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A new horizon has been opened for researchers using Computed

Tomography (CT) technique, due to the possibility of this technique to produce a
three dimensional images of the internal structure for the different objects
without the need to damage the object.

This work focus on studying models for reconstructing 3D images from its
projections for two objects; symmetrical and asymmetrical using three methods.

The first method (Slicing reconstruction) is used the 2D Radon transform to
generate a 2D projection for each slice of the 3D object at different heights. The
2D Back-Projection (2D BP) and the Fourier Slice Theorem (FST) methods are
used to reconstruct each 2D projection slice of the 3D object. The second method
(Direct reconstruction from 3D Projections) has used the 3D Radon Transform to
generate a 3D projection for the 3D object. The 3D Back-Projection (3D BP) is
performed to reconstruct the 3D object. The third method (Reconstruction from
X-ray transform (4D projections)) is used the X-ray projections for a 3D object to
generate a 4D projection. The central section theorem FST for the X-ray
projection and the 3D Back Projections for X-ray Projection are used to retrieve
3D object from 4D projection. The retrieved object was significantly improved
when using the Ramp filter and threshold value.

Three types of interpolation are suggested in this research work, to reduce
the dose of radiation to the patient and the time to reconstruct the object, which
are; the nearest neighbor, linear, and non-linear interpolation methods. These
methods are applied to 2D sinogram that has taken at angular difference greater
than one degree. The BP and FST reconstruction methods are adopted to retrieve
the object from the interpolated projections. The Slicing reconstruction method
showed the capability of the FST to reconstruct the external and the internal
object structure. The threshold value is suggested to eliminate the excessive
points, due to the blurring artifact then calculate the volume of each retrieved

object.



The results of the first method (Slicing reconstruction method) showed the
capability of the FST to reconstruct the external and the internal structure of it.
Beside that the Fourier Slice Theorem could not remove all blurring artifact, so,
the threshold technique is suggested to eliminate the excessive points, due to the
blurring artifact, as the FST method could not remove it. The Ramp filter in the
frequency domain is suggested to eliminate the blurring artifact and retrieve the
object internal structure, as the 2D BP method had the capability to
reconstruction the external structure of the object and its inability to
reconstruction the internal structure of it because of the blurring artifact.

From the Direct reconstruction from 3D Projections method results, the 3D
BP method was capable of reconstruction the external structure of the object and
unable to the reconstruction of the internal structure because of the blurring
artifact, so the Ramp filter in the frequency domain is proposed to eliminate the
blurring artifact but cannot remove the blurring artifact and retrieve the internal
structure.

The result of the third method (Reconstruction from X-ray transform (4D
projections)) The central section theorem was fielded to retrieve object while the
3D Back Projection is successful to retrieve the external structure but inability to
retrieve the internal structure of it because of the blurring artifact, so, this
research, suggested the Ramp filter in the frequency domain to eliminate the
blurring artifact although it cannot remove the blurring artifact and retrieve the
internal structure.

By applying the interpolation methods in this research, the best threshold
value to separate the points that belong to the object is ranging between 0.50-
0.65. The FST reconstruction method with the interpolation process gave the best
results for the internal details than the BP method, while FST failed to retrieve
the basic object shape correctly for an angular difference greater than 20°. The
basic object shape is maintained by BP reconstruction method even after 15°. In

general, the linear interpolation gave the best results.
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Chapter One

General Introduction to Computed Tomography

1.1 Introduction

Computed Tomography (CT) technology has a significant impact on the
medical field to diagnose the disease accurately without the need for surgery.
Tomography a method of producing a three-dimensions image of the
internal structures of an object in a non-destructive manner [1, 2]. This
technique is done using different types of imaging techniques, some of
which depend on the exposure of the body to a particular radiation or waves
from different angles such electromagnetic (EM) spectrum that consists of
visible light, infrared (IR), ultraviolet (UV), X-rays, microwaves, radio
waves, or gamma waves or any other signal that can be measured [3] or
injecting the body with little quantities of radioactive materials called
radiopharmaceuticals, the quantity and type of materials vary depending on

the type of organ that wants to be scan [4].

They can be based on one or more physical parameters for the resulting
radiations that are emitted, transmitted, or reflected from the object to
process by electronic devices and produce computed tomography images for
the body [5].
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1.2 A Brief History of Computed Tomography

The Austrian scientist Radon explained the main mathematical idea of
seeing inside the body where he derived mathematical equations to
reconstruct the body from the finite number of projections in his article

published in 1917 (the projection system definition in section 1.4) [1] [6].

In the forties of the last century, Gabriel Frank and other scientists
explained the first experiments to reconstruct the images from their
projections and these experiments were done before the discovery of the
computer. In 1940 Gabriel Frank was awarded a patent for his description
of the main ideas used in tomography to this day, includes devices used to

obtain sinograms and back projection techniques to reconstruct images [7].

In the fifties of the last century, several researches and articles were
published in the field of CT based on radon equations one of them in 1956
R. N. Bracewell published a paper titled ‘Stripe Integration in Radio
Astronomy”, he was the first scientist applied the main mathematical idea
of Radon equations to construct two-dimensional images in his paper

mentioned above [6].

In 1961, William H. Oldendorf made in series of experiments based on
principles close to the principles used in computed tomography [8], the
purpose of his experiments to know the possibility of seeing inside the body
through the passage of radiation inside the body and then receive the final
signal by a detector. In this experiment, the line required to be reconstructed
must pass through the center of the machine, in other words, the process
reconstruction here is linear and there were no attempts to reconstruct the
two-dimensional because each linear reconstruction process requires a full

hour and at that time there was no way to store the data [7].
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In 1963, David E. Kuhl and Roy Q. Edwards experiments were done by
devices using radioisotopes, these devices are known today as emission
computed tomography [9]. They used two detectors in an opposing
location and the survey was done in regular steps. At each step, the
result was received on the moving film according to the location of the
detectors. The film was rotated to summation the back-projected views.

In modern equipment, the film has been replaced with a computer [7].

In 1963 and 1964 Allan M. Cormack publishes the results of his
experiences where he built the initial CT scanner. Unluckily, his results
did not receive significant attention at that time because it requires difficult

calculations and a long time to do it [7].

In 1967, Godfrey N. Hounsfield developed the first clinical scanner
using X-ray based on algorithms discovered by Allan M. Cormack earlier
as shown in figure (1-1), this scan took nine days to produce a picture for
specimen because the scan is linear and performed by rotate specimen one
degree in each step [10] [7]. Godfrey Hounsfield deduced independent of
Cormack that we can see inside the body by taking X-ray measurements on
the same body from all directions. In 1979, Godfrey N. Hounsfield won the
Nobel Prize for his discovery and shared it's with Allan M. Cormack [7].
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Figure 1-1 The device of Godfrey N. Hounsfield.

Attempts to improve clinical scanner performance continue to this day
and after making many modifications to the clinical CT scanner, we can
obtain clear and good images in a few minutes compared to the old devices

that are not improved as shown in figure (1-2) [7].

(@) (b)
Figure 1-2 Images of (a) The first CT scanners. (b) The CT scanner in 2005 [7].

The improved clinical CT scanner was first installed in a London
hospital in September 1971 as shown in figure (1-3) where in October 1971
the technique was applied to the first patient who had a large sac in his head

and it clear in the image produced [7].
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Figure 1-3 Apply the CT scanner on the first patient [7].

1.3 Imaging System

Digital images are formed when a certain type of energy interacts with
the sensor or the detector in the imaging device. The detector or sensor varies
from one imaging device to another depending on the type of energy or
radiation used in that device. This energy may be an ultrasound or a
component of the electromagnetic spectrum, for example, visible light,
infrared, microwave, radio waves, gamma waves, or uses radioactive
material inside the body that emits a certain type of energy that can be
handled by a detector [3].

The energy used for imaging and associated with imaging device is
selected depending on the nature of the object or the organ to be
photographed or scanning, in terms of the density, the contrast between the
organs and the object sensitivity to the energy i.e. its capacity for measuring
the weakest possible intensity level, also the type of radiation is chosen
depending on its ability to distinguish between different organs of the body

and its ability to portray the tiny details [5].
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Since the tomography gives us the internal structure of the body so it
uses the types of radiation that have the ability to penetrate the tissues to be

photographed [11]. In this section, will review some of the devices used in

tomography.

In nuclear medicine using (Single Photon Emission Computerized
Tomography) (SPECT) and (Positron Emission Tomography) (PET) in
these types of the scanner, the patient is injected with a radiopharmaceutical
that emits Gamma rays, Gamma rays are detected and measured by detectors
then the measured information from this radiation used to create a two- or

three-dimensional image for the desired organ [12] [3] [13].

Ultrasonic imaging by sending a series of high-frequency sound waves
(higher than 20 KHz) to the organ and then the measured information from
reflected waves are used to obtain a 2D or 3D a gray image. The ratio of
reflected waves depends on the difference the resistance of the neighboring
organs for ultrasonic waves, The proportion of reflected waves increases as
the difference in resistance increases between the two neighboring members
so the difference in the density and resistance of organs to the waves is the

basis for the formation of ultrasound images [3] [14].

In this dissertation, we will focus on X-rays tomography. X-ray is an
electromagnetic ray widely used in radiography and in many technical and
scientific fields. In 1895, William Rontgen discovered unknown ray has the
ability to see the skeleton in a living person. Where he had been working
with a device used to generate "cathode rays" in a vacuum glass tube when
the high voltage between the cathode and the anode is applied and a
phosphoric screen was placed at the end of the tube. When the electron beam

(cathode rays) collided with it, this screen began to glow, then Richard
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Roentgen put his hand between the tubing that generates X-ray and the
phosphoric screen, he saw the skeleton form for his hand on the phosphoric

screen. This was the first operation of X-ray imaging [15].

On this day X-rays are much used in the medical field to generate a 2D
image (in traditional radiography) or 3D image (in a CT) to the skeleton of
the patient to diagnose his illness. This done by passing X-rays through the
patient and recorded on the film that responds to X-ray energy in

conventional radiography or captured it by the detector in CT scanner [3].

Figure (1-4) shown the basic devices in CT scanning using X-ray. The
Filtering used to reduce radiation dose and to get better quality for images.
The Collimators used to restrict the X-ray beam on a specific area. The
Detector used to measure the X-ray photons and convert it to an analog
signal (electric), the ADC (Analog to Digital Convert) is to convert the

analog signal to a digital format and sent to the computer [16].

X-ray tube
. —filter
_ ST T—————collimators
Patient ,r‘;‘a,
B
i'.; '1' !
Folo
O N x-ray beam
= Detector array
2

s Electrical signal

" ", | — Digital data

L ‘H computer

Figure 1-4 The basic devices in CT scanning using X-ray [16].




Chapter One General Introduction to Computed Tomography

1.4 Scanning Modes (The Projection System)

The combining of a set of linear integrals along all parallel lines of
response (LOR) forms the projection p(t, 8) for a certain angle (0) to the
object f(x,y) with x and y the spatial Cartesian coordinates [1]. The
combination of all projections for 0 <0 < & forms a 2D function with ¢ and
6 the polar coordinates that is called a sinogram as shown on the right of
figure (1-5), in which the horizontal and vertical axis’s represents the values
of the distance from the center of rotation and the angles respectively [17]
[18].

The name of the sinogram comes from the fact that every point in the
spatial space (in the body) when converted into the space of Projection, the
behave of each point will path of a sinusoidal. So, the sinogram for the whole
object would be a superposition of all paths sinusoids corresponding to each
point in the object as shown in figure (1-5). Each row in the sinogram has

values of the projection at a certain angle [17] [19].
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Figure 1-5 A projection and a sinogram [17].

Although there are many types of scanning techniques, some of the
advantages and disadvantages of only three major types will discuss in this

section, as shown in figure (1-6).
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detector

detector

(a) parallel ray (b) fan ray (c) cone ray

Figure 1-6 Three types of projections systems [7].

a) The first system uses the ray in the form of parallel (projections on
parallel form).

b) The second system uses the ray in the form of a fan (projections on
fan form).

c) The third system uses the ray in the form of a cone (projections on
cone form).
In this dissertation, the parallel ray system will be focus on.

1.4.1  Parallel Ray Integral.

The simplest type of the scanner is a collection of the parallel ray as
shown in figure (1-7). This method also called parallel projections because
of the measurement of linear integrations in the form of parallel lines for a
number of different angles. For example, to forms a 2-D sinogram for slices
of the object, the sources that generate an X-ray and the detectors that
receive the X-ray that located on the opposite side of an object must rotate
around object and by using a set of slices sinogram that forms a 3-D
sinogram for the 3-D object [1]. This method is slow so it needs a long time
[20].
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Figure 1-7 Parallel projection [20] [1].

