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Abstract 

 

        A new horizon has been opened for researchers using Computed 

Tomography (CT) technique, due to the possibility of this technique to produce a 

three dimensional images of the internal structure for the different objects 

without the need to damage the object. 

         This work focus on studying models for reconstructing 3D images from its 

projections for two objects; symmetrical and asymmetrical using three methods. 

         The first method (Slicing reconstruction) is used the 2D Radon transform to 

generate a 2D projection for each slice of the 3D object at different heights. The 

2D Back-Projection (2D BP) and the Fourier Slice Theorem (FST) methods are 

used to reconstruct each 2D projection slice of the 3D object. The second method 

(Direct reconstruction from 3D Projections) has used the 3D Radon Transform to 

generate a 3D projection for the 3D object. The 3D Back-Projection (3D BP) is 

performed to reconstruct the 3D object. The third method (Reconstruction from 

X-ray transform (4D projections)) is used the X-ray projections for a 3D object to 

generate a 4D projection. The central section theorem FST for the X-ray 

projection and the 3D Back Projections for X-ray Projection are used to retrieve 

3D object from 4D projection. The retrieved object was significantly improved 

when using the Ramp filter and threshold value. 

        Three types of interpolation are suggested in this research work, to reduce 

the dose of radiation to the patient and the time to reconstruct the object, which 

are; the nearest neighbor, linear, and non-linear interpolation methods. These 

methods are applied to 2D sinogram that has taken at angular difference greater 

than one degree. The BP and FST reconstruction methods are adopted to retrieve 

the object from the interpolated projections. The Slicing reconstruction method 

showed the capability of the FST to reconstruct the external and the internal 

object structure. The threshold value is suggested to eliminate the excessive 

points, due to the blurring artifact then calculate the volume of each retrieved 

object. 
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   The results of the first method (Slicing reconstruction method) showed the 

capability of the FST to reconstruct the external and the internal structure of it. 

Beside that the Fourier Slice Theorem could not remove all blurring artifact, so,   

the threshold technique is suggested to eliminate the excessive points, due to the 

blurring artifact, as the FST method could not remove it. The Ramp filter in the 

frequency domain is suggested to eliminate the blurring artifact and retrieve the 

object internal structure, as the 2D BP method had the capability to 

reconstruction the external structure of the object and its inability to 

reconstruction the internal structure of it because of the blurring artifact. 

     From the Direct reconstruction from 3D Projections method results, the 3D 

BP method was capable of reconstruction the external structure of the object and 

unable to the reconstruction of the internal structure because of the blurring 

artifact, so the Ramp filter in the frequency domain is proposed to eliminate the 

blurring artifact but cannot remove the blurring artifact and retrieve the internal 

structure.   

 The result of the third method (Reconstruction from X-ray transform (4D 

projections)) The central section theorem was fielded to retrieve object while the 

3D Back Projection is successful to retrieve the external structure but inability to 

retrieve the internal structure of it because of the blurring artifact, so, this 

research, suggested the Ramp filter in the frequency domain to eliminate the 

blurring artifact although it cannot remove the blurring artifact and retrieve the 

internal structure.  

 By applying the interpolation methods in this research, the best threshold 

value to separate the points that belong to the object is ranging between 0.50-

0.65. The FST reconstruction method with the interpolation process gave the best 

results for the internal details than the BP method, while FST failed to retrieve 

the basic object shape correctly for an angular difference greater than 20o. The 

basic object shape is maintained by BP reconstruction method even after 15o. In 

general, the linear interpolation gave the best results. 



  

 III 

List of  

Page Title No. 

I Abstract  

III List of content  

VI List of figures   

XII List of tables  

XIII List of abbreviations  

Chapter One               General Introduction to Computed Tomography   

1 Introduction 1.1 

2 A Brief History of Computed Tomography 1.2 

5 Imaging system 1.3 

8 Scanning Modes (The Projection System) 1.4 

9 Parallel ray integral. 1.4.1 

10 Fan beam 1.4.2 

11 Cone beam 1.4.3 

11 2D Digital Image Representation 1.5 

12 3D Digital Image Representation 1.6 

13 Quality of CT Images 1.7 

14 Spatial Resolution 1.7.1 

15 Contrast Value 1.7.2 

15 Noise 1.7.3 

16 Artifacts 1.7.4 

18 Literature Review 1.8 

22 Aims of the Study 1.9 

22 Layout of the Dissertation 1.10 

Chapter Two               Three-Dimensional Reconstructions  

24 Introduction 2.1 

25 2D Forward projection 2.2 

26 2D Tomography 2.3 

27 2D Image reconstruction methods 2.4 

29 Fourier Slice Theorem 2.4.1 

34 Simple Back-Projection (BP) (Inverse Radon Transform 

(IRT)) 

2.4.2 

36 The Filter after the Back-projection (BPF) 2.4.3 

37 The Filter before the Back-Projection (FBP) 2.4.4 

38 3D Tomography 2.5 

40 3D Back-Projections Method 2.5.1 



  

 IV 

40 Imaging 3D object by X-ray transform 2.6 

42 Methods of Reconstruction 3D Object from X-Ray 

Projections 

2.7 

42 Three-Dimensional Back Projection for X-Ray Projections 2.7.1 

43 The 3D Fourier Slice Theorem for X-Ray Transform 2.7.2 

44 
The Relationship between Radon Transform and X-Ray 

Transform 2.8 

45 Ramp Filter In Frequency Domain 2.9 

45 Interpolation 2.10 

49 Fidelity Criteria 2.11 

49 Objective Fidelity Criteria 2.11.1 

51 Subjective Fidelity Criteria 2.11.2 

Chapter Three      The Methodology of Reconstruction 3D Images 

52 Introduction 3.1 

52 summarize of methodology 3.2 

53 Creating 3D Object 3.3 

55 Methods of Forward projections 3.4 

55 Slicing Method 3.4.1 

57 Direct 3D Projections Method 3.4.2 

57 X-Ray Transform Method (X-Ray Projections) 3.4.3 

58 3D Object Reconstruction Methods  3.5 

59 Reconstruction the 3D Object from 2D projection 3.5.1 

61 Reconstruction the 3D Object from 3D projection 3.5.2 

61 Reconstruction the 3D Object from 4D projection 3.5.3 

63 The Methodology of Interpolation 3.6 

  Results and Discussion                     Chapter Four 

67 Introduction 4.1 

67 Results of the Forward projections 4.2 

67 Forward Projection using Slicing Method 4.2.1 

70 Forward Projection using Direct 3D Projections Method 4.2.2 

71 Forward Projection using X-Ray Transform Method 4.2.3 

74 The Results of Reconstruction Methods 4.3 

74 Reconstruct 3D Object from the 2D projection 4.3.1 

74 The Results of Reconstruction Without Filtering 4.3.1.1 

78 The Results of Reconstruction With Filtering 4.3.1.2 

84 Reconstruct 3D Object from the 3D projection 4.3.2  



  

 V 

84 The Results of Reconstruction Without Filtering 4.3.2.1 

86 The Results of Reconstruction With Filtering 4.3.2.2 

90 Reconstruct 3D Object from the 4D projection 4.3.3 

90 The Results of Reconstruction Without Filtering 4.3.3.1 

94 The Results of Reconstruction With Filtering 4.3.3.2 

99 The Results of the Interpolation 4.4 

Chapter Five               Conclusions and Future Works 

110 Conclusions 5.1 

112 Future Works 5.2 

113     Reference 

 



  

 VI 

List of  

Page Figure Caption No. 

4 The device of Godfrey N. Hounsfield  Figure 1.1 

4 
Images of (a) The first CT scanners (b) The CT scanner 

in 2005 
Figure 1.2  

5 Apply the CT scanner on the first patient Figure 1.3  

7 The basic devices in CT scanning using X-ray Figure 1.4  

8 A projection and a sinogram Figure 1.5  

9 Three  types of projections systems Figure 1.6  

10 Parallel projection Figure 1.7  

10 Fan projection Figure 1.8  

11 Cone beam projection Figure 1.9  

12 2D image representation Figure 1.10  

13 The data that form the CT slice Figure 1.11  

 

14 

 (a) Original image (b) decrease spatial resolution, (c) 

decrease contrast resolution and (d) adding artificial 

noise 

 

Figure 1.12 

17 Numerical of ring artifact Figure 1.13 

17 
CT image for heart shows metallic artifacts from the 

cardiac pacemaker 
Figure 1.14 

18 Motion causes blurring and double images in a head CT Figure 1.15 

25 The projections at various angles Figure 2.1 

26 
The coordinates system of projection and the linear 

integral 
Figure 2.2 

30 Steps of Fourier slice theorem Figure 2.3 

32 The FT of a specific projection line from the object Figure 2.4 

34 
The reconstruct original object by 2D inverse Fourier 

transform 
Figure 2.5 

36 1D projection using parallel beam Figure 2.6 

38 The Projection in 3D Figure 2.7 

39 The Projection geometry in 3D Figure 2.8 

41 
Factors of 3D Line of Response (LOR) for the X-ray 

transform 

 

Figure 2.9 



  

 VII 

42 The projection taken by X-ray transform Figure 2.10 

44 The 3D Fourier Slice Theorem for X-Ray Transform Figure 2.11 

44 The Radon transform for 3D Object Figure 2.12 

47 
A schematic representation of the adopted geometry for 

the interpolation methods 
Figure 2.13 

 

48 
The distribution of the summation weights for three 

interpolation methods (a) Nearest Neighbor (b) Linear 

(c) Nonlinear 

 

Figure 2.14 

52 Summarize of methodology block diagram. Figure 3.1 

53 (a) hollow sphere inside solid sphere       

(b) Solid sphere 

Figure 3.2 

54 (a) hollow sphere inside head Mickey Mouse 

(b) the solid head for Mickey Mouse 

Figure 3.3 

56 The 2D radon transform for one plane of 3D object Figure 3.4 

56 The forward slicing method block diagram. Figure 3.5 

57 The Forward the Direct 3D Projections block diagram. Figure 3.6 

58 The Forward X-Ray Transform block diagram. 
Figure 3.7 

59 
The Reconstructed 3D Object by back-projection 

method block diagram. 

Figure 3.8 

60 The Reconstructed 3D Object by FST method block 

diagram. 

Figure 3.9 

61 The 3D BP block diagram. Figure 3.10 

62 The 3D BP for x-ray projections block diagram. 
Figure 3.11 

63 
The central section theorem for the X-ray projection 

block diagram. 
Figure 3.12 

65 
The interpolation method by using Back projection to 

reconstruct object block diagram. 
Figure 3.13 

66 
The interpolation method by using FST to reconstruct 

object block diagram. 
Figure 3.14 

67 
The 2D slices along the Z-axis (a) for hollow sphere 

inside solid sphere  (b) for Mickey Mouse 
Figure 4.1 

68 
(a) 2D slice of sphere at different heights 

 (b) 2D slice of Mickey Mouse at different heights 
Figure 4.2 



  

 VIII 

69 
A 2D projection for some 2D slice of the 3D object (a) 

slices of projection for slices of the sphere at different 

heights (b) slices of projection for slices of the mickey 

mouse at different heights 

Figure 4.3 

69 
Staking the 2D slices of projections (a) for sphere (b) for 

Mickey Mouse 
Figure 4.4 

70 
A 3D projections of the 3D object (a) for sphere (b) for 

Mickey Mouse 
Figure 4.5 

 

71 
A 2D slices projection from 3D projections (a) the slice 

of projection for sphere (b) the slice of projection for 

Mickey Mouse 

 

Figure 4.6 

71 
A mesh for 3D Projections (a) for sphere (b)for 

Mickey Mouse 
Figure 4.7 

 

72 
A 3D X –ray projections of the 3D sphere (a) The 3D 

projection for all range of Theta and specific Phi (b) The 

3D projection for all range of Phi and specific Theta 

 

Figure 4.8 

 

 

72 

A 2D slice projections from 4D x-ray projections for 

sphere (a) the 2D slice of 4D projection at specific Phi 

and several degrees of Theta (b) the 2D slice of 4D 

projection at specific Theta and several degrees of Phi. 

 

 

Figure 4.9 

 

73 
A 3D X –ray projections of the Mickey Mouse (a) The 

3D projection for all range of Theta and specific Phi (b) 

The 3D projection for all range of Phi and specific Theta 

 

Figure 4.10 

 

 

73 

A 2D slice projections from 4D x-ray projections for 

mickey mouse (a) the slice of 3d projection at specific 

Phi and several degrees of Theta (b) the slice of 3d 

projection at specific Theta and several degrees of Phi. 

 

 

Figure 4.11 

 

75 
the 2D reconstructed Slices from the 2D projection of 

the 3D Sphere for different Z values (a) Sphere 

reconstruct by BP (b) Sphere reconstruct by FST 

 

Figure 4.12 

 

 

75 

the 2D reconstructed Slices from the 2D projection of 

the 3D Mickey Mouse for different Z values (a) Mickey 

Mouse reconstruct by BP (b) Mickey Mouse reconstruct 

by FST 

 

 

Figure 4.13 

 

76 
The 3D reconstructed sphere from the 2D projection 

using BP method (a) representing the stacked 2D slices 

 

Figure 4.14 



  

 IX 

(b) the 3D representation where there is no internal 

sphere. 

 

 

76 

The 3D reconstructed Mickey Mouse from the 2D 

projection using BP method (a) representing the 

stacked 2D slices (b) the 3D representation where there 

is no internal sphere. 

 

 

Figure 4.15 

 

 

77 

The 3D reconstructed sphere from the 2D projection 

using FST method (a) representing the stacked 2D slices 

(b) the 3D representation where there is the internal 

sphere 

 

 

Figure 4.16 

 

 

77 

The 3D reconstructed Mikey Mouse from the 2D 

projection using FST method (a) representing the 

stacked 2D slices (b) the 3D representation where there 

is the internal sphere 

 

 

Figure 4.17 

 

 

  78 

The 3D reconstructed sphere from the 2D projection 

using FST method after applying the threshold value (a) 

representing the stacked 2D slices after thresholding (b) 

the 3D representation after thresholding 

 

 

Figure 4.18 

 

 

79 

The 3D reconstructed Mickey Mouse from the 2D 

projection using FST method after applying the 

threshold value (a) representing the stacked 2D slices 

after thresholding (b) the 3D representation after 

thresholding  

 

 

Figure 4.19 

 

80 

The slices of reconstructed object from the 2D 

projection after apply filtering (a) sphere (b) head of 

mickey mouse 

 

Figure 4.20 

81 
The 3D reconstructed from the 2D projection after 

apply filtering (a) sphere (b) head of mickey mouse 
Figure 4.21 

 

 

83 

(a)The 3D reconstructed Sphere and head of mickey 

mouse from the 2D projection after apply threshold on 

filter object (b)The 3D reconstructed Sphere and head 

of mickey mouse from the 2D projection after apply 

threshold on no filter object  

 

 

Figure 4.22 

 

 

83 

(a) The slices of the 3D reconstructed Sphere and head 

of mickey mouse from the 2D projection after apply 

threshold on filter object (b) The slices of  the 3D 

 

 

Figure 4.23 



  

 X 

reconstructed  Sphere and head of mickey mouse  from 

the 2D projection after apply threshold on no filter 

object 

85 
The 3D reconstructed object by 3D BP from the 3D 

Projection (a) Sphere (b) Mickey Mouse 
Figure 4.24 

85 
The 3D reconstructed object using 3D BP method  from 

the 3D Projection   (a) Sphere (b) Mickey Mouse 
Figure 4.25 

86 
The 3D reconstructed object by BP after filtering  from 

the 3D Projection  (a) Sphere (b) Mickey Mouse 
Figure 4.26 

 

87 

The 3D reconstructed object using 3D BP method from 

the 3D Projection after filtering (a) Sphere (b) Mickey 

Mouse 

 

Figure 4.27 

 

 

89 

(a)The 3D reconstructed  Sphere and head of mickey 

mouse from the 3D Projection after apply threshold on 

filter object (b)The 3D reconstructed  Sphere and head 

of mickey mouse  from the 3D Projection  after apply 

threshold on no filter object 

 

 

Figure 4.28 

 

 

 

89 

(a)The slices of the 3D reconstructed Sphere and head 

of mickey mouse from the 3D Projection after apply 

threshold on filter object (b)The slices of the 3D 

reconstructed  Sphere and head of mickey mouse  from 

the 3D Projection after apply threshold on no filter 

object 

 

 

 

Figure 4.29 

90 
The 3D reconstructed Objects by using 3D BP from x-

ray projections (a) sphere (b) Mickey Mouse 
Figure 4.30 

91 
The slices of 3D reconstructed objects by using 3D BP 

from x-ray projections (a) Sphere (b) Mickey Mouse 
Figure 4.31 

 

91 
The 3D reconstructed Object from x-ray projections by 

central section theorem at Fai (0°) and Theta °(45)   

 (a) Sphere (b) Mickey Mouse 

 

Figure 4.32 

 

92 
The slices of 3D reconstructed 3D Object  from x-ray 

projections  by central section theorem  at Fai (0°) and 

Theta °(45)  (a) sphere (b)Mickey Mouse 

 

Figure 4.33 

92 The Plane Projection at Fai (0°) and Theta (45°) Figure 4.34 

93 The Planes of Projection at Fai (0°) and Theta(45°, 90°) Figure 4.35 



  

 XI 

 

 

93 
The 3D reconstructed Object from x-ray projections by 

central section theorem at  Fai (0°) and Theta °(45° ,90)   

(a)Sphere (b) Mickey Mouse 

 

Figure 4.36 

 

94 
The slices of 3D reconstructed 3D Object from x-ray 

projections by central section theorem at Fai (0°) and 

Theta  °(45° ,90) (a) sphere (b)Mickey Mouse  

 

Figure 4.37 

95 
The slices of 3D Object reconstructed from x-ray 

projections after filtering (a) sphere (b)Mickey Mouse 
Figure 4.38 

95 The 3D reconstructed Object from x-ray projections 

after filtering (a)Sphere (b) Mickey Mouse 

Figure 4.39 

 

 

98 

(a)The 3D reconstructed Sphere and head of mickey 

mouse from x-ray projections after apply threshold on 

filter object (b)The 3D reconstructed Sphere and head 

of mickey mouse from x-ray projections after apply 

threshold on no filter object  

 

 

Figure 4.40 

 

 

 

98 

 (a)The slices of the 3D reconstructed Sphere and head 

of mickey mouse from x-ray projections  after apply 

threshold on filter object (b)The slices of the 3D 

reconstructed Sphere and head of mickey mouse  from 

x-ray projections  after apply threshold on no filter 

object 

 

 

 

Figure 4.41 

 

99 

 (a) A slice of projection at different heights and at 

∆θ=2o (b) 3D sinogram obtain from  stacking the 2D 

projection and at ∆θ=2o 

 

Figure 4.42 

101 The quality of the interpolated 3D sinogram Figure 4.43 

 

 

104 

The quality of the reconstructed object before and after 

the interpolation process (a) Nearest Neighbor 

interpolation (b)Linear interpolation (c) Non-Linear 

interpolation 

 

 

Figure 4.44 

 

106 

Number of points that belong to the object (a) Nearest 

Neighbor interpolation (b)Linear interpolation (c) Non-

Linear interpolation 

 

Figure 4.45 

 

109 

Number of points that belong to the hollow sphere (a) 

Nearest Neighbor interpolation (b)Linear interpolation 

(c) Non-Linear interpolation 

 

Figure 4.46 



  

 XII 

List of  

 

Page Table Title No. 

