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ABSTRACT

The main aim of this thesis is to introduce and study the concept of
CJ — (respectively, strong C]—, almost C]J —, almost strong C]J— and
contractible ] —) spaces, some of them are considered a generalization of the
concepts of J-space and strong ] — space that are introduced by Michael [12].
On the other hand, some theorems about sufficient or necessary conditions for
spacesto be C] — spaces or almost CJ- spaces, are investigated. Also we gave
the necessary condition that makes every CJ] — (respectively, almost C] —)
space is strong C] — (respectively, almost strong CJ —) space, that is, show
that every strong C] — spaceis a CJ- space and every almost strong CJ — space
Is an almost C] — space. But the converse of these facts is not true unless the
space is locally compact.
Furthermore, the concepts of semi-strong C] — (respectively, weak-
C]— , semi- weak CJ— , almost semi- strong CJ] — , almost weak- C] — ,
almost semi-weak C] —) spaces are introduced, illustrated and show several

properties of these spaces. Also study the relationship among all above

concepts.



LISTOF ABBREVIATIONS

SYMBOL DESCRIPTION
B Base or subbase of a topology
Cl(A) The closure set of the set A
In(A) The interior set of the set A

o The projection function

0A The boundary set of A

N The set of all natural numbers

R The set of all real numbers
R™ The Euclidean space with n dimension
R* {x e R: x>0}

R~ {xe R:x<0}

sn The unite sphere in R**1

B" The unite ball in R"

m; (X,x.) | The fundamental group of X

e The identity element of a group X

Ik The identity function on X

I The indiscrete topology

D The discrete topology
f| A The restriction of the function f on the set A
[x] The equivalent class of the element x.
E* The set of all natural even numbers

The set of all natural odd numbers
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INTRODUCTION

Jordan curve theorem is one of the classical theorems of mathematics,
this theorem was first formulated, at least in some form, by Bernand Bolzano
(1781-1848), but it is named after by the French mathematician Camille
Jordan (1838-1922) he was the first to publish a proof of the theorem in 1887
in [6]. Firstly, he gave the definition of arc as follow: If a given continuous
function f from [0,1] into a space X is a homeomorphism, then the curve f is
said to be a Jordan arc in X. In the event that X is a Hausdorff space, then a
curve fwill automatically be a homeomorphism if it is one- one, and so for all
common topological spaces a Jordan arc is simply defined to be a curve that
does not pass through the same point twice. If fis a closed curve that is one-
one on [0,1] except for f(0) = f(1), then f is said to be a Jordan curve [25].

The Jordan curve theorem states the following: If C is a graph of a
simple closed curve in the complex plane the complement of C is the union of
two regions, C being the common boundary of the two regions. One of the

region is bounded and the other is unbounded [32].

The Jordan curve theorem is one of most important result about the
topology of simple closed paths that also follows from the deformation
theorem (for more details, see [15]).

For the great importance of Jordan curve theorem, any studies have
been conducted about how proof this theorem. In [45] Hales talks about
formal proofs in general and specially of the Jordan curve theorem, also he

defends the original proof of Jordan curve theorem in [44].

«|»



Introduction

In [26] Narens, gave a nonstandard proof of the Jordan curve theorem.
According to [7] this is somewhat similar to Jordan's original proof.

In [13] a constructive proof is given, by Bery and others. Constructive
in the sense that existence is not enough, the presentation is also essential.

Stoker [20] was used in discussing the Jordan theorem the winding
number of an arc of a continuous curve with respect to a point not on the

curve. an interesting notion in its own right.

Gamelin[48] gave the proof based on the jump theorem for the
winding number because he was saw that the proof of Jordan curve theorem
for piece wise smooth curves is substantially easier than the proof for
arbitrary simple closed curves. This idea forms the basis for a proof in the

general case.

On the other hand many generalizations of Jordan curve theorem are
discussed by many researchers, for example not limited, we recall some of

these generalizations.

In 1967, Kopperman, Khalimsky and Meyer stated a generalization in

7?* equipped with the khalimsky topology, [10].

In 1991, kong,et.al, introduced the following result: If T is an
n-connected closed curve in Z?, then Z2\I' has two and only two n-
connectivity components (n+n =12,n=4,8). This result is a kind of

generalization of the classical Jordan curve theorem in R?, [49].

In 1999, Micael introduced and studied ]-spaces and strong J-spaces
which are considered to be generalizations of properties of Jordan curve
theorem, [12].

« Il »



Introduction

In 2007, Nanjing introduced the concept of LJ]-spaces exploited the
common generalization of Lindelof spaces and J-spaces, [56].

In 2007, Kornitowicz worked hard to mark crucial points in the proof

of Jordan curve theorem,[2].

In 2008, Bouassida introduced a new proof of the Khalimsky's Jordan
curve theorem using the specificity of the Khalimsky's plane as an
Alexandroff topological space and the specific properties of connectivity on
these spaces, [9].

In our thesis new types of generalizations of Jordan curve theorem are
introduced , the concepts of countably compact and contractible are used to

get many generalizations of this theorem.

By these generalizations, we get many new spaces, like CJ-space,
strong CJ-space, semi-strong CJ-space, weak- CJ-space, semi-weak CJ-space,
almost CJ-space, almost strong CJ-space, almost semi-strong CJ-space, almost
weak- CJ-space, almost semi- weak CJ-space and contractible CJ-space.

Suitability with our thesis, we assumed all functions are continuous
and all spaces are T,, in spite of most of our results are useful wanting that

presumption.

This thesis contains five chapters. Chapter one is preliminaries
includes three sections; section one talks about compactness and countably
compactness, while section two talks about connectedness and contractibility.
In section three the review of the concepts of J-space, strong, semi-strong,
weak and semi- weak J-space are introduced, in addition to some of their

properties.

« I »



Introduction

Chapter two consists of three sections. In section one we defined CJ-
spaceand strong CJ-space, also we gave some examples of these concepts and
we discussed the relationship between the two concepts and other known
concepts as compact, countably compact, J-space and strong J-space. Some

new theorems and propositions are given in this section.

In section two, we introduced three new spaces which are semi-strong
CJ-space, weak CJ-space and semi- weak CJ- space. We found that strong
CJ-space gives semi-strong CJ-space, and every semi-strong CJ-space is a
CJ-space, while CJ-space is a semi-weak CJ-space which, in turn, weak
CJ-space. But the converse is not true in general, so we gave many examples
for the opposite directions. On the other hand, we found that if some spaces
have special properties, then we can get semi- strong CJ- space, weak
CJ-space and semi- weak CJ-space. The concepts of being CJ-space and weak

CJ-space are equivalent in two ways.

In section three countably perfect and boundary countably perfect
functions are given with some properties of them. Also, discussed the fact that

these functions reservation property of being CJ-space or not.

Chapter three consists of three section. In section one we defined two
new topological spaces which are almost CJ-space and almost strong
CJ-space. We gave some properties of these spaces and established the
relationship between them and with another known spaces as compact,

countably compact, J-space, strong J-space, CJ-space and strong CJ-space.

The second section is dedicated to study of three new spaces which are
almost semi- strong CJ-space, almost weak CJ-space and almost semi-weak
CJ-space. During the study of the relationship between these spaces and

another known spaces, we found that every almost strong CJ-space is an

« 1V »
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almost semi- strong CJ-space, and every almost semi- strong CJ-space is an
almost CJ-space, while almost CJ]-space is an almost semi- weak CJ-space
which, in turn, almost weak CJ-space. The opposite directions of the Previous

properties is not true in general.

In section three we used the same types of functions, that were used In
the third section of chapter two, to prove some properties of almost CJ-space
and almost strong CJ-space. Also discussed some theorems, that are
considered equivalent to the definition of almost CJ- space and almost

strong CJ- space, by using these types of functions.

In chapter four we used the notion of contractible space to define new
topological space which called contractible J-space. This chapter includes two
sections. In section one the definition of contractible J-space with its
equivalent theorem are introduced. Also gave many varied examples, With a
number of characteristics discussed.

In section two the study of functions that preserve the property of being
contractible J-space are introduced and defined two new functions which are
contractible function and boundary contractible function. Also gave some

new properties.

Finally, chapter five consists of two sections. Section one reviews all
the results obtained during this thesis. While in section two we suggest some
future studies that can be obtain from this thesis.

«V »
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Chapter one preliminaries

INTRODUCTION

In this chapter, some preliminary concepts that are needed in our thesis
are recalled. This chapter contains three sections, section one recalled some
fundamental definitions, remarks and propositions about compactness and

countably compactness.

In section two, many primary definitions, remarks and propositions of

connectedness and contractibility are given.

Section three comprehends major definitions, remarks and propositions

about J- spaces and strong ]- spaces.



Chapter one preliminaries

§1 COMPACTNESS

This section consists some Iimportant definitions such as:
compact (respectively, countably compact and locally compact) space,
also we give some properties of them. In addition, the relationships among
these concepts are investigated.

Definition(1.1.1) [22]
A space X is said to be compact if every open cover of X contains a

finite subcollection that also covers X.

Theorem(1.1.2) [43]
A subset of Euclidean space is compact if and only if it is closed and
bounded.

Theorem(1.1.3) [42]

A compact subset of a Hausdorff space is closed.

Theorem(1.1.4) [22]
A finite union of compact subspaces of a space X is compact.

Proposition(1.1.5) [37]
Every closed subspace of a compact space is compact.



Chapter one preliminaries

Definition(1.1.6) [24]
A topological space X is said to be countably compact if every

countable open cover of X has a finite subcover.

Theorem(1.1.7) [46]
A topological space X is countably compact if and only if every

infinite set having a cluster point.

Propositions(1.1.8) [18]
Any closed subspace of a countably compact space is again countably
compact.

Proposition(1.1.9) [47]

Every compact space is a countably compact.

Remark(1.1.10) [18]
The converse of Proposition (1.1.9) is not true in general.
For example:
Let X=N and let B; = {2i—1,2i;i=1,2,....., et 8={B;,i=1,2,...... }
be a basis for a topology t on X, then (X, t)is countably compact but not

compact.

Theorem(1.1.11) [28]
A metric space is compact if and only if it is countably compact.
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Definition (1.1.12) [22]

A function f: A — B is said to be injective if for each pair of distinct
points of A, their images under f are distinct. It is said to be surjective if
every element of B is the image of some element of A under the function f. If

f is both injective and surjective, it is said to be bijective.

Proposition (1.1.13) [22]
Let f:A — B be a function, and let A. c A, A, c A, B.cB and

B, c B, then:

1. A. c f71(f(A.))and that equality holds if f is injective.

2. f(f‘l(Bo)) c B. and that equality holds if f is surjective.

3. f"1(B-nB,)=f"1B.)Nnf1(B,).

4. f~1(B.uB;) =f"1(B.)uf1(By).

5. f(A- nA;)cf(A.) nf(A,) and that equality holds if f is injective.
6. f(A-UA;) = f(A.) Uf(A)).

Definition(1.1.14) [19]

Let XandY be two topological spaces. Let f: X — Y be a function
from Xinto Y and x a point of X. If for every open neighbourhood V of f (x)
in Y there is an open neighbourhood U of x such that f(U) c V , then the
function f'is said to be continuous at x. If f is continuous at every point of X,

then it is called a continuous function.
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Remark(1.1.15) [17]

Suppose f: X - Y and g:Y — Zare continuous functions. Then
the composite function g o fdefined by g o f(x) = g(f (x)),x € X, is also
a continuous function from X into Z.