1.4.2 Fan Beam

This technique, a single source and the array of the detectors uses on the
opposite side of an object as shown in figure (1-8). This method also called
a fan projection because of the measurement of linear integrations in the
form of a fan for a number of different angles [1]. Projections in the fan form
can cover an extensive area of the object at each moment of scanning, so, in
this method can reduced the number of projections that require to retrieve
object in high quality and the time required for taking the projections for an

object has been reduced compared to the first method [20].
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Figure 1-8 fan projection [20] [1].

10



Chapter One General Introduction to Computed Tomography

1.4.3 Cone Beam

A single source and the array of the detectors on the opposite side of an
object uses this technique as shown in figure (1-9), Here the whole object is
illuminated from source rather than one slice as in the previous two methods.
This method called a cone beam reconstruction because the rays form a cone
[1].

The main advantage of this technique that it increased scan speed
where the time required to take the projections for an object was reduced

compared to previous methods [20].

Figure 1-9 Cone beam projection [20].

1.5 2D Digital Image Representation

The digital images are formed when a certain type of energy interacts
with the sensor or the detector in the imaging device. When the energy used
is visible light, the image formed by a summation of light energy called the

optical image and the device used to capture it by the camera [3].

The 2D digital images, | (r, c), can represent it as a 2D matrix of data |
(r, ¢), and one row (or column) is called a vector, it is composed of a finite
number of elements as shown in figure (1-10). These elements are referred

to as picture elements (pixels). Pixel is the term used most widely, each of

11
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which has a particular location and value, the value of the point (r, c)

represents the brightness of the image at that point [3].

O energy source
““7I\

/l

Object

Figure 1-10 2D image representation [21].
1.6 3D Digital Image Representation

Three-dimensional digital images are widely available for the computer
representation inclusive computed tomography, medical imaging, and
computer vision [22], a Computer Tomography CT images consist of a
number of slides, each of these slides corresponds to the part or section that
Is scanned from the patient's body. Each slice of CT has a specific thickness
so it is composed of voxels (volume elements) rather than a typical digital
image is composed of pixels [23] [24]. A voxel or volume element is a
representation of 3D data of the tissue volume as shown in figure (1-11)
whereas X, Y and Z are an indication of the width, length and height (or
thickness) of a voxel in sequence. The face of the voxel is the pixel (i.e. X
and Y) [16].

The 3D image doesn't reconstruct directly in most the tomography
imaging systems but reconstructed in series of steps such as reconstructing
multiple 2D slices from its projections in a specific direction and then

sticking them in the same direction [25].

12
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In this dissertation, the reconstruction of three-dimensional images will
be a focused on.

Figure 1-11 The data that form the CT slice [16].
1.7 Quality of CT Images

It is important to estimate the quality of CT images to clarifying its
features accurately and to achieve good diagnostic data from the CT images
[26]. There are four essential factors that have a significant impact on the
image quality they are the spatial resolution, contrast value, noise, and
artifacts as shown in figure (1-12). Additionally, there are other minor
factors that have an effect on image quality. These factors depend on the
geometry of the imaging technique used. This section will present a

summarized view of the essential factors that affect image quality [27].

13
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Figure 1-12 (a) Original image (b) decreasing spatial resolution, (c) decreasing contrast

value and (d) adding artificial and noise [27].
1.7.1 Spatial Resolution

Spatial resolution (or sharpness) is the capacity to identify small details
in the images, or can be expressed as the capacity to differentiate between
details and edges of objects or structures that vary in its densities, for
example, differentiate between bone and soft tissue. So, for differentiating
between converging structures requires high spatial resolution [27]. The
estimation of the spatial resolution of CT images is influenced by a huge
number of factors. The properties of the computed tomography system have
essential effects in spatial resolution, the X-ray scatter and focal spot size of
the X-ray source is an operator that should be taken into account when
determining the spatial resolution where generality X-ray tubes have two
focal spot sizes (small and large focal spots size). Small focal spots made to
minimize blurring and best perceivability of details, while large focal spots
have greater heat-dissipate capability [29]. The other property of the CT
system that has effects on the spatial resolution is detector (pixel size,
scattering), also, other factors can effects on a spatial resolution for example

projection geometry, patient move, and reconstruction algorithm [28] [27].

14
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1.7.2 Contrast Value

Contrast value in CT images is the capability to distinguish between
objects that have variation in density or can define it as attenuation by the
body at different parts depending on the density of each part [29] [27].
Where the white color in the image represents bone, the soft tissue represents
by various shades of gray levels where the degree of gray color depends on
the amount of water in the soft tissue and the black color in CT images

represents the space (air) [30].

There are two kinds of contrast resolution in computed tomography
images which are high contrast resolution and low contrast resolution, These
types are classified depending on the degree of contrast between the body

and the background, whether high or low [31].

Contrast value in computed tomography images is influenced by a
number of factors such as, the type of ray used, the thickness of the object,

object size, reconstruction algorithm, image shows and noise [32].

1.7.3 Noise
The definition of image noise in computed tomography images as the
variability (e.g., standard deviation) of gray levels values in a homogenous
body [27]. There are different sources of noise of CT images including X-
ray dispersion that perform undesirable results in CT images and noise
associated with the detector's bad response, the noise can be reduced or

removed by the applied filter in reconstruction algorithms [27].

1.7.4 Artifacts

There is no explicit definition of artifacts in CT images, but its

theoretical meaning can be explained at a certain point as follows: the
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difference between the reconstructed value and the actual value of the object
at that point [7]. In other words, any difference between the reconstructed
image and the physical reality considered artifacts [27].

The major types of artifact in computed tomography images can be
summarized as streaking, shading, rings, bands, aliasing artifact and artifacts
due to motion object [7] [27].

Streaking artifacts are formed as straight lines, random or parallel across
the image and appear in black, bright or mixed between the two colors
depending on the cause of appearance. The streaks are due to an error in the
data collection process, a mechanical malfunction, object motion or because
of the presence a metal [7].

Shading artifacts often appear near objects of high contrast. such as, in
the smooth tissue zone close to the bone. They can be either bright or dark,
depending on the kind of causative [7].

Ring and band artifacts as shown in figure (1-13), It is clear to us from
the name of the artifacts that they are shaped as perfect rings, partial rings
(arcs) or bands in CT images. We can easily identify artifacts if they are
whole rings or bundles while the brackets may be described as a disease
rather than a defect and this poses a risk in medical diagnosis [7], Depending

on the signal given by the detector, these artifacts appear bright or dark [32].

Figure 1-13 Numerical of ring artifact [33].
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Metal artifacts appear as star in CT images, they are produced because of
the difference in absorption between a material placed in the body and the
original body as shown in figure (1-14) [32], It is commonly made from
materials that are hard to penetrate by X-rays like titanium or stainless steel
compared to the original body such as the knee, the hip, shoulder prosthesis,
cardiac pacemakers, dental fillings and metallic screws to fix teeth

replacements [34].

Figure 1-14 CT image for heart shows metallic artifacts from the cardiac pacemaker
[35].

There are other types of artifacts, including the happens when the patient
moves during taking the CT image called motion artifacts [31] as shown in
figure (1-15). When the patient moves a small movement, for example,
taking a deep breath during image capture, the artifacts will be in the form
of blurring while the artifacts will be in the form of double images when the

patient movement is large [32].
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Figure 1-15 Motion causes blurring and double images in a head CT [33].
1.8 Literature Review

Many researchers use tomography as headlines in their work; some of

the published works are:

s In 1999, Lanzavecchia et al., [36] studied a new algorithm to
reconstruct 3D object. It recovers the 3D Radon transform from
the 2D Radon transforms. They have shown that this algorithm
works with accuracy and is faster than commonly used algorithms.

% In 2000, Zeng [37], studied reconstructing a three-dimensional
object by sticking several of two-dimensional images that
reconstructed by back-projection process, the author deduced from
the results is that the final object is unclear and inaccurate because
of the blurring, which is resulting from the participation of points

that located outside the body in the reconstruction of the object.
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+ In 2002 Abdul Jabar [25], depended on equations proposed by Kak
& Slany and Pratt for a two-dimensional projection with
modifications on back projections equations to derive the back
projections equations in the Polar and Cartesian coordinates. Then
compare these two methods based on the time it took to
reconstruction images and the quality of the image’s
reconstruction. Also, he studied the impact of four types of filter
on the CT images, and compare the performance of these filters
against standard filters.

*,

» In 2007, Zosso et al., [38] left to the readers an open-source

*,

National Library of Medicine Insight Segmentation and
Registration Toolkit (ITK) implementation of a direct Fourier
method for tomographic reconstruction, by using parallel-beam X-
ray images. They had given the framework of direct Fourier
reconstruction and the algorithm they developed. They supply
results based on the Shepp-Logan phantom image also discuss the
various reconstruction parameters and display their particular
effect on the reconstruction results. One of the results they have
shown that the image reconstructed by the proposed method is of
high quality compared to the image reconstructed a standard

filtered back-projection method provided by Matlab.

>

D)

% In 2012, Rajendran et al., [39] studied Radon transform to obtain
local tomography rather than global tomography, one of the aims
of that is to reduce the dose of X-ray exposure to the patient. The
local tomographic reconstruction is obtained for a defined ROI (A
region of interest, samples important inside information set
specific for a certain study), the ROI can be either a square or

circular region. They used the filtered back-projection technique,
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whose length is dependent on ROI size and projection angle. From
results, the authors show Cosine filter provides better results vs to

Shepp Logan filter.

% In 2015, Sobani et al.,, [40] reconstructed an object using
multiple-views of 2D images using MATLAB tools, while data is
captured by a digital camera. The results showed that 3D
reconstruction it's good enough to reconstruct exactly the same
shape as the original object.

% In 2015, Tang, [41] studied the impact of projection angle errors

*,

on reconstructing three-dimensional electron tomography by using
the Fourier iterative method (FIRM) as a reconstruction method.
That thesis focuses on impacts of miss alignment on reconstruction
vs noise and missing wedge impacts. He found that the missing
wedge has the greatest effect among the studied factors, loss of
necessary information for complete reconstruction causes damage
to the reconstruction image. Missing alignment and Gaussian noise
have the same impacts on the reconstruction image. He concluded
when the projection angle error does not change too much, the
reconstructed 3D volume has a few changes which were measured
both with normalized mean square error (NMSE) and Fourier shell
correlation (FSC).

L)

% In 2016, Xiaoli Yang, [42] proposed the use of a little number of
projections to produce accuracy tomography reconstruction. He
proved image reconstructed from confined projections using
optimized CGTV (Conjugate gradient-based restoration algorithm
with Total Variation regularization) with data obtained by X-ray

imaging, it preserved resolution to accepted limit and their several
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disadvantages in the filtered back-projection (FBP) method
overridden by the proposed method. His method decreased the
number of projections from about 1000 to about 100 with preserve
reconstruction image quality. He suggested that in addition to
applying this method in biological and medical fields, it is also
applied in industrial fields for example structure analysis of
materials.

s In 2016, Vassholz et al., [43] in their article suggested a new

L)

method to the reconstruction of the three-dimensional object. They
used anisotropic sources to obtain isotropic 3D imaging, the
reconstruction based on three-dimension radon transform. They
applied special geometric to avert artifacts that produced by the
contribution of the points outside the reconstructed object when
using the integral of the projections that pass through and outside
the object, as usually consists in a two-dimensional Radon
transform.

+ In 2018 Louis Godon, [44] introduced a number of suggestions for

L)

the development of computed tomography. Where he gave an
empirical description of computed tomography model and
implementation of this model in companies, he also gave estimate
the oil and water ratio inner a porous rock. He focused on three-
dimensional imaging by the use of cone ray geometry in computed
tomography and the importance of determining scanner geometry
that has an impact on the reconstruction process the geometry was
determined based on a set of projections of a calibration phantom.
He used FDK (Feldkamp analytic cone beam algorithm) and
SART (Simultaneous Algebraic Reconstruction Technique)

reconstruction algorithms to reconstruct a phantom.
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% In 2018 Kim et al., [45] applied the interpolation methods to
sinogram to reconstruct an image from a little number of
projections where they used sparse angular sampling rather than
normal dense angular sampling in computed tomography scanning
then normalized the sinogram obtained by little (sparse angular)
they applied some methods of interpolation on the normalized
sinogram. They generated a corrected sinogram using multiplying
the interpolated sinogram by the prior sinogram and is used to

reconstruct the final CT image by using the FBP algorithm.

1.9 Aims of the Study
The aims of this present work can be abbreviated by the following:

% Study the algorithms to reconstruct 3D image for any object by
parallel beams geometry in computed tomography, using the slicing,
direct 3D projections and X-Ray transform methods in spatial and

frequency domain by the 2D, 3D and 4D sinogram spaces.

% A new interpolation method is proposed to recover the short in
available projections due to the high angular difference that used in

the object scanning phase.