53 
The location, dimension, and density of the spheres that 

consist of the object 
Table 3-1 

54 
The location, dimension, and density of the spheres that 

consist of Mickey Mouse 

Table 3-2 

 

79 
The SNR, PSNR and RMSE before and after applying 

the  threshold for both reconstructed objects from the 

2D projection by FST method 

 

Table 4-1 

81 
The volume of the reconstruction 3D object from 2D 

projection 
Table 4-2 

 

82 
The SNR, PSNR and RMSE before and after apply 

Filtering for objects reconstructed by back-projections 

method from the 2D projection 

 

Table 4-3 

 

84 
Shown the change in external structure with change the 

threshold value for filterd Mickey Mouse reconstructed 

by back-projections method from the 2D projection 

 

Table 4-4 

87 
The volume of the 3D retrieved object from 3D 

projection 
Table 4-5 

88 
The SNR and RMSE before and after apply Filtering on 

the 3D retrieved object from 3D projection 
Table 4-6 

96 
The volume of the 3D retrieved object from X-ray 

Transform 
Table 4-7 

96 
The SNR and RMSE  of reconstruct objects from X-ray 

Transform before and after apply Filtering  
Table 4-8 

100 
The SNR and RMSE before and after applying the 

interpolation methods for different dlta 
Table 4-9 

102 The SNR and RMSE before and after apply the 

interpolation methods at different dlta 
Table 4-10 

 

105 
The No. of point Of the Out and internal object before 

and after apply the interpolation methods at different 

dlta. 

 

Table 4-11 

107 the change of the shape of the retrieved object by the 

FST method with the increase of the angular interval. 
Table 4-12 

 

108 
The change of the shape of the retrieved object by the 

BP method with the increase of the angular interval. 

 

Table 4-13 



 

XIII 

List of Abbreviations 

   

Abbreviations Original 

2D Two Dimensional 

3D Three Dimensional 

4D Four Dimensional 

ADC Analog signal to Digital Converter 

BP  Back-Projection 

BPF  Filter after the Back-projection 

CT Computed Tomography 

dB  Decibel unit 

e  error 

eT  Total error 

FBP  The Filter before the Back-Projection 

FST  Fourier Slice Theorem 

IRT  Inverse Radon Transform 

LOR Lines Of Response 

MSE  Mean Square Error 

PET Positron Emission Tomography 

Pixel Picture Elements 

PSNR  Peaks- Signal to Noise Ratio 

RF  Ramp Filter 

RMSE  Root Mean Square Error 

RT  Radon Transform 

SNR  Signal to Noise Ratio 

SPECT Single Photon Emission Computerized Tomography 

Voxel  Volume Elements 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 



 

1 
 

Chapter One 

General Introduction to Computed Tomography  

 

1.1 Introduction 

      Computed Tomography (CT) technology has a significant impact on the 

medical field to diagnose the disease accurately without the need for surgery. 

Tomography a method of producing a three-dimensions image of the 

internal structures of an object in a non-destructive manner [1, 2]. This 

technique is done using different types of imaging techniques, some of 

which depend on the exposure of the body to a particular radiation or waves 

from different angles such electromagnetic (EM) spectrum that consists of 

visible light, infrared (IR), ultraviolet (UV), X-rays, microwaves, radio 

waves, or gamma waves or any other signal that can be measured [3] or 

injecting the body with little quantities of radioactive materials called 

radiopharmaceuticals, the quantity and type of materials vary depending on 

the type of organ that wants to be scan [4]. 

      They can be based on one or more physical parameters for the resulting 

radiations that are emitted, transmitted, or reflected from the object to 

process by electronic devices and produce computed tomography images for 

the body [5]. 
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1.2 A Brief History of Computed Tomography 

      The Austrian scientist Radon explained the main mathematical idea of 

seeing inside the body where he derived mathematical equations to 

reconstruct the body from the finite number of projections in his article 

published in 1917 (the projection system definition in section 1.4) [1] [6].      

      In the forties of the last century, Gabriel Frank and other scientists 

explained the first experiments to reconstruct the images from their 

projections and these experiments were done before the discovery of the 

computer. In 1940 Gabriel Frank was awarded a patent for his description 

of the main ideas used in tomography to this day, includes devices used to 

obtain sinograms and back projection techniques to reconstruct images [7]. 

      In the fifties of the last century, several researches and articles were 

published in the field of CT based on radon equations one of them in 1956 

R. N. Bracewell published a paper titled ‘Stripe Integration in Radio 

Astronomy”, he was the first scientist applied the main mathematical idea 

of Radon equations to construct two-dimensional images in his paper 

mentioned above [6]. 

      In 1961, William H. Oldendorf made in series of experiments based on 

principles close to the principles used in computed tomography [8], the 

purpose of his experiments to know the possibility of seeing inside the body 

through the passage of radiation inside the body and then receive the final 

signal by a detector. In this experiment, the line required to be reconstructed 

must pass through the center of the machine, in other words, the process 

reconstruction here is linear and there were no attempts to reconstruct the 

two-dimensional because each linear reconstruction process requires a full 

hour and at that time there was no way to store the data [7]. 
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      In 1963, David E. Kuhl and Roy Q. Edwards experiments were done by 

devices using radioisotopes, these devices are known today as emission 

computed tomography [9]. They used two detectors in an opposing 

location and the survey was done in regular steps. At each step, the 

result was received on the moving film according to the location of the 

detectors. The film was rotated to summation the back-projected views. 

In modern equipment, the film has been replaced with a computer [7]. 

      In 1963 and 1964 Allan M. Cormack publishes the results of his 

experiences where he built the initial CT scanner. Unluckily, his results 

did not receive significant attention at that time because it requires difficult 

calculations and a long time to do it [7]. 

      In 1967, Godfrey N. Hounsfield developed the first clinical scanner 

using X-ray based on algorithms discovered by Allan M. Cormack earlier 

as shown in figure (1-1), this scan took nine days to produce a picture for 

specimen because the scan is linear and performed by rotate specimen one 

degree in each step [10] [7]. Godfrey Hounsfield deduced independent of 

Cormack that we can see inside the body by taking X-ray measurements on 

the same body from all directions. In 1979, Godfrey N. Hounsfield won the 

Nobel Prize for his discovery and shared it's with Allan M. Cormack [7]. 
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Figure 1-1 The device of Godfrey N. Hounsfield. 

      Attempts to improve clinical scanner performance continue to this day 

and after making many modifications to the clinical CT scanner, we can 

obtain clear and good images in a few minutes compared to the old devices 

that are not improved as shown in figure (1-2) [7]. 

 

      The improved clinical CT scanner was first installed in a London 

hospital in September 1971 as shown in figure (1-3) where in October 1971 

the technique was applied to the first patient who had a large sac in his head 

and it clear in the image produced  [7]. 

 
   (a) (b) 

Figure 1-2 Images of (a) The first CT scanners. (b) The CT scanner in 2005  [7].     
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Figure 1-3  Apply the CT scanner on the first patient [7]. 

1.3  Imaging System 

      Digital images are formed when a certain type of energy interacts with 

the sensor or the detector in the imaging device. The detector or sensor varies 

from one imaging device to another depending on the type of energy or 

radiation used in that device. This energy may be an ultrasound or a 

component of the electromagnetic spectrum, for example, visible light, 

infrared, microwave, radio waves, gamma waves, or uses radioactive 

material inside the body that emits a certain type of energy that can be 

handled by a detector [3]. 

      The energy used for imaging and associated with imaging device is 

selected depending on the nature of the object or the organ to be 

photographed or scanning, in terms of the density, the contrast between the 

organs and the object sensitivity to the energy  i.e. its capacity for measuring 

the weakest possible intensity level, also the type of radiation is chosen 

depending on its ability to distinguish between different organs of the body 

and its ability to portray the tiny details [5]. 
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      Since the tomography gives us the internal structure of the body so it 

uses the types of radiation that have the ability to penetrate the tissues to be 

photographed [11]. In this section, will review some of the devices used in 

tomography. 

      In nuclear medicine using (Single Photon Emission Computerized 

Tomography) (SPECT) and (Positron Emission Tomography) (PET) in 

these types of the scanner, the patient is injected with a radiopharmaceutical 

that emits Gamma rays, Gamma rays are detected and measured by detectors 

then the measured information from this radiation used to create a two- or 

three-dimensional image for the desired organ [12] [3] [13]. 

      Ultrasonic imaging by sending a series of high-frequency sound waves 

(higher than 20 KHz) to the organ and then the measured information from 

reflected waves are used to obtain a 2D  or 3D a gray image. The ratio of 

reflected waves depends on the difference the resistance of the neighboring 

organs for ultrasonic waves, The proportion of reflected waves increases as 

the difference in resistance increases between the two neighboring members 

so the difference in the density and resistance of organs to the waves  is the 

basis for the formation of ultrasound images [3] [14]. 

      In this dissertation, we will focus on X-rays tomography. X-ray is an 

electromagnetic ray widely used in radiography and in many technical and 

scientific fields. In 1895, William Rontgen discovered unknown ray has the 

ability to see the skeleton in a living person. Where he had been working 

with a device used to generate "cathode rays" in a vacuum glass tube when 

the high voltage between the cathode and the anode is applied and a 

phosphoric screen was placed at the end of the tube. When the electron beam 

(cathode rays) collided with it, this screen began to glow, then Richard 
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Roentgen put his hand between the tubing that generates X-ray and the 

phosphoric screen, he saw the skeleton form for his hand on the phosphoric 

screen. This was the first operation of X-ray imaging [15]. 

      On this day X-rays are much used in the medical field to generate a 2D 

image (in traditional radiography) or 3D image (in a CT) to the skeleton of 

the patient to diagnose his illness. This done by passing X-rays through the 

patient and recorded on the film that responds to X-ray energy in 

conventional radiography or captured it by the detector in CT scanner [3]. 

      Figure (1-4) shown the basic devices in CT scanning using X-ray. The 

Filtering used to reduce radiation dose and to get better quality for images. 

The Collimators used to restrict the X-ray beam on a specific area. The 

Detector used to measure the X-ray photons and convert it to an analog 

signal (electric), the ADC (Analog to Digital Convert) is to convert the 

analog signal to a digital format and sent to the computer [16]. 

 

Figure 1-4 The basic devices in CT scanning using X-ray [16]. 



Chapter One             General Introduction to Computed Tomography 
 

 

8 
 

1.4 Scanning Modes (The Projection System) 

      The combining of a set of linear integrals along all parallel lines of 

response (LOR) forms the projection 𝑝(𝑡, 𝜃) for a certain angle (θ) to the 

object f(x,y) with x and y the spatial Cartesian coordinates [1]. The 

combination of all projections for 0 ≤ θ < π forms a 2D function with 𝑡 and 

𝜃 the polar coordinates that is called a sinogram as shown on the right of 

figure (1-5), in which the horizontal and vertical axis’s represents the values 

of the distance from the center of rotation and the angles respectively [17] 

[18]. 

      The name of the sinogram comes from the fact that every point in the 

spatial space (in the body) when converted into the space of Projection, the 

behave of each point will path of a sinusoidal. So, the sinogram for the whole 

object would be a superposition of all paths sinusoids corresponding to each 

point in the object as shown in figure (1-5). Each row in the sinogram has 

values of the projection at a certain angle [17] [19]. 

 

Figure 1-5 A projection and a sinogram [17]. 

 

      Although there are many types of scanning techniques, some of the 

advantages and disadvantages of only three major types will discuss in this 

section, as shown in figure (1-6). 
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a) The first system uses the ray in the form of parallel (projections on 

parallel form). 

b) The second system uses the ray in the form of a fan (projections on 

fan form). 

c) The third system uses the ray in the form of a cone (projections on 

cone form). 

          In this dissertation, the parallel ray system will be focus on. 

1.4.1  Parallel Ray Integral. 

      The simplest type of the scanner is a collection of the parallel ray as 

shown in figure (1-7). This method also called parallel projections because 

of the measurement of linear integrations in the form of parallel lines for a 

number of different angles. For example, to forms a 2-D sinogram for slices 

of the object, the sources that generate an X-ray and the detectors that 

receive the X-ray that located on the opposite side of an object must rotate 

around object and by using a set of slices sinogram that forms a 3-D 

sinogram for the 3-D object [1]. This method is slow so it needs a long time 

[20]. 

 

 

 

(a) parallel ray (b) fan ray (c) cone ray 

Figure 1-6 Three types of projections systems [7]. 
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Figure 1-7 Parallel projection [20] [1]. 

 

1.4.2 Fan Beam  

       This technique, a single source and the array of the detectors uses on the 

opposite side of an object as shown in figure (1-8). This method also called 

a fan projection because of the measurement of linear integrations in the 

form of a fan for a number of different angles [1]. Projections in the fan form 

can cover an extensive area of the object at each moment of scanning, so, in 

this method can reduced the number of projections that require to retrieve 

object in high quality and the time required for taking the projections for an 

object has been reduced compared to the first method  [20]. 

  
Figure 1-8 fan projection [20] [1]. 
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1.4.3 Cone Beam  

      A single source and the array of the detectors on the opposite side of an 

object uses this technique as shown in figure (1-9), Here the whole object is 

illuminated from source rather than one slice as in the previous two methods. 

This method called a cone beam reconstruction because the rays form a cone 

[1]. 

         The main advantage of this technique that it increased scan speed 

where the time required to take the projections for an object was reduced 

compared to previous methods [20]. 

 

Figure 1-9 Cone beam projection [20]. 

 

1.5 2D Digital Image Representation 

      The digital images are formed when a certain type of energy interacts 

with the sensor or the detector in the imaging device. When the energy used 

is visible light, the image formed by a summation of light energy called the 

optical image and the device used to capture it by the camera [3]. 

       The 2D digital images, I (r, c), can represent it as a 2D matrix of data I 

(r, c), and one row (or column) is called a vector, it is composed of a finite 

number of elements as shown in figure (1-10). These elements are referred 

to as picture elements (pixels). Pixel is the term used most widely, each of 
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which has a particular location and value, the value of the point (r, c) 

represents the brightness of the image at that point [3]. 

 

 

Figure 1-10 2D image representation [21]. 

1.6 3D Digital Image Representation 

      Three-dimensional digital images are widely available for the computer 

representation inclusive computed tomography, medical imaging, and 

computer vision [22], a Computer Tomography CT images consist of a 

number of slides, each of these slides corresponds to the part or section that 

is scanned from the patient's body. Each slice of CT has a specific thickness 

so it is composed of voxels (volume elements) rather than a typical digital 

image is composed of pixels [23] [24]. A voxel or volume element is a 

representation of 3D data of the tissue volume as shown in figure (1-11) 

whereas X, Y and Z are an indication of the width, length and height (or 

thickness) of a voxel in sequence. The face of the voxel is the pixel (i.e. X 

and Y) [16]. 

      The 3D image doesn't reconstruct directly in most the tomography 

imaging systems but reconstructed in series of steps such as reconstructing 

multiple 2D slices from its projections in a specific direction and then 

sticking them in the same direction [25]. 
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       In this dissertation, the reconstruction of three-dimensional images will 

be a focused on. 

 

Figure 1-11 The data that form the CT slice [16]. 

1.7  Quality of CT Images 

        It is important to estimate the quality of CT images to clarifying its 

features accurately and to achieve good diagnostic data from the CT images 

[26]. There are four essential factors that have a significant impact on the 

image quality they are the spatial resolution, contrast value, noise, and 

artifacts as shown in figure (1-12). Additionally, there are other minor 

factors that have an effect on image quality. These factors depend on the 

geometry of the imaging technique used. This section will present a 

summarized view of the essential factors that affect image quality [27]. 

 
a 

 
b 
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c 

 

 

 

 

 

 

d 

Figure 1-12 (a) Original image (b) decreasing spatial resolution, (c) decreasing contrast 

value and (d) adding artificial and noise [27]. 

1.7.1 Spatial Resolution 

      Spatial resolution (or sharpness) is the capacity to identify small details 

in the images, or can be expressed as the capacity to differentiate between 

details and edges of objects or structures that vary in its densities, for 

example, differentiate between bone and soft tissue. So, for differentiating 

between converging structures requires high spatial resolution [27]. The 

estimation of the spatial resolution of CT images is influenced by a huge 

number of factors. The properties of the computed tomography system have 

essential effects in spatial resolution, the X-ray scatter and focal spot size of 

the X-ray source is an operator that should be taken into account when 

determining the spatial resolution where generality X-ray tubes have two 

focal spot sizes (small and large focal spots size). Small focal spots made to 

minimize blurring and best perceivability of details, while large focal spots 

have greater heat-dissipate capability [29]. The other property of the CT 

system that has effects on the spatial resolution is detector (pixel size, 

scattering), also, other factors can effects on a spatial resolution for example 

projection geometry, patient move, and reconstruction algorithm  [28] [27].  
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1.7.2 Contrast Value 

      Contrast value in CT images is the capability to distinguish between 

objects that have variation in density or can define it as attenuation by the 

body at different parts depending on the density of each part [29] [27]. 