Remark (1.1.16) [19]

Every function from a discrete space into any space is continuous .

Remark (1.1.17) [11]

If f: X — Y is a continuous function and W is a subspace of X, then
the restriction of fto W denoted by f |[W is a continuous function from W into
Y.

Theorem(1.1.18) [19]
The following conditions are equivalent for a functionf: X — Y.

(a) fis a continuous function,

(b) for every open setV inY,f~1(V) is an open set in X (see also [17]),

(c) for every closed set GinY,f~1(G) is a closed set in X,

(d) for a base (or subbase) B of Y, and for every B € 8, f~*(B) is an open
set in X,

(e) for every subset A of X, f (cl(A)) < cl(f(A)) in Y, where cl(A) denotes

the closure of A.

Proposition (1.1.19) [22]
A continuous image of a compact space is compact.
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Proposition (1.1.20) [24]
A continuous image of a countably compact space is countably

compact.

Definition(1.1.21) [29]
A function f: X — Y is called a closed function if for every closed set
A C X, theimage f (A) is closed setin Y.

Definition(1.1.22) [36]

A closed continuous function with compact preimages of points is
called perfect. That is f: X — Y is a perfect function if f is closed, continuous
and f~1(y) is compact for eachy € Y.

The point inverses f~1(y), for y € Y, are sometimes called the fibers
of the function f.

Theorem(1.1.23) [36]

If a function f: X — Y is a perfect function, then for any compact subset

F of Y, the preimage f~*(F) is a compact subset of X.

Proposition(1.1.24) [19]
Any continuous function from a compact space X onto a Hausdorff

space Y is a perfect function.
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Proposition(1.1.25) [19]
If X is compact Hausdorff and Y is any space then the projection
function p, : X X Y — Y is a closed function with fibers all homeomorphic

to X. So p, is a perfect map.

Definition(1.1.26) [12]
A function f: X — Y is called boundary perfect if it is closed and if

of 1 (y) is compact for every y € Y.

Definition(1.1.27) [19]
A continuous closed function with countably compact fibers is called a
quasi-perfect function.

Definition(1.1.28) [14]
A function f:(X,©) - (Y,t) is said to be countably compact function
if inverse image of each countably compact subset of Y is a countably

compact subset of X.

Definition(1.1.29) [21]
A space X is locally compact if each point of X has a compact

neighbourhood.

Definition(1.1.30) [24]
Let A be a subset of a space X, then A is said to be dense in Xif
cl(A) = X.
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Theorem(1.1.31) [11]
A Hausdorff space X is locally compact if and only if X is an open

dense subspace of a compact Hausdorff space.

Theorem(1.1.32) [11]
The product space of locally compact Hausdorff spaces is locally compact
if and only if all but a finite number of factor spaces are compact.

Proposition(1.1.33) [35]

Every closed subspace of locally compact space is locally compact.

Proposition(1.1.34) [11]

If X is Hausdorff, then every open subspace is locally compact.

Proposition(1.1.35) [11]

Locally compactness is preserved by open continuous images.

Proposition(1.1.36) [11]
The preimages, under perfect maps, of locally compact spaces are locally

compact.

Definition(1.1.37) [53]

Let M be a set and let g;: M; — M be functions from topological spaces
(M;, 1y);e; into M for some index 1. The final topology g on M with respect
to the functions g;: M; - M is the finest topology on M such that all the
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functions q; are continuous. A subset Oc M is open if and only if

q;"1(0) < M; isopen Vi€l

Definition(1.1.38) [19]

A Hausdorff space is said to be a k-space if it has the final topology
with respect to all inclusions C — X of compact subspaces C of X, so that a
set AinX is closed in X if and only if AnC is closed in C for all compact

subspaces C of X.

Remarks(1.1.39) [19]
1. All metric spaces are k-spaces.
2. Aclosed( respectively, open) subspace of a k-space is again k-space.

3. The product of k-spaces need not be a k-space.

Theorem(1.1.40) [11]
A Hausdorff space X is locally compact if and only if X X Y is a

k-space for any k-space Y.
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§2 CONNECTEDNESS AND CONTRACTIBILITY

In this section, the concept of connected (respectively, locally connected,
path connected and simply connected) space is introduced, also we discuss
the relationship among them.

In addition, the definition of contractible space with many properties
and examples about this concept are introduced.

We begin with the following definition.

Definition(1.2.1) [40]
A topological space X is said to be connected if it cannot be
represented as the union of two disjoint nonempty open sets.

Theorem(1.2.2) [33]
The continuous image of a connected space is connected.

Theorem(1.2.3) [38]

The finite product of connected spaces is connected.

Definition(1.2.4) [24]
Two subsets Aand B of a space X are said to be separated if
cd(A)nB=9 and Ancl (B) =0.

10
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The condition separated sets is a little stronger than saying that
A and Bare disjoint. But it is weaker than saying that there closures are

disjoint.

Theorem(1.2.5) [24]
Two subsets A and B of a topological space X are separated if and only

if they are closed subsets of AUB with relative topology.

Proposition(1.2.6) [24]
Let X be a space and C be a subset of X. Suppose C € A UB where
A, B are separated subsets of X. Then either C € Aor C c B.

Theorem(1.2.7) [24]
Let C be a collection of connected subsets of a space X such that no two

members of C are separated. Then U, C is also connected.

Definition(1.2.8) [39]
A continuous function f:X — Y is monotone if all fibers f~1 (y) are
connected.

Theorem(1.2.9) [39]
If f: X—Y is a monotone function which is either closed or open,
then for every connected subset C of the space Y the inverse image f~1(C) is

connected.

11
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Lemma(1.2.10) [12]
Let f:X — Y be monotone. If {A,B} is a closed or open cover of X, then
f(ANB) = f(A)N f(B).

Definition(1.2.11) [40]

A maximal connected subspace of a topological space, that is, a
connected subspace which is not properly contained in any larger connected
subspace, is called a component of the space. A connected space clearly has

only one component, namely, the space itself.

Theorem(1.2.12) [40]
If X is an arbitrary topological space, then we have the following:
(@) Eachpointin X is contained in exactly one component of X.
(b) Each connected subspace of X is contained in a component of X.
(c) A connected subspace of X which is both open and closed is a
component.

(d) Each component of X is closed.

Definition(1.2.13) [27]
A space X is said to be a locally connected space if for each x € X, and
each neighbourhood U of x there is a connected neighbourhood V of x which

is contained in U.

12
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Theorem(1.2.14) [40]
A space X is locally connected if and only if the components of all open

subspaces of X are open.

Proposition(1.2.15) [55]
If a topological space X is locally connected, then the connected

components of X are open.

Propositions(1.2.16)

a) Local connectedness is hereditary with respect to open subsets, but not to
closed subsets in general. [11]

b) Local connectedness is preserved by images under continuous and open
functions.[40]

c) The productspace of locally connected spaces is locally connected if and
only if all but a finite number of factor spaces are connected. [11]

Definition(1.2.17) [50]
Let X be a topological space. A path in X is a continuous function from
[0,1] to X.

Definition(1.2.18) [50]

Let X be a topological space and let x.,x; € X. Then x.and x; can be
connected by a path in X if there is a path y:[0,1] - X such that y(0) = x.
and y(1) = x;.

13
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Definition(1.2.19) [23]
A topological space X is called path connected if any two of its points

can be connected by a path in X.

Examples(1.2.20) [22]
1. The unite sphere S™~! in R™ is path connected V n > 1.
2. The unite ball B™ in R" is path connected.

3. Every open ball and every closed ball in R™ is path connected.

Proposition(1.2.21) [34]
A path connected set is connected.

Proposition(1.2.22) [30]

The continuous image of path connected space is path connected.

Theorem(1.2.23) [23]
Two spaces Xand Y are path connected if and only if X X Y is path

connected.

Proposition(1.2.24) [23]
Let A and B be path connected subspaces of aspace X. TANB + @ is
path connected, then A U B is path connected.

14
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Definition(1.2.25) [7]

Two continuous functions f,,f;:X — Y are said to be homotopic if
there is a continuous function F:XXxI1—Y (I is the closed interval [0,1]),
such that F(x,0) =f,(x) and F(x,1) = f; (x). This homotopic denoted by
f, = f.

Definition(1.2.26) [7]

Two spaces XandY are of the same homotopy type if there exist
continuous functions f:X - Yand g:Y = X suchthatgf = [: X - Xand fg =
I:Y - Y. The functions f and g are then called homotopy equivalences, we

also say that X and Y are homotopy equivalent.

Remarks(1.2.27) [4]

1. Homotopy type defines an equivalence relation on the collection of all
topological spaces.

2. Homotopy relation is an equivalence relation on the collection of all
maps from Xto Y.

Definition(1.2.28) [1]

The fundamental group of a space X is the set of all homotopy classes
[f] of loops f: I — X at the basepoint x., which is a group with respect to the
product [f][g] = [fg], and is denoted by m; (X, x-).
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Definition(1.2.29) [23]
A space X is simply connected if it is path connected and m; (X, x.) =
{e}, Vx. € X.

Definition(1.2.30) [52]
If Y is asubspace of atopological space X, a retraction from XtoY
is a continuous function r:X — Y such that r(p) = p,Vp €Y. In this case Y

is called a retract of X.

Proposition(1.2.31) [11]
A retract of a locally connected space is locally connected.

Definition(1.2.32) [52]
A subspace Y of a space X is called a deformation retract if there is a
continuous retract r:X —» Y such that the identity function from X to X

homotopic to the function i o r, where i is the inclusion of Y in X.

Definition(1.2.33) [11]
A function from X to Y is said to be null- homotopic if it is homotopic

to some constant function.

Definition(1.2.34) [22]
A space X is called contractible space if the identity function Ix: X — X
is null- homotopic.
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Example (1.2.35) [4]

The Euclidean space R™ is contractible.

Remark (1.2.36) [41]
A discrete space with more than one point is not contractible.

In the following we give some results about trivial spaces:

Remarks(1.2.37)

1. Any subspace (with more than one element) of a discrete space is not
contractible since every subspace of a discrete space is also discrete.

2. Asubset Yof R is contractible if Y is not discrete space (with more than
one element).

3. An indiscrete space is a contractible space, this follows from the fact
says that any function with indiscrete codomain is continuous.

4.  Any subspace of an indiscrete space is contractible since every subspace

of an indiscrete space is also indiscrete.

Definition (1.2.38) [16]

A set of points N is said to be convex if whenever two points x,,x,
belong to N all the points of the form Ax, + px,, whereA > 0,u> 0, A +
1w = 1, also belong to N.
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Propositions (1.2.39) [51]
1. Every convex subset of R™ is contractible.

2. Any ball in R™ is contractible.

Definition(1.2.40) [5]
Let X be a topological space and A the subset of X x [0,1] given by
X x {1}. The space X x [0,1]/A is called the cone over X, denoted by TX.

Theorem (1.2.41) [8]

A topological space Xis a contractible space if and only if it is a

homotopy equivalent to a point.

Theorem (1.2.42) [54]
A topological space X is a contractible space if and only if there exists a

point x. € X such that {x.} is a deformation retract of X.

Theorem (1.2.43) [29]
A topological space X is a contractible space if and only if it is a retract

of any cone over it.
Theorem (1.2.44) [1]

A topological space X is a contractible space if and only if every function

f: X =Y, for arbitrary Y, is null-homotopic.
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Theorem (1.2.45) [1]
A topological space Xis a contractible space if and only if every map

f:Y — X, for arbitrary Y, is null-homotopic.

