2
Ky TO[%+ L %+( K )?6° o 92]. ........ (6-36)
T, or (r+k)or (r+k) OX
Multiplying both sides of (6-36) by (Ci) we get
2 ~ 2
B&a_g[aﬁ+v 99 . K a40] [ 1 d¢ +( )2528 (g]Jr
p U, D A ot or (r+k) OX ( +k) or (r+k) OX
2
DKy 1Toppop00, 1 06, K )25289]

T, DC,pu or® (r+k)or (r+k) ox
2 2
pCaa My [qu 6(p+ k u@_go]:[@_(f_l_ 1 6_g0+( k )2528¢2)]+
U, A pD ot or (r+k) ox or® (r+k)or “(r+k) OX
2
pDKTlO Uy a§+ 1 %+( k )252802]'
Ut ,C, pD Or° (r+k)or “(r+k) OX

Which can be written as:

2 2
Resse[ 22 +v 2+ K 0020, 1 00,5 K 00,
or (+k) OX or? (r+k)6r (r+k)” ox
2
SrSc[% ! %+ 5 (——— )280 ..(6-37)

or?  (r+k)or (r+k)
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From eq.(6-13) we have:

s =2 ;19 v (Rg L w2y9l
1+ A o4 Tr+R 0X or’ " or
HC S, = 241,11(9) (1+,12[9£+( ok )Cu 19 cs li)]%ﬂ
a 1+ 4 Aot a(r+k) A OX aor” a or
'uOC Srr = 2[10/1(9) (1+ %[EQ_F(L)C_U i+££v Q)]géﬂ
a 1+ 4, Aot (r+k) A ox A A or” A Aor
'UOC Srr = Z’UO‘U(H) (1+/’{,2[92+( k )Eu i+9v g)]gﬂ
a 1+ 4 Aot (r+k) A ox A or " Aor
#C srr:Z“O“(e)E(lng[ﬁﬂ K 2w Iy (6-38)
a 1+4 4 Aot (r+k)” ox or’or
Multiplying both sides of (6-38) by Ca we get:
0
2
5, =252 2 oy 2, SR (K Zn
1+4 A Cry Aaot (r+k) ox ar’er
26 ACS 0 k d O\ OV
S, = —— O+ === Uu—+v —)J]— 6-39
. 1”1#( YA+ " [a+((r+k)) PV ar)]ar (6-39)
From eq.(6-14) we have:
S =D 2y R gl vipd, R ¥ _ U
1+ 4 o r+R oX or- or r+RoJX r+R
&er = M(1+ //LZ[EE'F%—I(CU li-FC&/ 12])(Ea_u+
a 1+ 4 Aot A(r+k)  Aox aor aar

Ak Cosov C

A(r+k) A ox a(r+k)'u)

ﬁsmzﬂﬂ(g)(lJ,,lzg[ng K uiwﬂ])(ga_qu K
a 1+ 4 Aot (r+k) ox or’aor (r+k)

k 0 0 ..,C ou k
Uu—-+v —(——+
(r+k) ox or’aor (r+k)

1LC _ M C o
—S_ =———u@)Q+ A, —[—+
— 1+ﬂ1ﬂ( )( /12/1[8'[
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Caaov C 1

zzaa—x‘zmk) "
£Sm=—l'uo () L+ ﬂgﬂ[g S 2])(‘3_u k
+ A, Jaot (r+k) ox (r +k)
gy v (6-40)
ox (r+k)
Multiplying both sides of (6-40) by ( a )we have:
w2 A 2,205 k @ k
= z_ 1+ —N(—
S 1%;{%51“(‘9)( et Y ])(ar (r+K)
FN__ Uy
ox  (r+k)”
g MO L5k o _])(_ kK odv
Y1+ A4 a o (r+k) ox or (r+k) ox
u
(Hk)) ...... (6—41)
From eq.(6-15) we have:
§r:2”—(r)(1+/12[i+_LUﬂ_ __])(_ v,V
1+ 4 ot R 0X r+RoxX r+R
MO _2mp®), €0 Ak 10 o510,
a 1+, Aot A(r+k)  Aox aor
Ak Cou Cov
(7t )
A(r+k) A ox  a(r+k)
&Sxx 2/‘0/‘(9)( [C£+ K C_:ui+c_:ivﬁ])
a 1+ 4, Aot (r+k)A ox aAd or
k Cou Ca v
( ———+t—= ),
(r+k) A ox a A(r+k)
HC 24y Cro, kK 4 9.,9p¢
Ta o TIa 21( ﬂ”zﬁ[at+(r+k)ua ]);L((r+k)
2_)‘:+(r‘ik)), n(6-42)
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Multiplying both sides of (6-42) by ( aC )we get:

240 C a Ca, 0 k 0 ou v
o 1%1}%( M ala T e _])((r+k)8x R

20 @C& 8 k i 0 ou v )
Sa = 21 HONL+ ot (r k) X ])((r+k)8x (r+k)) ~(6-43)

The general solution of the governing equations (6-25)-(6-43) in the general case
seems to be difficult and not easy, therefore we shall can fine the analysis under
the assumption of small wave length (5§<<1) and low Reynolds number

approximation, thus we can write the above equations in the form of stream
function:

oP
—=0 ...(6-44
p (6-44)
@=#ﬁ{(r+k)zsxr}— K_m2ov ...(6-45)
ox k(r+k) or r+k or
2
s,=0,s, =05, =49 v, L ovy (6-46)
1+4  or® (r+k)or
2
_o0, 1 99, (—— it o (6-47)
or (r+k)6r or? (r+k)8r
2
28_204_ 1 a_¢+ ISc af 1 ) ...... (6-48)
orc (r+k)or or® (r+k)or

6-6 Rate of Volume Flow and Boundary Conditions:

The relation between volume flow rate and time average flow rate is [78]:
F(x,t)=Q +2(h(x,t)=1D (6 - 49)
The corresponding dimensionless boundary conditions are given by:

W= J_r%, atr =xh = ¥(1+ pcos2z(x - t))

oy
—=0,atr=%h
or *

0=0,0=0,r=%h

The coefficient of heat transfer at the upper wall is given by:
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Z=h(8),., (6-51)
6-7_Reynolds Model of Viscosity

The Reynolds model of viscosity is used to describe the variable of viscosity
with temperature. The Reynolds model of viscosity is defined as: [81]

w@=e" (6-52)
Using the McLaurin series expansion the above expression can be written as:

1(0) =1—ab, fora <<l ....(6-53)
If « =0 Thus the constant viscosity will be achieve.

Now, Compensating equation (6-53)) into equation (6-46),(3) we have :

1-af, %y 1 oy
= —— T ) e 6'54
* 1+21( or? rik ar) (6-54)
Substitute eq. (6-54) into eq. (6-45) and eq. (6-47) we have:
o 1 0 2 (l—ab) 1 Oy , Oy i
ox  K(r+k) ar SAr? 1+ 4 ( 5 T ar el (r+k) ™ o +(6-5)
06 1 1-—ab) 1 0y, ]
0= +(I’+k) or +B 1+Aj_ ( a +(I’+k) ar) (6 56)

6-8 Perturbation Analysis
Equation (6-44) shows that P depends on x only. equation (6-55) is nonlinear
and it is not easy to get a closed form solution. However for vanishing &, the

boundary value problem is agreeable to an easy analytical solution. In this case the
equation can be solved. So for this analysis we suggests small a for the
perturbation technique to solve the non-linear problem. Accordingly, we write:

V=Y, tay, +a..
F=F+aF+......

p:po+ap1+ """""""