Where the white color in the image represents bone, the soft tissue represents 

by various shades of gray levels where the degree of gray color depends on 

the amount of water in the soft tissue and the black color in CT images 

represents the space (air) [30]. 

      There are two kinds of contrast resolution in computed tomography 

images which are high contrast resolution and low contrast resolution, These 

types are classified depending on the degree of contrast between the body 

and the background, whether high or low [31]. 

      Contrast value in computed tomography images is influenced by a 

number of factors such as, the type of ray used, the thickness of the object, 

object size, reconstruction algorithm, image shows and noise [32]. 

1.7.3 Noise 

      The definition of image noise in computed tomography images as the 

variability (e.g., standard deviation) of gray levels values in a homogenous 

body [27]. There are different sources of noise of CT images including X-

ray dispersion that perform undesirable results in CT images and noise 

associated with the detector's bad response, the noise can be reduced or 

removed by the applied filter in reconstruction algorithms [27]. 

1.7.4 Artifacts 

      There is no explicit definition of artifacts in CT images, but its 

theoretical meaning can be explained at a certain point as follows: the 
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difference between the reconstructed value and the actual value of the object 

at that point [7]. In other words, any difference between the reconstructed 

image and the physical reality considered artifacts [27]. 

      The major types of artifact in computed tomography images can be 

summarized as streaking, shading, rings, bands, aliasing artifact and artifacts 

due to motion object [7] [27]. 

      Streaking artifacts are formed as straight lines, random or parallel across 

the image and appear in black, bright or mixed between the two colors 

depending on the cause of appearance. The streaks are due to an error in the 

data collection process, a mechanical malfunction, object motion or because 

of the presence a metal [7].  

       Shading artifacts often appear near objects of high contrast. such as, in 

the smooth tissue zone close to the bone. They can be either bright or dark, 

depending on the kind of causative [7]. 

      Ring and band artifacts as shown in figure (1-13), It is clear to us from 

the name of the artifacts that they are shaped as perfect rings, partial rings 

(arcs) or bands in CT images. We can easily identify artifacts if they are 

whole rings or bundles while the brackets may be described as a disease 

rather than a defect and this poses a risk in medical diagnosis [7], Depending 

on the signal given by the detector, these artifacts appear bright or dark [32]. 

Figure 1-13 Numerical of ring artifact [33]. 
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      Metal artifacts appear as star in CT images, they are produced because of 

the difference in absorption between a material placed in the body and the 

original body as shown in figure (1-14) [32], It is commonly  made from 

materials that are hard to penetrate by X-rays like titanium or stainless steel 

compared to the original body such as the knee, the hip, shoulder prosthesis, 

cardiac pacemakers, dental fillings and metallic screws to fix teeth 

replacements [34]. 

 

Figure 1-14 CT image for heart shows metallic artifacts from the cardiac pacemaker 

[35]. 

      There are other types of artifacts, including the happens when the patient 

moves during taking the CT image called motion artifacts [31] as shown in 

figure (1-15). When the patient moves a small movement, for example, 

taking a deep breath during image capture, the artifacts will be in the form 

of blurring while the artifacts will be in the form of double images when the 

patient movement is large [32]. 
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Figure 1-15 Motion causes blurring and double images in a head CT [33]. 

1.8   Literature Review 

       Many researchers use tomography as headlines in their work; some of 

the published works are: 

  In 1999, Lanzavecchia et al., [36] studied a new algorithm to 

reconstruct 3D object. It recovers the 3D Radon transform from 

the 2D Radon transforms. They have shown that this algorithm 

works with accuracy and is faster than commonly used algorithms. 

 In 2000, Zeng [37], studied reconstructing a three-dimensional 

object by sticking several of two-dimensional images that 

reconstructed by back-projection process, the author deduced from 

the results is that the final object is unclear and inaccurate because 

of the blurring, which is resulting from the participation of points 

that located outside the body in the reconstruction of the object. 
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 In 2002 Abdul Jabar [25], depended on equations proposed by Kak 

& Slany and Pratt for a two-dimensional projection with 

modifications on back projections equations to derive the back 

projections equations in the Polar and Cartesian coordinates. Then 

compare these two methods based on the time it took to 

reconstruction images and the quality of the image’s 

reconstruction. Also, he studied the impact of four types of filter 

on the CT images, and compare the performance of these filters 

against standard filters. 

 In 2007, Zosso et al., [38] left to the readers an open-source 

National Library of Medicine Insight Segmentation and 

Registration Toolkit (ITK) implementation of a direct Fourier 

method for tomographic reconstruction, by using parallel-beam X-

ray images. They had given the framework of direct Fourier 

reconstruction and the algorithm they developed. They supply 

results based on the Shepp-Logan phantom image also discuss the 

various reconstruction parameters and display their particular 

effect on the reconstruction results. One of the results they have 

shown that the image reconstructed by the proposed method is of 

high quality compared to the image reconstructed a standard 

filtered back-projection method provided by Matlab. 

 In 2012, Rajendran et al., [39] studied Radon transform to obtain 

local tomography rather than global tomography, one of the aims 

of that is to reduce the dose of X-ray exposure to the patient. The 

local tomographic reconstruction is obtained for a defined ROI (A 

region of interest, samples important inside information set 

specific for a certain study), the ROI can be either a square or 

circular region. They used the filtered back-projection technique, 
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whose length is dependent on ROI size and projection angle. From 

results, the authors show Cosine filter provides better results vs to 

Shepp Logan filter. 

 

  In 2015, Sobani et al.,  [40] reconstructed an object using 

multiple-views of 2D images using MATLAB tools, while data is 

captured by a digital camera. The results showed that 3D 

reconstruction it's good enough to reconstruct exactly the same 

shape as the original object. 

  In 2015, Tang, [41] studied the impact of projection angle errors 

on reconstructing three-dimensional electron tomography by using 

the Fourier iterative method (FIRM) as a reconstruction method. 

That thesis focuses on impacts of miss alignment on reconstruction 

vs noise and missing wedge impacts. He found that the missing 

wedge has the greatest effect among the studied factors, loss of 

necessary information for complete reconstruction causes damage 

to the reconstruction image. Missing alignment and Gaussian noise 

have the same impacts on the reconstruction image. He concluded 

when the projection angle error does not change too much, the 

reconstructed 3D volume has a few changes which were measured 

both with normalized mean square error (NMSE) and Fourier shell 

correlation (FSC). 

 In 2016, Xiaoli Yang, [42] proposed the use of a little number of 

projections to produce accuracy tomography reconstruction. He 

proved image reconstructed from confined projections using 

optimized CGTV (Conjugate gradient-based restoration algorithm 

with Total Variation regularization) with data obtained by X-ray 

imaging, it preserved resolution to accepted limit and their several 
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disadvantages in the filtered back-projection (FBP) method 

overridden by the proposed method. His method decreased the 

number of projections from about 1000 to about 100 with preserve 

reconstruction image quality. He suggested that in addition to 

applying this method in biological and medical fields, it is also 

applied in industrial fields for example structure analysis of 

materials. 

 In 2016, Vassholz et al., [43] in their article suggested a new 

method to the reconstruction of the three-dimensional object. They 

used anisotropic sources to obtain isotropic 3D imaging, the 

reconstruction based on three-dimension radon transform. They 

applied special geometric to avert artifacts that produced by the 

contribution of the points outside the reconstructed object when 

using the integral of the projections that pass through and outside 

the object, as usually consists in a two-dimensional Radon 

transform. 

 In 2018 Louis Godon, [44] introduced a number of suggestions for 

the development of computed tomography. Where he gave an 

empirical description of computed tomography model and 

implementation of this model in companies, he also gave estimate 

the oil and water ratio inner a porous rock. He focused on three-

dimensional imaging by the use of cone ray geometry in computed 

tomography and the importance of determining scanner geometry 

that has an impact on the reconstruction process the geometry was 

determined based on a set of projections of a calibration phantom. 

He used FDK (Feldkamp analytic cone beam algorithm) and 

SART (Simultaneous Algebraic Reconstruction Technique) 

reconstruction algorithms to reconstruct a phantom. 



Chapter One             General Introduction to Computed Tomography 
 

 

22 
 

 In 2018 Kim et al., [45] applied the interpolation methods to 

sinogram to reconstruct an image from a little number of 

projections where they used sparse angular sampling rather than 

normal dense angular sampling in computed tomography scanning 

then normalized the sinogram obtained by little (sparse angular) 

they applied some methods of interpolation on the normalized 

sinogram. They generated a corrected sinogram using multiplying 

the interpolated sinogram by the prior sinogram and is used to 

reconstruct the final CT image by using the FBP algorithm. 

 

1.9  Aims of the Study 

The aims of this present work can be abbreviated by the following: 

 Study the algorithms to reconstruct 3D image for any object by 

parallel beams geometry in computed tomography, using the slicing, 

direct 3D projections and X-Ray transform methods in spatial and 

frequency domain by the 2D, 3D and 4D sinogram spaces. 

 

 A new interpolation method is proposed to recover the short in 

available projections due to the high angular difference that used in 

the object scanning phase. 

 

1.10  The Layout of the Dissertation 

      In addition to the current chapter, this work includes another four 

chapters: 
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 Chapter 2: “Three-Dimensional Reconstructions” supplies 

some basic definitions in the field of computed tomography and 

other necessary ideas that have been used in this thesis. Such as 

the mathematical equations of 2D and 3D projections. The 

methods of reconstruction of 3D images are shown, also the type’s 

interpolation used in this work. 

 

 Chapter 3: “Methodology of Reconstructing 3D Images” 

discusses the steps to establish algorithms for the 3D image 

reconstruction in computed tomography and describes the steps of 

the algorithms in detail.  

 

 Chapter 4: “Results and discussion” included the computed 

results and schemes are given to illustrate the reconstruction and 

the improvements in the performance of the suggested method. 

 

 Chapter 5: "Conclusions, Suggestions and Future Works" 

displays the conclusions obtained from the discussion of the test 

results. In addition to the several suggestions are given for future 

work. 
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Chapter Two 

Three-Dimensional Reconstructions 

 

2.1 Introduction 

      This chapter focused on the reconstruction of a three-dimensional 

image for a three-dimensional object by tomographic imaging based on 

linear integration projections and planar integration projections. 

      Imaging the inside density distribution of a 3D object using a collection 

of its 2D projections can be considered an extension of computerized 

tomography, which was originally developed for reconstructing two-

dimensional cross-sections (slices) of a three-dimensional object from its 

one-dimension projections [46] [47]. It was first used in positron emission 

tomography based on two planar detectors rotating around an object in a 

static angular interval [48]. While reconstructing the three-dimensional 

object using the Fourier transform was first proposed in 1977 by Chu and 

Tarn [48].  

    As mentioned earlier in the first chapter that one of the purposes of X-

ray computed tomography is to acquire images internal structure of the 

object. This chapter will present several ways of reconstruction it depends 

on radon transform in two or three dimensional and others depend on X-

ray projections. 
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2.2 2D Forward Projection 

      To understand the concept of reconstructing 3D images in the first 

must understand the concept of projection which is called Radon transform 

according to the name of scientist Austrian mathematician Johann Radon 

(1887) which laid the fundamentals of this transform [49]. Radon 

transform works to find the amount of density inside the body along a 

particular line (l) tilted from the X-axis at particular angle and a distance 

(t) from the point of origin by a linear integral along each line [50], and by 

combining  the set of linear integrals lead to form the projection that has 

various values at each different angle as shown in figure (2-1)  [50], [1].         

       The line integral means the integral of some parameters inside an object 

along a straight line. The choice of the type of parameter depends on the 

type of physical phenomena (e.g. absorption, attenuation, reflection, etc.) 

that occur for the radiation used for CT imaging, for example when the X-

ray passes through the object, it will be attenuated  [1]. So, the linear 

integration value of a single straight line represents the total attenuation of 

X-ray along that line  [1]. 

 

Figure 2-1 The projections at various angles [51]. 
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2.3  2D Tomography 

      To illustrate the mathematical equations of the projection we assume 

an object represented by a two-dimensional function 𝑓(𝑥⸴𝑦) and each line 

integral represented by the 𝑃(𝑡⸴𝜃)  parameters, the coordinate system will 

be used to describe the projection and linear integral can be illustrated in 

figure (2-2). 

   

Figure 2-2 The coordinates system of projection and the linear integral [1]. 

The line AB define by equation (2-1) [1]: 

     x cos θ + y sin θ = t                                                                       (2-1)  

The orientation of projection can define by: 

     𝛼⃗  ≡ (cos 𝜃  , sin 𝜃)                                                                          

      Where (t) represents the length of the line integral distance from the 

origin and symbol (θ) represents the angle of rotation. 
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The linear integration   Pθ(𝛼⃗. 𝑋⃗ )   can be defined as the following: 

     Pθ(𝛼⃗. 𝑋⃗ ) = ∫ f(x⸴y)   ds
 

(t⸴θ)line
                                   (2-2)  

      Where 𝑋⃗ = (x, y)  and (s) represent the set of (x⸴y) points that belong 

to the integral line  Pθ(t) that have distance (t) from the origin and making 

angle equal to (θ) with the positive X-axis  [25]. 

      Using a delta-Dirac function to calculate the  (x⸴y) set the point that 

belongs to the  Pθ(t) , the equation of forwarding Projections became  [1]. 

      Pθ(t) = ∫ ∫ f(x⸴y) 
∞

−∞

∞

−∞
δ(x cos θ + y sin θ − t ) dx dy                  (2-3) 

      The equation 𝑃𝜃(𝑡) is known as the forward projections or the Radon 

transform of the object 𝑓(𝑥⸴𝑦). Where the projections are produced when 

collection a series of linear integrals  [1],  [25]. 

      In addition, we must clarify that the transform from f(x⸴y) to  Pθ(t) by 

linear integral transform also called X-ray transform, it is completed by the 

imaging operation, which is similar to Radon transform in two dimensions 

while in three dimensions does not resemble Radon transform in three-

dimensional, which will be explained in sections (2.4). 

2.4 2D Image Reconstruction Methods 

      In computed tomography, the reconstruction algorithms are basically 

categorized into two groups which are:  methods that depend on Transform 

(analytical method) and on Finite series expansion (iterative methods) each 

of these methods has its advantages and limitations [17]. 

      The method to reconstruct the image is selected, if it is analytic or 

iterative, depending on the nature of the projections in terms of their 
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number and quality of capturing them and also, depending on the type of 

object that needs to be imaged it (bone or soft tissue), the maximum time 

allowed to reconstruct the image and the nature of the equipment used in 

tomography imaging [17] [40]. 

      The transform methods are widely used for image reconstruction, it is 

used when the time required to reconstruct the image is limited and the 

resulting image in this method is acceptable quality, although this method 

is based on fictional models which are somewhat unrealistic [52]. 

Transform methods are the most widely used methods in many devices that 

depend on X-ray computed tomography technology which fair highly to 

Signal to Noise Ratio (SNR), to obtain a high-quality image that 

reconstructed by any method of transforming methods requires quality and 

high density of projections. In many statuses, the quality and /or quantity 

of data is not enough for the transform methods. These statuses notice, for 

example, when the image is taken with a small dose of radiation in medical 

imaging, taken an image for an object with widely varying densities or 

taken an image with a limited number of projections [25]. 

      To form the image in an analytical method requires a direct 

mathematical solution while in the iterative method requires many 

iterations based on a complex mathematical solution [17], in addition, 

while the Series-expansion methods (Iterative method) have advantages 

than analytic, where an acceptable image can be obtained when the data is 

incomplete, inconsistent and noisy in data resulting from attenuation, 

scatter and random in projections beam [53] [48]. 
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      Besides these advantages of series-expansion methods, there are two 

major disadvantages that make these methods undesirable for 

reconstructing the images, which are [25]:  

      First, this method is based on the statistical mathematical concept in 

which it estimates from a given two-dimensional projection the closest 

image that could produce such projection, so it is an inaccurate method if 

compare it with the transform methods [25]. 

      Second, this method is based on an estimating the image from the 

projection based on the iterative process for linear equations for 

reconstructing an image, and to increase the quality and accuracy of the 

reconstructed image, we must increase the number of iterations needed to 

reconstruct the image, so this method needs a long time because the 

iterations make it very slow, to accelerate this method and make it in a few 

minutes requires special and expensive devices. So in most imaging 

devices that rely on tomography use the transform methods to reconstruct 

the image [25]. 

      For the above reasons, our work in this dissertation will be based on 

the transform methods, but this does not mean that the series expansion 

methods are bad and cannot be used in the future. On the contrary, they 

provide high-resolution reconstructed images from incomplete data and 

noise data. There are several transform methods to reconstruct the image as 

shown below. 

2.4.1 Fourier Slice Theorem (FST) 

      The Fourier slice theorem was the first introduced to reconstruct an 

image from the parallel beam by Bracewell [54]. The Fourier slice theorem 
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can be defined by other names such as projection slice theorem and Central 

slice theorem [51]. 

      The Fourier slice theorem gives a relationship between the projection 

and the Fourier transform of an object [41]. Its method is done by taking 

the FT of the projections at an angle θ that yields to obtain one cross-

section of the original object in frequency domain this cross-section 

correspond to forward Fourier transform of one cross-section of the 

original object 𝐹(𝑢𝑥⸴𝑣𝑦) [55]. Thus if take the Fourier transform for the 

projections at all θ that yields to obtain the whole profile of the original 

object in the frequency domain that corresponds to forward Fourier 

transform of the whole original object  𝐹(𝑢 ⸴𝑣 ) then by take reverse 

Fourier transform of 𝐹(𝑢 ⸴𝑣 )  this produces the full retrieved of 

object 𝑓(𝑥⸴𝑦)  see figure (2-3) [17]. 

 

Figure 2-3 Steps of Fourier slice theorem [17]. 

      To explain Fourier slice theorem from the mathematical side, must 

know in first the two-dimensional forward Fourier transform for an object 

[1]. 