Proposition(1.2.46) [23]
Every contractible space is path connected space.

Proposition(1.2.47) [23]

Every contractible space is simply connected space.

Remark(1.2.48) [3]
The convers of Propositions (1.2.42) and (1.2.43) are not true in
general.

For example:
S™ is path connected for every integer n > 1, and simply connected for

every integer n = 2. Yet these spheres are not contractible.

Remark(1.2.49) [7]
The continuous image of a contractible space need not be contractible.
For example:
f: [a,b] - S is continuous and onto, since S? is a quotient space for [a, b]
by the relation x~yif x =a and y = b. Note that [a,b] is contractible, but

ST is not.
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Theorem(1.2.50) [31]

The fundamental group of a contractible space X is trivial.

Proposition(1.2.51) [1]
A retract of a contractible space is contractible.

Proposition(1.2.52) [23]
If X is a contractible and Y is path connected, then any two continuous

functions from X onto Y are homotopic (and each is null- homotopic).

Proposition(1.2.53) [8]
Two homeomorphic spaces are homotopy equivalent. Thus the
classification of spaces up to homotopy equivalence is coarser than the

homeomorphism classification.
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§3 J]-SPACES AND STRONG J-SPACES:

In this section two relevant concepts are given with simple
definitions and interesting properties, these two concepts are J-space and
strong J-space.

Definition(1.3.1) [12]
A space X is a ] -space if, whenever {A, B} is a closed cover of X with

A N B compact, then A or B is compact.

Definition(1.3.2) [12]
A spaceX is a strong ] -space if every compact K < X is contained in a

compact L € X with X\L connected.

Note that Definitions (1.3.1) and (1.3.2) is a generalizations to Jordan
curve theorem, since the Jordan curve theorem guarantees that if C is a
simple closed curve in the plane R? then R?\C has precisely two
components W; and W,, of which C is the common boundary. Generalizing
these properties, E. Michael [12] introduced and studied the following two
definitions.

Now, introduce some propositions about strong J-space which is needed.

Proposition(1.3.3) [12]
Every strong J-space is a J -space. The converse holds if the space is

locally connected (Corollary 3.2 in [12]), but not in general (Examples 9.1,
9.2in [12]).
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Proposition(1.3.4) [12]

Every compact space is a strong ] —space.

Proposition(1.3.5) [12]
If X, and X, are connected and non- compact, then X; X X, is a

strong J- space.

Proposition(1.3.6) [12]

The space R* as a subspace of the usual space R is a strong J-space.

Now, we recall the definition of semi-strong ] -space, semi-weak ] -space and

weak ] -space.

Definition(1.3.7) [12]
A space X is a semi-strong ] -space if for every compact K c X there

IS acompact L © K in X and aconnected C ¢ X\KwithC U L = X.

Definition(1.3.8) [12]

A space X is a semi-weak J-space if, whenever A and B are disjoint,
closed subsets of X with dA and dB are compact, then A or B is compact.
Definition(1.3.9) [12]

A space X is a weak J-space if, whenever {A, B,K} is a closed covering

of X with K compactand A N B = @, then A or B is compact.

The following theorem illustrate the relationship among above spaces.
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Theorem(1.3.10) [12]
Consider the following properties of a space X.
(@) X is a strong J-space.
(b) Xis a semi-strong J-space.
(c) X is aJ-space.
(d) X'is a semi-weak ]-space.
(e) Xis a weak J-space.
Then (@) = (b) = (c) = (d) = (e), and none of these implications is reversible
(even for subsets of R?). However, (a) & (b) < (c) if X is locally connected,
and (c) & (d) & (e) if X is locally compact.

Definition(1.3.11) [17]

Let L be any vector space over a non- discrete valuated field K and T
be a topology on L, the pair (L, X) is called a topological vector space (or
topological linear space) over K if these two axioms are satisfied:

1. (x,y) = x + y is continuous on L X L into L.

2. (4, x) = Ax is continuous on K X L into L.

Proposition(1.3.12)[12]

Every topological linear space X # R is a strong ]- space.
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Chapter two CJ-SPACES AND STRONG CJ-SPACES

INTRODUCTION

In this chapter, the concept of " countably compact” is used to define
a new topological spaces, called CJ- space and strong CJ- space.

This chapter consists of three sections, section one includes the above
definitions with their properties and the relationship between them.

In section two, another new spaces which are called semi- strong CJ-
space, weak CJ-space and semi- weak CJ-space are studied with the

relationship among these spaces.

New types of functions are given in section three. The functions that

transferred CJ- spaces to CJ-space are discussed. By using these types of
functions, we prove theorems which give new definitions that equivalent to

definitions of CJ-space and semi- weak CJ-space.
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§1 CJ-SPACES AND STRONG (]-SPACES

The main concern of this section is to introduce the concepts of
CJ-space and strong CJ-space. These concepts are considered a
generalization of Jordan curve theorem in different approach. In this
approach we using the concept of countably compact to define CJ-space

and strong CJ-space, and give some properties of them.
Now, we start with the following definitions.

Definition (2.1.1)
A topological space X is a CJ-space if, when {A,B}is a closed cover

of X suchthat AN B countably compact, then A or B is countably compact.

Definition (2.1.2)
A topological space X is a strong CJ-space if every countably compact
K c X is contained in a closed countably compact L c X with X\ L is

connected.

Remark(2.1.3)

We know that in any topological space "every compact subset of
Hausdorff space is closed"”. This fact is not hold in general if we replace the
concept of compact set by countably compact set. To ensure satisfies this
fact in our work, we put the condition on the set L to be closed in Definition
(2.1.2).
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The following Proposition shows that every strong CJ-space is a
CJ-space. While the converse is not true, as shown in Remark (2.1.5).

Proposition (2.1.4)

Every strong CJ-space is a CJ-space.
Proof:
Let X be a strong CJ- space and let A, B be two closed subsets of X with
X = A UB and ANB countably compact, so there exists a closed countably
compact L € X such that ANBc L and X\ L is connected. Therefore
{(AN X)\L, (BNX)\L} is a disjoint closed cover of X\L, but X\L is
connected, so X\L must be in (ANX)\L or in (BNX)\L, it follows that
X\L c A or X\L c B. By complementation we have A° c L or B¢ c L, and
since ANBc L,so Ac LorBc L. Then A or B is countably compact by
Proposition (1.1.8). Hence X is CJ-space.

Remark (2.1.5)

The converse of proposition (2.1.4) is not true in general.

For example:

Let us take the topology defined on the set of natural numbers N, this
topology is generated by the partition P = {{2k — 1,2k}; k € N} and called
the Odd — Even topology. The only countably compact subsets of N are the
finite subsets, so if we take a closed cover {A,B} of N with ANB countably

compact, that is mean ANB is finite set and since the intersection of any two
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infinite sets in this space must be an infinite set, so A or B must be finite,
that means A or B is countably compact. Hence N is CJ-space.

But N is not strong CJ-space since every countably compact subset of N is
finite and hence its complement is infinite and every infinite subset of N is

non-connected.

Remark (2.1.6)
Every finite space is a CJ-space.

Proposition (2.1.7)
Every countably compact space is a strong CJ-space.
Proof:
Let X be a countably compact space and let K c X be a countably compact,
then X is a closed countably compact with K< Xand X\X= 0 is

connected.

Theorem(2.1.8)

A metric space X is a strong CJ-space if and if X is a strong ]-space.
Proof:
The "if"" part
Suppose that X is a strong CJ-space and let KcX be a compact, then K is
countably compact by Theorem(1.1.11). It follows by Definition (2.1.2) that
there exists a countably compact subset L of X such that KcL and X\L
connected. Again by Theorem (1.1.11) L is compact. Hence X is strong J-

space by Definition (1.3.2).
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The "only if"" part

Suppose that X is a strong J-space and let KcX be a countably compact,
then K is compact by Theorem(1.1.11). It follows by Definition (1.3.2) that
there exists a compact subset L of X such that KcL and X\L connected.
Again by Theorem (1.1.11) L is countably compact. Hence X is strong CJ-
space by Definition (2.1.2).

Remark (2.1.9)

The converse of Proposition (2.1.7) is not true in general.

For example:

Let us take R* as a subspace of R with the usual topology which is not
countably compact, but it is strong CJ-space by Proposition (1.3.6) and
Theorem (2.1.8).

Corollary (2.1.10)

Every compact space is a strong CJ- space.
Proof:
Follows from Propositions (1.1.9) and (2.1.7).

Countably compact space is a CJ-space as shown in the following

Proposition, but the converse is not true by Remark (2.1.12).

Proposition (2.1.11)

Countably compact space is a CJ-space.
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Proof:
Follows from Propositions (2.1.7) and (2.1.4).

Remark (2.1.12)

The converse of Proposition (2.1.11) is not true in general.

For example:

Let us take the set of real numbers with the particular point topology t, such
that t = {U € R| 0 € Uor U = @}, note that every closed cover of R must
contain R. Let us take {IR,A} as a closed cover of R with R N A countably
compact, but RN A= A, so A is countably compact. Hence (R, 1) is CJ-
space. But this space is not countably compact, since C = {(—n,n);n € N}
Is a family of open subsets of R, which covers R, has no terminated open

subcover.

Corollary (2.1.13)
Every compact space is a CJ- space.

Proof:
Follows from Propositions (1.1.9) and (2.1.11).

Now, some theorems, propositions, corollaries and important remarks are

introduced in follow:
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Proposition (2.1.14)

All topological linear spaces, excepting R, are strong CJ-space.
Proof:
Take X # R as a topological linear space, and let K € X be a countably
compact and let L = {ax: a € [0,1] and x€ K}, then Kc Land Lis a

closed countably compact subset of X with X\L is connected.

Lemma (2.1.15)
If Bis a closed non-countably compact subset of any topological
space X and C c B is countably compact, consequently there is a non-

countably compact closed D ¢ B suchthat DNC = @.

Proof:

Let G be a countable open cover of B with no finite subcover, and let C ¢ B
be a countably compact, then G is a countable open cover of C. Pick a finite
I < G covering C. Then D =B\ US is a closed non— countably compact
subset of BwithD N C = Q.

The following Theorem gives four different conditions that are

equivalent to being CJ-space.

Theorem (2.1.16)
Let X be any topological space, then the following conditions are

equivalent:

30



Chapter two CJ-SPACES AND STRONG CJ-SPACES

1. Xis aCJ-space,

2. Forany A c X with countably compact boundary, cl(A) or cl(X\A) is
countably compact,

3. If A and B are closed in X with AN B =@ and dA or dB countably
compact, then A or Bis countably compact,

4. If K c X is countably compact, and if v is an open cover of X\K with
disjoint members, then there exists W e w such that X\W is
countably compact,

5. Same as (4), but with card w = 2.

Proof

1)= (@)

Let A c X such that dA is countably compact, but 0dA = cl(A)Ncl(X\A) ,
now we have a closed cover {cl(A),cl(X\A)} of X with cl(A)Ncl(X\A) is
countably compact and X is CJ-space so cl(A) or cl(X\A) is countably

compact.

2)= Q)

Let A and B be disjoint closed subsets of X with dA is countably
compact. By (2) we can get cl(A) or cl(X\A) is countably compact. But
cl(A) = A, so A or cl(X\A)is countably compact and since B < cl(X\A),
so A or B is countably compact (since B is closed and cl(X\A) is countably

compact).
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@)= (1)

Let A,B be two closed subsets of X with X = A U B and ANB is countably
compact. Suppose that B is non- countably compact and since ANBc B is
countably compact, so by lemma (2.1.15) there is a non- countably compact
closed D c B such that DN(ANB) = @, it follows that DNA = @,but 0A
countably compact since it is a closed subset of ANB. By (3) AorDis
countably compact, but D is non- countably compact. Hence A must be

countably compact.