1.10 The Layout of the Dissertation

In addition to the current chapter, this work includes another four

chapters:
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s Chapter 2: “Three-Dimensional Reconstructions” supplies
some basic definitions in the field of computed tomography and
other necessary ideas that have been used in this thesis. Such as
the mathematical equations of 2D and 3D projections. The
methods of reconstruction of 3D images are shown, also the type’s

interpolation used in this work.

% Chapter 3: “Methodology of Reconstructing 3D Images”

L)

discusses the steps to establish algorithms for the 3D image
reconstruction in computed tomography and describes the steps of

the algorithms in detail.

% Chapter 4: “Results and discussion” included the computed

L)

results and schemes are given to illustrate the reconstruction and

the improvements in the performance of the suggested method.

% Chapter 5: "Conclusions, Suggestions and Future Works"

L)

displays the conclusions obtained from the discussion of the test
results. In addition to the several suggestions are given for future

work.
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Chapter Two

Three-Dimensional Reconstructions

2.1 Introduction

This chapter focused on the reconstruction of a three-dimensional
image for a three-dimensional object by tomographic imaging based on

linear integration projections and planar integration projections.

Imaging the inside density distribution of a 3D object using a collection
of its 2D projections can be considered an extension of computerized
tomography, which was originally developed for reconstructing two-
dimensional cross-sections (slices) of a three-dimensional object from its
one-dimension projections [46] [47]. It was first used in positron emission
tomography based on two planar detectors rotating around an object in a
static angular interval [48]. While reconstructing the three-dimensional
object using the Fourier transform was first proposed in 1977 by Chu and
Tarn [48].

As mentioned earlier in the first chapter that one of the purposes of X-
ray computed tomography is to acquire images internal structure of the
object. This chapter will present several ways of reconstruction it depends
on radon transform in two or three dimensional and others depend on X-

ray projections.
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2.2 2D Forward Projection

To understand the concept of reconstructing 3D images in the first
must understand the concept of projection which is called Radon transform
according to the name of scientist Austrian mathematician Johann Radon
(1887) which laid the fundamentals of this transform [49]. Radon
transform works to find the amount of density inside the body along a
particular line () tilted from the X-axis at particular angle and a distance
(t) from the point of origin by a linear integral along each line [50], and by
combining the set of linear integrals lead to form the projection that has

various values at each different angle as shown in figure (2-1) [50], [1].

The line integral means the integral of some parameters inside an object
along a straight line. The choice of the type of parameter depends on the
type of physical phenomena (e.g. absorption, attenuation, reflection, etc.)
that occur for the radiation used for CT imaging, for example when the X-
ray passes through the object, it will be attenuated [1]. So, the linear
integration value of a single straight line represents the total attenuation of

X-ray along that line [1].

P(t.6,)

Figure 2-1 The projections at various angles [51].
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2.3 2D Tomography

To illustrate the mathematical equations of the projection we assume
an object represented by a two-dimensional function f(x.y) and each line
integral represented by the P(t.0) parameters, the coordinate system will
be used to describe the projection and linear integral can be illustrated in
figure (2-2).

projection

Figure 2-2 The coordinates system of projection and the linear integral [1].

The line AB define by equation (2-1) [1]:

xcosO +ysinh =t (2-1)
The orientation of projection can define by:

@ = (cosf ,sin0)

Where (t) represents the length of the line integral distance from the

origin and symbol (8) represents the angle of rotation.
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The linear integration Py(@. X ) can be defined as the following:

Po(@.X ) = [y y1ine fC0Y) ds (2-2)

Where X = (x,y) and (s) represent the set of (x.y) points that belong
to the integral line Py(t) that have distance (t) from the origin and making

angle equal to (0) with the positive X-axis [25].

Using a delta-Dirac function to calculate the (x.y) set the point that

belongs to the Py(t) , the equation of forwarding Projections became [1].
Po(t) = [ [ f(xy) 8(xcosB +ysinf —t) dxdy (2-3)

The equation Py (t) is known as the forward projections or the Radon
transform of the object f(x.y). Where the projections are produced when

collection a series of linear integrals [1], [25].

In addition, we must clarify that the transform from f(x.y) to Py(t) by
linear integral transform also called X-ray transform, it is completed by the
imaging operation, which is similar to Radon transform in two dimensions
while in three dimensions does not resemble Radon transform in three-

dimensional, which will be explained in sections (2.4).
2.4 2D Image Reconstruction Methods

In computed tomography, the reconstruction algorithms are basically
categorized into two groups which are: methods that depend on Transform
(analytical method) and on Finite series expansion (iterative methods) each

of these methods has its advantages and limitations [17].

The method to reconstruct the image is selected, if it is analytic or

iterative, depending on the nature of the projections in terms of their
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number and quality of capturing them and also, depending on the type of
object that needs to be imaged it (bone or soft tissue), the maximum time
allowed to reconstruct the image and the nature of the equipment used in

tomography imaging [17] [40].

The transform methods are widely used for image reconstruction, it is
used when the time required to reconstruct the image is limited and the
resulting image in this method is acceptable quality, although this method
is based on fictional models which are somewhat unrealistic [52].
Transform methods are the most widely used methods in many devices that
depend on X-ray computed tomography technology which fair highly to
Signal to Noise Ratio (SNR), to obtain a high-quality image that
reconstructed by any method of transforming methods requires quality and
high density of projections. In many statuses, the quality and /or quantity
of data is not enough for the transform methods. These statuses notice, for
example, when the image is taken with a small dose of radiation in medical
imaging, taken an image for an object with widely varying densities or

taken an image with a limited number of projections [25].

To form the image in an analytical method requires a direct
mathematical solution while in the iterative method requires many
iterations based on a complex mathematical solution [17], in addition,
while the Series-expansion methods (lterative method) have advantages
than analytic, where an acceptable image can be obtained when the data is
incomplete, inconsistent and noisy in data resulting from attenuation,

scatter and random in projections beam [53] [48].
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Besides these advantages of series-expansion methods, there are two
major disadvantages that make these methods undesirable for

reconstructing the images, which are [25]:

First, this method is based on the statistical mathematical concept in
which it estimates from a given two-dimensional projection the closest
image that could produce such projection, so it is an inaccurate method if

compare it with the transform methods [25].

Second, this method is based on an estimating the image from the
projection based on the iterative process for linear equations for
reconstructing an image, and to increase the quality and accuracy of the
reconstructed image, we must increase the number of iterations needed to
reconstruct the image, so this method needs a long time because the
iterations make it very slow, to accelerate this method and make it in a few
minutes requires special and expensive devices. So in most imaging
devices that rely on tomography use the transform methods to reconstruct
the image [25].

For the above reasons, our work in this dissertation will be based on
the transform methods, but this does not mean that the series expansion
methods are bad and cannot be used in the future. On the contrary, they
provide high-resolution reconstructed images from incomplete data and
noise data. There are several transform methods to reconstruct the image as

shown below.
2.4.1 Fourier Slice Theorem (FST)

The Fourier slice theorem was the first introduced to reconstruct an

image from the parallel beam by Bracewell [54]. The Fourier slice theorem
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can be defined by other names such as projection slice theorem and Central

slice theorem [51].

The Fourier slice theorem gives a relationship between the projection
and the Fourier transform of an object [41]. Its method is done by taking
the FT of the projections at an angle 0 that yields to obtain one cross-
section of the original object in frequency domain this cross-section
correspond to forward Fourier transform of one cross-section of the
original objectF(ux,vy) [55]. Thus if take the Fourier transform for the
projections at all 0 that yields to obtain the whole profile of the original
object in the frequency domain that corresponds to forward Fourier
transform of the whole original object F(u.v) then by take reverse
Fourier transform of F(u.v) this produces the full retrieved of
object f(x,y) see figure (2-3) [17].

OV
\-o'\‘;\'\\

onc-diemensional

Fourier transformation
of the projection two-diemensional Fourier

transformation of the object

indentical
% V |

Figure 2-3 Steps of Fourier slice theorem [17].

To explain Fourier slice theorem from the mathematical side, must

know in first the two-dimensional forward Fourier transform for an object

[1].

Fuwv) = [77 77 f(ey) e 270 gy dy (2-4)
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On the other hand, we take a look at the Fourier transform of

projection Py (t),
Sew) = [ Py(t) e™270¢ gt (2-5)

The simplest case to derive the mathematical equations for Fourier
slice theorem is done when suppose the projection at an angle equal to zero
(@ =0), and the Fourier transform along a line of an object get him by

considered v = 0 thus the forward Fourier transform become [1]:
Fw0) = [77 17 f(x.y) e"27 dx dy (2-6)

The last equation can split into two sections because the phase doesn't

longer dependent on factor y [1] :

Fw0) = [*7 [ [*° f(xy) dy | e"2™ dx (2-7)

e}

The section in parentheses in the equation (2-7) represents as an
equation to find projections along lines of constant x or can be written as
equation (2-8) [1]:

Poo(®) = [ f(xy) dy (2-8)

Replace the section between brackets in equation (2-7) by equation (2-
8)

F(uw0) = f_:o Pg_o(x)e12™ux dx (2-9)

The part after the equality process of the last equation represents the
1D-FT for the projections Py_,(x); so, we can deduce an equation that
links the projections and a two-dimensional transform for any object as
equation (2-10):
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F(u:0) = Sp=o(w) (2-10)

The FST is an easier case which isn't dependent on the angle between
the object and the coordinate system [1]. If it has taken into consideration
the angle between the object and the coordinates system, the Fourier
transform of a parallel projection of the image f (x, y) tilted at the angle
with the x-axis gives 2D slice in frequency domain also tilted at the angle
6 with the u-axis. In another word, when applying the FFT of Py(t) leads
to giving the values of F(u.v) over the line BB™ that shown in figure (2-4)

[1].

In deriving of the equations of Fourier slice theorem with a more
generalize and solid foundation, assume that the coordinates system (t.s)
will be the rotated version of the original coordinates system (x.y) at a
certain angle @ instead of zero as shown in figure (2-4), that can be done

by the following matrix [1]:

=500 cocel @-11)

S

Space domaln Frequency domain

Figure 2-4 The FT of a specific projection line from the object [1].
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When the point specified by the coordinate (t.s) the equation of

projections for fixed t it became as equation (2-12) [1]:
Po(t) = [ f(ts) ds (2-12)

Replace the Py(t) in equation (2-5) by the right-hand side of equation
(2-12) we get [1]:

Se(w) = [ [f(t:s) ds] e 2™t dt (2-13)

The equation (2-13) may be converted into the (x, y) coordinates

system by applying the matrix in (2-11), we get:
Se(W) — J‘_"’ozo fjozo f(X,y) e—ian(x cos 0+y sin 0) dx dy (2_14)

The right-hand side of the equation (2-13) represents the 2D forward
Fourier transform at a spatial frequency of (u =wcos6@., v=w sin8)

or:
So(w) =F(w.0) = F(wcos 0, wsin8) (2-15)

The summarily of the equations (2-13), (2-14) and (2-15) is when
taking the parallel projections of an object at different
angles (6;, 65,05, ...... ,0) and then taking the forward Fourier
transform for each of these projections, we get from each transform the
values of F(u, v). If we taking an unlimited quantity of projections in this
way the F (u, v) will be known at all points in the uv-plane. Finally, we
apply the inverse Fourier transform for whole data in the frequency domain

we get the reconstructed object as shown in figure (2-5) [1] [41]:

fOey) = [77 77 F(wv) e?m@x ) gy dy (2-16)
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yie ; ObjCCt
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\
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Figure 2-5 The reconstruct original object by 2D inverse Fourier transform [51].

2.4.2 Simple Back-Projection (BP) (Inverse Radon Transform
(IRT))

To reconstruct the image from its projections we need an inverse
process for the forward projection. This process is called back projection
or inverse Radon transform. The Simple Back-Projection was first
introduced to reconstruct an image from the series of its projections by
Radon [56], and it is the simplest method to reconstruct the original object
[23] [25], in which consider, the collecting of all projections pg(t) that
passing through a point (x»y) for all orientations will obtains the retrieved
object, that denoted as BP(x.y). Because these projections are linear
integrals through a point f(x.y). Thus f(x.y) is retrieved by this
collecting although it containing blurring because of the participation from
the other points that the projection passing through it, that does not

represent the value of the point to be restored [17].
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If assume using the simplest geometric as illustrated in figure (2-6),
ones whose source beams are parallel and opposite the detector, the source
and detector rotate about the object that fixed in the center of the
coordinate system (x.y), the ray beam passes through the object at each
rotation angle (6), symbolizes the rotation angle by the symbol (8), and a
rotating coordinate system represented by (t.s) that has the same point of
origin of the coordinate (x.y), (S) represents the detector position, (t)
represents the distance along of a ray, any point on the object can be
represented by either (x,y) or (t.s) coordinates system and the coordinates

system are rotated by a rotational transformation [25].