     𝐹(𝑢⸴𝑣) = ∫ ∫ 𝑓(𝑥⸴𝑦) 𝑒−𝑖2𝜋(𝑢𝑥+𝑣𝑦) 𝑑𝑥 𝑑𝑦
+∞

−∞

+∞

−∞
                            (2-4) 
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      On the other hand, we take a look at the Fourier transform of 

projection Pθ(t), 

    𝑆𝜃(𝑤) = ∫  Pθ(t) 𝑒−𝑖2𝜋𝜔𝑡∞

−∞
 𝑑𝑡                                                          (2-5) 

      The simplest case to derive the mathematical equations for Fourier 

slice theorem is done when suppose the projection at an angle equal to zero 

(𝜽 =0), and the Fourier transform along a line of an object get him by 

considered v = 0 thus the forward Fourier transform become [1]: 

     𝐹(𝑢⸴0) = ∫ ∫ 𝑓(𝑥⸴𝑦) 𝑒−𝑖2𝜋𝑢𝑥 𝑑𝑥 𝑑𝑦
+∞

−∞

+∞

−∞
                                  (2-6) 

      The last equation can split into two sections because the phase doesn't 

longer dependent on factor y [1] : 

     𝐹(𝑢⸴0) = ∫  [ ∫ 𝑓(𝑥⸴𝑦) 𝑑𝑦 
+∞

−∞
]

+∞

−∞
𝑒−𝑖2𝜋𝑢𝑥 𝑑𝑥                             (2-7) 

      The section in parentheses in the equation (2-7) represents as an 

equation to find  projections along lines of constant x or can be written as 

equation (2-8) [1]: 

      Pθ=0(x) = ∫ f(x⸴y)   d
∞

−∞
y                                                           (2-8) 

      Replace the section between brackets in equation (2-7) by equation (2-

8)  

     𝐹(𝑢⸴0) = ∫  
+∞

−∞
 𝑃𝜃=0(𝑥)𝑒−𝑖2𝜋𝑢𝑥 𝑑𝑥                                            (2-9) 

      The part after the equality process of the last equation represents the 

1D-FT for the projections Pθ=0(x); so, we can deduce an equation that 

links the projections and a two-dimensional transform for any object as 

equation (2-10): 
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     F(u⸴0) = Sθ=0(u)                                                                       (2-10) 

      The FST is an easier case which isn't dependent on the angle between 

the object and the coordinate system [1]. If it has taken into consideration 

the angle between the object and the coordinates system, the Fourier 

transform of a parallel projection of the image f (x, y) tilted at the angle 𝜽 

with the x-axis gives 2D slice in frequency domain also tilted at the angle 

𝜽 with the u-axis. In another word, when applying the FFT of  Pθ(t) leads 

to giving the values of 𝐹(𝑢⸴𝑣) over the line BBˉ that shown in figure (2-4) 

[1]. 

      In deriving of the equations of Fourier slice theorem with a more 

generalize and solid foundation, assume that the coordinates system  (𝑡⸴𝑠) 

will be the  rotated version of the original coordinates system (𝑥⸴𝑦) at a 

certain angle 𝜽 instead of zero as shown in figure (2-4), that can be done 

by the following matrix  [1]:   

       [
t
s
] = [

cos θ sin θ
− sin θ cos θ

] [
x
y]                                                     (2-11) 

 

Figure 2-4 The FT of a specific projection line from the object [1]. 
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       When the point specified by the coordinate (t⸴s) the equation of 

projections for fixed t it became as equation (2-12) [1]: 

        Pθ(t) = ∫ f(t⸴s)   d
∞

−∞
s                                                              (2-12) 

      Replace the Pθ(t)  in equation (2-5) by the right-hand side of equation 

(2-12) we get [1]: 

      Sθ(w) = ∫ [f(t⸴s) ds]   e
−i2πωt∞

−∞
 dt                                             (2-13) 

      The equation (2-13) may be converted into the (x, y) coordinates 

system by applying the matrix in (2-11), we get: 

       Sθ(w) = ∫ ∫ f(x⸴y) e−i2πw(x cos θ+y sin θ) dx dy
+∞

−∞

+∞

−∞
                 (2-14) 

      The right-hand side of the equation (2-13) represents the 2D forward 

Fourier transform at a spatial frequency of (𝑢 = 𝑤 𝑐𝑜𝑠 𝜃 ⸴  𝑣 = 𝑤 𝑠𝑖𝑛 𝜃) 

or: 

       𝑆𝜃(𝑤) = 𝐹(𝑤⸴𝜃) = 𝐹(𝑤 𝑐𝑜𝑠 𝜃⸴ 𝑤 𝑠𝑖𝑛 𝜃)                                   (2-15) 

      The summarily of the equations (2-13), (2-14) and (2-15) is when 

taking the parallel projections of an object at different 

angles  (θ1 ⸴  θ2 ⸴ θ3 ⸴ … … ⸴θk)  and then taking the forward Fourier 

transform for each of these projections, we get from each transform the 

values of  F(u, v). If we taking an unlimited quantity of projections in this 

way the F (u, v) will be known at all points in the uv-plane. Finally, we 

apply the inverse Fourier transform for whole data in the frequency domain 

we get the reconstructed object as shown in figure (2-5) [1] [41]: 

     𝑓(𝑥⸴𝑦) = ∫ ∫ 𝐹(𝑢⸴𝑣) 𝑒𝑖2𝜋(𝑢𝑥+𝑣𝑦) 𝑑𝑢 𝑑𝑣
+∞

−∞

+∞

−∞
                              (2-16) 
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Figure 2-5 The reconstruct original object by 2D inverse Fourier transform [51]. 

 

2.4.2 Simple Back-Projection (BP) (Inverse Radon Transform 

(IRT)) 

      To reconstruct the image from its projections we need an inverse 

process for the forward projection. This process is called back projection 

or inverse Radon transform. The Simple Back-Projection was first 

introduced to reconstruct an image from the series of its projections by 

Radon [56], and it is the simplest method to reconstruct the original object 

[23] [25], in which consider, the collecting of all projections pθ(t) that 

passing through a point (𝑥⸴𝑦)  for all orientations will obtains the retrieved 

object, that denoted as BP(x⸴y). Because these projections are linear 

integrals through a point  𝑓(𝑥⸴𝑦). Thus 𝑓(𝑥⸴𝑦) is retrieved by this 

collecting although it containing blurring because of the participation from 

the other points that the projection passing through it, that does not 

represent the value of the point to be restored [17]. 
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      If assume using the simplest geometric as illustrated in figure (2-6), 

ones whose source beams are parallel  and opposite the detector, the source 

and detector rotate about the object that fixed in the center of the 

coordinate system (x⸴y), the ray beam passes through the object at each 

rotation angle (𝛳), symbolizes the rotation angle by the symbol (𝛳), and a 

rotating coordinate system represented by (t⸴s) that has the same point of 

origin of the coordinate (x⸴y),  (s) represents the detector position, (t) 

represents the distance along of a ray, any point on the object can be 

represented by either (x⸴y) or (t⸴s) coordinates system and the coordinates 

system are rotated by a rotational transformation [25]. 

        [
t
s
] = [

cos θ sin θ
− sin θ cos θ

] [
x
y]                                                         (2-17) 

Or inversely 

        [
x
y] = [

cos θ −sin θ
sin θ cos θ

] [
t
s
]                                                        (2-18) 

      As shown in section (2-2) and equation (2-2), we get the 

projection pθ(t) by linear integration of all points 𝑓(x⸴y) that pass through 

the projection line that has a length (t), figure (2-6) shows the Radon 

transform Rf(t⸴ϴ) for the function 𝑓(t⸴s) [25].  
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Figure 2-6 1D projection using a parallel beam [25]. 

      Using the above geometry and starting from the idea of back-projection 

(to reconstruct the point (x⸴y) must collect all the projection values that 

pass through this point) i.e. [25]. 

         𝐵𝑃(𝑥⸴𝑦) = 𝑓 (𝑥⸴𝑦) = ∫ 𝑅𝑓(𝑡⸴𝜃)𝑑𝜃
𝜋

0
                                        (2-19) 

Or 

         𝐵𝑃(𝑥⸴𝑦) = 𝑓 (𝑥⸴𝑦) = ∫ 𝑅𝑓(𝑥𝑐𝑜𝑠𝜃 + 𝑦𝑠𝑖𝑛𝜃, 𝜃)𝑑𝜃
𝜋

0
                (2-20) 

      This equation for back-projection produces an image in the Cartesian 

coordinate by using the rotation equation (2-18) [25]. There are other 

equations for back-projection that produce an image in the polar 

coordinates [23]. 

2.4.3 The Filter After the Back-Projection (BPF) 

      The image reconstruction by the previous method (simple back-

projection) is blurring, so will using different types of filters to remove the 

blurring here will explain the method of the filter after back projection. 

Initially reconstructing the image from the projection by back-projection, 

apply forward Fourier transform, filtering in the Fourier domain by 

multiplying the image in the frequency domain by the filter, and then apply 
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the inverse Fourier transform to reconstruct the filtered image. Instead of 

that, the filter operation may be performed in the spatial domain through 

the convolution process of the BP(𝑥⸴𝑦) and a filter operator. However, this 

method has two problems [17]: 

1) The Back-Projection in the frequency domain (BP(ux⸴𝑣y)) should be 

calculated within a matrix much broader than that in  𝑓(𝑥⸴𝑦), As 

blurring in the retrieved image 𝐵𝑃(𝑥⸴𝑦)  makes it take more space 

than the original image space 𝑓(𝑥⸴𝑦) [17]. 

 

2) The values of 𝑓(𝑥⸴𝑦) are positive values at each point (x⸴y) in the 

original object. While the values of the original object after applied 

the FT on it be equal to zero (FT(ux⸴𝑣y) = 0) when values of 

coordinates in Fourier space equal to zeros ( ux = 𝑣y = 0), so the 

retrieved image 𝐵𝑃(𝑥⸴𝑦)  does not have data in the origin point 

because of diverges at the origin point ( ux = 𝑣y = 0). From the 

above reasons, the retrieved image 𝑓(𝑥⸴𝑦) have values zeros and 

negative, this is contrary to values of the original image 𝑓(𝑥⸴𝑦). To 

avoid this disadvantage must exchange the sequence of operations of 

the filter and BP, this will be done in the next section [17]. 

2.4.4 The Filter Before the Back-Projection (FBP)   

      In this section, first, apply a filter on projection data and then BP, 

where the FT is applied to the projections domain rather than applying on 

the blurring object. In one of the steps in this method, we need to convert 

between the Cartesian coordinates and the polar coordinates. This 

conversion is almost similar to the Fourier transform in the previous 

method, but the resulting image in the conversion method between the 
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coordinates does not have a lot of defects and artifacts as in the previous 

method. Besides that, this method takes a long time because the filter is 

applied to each parallel projections at the specific theta independently and 

applied to the rest of the angles in the sequence for improving the final 

image [17]. 

2.5 3D Tomography 

      The three dimensional Radon Transform is defined in the same way as 

in equation (2-4), except that (𝑥⸴𝑦) is now defined as a vector (𝑥⸴𝑦, 𝑧) in 

three dimensional and the integral is the surface integration whose 

orientation  defined by a pair of angles (𝜃⸴ 𝜑), rather than linear integration 

that done in 2D forward transform, see figure )2-7) [57] 

 

Figure 2-7 The Projection in 3D [57]. 

      The three dimensional forward projections are known by using the 2D-

projections of a 3D-function 𝑓(𝑥⸴𝑦⸴𝑧) where these projections are obtained 

by integrating 𝑓(𝑥⸴𝑦⸴𝑧) each a plane surface, where the  orientation of this 

plane can be defined by a vector 𝛼⃗ shown in figure (2-8) [58] [59]. 
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     𝛼⃗ ≡ (sin 𝜃 𝑐𝑜𝑠𝜑 , sin 𝜃 sin 𝜑, cos 𝜃)                                            

 

Figure 2-8 The Projection geometry in 3D [58] [59]. 

      To derive mathematical equations of Radon transform in three 

dimensional, at first suppose a three-dimensional function 𝑓(𝑥⸴𝑦⸴𝑧) and a 

plane that can be represented by a unit vector 𝛼⃗  and the distance s of the 

plane from the point of origin, so the three dimensional forward 

projections of function 𝑓(𝑥⸴𝑦⸴𝑧) is given by [58]: 

     𝑃𝜃⸴𝜑( 𝛼⃗. 𝑋⃗ ) = ∫ ∫ ∫ 𝑓(𝑥⸴𝑦⸴𝑧) 𝑑𝑡
+∞

−∞

+∞

−∞

+∞

−∞
                                       (2-21) 

Where 𝑋⃗ = (𝑥, 𝑦, 𝑧)  and the distant defined by: 

    𝑡 = 𝑥 sin 𝜃 cos 𝜑 + 𝑦 sin 𝜃  sin 𝜑 + 𝑧 cos 𝜃                                    (2-22) 

From equation (2-21) and Dirac’s delta function, we find: 

    𝑃𝜃⸴𝜑( 𝛼⃗. 𝑋⃗) = ∫ ∫ ∫ 𝑓(𝑥⸴𝑦⸴𝑧) 𝛿 (𝑥 sin 𝜃 cos 𝜑 +
+∞

−∞

+∞

−∞

+∞

−∞

                                 𝑦 sin 𝜃  sin 𝜑 +  𝑧 cos 𝜃 − 𝑡) 𝑑𝑥 𝑑𝑦 𝑑𝑧                  (2-23) 

      The function 𝑃𝜃⸴𝜑( 𝛼⃗. 𝑋⃗) is known as the Radon transform of three-

dimensional object 𝑓(𝑥⸴𝑦⸴𝑧). The forward projections operate on the 



Chapter Two              Three-Dimensional Reconstructions 
 

 

40 
 

conversion of spatial space (𝑥⸴𝑦⸴𝑧) to the (𝛼⃗. 𝑋⃗) space. Where every single 

point in the (𝛼⃗. 𝑋⃗) space correspond to the plane in the spatial space (𝑥⸴𝑦⸴𝑧) 

[58].  The 3D back-projection method applies to reconstruction 3D object 

from 3D Radon transform. 

2.5.1 3D Back-Projections Method 

      Three-dimensional back projection is an extension to the two-

dimensional back-projection shown in equation (2-21). To reconstruct the 

three-dimensional object from its projection, an inverse process for the 

forward projection is needed. This process is called back projection, which 

considers, the collecting of 𝑃𝜃⸴𝜑(𝛼⃗. 𝑋⃗) passing through (𝑥⸴𝑦⸴𝑧) for all θ and 

φ yields, the reconstructed image denoted  𝐵𝑃𝜃⸴𝜑(x⸴y⸴z). Since these 

projections are surface integrals through 𝑓(𝑥⸴𝑦⸴𝑧). Thus 𝑓(𝑥⸴𝑦⸴𝑧) is 

retrieved by this collecting although it containing blurring because of the 

participation from the other points that the projection passing through it, 

which does not represent the value of the point to be restored [17]. 

 

    𝐵𝑃𝜃⸴𝜑(x⸴y⸴z)  =  𝑓(𝑥⸴𝑦⸴𝑧) = ∫ ∫  
𝜋

0
𝑅𝑓(𝑥 sin 𝜃 cos 𝜑 +

2𝜋

0

                                                     𝑦 sin 𝜃  sin 𝜑 +  𝑧 cos 𝜃 ⸴𝜃⸴𝜑)𝑑𝜃𝑑𝜑      (2-24) 

2.6 Imaging 3D object by X-ray transform  

      X-ray transform is applied to a three-dimensional object 𝑓(𝑥⸴𝑦⸴𝑧) in 

which the object is stationary and the radiation is revolving around the 

object. So here four variable parameters are needed to parameterize the 

LOR (a line of response) that shown in figure (2-9): two of these 

parameters are angles (𝜃, 𝜑) to define the unit vector 𝑧̂𝑟(𝜑, 𝜃) ≡

(cos  𝜑 cos 𝜃, sin 𝜑 cos 𝜃, sin 𝜃 parallel to the line of response (LOR) and 
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the two other parameters (𝑥𝑟 
, 𝑦𝑟 

) are used to select the location of the 

cross point of the Line of response (LOR) with the plane perpendicular to 

𝑧̂𝑟(𝜑, 𝜃) [60]. 

 

Figure 2-9 Factors of 3D Line of Response (LOR) for the X-ray transform [60]. 

      The derivation of mathematical equations for the X-rays transform is 

based on two conditions, the first condition is   𝑥̂ 𝑟
. 𝑧 ̂ = 0 and the second 

condition is consideration that the 𝜽 angle as the co-polar angle, so the 

matrix used to convert from the original coordinates to projections 

coordinates is [60]: 

      [

𝑥𝑟

𝑦𝑟

𝑧𝑟

] = [

− sin 𝜑 cos 𝜑 0
− cos 𝜑 sin 𝜃 − sin 𝜑 sin 𝜃 cos 𝜃
cos 𝜑 cos 𝜃 sin 𝜑 cos 𝜃 sin 𝜃

] [
𝑥
𝑦
𝑧

]                       (2-25) 

      Based on the equation (2-25), the line integral projections along the 

line of response defined by (𝑥𝑟 , 𝑦𝑟 , 𝜑, 𝜃) can be calculated by [60]: 

    𝑃(𝑥𝑟 , 𝑦𝑟 , 𝜑, 𝜃) = ∫ 𝑓(𝑥⸴𝑦⸴𝑧) 𝑑𝑧𝑟 

+∞

−∞
                                                 (2-26) 

      When taking a set of line integral projections for all (𝑥𝑟 , 𝑦𝑟) and 

constant orientation (𝑧̂𝑟(𝜑, 𝜃) constant ) will generate a 2D sinogram 

𝑃(𝑥𝑟 , 𝑦𝑟 , 𝜑, 𝜃) for the 3D object 𝑓(𝑥⸴𝑦⸴𝑧) as shown in figure (2-10) [60]. 

      The 𝑃(𝑥𝑟 , 𝑦𝑟 , 𝜑, 𝜃) can consider as a 2D sinogram when 𝑧̂𝑟(𝜑, 𝜃) is 

constant in a certain orientation, but when taking projections 
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𝑃(𝑥𝑟 , 𝑦𝑟 , 𝜑, 𝜃)  for all orientation when 0 ≤ 𝜑 < 𝜋 ,  |𝜃| <
𝜋

2
 for an object 

and the values of |𝑥𝑟 ,𝑦𝑟| < ∞ this leads to generation a 4D sinogram, so 

the X-ray transform for 3D object will increase the number of dimensions 

by one in projections domain, this causes redundancy in the data and 

distortion in the retrieved image [60]. 