4) = (5)

Clear.

(5) = (4)

Let K c X be a countably compact and let « be a disjoint open cover of
X'\ K. To show that X\W is countably compact for some W € w we shall
follow three demarches.

First, we prove that if U is open subset of X containing K, then
w ={W ew:W U} is finite. Suppose that it is not finite, then
w =W, UW, with W, nW, =@ and W, nw and W, n «w both finite.
Let V, =UuW, and V, =UW, , then V,,V, are two open subsets of X such
that V, NV, =@ and X\K =V, UV, so by (5) X\V; or X\V, is countably
compact, but vV, € X\V, and V, € X\V; since V; andV, are disjoint. It
follows that cl(V;) € c (X\V,) = X\V, and cl(V,) < cl (X\V;) = X\V;, so
we get cl(V;) or cl(V,) is countably compact by Proposition (1.1.8).
Suppose that cI(V;) is countably compact, then C = clI(V;)\U is countably

compact. Now let ', = W, nw ', then w+, covers C and each W € w
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intersects C, so C is not countably compact since w, is infinite and disjoint,

which is a contradiction. Hence v is finite.

Second, we prove that if cl(W) is countably compact,V W € wr,
consequently X is countably compact. Let V' be a family of countably open
subsets covers X, then V' is a countably open cover of K, which is countably
compact, so V has a finite subcover F covers K. Let U = U F, by step one
we get a finite family w = {W € w:W & U}, so U{cl(W):W € w '} is
countably compact and since V' is an open cover of it therefore it is covered
by some finite £ c V. But UE < V' is finite and covers X, so X is countably

compact.

Lastly, we show that, X\W is countably compact for some W € wr. If cI(W)
Is countably compact for all W € wr, then X is countably compact by step
(2) and since X\W is a closed subset of X, so X\W is countably compact.
Suppose that there exists W, € «» such that cl(W,) is not countably
compact. Let W* =U {W € w: W = W, },then, {W,,W*} is a disjoint open
cover of X\K,so X\W, or X\W* is countably compact, by (5). If X\W*
is countably compact, and since cl(W,) is a closed subset of X \W~*, so
cl(W,) is countably compact which is a contradiction, so X\W* is not
countably compact, it follows that X\W, is countably compact.

G)= @)

Let A,B be two closed subsets of X with X =AU B and ANB countably
compact, then {X\A, X\B} is an opencover of X\ANB with X\A N X\B = @.
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By (5 X\(X\A) or X\(X\B) is countably compact, that is AorB is
countably compact. Hence X is CJ-space.

1)= ()

Let K be a countably compact subset of X and let {W,;,W,} be an open
cover of X\K with W, nW, =0 , so {X\W,,X\W,} is a closed cover
of X with X\W, n X\W, = X\(W,; UW,) which is a closed subset
of Ksince X\K c W, UW,, then X\W,; n X\W, is countably compact
by Proposition (1.1.8). But X is CJ-space, so X\W; or X\W, is countably

compact.

Theorem (2.1.17) ensure that the concepts of being CJ- space and

strong CJ- space, are equivalent if the space is locally connected.

Theorem (2.1.17)
A locally connected space X is CJ-space if and only if it is a strong

CJ-space.

Proof:

A strong CJ-space is CJ-space by Proposition (2.1.4). If Xis CJ-space we
must prove that X is strong CJ-space, let K c X be countably compact. Now
we have an open cover w of X\K with disjoint members and each W € w
connected since X is locally connected. By theorem (2.1.16), there exists
aW, € w where X\W, is countably compact. Taking L = X\W,, then L

is a closed countably compact containing K and X\L is connected.
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It is known, that some concepts of general topology are hereditary
properties, for example being T,-space is a hereditary property, while
compact or connected is not. Compactness, for example, is weakly
hereditary property, when the subspace is closed. In our case CJ-spaces are
not hereditary, nor weakly hereditary, as shown in Remark (2.1.18) below.
But if the subspace is clopen (closed and open), then it is CJ- space, if the

space is so, as seen in Proposition (2.1.19).

The following Remark shows that the property of being CJ-space is
not weak hereditary property and therefore not hereditary property.

Remark (2.1.18)

A closed subset of CJ-space need not be CJ-space.

For example:

Let us take the same topological space R in the example of Remark
(2.1.12), this space is CJ-space, but the closed subspace N with the induced
topology, which is the discrete topology, is not CJ-space since {O*,E*}is a
closed cover of N with Ot NnE* =@ is countably compact, but neither

O* nor E™ is countably compact.

Proposition (2.1.19)
A clopen subset of a CJ-space is CJ-space.
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Proof:

Let X be any CJ-space and let W be a clopen subspace of it, we have to show
that W is CJ-space, let {A, B} be a closed cover of W with ANB countably
compact, then {AU(X\W), B} is a closed cover of X with (AU(X\W))NB =
ANB countably compact, so AU(X\W) or Bis countably compact. If Bis
countably compact, then we have got the proof. If B is not countably
compact, then AU(X\W) is countably compact, but A is a closed subset of
AU(X\W) , so A is countably compact, and hence W is CJ-space.

Theorem (2.1.20) below describes a condition which ensures
transmission the property of being (strong) CJ- space from a space X to each

component of its closed cover and vice versa.

Theorem (2.1.20)

Let {X,,X,} be a closed cover of a topological space X with X; N X,
countably compact. Then X is a (strong) CJ-space if and only if X, and X,
are (strong) CJ-spaces and X; or X, is countably compact.

Proof:

(1) CJ-space

The "if"* part

Assume that X is CJ-space, then X, or X, is countably compact by definition
of CJ-space. Suppose that X, is countably compact, it follows that X, is CJ-
space. Now to show that X, is CJ-space. Let A, B be two closed subsets of X

which cover X, with ANB countably compact, therefore {A,BUX;} is a
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closed cover of X suchthat AN(BUX,) countably compact, so A or BUX; is
countably compact since X is CJ-space. But B is a closed subset of BUX,,

so A or B is countably compact.

The "only if*"" part

Assume that X; and X, are CJ- spaces and suppose that X, is countably
compact, we have to show that X is CJ-space. Let A, B be two closed subsets
of X with X=AUB and ANB countably compact. Now let
A;=AnX;and B;=BnNX; (i=1,2), consequently {A;,B,} is a closed
cover of X;, which is CJ-space, with A; NB; countably compact, so A, or B;
IS countably compact. If A, is countably compact, then A=A, UA, is
countably compact since A, is a closed subset of countably compact X,. By

the same way, if B, is countably compact, then so is B.

(2) Strong CJ-space

The ""if** part

Assume that X is a strong CJ-space, it follows by Proposition (2.1.4) that X is
CJ-space, and thus X, or X, is countably compact. Suppose that X, is
countably compact, it follows by Proposition (2.1.7) that X, is strong
CJ-space, so it remains to show that X, is strong CJ-space. Let K, € X, be
countably compact. Define K = K, U X,, then K is a countably compact
subset of X which is strong CJ-space, so there exists a closed countably
compact subset L of X such that K c L and X\L is connected. Let L, =L N
X,, then L, € X, is countably compact since L, is a closed subset of

countably compact set L. Also K, € L, since K, € Kc L implies that
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K, NnX, ¢ LNX,. Also note that X, c K c L which implies X, \L, = X\L
, and hens X, \L, is connected.

The "only if*" part

Assume that X, and X, are strong CJ-space and suppose that X, is a
countably compact and let K< X Dbe countably compact. Define
K, = (KUX;)NnX,, so K, is countably compact since it is a closed subset
of the countably compact set KU X, so K, is countably compact subset of
the strong CJ-space X,, then there exists a closed countably compact subset
L, of X, suchthatK, € L, and X,\L, is connected. Now let L. = L, U X,
then L is a closed countably compact subset of X and Kc L and
X\L = X, \L, is connected. Hence X is strong CJ-space.

Corollary (2.1.21)
Let A a closed subset of a topological space X with dA countably

compact. If X is a (strong) CJ-space, then so is A.

Proof:

Let A, cl(X\A) be two closed subsets of X with A U cl(X\A) =X and
A N cl(X\A) = dA which is countably compact, but X is (strong) CJ-space
by hypothesis, it follows by Theorem (2.1.20) that A is (strong) CJ-space.

Corollary (2.1.22)

Let X = EUU, with E (strong) CJ-space and U is open with countably

compact closure. Then X s a (strong) CJ-space.
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Proof:

Let A=X\U, then A is aclosed subset of E with countably compact
boundary since dA = dU which is closed subset of cl(U) which is countably
compact by hypothesis, but E is (strong) CJ-space, it follows by Corollary
(2.1.21) that A is also (strong) CJ-space. Now we have a closed cover
{A, cl(U)} of X with AN cl(U) = dU which is countably compact with A
and cl(U) are (strong) CJ-spaces and cl(U) is countably compact, so X is
(strong) CJ-space by Theorem (2.1.20).

A space is CJ- space if the intersection of any closed cover of this
space is not countably compact, as shown in the following Proposition ,
while this Proposition is not true in general without the assumption
condition, as we see in Remark (2.1.24).

Proposition (2.1.23)
Let {X,,X,} be a closed cover a topological space X with X; n X,
non- countably compact. If X;and X, are CJ-spaces, then X is also

CJ-space.

Proof:

Take A,B as two closed subsets of X which are cover X such that ANB
countably compact, we have to show that A or B is countably compact. Let
A;=AnX;and B; =BnX;for (i=1,2), then {A;,B;} is aclosed cover
of CJ-space X; with A;NB; = (ANB)NX; which is a closed subset of ANB,

and thus countably compact, it follows by definition of CJ-space that A;or B;
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Is countably compact. Now we will show that if A; is countably compact,
then so is A. Note that,

X,NnX,=(A;UB;)N(A,UB,)c (ANB)UB, UA;.
Since ANB and A; are countably compact, so B, cannot be countably
compact, for if B, is countably compact, then the closed subset X; N X,
must be countably compact which is a contradiction with hypothesis, so A,
IS countably compact, and thus A=A; UA, is countably compact.

Similarly we can show that, if B, is countably compact, then so is B.

Remark (2.1.24)
Proposition (2.1.23) is false without the assumption that X; N X, non-

countably compact and illustrated in the following example.

For example:
Let us take the usual topological space R and {R*, R™} as a closed cover of
R with R* R~ = {0} which is countably compact. We know that R is not

CJ-space, therefor Proposition (2.1.23) is not true.

Remark (2.1.25)
If we replace the concept of CJ-space in Proposition (2.1.23) by the
concept strong CJ-space, then this Proposition need not be true and the

following is the counter example.

For example:
Let us take the usual topological space R* and let E,; be the closed

segment of the plane R? joining (n,0) to (n+1,1/i). Let
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En = (U2, Epi)U(In,n+1]%x{0}), and letY = U2 E,. Then Y is not
strong CJ-space for if KcY is countably compact, then Y\K is not

connected. Now let
A=((R*x{0}hu U{En:n > 0,n even},

and
B =(R*x{0}) UU{E;:n >0, nodd}.
Then A,B are two closed subsets of R? which are cover Y where
ANB = R* x {0} which is non- countably compact. Now we have to prove
that A is strong CJ-space, let
Ay, ={(1y2) EA: y; <2n+1}

Hence A, is countably compactand A\A,, is connected for each n, moreover
every countably compact K € A is a subset of A,, for some n. The proof is

similar for B.