P=Q TP+ (6-57)
Now, if we substituting Eq.(6-57) into Eq. (6-55),(6-56),(6-48) and (6-50) we see
that:
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6_p=71 ——{ (r +k)? a3””—(r ) +6—V/+ (O.(r +k)2. SW +26
ox  K@+k) 1+ 2 or or® or or’

o’y 2 0%y 00 y  op 81// o0 v 2oV
(r+k).?+(r+k) —2.——9.(r+k)ar—2—9——( )} (I’+k) a—r

o, 1 1 2,0, Oy Oy, vy, OV
O pg—t= = {(r+k) (2 ra—2) - (r+k 0+ g —"L)+ (-2
ox  ox  K@k) 14 (r+k) (6r3 ar3) (r+k or? 6r2) ( or

oy, 2,0, Oy Oy, | Oy
+ta—=)+a((0y+ab).(r +k) (5 +a—7) + 20, +ab)(r +k).(—+a—") +
or or or or r

oy, . 00
21)_( 0 4

k2 g 2% @+ a0+ 1 02 (0 4 a0)
or? or 0 v or? or? 0 N or

oy, oy, oy, 00, 00, k 2,0y, oy,
+a—=)—(r +k +a +a—=))}+ M +a
or )= (k) or or X or 2 (r+k) ( or or )

Thus we have after some simplifications

P, P 1 1 2 Oy, Py Oy, , O
—Lta—t= . —(r+k) .(—2+a—=3)—(r +k O ta—SL)+
ox ox  K+k) 142" (r+k) (ar3 )= (o ar? 0 ?)
oy, oy, 2 83W0 2 2 531//1 2 2 83‘//o
—+a—=)+a(r +k)°0,. +a(r+k)°6 +a(r+k)°6

( or or Jra(r k)76 or® (r+k) or® (r+kr6 or®

+a’

3 2 2 2
(r +k)261%+a(r +k).6, 56:”20 +a2(r+k)490%+a2(r+k)01.aa://2° +a®(r +k)

25‘”0ae

2 2
6, '/’1)+ (r+k) +a2(r+k)2—6"’2°%+a2(r+k)2—a";1%+a3(r+k)2
r or or or: or
a% —H-ab %—azeo%—azel%—asel%—a(r+k)%.%—a2(r+k)
or? or or or or or or

oy, 06, 2 Oy, 06, 3 Oy, O 2,0y, oy,
L0 P (r+ k)22 B (r +k +a—L) 6—58
or or ( ) or or ( ) or } (r+k> (ar or ) ( )

Also we have about the equation of temperature.

026722(004‘&91)"'( k)a_( 0 9)'1'—/11(1 05(9 +C¥6))( 2 (l//0+0“//1))
2 o 0 1 0 )
_(r +k)'?(% +a%)'§(%+a%)+m(§(%+a%» ) (6-59)

and the equation of concentration can be written by:
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0° 1 o° 1 0
0=—(o, + +—— + +SrSc 0, +ab)+ —(6, + a6,
or ((00 a(”l) (r +K) or ((00 a%) ( ( o ) (r +K) 8]‘( o T& 1))

So, if we collecting the coefficient of powers of ¢, then we can get the zeroth and
first order equation with it’s boundary equations:

6-8-1 Zeros- order system (@)

11 ’ ? 1 k
Pl Lol Do, )Wy, K e 66
X  kl+4 or’ or® (r+k) or " r+k or
Differentiable eq.(6-61) with respect to (r) we have :
4 3 2
0= 1 ((rek) I %W 1 OV 1 W e 1
1+ 4, or or> (r+k) or (r+k)- or (r+k)
2
a‘/’; 1 8%) .(6-62)
or (r+k)* or
025290+ 1 06, Br I(ayxo) 2 _azz/fo_az//0+ 1 (81//0)}
o’ (r+k) or 1+/11 (r+k) or®> or (r+k)°
...(6-63)
2
0-2%, 1 0 ge@h, L 0%y (6-64)
or (r+k) ar or (r+k) or
Along the corresponding boundary conditions:
0:‘—5",%:0, 0,=0, ¢, =0, at(r=+h)
% R v gy =0, ¢, =0, at(r=-h) ....(6-65)
27 7 °
6-8-2 First order system (»®)
3 2
op, _1 1 {_(r+k)a‘/21_aW21 1 8%+(I’+k)¢9 ‘//o+95'/’0
ox kl+4 o> or® r+k or
(r+k) l//oae 1 98':”0_81//0600 + k M28W1 (6-66)

o’ or r+k "or or or” r+k o U

Differentiable eq.(6-66) with respect to (r) we have:
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4 3 2
0=i{(r+k)a"”l+za"’1— L Jwi, 1 oW k)ea‘/’o