 

Figure 2-10 The projection taken by X-ray transform [60]. 

 
 

2.7 Method of Reconstruction 3D Object from X-Ray 

Projections 

      The following sections (2.7.1) and (2.7.2) show the equations of 

reconstruction object from 4D projections. 

2.7.1 3D Back Projection for X-Ray Projections 

      Three-dimensional back-projection for X-ray projection is an extension 

to the two-dimensional back-projection for X-ray projection that shown in 

equation (2-20), and the back-projected image is given by [60]: 

      𝑓(𝑥, 𝑦, 𝑧) =  ∫ ∫ 𝑃(𝑥𝑟 , 𝑦𝑟 , 𝜑, 𝜃) 𝑑𝜑 cos 𝜃 𝑑𝜃
𝜋

0

+𝜃

−𝜃
                            (2-27) 
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      This process is called back-projection for X-ray projections, in which 

consider, the summation of 𝑃(𝑥𝑟 , 𝑦𝑟 , 𝜑, 𝜃) passing through (𝑥⸴𝑦⸴𝑧) for all θ 

and φ yields, the reconstructed image denoted  𝑓(𝑥, 𝑦, 𝑧) [60]. 

2.7.2 The 3D Fourier Slice Theorem for X-Ray Transform  

      This method also is known by central section theorem for the X-ray 

transform of the 3D object, for derivation, the mathematical equations for 

this method, initially applied the 2D Fourier transform to the first two 

variants (𝑥𝑟 , 𝑦𝑟)  of the 4D projections as follows [60]: 

      𝑃(𝑢𝑥𝑟 , 𝑣𝑦𝑟 , 𝜑, 𝜃) =

∫ ∫ 𝑃(𝑥𝑟 , 𝑦𝑟 , 𝜑, 𝜃) 𝑒−𝑖2𝜋(𝑥𝑟𝑢𝑥𝑟+𝑦𝑟𝑣𝑦𝑟)+∞

−∞
𝑑𝑥𝑟 𝑑𝑦𝑟                       

+∞

−∞
             (2-28) 

     If 𝐹(𝑢𝑥, 𝑣𝑦, 𝑤𝑧) is the 3D FFT of 𝑓(𝑥 , 𝑦 , 𝑧) 

      𝐹(𝑢𝑥, 𝑣𝑦, 𝑤𝑧) =

∫ ∫ ∫ 𝑓(𝑥 , 𝑦 , 𝑧) 𝑒−𝑖2𝜋(𝑥 𝑢𝑥+𝑦 𝑣𝑦+𝑧𝑤𝑧)+∞

−∞
𝑑𝑥  𝑑𝑦  𝑑𝑧

+∞

−∞

+∞

−∞
                       (2-29) 

      Consequently, for obtaining the final equation of the Fourier slice 

theorem for X-ray transform based on equation (2-30) [60]: 

     𝑃(𝑢𝑥𝑟 , 𝑣𝑦𝑟 , 𝜑, 𝜃) = 𝐹(𝑢𝑥, 𝑣𝑦, 𝑤𝑧)|
𝑤𝑧𝑟=0

                                     (2-30) 

      From equation (2-25) we have, 

      [

𝑢𝑟

𝑣𝑟

𝑤𝑟

] = [
− sin 𝜑 − cos 𝜑 sin 𝜃 cos 𝜑 cos 𝜃
cos 𝜑 − sin 𝜑 sin 𝜃 sin 𝜑 cos 𝜃

0 cos 𝜃 sin 𝜃

] [

𝑢𝑥𝑟

𝑣𝑦𝑟

𝑤𝑧𝑟

]                 (2-31) 

      The meaning of the 3D Fourier slice theorem for the X-ray transform is 

identical to the 2D Fourier slice theorem where the 2D Fourier transform 
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for the projections perpendicular to 𝑧̂𝑟(𝜑, 𝜃) be equivalent to the 3D 

Fourier transform for a section of the 3D object at the same orientation. 

This is shown in figure (2-11) [60]. 

 

Figure 2-11 The 3D Fourier Slice Theorem for X-Ray Transform [60] 

2.8 The Relationship between Radon Transform and X-Ray 

Transform 

      To produce projections for the 3D object there are two methods either 

by 3D Radon transform or X-ray transform. The Radon transform will 

integrate the 3D object across all two-dimensional planes as shown in 

figure (2-12) [60]. 

 
 

Figure 2-12 The Radon transform for 3D Object [60]. 
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      For an n-dimensional object 𝑓(𝑋),  where 𝑋 = (𝑥1, 𝑥2, … , 𝑥𝑛), the 

Radon transform of 𝑓(𝑋),  is defined as the set of all integrals along the (k 

= n – 1) dimensional hyperplanes intersecting the object [60]. 

      Using the same notation, the X-ray transform of an n-dimensional 

object is defined as the set of all (k = 1) dimensional line-integrals through 

the object as shown in figure (2-9) [60]. 

      For two-dimensional objects, the X-ray and Radon transforms are 

equivalent, where k = n – 1 = 1 (that is, line integrals) for both, whereas for 

three (or higher) dimensional objects the X-ray transform remains a line-

integral transform while the Radon transform becomes a plane integral for 

n = 3, and a hyperplane for n > 3 [60]. 

2.9 Ramp Filter In Frequency Domain  

      Ramp filter (RF) is the simplest type of filters, it is classified as a high-

frequency filter, where it prevents the low frequencies from passing which 

causes blurring in the image and it allows the High frequencies passing. Its 

mathematical function is given by (2-32) [61]: 

    𝑅𝐹 (𝑣𝑥, 𝑣𝑦, 𝑣𝑧) = √(𝑣𝑥)2 +  (𝑣𝑦)
2

+  (𝑣𝑧)2                             (2-32) 

The data at each frequency (𝑣𝑥, 𝑣𝑦, 𝑣𝑧) is multiplied by the 𝑅𝐻 (𝑣𝑥, 𝑣𝑦, 𝑣𝑧). 

2.10 Interpolation 

      The images of computed tomography obtained from a series of 

projections, and by collecting a set of projection data at different angles 

this will form the sinogram of a range of angle from 0o to 180o or 360o  [1] 

[62]. 
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      In natural state when take scanning of object used angular interval for 

scanning (delta) equal to one consequently obtain full data sinogram but in 

this section, used different delta (angular interval for scanning) greater than 

one, thus this causes the loss of some data of sinogram, so to restored the 

lost data different methods interpolation are used on sinogram. 

      The interpolation in images is a widespread method in the image 

processing field and other fields. it was also used to improve the 

algorithms used to secure communication in mobile phones [63], Here, it 

used interpolation in tomography for image construction of an object from 

a little number of projections. Some of the interpolation purposes are to 

reduce the number of projections in a computed tomography scan to reduce 

the time of scan and exposure of radiation [64] [65] [66] [67]. There are 

many different types of interpolation methods, each of them has a different 

result for the final image. Will chose the best method depending on the 

quality, or visible distinction for each pixel. 

      The interpolation methods are used to find missing pixel values located 

in a known location, where this pixel is located between pixels and has 

known values. [68], [69]. Or as some have defined it as expanding data 

from limited data [70]. 

      Three frequently interpolation methods used are the nearest neighbor 

interpolation, linear interpolation, and non-linear interpolation applied on 

the 2D sinogram that shown in figure (2-13) to determine the missing 

projections, for all three interpolation methods, the angular interval 

between two adjacent projections (∆𝜃) is normalized to unity. 
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Figure 2-13 A schematic representation of the adopted geometry for the interpolation 

methods 

      The new value for the missing projections at distance 𝑑 from the 

previous projection is calculated by finding the weighted sum of the 

previous projection at (𝜃𝑖) which is 𝑃𝜃𝑖,𝑙 and the posturer projection at (𝜃𝑗) 

which is 𝑃𝜃𝑗,𝑙, as equation (2-33): 

       𝑃𝜃,𝑙 = 𝑤𝑖𝑃𝜃𝑖,𝑙 + 𝑤𝑗𝑃𝜃𝑗,𝑙                                                              (2-33) 

       Where 𝑃𝜃,𝑙 is the projection at an angle fall between two adjacent 

projection at 𝜃𝑖and 𝜃𝑗, 𝑤𝑖 is the summation weight for the previous 

projection at (𝜃𝑖) and 𝑤𝑗 is the summation weight for posturer projection at 

(𝜃𝑗). 

      The value of the two summation weights is always maintaining the 

following condition: 

      𝑤𝑖 + 𝑤𝑗 = 1                                                                                    (2-34) 

      Where the value of the 𝑤𝑖 is calculate for each interpolation method as 

follow: 

  Nearest neighbor interpolation method 
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      𝑤𝑖 = {
1      𝑖𝑓  𝑑 <

∆𝜃

2

0     𝑒𝑙𝑠𝑒𝑤ℎ𝑒𝑟𝑒
                                                                    (2-25) 

 Linear interpolation method 

      𝑤𝑖 =
𝑑

∆𝜃
                                                                                        (2-36) 

 Nonlinear interpolation method 

      𝑤𝑖 =
1

1+e−(6−12𝑑)                                                                         (2-37) 

      The distribution for the summation weights is illustrated in the figure 

(2-14). 

  

(a) (b) 

 

(c) 

Figure 2-14 The distribution of the summation weights for three interpolation methods 

(a) Nearest Neighbor (b) Linear (c) Nonlinear 
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2.11 Fidelity Criteria 

      Measure the fidelity criteria of an image after each processing method 

is necessary to estimate the quality of the image after processing and to 

estimate the performance of the processing method, there are two kinds of 

fidelity criteria are objective and subjective fidelity criteria. [71] 

2.11.1 Objective Fidelity Criteria 

      Its mathematical measure applied to digital information to estimate the 

amount of error in information processed by comparing it with original 

information. Here the image represents the digital information, where 

𝑓(𝑥, 𝑦, 𝑧) it represents the original image symbol and 

𝑓ˋ(𝑥, 𝑦, 𝑧) represents the retrieved image symbol [3].  For any values of 

x, y, and z the error  (𝑒) is [72]: 

       𝑒 = 𝑓ˋ(𝑥, 𝑦, 𝑧) −  𝑓(𝑥, 𝑦, 𝑧)                                                         (2-38) 

        The total error (𝑒𝑇) of the retrieved image has a size (𝑁 × 𝑀 × 𝑊) is 

[72]: 

        𝑒𝑇 = ∑ ∑ ∑ (𝑓ˋ(𝑥, 𝑦, 𝑧) −  𝑓(𝑥, 𝑦, 𝑧))𝑊−1
𝑧=0

𝑀−1
𝑦=0

𝑁−1
𝑥=0                        (2-39) 

      Care must be taken when using objective fidelity criteria because they 

may sometimes be inconsistent with the subjective fidelity criteria, where 

the image is judged to be bad or good after processing depends on the 

compatibility of the two fidelity criteria [3]. The common types of 

objective fidelity criteria are: 
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1- Mean Square Error (MSE) 

      It's an average of the sum of the square of the error between the image 

after and before processing [71]. 

     𝑀𝑆𝐸 =
1

𝑀×𝑁 ×𝑊
∑ ∑ ∑ ((𝑓ˋ(𝑥, 𝑦, 𝑧) −  𝑓(𝑥, 𝑦, 𝑧))2𝑊−1

𝑧=0
𝑀−1
𝑦=0

𝑁−1
𝑥=0       (2-40) 

      When the value of the MAD or MSE high that means the processed 

image is bad compared to the original image, whereas when the value of 

the MAD or MSE is zero, it means that the method of processing is ideal. 

In these types of fidelity criteria, do not have negative values because of 

the effect of the quadratic and absolute operation [3]. 

2- Root Mean Square Error (RMSE) 

      It is calculated by taking the square root of Mean square error(MSE). 
When the value of RMSE small it means the processing method is ideal 

[73].  

     𝑅𝑀𝑆𝐸 = √
1

𝑁×𝑀 ×𝑊
∑ ∑ ∑ ((𝑓ˋ(𝑥, 𝑦, 𝑧) −  𝑓(𝑥, 𝑦, 𝑧))2𝑊−1

𝑧=0
𝑀−1
𝑦=0

𝑁−1
𝑥=0               (2-41)                                    

3- Signal to Noise Ratio (SNR) 

      It is calculated by taking the square root of MSNR as shown in 

equation (2-45). When the value of SNR high means the reconstructed 

image is good [3].         

     𝑆𝑁𝑅 = √
1

𝑁×𝑀×𝑊
 ∑ ∑ ∑ (𝑓(𝑥,𝑦,𝑧))2𝑊−1

𝑧=0
𝑀−1
𝑦=0

𝑁−1
𝑥=0

𝑀𝑆𝐸
                                         (2-42) 

      Many times the SNR is calculated in decibel (1dB=one tenth of the 

logarithm) as below [71]. 

      𝑆𝑁𝑅 = 10 log10(
1

𝑁×𝑀×𝑊
 ∑ ∑ ∑ (𝑓(𝑥,𝑦,𝑧))2𝑊−1

𝑧=0
𝑀−1
𝑦=0

𝑁−1
𝑥=0

𝑀𝑆𝐸
)                         (2-43)                                    
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4- Peaks- Signal to Noise Ratio (PSNR) 

      It is calculated by taking the ratio between the maximal value of the 

gray level in the image and the mean square error, it is also called the 

quantization noise. In many times, it is measured in units of decibel 

(1dB=one tenth of the logarithm), as below [74]:              

      𝑃𝑆𝑁𝑅 = 10 log10(
𝐿2

𝑀𝑆𝐸
)                                                               (2-44)      

Where,  L   is the maximum value of the gray levels.                       

2.11.2 Subjective Fidelity Criteria    

      The quality of retrieved images is evaluated based on the average 

rating of the group subjective evaluations of human experts. This can be 

done by display retrieved images to a collection of experts then calculate 

the averaging of their evaluations. The absolute rating scale may be used as 

evaluations, such as (excellent, fine, passable, marginal, inferior and 

unusable) [75] [76]. 
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Chapter Three 

The Methodology of Reconstructing 3D Images 

3.1 Introduction 

      Computed tomography used to generate a three-dimensional 

representation of the inside object without affecting the structure of the 

object, the quality of the reconstructed images depends on several 

parameters in the reconstruction algorithms which will discuss in this 

chapter. 

      Most researches in the field of computed tomography focus on 

improving the quality of the reconstruction image. This chapter describes a 

review of algorithms of images reconstructed to improve its quality with 

using the least dose of radiation and least time. 

3.2 summarize of methodology 

        The steps of reconstruct 3D object can summarize in figure (3-1) 

Create 3D Object

Apply the back projection 
to each slice

Retrieved Object

Divided the 3D Object to n-Slice along Z-axis 
and parallel to (x, y) plane Apply 2D Radon 

Transform to each Slice at different Z 

Apply the 2D 
interpolation to the 3D 

sinogram

 ɵ = 1 

No

Yes

Direct 3D Forward Projection X-ray Transform 

Apply the FST

Apply Ramp 
filter and 

threshold value

Apply threslod 
value

3D Back projection

Apply Ramp filter 
and threshold value

Apply 3D BP Apply FST

Apply Ramp 
filter and 

threshold value

Apply threslod 
value

 
Figure 3-1 Summarize of methodology block diagram.
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3.3 Creating 3D Object 

      The first step in our study is to create a three-dimensional object by using 

MATLAB programing language, as a sample to apply and test the 

algorithms. 

      Here, initially will create two objects, the first object is the first object is 

a symmetrical solid sphere have a hollow sphere in the center of a solid 

sphere as shown in figure (3-2a, b). This is done by using the sphere equation 

and choice the radius of the spheres and the position of the spheres in the 

three-dimensional space by controlling on the space dimensions (x, y, and 

z). Where the centers, radius and the density of each sphere are listed in table 

(3-2), this sketch in dimension’s space is (33, 33, 33). 

Sphere No. Center radius Density 

1 (The solid sphere) (17,17,17) 17 1 

2 (The hollow sphere) (17,17,17) 3.5 0 

     

  

(a) (b) 

Figure 3-2 (a) hollow sphere inside solid sphere 

                                         (b) Solid sphere 

Table 3-1 the location, dimension, and density of the spheres that consist of 

the object 
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      The second object is asymmetrical, which is almost similar to the outer 

structure of the Mickey Mouse head with a hollow small sphere in the center 

of it as shown in figure (3-3 a, b), where the big sphere and the ears of 

mickey Mouse are solid spheres. This is done in the similar way of the first 

object also based on sphere equation as well as the choice the radius of the 

spheres and the position of the spheres in the three-dimensional space by 

controlling the space dimensions (x, y and z). Where the centers, radius and 

the density of each sphere are listed in table (3-3), this sketch in dimension’s 

space is (33, 33, 33). 

  
(a) (b) 

Figure 3-3 (a) hollow sphere inside head Mickey Mouse & 

                                          (b) the solid head for Mickey Mouse 

 

Table 3-2 The location, dimension, and density of the spheres that consist of Mickey 

Mouse 

Sphere No. Center radius Density 

1 (the main) (17,8.5,18) 9 1 

2 ( small right) (26,13,25) 3 1 

3 (small left) (8, 13, 25) 3 1 

4 (the Hollow) (17,8.5,18) 3 0 
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3.4 Methods of Forward projections 

      The second step after creating a three-dimensional object, it is done by 

taking the forward projections of the three-dimensional object. In this 

research, it was done by three methods depending on how the image is 

reconstructed.  

3.4.1  Slicing Method 

      The object is divided in a certain direction into several two-dimensional 

layers in this method, for example, an object 𝑂(𝑥⸴𝑦, 𝑧) can be considered to 

be composed of several two-dimensional layers (n) have the same thickness 

along the z-axis, all these layers are perpendicular to z-axis as shown in 

figure (3-4). Each layer in three dimensional object is considered as a two-

dimensional function 𝑓(𝑥⸴𝑦). 

      According to the above paragraph, the three-dimensional object 

reconstruction can be done by taken a number of two dimensional Radon 

transform of a 3D object along different heights as shown in figure (3-4) by 

applying the equation of two-dimensional projections (2D Radon transform) 

(see equation 2-3) separately for each two-dimensional slice at different 

heights for the three-dimensional object the orientation of the two-

dimensional projection is identified by angle (θ), where the range of theta 

angle has the range (0 - 𝜋). The two dimensional radon transform (that 

discussed in section 2-2 in chapter two) will generate sinogram (i.e. two-

dimensional projection) for each slice of the object. 
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Figure 3-4 The 2D radon transform for one plane of 3D object [60]. 