= [ cosol [y @2-17)
Or inversely
S=me osolld 2-18)

As shown in section (2-2) and equation (2-2), we get the
projection pg(t) by linear integration of all points f(x.y) that pass through
the projection line that has a length (t), figure (2-6) shows the Radon
transform Rf(t,0) for the function f (t.s) [25].
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i x:"lﬂ‘*‘-l__;

M
N
5

Figure 2-6 1D projection using a parallel beam [25].

Using the above geometry and starting from the idea of back-projection
(to reconstruct the point (x.y) must collect all the projection values that

pass through this point) i.e. [25].

BP(xy) = f (xy) = [; Rf (t:6)d0 (2-19)

Or
BP(x.y) = f (x:y) = [, Rf (xcos + ysin8,0)do (2-20)

This equation for back-projection produces an image in the Cartesian
coordinate by using the rotation equation (2-18) [25]. There are other
equations for back-projection that produce an image in the polar

coordinates [23].
2.4.3 The Filter After the Back-Projection (BPF)

The image reconstruction by the previous method (simple back-
projection) is blurring, so will using different types of filters to remove the
blurring here will explain the method of the filter after back projection.
Initially reconstructing the image from the projection by back-projection,
apply forward Fourier transform, filtering in the Fourier domain by

multiplying the image in the frequency domain by the filter, and then apply
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the inverse Fourier transform to reconstruct the filtered image. Instead of
that, the filter operation may be performed in the spatial domain through
the convolution process of the BP(x.y) and a filter operator. However, this
method has two problems [17]:

1) The Back-Projection in the frequency domain (BP(uy.vy)) should be

calculated within a matrix much broader than that in f(xy), As
blurring in the retrieved image BP(x,y) makes it take more space

than the original image space f (x.y) [17].

2) The values of f(x.,y) are positive values at each point (x;y) in the
original object. While the values of the original object after applied
the FT on it be equal to zero (FT(u,vy,) =0) when values of
coordinates in Fourier space equal to zeros (uy = v, = 0), so the

retrieved image BP(x.y) does not have data in the origin point

because of diverges at the origin point (uy = v, = 0). From the

above reasons, the retrieved image f(x.y) have values zeros and
negative, this is contrary to values of the original image f(x.y). To
avoid this disadvantage must exchange the sequence of operations of

the filter and BP, this will be done in the next section [17].

2.4.4 The Filter Before the Back-Projection (FBP)

In this section, first, apply a filter on projection data and then BP,
where the FT is applied to the projections domain rather than applying on
the blurring object. In one of the steps in this method, we need to convert
between the Cartesian coordinates and the polar coordinates. This
conversion is almost similar to the Fourier transform in the previous

method, but the resulting image in the conversion method between the
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coordinates does not have a lot of defects and artifacts as in the previous
method. Besides that, this method takes a long time because the filter is
applied to each parallel projections at the specific theta independently and
applied to the rest of the angles in the sequence for improving the final

image [17].

2.5 3D Tomography

The three dimensional Radon Transform is defined in the same way as
in equation (2-4), except that (x,y) is now defined as a vector (x.,y, z) in
three dimensional and the integral is the surface integration whose
orientation defined by a pair of angles (6. ¢), rather than linear integration

that done in 2D forward transform, see figure (2-7) [57]

direction of 3
projection 3
\

rojected sum of the
snl?:nn the X'y’ plane

xy plane

Figure 2-7 The Projection in 3D [57].

The three dimensional forward projections are known by using the 2D-
projections of a 3D-function f(x,y.z) where these projections are obtained
by integrating f (x.y.z) each a plane surface, where the orientation of this

plane can be defined by a vector & shown in figure (2-8) [58] [59].
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@ = (sin 8 cosg , sin 0 sin @, cos 6)

Figure 2-8 The Projection geometry in 3D [58] [59].

To derive mathematical equations of Radon transform in three
dimensional, at first suppose a three-dimensional function f(x.y.z) and a
plane that can be represented by a unit vector @ and the distance s of the
plane from the point of origin, so the three dimensional forward

projections of function f(x.y.z) is given by [58]:

+

Poy(@.X) = [0 17 J 17 foya) dt (2-21)
Where X = (x,y,z) and the distant defined by:

t =xsinfcosg +y sinf sing +zcosb (2-22)
From equation (2-21) and Dirac’s delta function, we find:

Pg.o( a.xX) = f:: f_t:o fj;o f(x:y-2) 8§ (xsin@ cos @ +
y sinf sing + zcos@ —t)dx dy dz (2-23)

The function Pg,w(c‘x’.)?) is known as the Radon transform of three-

dimensional object f(x.y.z). The forward projections operate on the
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conversion of spatial space (x.y.z) to the (@. X) space. Where every single

point in the (&.)? ) space correspond to the plane in the spatial space (x.y.z)
[58]. The 3D back-projection method applies to reconstruction 3D object

from 3D Radon transform.

2.5.1 3D Back-Projections Method

Three-dimensional back projection is an extension to the two-
dimensional back-projection shown in equation (2-21). To reconstruct the
three-dimensional object from its projection, an inverse process for the

forward projection is needed. This process is called back projection, which
considers, the collecting of Py,,(&. X) passing through (x.y.z) for all 6 and
¢ yields, the reconstructed image denoted BPy.,(xy-z). Since these

projections are surface integrals through f(x.y.z). Thus f(x.y.z) is
retrieved by this collecting although it containing blurring because of the
participation from the other points that the projection passing through it,

which does not represent the value of the point to be restored [17].

BPg,,(xy:z) = f(x:y:2) = fozn f: Rf(xsin@ cos ¢ +
y sinf sing + zcos8.0.¢)d0dep  (2-24)

2.6 Imaging 3D object by X-ray transform

X-ray transform is applied to a three-dimensional object f(x.y.z) in
which the object is stationary and the radiation is revolving around the
object. So here four variable parameters are needed to parameterize the
LOR (a line of response) that shown in figure (2-9): two of these
parameters are angles (6,¢)to define the unit vector Z,.(¢,0) =

(cos ¢ cos 8, sin ¢ cos 8, sin 6 parallel to the line of response (LOR) and
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the two other parameters (x,,y, ) are used to select the location of the
cross point of the Line of response (LOR) with the plane perpendicular to
Z (¢, 0) [60].

LOR
(parallel to 3,-)

——
-

Figure 2-9 Factors of 3D Line of Response (LOR) for the X-ray transform [60].

The derivation of mathematical equations for the X-rays transform is
based on two conditions, the first condition is % .Z = 0 and the second
condition is consideration that the @ angle as the co-polar angle, so the
matrix used to convert from the original coordinates to projections

coordinates is [60]:

Xr
Zy

Based on the equation (2-25), the line integral projections along the

—sing COS ¢ 0 X
—cosgsinf —singsinf cos 9] [y] (2-25)
cos ¢ cos 6 sinpcosf sinfl Lz

line of response defined by (x,., y,., ¢, 8) can be calculated by [60]:

Py, Yy, 0,0) = [ f(2y.2) dz, (2-26)

When taking a set of line integral projections for all (x,,y,)and
constant orientation (Z,(¢,8) constant ) will generate a 2D sinogram
P(x,, y,, @, 0) for the 3D object f(x.y.z) as shown in figure (2-10) [60].

The P(x,,y,, @,0) can consider as a 2D sinogram when Z,(¢, 8) is

constant in a certain orientation, but when taking projections
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P(x,,y,, @,0) forall orientation when 0 <o <m, |0]| < % for an object

and the values of |x,,y,| < oo this leads to generation a 4D sinogram, so
the X-ray transform for 3D object will increase the number of dimensions
by one in projections domain, this causes redundancy in the data and

distortion in the retrieved image [60].

Non-zero region ofp(x,,y,,,6)

Direction of
projection

Projection in direction (¢,0)

Figure 2-10 The projection taken by X-ray transform [60].

2.7 Method of Reconstruction 3D Object from X-Ray

Projections

The following sections (2.7.1) and (2.7.2) show the equations of

reconstruction object from 4D projections.

2.7.1 3D Back Projection for X-Ray Projections

Three-dimensional back-projection for X-ray projection is an extension
to the two-dimensional back-projection for X-ray projection that shown in

equation (2-20), and the back-projected image is given by [60]:

flx,y,2) = f_+96 fon P(x,,y,,¢,0) dp cosf db (2-27)
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This process is called back-projection for X-ray projections, in which
consider, the summation of P(x,., y,, @, 8) passing through (x,y.z) for all 0

and ¢ yields, the reconstructed image denoted f(x,y, z) [60].
2.7.2 The 3D Fourier Slice Theorem for X-Ray Transform

This method also is known by central section theorem for the X-ray
transform of the 3D object, for derivation, the mathematical equations for
this method, initially applied the 2D Fourier transform to the first two

variants (x,.,y,.) of the 4D projections as follows [60]:

P(uxr,vyr, go,@) =
f_"'ozo fjo‘:o P(x,, v, @, 6) o~ 2t Uy +YrVyr) dx, dy, (2-28)

If F(uy, vy, w,) is the 3D FFT of f(x,y,2)

F(ux, vy, WZ) =
JrE O T f (e, y, 2) e EmE Uy v WD) G dy dg (2-29)

Consequently, for obtaining the final equation of the Fourier slice

theorem for X-ray transform based on equation (2-30) [60]:

P(uxr, Vyr, @, 6) = F(ux, vy, WZ)| (2-30)

Wzr=0

From equation (2-25) we have,

Uy —sing —cos@sinf cos@cosO] [Uxr
Ur|=]cosg —singsinf sing cos 9] [vyr (2-31)
Wr 0 cos @ sinf War

The meaning of the 3D Fourier slice theorem for the X-ray transform is

identical to the 2D Fourier slice theorem where the 2D Fourier transform
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for the projections perpendicular to Z,.(¢p,8) be equivalent to the 3D
Fourier transform for a section of the 3D object at the same orientation.
This is shown in figure (2-11) [60].

P(Xr’Yr"bsB) Uyr P(er!uyr’q)’e)
2{p(Xryr.¢.0)}
v

Projection

direction\
4 /

—>.

Lxr

Zf—Equivalent
: . values
Fa{f(x.y.2)} : |
YV i A Ly
X Uy s S
.~ Fuxvyvz)

Figure 2-11 The 3D Fourier Slice Theorem for X-Ray Transform [60]

2.8 The Relationship between Radon Transform and X-Ray
Transform

To produce projections for the 3D object there are two methods either
by 3D Radon transform or X-ray transform. The Radon transform will
integrate the 3D object across all two-dimensional planes as shown in
figure (2-12) [60].

Plane of
integration

Figure 2-12 The Radon transform for 3D Object [60].
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For an n-dimensional object f(X), where X = (xq,x5,...,x,), the
Radon transform of f(X), is defined as the set of all integrals along the (k

=n - 1) dimensional hyperplanes intersecting the object [60].

Using the same notation, the X-ray transform of an n-dimensional
object is defined as the set of all (k = 1) dimensional line-integrals through

the object as shown in figure (2-9) [60].

For two-dimensional objects, the X-ray and Radon transforms are
equivalent, where k =n—1 =1 (that is, line integrals) for both, whereas for
three (or higher) dimensional objects the X-ray transform remains a line-
integral transform while the Radon transform becomes a plane integral for

n =3, and a hyperplane for n > 3 [60].

2.9 Ramp Filter In Frequency Domain

Ramp filter (RF) is the simplest type of filters, it is classified as a high-
frequency filter, where it prevents the low frequencies from passing which
causes blurring in the image and it allows the High frequencies passing. Its

mathematical function is given by (2-32) [61]:

RF (vy,vy,v,) = \/(vx)z + (vy)z + (v,)? (2-32)
The data at each frequency (v, v, v,) is multiplied by the RH (v, vy, v,).

2.10 Interpolation

The images of computed tomography obtained from a series of
projections, and by collecting a set of projection data at different angles
this will form the sinogram of a range of angle from 0° to 180° or 360° [1]
[62].
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In natural state when take scanning of object used angular interval for
scanning (delta) equal to one consequently obtain full data sinogram but in
this section, used different delta (angular interval for scanning) greater than
one, thus this causes the loss of some data of sinogram, so to restored the

lost data different methods interpolation are used on sinogram.

The interpolation in images is a widespread method in the image
processing field and other fields. it was also used to improve the
algorithms used to secure communication in mobile phones [63], Here, it
used interpolation in tomography for image construction of an object from
a little number of projections. Some of the interpolation purposes are to
reduce the number of projections in a computed tomography scan to reduce
the time of scan and exposure of radiation [64] [65] [66] [67]. There are
many different types of interpolation methods, each of them has a different
result for the final image. Will chose the best method depending on the

quality, or visible distinction for each pixel.

The interpolation methods are used to find missing pixel values located
in a known location, where this pixel is located between pixels and has
known values. [68], [69]. Or as some have defined it as expanding data
from limited data [70].