1+ 4 ! or* r+k or* (r+k)* or
w, 06, 831// w, 0°0, 0%y, 00, 1 oy
+k 0 0 _(r+ 0 0“% 0 0
ar )r3 P P ( )5252 o2 or r+k °or?
1 dy,06, 1 (4 5l//0) a'//oago_klez 1 .82‘//1 1 al/jl}
r+k or or (r+k)> ° or or or? r+k or? (r+k)? or
...... (6-67)
000 1 06 Br 26%52% 2 (81//0_6% 8% 81//0)+
ar?  (r+k) or 1+/11 or? or® (r+k) or® or  or?
1 2'281//08‘/1_90(81//20)2_'_ 2 9081//208‘//0_ 1 290(6'//0)2}
(r+k) or or or (r+k) "~ orc or (r+k)
..... (6-68)
2
0-20, 1 W gee @0, L o0y (6-69)
or (r+k)8r or®  (r+k) or
The corresponding boundary condition are given by :
-F oy
=—,—==0,6=0, ¢=0, at(r=+h
14 > o 1 % ( )
F
Wl:gl,%:o, 6,=0, ¢, =0, a(r=-h) ..(6-70)
r

6-9 Solution of The Problem
6-9-1 Solution of the zero’s order (@)

The solution of Eq.(6-62), (6-63) and (6-64) subset to the associates boundary
conditions (6-65) are found to be the form:

1+ny
Vo =4, +a3kr+"’;3 r’— - l(k+r)1_nl+% A (6-71)
9. — -8, (1+n) (k +r)""ay  a’(-1+n)*(k +1r)" g .
0 4n12(1+ A) 4n12(1+/11)
2 2
C,+C, log(k +r)+a1a2(—1+ n,)’ e, log(k +r) 6

1+ 4
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Ca (@+n) (k +1) M aa,a, s a’(-1+n)’(k +r)" e,
- an2(1+A) Ant(l+ )
- aa,(-1+ n1)2a1a2a3 log(k +r1)°
1+ 4
where ((&,1=1,2,3,4),(C;,j=1,2),(C,, k =5,6) are constants and can be written as:

0

Cy+Clog(k +r

_—fok(=(=h+k)* +(h+k)")+h((-h+k)™+(h+k)")(-1+n)d+n,)
K*((=h+k)" =(h +k)™)*n, +h?*((=h + k)™ + (h +k)™)*n,
+hk ((=h +k)*™ = (h +k )*™)1+n2)));
(fo(=h+k)*(h+k)" )k (-h+k)™=(h+k)"*)+h((-h+k)™—(h+k)™)
a :(—1+ n)1+n,)
? K2 ((-h+k)" =(h +k)™)’n +h*((=h + k)™ +(h +k)™)*n,
+hk (=h +k)*™ —(h + Kk )*™)1+n2)));

_ —(fo(Ch+k)™ —(h +k)™)(=1+n)(A+n)
K *((-h +k)™ = (h +k)™)’n, +h*((=h +Kk)™ + (h +k)™)’n,
+hk (= +k )*™ = (h +k)*™)(L+n,2)));

(Fo(2k *((=h + k)™ = (h +k)*™) +4hk ((~h +k)*™ +
__(h+k)*™)n, +h*((=h +k)™ —(h +k)*™)@+n/?)
@K A((h k) = (h+k)™) N +h?((=h + k)™ +(h +k)™)’n,
+hk (= +k )*™ = (h +k)*™)(L+n.)));

8,

(- a’(-h+k)™)(-1+n/) 4 a’(h+k)™)(-1+n}?) _aj(-h+k )*")(L+n?)
n,’ n,’ nS
a22 (h+k )_2”1)(1+ n12)
2

n
C, = !