      After the implementation completed of the forward projections on all the 

slides starting from Z=1 to Z=33, the two-dimensional projections 

(sinogram) has resulted from each two-dimensional slice are stacking at 

different heights to produce the three-dimensional projections of the three-

dimensional object, the block diagram of this method illustrated in figure (3-

5). 

Start

Create the 3D Object

 Divided  the 3D- object into several  2D-slice along z-axis

Apply 2D Radon Transform for each 2D slice 

Stacking all the 2D sinogram will generate the 3D-sinogram 
P(z,r,ϴ )

End

 

Figure 3-5 The forward slicing method block diagram. 
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3.4.2  Direct 3D Projections Method 

      In the second method, apply the equation of the three-dimensional 

projections (three dimensional Radon transform) that shown in equation (2-

23) for the three-dimensional object, the orientation of the three-dimensional 

projection is identified by a pair of angles (θ, φ), rather than one angle as 

done in two-dimensional projections. Where the range of theta angle is (0 -

 𝜋), while the range of Phi is (0 - 2𝜋). The block diagram of this method 

illustrated in figure (3-6). 

Start

Create 3D Object

Apply 3D Radon Transform for the 3D Object 

Saving the 3D sinoram P(r,ϴ, ϕ )

End

 

Figure 3-6 The Forward the Direct 3D Projections block diagram. 

 

3.4.3  X-Ray Transform Method (X-Ray Projections) 

      The third method,  is done by taking X-ray projections (seen equations 

2-25 and 2-26) for a three-dimensional object where the object is stationary 

while the X-ray rotate around the object, the orientation of the X-ray 

projections is identified by a pair of angles (θ, φ) Where the range of theta 

angle has |𝜋/2| degrees while the range of Phi is (0 - 𝜋). and pair of 
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coordinate (x, y) to locate the position of projections, the block diagram of 

this method illustrate in figure (3-7).  

Start

Create 3D Object

Apply the 3D X-ray Transform for the 3D-Object 

Saving the 4D sinoram P(x,y,ϴ, ϕ )

End

 

Figure 3-7 The Forward X-Ray Transform block diagram. 

 

3.5 3D Object Reconstruction Methods  

      There are many methods to reconstruction images from its projections, 

in this research work, three types of reconstruction methods are used, two of 

them are Back-Projections (BP) (or Inverse Radon Transform) and Fourier 

Slice Theorem (FST), each of these methods is applied depending on the 

method of taking these projections for the three-dimensional object as 

explained in sections (3.3.1 and 3.3.2). The third method is X-ray transform 

to reconstruction the three dimension object from projections that obtained 

by using the method in section (3.3.3), there are two methods  to complete 

the last method either Three-Dimensional Back Projections for X-Ray 

Projections or the Three-Dimensional Central Section Theorem for X-Ray 

Projections, therefore it is necessary to study and determine the best method 

in order to make an accurate reconstruction by considering devices that 

available, time consumption and cost for the method. 
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3.5.1 Reconstructing the 3D Object from 2D Projection 

      It is designed for the two-dimensional Computed Tomography (CT) 

models, the Back-Projection process is very useful in three-dimensional 

reconstruction field, in order to reconstruct the images from its sinogram 

obtained as results from Radon transform calculation explained in chapter 

two. If the 3D sinogram of the 3D object is obtained by applying the method 

in section (3.3.1). In this case, the appropriate reconstruction method is 

either by using a back-projection method, which is done by applying the two 

dimensional back projection by using equation (2-20) for all slices at 

different heights, this leads to reconstructed several slices for the object at 

different heights, the figure (3-8) illustrates the block diagram of this 

method. 

Start

Create 3D Object

Divided the 3D Object to n-Slice along Z-axis and parallel to (x, y) plane

Apply 2D Radon Transform to each Slice at different Z

 Stacking the 2D slice of Sinogram to create 3D Sinogram

 Apply 2D Back Projection for each slice from sinogram

Retrieve the 3D Object by staking all the 2D slice

End

 

Figure 3-8 The Reconstructed 3D Object by back-projection method block 

diagram. 
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      Or using Fourier Slice Theorem, it is done by applying the one 

dimensional Fourier transform for all one-dimensional projections by using 

equation (2-5) for all slices at different heights. After that filtering is applied 

for each result, that leads to obtaining the slices at different heights for 3D 

object in frequency domain, the 2D inverse Fourier transform is 

implemented for each slice by using equation (2-16) this leads to reconstruct 

several slices for an object at different heights. All slices are stacked in its 

position corresponding to each (x, y, z) to reconstruct the 3D object, the 

figure (3-9) illustrates the block diagram of this method. 

Start

Create 3D Object

Divided the 3D Object to n-Slice along Z-axis and parallel to (x, y) plane

Apply 1D Fourier transform for each 1D projection 

Apply filtering for each result

Apply 2D inverse Fourier transform for each filtered slice in frequency domain

   Retrieve the 3D Object by staking all the 2D slice then apply threshold value

End

 Apply 2D Radon Transform to each Slice at different Z

 

Figure 3-9 The Reconstructed 3D Object by FST method block diagram. 

 

       The object obtained by Fourier slice theorem has too many points 

because of the blurring artifact thus by apply a threshold value to the 
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reconstructed object, in which all point with magnitude less than the average 

value of the all reconstructed points will be eliminated. 

3.5.2 Reconstructing the 3D Object from 3D Projection 

     The appropriate reconstruction method is used a 3D back-projection 

method utilizing equation (2-24) on the 3D sinogram of the 3D object, which 

is obtained by implementing the direct 3D forward projection method in 

section (3.3.2), the figure (3-10) illustrates the block diagram of this method. 

Start

Create 3D Object

Apply 3D forward Projection

      Retrieve the 3D Object by apply 3D  
Back-Projection

End

 

Figure 3-10 The 3D BP block diagram. 
         

3.5.3 Reconstruction the 3D Object from 4D Projection 

      When the X-ray transform used to obtain the 4D projections, the 

appropriate images reconstruction methods are either 3D Back Projection 

for X-ray Projections described in equation (2-27). Figure (3-11) illustrates 

the block diagram of this method. 
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Start

Create 3D Object

Apply x-ray transform for 3D object

   Retrieve the 3D Object by apply 3D 
Back-Projection for the 4D projection

End

 

Figure 3-11 The 3D BP for x-ray projections block diagram. 

      Or the central section theorem for the X-ray projection of a 3D, which 

applied the 2D forward Fourier transform to 4D projection. The 4D 

projections in frequency domain are transformed to 3D projection also in 

frequency domain by matrix transformation, then the 3D inverse Fourier 

transform is applied to retrieve 3D object, this method described in the 

section (2.7.2), the figure (3-12) illustrates the block diagram of this method. 
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Start

Create 3D Object

Apply x-ray transform for 3D object

Transform 4D projection to 3D projection in frequency domain 

   Retrieve the 3D Object by apply 3D inverse Fourier transform

End

Apply 2D Forward Fourier transform for each 4D 
projection

 

Figure 3-12 The central section theorem for the X-ray projection block diagram. 

 

3.6 The Methodology of Interpolation 

      For the purpose of explaining the effect on asymmetric object of the 

interpolation methods adopted in this study, an asymmetrical body is used, 

such as the head of the Mickey Mouse shown in figure (3-3).   

      The interpolation methods applied to the 3D projections obtained by 

using the forward method illustrated in section (3.3.1), but it must be taken 
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into account that the equal angular distance (∆𝜃) is greater than one degree 

that is used to obtain the 3D projections.  

      To enhance the 3D projection and estimate the values of the missing 

projection data, three equation of interpolation methods are used (see section 

(2-8)). The reconstruct object from interpolation sinogram by applying the 

methods of reconstruction object for each two-dimensional slice from its 

sinogram. To study the object features and estimate how much the 

improvement compared to the object reconstruction from sinogram in terms 

of missing data. 

        The signal-to-noise (SNR) ratio is used to evaluate the reconstructed 

object, besides that the number voxel that constructs the 3D object after 

using a threshold value to decide whether the voxel belongs to the object. 

The interpolation method illustrated in the block diagram (3-13) by using 

Back projection to reconstruct object and (3-14) by using Fourier slice 

theorem to reconstruct object. 
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Figure 3-13 The interpolation method by using Back projection to reconstruct object 

block diagram. 

Start

Create 3D Object

Divided the 3D Object to n-Slice along Z-axis and parallel to (x, y) plane

Apply the back projection to each slice

   Retrieve the 3D Object by staking all the 2D 
slice 

Calculate the quality of the retrieved object 

End

 Apply 2D Radon Transform to each Slice at different Z 

Apply the 2D interpolation to the 3D sinogram

 ɵ = 1 

No

Yes
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Start

Create 3D Object

Divided the 3D Object to n-Slice along Z-axis and parallel to (x, y) plane

Apply the Fourier slice theorem to each slice

   Retrieve the 3D Object by staking all the 2D 
slice 

Calculate the quality of the retrieved object 

End

 Apply 2D Radon Transform to each Slice at different Z 

Apply the 2D interpolation to the 3D sinogram

 ɵ = 1 

No

Yes

 

Figure 3-14 The interpolation method by using FST to reconstruct object block 

diagram. 
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       Chapter Four 

Results and Discussion 

 

4.1 Introduction 

      In this chapter the results are given to illustrate the reconstruction images 

and the improvements in the performance of the suggested method. 

4.2 Results of the Forward projections 

      The following results obtained by applying the adopted forward 

methods. 

4.2.1 Forward Projection using Slicing Method 

      In the first method, the object is divided into several two-dimensional 

slides along the Z-axis (height) and these slices are parallel to the plane (x, 

y) see figure (4-1 a, b), the 2D slices also are shown in figure (4-2 a, b), then 

apply the equation of two-dimensional projections (2D Radon transform) 

separately for each two-dimensional slice at different heights for the three-

dimensional object. 

  
(a)  (b)  

Figure 4-1 The 2D slices along the Z-axis for (a) for hollow sphere inside the solid 

sphere (b) for the head of Mickey Mouse 
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(a) 

 
(b) 

Figure 4-2 (a) 2D slice of the sphere at different heights & (b) 2D slice of the head of 

Mickey Mouse at different heights 
 

      After completing the implementation completed of the forward 

projections on all the slides starting from Z=1 to Z=33, stacking the two-

dimensional projections has resulted from each two-dimensional slice at 

different heights as represented in figure (4-3 a, b) to produce the three-

dimensional projections of the three-dimensional object as shown in figure 

(4-4 a, b). 
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(a) 

 
(b) 

Figure 4-3 a 2D projection for some 2D slice of the (a) sphere at different heights 

and (b) head of Mickey mouse 
 

 

  
(a)  (b)  

Figure 4-4 Staking the 2D slices of projections for (a) sphere and (b) head of Mickey Mouse. 
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4.2.2   Forward Projection using Direct 3D Projections Method 

      In the second method, apply the equation of the three-dimensional 

projections (three dimensional Radon transform) for the three-dimensional 

object. See figures (4-5 a, b) and (4-6 a, b) represent the three-dimensional 

projections and the two-dimensional slice of the three-dimensional 

projections at different heights. The figure (4.7 a, b) represents the mesh for 

three-dimensional projection for the head of Mickey Mouse and sphere. 

 
 

(a)  (b)  

Figure 4-5 The 3D projections for (a) sphere and (b) head of Mickey Mouse. 

  

 

                           (a) 
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                                                                    (b) 

Figure 4-6 a 2D slices projection from 3D projections for (a) sphere and (b) head of 

Mickey Mouse. 
  

  
(a) for sphere (b) for Mickey Mouse 

Figure 4-7 a mesh for 3D Projections. 

4.2.3   Forward Projection using X-Ray Transform Method 

      The third method, this method is done by taking X-ray transform to 

obtain the 4D projection for a three-dimensional object, see figure (4-8), (4-

9), (4-10) and (4-11) represent the three-dimensional X-ray projections and 

several of two dimensional slices that taken from three-dimensional X-ray 

projections at different heights for different object.  
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(a)  (b)  

Figure 4-8 The 3D X-ray projections of the 3D sphere for (a) all range of Theta and specific 

Phiand (b) all range of Phi and specific Theta.  

 

 

(a) 

 
(b) 

Figure 4-9 A 2D slice projections from 4D X-ray projections for the sphere at (a) specific 

Phi and several degrees of Theta and (b) specific Theta and several degrees of Phi. 
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(a)  (b)  

Figure (4-10) a 3D X-ray projections of the head of Mickey Mouse at (a) specific Phi and 

several degrees of Theta and (b) specific Theta and several degrees of Phi. 

 

(a)  

 
(b) 

Figure 4-11 The 2D slice projections from 4D x-ray projections for the head of 

Mickey Mouse at (a) specific Phi and several degrees of Theta and (b) specific Theta 

and several degrees of Phi. 
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4.3 The Results of Reconstruction Methods 

      The following results obtained by applying the adopted reconstruction 

methods. 

4.3.1 Reconstruct 3D Object from the 2D projection 

      The following results obtained by applying the adopted reconstruction 

methods from the 2D projection with and without an applied filter. 

4.3.1.1 The Results of Reconstruction Without Filtering 

      The 2D reconstruction methods are applied to the 2D projection of the 

2D slices of the 3D object to restore the object slices, it is done by taking 

each two dimensional slice of projections as shown in figures (4-3 a) and (4-

3 b) and then applied the two dimensional back projection equations for all 

slices at different heights, this led to reconstructed several slices for an 

object at different heights as shown in figures (4-12 a ) and (4-13 a), or by 

using Fourier Slice Theorem, it is done by taking each two dimensional slice 

of projections as shown in figures (4-3 a) for sphere and (4-3 b) for head of 

Mickey Mouse and apply the one dimensional Fourier transform for all one-

dimensional projections for all slices at different heights then filtering each 

result, that led to obtaining slices at different heights for object in frequency 

domain, and by applying the 2D inverse Fourier transform for each slice this 

led to reconstructed several slices for an object at different heights as shown 

in figures (4-12 b) and (4-13 b). it is clear from figures that the blearing 

artifact that the Back Projection method suffers from, miss the internal 

hollow sphere in both two objects, while using the Fourier Slice Theorem 

the reconstructed image eliminated from the blearing artifact, therefore, the 

interior hollow sphere become obvious in both two objects. 
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(a)  

 
(b)  

Figure 4-12 The 2D reconstructed Slices from the 2D projection of the 3D Sphere 

for different Z values, reconstructed by (a) BP and (b)FST. 

 

 
(a)  

 
(b)  

Figure 4-13 the 2D reconstructed Slices from the 2D projection of the 3D head of 

Mickey Mouse for different Z values, reconstructed by (a) BP and (b) FST. 
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      As mentioned in chapter three to restore the 3D object, the 2D 

reconstructed slices are stacked back together again, see figures (4-14 a, b) 

for sphere and (4-15 a, b) for Mickey Mouse. It is clear that the internal 

hollow sphere is absence in the Back Projection method, due to blearing 

artifact.  

   

(a)  (b)  

Figure 4-14 The 3D reconstructed sphere from the 2D projection using BP method, (a) 

representing the stacked 2D slices and (b) the 3D representation where there is no internal 

sphere. 

 

     

  

  

Figure 4-15 The 3D reconstructed head of Mickey Mouse from the 2D projection using 

BP method, (a) representing the stacked 2D slices, and (b) the 3D representation where 

there is no internal sphere. 
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      While the Fourier Slice Theorem success to reconstruct the 3D object 

with the precence of the internal hollow sphere as illustrated in figures (4-

16 a, b) for sphere and (4-17 a, b) for Mickey Mouse, since it eliminates 

most of the blurring effect by correcting the contribution weight of the object 

points that contribute in the back projection integral.  

  
(a) (b) 

Figure 4-16 The 3D reconstructed sphere from the 2D projection using FST method, 

(a) representing the stacked 2D slices and (b) the 3D representation where there is the 

internal sphere 

  

(a)  (b)  

Figure 4-17 The 3D reconstructed Mikey Mouse from the 2D projection using FST 

method, (a) representing the stacked 2D slices, and (b) the 3D representation where there is 

the internal sphere 
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4.3.1.2 The Results of Reconstruction With Filtering 

      It is clear from the figures (4-16) and (4-17) that the objects 

reconstructed by FST have excessive points, so, to eliminate the excessive 

points that related to the blurring artifact that the FST couldn’t remove, will 

apply a threshold value for both objects that reconstructed, in which all point 

with magnitude less than the average value (0.4630) of the all reconstructed 

point will be eliminated for sphere while for head of Mickey Mouse all point 

with magnitude less than the average value (0.0775) multiplied by 4 of the 

all reconstructed point will be eliminated, It is clear from figures (4-18 a, b) 

and (4-19 a, b) by using subjective criteria the reconstructed object will 

greatly improve when applying the threshold value. 

  

                               (a) 
(b)  

 
Figure 4-18 The 3D reconstructed sphere from the 2D projection using FST method 

after applying the threshold value, (a) representing the stacked 2D slices and (b) the 

3D representation. 

 

 

 

 

 



Chapter Four                                   Results and Discussion 

  
 

 

  79  
 

  

 (a)  
(b)  

 
Figure 4-19 The 3D reconstructed head of Mickey Mouse from the 2D projection 

using FST method after applying the threshold value, (a) representing the stacked 

2D slices and (b) the 3D representation. 

 

 

Table 4-1 The SNR, PSNR and RMSE before and after applying the  threshold for both 

reconstructed objects from the 2D projection by FST method 

  

      From table (4-1) can notice that the SNR increases for sphere and 

decreases for Mickey Mouse after applying the threshold value while the 

RMSE decreases for sphere and increases for the head of Mickey Mouse 

after applying the threshold value. This means that the recovered sphere after 

applying the threshold value has improved in comparison to the recovered 

sphere without applying the threshold value while the recovered Mickey 

Mouse after applying the threshold value has not improved in comparison 

to the recovered Mickey Mouse without applying the threshold.  