Corollary (2.1.26)
Let {X,,X,}be aclosed cover of a topological space X with X,and X,
both CJ-space. Then X is CJ-space if and only if X;or X, is countably

compact or X, N X, is hon- countably compact.

Proof:
The "if"" part
Assume that X is CJ-space and X; N X, is countably compact, it follows by

definition of CJ-space that X, or X, is countably compact.
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The "only if"" part

Assume that X, or X, is countably compact and X, X, is countably
compact, but X,and X, both CJ-space by hypothesis, it follows by Theorem
(2.1.20) that X is CJ-space. If X; N X, is non- countably compact, then X is
CJ-space by Proposition (2.1.23).

Proposition (2.1.27)
Let A be a closed subset of a strong CJ-space X, then A is a strong

CJ-space if it is union of components of X.

Proof:

Let K © A be acountably compact, so K is a countably compact subset of X
which is strong CJ-space, then there exists a closed countably compactL < X
such that K< L and X\L is connected. If A c L, then A is countably
compact space which in turn strong CJ-space. If A ¢ L,so X\LNA # @,
thus X\L c A. Now let L = L n A, so L is a countably compact subset of A
since it is a closed subset of the countably compact set L, also K c L since
KcA and Kc L, and A\L = X\L is connected. Hence A is strong CJ-

space.

The following diagram illustrate the relationship among compact,

countably compact, strong CJ-space and CJ-space.
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Countably
Compact
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§2 SEMI-STRONG (]J-SPACES, WEAK (J-SPACES

AND SEMI-WEAK (J-SPACES

The purpose of this section is to introduce new types of topological
spaces called semi-strong CJ-space, weak CJ-space and semi-weak CJ-space.
Many new illustration examples and properties are given. We start with the

following definitions.

Definition (2.2.1)

A topological space X is a semi- strong CJ- space if there is a closed
countably compact subset L of X for each countably compact K ¢ X, such
that K < L and there exists a connected subset C of X with C c X\K and
CUL=X.

Definition (2.2.2)

A topological space X is a weak CJ-space if, whenever {A, B,K} is a
closed covering of X with K countably compact and ANB = @, then A or B
Is countably compact.

Definition (2.2.3)
A topological space X is said to be semi-weak CJ-space if, whenever
Aand B are closed in X with A N B=@ and dA, dB are countably

compact , then A or B is countably compact.
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The following Theorem says that the concept of strong CJ-space gives
the concepts of semi-strong CJ-space, semi-weak CJ-space and weak
CJ-space. While the converse is not true in general, see Remarks (2.2.5) and
(2.2.6).

Theorem (2.2.4)
Consider the following properties of a space X.
1. Xis astrong CJ-space.
2. X s asemi- strong CJ-space.
3. XisacCJ-space.
4. X is asemi- weak CJ-space.
5. Xis aweak CJ-space.
Then (1) = (2) = 3) © (4) = (5)

Proof:

1)=(2)

Let X be a strong CJ- space and let K< X be countably compact, then there
exists a closed countably compact subset L of X such that K c L and X\L is
connected by definition of strong CJ-space. Now let C = X\L, then C is
connected and C < X\K since Kc L, and CUL = X. Hence X is a semi-

strong CJ-space.
2)= ()

Let X be a semi- strong CJ- space and let {A, B} be a family of closed subset

of X covers X with ANB countably compact, so there exists a closed
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countably compact L c X such that ANB < L and there exists a connected
subset C of X with C c X\ ANB and CUL = X by definition of semi-strong
CJ-space. Note that (ANC)N(BNC) = (ANB)NC = @  since
C c X\ ANB, and that (ANC) U (BNC) = (AUB)NC = XNC = C, so
we get a disjoint closed cover {ANC,BNC} of C which is connected, therefor
C must be in ANC or in BNC, and thus Cc AorCc B. If C c A, then
CNB = @, it follows that B ¢ X\C c L which is countably compact, so B is
countably compact. Similarly if C < B, then A is countably compact. Hence

X is CJ-space.

3) = (4)
Let X be any CJ-space and let A, B be two closed sets n X with ANB =0
and JdA,dB are countably compact, then A or B is countably compact by

Theorem (2.1.16) part 3. Thus X is semi-weak CJ-space.

(4)= (5)

Suppose that X is a semi-weak CJ-space and let {A, B,K} be a closed cover
of X with K countably compact and ANB = @. Note that
A°=BU(K\KnA)and 0A=09A°, then 9A=3(BU (K\KnA)),
so dA c KNAc K, similarly we can prove that 0B c K, and thus
0A and 0B are countably compact, it follows by (4) that AorB is
countably compact. Hence X is weak CJ- space.

Remark (2.2.5)

A semi- strong CJ-space need not be strong CJ-space.
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For example:

Let us take the usual topological space R* and let E,;;i >1andn >0 be
the closed segment of the plane R? joining (n,0) to (n+ 1,1/i). Let
En = (U2, Epi) U (In,n+ 1] x{0}), and let Y = UZ,E,. Then Y is not
strong CJ-space for if K< Y is closed countably compact, then Y\K is not
connected. But Y is semi-strong CJ-space, to prove that, let
L, ={(y;,y,) €Y: y; <n} and C, = cl(Y\L,). Not that L, is closed
countably compact and C, is connected and L,U C, = Y (for each n).
Now let K be a countably compact subset of Y and pick n such that
KcL,_4,then Kc L,and C, c Y\K.

Remark (2.2.6)
A C]J- space need not be semi- strong CJ-space.

For example:
Consider the Odd — Even topology defined on the set of natural
numbers N. The only countably compact subsets of N are the finite subsets,
so if we take a closed cover {A, B} of N with ANB countably compact, that
Is mean ANB is finite set and since the intersection of any two infinite sets
in this space must be an infinite set, so A or B must be finite, that is mean
A or B is countably compact. Hence N is CJ-space.

But N is not semi-strong CJ-space since every countably compact
subset of N is finite and every infinite subset of N is non- connected, so if

we take a countably compact subset K of N and a countably compact subset
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L of N such that K c L and a connected subset C of N with C ¢ N\K and
CU L = N, then C must be infinite which is a contradiction.

We can get a semi-weak CJ-space, weak CJ-space and semi strong
CJ-space from given spaces that have some given properties as shown in
Propositions (2.2.7), (2.2.8) and (2.2.10). We can use these Propositions to
show that the converse of last directions of Theorem (2.2.4) is not true in
general.

Proposition (2.2.7)
If X is a CJ- space (semi- weak CJ- space) and Z = X U {z.}, then Z is

a CJ- space (semi- weak CJ- space).

Proof:

Let A,B be two closed sets in Z suchthat A n B=¢@ and dA,0B are
countably compact, then z. ¢ A or z. € B. Suppose that z. € B and let
E = c(X\B), then {B,E} is a closed cover of X with EN B = 9B which is
countably compact, so Bor E is countably compact since X is CJ-space
(semi-weak CJ-space). But A c E U {z.}, so A or B is countably compact,

and thus X is a CJ- space (semi-weak CJ-space).

Proposition (2.2.8)

Let {X;,X,} be a closed cover of a topological space X such that
X;N X, non- countably compact. If X,and X, are weak CJ- spaces, then so
Is X.

48



Chapter two CJ-SPACES AND STRONG CJ-SPACES

Proof:

Let {A,B,K} be a closed cover of X with ANB = @ and K is countably
compact. To prove AorB is countably compact, let A; = AnX;and
B; =BnX;and K; =KnX, for (i=1,2). Then {A;,B;,K;} is a closed
cover of X; with A; N B; = @ and K, is countably compact. Now by using
the fact saying that X, is weak CJ-space, we get A;or B, is countably
compact. Suppose that B, is countably compact, we claim that B, is also
countably compact, for if B, is not countably compact, so A, must be
countably compact since X, is weak CJ-space, it follows that
C = A,U B;U K is countably compact, but X; N X, is a closed subset of C,
so X;NX, must be countably compact which is a contradiction. Thus
B = B, UB, is countably compact. Similarly we can prove that A is

countably compact whenever A, is countably compact.

Remark (2.2.9)

A weak CJ- space need not be semi- weak CJ-space.

For example:

Let X= RXx[0,1)and let Z =XU{(—1,1),(1,1)}. To see that Z is a
weak CJ-space, let Z;, = {(s,t) € Z:s <0} and Z, = {(s,t) € Z:s = 0},
then {Z,,Z,} is a closed cover of Z, and Z, N Z, = {0} x [0,1) which is
non- countably compact, but Z,and Z, are both semi- weak CJ- space since
they are homeomorphic to the space Z of Remark (2.2.8), and thus
they are weak CJ-spaces, therefor Z is weak CJ- space from Proposition

(2.2.8). We have to show that Z is not a semi-weak CJ-space, let
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A={(s,t) €Z:s<—1} andB={(s,t) €Z:s>1}, then A and B are
disjoint closed subsets of Z with countably compact boundaries, but neither

A nor B is countably compact.

Proposition (2.2.10)
Let {X,,X,} be a closed cover of a topological space X such that
X ;N X, non- countably compact. If X;and X, are semi-strong CJ-spaces,

then so is X.

Proof:

Let K< X be a countably compact and let K; = KN X;, then K; is a closed
subset of K, it follows by Proposition (1.1.8) that K; is a countably compact
subset of the semi- strong CJ-space X;, fori = 1,2, so there exists a closed
countably compact subset L; of X;suchthat K; c L; and there exists a
connected subset C; of X; such that C; c X;\K;and L; U C; =X,
(fori=1,2)by definition of semi- strong CJ-space. Now let L = L, U
L, and C=C; UC,, so L is a closed countably compact subset of X with
Kc Land CUL=Xand C c X\K. It remains to show that C is connected,
we need only cheek that C;NC, #+ @ since C;and C, are connected. Note
that X, N X, \L # @, for if X; N X,\L = @, then X, N X, is a closed subset of
L which is countably compact, so X, X, is countably compact which is a
contradiction. Also we have X;\L S X;\L; € C;,,s0(X; nX,)\LES
C,NC,, and thus C,NC, # @. Hence C = C, U C, is connected. Therefor

X is a semi- strong CJ-space.
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Theorem (2.2.11)
The concepts of CJ-space and weak CJ-space are equivalent if the

space X is locally compact.

Proof:

A CJ- space is a weak CJ-space from Theorem (2.2.4). Now if X is a locally
compact weak CJ- space, we must prove that X is CJ- space. Let {A,B}bea
closed cover of X with A n B countably compact. But X is locally compact
so AN B c Int(k), for some compact Kc X. Let A* = A\ Int(K) and
B* = B\ Int(K), then {A*,B*, K} is a closed cover of X with K compact,
and thus countably compact, and A* N B* = @, it follows by definition of
weak CJ-space, that A*or B* is countably compact, then A* U Kor B* U Kis
countably compact. But A and B are closed subsets of A*UKand B*UK
respectively, so A or B is countably compact by Proposition (1.1.8). Hence

X is a CJ-space.
Theorem (2.2.12)
If Xis atopological spaceand X x Y'is a k-space for each k-spaceY,

then X is a weak CJ-space if and only if it is a CJ-space.

Proof:
Follows from Theorems (1.1.40) and (2.2.11).
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The following diagram illustrate the relationship among all types of
Semi strong
CJ- space

|

Semi weak
CJ- space

new spaces given in the previous sections.