—(y

+4aa,(-1+n2)log(-h +k)* -4aa,(-1+n,*)log(h + k )?
4@+ A)(log(=h + k) —log(h +k)))
(—h+k) 2 (h +k) 2oy ((h +k )™

1
€2 = 4n,?(L+ 4,)(=log(=h + k) +log(h +k))
@ (=h +k)™)(=1+n2)+aZ@+n2)log(h +k)—4aa,(~h +k)*™(h +k)*™n?
(-1+n2)log(=h +k)*log(h + k) —(=h +k)*™ log(=h +k )@ (h + k )*™(~1+n,*)?
+a’(1+n?)-4aa,(h +k)*™™n?(-1+n2)logth +k)?); ... (6-75)
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(af (=h +k)*™(-1+n)’ e, B a’(h+k)*™(-1+n)’ o a, N

4n’(1+A,) 4n’(1+4,)
a’(-h+k)™™ @+ n,)’ oa,a, B al(h+k)>™ 1+ n,)’ aa,a, B
4n12 1+4) 4n12 1+4)
aa,(-1+n,)’ aa,a; log(=h +k )? L ad,(-1+ n,)’a,a,a,log(h +k)?
c - 1+4) d+4)
° log(=h +k ) —log(h +k)
a a’(h+k)*™(-1+n,)’ a,a,a, B a(h+k)?™@1+n)’ aa,a,
4n12 1+4) 4nl2 1+4)
8,8, (_1"' nl)zalaZaS Iog(h +k )2 + Iog(h +k )(812 (_h +k )an (_1+ n1)2a1a2a3 -
1+4) 4n?(L+ 4,)
a’(h+k)*™(-1+n,)’ ey, N a(=h+k)?"1+n)  qa,a, B
4n12 1+4) 4n12 1+4)
a, (h+k)*"(@+n) axa, aa,(-1+n) aa,a,log(-h +k)° .
4n?(L+ 4,) 1+4)
a,a,(-1+n,) o, log(h +k )°
C = d+4)
6

log(=h +k)—log(h +k)

6- 9-2 Solution of the first order (»®)
The solutions of eq.(6-67), (6-68) and (6-69) subset to the associates boundary
conditions (6-70) are found to be at the form:

yy=ab, + (k+nEaz@+n)’ (k+n~"

96N (1+ 4,)
o, -3 (-1+n,)° (k+1) " o +48n (K +1)(1+ 4) b, +
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1
(1+n,).2(k +1)" (-3a%a,(3—-10n7 + 7n)e, + 2a,n,(c, +3c,n}
2c,n,(-1+5n,%))(L+ 4) —-16n. 1+ A4,)b,) + 6an,(-1+n,*)(3a,,
(-1+n*)e, —2c,n, L+ A)) +4c,n’ 1+ 4)) log(k +r)+12an?
(-1+n2)(-aa,(-1+n*)e, +c,n, 1+ 4,)) log(k +r)*+8a’a,n’
(-1+n)e, log(k +r)°)

Where (0,,1=1,2,3,4),(c;,j =3,4), (c,,k =7,8) are constants can be obtained by

using “MATHEMATICA” software.

6-9-3 Solution of heat transfer coefficient z(x)

The solution of eq.(6-51) can be found by the form:

_ -1 (192, + 96a, (1+n,)°(k +r)*"ey 962’ (-1+n)°(k +r)" ey
96(k +r) n,(1+4) n,1+4)
, 38433, (-1+ n,)?a,Log (kK +r) + a(192¢, - 3a; (1+ n1)4(—15+ 5n12)gk +r) e’ N
1+4) n°1+4)
33 (-=1+n,)* (=1+5n2)(K +r)" e’ , 96aac (-1+ n)aslog(k +r)°
n°(@+4)° n’(+4)
1
(-1+n,).2(k +1) " (3a2a,(3-10n2 + 7n e, + 2a,n, (c, + 3c,n;
2C2n1(1' 5n12))(1+ Al) —16]’]14 (1+ ﬂl)bl) + 6azn1('1+ n12)(3a1a2
(-1+n)e, +2c,n, 1+ 4) +4c,n/ 1+ 4))log(k +r)+12an,?
(-1+n,")(aa, (-1+n,")e +cn, (L+ 4)) log(k +r)* +8a,"an;
(-1+n,%)ey log(k +r)°)

z(x)