 

 Retrieved 3D 

object by FST 

Without Threshold  With Threshold  

SNR PSNR RMSE Threshold SNR PSNR RMSE 

Sphere Without 

Filtering 11.8311 14.3060 0.1926 0.4630 12.7142 15.1891 0.1740 

Head of Mickey 

Mouse Without 

Filtering 

9.5247 20.0805 0.0991 0.0775 *4   8.1601 18.7159 0.1159 
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      As shown from the figures (4-14) and (4-15) that the objects 

reconstructed by BP the blurring were be removed by applying the filter in 

the frequency domain called the ramp filter in the frequency domain. The 

figures (4-20) and (4-21) have shown the result from applying the filtering, 

from the figure (4-20) can see the filtering success to retrieve the internal 

hollow sphere inside both objects. While the figure (4-21) shows the three-

dimensional object drawing algorithm was unable to build the inner hollow 

sphere in the head of Mickey Mouse due to blurring while the algorithm in 

the large solid sphere succeeded in building the internal hollow sphere. On 

the other hand, the filtering caused some defects of the external structure of 

a big solid sphere. 

 
(a)  

 

(b) 

Figure 4-20 The slices of the reconstructed object from the 2D projection after applying the filter 

for (a) sphere and (b) head of the mickey mouse 
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(a)  (b)  

Figure 4-21 The 3D reconstructed from the 2D projection after applying the filter for (a) sphere 

and (b) head of the mickey mouse 

 

      In order to evaluate the accuracy of each method in the reconstruction 

process, by calculating the volume of the solid sphere, the volume of the 

head of Mickey Mouse and the volume of the hollow sphere inside them by 

counting the points that belong to each of them. The results are shown in 

Table (4-2). 

Table 4-2 The volume of the reconstruction 3D object from 2D projection 

 

      From table (4-2) the volume of each object (sphere and head of Mickey 

Mouse) that reconstructed by FST is closer to the original object volume 

compared to the calculated volumes of reconstructed objects by BP method. 

      After applying the filtering on the results of back-projection now 

calculate the SNR, PSNR and RMSE of the retrieved object before and after 

filtering and threshold. The results are shown in Table (4-3). 

Type of object Original Reconstruction 

by BP 

Reconstruction 

by FST 

Reconstruction by 

BP after apply 

filtering 

Solid Sphere 20326 18871 19664 16720 

Internal Hollow  Sphere 147 Zero 172 98 

Head Mickey Mouse 3162 3561 3349 3145 

Internal hollow sphere 

in head Mikey Mouse 

126 Zero 101 1 
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Table 4-3 The SNR, PSNR and RMSE before and after apply Filtering for objects 

reconstructed by back-projection method from the 2D projection  

      

      From the table (4.3), the SNR decreases and the RMSE increases after 

the filter for both objects can be noticed. This means that the recovered 

objects after applying the filter have not improved in comparison to the 

recovered objects without applying the filter. But after applying the 

threshold value the values of SNR increase and RMSE decreases this means 

the recovered objects improved after applying the threshold value for each 

object (sphere and Mickey Mouse) and in each state (with and without 

filtering). The figures (4-22) and (4-23) have shown the results from 

applying the threshold values on the objects with filter and without the filter. 

 

  
                                                         (a) 

 

 Retrieved 3D object by 

BP 

Without Threshold  With Threshold  

SNR PSNR RMSE Threshold SNR PSNR RMSE 

Sphere Without 

Filtering 

8.9835 11.4584 0.2673 0.55 9.3921 11.8670 0.2551 

Sphere With Filtering 6.9714 9.4463 0.3370 0.5 7.3541 9.8290 0.3225 

Head of Mickey Mouse 

Without Filtering 

4.5529 15.1087 0.1756 0.55 7.0687 17.6245 0.1315 

Head of Mickey Mouse 

With Filtering 

3.1029 13.6587 0.2075 0.5 7.2691 17.8249 0.1285 
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                                                         (b) 

Sphere 

 

 head of the mickey mouse 

 

Figure 4-22 (a)The 3D reconstructed from the 2D projection after applying a 

threshold on filter object and (b)The 3D reconstructed from the 2D projection after 

applying a threshold on no filter object 

 

  
(a) 

  
(b) 

sphere  head of the mickey mouse 

Figure 4-23 (a) The slices of the 3D reconstructed from the 2D projection after applying a 

threshold on filter object and (b) The slices of  the 3D reconstructed from the 2D projection 

after applying a threshold on no filter object 
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Table 4-4 The change in external structure with change the threshold value for filterd 

head of Mickey Mouse reconstructed by back-projection method from the 2D 

projection 

 
Threshold 0.5  0.55  0.6 

SNR   7.2691 6.7910 5.5548 

 

 
object 

 

  

     

      From table (4.4) can note when increasing the threshold value  of the 

filtered Mickey Mouse, the inner sphere starts to appear beginning from 

threshold value equal to (0.5) but with continuing increase the threshold 

value leads to distortion in the external structure, so from the subjective 

criteria, the best result for head of Mickey Mouse can be obtained when the 

threshold value is 0.5. 

4.3.2 Reconstruct 3D Object from the 3D Projection 

      The following results obtained by applying the adopted reconstruction 

methods from the 3D projection with and without an applied filter. 

4.3.2.1 The Results of Reconstruction Without Filtering 

      The 3D reconstruction method is a 3D Back-Projection is applied to the 

3D projections that shown in figure (4-5), the 3D object retrieved by using 

3D Back Projection is shown in figures (4-24 a, b) and (4-25 a, b) shows the 

slices of retrieved objects from these figures, it is clear that the 3D Back 

Projection method greatly suffers from the blurring artifact, that causes to 

miss the internal hollow sphere in both two objects and miss the external 
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features of both two objects where can see the ears of  head of Mickey Mouse 

appear like scars. 

 

 
(a)  

 
(b)  

Figure 4-25 The 3D reconstructed object using 3D BP method from the 3D 

Projection  for (a) sphere and (b) head of the mickey mouse. 

 

  

(a)  (b)  

Figure 4-24  The 3D reconstructed object by 3D BP from the 3D Projection  for (a) 

sphere and (b) head of the mickey mouse    
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4.3.2.2 The Results of Reconstruction With Filtering 

      The retrieved object by 3D back Projection can be improved by applying 

the filter in the frequency domain called the ramp filter in the frequency 

domain. The figures (4-26) and (4-27) have shown the result from applying 

the filtering, from these figures shows that the impact of the filter on improve 

retrieved object is very little, where the effect of blurring is still clear on  the 

lack of clarity of the external structure of the two objects and also on the 

disappearance of an internal hollow sphere, Where the scars on Mickey 

Mouse's head seem clearer but they remain unclear enough to classify them 

as ears for head of Mickey Mouse because of the effect of blurring.  

 

  

(a)  (b)  

Figure 4-26  The 3D reconstructed object by BP after filtering  from the 3D 

Projection for (a) sphere and (b) head of the mickey mouse 
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      In order to evaluate the accuracy of each method in the reconstruction 

process, by calculating the volume of the solid sphere, the volume of the 

head of Mickey Mouse and the volume of the hollow sphere inside them by 

counting the points that belong to each of them. The results are shown in 

Table (4-5). 

Table 4-5 The volume of the 3D retrieved object from 3D projection 

      From table (4-5) the volume of each object that reconstructed by BP  

before apply filtering is closer to the volume of the original object compared 

 

(a) Sphere 

 

(b)  

Figure 4-27 (a) The 3D reconstructed object using 3D BP method from the 3D 

Projection after filtering  for (a) sphere and (b) head of the mickey mouse   

 

Type of object Original Reconstruction by BP Reconstruction by BP 

after apply filtering 

Solid Sphere 20326 19860 23675 

Internal Hollow  Sphere 147 Zero Zero 

Head Mickey Mouse 3162 8994 9900 

Internal hollow sphere in 

head Mickey Mouse 

126 Zero Zero 
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to the calculated volume of reconstructed objects by BP method with 

filtering, while the volume of the inner sphere is zero in each reconstructed 

method. 

      After applying the filtering on the results of back-projection now 

calculate the SNR, PSNR and RMSE of the retrieved object before and after 

filtering and threshold. The results are shown in Table (4-6). 

 Table 4-6 The SNR and RMSE before and after apply Filtering on the 3D retrieved 

object from 3D projection 

        

       From the table (4.6), can notice that the SNR decreases and the RMSE 

increases after the filtering for both objects and after applying the threshold 

value on the solid sphere, while the SNR increases and RMSE decreases 

after applying the threshold value on the head of Mickey Mouse in each state 

(with and without filtering), that means the solid sphere has not improved 

after applying the filtering  and applying the threshold value, while the head 

of Mickey Mouse is badly after applying the filtering but is very little 

improved after applying the threshold value  in each state (with and without 

filtering). The figures (4-28) and (4-29) have shown the results from 

applying the threshold values on the objects with filter and without the filter. 

 

 Retrieved 3D object by 

BP 

Without Threshold  With Threshold  

SNR PSNR RMSE Threshold SNR PSNR RMSE 

Sphere Without 

Filtering 

2.0240 7.9475 0.4005 0.55 0.6447 6.5682 0.4694 

Sphere With Filtering 1.7745 7.6981 0.4122 0.5 -0.076 5.8467 0.5101 

 Head of Mickey Mouse 

Without Filtering 

-4.916 9.0883 0.3512 0.55 -4.333 9.6712 0.3284 

Head of Mickey Mouse 

With Filtering 

-5.192 8.8123 0.3626 0.5 -3.253 10.7511 0.2900 
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                                                                                 (a) 

  
                                                                                (b) 

Sphere 

 

 head of the mickey mouse 

 

Figure 4-28 (a)The 3D reconstructed  from the 3D Projection after applying a threshold on filter 

object  (b)The 3D reconstructed  from the 3D Projection  after applying a threshold on no filter 

object. 

  
(a) 

  
(b) 

Sphere  head of the mickey mouse 

Figure 4-29 (a)The slices of the 3D reconstructed from the 3D Projection  after applying a 

threshold on filter object and (b)The slices of the 3D reconstructed  from the 3D Projection 

after applying a threshold on no filter object 
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4.3.3 Reconstruct 3D Object from the 4D Projection 

       The following results obtained by applying the adopted reconstruction 

methods from the 4D projection with and without an apply the filtering. 

4.3.3.1 The Results of Reconstruction Without Filtering 

      The reconstructed 3D object from 4D projection (X-Ray Projections) by 

apply either three-dimensional Back Projection for X-Ray Projections or 

apply the central section theorem for the X-ray projection, the retrieved 3D 

objects from applied three-dimensional Back Projection are shown in figure 

(4-30 a, b) and the slices of retrieved object are shown in figure (4-31 a, b), 

from these figures, it is clear that the internal hollow sphere inside the solid 

sphere and inside head of Mickey Mouse is absence, due to blurring. 

  
(a)  (b)  

Figure 4-30 The 3D reconstructed by using 3D BP from x-ray projections for (a) 

sphere and (b) head of mickey mouse 
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(a)  

 

(b)  

Figure 4-31 (a) The slices of 3D reconstructed by using 3D BP from x-ray projections for (a) 

sphere and (b) head of the mickey mouse       
 

       When apply the central section theorem for the X-ray projection (4D 

Projection), the retrieved 3D objects from applying this method are shown in figure 

(4-32 a, b) and the slices of the retrieved object are shown in figure (4-33 a, b). 

  
(a) (b)  

Figure 4-32 The 3D reconstructed from x-ray projections by central section theorem at 

Fai (0°) and Theta (45°) for (a) sphere and (b) head of the mickey mouse. 
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      These retrieved objects obtained from applying this method on the plane 

of projection at a certain angle of phi and a certain angle of theta this a plane 

of projections will occupy the frequency space correctly as shown in figure 

(4-34). 

 

             

 

 

 

 

 
(a) 

 

(b) 

Figure 4-33 The slices of 3D reconstructed from x-ray projections by central section 

theorem at Fai (0°) and Theta(45°)  for (a) sphere and (b) head of the mickey mouse. 

 

 

Figure 4-34 The Plane Projection at Fai (0°) and Theta (45°). 
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      While if adding other planes of projections at different Phi and theta with 

the plane above will intersect in the frequency space at which the frequency 

values will be distorted along the line between the two planes because the 

values of frequencies of the first plane will be replaced with the values of 

the frequencies of the second plane as shown in figure (4-35), This will lead 

to distorting the retrieved object during reconstruction as shown in figure (4-

36) and (4-37). 

  
               Figure 4-35 The Planes of Projection at Fai (0°) and Theta(45°, 90°). 

  
(a) (b)  

Figure 4-36 The 3D reconstructed Object from x-ray projections by central section 

theorem at  Fai (0°) and Theta(45°, 90°)  for (a) sphere and (b) head of mickey  

mouse 
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4.3.3.2    The Results of Reconstruction With Filtering 

      The blearing shown in figures (4-30 a, b) and (4-31 a, b) can be removed 

by applying the filter in the frequency domain called the ramp filter in the 

frequency domain. The slice of retrieved objects as shown in figures (4-38 

a, b) and the 3D objects as shown in figure (4-39 a, b). From the figure (4-

38) can see the filtering success to retrieve the internal hollow sphere inside 

both objects. While the figure (4-39) shows the three-dimensional object 

drawing algorithm was unable to build the inner hollow sphere in both 

objects due to blurring. The effect of the filter on both objects was not clear, 

where the object after filtering and the object before the filter were very 

close to each other in structure and details. 

 
(a) 

 

(b) 

Figure 4-37 The slices of 3D reconstructed 3D Object from x-ray projections by 

central section theorem  at Fai (0°) and Theta (45°, 90°)  for (a) sphere and (b) head 

of mickey mouse 
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       In order to evaluate the accuracy of each method in the reconstruction 

process, by calculating the volume of the solid sphere, the volume of the 

head of Mickey Mouse and the volume of the hollow sphere inside them by 

counting the points that belong to each of them. The results are shown in 

Table (4-7). 

 
(a)  

 

(b) 

Figure 4-38 The slices of 3D Object  reconstructed from x-ray 

projections after filtering  for (a) sphere and (b) head of mickey mouse 

  
(a) (b)  

Figure 4-39 The 3D reconstructed Object from x-ray projections after filtering  for (a) sphere and 

(b) head of mickey mouse 
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  Table 4-7 The volume of the 3D retrieved object from X-ray Transform 

      From table (4-7) the volume of each object (sphere and Mickey Mouse) 

that reconstructed by BP without filtering is closer to the original object 

volume compared to the calculated volumes of reconstructed objects by BP 

with filtering. While the volume of the inner sphere inside each object is 

zero in both the reconstruction method. but by using the subjective criteria, 

it can be noticed that the objects reconstructed by Back-Projection with 

filtering are better than the objects reconstructed by Back-Projection without 

filtering where the internal hollow spheres that are shown in figure (4-38 a, 

b) are more clearly than the internal hollow spheres without filtering that are 

shown in figure (4-31 a, b). 

      After applying the filtering on the results of back-projection now 

calculate the SNR, PSNR and RMSE of the retrieved object before and after 

filtering and the threshold value. The results are shown in table (4-8).  

Table 4-8 The SNR and RMSE  of reconstruct objects from X-ray Transform before 

and after apply Filtering  

Type of object Original 
Reconstruction by 

BP 

Reconstruction by BP 

after apply filtering 

Solid Sphere 20326 20266 20984 

Internal Hollow  Sphere 147 Zero Zero 

Head Mickey Mouse 3162 3133 3563 

Internal hollow sphere in 

head Mikey Mouse 

126 Zero Zero 

 

 Retrieved 3D 

object by BP 

Without Threshold  With Threshold  

SNR PSNR RMSE Threshold SNR PSNR RMSE 

Sphere Without 

Filtering 

7.7888 10.2637 0.3068 0.45 8.1140 10.5889 0.2955 

Sphere With 

Filtering 

8.3517 0.8266 0.2875 0.35 8.0535 0.5284 0.2976 

 Head of Mickey 

Mouse Without 

Filtering 

3.7023 14.2580 0.1937 0.55 4.1112 4.6670 0.1848 

 Head of Mickey 

Mouse With 

Filtering 

1.8274 12.3832 0.2403 4.0689 14.6247 0.1857 0.55 
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          From the table (4-8), note that the SNR increases and the  RMSE 

decrease after applying the filtering for Sphere, while after applying the 

threshold value for each sphere before and after applying the filter the SNR 

and the RMSE are very little change, using the subjective criteria can not 

notice any change in the solid sphere in comparison to the recovered Sphere 

without applying the threshold value. While the SNR decreases and that 

RMSER increases after applying the filtering for Mickey Mouse, this means 

that the recovered head of Mickey Mouse after applying the filter has not  

improved in comparison to the recovered head of Mickey Mouse without 

applying the filter, while the SNR increases and the  RMSE decrease after 

applying the threshold value for head of Mickey Mouse in each state (before 

and after applying the filtering ), this means that the recovered head of 

Mickey Mouse after applying the threshold value has improved in 

comparison to the recovered head of Mickey Mouse without applying the 

threshold value. The figures (4-40) and (4-41) have shown the results from 

applying the threshold values on the objects with filter and without the filter. 

 

  
(a) 
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(b) 

Sphere 

 

 head of the mickey mouse 

 

Figure 4-40 (a)The 3D reconstructed  from x-ray projections  after applying a 

threshold on filter object and (b)The 3D reconstructed  from x-ray projections after 

applying a threshold on no filter object 

  
(a) 

  
(b) 

Sphere 

 

 head of the mickey mouse 

 

Figure 4-41 (a)The slices of the 3D reconstructed from x-ray projections after 

applying a threshold on filter object and (b)The slices of the 3D reconstructed from 

x-ray projections after applying a threshold on no filter object. 
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4.4 The Results of the Interpolation  

      The three-dimensional asymmetric object (head of Mickey Mouse) is 

used as a test sample for this section. The interpolation is applied in 

sequential steps as following, the first step, apply 2D Radon transform for 

each slice at different heights of the three-dimensional object using equal 

angular interval (∆θ) and greater than one degree, see figure (4-42 a, b). 

 

 

(a) 

 

(b) 

Figure 4-42 (a) A slice of projection at different heights and at ∆θ = 2o. 

(b) 3D sinogram obtain from  stacking the 2D projection and 

at ∆θ = 2o. 