Three frequently interpolation methods used are the nearest neighbor
interpolation, linear interpolation, and non-linear interpolation applied on
the 2D sinogram that shown in figure (2-13) to determine the missing
projections, for all three interpolation methods, the angular interval

between two adjacent projections (A#@) is normalized to unity.
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at=)

w

Figure 2-13 A schematic representation of the adopted geometry for the interpolation
methods

The new value for the missing projections at distance d from the
previous projection is calculated by finding the weighted sum of the
previous projection at (6;) which is Py, ; and the posturer projection at (6;)

which is Pg.1, @s equation (2-33):
P@,l = WiPGi,l + ijej;l (2-33)

Where Py, is the projection at an angle fall between two adjacent
projection at 6;and 6;, w; is the summation weight for the previous

projection at (6;) and w; is the summation weight for posturer projection at

(6)).

The value of the two summation weights is always maintaining the

following condition:

Where the value of the w; is calculate for each interpolation method as

follow:

* Nearest neighbor interpolation method
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) AB
w, = {1 if d<7 (2-25)
0 elsewhere

+ Linear interpolation method

d
W == (2-36)
+ Nonlinear interpolation method
wy=——— (2-37)

L7 14e-(6-12d)

The distribution for the summation weights is illustrated in the figure
(2-14).

1 T T T T T T T T 1
0g | 4 0.9 Prevbnfs Sinogram Weight 1
Next Weight
08 0.8 1
07 0.7 1
Sos} Sost
o ]
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B Next Sinogram Weight B
5] (]
=04 S04 1
03} 0.3
02 0.2 1
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o . y , " " ; , , 0 L s . . . . " L "
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(a) (b)

evious Sinogram Weight | |
Next Sinogram Weight

Weight Value
o
o0
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Normalized Distance

(©)
Figure 2-14 The distribution of the summation weights for three interpolation methods

(a) Nearest Neighbor (b) Linear (c) Nonlinear
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2.11 Fidelity Criteria

Measure the fidelity criteria of an image after each processing method
IS necessary to estimate the quality of the image after processing and to
estimate the performance of the processing method, there are two kinds of

fidelity criteria are objective and subjective fidelity criteria. [71]
2.11.1 Objective Fidelity Criteria

Its mathematical measure applied to digital information to estimate the
amount of error in information processed by comparing it with original

information. Here the image represents the digital information, where
f(x,y,z) it represents the original image symbol and
f (x,y, z) represents the retrieved image symbol [3]. For any values of

X, Y, and z the error (e) is [72]:

e=fyz) - f(xyz) (2-38)

The total error (er) of the retrieved image has a size (N X M X W) is
[72]:

er = Xy=0 Ly=o 2ze0 f (%,y,2) = f(x,y,2)) (2-39)

Care must be taken when using objective fidelity criteria because they
may sometimes be inconsistent with the subjective fidelity criteria, where
the image is judged to be bad or good after processing depends on the
compatibility of the two fidelity criteria [3]. The common types of

objective fidelity criteria are:
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1- Mean Square Error (MSE)

It's an average of the sum of the square of the error between the image

after and before processing [71].

MSE = ——— SN SMd SU S ((F (. 2) = o y,2))?  (2-40)

MxN xw &x=0

When the value of the MAD or MSE high that means the processed
image is bad compared to the original image, whereas when the value of
the MAD or MSE is zero, it means that the method of processing is ideal.
In these types of fidelity criteria, do not have negative values because of

the effect of the quadratic and absolute operation [3].

2- Root Mean Square Error (RMSE)

It is calculated by taking the square root of Mean square error(MSE).
When the value of RMSE small it means the processing method is ideal
[73].

NXM xXW

RMSE = il S S ST (P () = [, (2-41)

3- Signal to Noise Ratio (SNR)
It is calculated by taking the square root of MSNR as shown in

equation (2-45). When the value of SNR high means the reconstructed
image is good [3].

SNR = \/NXI;IXW Py ZQL_OI Pl (f (x,y,2))?

oE (2-42)

Many times the SNR is calculated in decibel (1dB=one tenth of the
logarithm) as below [71].

1

SNR = 10 loglo(NXMXW

N TG B (x,y,2))

MSE

) (2-43)
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4- Peaks- Signal to Noise Ratio (PSNR)

It is calculated by taking the ratio between the maximal value of the
gray level in the image and the mean square error, it is also called the
guantization noise. In many times, it is measured in units of decibel
(1dB=one tenth of the logarithm), as below [74]:

PSNR = 10log;4(--) (2-44)

Where, L isthe maximum value of the gray levels.
2.11.2 Subjective Fidelity Criteria

The quality of retrieved images is evaluated based on the average
rating of the group subjective evaluations of human experts. This can be
done by display retrieved images to a collection of experts then calculate
the averaging of their evaluations. The absolute rating scale may be used as
evaluations, such as (excellent, fine, passable, marginal, inferior and
unusable) [75] [76].
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Chapter Three
The Methodology of Reconstructing 3D Images

3.1 Introduction

Computed tomography wused to generate a three-dimensional
representation of the inside object without affecting the structure of the
object, the quality of the reconstructed images depends on several

parameters in the reconstruction algorithms which will discuss in this

chapter.

Most researches in the field of computed tomography focus on
improving the quality of the reconstruction image. This chapter describes a
review of algorithms of images reconstructed to improve its quality with

using the least dose of radiation and least time.

3.2 summarize of methodology

The steps of reconstruct 3D object can summarize in figure (3-1)
( Create 3D Object )

N A
Divided the 3D Object to n-Slice along Z-axis Direct 3D Forward Projection X-ray Transform
and parallel to (x, y) plane Apply 2D Radon

Transform to each Slice at different Z

N A
3D Back projection Apply 3D BP Apply FST
No

Apply the 2D
interpolation to the 3D
sinogram Yes

l v N N A 4

T

LI BETT ) Apply threslod

value

Apply Ramp filter

A the back projection
e bt el and threshold value:

to each slice

filter and
threshold value,

A

Apply Ramp
filter and Apply threslod
value

threshold value

=f4'—\

{ Retrieved Object ’1

Figure 3-1 Summarize of methodology block diagram.

52



Chapter Three The Methodology of Reconstructing 3D Images

3.3 Creating 3D Object

The first step in our study is to create a three-dimensional object by using
MATLAB programing language, as a sample to apply and test the

algorithms.

Here, initially will create two objects, the first object is the first object is
a symmetrical solid sphere have a hollow sphere in the center of a solid
sphere as shown in figure (3-2a, b). This is done by using the sphere equation
and choice the radius of the spheres and the position of the spheres in the
three-dimensional space by controlling on the space dimensions (X, y, and
z). Where the centers, radius and the density of each sphere are listed in table
(3-2), this sketch in dimension’s space is (33, 33, 33).

10 5 10 15 20 25 30
Y-axis X-axis

(@) (b)

Figure 3-2 (a) hollow sphere inside solid sphere
(b) Solid sphere
Table 3-1 the location, dimension, and density of the spheres that consist of

the object
Sphere No. Center radius Density
1 (The solid sphere) (17,17,17) 17 1
2 (The hollow sphere) (17,17,17) 3.5 0
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The second object is asymmetrical, which is almost similar to the outer
structure of the Mickey Mouse head with a hollow small sphere in the center
of it as shown in figure (3-3 a, b), where the big sphere and the ears of
mickey Mouse are solid spheres. This is done in the similar way of the first
object also based on sphere equation as well as the choice the radius of the
spheres and the position of the spheres in the three-dimensional space by
controlling the space dimensions (x, y and z). Where the centers, radius and
the density of each sphere are listed in table (3-3), this sketch in dimension’s
space is (33, 33, 33).

Z-axis
Z-axis

A 0
; 5 10 15 20 25 30 _ax 0 ¢
Y-axis @ X-axis Yraxis X-axis

(@) (b)
Figure 3-3 (a) hollow sphere inside head Mickey Mouse &
(b) the solid head for Mickey Mouse

Table 3-2 The location, dimension, and density of the spheres that consist of Mickey

Mouse
Sphere No. Center radius Density
1 (the main) (17,8.5,18) 9 1
2 ( small right) (26,13,25) 3 1
3 (small left) (8, 13, 25) 3 1
4 (the Hollow) (17,8.5,18) 3 0
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3.4 Methods of Forward projections

The second step after creating a three-dimensional object, it is done by
taking the forward projections of the three-dimensional object. In this
research, it was done by three methods depending on how the image is

reconstructed.
3.4.1 Slicing Method

The object is divided in a certain direction into several two-dimensional
layers in this method, for example, an object O (x.y, z) can be considered to
be composed of several two-dimensional layers (n) have the same thickness
along the z-axis, all these layers are perpendicular to z-axis as shown in
figure (3-4). Each layer in three dimensional object is considered as a two-

dimensional function f(x.y).

According to the above paragraph, the three-dimensional object
reconstruction can be done by taken a number of two dimensional Radon
transform of a 3D object along different heights as shown in figure (3-4) by
applying the equation of two-dimensional projections (2D Radon transform)
(see equation 2-3) separately for each two-dimensional slice at different
heights for the three-dimensional object the orientation of the two-
dimensional projection is identified by angle (6), where the range of theta
angle has the range (0 - ). The two dimensional radon transform (that
discussed in section 2-2 in chapter two) will generate sinogram (i.e. two-

dimensional projection) for each slice of the object.
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of slice P(r,8,z=0)

object (3D)

slice (2D)
x5

Figure 3-4 The 2D radon transform for one plane of 3D object [60].

After the implementation completed of the forward projections on all the
slides starting from Z=1 to Z=33, the two-dimensional projections
(sinogram) has resulted from each two-dimensional slice are stacking at
different heights to produce the three-dimensional projections of the three-
dimensional object, the block diagram of this method illustrated in figure (3-
5).

Start

N

Create the 3D Object

. Divided the 3D- object into several 2D-slice along z-axis| I

| Apply 2D Radon Transform for each 2D slice |

| Stacking all the 2D sinogram will generate the 3D-sinogram
P(z,r,©)

End

\_

Figure 3-5 The forward slicing method block diagram.
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3.4.2 Direct 3D Projections Method

In the second method, apply the equation of the three-dimensional
projections (three dimensional Radon transform) that shown in equation (2-
23) for the three-dimensional object, the orientation of the three-dimensional
projection is identified by a pair of angles (0, ¢), rather than one angle as
done in two-dimensional projections. Where the range of theta angle is (O -

), while the range of Phi is (0 - 2m). The block diagram of this method

A
‘ Create 3D Object I
Apply 3D Radon Transform for the 3D Object | I

illustrated in figure (3-6).

Saving the 3D sinoram P(r,6, ¢ ) |

Figure 3-6 The Forward the Direct 3D Projections block diagram.

3.4.3 X-Ray Transform Method (X-Ray Projections)

The third method, is done by taking X-ray projections (seen equations
2-25 and 2-26) for a three-dimensional object where the object is stationary
while the X-ray rotate around the object, the orientation of the X-ray
projections is identified by a pair of angles (8, ¢) Where the range of theta

angle has |m/2| degrees while the range of Phi is (0 -m). and pair of
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coordinate (X, y) to locate the position of projections, the block diagram of

this method illustrate in figure (3-7).

v
Create 3D Object I

Apply the 3D X-ray Transform for the 3D-Object | I
— ¢ S—

Saving the 4D sinoram P(x,y,6, ¢ ) | I
m— S—

Figure 3-7 The Forward X-Ray Transform block diagram.

3.5 3D Object Reconstruction Methods

There are many methods to reconstruction images from its projections,
in this research work, three types of reconstruction methods are used, two of
them are Back-Projections (BP) (or Inverse Radon Transform) and Fourier
Slice Theorem (FST), each of these methods is applied depending on the
method of taking these projections for the three-dimensional object as
explained in sections (3.3.1 and 3.3.2). The third method is X-ray transform
to reconstruction the three dimension object from projections that obtained
by using the method in section (3.3.3), there are two methods to complete
the last method either Three-Dimensional Back Projections for X-Ray
Projections or the Three-Dimensional Central Section Theorem for X-Ray
Projections, therefore it is necessary to study and determine the best method
in order to make an accurate reconstruction by considering devices that

available, time consumption and cost for the method.
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3.5.1 Reconstructing the 3D Object from 2D Projection

It is designed for the two-dimensional Computed Tomography (CT)
models, the Back-Projection process is very useful in three-dimensional
reconstruction field, in order to reconstruct the images from its sinogram
obtained as results from Radon transform calculation explained in chapter
two. If the 3D sinogram of the 3D object is obtained by applying the method
in section (3.3.1). In this case, the appropriate reconstruction method is
either by using a back-projection method, which is done by applying the two
dimensional back projection by using equation (2-20) for all slices at
different heights, this leads to reconstructed several slices for the object at
different heights, the figure (3-8) illustrates the block diagram of this

method.