Strong CJ-
space
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§3 FUNCTIONAL CHARACTERIZATIONS OF

CJ-SPACES

In this section we discuss some types of functions and indicate which
ones save that the property of being CJ-space and which does not save.
Also we introduce new types of functions, we begin with the definitions of
these types, which are used to get a characterization for CJ-spaces as in
Theorem(2.3.9).

Definition (2.3.1)
A continuous function f:(X,t) —» (Y,t) is said to be countably
perfect if it is closed and f~*(B) is countably compact subset of X for every

countably compact subset B of Y. That is a function f is countably perfect if
it is closed and countably compact function.

Remark(2.3.2)
The concepts of perfect function and countably perfect function are

independent.

Definition (2.3.3)
A function f: (X,17) — (Y,r') Is said to be boundary countably perfect

if it is closed and a(f‘l(y)) IS countably compact subset of X for every
y €Y.
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Remark(2.3.4)
Every boundary perfect function is boundary countably perfect since

every compact space is countably compact.

It is known that continuity preserves compactness, connectedness and
the property of being countably compact. While the property of being CJ-
space does not preserved by continuous image, as shown in the following

remark.

Remark (2.3.5)
The continuous image of CJ-space is not CJ-space in general.

For example:
Letf: (N,t) - (N,t) such that f(2k) = f(2k— 1) =k; k € N, where T is
the Odd — Even topology, (see example of Remark (2.1.5)), and t =D the

discrete topology. Clear that f is continuous and onto function and (N, T) is

Cl-space, but (N,t) is not CJ-space.

The following proposition gives the condition of function which

guaranties that the image of a CJ-space is CJ-space.
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Proposition (2.3.6)
If f: (X,T) = (Y,t") is countably compact function from a CJ-space X

onto a topological space Y, then Y is CJ-space.

Proof:

Let A,B be two closed subsets of Y with Y= AU B and ANB countably
compact, then {f~1(A),f~*(B)}is a closed cover of X since f is continuous
and f1(A)nf1(B)= f"1(AnB) by Proposition (1.1.13(3)). But
f~1(AnB) is countably compact since f is countably compact, so
f=1(A) or f~1(B) is countably compact by Definition (2.1.1). It follows
that f(f~(A)) or f(f~*(B)) is countably compact since f is continuous
and by Proposition (1.1. 20), then A or B is countably compact since f is

surjective. Hence Y is CJ-space.

The following proposition guaranties that the inverse image of a
CJ-space is a CJ-space also, if the function is countably perfect and

monotone function.
Proposition (2.3.7)

Let f: X—Y be a countably perfect, monotone function from a
topological space X onto a CJ-space Y, then X is also CJ-space.
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Proof:

Let {A, B} be a closed cover of X with ANB countably compact, then
{f(A),f(B)} is a closed cover of Y since f is closed, and
f(A)Nf(B) = f(ANB) by Lemma (1.2.10). But f(ANB) is countably
compact by Proposition (1.1.20), so f(A) or f(B) is countably compact since
Y is CJ-space. Then f~1f(A) or f~1f(B) is countably compact since f is
countably perfect, it follows by Proposition (1.1.8), that A or B is countably
compact since Aand B are closed subsets of f~'f(A)and f~f(B)

respectively by Proposition (1.1.13(1)). Hence X is CJ-space.
From previous Proposition, we can get the following Proposition.

Proposition (2.3.8)
The property of being "CJ-space” is a topological property.

Proof:

Let Xand Y betwo homeomorphic spaces. First suppose that X is CJ-space,
to prove Y is CJ-space. Let f: X — Y be a homeomorphism function, and let
A,B be two closed subsets of Y with Y=AUB and ANB countably
compact, then {f~1(A),f~*(B)} is a closed cover of X since f is
continuous. From number three of  Proposition (1.1.13) we have
f~1(A)nf~1(B) = f~1(An B) which is countably compact since =1 is
continuous and by Proposition (1.1.8). It follows by Definition (2.1.1), that
f~1(A) or f~1(B) is countably compact. Again by Proposition (1.1.8) we

can get f(f~1(A))or f(f~1(B)) is countably compact since f is continuous.
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From number two of Proposition (1.1.13) we have A or B is countably
compact since f is surjective. Thus Y is a CJ- space. Similarly we can prove

that X is CJ-space, when Y is so.

Proposition (2.3.9)
If a topological space X is CJ-space, then every boundary countably
perfect function from X onto a non- countably compact space Y is a quasi-

perfect.

Proof:
Supposethat (X, 1) is a CJ-space and (Y,r') IS a non- countably compact and
f: (X,7) = (Y,r’) Is a closed boundary countably perfect function. We have

to show that f is quasi -perfect, let y €Y, then f~1(y) is a subset of the
CJ-space X with countably compact boundary, it follows by Theorem

(2.1.16) that either f~(y) orcl(X\f~*(y)) is countably compact. But
cl(X\f1(y))is not countably compact, for if cl(X\f™(y)) is countably
compact, then Y = {y} Uf(cl(X\f~*(y)) is countably compact which is a

contradiction, so f~(y) is countably compact. Hence f is a quasi-perfect.

Proposition (2.3.10)
If every boundary countably perfect function from a topological space
X onto a non- countably compact space Y is a countably perfect, then X is

CJ-space.
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Proof:

Suppose that every boundary countably perfect function from X onto a non-
countably compact space Y is countably perfect. To prove that X is CJ-
space, let A,B be two closed subsets of X with X=AUB and ANB
countably compact. Let Y = X/B and f: X — Y be the quotient function and
let y. = f(B), then f is boundary countably perfect since it is closed and
d(f1(y)) is countably compact for each ye Y, since if y = y-,then
d(f~(y)) is aclosed subset of ANB, and if y # y-, then a(f~1(y)) is a
one-element set. Now if Y is non- countably compact, then f is countably

perfect by hypothesis and thus B = f~1(y.) is countably compact. If Y is
countably compact, so f(A) is countably compact since it is closed subset of

Y. On the other hand we have f |A:A — f(A) is countably perfect since it is
closed function and its fibers are either one-element sets or equal to ANB,

so A = f~1(f(A)) is countably compact. Therefor X is CJ-space.

Proposition(2.3.11) guaranties that the image of a strong CJ- space is

strong CJ- space if the function is open countably perfect.

Proposition (2.3.11)
Let f:(X,©) > (Y,T) be an open countably perfect function from a
strong CJ-space X onto a topological space Y, then Yis also strong

CJ-space.
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Proof:
To prove Y is strong CJ-space, let K<Y be a countably compact. Let

K =f"1(K) then K cX is countably compact, so there exist a closed
countably compact L < X such that K' < L and X\L is connected. Let
L =Y\f(X\L ). Since L is a closed in X, so X\L is open, but f is open
function, then f(X\L ) is open subset of Y, then L is a closed subset of Y
such that K< L and Y\L = f(X\L ) is connected by Theorem (1.2.2). Also

f~1(L) is a closed subset of X since f is continuous and f~*(L) c L, so

f~1(L) is countably compact, and thus L is also countably compact.

The following proposition gives a characterization for semi-weak

CJ- spaces, boundary countably perfect function.

Theorem (2.3.12)
For any space X, the following conditions are equivalent:

a) X s asemi- weak CJ-space

b) If f:X > Y is boundary countably perfect, then the fiber f=1(y) is non-

countably compact for at mostoney € Y.

Proof:

@) = (b)

Suppose that X is a semi-weak CJ-space and y; #y, inY, and let A; =
f~1(y;) (for i=1,2). Then A;andA, are closed subsets of X with
A,NA,=0 and 0A,,0A, are countably compact since f is boundary
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countably perfect, so A orA, is countably compact by definition of
semi-weak CJ- space.

(b) = (a)
Assume that A;and A, are two closed subsets of X with A; NA, =0
0A,,0A, are countably compact. Define a relation Ron X such that

xRy ©x,y € Ajorx,y € A,. Then

A, ifx € Ay
[X] == A2 le € A2 .
{x} ifx € Ajandx & A,

Let Y be the quotient space of X with respect to the relation R, and let
f: X = Y be the quotient function, so f is a closed, continuous and onto map.
Now to show that f is boundary- countably perfect, it is sufficient to prove

that d(f~1(y)) is countably compact for eachy € Y. Lety € Y, then

A, ifx € A
() ={ A, ifx € A,
{y} ifx € Ajandx € A,

But 0A,,0A, are countably compact by hypothesis and d{y} is also
countably compact, so f is boundary-countably perfect and hence A;or A, is

countably compact by (b).
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Chapter three AILMOST CJ-SPACES AND ALMOST STRONG CJ-SPACE

INTRODUCTION

There are three sections in this chapter. In section one we introduced
two new concepts called almost CJ- space and almost strong CJ-space, where
a topological space X is an almost CJ- space if, whenever {A, B} is a closed
cover of X with AN B compact, then A or B is countably compact. And it is
an almost strong CJ-space if each compact K c X is contained in a countably
compact L © X such that X\ L is connected. Also we give the properties of
these new spaces and their relationship with each other, as in Proposition
(3.1.5) and Remark (3.1.6). Also, we have established the relations between
these two spaces and other known spaces, see Propositions (3.1.3), (3.1.4),
(3.1.7), (3.1.8) and (3.1.10).

The second section is concerned with the notions of almost semi-
strong CJ- space, almost weak CJ- space and almost semi- weak CJ- space.
The relation between these spaces is investigated, see Theorem (3.2.7). We
gave diverse examples about the opposite directions of Theorem (3.2.7), see
Remarks (3.2.8), (3.2.9), (3.2.13) and (3.2.15). Also, we gave a necessary
condition to make every almost CJ-space is an almost weak C]J- space, see
Theorem (3.2.10).

In section three we used the concepts of boundary- perfect, countably
perfect and boundary- countably perfect function to discuss some properties

and theorems concerning spaces studied in the previous sections.
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§1 ALMOST (J-SPACE AND ALMOST STRONG CJ-SPACE

As a generalization of the concepts of CJ-space and strong CJ-space, we
introduce the concepts of almost CJ-space and almost strong CJ-space. We
give many characterizations and many properties of these concepts.

We begin with the following definition.

Definition (3.1.1)
A spaceX is said to be almost CJ-spaces if, whenever {A,B}is a closed

cover of X such that ANB compact, then A or B is countably compact.

Definition (3.1. 2)
A space X is said to be almost strong CJ-space if each compact K ¢ X

is included in a countably compact L. © X such that X\L is connected.

Proposition(3.1.3)

Every C]J-space is an almost CJ-space.
Proof:
Let X be any CJ-space and let A,B be two closed subsets of X with
X=AUBand An B compact, so An B is countably compact, it follows by
definition of CJ-space that A or B is countably compact. Hence X is an

almost CJ-space.

Proposition(3.1.4)
Every strong CJ- space is an almost strong CJ-space.
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Proof:

Let X be any strong CJ-space and let K ¢ X be compact, and thus countably
compact, it follows by definition of strong CJ-space that K c L for some
countably compact subset L of X with X\ L is connected. Hence X is an

almost strong CJ- space.

Proposition (3.1. 5)
Every almost strong CJ- space is an almost CJ-space.

Proof:

Suppose that X is an almost strong CJ-space, and let A,B be two closed
subsets of X with X = A U B and A N B compact, so there exists a countably
compact L X such that ANBc L and X\L is connected. Note that
{AN X\L,BNX\L} is a disjoint closed cover of X\L which is connected, so
X\L must be in ANX\L or in BNX\L, it follows that X\L c A or X\L c B,
then X\AcL or X\BclL, it follows that Ac L or B c L because
ANBc L, but AandB are closed sets and L is countably compact set,
therefore A or B is countably compact. Hence X is an almost CJ-space.