 

      In the second step, a prediction of the values of missing data of 

projections by using the three interpolation methods (as mention in section 

(2-9)). Table (4-9) shows the SNR and the RMSE before and after apply 
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interpolation methods at different dlta and the figure (4-43) shows 

comparing the quality of the 3D sinogram before and after interpolation for 

each method of interpolation. 

Table 4-9 The SNR and RMSE before and after applying the interpolation methods for 

projection at different dlta. 

Dlta 

Extend 

Projection 

Nearest 

Neighbour Linear Non-linear 

RMSE SNR RMSE SNR RMSE SNR RMSE SNR 

2 0.0135 3.0519 0.0013 23.3251 0.0011 25.183 0.0013 23.3419 

3 0.0156 1.7929 0.0017 21.0693 0.0013 23.2799 0.0014 22.9039 

4 0.0165 1.2782 0.0021 19.272 0.0015 22.082 0.0017 21.1721 

5 0.0171 0.9992 0.0023 18.2544 0.0016 21.4136 0.0018 20.6975 

10 0.0181 0.482 0.0036 14.4374 0.0018 20.358 0.0021 19.3724 

15 0.0185 0.3238 0.005 11.7191 0.0021 19.362 0.0023 18.2992 

20 0.0186 0.2458 0.0062 9.7388 0.0024 18.0012 0.0027 17.1518 

30 0.0188 0.1695 0.0085 7.0913 0.0031 15.8433 0.0035 14.7878 

45 0.0189 0.121 0.0111 4.7085 0.0042 13.1966 0.0046 12.4231 
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Figure 4-43 The quality of the interpolated 3D sinogram 
         

      As it is evident from the table (4.9) and figure (4-43), the SNR for the 

3D sinogram before interpolation is decreased dramatically with an increase 

in the angular interval greater than 10°, in other words, the reduction of the 

number for projections leads to a decrease in SNR of the 3D sinogram before 

interpolation, while the SNR for the 3D sinogram reinforced after 

interpolation, where the linear and Non-Linear are more resistance to the 
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reduction of the number for projections more than the Nearest Neighbor 

method which decrease with the increase in the angular interval. 

Table 4-10 The SNR and RMSE before and after apply the interpolation methods for 

object at different dlta. 

Dlta 

2 3 4 5 10 15 20 30 45 

W
it

h
O

u
t 

In
te

rp
o
la

ti
o
n

 

BP RMSE 0.1363 0.1421 0.1499 0.1559 0.19 0.2156 0.2372 0.2757 0.3137 

SNR 6.7063 6.3447 5.8799 5.5439 3.8247 2.7269 1.8962 0.5908 -0.532 

FST 

RMSE 

0.1275 0.1344 0.1459 0.1545 0.1998 0.2331 0.2586 0.2908 0.3065 

SNR 7.2899 6.8316 6.1174 5.6192 3.3855 2.0493 1.1465 0.1267 -0.328 

N
ea

re
st

 N
ei

g
h

b
o
r 

in
te

rp
o
la

ti
o
n

 

BP 

RMSE 

0.1256 0.1192 0.1267 0.1188 0.1335 0.135 0.1531 0.1709 0.2241 

SNR 7.4182 7.8698 7.3423 7.904 6.8923 6.7916 5.7009 4.7422 2.3917 

FST 

RMSE 

0.1109 0.1019 0.112 0.0987 0.1189 0.1477 0.1793 0.2325 0.2692 

SNR 8.4998 9.237 8.4123 9.5134 7.8954 6.0109 4.3282 2.0693 0.7976 

L
in

ea
r 

in
te

rp
o
la

ti
o
n

 

BP 

RMSE 

0.1299 0.1289 0.132 0.1302 0.1339 0.1329 0.1395 0.1421 0.1628 

SNR 7.1293 7.1943 6.9883 7.1079 6.8652 6.9263 6.5093 6.3447 5.1631 

FST 

RMSE 

0.1188 0.1175 0.1233 0.1165 0.1225 0.1226 0.1353 0.1546 0.1783 

SNR 7.904 7.9992 7.5821 8.0699 7.6382 7.6301 6.7718 5.6141 4.3774 

N
o
n

-L
in

ea
r 

in
te

rp
o
la

ti
o
n

 

BP 

RMSE 

0.1255 0.1238 0.1261 0.1239 0.1274 0.1266 0.1332 0.134 0.1522 

SNR 7.4259 7.5425 7.3877 7.5347 7.2974 7.3498 6.9058 6.8585 5.7476 

FST 

RMSE 

0.1109 0.1091 0.1118 0.1098 0.1156 0.1139 0.1285 0.1482 0.174 

SNR 8.4998 8.6396 8.4316 8.5892 8.1416 8.2702 7.2235 5.9833 4.5878 
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      As it is evident from the table (4-10) and figure (4-44), The quality of 

the reconstructed object from the 3D sinogram before and after interpolation 

by using the Back-projection and FST methods, where the reconstructed 

object from the interpolated 3D sinogram by the Linear interpolation and 

Non-Linear interpolation is better in comparison  with the reconstructed 

object from the 3D sinogram without interpolation. The results of using the 

nearest neighbor interpolation method, in fact, the FST and BP methods give 

the best results at the angular interval less than 10 °, and it deteriorates after 

the angle interval greater than 10° and the degradation is faster in the FST 

method compared to the BP method. 
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(a) Nearest Neighbor interpolation 
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(b)Linear interpolation 
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(c)Non-Linear Interpolation 

Figure 4-44 The quality of the reconstructed object before and after the 

interpolation process. 
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      To consider the deformation in the retrieved object, the number of points 

that belong to the object (the volume) and the number of points that belong 

to the hollow sphere inside the object is calculated using a threshold value 

that calculated empirically, it value is ranging between (0.50 -0.65), as 

illustrated in the table (4-11) and figure (4-45).  

 

Table 4.11 The No. of point Of the Out and internal object before and after applying 

the interpolation methods at different dlta. 

Dlta 
Orig. 2 3 4 5 10 15 20 30 45 

W
it

h
O

u
t 

In
te

rp
o

la
ti

o
n

 BP Out  3129 3239 3223 3207 3278 2986 2989 3007 3042 3118 

internal 118 0 0 0 0 0 0 0 19 81 

FST Out  3129 2725 2880 2860 2865 2712 2517 2198 1946 916 

internal 118 145 124 131 126 126 121 134 137 241 

N
ea

re
st

 N
ei

g
h

b
o

r 

in
te

rp
o

la
ti

o
n

 

BP Out  3129 3274 3262 3256 3300 3307 3334 2991 3071 3061 

internal 118 0 0 0 0 0 0 0 0 0 

FST Out  3129 2811 2678 2868 2897 2761 2523 2298 1776 1303 

internal 118 130 157 125 120 131 136 123 108 105 

L
in

ea
r 

in
te

rp
o
la

ti
o

n
 

BP Out  3129 3255 3258 3241 3274 3287 3278 3280 3001 3452 

internal 118 0 0 0 0 0 0 0 0 0 

FST Out  3129 2776 2861 2893 2787 2852 2787 2651 2486 2393 

internal 118 138 132 131 135 125 133 150 141 130 

N
o

n
-L

in
ea

r 
in

te
rp

o
la

ti
o
n

 BP Out  3129 118 3129 118 3129 118 3129 118 3129 118 

internal 3273 0 3273 0 3273 0 3273 0 3273 0 

FST Out  3129 2811 2815 2574 2898 2733 2795 2668 2528 2385 

internal 118 130 136 177 122 139 135 148 140 147 
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Figure 4-45 Number of points that belong to the object 

 

     In spite of that, the FST (with or without interpolation process) gives the 

best results, but regarding the object shape, it is deformed badly after angular 

difference beyond 15o, the table (4-12) shows the change of the shape of the 

retrieved object by the FST with the increase of the angular interval.  

 

  

(a) Nearest Neighbor interpolation (b) Linear interpolation 

 

(c) Non-Linear interpolation 
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Table 4-12 The change of the shape of the retrieved object by the FST method with the 

increase of the angular interval. 

 

 

      While the results obtained from the BP reconstruction method (with or 

without interpolation process) maintain the basic object shape even after 15o, 

see table (4-13).  

D
lt

a
  

WithOut Interpolation Nearest Neighbor 

interpolation 

 

Linear interpolation Non-Linear 

interpolation 

 

 

 

 

 

2 

  
  

 

 

 

15 

    

 

 

 

30 

  
 

 

 

 

 

 

45 
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Table 4-13 The change of the shape of the retrieved object by the BP method with the 

increase of the angular interval. 

 

        

D
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WithOut Interpolation Nearest Neighbor 

interpolation 

 

Linear interpolation Non-Linear 
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      The BP reconstruction method couldn’t recognize the internal hollow 

sphere inside the object due to the blurring artifact, see figure (4-46). In 

contrast to the FST reconstructions method, it recognizes it due to the 

filtering process which removes the blurring artifact, where the linear 

interpolation process gave the best results. The values calculated for the 

internal hollow sphere after angular difference greater than 20o using the BP 

reconstruction method are due mainly to the deformation in the object shape. 

  

(a) Nearest Neighbor interpolation (b) Linear interpolation 

 

(c) Non-Linear interpolation 

              Figure 4-46 Number of points that belong to the hollow sphere. 
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Chapter Five 

Conclusions and Future Works 

 

5.1 Conclusions 

      Depending on the results in the chapter four, the following conclusions can 

be derived: 

1. When the Standard Back Projection method applied to reconstruct the 

3D object on the three forward projections method; first (Slicing 

reconstruction method), second (Direct reconstruction from 3D 

Projections) and third (Reconstruction from X-ray transform (4D 

projections)) methods of reconstructing 3D object, they failed to 

restore internal points of the object, due to the participation of 

external points which do not belong to the internal object in the linear 

integration calculation to restore the internal object this causes the 

blurring artifact and disappearance of the internal object.  

2. The retrieved object was significantly improved when using the 

Ramp Filter in the frequency domain on the object produced by the 

Back-Projection method as filtering for the points resulting from the 

blurring effect that the Back-Projection method could not be 

removed. 

3. The internal object has been retrieved in the solid big sphere by Back-

Projection method after Ramp Filter in the frequency domain 

application in the first method (slicing), while the internal object 

could not be retrieve in the head of Mickey Mouse after application
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the Ramp Filter in the frequency domain, but the internal object has 

been retrieved in the head of Mickey Mouse after applying the 

threshold value on the produced after applying the ramp filter, the 

internal object begins to appear when the threshold value equal to 0.5. 

When the threshold is increased, the inner object is more prominent, 

but this is accompanied by a distortion in the external structure of 

Mickey Mouse. While in the second and third method the internal 

object has not been retrieved in both objects after the application of 

the Ramp Filter in the frequency domain and threshold value. 

4. The Fourier slice theorem method that using in the first method 

(slicing reconstructing) to reconstruct the object, succeeded to restore 

the external structure and internal points of the object, because only 

the points that belong to the internal object be shared in the restoration 

of the internal object. The retrieved object was significantly improved 

when applying the threshold value on the produced object by the 

Fourier Slice Theorem method as filtering the points resulting from 

the blurring effect that the Fourier Slice Theorem method could not 

be removed.  

5. The interpolation methods were applied to find the approximate value 

of missing data in projection space. The reconstructed object from the 

interpolated projections by linear interpolation is somewhat improved 

by both methods of reconstruction (Back-Projection and Fourier slice 

theorem). the Fourier method excelled more than the back-projection 

method in restoring the internal body in all interpolation methods but 

failed when the angular difference in taking the projections was 

greater than 20 degrees. 
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6.  When calculating the amount of distortion in the retrieved object at 

the threshold value between 0.5 and 0.65, the object retrieved by the 

back projection method retains its external features even when the 

angular difference in the taking of the projections greater than 15 

degrees, while the object retrieved by the Fourier slice theorem began 

deformation when the angular difference greater than 15 degrees. 

 

5.2  Future Works 

1. Study the 3D Fourier slice theorem to reconstruct 3D object. 

2. Apply the X-ray transform to the X-ray profiles to produce 3D 

representation of the internal structure. 

3. Study more effective filters that give better results with the 3D 

Tomography. 

4.  Suggest using this study in the industrial field, for example, the 

structure of the material. 

5. Replace the terahertz ray (THz) instead of X-ray, which has a great 

possibility for using in the medical field better than other medical 

imaging technologies. It is safe, non-ionizing ray and does not cause 

damage to organisms. 

6. Apply this study on the X-ray medical images for patients. 
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 الخلاصة
 

 

     

 Computedالتصوير المقطعي المحوسب  تقانة افق جديد للباحثين في مجالتم فتح        

Tomography (CT)  على انتاج صور ثلاثية الابعاد للبنية الداخلية  التقانةنظرا لامكانية هذه

 للجسم دون الحاجة الى اتلاف الجسم

د من إسقاطاتها لإعادة بناء الصور ثلاثية الأبعانماذج على دراسة  العمل هذا يركز      

 ثلاث طرق. باستعمال ؛ متناظر وغير متناظرلجسمين

 تحويل رادون ثنائي الابعاد )طريقة اعادة اعمار الشرائح( الطريقة الأولى تستعمل       

ثلاثي الأبعاد على ارتفاعات مختلفة.  جسمالأبعاد لكل شريحة من ال ةثنائي مساقطلإنشاء 

( لإعادة FST) فوريرنظرية شريحة  و طريقةثنائي الأبعاد  عكسيال الإسقاط  طريقة تستعمل

)اعادة الاعمار الطريقة الثانية في ثلاثي الأبعاد.  جسمبناء كل شريحة إسقاط ثنائية الأبعاد لل

مساقط ثلاثي الأبعاد لإنشاء  رادونحويل ت استعمالتم  المباشرة من المساقط ثلاثية الابعاد(

ثلاثي  جسمثلاثي لاعادة بناء ال عكسيالاسقاط ال استعمالتم ثلاثي الأبعاد.  جسملل ثلاثية الابعاد

بعاد ثم تحويل الاشعة السينية لخلق مساقط رباعية الا باستعمالالطريقة الثالثة تمت . الابعاد

طريقتين وهما طريقة التحويل  باستعمالن هذه المساقط رباعية الابعاد استعادة الجسم م

مرشح رامب وقيمة حد العتبة  استعمالم ت ثلاثي الابعاد. عكسية الاسقاط الالمركزي وطريق

 استعادته. تالذي تم الجسمتحسين ل

للمريض  من الاستيفاء لتقليل جرعة الإشعاع اساليباقترح ثلاثة  تم العملفي هذه           

غير الستيفاء الاخطي ، والستيفاء الا،  قرب جارستيفاء بأ)الاهي  جسمووقت إعادة بناء ال

الفارق الزاوي أكبر المأخوذه عند الأبعاد  ةثنائيالمساقط على يتم تطبيق هذه الاساليب  (خطي

الإسقاط من درجة واحدة. تم تبني طريقتين لإعادة الإعمار في هذه الدراسة ، هما طريقة 

 الناتجةقيمة العتبة لإزالة النقاط الزائدة ،  تم تطبيق .وطريقة نظرية شريحة فورييه عكسيال

 .تأثير الضبابية ثم تم حساب حجم الاجسام المستعادة

 طريقة نظرية فوريرقدرة الطريقة الاولى )طريقة اعادة اعمار الشرائح( تائج نأظهرت        

نقاط لم تستطع إزالة كل لكنها  هوالبنية الداخلية ل جسمجي للرعلى إعادة بناء الهيكل الخا



، في  بسبب الضبابيهالعتبة لإزالة النقاط الزائدة  تطبيق حد العمل، لذلك ، اقترح هذا  الضبابيه

و عدم  جسمعلى إعادة بناء الهيكل الخارجي لل اظهرت قدرتها،  عكسيطريقة الاسقاط ال حين

هذا في ، لذلك ، اقترح  تاثير الضبابيةبسبب  جسملالهيكل الداخلي للى إعادة بناء قدرتها ع

واسترداد  الضبابية ي الذي اثبت جدارته في ازالةمجال الترددالفي  رامب، مرشح  العمل

 .جسملل البنية الداخلية

د( الطريقة الثانية )اعادة الاعمار المباشرة من المساقط ثلاثية الابعاتائج نأظهرت بينما         

 جسمالقدرة على إعادة بناء الهيكل الخارجي لل حيث من النتائج لاحظنا ان هذه الطريقة لها

اقترح في هذا  ، لذلك ، تأثير الضبابيةعلى إعادة بناء الهيكل الداخلي له بسبب  اوعدم قدرته

استخدام مرشح رامب في الفضاء الترددي لازالة تاثير الضبابية ولكن تبين من النتائج   العمل

ثلاثي  جسملل استرداد البنية الداخليةبالطريقة التي تمكنه من  ضبابيةال تاثيرإزالة  خفق في اانه 

 .الابعاد

)الإسقاطات  )إعادة الإعمار من تحويل الأشعة السينيةالطريقة الثالثة تائج نأظهرت و      

بسبب  جسمخفقت في استعادة الاتبين من النتائج ان طريقة التحويل المركزي الأبعاد((  رباعية

ضعف امكانيتها في رص المساقط الرباعية عند تحويلها الى مساقط ثلاثي الابعاد. بينما طريقة 

ثلاثي الابعاد لكنها فشلت في استعادة البنية الداخلية  جسمتمكنت من استعادة ال عكسيالاسقاط ال

خفق ايضا في استعادة البنية اله وبعد تطبيق مرشح رامب في الفضاء الترددي لاحظنا انه 

 ثلاثي الابعاد. جسمالداخلية لل

إن أفضل قيمة عتبة لفصل اظهرت العمل من خلال تطبيق أساليب الاستيفاء في هذا       

 FSTطريقة ب الجسم إعادة بناءحيث . 0.50-0.65تتراوح بين  جسمنتمي إلى الالنقاط التي ت

 طريقة ، في حين فشلت BPمع عملية الاستيفاء أفضل النتائج للتفاصيل الداخلية عن طريقة 

FST  بينما إعادة 20° من لفارق زاوي أكبر الأساسي بشكل صحيح الجسمفي استرداد شكل .

. 15° الفارق الزاوي اكبر من الأساسي حتى بعد جسمتحافظ على شكل ال BP بطريقة بناءال

 بشكل عام ، أعطى الاستيفاء الخطي أفضل النتائج.
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