152



Effect of radial magnetic field on peristaltic transport of Jeffrey fluid variable viscosity
in curved channel with heat and mass transfer properties

4 a0 2 ~an, 2
0, = alc, + 1 ((3a2(1+ n,)"( 16+ 5n, )(2k +r) Mo N
192 AnS(L+ 4)
3a)(-1+n,)*(-1+5n>)(k + r)*™
anf (L+ 4)?
(24(-1+n*)e, (aa,*(3-8n,2 +5n," ), —8ab,n; (1+ 4) —
4an’(2b,n} +a,(c,-3c,n/))(@+ A)log(k +r)°
n [+ 4)°
+16afa22(-1+ n’)’(A+n)a’log(k +r)*
ny(1+4)°
1
+
768n°(L+ 4,)°
+128, 5L+ N) v (6-79)

a 2
L +192c.log(k +1) -

(kK+1)"*"(-3aa,a,(@50+n,)* (-1+5n%) e,

p=a(c,

(48(-1+n,)’ e (a%a%,(3-8n +5n,*) o, —8a,b,n,*
(1+4)—4an,’(2b,n,” +a,(c, -3c,n,"))(L+ 4)) log(k +r))
n°(L+4)°
N 64a’a; (1+n,*)(-1+n2)’ e’ log(k +r)°

n*(L+4)°

6-10 Results and Discussion

In this section, the numerical and computation results are discussed for the
problem of an incompressible viscous non-Newtonian Jeffrey fluid with variable
viscosity of temperature in the curved channel with the effects of radial magnetic
field and heat/ mass transfer through the graphical illustrations of some important
results. (MATHEMATICA) program is used to find out numerical and illustrations.

6-10-1 Velocity distribution

Influence of different parameters on the velocity distribution have been
illustrated in figures (6-2)-(6-8). These figures are scratched at the fixed value of
(x=0.2, t=0.05). from figure (6-2)(a) displays the effect of Hartmann number
parameter (M) on velocity u, it is noticed that the velocity increase at upper wall on
region of r [0.5,1] and decrease at lower wall on region of r e[-1,0] Figure (6-

3)(a), illustrates the effect of the parameter ¢ on velocity, we see that velocity u
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increase on upper and lower walls of channel with an increase of 4. From figure (6-
4)(a), it observed that there is similar behavior of Jeffrey parameter 4 of parameter

M on velocity u. Figure (6-5)(a), show that velocity distribution increase at upper
part of channel and decrease at lower part of channel with an increase of cultivator
parameter k. Figure (6-6)(a) illustrates that velocity distribution u enhances at the
central region and walls of the channel with an increase of Q. From figures (6-
2)(b),(6-3)(b),(6-4)(b),(6-5)(b) and (6-6)(b) of effects of M, g 4,k andQ
respectively, observed that the velocity profiles are not symmetric in curved channel
(for small values of cultivator parameter k ) and it is symmetric in the straight
channel ( for large values of k). the effect of Brinkman number (Br) on velocity is
seen in figure (6-7)(a),(b), it is noticed that velocity u increase at core and upper
wall of channel but the fluid is reflected will be reduced at the point (0.4813,0.8085)
with an increase of (Br), and it’s graph model parameter () is illustrated and
displayed in figure (6-8)(a),(b), it is showed that it’s behavior is similar to the
manner of (Br) on velocity but it’s graph can be seen in the symmetric profile in the
straight channel.