Start J

| Create 3D Object | I
I Divided the 3D Object to n-Slice along Z-axis and parallel to (x, y) plane| I
| Apply 2D Radon Transform to each Slice at differentZ | I

Stacking the 2D slice of Sinogram to create 3D Sinogram |

| Apply 2D Back Projection for each slice from sinogram | I

Retrieve the 3D Object by staking all the 2D slice |

Figure 3-8 The Reconstructed 3D Object by back-projection method block
diagram.
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Or using Fourier Slice Theorem, it is done by applying the one
dimensional Fourier transform for all one-dimensional projections by using
equation (2-5) for all slices at different heights. After that filtering is applied
for each result, that leads to obtaining the slices at different heights for 3D
object in frequency domain, the 2D inverse Fourier transform is
implemented for each slice by using equation (2-16) this leads to reconstruct
several slices for an object at different heights. All slices are stacked in its
position corresponding to each (X, y, z) to reconstruct the 3D object, the

figure (3-9) illustrates the block diagram of this method.

I Create 3D Object | I
I Divided the 3D Object to n-Slice along Z-axis and parallel to (x, y) plane | I
I Apply 2D Radon Transform to each Slice at different Z | I
| Apply 1D Fourier transform for each 1D projection | I
I Apply filtering for each result | I
Apply 2D inverse Fourier transform for each filtered slice in frequency domain | I

Retrieve the 3D Object by staking all the 2D slice then apply threshold value |

Figure 3-9 The Reconstructed 3D Object by FST method block diagram.

The object obtained by Fourier slice theorem has too many points

because of the blurring artifact thus by apply a threshold value to the

60




Chapter Three The Methodology of Reconstructing 3D Images

reconstructed object, in which all point with magnitude less than the average

value of the all reconstructed points will be eliminated.
3.5.2 Reconstructing the 3D Object from 3D Projection

The appropriate reconstruction method is used a 3D back-projection
method utilizing equation (2-24) on the 3D sinogram of the 3D object, which
Is obtained by implementing the direct 3D forward projection method in
section (3.3.2), the figure (3-10) illustrates the block diagram of this method.

Start )

I Create 3D Object | I
| Apply 3D forward Projection | I

Retrieve the 3D Object by apply 3D
Back-Projection

Figure 3-10 The 3D BP block diagram.

3.5.3 Reconstruction the 3D Object from 4D Projection

When the X-ray transform used to obtain the 4D projections, the
appropriate images reconstruction methods are either 3D Back Projection
for X-ray Projections described in equation (2-27). Figure (3-11) illustrates
the block diagram of this method.
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Create 3D Object |

Apply x-ray transform for 3D object |

Retrieve the 3D Object by apply 3D
Ba ck-Projection for the 4D projection

End P

Figure 3-11 The 3D BP for x-ray projections block diagram.

Or the central section theorem for the X-ray projection of a 3D, which
applied the 2D forward Fourier transform to 4D projection. The 4D
projections in frequency domain are transformed to 3D projection also in
frequency domain by matrix transformation, then the 3D inverse Fourier
transform is applied to retrieve 3D object, this method described in the
section (2.7.2), the figure (3-12) illustrates the block diagram of this method.

62



Chapter Three The Methodology of Reconstructing 3D Images

i
Start )

Create 3D Object |

| Apply x-ray transform for 3D object |

projection

| Apply 2D Forward Fourier transform for each 4D ‘

| Transform 4D projection to 3D projection in frequency domain

" Retrieve the 3D Object by apply 3D inverse Fourier transform

End )

Figure 3-12 The central section theorem for the X-ray projection block diagram.

3.6 The Methodology of Interpolation

For the purpose of explaining the effect on asymmetric object of the
interpolation methods adopted in this study, an asymmetrical body is used,

such as the head of the Mickey Mouse shown in figure (3-3).

The interpolation methods applied to the 3D projections obtained by

using the forward method illustrated in section (3.3.1), but it must be taken
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into account that the equal angular distance (A@) is greater than one degree

that is used to obtain the 3D projections.

To enhance the 3D projection and estimate the values of the missing
projection data, three equation of interpolation methods are used (see section
(2-8)). The reconstruct object from interpolation sinogram by applying the
methods of reconstruction object for each two-dimensional slice from its
sinogram. To study the object features and estimate how much the
improvement compared to the object reconstruction from sinogram in terms

of missing data.

The signal-to-noise (SNR) ratio is used to evaluate the reconstructed
object, besides that the number voxel that constructs the 3D object after
using a threshold value to decide whether the voxel belongs to the object.
The interpolation method illustrated in the block diagram (3-13) by using
Back projection to reconstruct object and (3-14) by using Fourier slice

theorem to reconstruct object.
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=
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Figure 3-13 The interpolation method by using Back projection to reconstruct object
block diagram.
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—
e
=)

Figure 3-14 The interpolation method by using FST to reconstruct object block
diagram.
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Chapter Four

Results and Discussion

4.1 Introduction

In this chapter the results are given to illustrate the reconstruction images

and the improvements in the performance of the suggested method.

4.2 Results of the Forward projections

The following results obtained by applying the adopted forward
methods.
4.2.1 Forward Projection using Slicing Method

In the first method, the object is divided into several two-dimensional
slides along the Z-axis (height) and these slices are parallel to the plane (x,
y) see figure (4-1 a, b), the 2D slices also are shown in figure (4-2 a, b), then
apply the equation of two-dimensional projections (2D Radon transform)
separately for each two-dimensional slice at different heights for the three-

dimensional object.

(a) (b)
Figure 4-1 The 2D slices along the Z-axis for (a) for hollow sphere inside the solid
sphere (b) for the head of Mickey Mouse
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(b)
Figure 4-2 (a) 2D slice of the sphere at different heights & (b) 2D slice of the head of
Mickey Mouse at different heights

After completing the implementation completed of the forward
projections on all the slides starting from Z=1 to Z=33, stacking the two-
dimensional projections has resulted from each two-dimensional slice at
different heights as represented in figure (4-3 a, b) to produce the three-
dimensional projections of the three-dimensional object as shown in figure
(4-4 a, b).
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Z=1 Z=5 2=10 2=15
Z=20 Z=25 2=30 =33

(@)
Z=1 Z=5 Z=10 Z=15
Z=20 Z=25 Z=130 Z=33
(b)

Figure 4-3 a 2D projection for some 2D slice of the (a) sphere at different heights
and (b) head of Mickey mouse

Z-axis

Z-axis

Theta

A\

Reac. R
.A 2 GSO/(/ R .
¥ 2% 2 1 I‘/O )
Resolution N

(a) (b)
Figure 4-4 Staking the 2D slices of projections for (a) sphere and (b) head of Mickey Mouse.
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4.2.2 Forward Projection using Direct 3D Projections Method

In the second method, apply the equation of the three-dimensional
projections (three dimensional Radon transform) for the three-dimensional
object. See figures (4-5 a, b) and (4-6 a, b) represent the three-dimensional
projections and the two-dimensional slice of the three-dimensional
projections at different heights. The figure (4.7 a, b) represents the mesh for

three-dimensional projection for the head of Mickey Mouse and sphere.
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(a) (b)
Figure 4-5 The 3D projections for (a) sphere and (b) head of Mickey Mouse.
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Z=5 Z=10 Z=15
= -
Z2=25 Z=30

(b)
Figure 4-6 a 2D slices projection from 3D projections for (a) sphere and (b) head of
Mickey Mouse.

(a) for sphere (b) for Mickey Mouse
Figure 4-7 a mesh for 3D Projections.

4.2.3 Forward Projection using X-Ray Transform Method

The third method, this method is done by taking X-ray transform to
obtain the 4D projection for a three-dimensional object, see figure (4-8), (4-
9), (4-10) and (4-11) represent the three-dimensional X-ray projections and
several of two dimensional slices that taken from three-dimensional X-ray

projections at different heights for different object.
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Figure 4-8 The 3D X-ray projections of the 3D sphere for (a) all range of Theta and specific
Phiand (b) all range of Phi and specific Theta.
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Figure 4-9 A 2D slice projections from 4D X-ray projections for the sphere at (a) specific
Phi and several degrees of Theta and (b) specific Theta and several degrees of Phi.
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Figure (4-10) a 3D X-ray projections of the head of Mickey Mouse at (a) specific Phi and
several degrees of Theta and (b) specific Theta and several degrees of Phi.
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Figure 4-11 The 2D slice projections from 4D x-ray projections for the head of
Mickey Mouse at (a) specific Phi and several degrees of Theta and (b) specific Theta
and several degrees of Phi.
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4.3 The Results of Reconstruction Methods

The following results obtained by applying the adopted reconstruction

methods.
4.3.1 Reconstruct 3D Object from the 2D projection

The following results obtained by applying the adopted reconstruction

methods from the 2D projection with and without an applied filter.
4.3.1.1 The Results of Reconstruction Without Filtering

The 2D reconstruction methods are applied to the 2D projection of the
2D slices of the 3D object to restore the object slices, it is done by taking
each two dimensional slice of projections as shown in figures (4-3 a) and (4-
3 b) and then applied the two dimensional back projection equations for all
slices at different heights, this led to reconstructed several slices for an
object at different heights as shown in figures (4-12 a ) and (4-13 a), or by
using Fourier Slice Theorem, it is done by taking each two dimensional slice
of projections as shown in figures (4-3 a) for sphere and (4-3 b) for head of
Mickey Mouse and apply the one dimensional Fourier transform for all one-
dimensional projections for all slices at different heights then filtering each
result, that led to obtaining slices at different heights for object in frequency
domain, and by applying the 2D inverse Fourier transform for each slice this
led to reconstructed several slices for an object at different heights as shown
in figures (4-12 b) and (4-13 b). it is clear from figures that the blearing
artifact that the Back Projection method suffers from, miss the internal
hollow sphere in both two objects, while using the Fourier Slice Theorem
the reconstructed image eliminated from the blearing artifact, therefore, the

interior hollow sphere become obvious in both two objects.
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Figure 4-12 The 2D reconstructed Slices from the 2D projection of the 3D Sphere
for different Z values, reconstructed by (a) BP and (b)FST.
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Figure 4-13 the 2D reconstructed Slices from the 2D projection of the 3D head of
Mickey Mouse for different Z values, reconstructed by (a) BP and (b) FST.
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As mentioned in chapter three to restore the 3D object, the 2D

reconstructed slices are stacked back together again, see figures (4-14 a, b)

for sphere and (4-15 a, b) for Mickey Mouse. It is clear that the internal

hollow sphere is absence in the Back Projection method, due to blearing

artifact.

Z-axis

(@)

(b)

Figure 4-14 The 3D reconstructed sphere from the 2D projection using BP method, (a)
representing the stacked 2D slices and (b) the 3D representation where there is no internal

sphere.

30
25

20

Z-axis

Figure 4-15 The 3D reconstructed head of Mickey Mouse from the 2D projection using
BP method, (a) representing the stacked 2D slices, and (b) the 3D representation where
there is no internal sphere.
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While the Fourier Slice Theorem success to reconstruct the 3D object
with the precence of the internal hollow sphere as illustrated in figures (4-
16 a, b) for sphere and (4-17 a, b) for Mickey Mouse, since it eliminates
most of the blurring effect by correcting the contribution weight of the object

points that contribute in the back projection integral.

Z-axis

30 25 20 15
10 5 c
Y-axis X-axis

(a) (b)
Figure 4-16 The 3D reconstructed sphere from the 2D projection using FST method,
(a) representing the stacked 2D slices and (b) the 3D representation where there is the
internal sphere

0
et e

5 10 15 20 25 30
X-axis

(a) (b)

Figure 4-17 The 3D reconstructed Mikey Mouse from the 2D projection using FST
method, (a) representing the stacked 2D slices, and (b) the 3D representation where there is
the internal sphere
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4.3.1.2 The Results of Reconstruction With Filtering

It is clear from the figures (4-16) and (4-17) that the objects
reconstructed by FST have excessive points, so, to eliminate the excessive
points that related to the blurring artifact that the FST couldn’t remove, will
apply a threshold value for both objects that reconstructed, in which all point
with magnitude less than the average value (0.4630) of the all reconstructed
point will be eliminated for sphere while for head of Mickey Mouse all point
with magnitude less than the average value (0.0775) multiplied by 4 of the
all reconstructed point will be eliminated, It is clear from figures (4-18 a, b)
and (4-19 a, b) by using subjective criteria the reconstructed object will

greatly improve when applying the threshold value.

=

Y T

9 30 25 20 15 10 5
X-axis

(b)

- |

Y-axis

(@)

Figure 4-18 The 3D reconstructed sphere from the 2D projection using FST method
after applying the threshold value, (a) representing the stacked 2D slices and (b) the
3D representation.

78



Chapter Four Results and Discussion

30

25

20

Z-axis
-
(4]

Y-axis X-axis Yiaxis 0 5 10 15 20 25

(b)

(@)

Figure 4-19 The 3D reconstructed head of Mickey Mouse from the 2D projection
using FST method after applying the threshold value, (a) representing the stacked
2D slices and (b) the 3D representation.