Remark(3.1.6)

The converse of Proposition (3.1.5) is not true in general.

For example:
The topological space N with the Odd — Even topology is CJ-space, as we
saw in the example of Remark (2.1.9), so it is an almost CJ-space by

Proposition (3.1.3). But N is not almost strong CJ-space since every countably
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compact subset of N is finite and hence its complement is infinite and every
infinite subset of N is non-connected.

Proposition (3.1. 7)

Every J- space is an almost CJ- space.

Proof:

Let A,B be two closed subsets of X with X = AU B and A n B compact, so
from definition of J-space we can get that A or B is compact, so AorB is
countably compact by Proposition (1.1.9). Hence X is an almost CJ-space.

Proposition (3.1. 8)

Every strong J-space is an almost strong CJ-space.

Proof:

Let K < X be compact, it follows by definition of strong J-space that there
exists a compact L c X such that K ¢ L and X\L is connected, but every
compact set is countably compact, so L is countably compact. Hence X is an

almost strong CJ-space.

Remark (3.1.9)
The converses of Propositions (3.1.3), (3.1.4), (3.1.7) and (3.1.8) are

not true in general.

Proposition (3.1.10)

Every countably compact space is an almost strong CJ-space.

64



Chapter three AILMOST CJ-SPACES AND ALMOST STRONG CJ-SPACE

Proof:
Let X be a countably compact space and let K € X be compact, then K is
contained in a countably compact set (X itself ) with connected complement.

Hence X is an almost strong CJ-space.

Remark(3.1.11)
The converse of Proposition (3.1.10) is not true in general.
For example:
R* as a subspace of R with the usual topology is an almost strong CJ-space

by Propositions (1.3.6) and (3.1.8). But it is not countably compact.

Corollary (3.1. 12)

Every compact space is an almost strong CJ-space.

Proof:
Follows from Propositions (1.1.9) and (3.1.10).

Corollary (3.1. 13)

Every countably compact space is an almost CJ- space.

Proof:
Follows from Propositions (3.1.10) and (3.1.5).

Corollary (3.1. 14)
Every compact space is an almost CJ-space.

Proof:

Follows from Corollary (3.1. 12) and Proposition (3.1. 5).
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Remark (3.1.15)
The converses of Corollaries (3.1.12), (3.1.13) and (3.1.14) are not true

in general.

For example:
R* as a subspace of R with the usual topology is an almost CJ-space and

almost strong CJ-space, but it is neither compact nor countably compact.

Examples (3.1. 16)
A. The real line with usual topology is not almost CJ-space, since {R*, R~}
is a closed cover of R with R* NR™ = {0} which is compact, but neither

R*nor R~ is countably compact.

B. The discrete topology defined on any infinite set X, is not almost
CJ-space in general. For example, let us take the space (N,D), where N
is the set of all natural numbers, this space is not almost CJ-space, since
{E*,0%}is a closed cover of N with E¥N0O* = @ which is compact, but

neither E* nor O" is countably compact.
C. The plane R? with the usual topology is an almost strong CJ- space, for if
K c R? is compact, then a closed ball L ¢ R? such that K< L is

compact, and thus countably compact and R?\L is connected.

D. The indiscrete topology defined on any nonempty set X, is an almost

Strong CJ-space, since it is countably compact.
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For any closed non- countably compact subset of any topological space, we
can obtain two disjoint subsets one of them compact and the other non-
countably compact as shown in the next Lemma.

Lemma(3.1.17)

If Bis aclosed non-countably compact subset of any topological space
X and C c B is compact, consequently there is a non-countably compact
closed D € Bwith DNC = @.

Proof:

Let G be a countably open cover of B with no finite subcover, and let C € B
be a compact, then G is an open cover of C. Pick a finite § c G covering C.
Then D =B\ UJ is a closed non-countably compact subset of B with
DNC = 0.

Theorem (3.1.18)
Let X be any topological space, then the following conditions are

equivalent:

1. X s an almost CJ-space,

2. For any closed set A c X with compact boundary, cl(A) or cl(X\A) is
countably compact,

3. If A and Bare closed sets in X with AN B = @ and dA or dB compact,
then A or Bis countably compact,

4. If Kc X is compact, and if v is a disjoint open cover of X\K ,then
there exists W € wr such that X\W is countably compact.

5. Same as (4), but with card w = 2.
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Proof:

1= (2)

Let A c X such that dA is compact. Note that {cl(A),cl(X\A)} is a closed
cover of X with dA = cl(A)Ncl(X\A) is compact, so cl(A) or cl(X\A) is

countably compact by definition of almost CJ-space.

2= (3)
Let A and B be disjoint closed subsets of X and suppose that dA is compact,
it follows by (2) that cl(A) or cl(X\A) is countably compact. But cl(A) = A,

and B is a closed subset of cI(X\A), so A or B is countably compact.

@)= (1)

Let {A,B} be a closed cover of X wit ANB is compact, we have to show that
A or B is countably compact. Suppose that B is non-countably compact and
since ANB < B is compact, so by lemma (3.1.17) there exists a non-countably
compact closed D c B such that DN(ANB) = @, it follows that DNA = @,
and dA compact since it is a closed subset of ANB, so we getby (3) AorD
Is countably compact, but D is non- countably compact. Hence A must be

countably compact.

4)= ()

Clear.
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G)= (4)

Let K c X be compact and let w be a disjoint open cover of X \ K. To show
that X\W is countably compact for some W € w we shall follow three
demarches.

First, we prove that if U is open subset of X containing K, then
w ={W €w:W g U} is finite. Suppose that it is not finite, then
w =W, UW, with W,NnW, =0 and W, nw and W, n w both finite.
LetV, =UW, and V, =U W, , then {V,,V,} is a disjoint open cover of X\K,
so by 6) X\V,orX\V, is countably compact but V, € X\V, and
V, € X\V; since V; and V, are disjoint. It follows that cl(V;) € cl (X\V,) =
X\V, and cl(V,) € cl (X\V;) = X\V,, so we get cl(V,) or cI(V,) is countably
compact by Proposition (1.1.8). Suppose that cI(V;) is countably compact,
then C = cl(V,)\U is countably compact. Now let «w ', = W, N w ', then w;
covers C and each W € «w " intersects C, so C is not countably compact since
w, is infinite and disjoint, which is a contradiction. Hence " is finite.
Second , we prove that if cl(W) is countably compact, VW € w, then X is
countably compact. Let V be a countably open cover of X, consequently V' is
a countably open cover of K, which is compact, so V has a finite subcover
F covers K. Let U=UZF, by step one we get a finite family
w ={W € w:W & U}, so U{cl(W):W € w} is countably compact and
since V' is a countably open cover of it therefore it is covered by some finite
E cV.But UE c Vis finite and covers X, so X is countably compact.
Finally, let us show that X\W is countably compact for some W e wr. If
cl(W) is countably compact for all W € wr, then X is countably compact by
step (2) and since X\W is a closed subset of X, so X\W is countably compact.
Suppose that there exists W, € « such that cl(W,) is not countably compact.
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Let W* =U {W € w: W = W,}, then, {W,,W*} is a disjoint open cover of
X\K,so X\W, or X\W™*is countably compact, by (5). If X\W" is countably
compact, and since cl(W,) is a closed subset of X \W*, so cl(W,) is
countably compact which is a contradiction, so X\W* is not countably

compact, it follows that X\W, is countably compact.

G)= 1)

Let {A, B} be a closed cover of X with ANB compact , then X\A, X\B are open
subsets of X such that X\ANB < X\A U X\B and X\A n X\B = @, then by
(5) we get X\(X\A) or X\(X\B) is countably compact, that is AorB is

countably compact. Hence X is CJ-space.

1= ©)

Let K< X be compact and let W,;,W, be two open subsets of X such that
X\K €W, UW, and W; nW, = @, then X\W,,X\W, are closed subsets of
X such that X\W, U X\W, = Xand X\W, n X\W, = X\(W; UW,) compact,
because X\K c W; UW, ,and so X\(W; UW,) c K which is compact and
by Proposition (1.1.5). But X is almost CJ-space, so X\W,; or X\W, is

countably compact.
Theorem (3.1.19)

The concepts of almost CJ-space and almost strong CJ-space are

equivalent if the space X is locally connected.
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Proof:

If X is an almost strong CJ-space, so it is an almost CJ-space by Proposition
(3.1.5). So we suppose that X is almost CJ-space, and let K € X be compact,
so there exists an open cover « of X\K with disjoint members such that each
W e w is connected since Xis locally connected. It follows by Theorem
(3.1.18) that there is W, € wr such that X\W, is countably compact. Pick
L= X\W, , then L is countably compact and K c L and X\L is connected.

Hence X is almost strong CJ- space.

The following theorem illustrate whether the intersection of two almost

CJ- space is an almost CJ-space.

Theorem (3.1. 20)
Let {X,X,} be a closed cover of a topological space X such that X; NnX,
compact. Consequently X is an almost CJ-space if and only if X, and X, are

almost CJ-spaces and X, or X, is countably compact.

Proof:

The "if"" part

Assume that X is an almost CJ-space, then X, or X, is countably compact by
definition of almost CJ-space. Suppose X, is countably compact, then X, is
certainly almost CJ-space, so it remains to show that X, is an almost CJ-space.
Let {A,B} be a closed cover of X; with ANB compact, then {A,BUX,} is a
closed cover of X with AN(BUX,) = (AN B) UA n X, which is compact, so
A or BUX; is countably compactsince X is almost CJ-space. But B is a closed

subset of BUX,, so A or B is countably compact.

71



Chapter three AILMOST CJ-SPACES AND ALMOST STRONG CJ-SPACE

The "only if"" part

Assume that X; and X, are almost CJ- spaces and suppose that X, is
countably compact, we have to show that X is an almost CJ-space. Let A, B be
two closed subsets of X with X=AUB and AN B compact. Now let
A;=AnX;and B;=BnX; (i=1,2), therefore {A;,B;} is a closed cover
of X, withA;,NB; = (AnX,)Nn(BnX;)= (ANnB)NX, € An B whichis
compact, so A;or B, is countably compact because X, is almost CJ-space. If
A, is countably compact, then A = A; UA, is countably compact since A, is a
closed subset of countably compact X,. Similarly, if B, is countably compact,

then so is B.

Corollary (3.1.21)
Let A be a closed subset of a topological space X with A is compact.
If X is an almost CJ-space, then A is also almost CJ-space.

Proof:

Let A,cl (X\A) be two closed subsets of X with X=AUB and
ANcl(X\A) = dA which is compact, but X is an almost CJ-space by
hypothesis, it follows by Theorem (3.1.20) that A is almost CJ-space.

Corollary (3.1. 22)

If X= EUU, with E is an almost CJ]-space, Uopen in X, and cl(U)

compact, then X is an almost CJ-space.
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Proof:

Let A= X\U, then A is a closed subset of X with dA = dA€ < cl(U) which
IS compact, and since every boundary set is closed, so dA is compact, and thus
A is a closed subset of E with compact boundary, it follows by Corollary
(3.1.21) that A is an almost CJ- space. Now we have {A,cl(U) } is a closed
cover of X with cl(U)N A= 0A compact and cl(U) and A are almost CJ-
spaces and cl(U) countably compact, so X is an almost CJ-space by Theorem
(3.1.20).