6-10-2 Trapping phenomenon

The effects of various parameters like m, 4,4k, Q, and o ON trapping can be

see through figures (6-9)-(6-15). Figure (6-9) show that the numbered and size of
trapping bolus decrease with an increase of value of M in the upper and lower part
of channel. The figures (6-10),(6-11),(6-12),(6-13) illustrates the effects of

#,Q,a, and o ON circulating bolus, it is seen that there is rise up in number and size

of bolus with an increase of these parameters. Opposite behavior is showed for the
effects of 4, and k and their influence are displayed in figures (6-14) and (6-15)

respectively.

6-10-3 Temperature characteristics

The expressions for temperature are given by eq.(6-72) and (6-78) for zeros and
first order solution. The effects of various parameters on temperature for fixed
values of (x=0.2, t=0.05) are shown, the results are presented in fig (6-16)-(6-21).
From figure (6-16)(a),(b), it can found that temperature profile decrease at the
center line and walls but the fluid will conversed it’s flow at the upper wall of
channel which make it’s temperature may be increase with an increase of
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Hartmann parameter (M). The effects of parameter ¢ on temperature distribution is
plotted in fig.(6-17)(a),(b), it is noticed that temperature increase at the central line
and the walls of channel. Figure (6-18) (a),(b), showed the influence of parameter
4, 1t 1s observed that an increase in 4, leads to decrease in temperature profile at

the central line of channel, that is temperature profile ¢ is smaller for non-
Newtonian fluid (4 »=0) when compared with viscous fluid (4 =0). The effect of

parameter k is noticed in figure (6-19)(a),(b), it is observed that an increase in k
leads to decrease in temperature profile at the central line of channel with an
increase of k. Figure (6-20)(a),(b), illustrate the influence of Brinkman number (Br)
on temperature which is showed that an increase in (Br) results rise up on
temperature, it i1s due to the fact that (Br) incorporates viscous dissipation effects
which extends the fluid temperature. Figure (6-21)(a),(b), displayed the influence
of temperature (Q) on temperature, which is noticed that the temperature increasing
with an increase of Q at the central line of channel. In all graphs of temperature
distribution of effects of all parameters mentioned above that the profiles of
temperature are not symmetric in curved channel and it is symmetric in straight
channel.

6-10-4 Mass transfer distribution

The expression for concentration are given by eq.(6-73) and (6-79) for the zeros
and first order solution. The effects of various parameters on concentration for fixed
values of (x=0.2, t=0.05) are shown, the results are presented in fig (6-22)-(6-29).
The profile of concentration is reverse of profile of temperature and the

parameters behaved opposite manner on concentration than a temperature
distribution. The effects of parameters m , ¢, 4,k , Br,Sr,Sc and Q On concentration

are considered. The impact ofm, 4,k are plotted in figures(6-22)(a),(b)-(6-

23)(a),(b),(6-24). It is noticed that an increase in these last parameters lead to an
increase on magnitude of concentration. Opposite behavior is obtained for the
parameters ¢ ,Br,Sr,Sc and Q which is illustrated into figures (6-25)(a),(b)-(6-
29)(a),(b). In fact the reason behind the reducing of concentration when we increase
the values of (Sc.) is due that the mass diffusion decrease which show decrease in
concentration. We observed that all graphs of concentration distribution are not
symmetric in curved channel and it has symmetry characteristic in straight channel.

It is warth mentioning that the negative values of concentration profiles for some
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values of parameters agree with natural process when nutrients diffuse out of blood
to the neighboring tissues.

6-10-5 Heat transfer coefficient:
Figs. (6-30)-(6-35) are drawn to examine the impact of Hartmann number (M),
inclusion parameter ( ¢ ), Jeffrey parameter ( 1, ), curvature parameter(k), Brinkman

number (Br) and flow rate volume parameter (Q) on heat transfer coefficient (Z). it
is observed that due to contraction and expansion of peristaltic channel walls. The
behavior of heat transfer coefficient Z is oscillatory. Figure (6-30) shows that
absolute value of Z increase with an increase in M. However greater impact is
noticed near 0<x <0.4 and -0.4 < x <0. Similar behavior is noticed for the impact
of ¢, Brand Q which is displayed in figures (6-31), (6-32) and (6-33) respectively.
The effect of 4, and kon heat transfer coefficient Z is illustrated in figures (6-34)

and (6-35) respectively, it is observed that the decreasing response of absolute heat
transfer coefficient Z with an increase of above parameters. More clear results are
noticed in the range where 0<x <0.4 and -04<x<0.