Table 4-1 The SNR, PSNR and RMSE before and after applying the threshold for both
reconstructed objects from the 2D projection by FST method

Without Threshold With Threshold

Retrieved 3D SNR PSNR | RMSE | Threshold | SNR PSNR | RMSE
object by FST

Sphere Without

Filtering 11.8311 | 14.3060 | 0.1926 | 0.4630 12.7142 | 15.1891 | 0.1740
Head of Mickey

Mouse Without 9.5247 | 20.0805 | 0.0991 | 0.0775*4 | 8.1601 | 18.7159 | 0.1159
Filtering

From table (4-1) can notice that the SNR increases for sphere and
decreases for Mickey Mouse after applying the threshold value while the
RMSE decreases for sphere and increases for the head of Mickey Mouse
after applying the threshold value. This means that the recovered sphere after
applying the threshold value has improved in comparison to the recovered
sphere without applying the threshold value while the recovered Mickey
Mouse after applying the threshold value has not improved in comparison

to the recovered Mickey Mouse without applying the threshold.
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As shown from the figures (4-14) and (4-15) that the objects
reconstructed by BP the blurring were be removed by applying the filter in
the frequency domain called the ramp filter in the frequency domain. The
figures (4-20) and (4-21) have shown the result from applying the filtering,
from the figure (4-20) can see the filtering success to retrieve the internal
hollow sphere inside both objects. While the figure (4-21) shows the three-
dimensional object drawing algorithm was unable to build the inner hollow
sphere in the head of Mickey Mouse due to blurring while the algorithm in
the large solid sphere succeeded in building the internal hollow sphere. On
the other hand, the filtering caused some defects of the external structure of

a big solid sphere.

(b)

Figure 4-20 The slices of the reconstructed object from the 2D projection after applying the filter
for (a) sphere and (b) head of the mickey mouse
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Z-axis

(@)
Figure 4-21 The 3D reconstructed from the 2D projection after applying the filter for (a) sphere
and (b) head of the mickey mouse

10 15 20
X-axis

(b)

In order to evaluate the accuracy of each method in the reconstruction

process, by calculating the volume of the solid sphere, the volume of the

head of Mickey Mouse and the volume of the hollow sphere inside them by

counting the points that belong to each of them. The results are shown in

Table (4-2).

Table 4-2 The volume of the reconstruction 3D object from 2D projection

Type of object Original | Reconstruction | Reconstruction | Reconstruction by

by BP by FST BP after apply
filtering

Solid Sphere 20326 18871 19664 16720

Internal Hollow Sphere 147 Zero 172 98

Head Mickey Mouse 3162 3561 3349 3145

Internal hollow sphere 126 Zero 101 1

in head Mikey Mouse

From table (4-2) the volume of each object (sphere and head of Mickey

Mouse) that reconstructed by FST is closer to the original object volume

compared to the calculated volumes of reconstructed objects by BP method.

After applying the filtering on the results of back-projection now
calculate the SNR, PSNR and RMSE of the retrieved object before and after

filtering and threshold. The results are shown in Table (4-3).
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Table 4-3 The SNR, PSNR and RMSE before and after apply Filtering for objects

reconstructed by back-projection method from the 2D projection

Without Threshold With Threshold
I?f%Petlrieveol 3D objectby | SNR | PSNR | RMSE | Threshold| SNR | PSNR | RMSE
Sphere Without 8.9835 | 11.4584 | 0.2673 0.55 9.3921 | 11.8670 | 0.2551
Filtering
Sphere With Filtering 6.9714 | 9.4463 | 0.3370 0.5 7.3541 | 9.8290 0.3225
Head of Mickey Mouse | 4.5529 | 15.1087 | 0.1756 0.55 7.0687 | 17.6245 | 0.1315
Without Filtering
Head of Mickey Mouse | 3.1029 | 13.6587 | 0.2075 0.5 7.2691 | 17.8249 | 0.1285
With Filtering

From the table (4.3), the SNR decreases and the RMSE increases after

the filter for both objects can be noticed. This means that the recovered

objects after applying the filter have not improved in comparison to the

recovered objects without applying the filter. But after applying the

threshold value the values of SNR increase and RMSE decreases this means

the recovered objects improved after applying the threshold value for each

object (sphere and Mickey Mouse) and in each state (with and without

filtering). The figures (4-22) and (4-23) have shown the results from

applying the threshold values on the objects with filter and without the filter.
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vvvvvvv

(b)

Sphere head of the mickey mouse

Figure 4-22 (a)The 3D reconstructed from the 2D projection after applying a
threshold on filter object and (b)The 3D reconstructed from the 2D projection after
applying a threshold on no filter object
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sphere head of the mickey mouse
Figure 4-23 (a) The slices of the 3D reconstructed from the 2D projection after applying a
threshold on filter object and (b) The slices of the 3D reconstructed from the 2D projection
after applying a threshold on no filter object
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Table 4-4 The change in external structure with change the threshold value for filterd
head of Mickey Mouse reconstructed by back-projection method from the 2D

projection
Threshold 0.5 0.55
SNR 6.7910
object

From table (4.4) can note when increasing the threshold value of the
filtered Mickey Mouse, the inner sphere starts to appear beginning from
threshold value equal to (0.5) but with continuing increase the threshold
value leads to distortion in the external structure, so from the subjective
criteria, the best result for head of Mickey Mouse can be obtained when the

threshold value is 0.5.

4.3.2 Reconstruct 3D Object from the 3D Projection

The following results obtained by applying the adopted reconstruction

methods from the 3D projection with and without an applied filter.

4.3.2.1 The Results of Reconstruction Without Filtering

The 3D reconstruction method is a 3D Back-Projection is applied to the
3D projections that shown in figure (4-5), the 3D object retrieved by using
3D Back Projection is shown in figures (4-24 a, b) and (4-25 a, b) shows the
slices of retrieved objects from these figures, it is clear that the 3D Back
Projection method greatly suffers from the blurring artifact, that causes to

miss the internal hollow sphere in both two objects and miss the external
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features of both two objects where can see the ears of head of Mickey Mouse

appear like scars.

(@) (b)
Figure 4-24 The 3D reconstructed object by 3D BP from the 3D Projection for (a)
sphere and (b) head of the mickey mouse

(@)

Z =33

Z =20
z=1
z =20

(b)
Figure 4-25 The 3D reconstructed object using 3D BP method from the 3D
Projection for (a) sphere and (b) head of the mickey mouse.
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4.3.2.2 The Results of Reconstruction With Filtering

The retrieved object by 3D back Projection can be improved by applying
the filter in the frequency domain called the ramp filter in the frequency
domain. The figures (4-26) and (4-27) have shown the result from applying
the filtering, from these figures shows that the impact of the filter on improve
retrieved object is very little, where the effect of blurring is still clear on the
lack of clarity of the external structure of the two objects and also on the
disappearance of an internal hollow sphere, Where the scars on Mickey
Mouse's head seem clearer but they remain unclear enough to classify them

as ears for head of Mickey Mouse because of the effect of blurring.

Z-axis

40 3B 3 25 9
15 10 5 ;
Y-axis X-axis

(a) (b)
Figure 4-26 The 3D reconstructed object by BP after filtering from the 3D
Projection for (a) sphere and (b) head of the mickey mouse
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z=1
z=20

(a) Sphere
(b)

Figure 4-27 (a) The 3D reconstructed object using 3D BP method from the 3D
Projection after filtering for (a) sphere and (b) head of the mickey mouse

z=1 z =5
z =20 25

In order to evaluate the accuracy of each method in the reconstruction
process, by calculating the volume of the solid sphere, the volume of the
head of Mickey Mouse and the volume of the hollow sphere inside them by
counting the points that belong to each of them. The results are shown in
Table (4-5).

Table 4-5 The volume of the 3D retrieved object from 3D projection

Type of object Original | Reconstruction by BP | Reconstruction by BP
after apply filtering

Solid Sphere 20326 19860 23675

Internal Hollow Sphere 147 Zero Zero

Head Mickey Mouse 3162 8994 9900

Internal hollow sphere in 126 Zero Zero

head Mickey Mouse

From table (4-5) the volume of each object that reconstructed by BP

before apply filtering is closer to the volume of the original object compared

87




Chapter Four Results and Discussion

to the calculated volume of reconstructed objects by BP method with

filtering, while the volume of the inner sphere is zero in each reconstructed

method.

After applying the filtering on the results of back-projection now
calculate the SNR, PSNR and RMSE of the retrieved object before and after

filtering and threshold. The results are shown in Table (4-6).

Table 4-6 The SNR and RMSE before and after apply Filtering on the 3D retrieved

object from 3D projection

Without Threshold With Threshold
gstrleved 3D objectby | SNR [ PSNR [ RMSE [ Threshold [ SNR | PSNR | RMSE
Sphere Without 2.0240 | 7.9475 | 0.4005 0.55 0.6447 | 6.5682 | 0.4694
Filtering
Sphere With Filtering 1.7745 | 7.6981 | 0.4122 0.5 -0.076 | 5.8467 | 0.5101
Head of Mickey Mouse | -4.916 | 9.0883 | 0.3512 0.55 -4.333 | 9.6712 | 0.3284
Without Filtering
Head of Mickey Mouse | -5.192 | 8.8123 | 0.3626 0.5 -3.253 | 10.7511 | 0.2900
With Filtering

From the table (4.6), can notice that the SNR decreases and the RMSE
increases after the filtering for both objects and after applying the threshold
value on the solid sphere, while the SNR increases and RMSE decreases
after applying the threshold value on the head of Mickey Mouse in each state
(with and without filtering), that means the solid sphere has not improved
after applying the filtering and applying the threshold value, while the head
of Mickey Mouse is badly after applying the filtering but is very little
improved after applying the threshold value in each state (with and without
filtering). The figures (4-28) and (4-29) have shown the results from
applying the threshold values on the objects with filter and without the filter.
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(@)

(b)

Sphere head of the mickey mouse
Figure 4-28 (a)The 3D reconstructed from the 3D Projection after applying a threshold on filter

object (b)The 3D reconstructed from the 3D Projection after applying a threshold on no filter
object.
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Sphere head of the mickey mouse
Figure 4-29 (a)The slices of the 3D reconstructed from the 3D Projection after applying a
threshold on filter object and (b)The slices of the 3D reconstructed from the 3D Projection
after applying a threshold on no filter object
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4.3.3 Reconstruct 3D Object from the 4D Projection

The following results obtained by applying the adopted reconstruction

methods from the 4D projection with and without an apply the filtering.

4.3.3.1 The Results of Reconstruction Without Filtering

The reconstructed 3D object from 4D projection (X-Ray Projections) by
apply either three-dimensional Back Projection for X-Ray Projections or
apply the central section theorem for the X-ray projection, the retrieved 3D
objects from applied three-dimensional Back Projection are shown in figure
(4-30 a, b) and the slices of retrieved object are shown in figure (4-31 a, b),
from these figures, it is clear that the internal hollow sphere inside the solid

sphere and inside head of Mickey Mouse is absence, due to blurring.

-axi 30 25 20 15 10 5
X-axis Y-axis

(@) (b)
Figure 4-30 The 3D reconstructed by using 3D BP from x-ray projections for (a)
sphere and (b) head of mickey mouse
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z=10

z = 30

(b)
Figure 4-31 (a) The slices of 3D reconstructed by using 3D BP from x-ray projections for (a)
sphere and (b) head of the mickey mouse

When apply the central section theorem for the X-ray projection (4D
Projection), the retrieved 3D objects from applying this method are shown in figure

(4-32 a, b) and the slices of the retrieved object are shown in figure (4-33 a, b).

i s
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10 >
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S == 20
30 > 3
. 40
X-axis 40 40 .
Y-axis Y-axis X-axis

Figure 4-32 The 3D reconstructed from x-ray projections by central section theorem at
Fai (0°) and Theta (45°) for (a) sphere and (b) head of the mickey mouse.
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(b)
Figure 4-33 The slices of 3D reconstructed from x-ray projections by central section
theorem at Fai (0°) and Theta(45°) for (a) sphere and (b) head of the mickey mouse.

These retrieved objects obtained from applying this method on the plane
of projection at a certain angle of phi and a certain angle of theta this a plane

of projections will occupy the frequency space correctly as shown in figure
(4-34).

Zaxs

Figure 4-34 The Plane Projection at Fai (0°) and Theta (45°).
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While if adding other planes of projections at different Phi and theta with
the plane above will intersect in the frequency space at which the frequency
values will be distorted along the line between the two planes because the
values of frequencies of the first plane will be replaced with the values of
the frequencies of the second plane as shown in figure (4-35), This will lead
to distorting the retrieved object during reconstruction as shown in figure (4-
36) and (4-37).

Line of intersect

30
Y-axis

Figure 4-35 The Planes of Projection at Fai (0°) and Theta(45°, 90°).