6-10-6 pressure gradient distribution

Effects of various parameters on the pressure gradient versus x have been
illustrated in figures (6-36)-(6-41). These figures are scratched at the fixed values
of (r=0.2,t=0.05). from figure (6-36) displays the effect of parameter (M) on
pressure gradient, it is noticed that an increase in M leads to reduce in pressure
gradient. Figure (6-37) illustrates the effect of the parameter 4 on pressure gradient,

it is observed that pressure gradient increase on the center of channel at the region
of (—0.2 <X < 0.2) and reduce at the edges of walls at the regions of

(-0.4<x <-0.2)and(0.2<x < 0.4). The impact of parameters  and (k) are

plotted in figures (6-38) and (6-39) respectively which is noticed that an increase
in these parameters lead to rise in pressure gradient. Similar behavior is obtained
for the effects of parameter (Br) and Reynolds model (& ) and Brinkman number.
Their behavior is plotted in figure (6-40) and (6-41).

6-11 Concluding Remarks
The present study deals with the combined effects of radial magnetic field and
heat/mass transfer on the peristaltic transport of viscous incompressible Jeffrey
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fluid with variable viscosity dependent on temperature in curved channel. We
obtained the analytical solution of the problem under long wave length and low
Reynolds number and using perturbation method for Reynolds parameter of
viscosity. The results are analyzed for different values of parameters namely
Hartmann number (M), amplitude ratio 4, Jeffrey parameter 1 , culvature parameter

(k), Reynolds perturbation parameter, volume flow rate (Q), Brinkman
number(Br). Soret number (Sr), Schmidt number (Sc). Thus through our work we
observe the following notations:

1. The influence of Hartmann number (M), Jeffrey parameter ( 1, ),calvature

parameter (k), Reynolds parameter of viscosity (& ), Brinkman number (Br)
on axial velocity is oscillator.

2. The axial velocity is rise up and enhance with an increase of ¢,Q

3. The profiles of axial velocity are parabolic and symmetric for large values of
culvature parameter (k) (straight channel) and non-symmetric in the curved
channel.

4. The size and number of trapping bolus increase with an increase of
#,Q,Br and «and they are decrease with an increase of 1, M and k-

5. The effect of inclusion parameter or amplitudes ratiog on pressure gradient
is vacillating.
6. The pressure gradient increase with an increase of 4, k, Br and has opposite

manner with an increase of M .
7. The temperature distribution increase with an increase of ¢, Brand Qand

decrease with an increase of M, 4 and k .

8. The concentration distribution decrease with an increase of Sr and Sc.
Opposite behavior for concentration distribution is noted when compared
with temperature.

9. The profiles of temperature and concentration are symmetric and parabolic
for large values of k (straight channel) and non-symmetric for curved channel
for small values of k.

10.The action of heat transfer coefficient is wobbling, that is on region of
0<x <0.4we see that z(x) is increasing function of M, Br, Q, ¢.
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Recommendation for future work

In the light of the study and results obtained in this thesis, the following future
work suggestions are given:

e A study of peristaltic transport of Walter’s —B fluid under the effect of
inclined magnetic field through a porous medium in an inclined tapered
asymmetric channel by using the properties of the wall.

e A study of peristaltic transport of MHD flow of blood and heat\mass transfer
In a tapered asymmetric channel through porous medium by using the effect
of variable viscosity with temperature and properties of the wall.

e A study of peristaltic transport of Williamson fluid with variable viscosity of
space under the effect of hall magnetic field in a tapered channel.

e A study of peristaltic transport of Jeffrey fluid under the effect of variable
viscosity with space of radial direction.
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