(a) (b)
Figure 4-36 The 3D reconstructed Object from x-ray projections by central section
theorem at Fai (0°) and Theta(45°, 90°) for (a) sphere and (b) head of mickey
mouse
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(b)
Figure 4-37 The slices of 3D reconstructed 3D Object from x-ray projections by
central section theorem at Fai (0°) and Theta (45°, 90°) for (a) sphere and (b) head
of mickey mouse

4.3.3.2 The Results of Reconstruction With Filtering

The blearing shown in figures (4-30 a, b) and (4-31 a, b) can be removed
by applying the filter in the frequency domain called the ramp filter in the
frequency domain. The slice of retrieved objects as shown in figures (4-38
a, b) and the 3D objects as shown in figure (4-39 a, b). From the figure (4-
38) can see the filtering success to retrieve the internal hollow sphere inside
both objects. While the figure (4-39) shows the three-dimensional object
drawing algorithm was unable to build the inner hollow sphere in both
objects due to blurring. The effect of the filter on both objects was not clear,
where the object after filtering and the object before the filter were very

close to each other in structure and details.
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(b)
Figure 4-38 The slices of 3D Object reconstructed from x-ray
projections after filtering for (a) sphere and (b) head of mickey mouse
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(a) (b)
Figure 4-39 The 3D reconstructed Object from x-ray projections after filtering for (a) sphere and
(b) head of mickey mouse

In order to evaluate the accuracy of each method in the reconstruction
process, by calculating the volume of the solid sphere, the volume of the
head of Mickey Mouse and the volume of the hollow sphere inside them by
counting the points that belong to each of them. The results are shown in
Table (4-7).
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Table 4-7 The volume of the 3D retrieved object from X-ray Transform

Reconstruction by

Reconstruction by BP

Type of object Original BP after apply filtering
Solid Sphere 20326 20266 20984
Internal Hollow Sphere 147 Zero Zero
Head Mickey Mouse 3162 3133 3563
Internal hollow sphere in 126 Zero Zero

head Mikey Mouse

From table (4-7) the volume of each object (sphere and Mickey Mouse)
that reconstructed by BP without filtering is closer to the original object
volume compared to the calculated volumes of reconstructed objects by BP
with filtering. While the volume of the inner sphere inside each object is
zero in both the reconstruction method. but by using the subjective criteria,
it can be noticed that the objects reconstructed by Back-Projection with
filtering are better than the objects reconstructed by Back-Projection without
filtering where the internal hollow spheres that are shown in figure (4-38 a,
b) are more clearly than the internal hollow spheres without filtering that are
shown in figure (4-31 a, b).

After applying the filtering on the results of back-projection now
calculate the SNR, PSNR and RMSE of the retrieved object before and after

filtering and the threshold value. The results are shown in table (4-8).

Table 4-8 The SNR and RMSE of reconstruct objects from X-ray Transform before
and after apply Filtering

Without Threshold With Threshold
Retrieved 3D SNR | PSNR | RMSE | Threshold | SNR | PSNR | RMSE
object by BP
Sphere Without | 7.7888 | 10.2637 | 0.3068 0.45 8.1140 | 10.5889 | 0.2955
Filtering
Sphere With 8.3517 | 0.8266 | 0.2875 0.35 8.0535 | 0.5284 | 0.2976
Filtering
Head of Mickey | 3.7023 | 14.2580 | 0.1937 0.55 41112 | 4.6670 | 0.1848
Mouse Without
Filtering
Head of Mickey | 1.8274 | 12.3832 | 0.2403 | 4.0689 | 14.6247 | 0.1857 0.55
Mouse With
Filtering
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From the table (4-8), note that the SNR increases and the RMSE
decrease after applying the filtering for Sphere, while after applying the
threshold value for each sphere before and after applying the filter the SNR
and the RMSE are very little change, using the subjective criteria can not
notice any change in the solid sphere in comparison to the recovered Sphere
without applying the threshold value. While the SNR decreases and that
RMSER increases after applying the filtering for Mickey Mouse, this means
that the recovered head of Mickey Mouse after applying the filter has not
improved in comparison to the recovered head of Mickey Mouse without
applying the filter, while the SNR increases and the RMSE decrease after
applying the threshold value for head of Mickey Mouse in each state (before
and after applying the filtering ), this means that the recovered head of
Mickey Mouse after applying the threshold value has improved in
comparison to the recovered head of Mickey Mouse without applying the
threshold value. The figures (4-40) and (4-41) have shown the results from
applying the threshold values on the objects with filter and without the filter.

.......

xxxxxxx

(@)
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(b)

Sphere head of the mickey mouse

Figure 4-40 (a)The 3D reconstructed from x-ray projections after applying a
threshold on filter object and (b)The 3D reconstructed from x-ray projections after
applying a threshold on no filter object
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(b)

Sphere head of the mickey mouse

Figure 4-41 (a)The slices of the 3D reconstructed from x-ray projections after
applying a threshold on filter object and (b)The slices of the 3D reconstructed from
x-ray projections after applying a threshold on no filter object.
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4.4 The Results of the Interpolation

The three-dimensional asymmetric object (head of Mickey Mouse) is
used as a test sample for this section. The interpolation is applied in
sequential steps as following, the first step, apply 2D Radon transform for
each slice at different heights of the three-dimensional object using equal

angular interval (A0) and greater than one degree, see figure (4-42 a, b).

Z=1
Z=20

(@)

Number of Layers

1 o No. of Projections

Projection Resolution

(b)
Figure 4-42 (a) A slice of projection at different heights and at A6 = 2°.
(b) 3D sinogram obtain from stacking the 2D projection and
at AB = 2°.

In the second step, a prediction of the values of missing data of
projections by using the three interpolation methods (as mention in section
(2-9)). Table (4-9) shows the SNR and the RMSE before and after apply
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interpolation methods at different dlta and the figure (4-43) shows

comparing the quality of the 3D sinogram before and after interpolation for

each method of interpolation.

Table 4-9 The SNR and RMSE before and after applying the interpolation methods for

projection at different dlta.

s | o e | s | e | own | e |
¢ oo v SRR o | s | o | o
¢ Jomse] 7 SRR o | it | o |
BESED  EOEOEEER
BEOEY EDEO R
o oo o SRR o [ s | o |
o oons] oz QRN o | o | o | o
v oo oz SRR o | o | o |
BENE BSOS
o] o (SRR o | s | o |

100




Chapter Four Results and Discussion

30

25

2 3 4 5 10 15 20 30 45

Angular Difference (degree)

SNR (dB)
5 L B

Ln

B Original W Mearest Neighbour  ®Linear MNor-linear

0.02
0018

0.016
0.014
0.012
0.0
0.008
0.00
= ol
0.0
1]||I||I|I|I i II
2 3 4 5 10 15 20 30 45

Angular Difference (degree)

[

RMSR
ch

[

B Original ™ Nearest Neighbour B Linear MNon-linear

Figure 4-43 The quality of the interpolated 3D sinogram

As it is evident from the table (4.9) and figure (4-43), the SNR for the
3D sinogram before interpolation is decreased dramatically with an increase
in the angular interval greater than 10°, in other words, the reduction of the
number for projections leads to a decrease in SNR of the 3D sinogram before
interpolation, while the SNR for the 3D sinogram reinforced after

interpolation, where the linear and Non-Linear are more resistance to the
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reduction of the number for projections more than the Nearest Neighbor

method which decrease with the increase in the angular interval.

Table 4-10 The SNR and RMSE before and after apply the interpolation methods for
object at different dita.
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As it is evident from the table (4-10) and figure (4-44), The quality of
the reconstructed object from the 3D sinogram before and after interpolation
by using the Back-projection and FST methods, where the reconstructed
object from the interpolated 3D sinogram by the Linear interpolation and
Non-Linear interpolation is better in comparison with the reconstructed
object from the 3D sinogram without interpolation. The results of using the
nearest neighbor interpolation method, in fact, the FST and BP methods give
the best results at the angular interval less than 10 °, and it deteriorates after

the angle interval greater than 10° and the degradation is faster in the FST

method compared to the BP method.
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Figure 4-44 The quality of the reconstructed object before and after the
interpolation process.
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To consider the deformation in the retrieved object, the number of points

that belong to the object (the volume) and the number of points that belong

to the hollow sphere inside the object is calculated using a threshold value

that calculated empirically, it value is ranging between (0.50 -0.65), as
illustrated in the table (4-11) and figure (4-45).

Table 4.11 The No. of point Of the Out and internal object before and after applying
the interpolation methods at different dita.
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Figure 4-45 Number of points that belong to the object

In spite of that, the FST (with or without interpolation process) gives the
best results, but regarding the object shape, it is deformed badly after angular
difference beyond 15°, the table (4-12) shows the change of the shape of the

retrieved object by the FST with the increase of the angular interval.
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Table 4-12 The change of the shape of the retrieved object by the FST method with the
increase of the angular interval.

S| WithOut Interpolation Nearest Neighbor Linear interpolation Non-Linear
a) interpolation interpolation
2
15
30
45

While the results obtained from the BP reconstruction method (with or

without interpolation process) maintain the basic object shape even after 15°,

see table (4-13).
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Table 4-13 The change of the shape of the retrieved object by the BP method with the
increase of the angular interval.

8] WithOut Interpolation Nearest Neighbor Linear interpolation Non-Linear
a) interpolation interpolation
2
15
30

45
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The BP reconstruction method couldn’t recognize the internal hollow
sphere inside the object due to the blurring artifact, see figure (4-46). In
contrast to the FST reconstructions method, it recognizes it due to the
filtering process which removes the blurring artifact, where the linear
interpolation process gave the best results. The values calculated for the
internal hollow sphere after angular difference greater than 20° using the BP

reconstruction method are due mainly to the deformation in the object shape.
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Figure 4-46 Number of points that belong to the hollow sphere.
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Chapter Five

Conclusions and Future Works

5.1 Conclusions

Depending on the results in the chapter four, the following conclusions can

be derived:

1.

When the Standard Back Projection method applied to reconstruct the
3D object on the three forward projections method; first (Slicing
reconstruction method), second (Direct reconstruction from 3D
Projections) and third (Reconstruction from X-ray transform (4D
projections)) methods of reconstructing 3D object, they failed to
restore internal points of the object, due to the participation of
external points which do not belong to the internal object in the linear
integration calculation to restore the internal object this causes the
blurring artifact and disappearance of the internal object.

The retrieved object was significantly improved when using the
Ramp Filter in the frequency domain on the object produced by the
Back-Projection method as filtering for the points resulting from the
blurring effect that the Back-Projection method could not be
removed.

The internal object has been retrieved in the solid big sphere by Back-
Projection method after Ramp Filter in the frequency domain
application in the first method (slicing), while the internal object

could not be retrieve in the head of Mickey Mouse after application
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the Ramp Filter in the frequency domain, but the internal object has
been retrieved in the head of Mickey Mouse after applying the
threshold value on the produced after applying the ramp filter, the
internal object begins to appear when the threshold value equal to 0.5.
When the threshold is increased, the inner object is more prominent,
but this is accompanied by a distortion in the external structure of
Mickey Mouse. While in the second and third method the internal
object has not been retrieved in both objects after the application of

the Ramp Filter in the frequency domain and threshold value.

4. The Fourier slice theorem method that using in the first method
(slicing reconstructing) to reconstruct the object, succeeded to restore
the external structure and internal points of the object, because only
the points that belong to the internal object be shared in the restoration
of the internal object. The retrieved object was significantly improved
when applying the threshold value on the produced object by the
Fourier Slice Theorem method as filtering the points resulting from
the blurring effect that the Fourier Slice Theorem method could not
be removed.

5. The interpolation methods were applied to find the approximate value
of missing data in projection space. The reconstructed object from the
interpolated projections by linear interpolation is somewhat improved
by both methods of reconstruction (Back-Projection and Fourier slice
theorem). the Fourier method excelled more than the back-projection
method in restoring the internal body in all interpolation methods but
failed when the angular difference in taking the projections was

greater than 20 degrees.
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6.

5.2

When calculating the amount of distortion in the retrieved object at
the threshold value between 0.5 and 0.65, the object retrieved by the
back projection method retains its external features even when the
angular difference in the taking of the projections greater than 15
degrees, while the object retrieved by the Fourier slice theorem began

deformation when the angular difference greater than 15 degrees.

Future Works

. Study the 3D Fourier slice theorem to reconstruct 3D object.

. Apply the X-ray transform to the X-ray profiles to produce 3D

representation of the internal structure.

. Study more effective filters that give better results with the 3D

Tomography.
Suggest using this study in the industrial field, for example, the

structure of the material.

. Replace the terahertz ray (THz) instead of X-ray, which has a great

possibility for using in the medical field better than other medical
imaging technologies. It is safe, non-ionizing ray and does not cause

damage to organisms.

. Apply this study on the X-ray medical images for patients.
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