Proposition (3.1.23)
Let {X,,X,} be a closed cover a topological space X with X; N X, non-
countably compact. If X;and X, are almost CJ-spaces, then X is also almost

CJ-space.

Proof:

Let {A,B} be a closed cover of X with ANBcompact, we have to show that
Aor B is countably compact. Fori= 1,2, let A, = AnX;and B; = BnX;,
then {A;,B;} is a closed cover of the Almost CJ-space X; with
A;NB;=(AnX;)Nn (BnX;)=(ANB)NX; which is compact since it is a
closed subset of ANB, it follows by definition of almost CJ-space that A;or B;
is countably compact. Now if B, is countably compact we can show that B is
also countably compact. Note that,

X, NX,=(A,UB;)N(A, UB,)c (ANB)UB, UA,.

Since ANB and B, are countably compact, so A, cannot be countably
compact, for if A, is countably compact, then the closed subset X, N X, must

be countably compact which is a contradiction with hypothesis, so B, is
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countably compact, and thus B = B, U B, is countably compact. By the same
way we can prove that if A, is countably compact, then A is also. Hence X is

an almost CJ-space.

Proposition (3.1.24)
Let A be a closed subset of an almost strong CJ-space X, then A is an

almost strong CJ-space if it is union of components of X.

Proof:
Let K< A be compact, so K is a compact subset of X which is an almost
strong CJ-space, then there exists a countably compact L < X such that K c L
and X\L is connected. Now if A c L, then A is countably compact and thus
almost strong CJ-space. If A ¢ L, then the connected set X\L intersects
A which is union of components of X, thus X\L < A since X\L must be one of
these component.

Now let L =L NA, so L is a countably compact subset of A since it is a
closed subset of the countably compact set L, also K c L since K ¢ A and

K c L, and since X\L c A, therefore A\L’" = X\L which is connected, so

A\L is connected. Hence A is an almost strong CJ-space.

The following diagram illustrate the relationship among compact,
countably compact, almost strong CJ-space and almost CJ-space:
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Countably
Compact

Almost strong
C] -space

Almost CJ-space

The relationship among the new spaces CJ-space, almost CJ-space,
strong CJ-space and almost strong CJ-space is illustrated in the following

diagram:
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Almost CJ-space

(o=

Almost strong

Strong CJ-
8CJ-space CJ-space

While the relationship among J-space, strong J-space, almost CJ-space
and almost strong CJ]-space is given in the following diagram:
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Strong J-space — .

Almost strong
J-space

Almost CJ- space
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§2 ALMOST SEMI-STRONG (J-SPACE, ALMOST

WEAK (J-SPACE AND ALMOST SEMI-WEAK
C]-SPACE:

This section is appropriated for the studying of what we call almost
semi-strong CJ-space, almost weak CJ-space and almost semi-weak

CJ-space. We give many interesting characterizations of these radicals.

First, we introduce the following concept.

Definition (3.2.1)
A topological space Xis an almost semi strong CJ-space if every
compact Kc X contained in a countably compact L c X such that

LU C =X forsome connected C c X\K.

Definition (3.2.2)
A topological space X is said to be an almost weak CJ]-space if,
whenever {A, B,K} is a closed cover of X with K compact and ANB = @, then

A or B is countably compact.

Definition (3.2.3)
A topological space X is said to be an almost semi weak CJ-space fif,
whenever A and B are disjoint closed subsets of X with compact boundaries,

then A or B is countably compact.
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Proposition(3.2.4)

Every semi-strong CJ-space is an almost semi- strong CJ-space.
Proof:
Let X be a semi-strong CJ-space and let K be a compact subset of X, then K
IS countably compact by Proposition (1.1.9), it follows by Definition (2.2.1)
that there is a countably compact subset L of X such that K € L and there
exists a connected subset C of Xwith C ¢ X\K and CUL = X. Hence X is an
almost strong CJ-space.

Proposition(3.2.5)

Every weak CJ-space is an almost weak CJ-space.
Proof:
Let X be a weak CJ-space and let {A,B, K} be a family of closed subsets of X
covers X such that K is compact and AN B = @, it follows by Proposition
(1.1.9) that K is countably compact, then we can get from Definition (2.2.2)

A or B is countably compact. Thus X is an almost weak CJ]-space.

Proposition(3.2.6)

Every semi-weak CJ-space is an almost semi-weak CJ-space.
Proof:
Let X be a semi-weak CJ-space and let A and B be disjoint closed subsets of X
with dA and 0B are compact, and thus countably compact, it follows by
Definition (2.2.3) that A or B is countably compact. Hence X is an almost

semi-weak CJ-space.
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Theorem (3.2.7)
Let X be any topological space, consider the following conditions:
1.  Xis an almost strong CJ-space.
2. X s an almost semi strong CJ-space.
3. X s an almost CJ-space.
4. X is an almost semi weak CJ-space.
5. Xs an almost weak CJ-space.
Then (1) = 2) = 3) = @) = (5)

Proof:

1) =)

Suppose that X is an almost strong CJ-space and let K < X be compact, then
there exists a countably compact subset L of X such that K< L and X\L is
connected by definition of almost strong CJ-space. Pick C = X\L, then C is
connected and C c X\K since K c L, and CUL = X. Hence X is an almost

semi strong CJ-space.

2)= ()
Let X be an almost semi strong CJ- space and let A, B be two closed subsets of
X with X=AUBand ANB compact, so there exists a countably compact
L c X such that ANB c L and there exists a connected subset C of X with
C c X\ ANB and CUL = X by definition of almost semi strong CJ-space.
Note that

(ANC) N (BNC)=(ANB) NC= @ since C c X\ ANB,
and that

(ANC) U (BNC) = (AUB)NC = XNC = C,
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So we get a disjoint closed cover {ANC,BNC} of C which is connected,
therefor C must be in ANC or in BNC, then CNB = @ or CNA = @, it follows
that Bc X\C c L or A c X\C c L which is countably compact,so A or B is

countably compact.

@)= (4)
Suppose X is an almost CJ-space and let A, B be two closed sets in X such that
ANB =0 and 0A,0B are compact, then Aor B is countably compact by

Theorem (3.1.17). Thus X is an almost semi weak CJ-space.

(4) = (5)

Assume that X is an almost semi weak CJ-space and let {A, B,K} be a family
of closed subsets of X which covers X with K compact and ANB = @. But
0A and 0B are closed subsets of K since A= B U (K\KN A), and dA = 0A®
S0 0A = a(B U (K\Kn A)), so dA c KNA c K, similarly we can prove that
0B c K, and thus 0A and 0B are compact, it follows by (4) that A or B is

countably compact. Hence X is almost weak CJ- space.

Remark (3.2.8)

An almost semi- strong CJ-space need not be almost strong CJ-space.

For example:

The space Y in the example of Remark (2.2.5) is a semi-strong CJ-space, so it
follows by Proposition (3.2.4) that Y is an almost semi-strong CJ-space. But Y
IS not almost strong CJ-space since Y\L is not connected for any countably

compact subset L. of Y.
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Remark (3.2.9)
An almost CJ-space need not be almost semi-strong CJ-space.

For example:
Let us take the same topological space N in the example of Remark (3.1.6)

which is an almost CJ-space as we have noted. But N is not almost semi-
strong CJ-space since every countably compact subset of N is finite and hence
its complement is infinite and every infinite subset of N is non-connected.

Theorem (3.2.10)
The concepts of almost weak CJ- space and almost CJ-space are

equivalent if the space X is locally compact.

Proof:

An almost CJ- space is an almost weak CJ]-space from Theorem (3.2.7),
suppose, then, X is an almost weak CJ- locally compact space, and let A, B be
two closed subsets of X such that X =AU B and A n B compact. But X is
locally compact so AnNB cInt(k), for some compact KcX. Let
A* = A\ Int(K) and B* = B\ Int(K) then {A*,B*, K} is a closed cover of
X with K compact and A* N B* = @, it follows by definition of almost weak
CJ-space, that A*or B* is countably compact, then A* UKor B*UK is
countably compact since K is compact, and thus countably compact. But
A and B are closed subsets of A* U Kand B* U K respectively, so AorB is

countably compact. Hence X is an almost CJ-space.
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Theorem (3.2.11)
If X is a topological space and X X Y is a k-space for each k- space Y,

then X is an almost weak CJ-space if and only if it is an almost CJ-space.

Proof:
Follows from Theorems (1.1.38) and (3.2.10).

Proposition (3.2.12)
If X is an almost CJ-space andZ =X U {z.}, then Z is an almost

semi-weak CJ-space.

Proof:

Let A,B be two closed subsets of Z such that AnB =@ and 0A,dB are
compact, thenz. € A or z. ¢ B. Suppose thatz. € B and let E = cl(X\B),
then {B,E}is a closed cover of X with EN B=dB which is compact, so
B or E is countably compact since X is almost CJ-space. But A ¢ EU{z.}, so

A or B is countably compact, and thus X is an almost semi weak CJ-space.

Remark(3.2.13)
An almost semi-weak CJ-space need not be almost CJ-space.

For example:

The space Z in the example of Remark (2.2.8) is an almost semi-weak CJ-
space since it is semi-weak CJ-space, (as we saw in the same example), and
by Proposition (3.2.6). But it is not almost CJ-space since
A={(s,t) €Z:s<0} and B= {(s,t) € Z:s = 0} form a closed cover of Z
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with ANB is the closed segment joining (0,0) to (0,1) which is compact, but
neither A nor B is countably compact.

Proposition (3.2.14)
Let {X,,X,} be a closed cover of a topological space X such
that X, M X, non-countably compact. If X,and X, are almost weak CJ-spaces,

then so is X.

Proof:

Let {A, B,K} be a family of closed subsets of X which covers X such that
ANB = ¢ and K is compact. To prove A or B is countably compact, let
A;=AnX; and B; =BnX;andK; =KnX;, fori=1,2. Then {A;, B;,K;}
is a closed cover of X;withA; N B; = @ and K, is compact. Now by using
the fact saying that X, is almost weak CJ-space, we get A,or B; is countably
compact. Suppose that B, is countably compact, we claim that B, is also
countably compact, for if B, is not countably compact, so A, must be
countably compact since X, is an almost weak CJ-space, it follows that
C= A,UB;UK is countably compact since K is compact, and thus
countably compact, but X;N X, is a closed subset of C, so X; N X, must be
countably compact which is a contradiction. Thus B = B; UB, is countably
compact. Similarly we can prove that A is countably compact whenever A, is

countably compact.

Remark (3.2.15)
An almost weak C]- space need not be almost semi- weak CJ-space.
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For example:
Let X= Rx[0,1)and let Z=XU{(-1,1),(1,1)}. To see that Zis an
almost weak CJ- space, let Z; = {(s,t) € Z:s < 0}and Z, = {(s,t) € Z:s =
0}, then {Z,,Z,} is a closed cover of Z, and Z, N Z, = {0} x [0,1) which is
non- countably compact, but Z,and Z, are both almost semi-weak CJ-space
since they are homeomorphic to the space Z of Remark (3.2.13), and thus
they are almost weak CJ-spaces by Theorem (3.2.7). Hence Z is an almost
weak CJ]-space by Proposition (3.2.14).
To see that Z is not almost semi-weak CJ-space, let

A={(s,t) €Z:s< -1} and B= {(s,t) € Z:s > 1},
then Aand B are closed sets in Z such that ANB=¢ and dA,0B are

compact, but neither A nor B is countably compact.

Proposition (3.2.16)
Let {X;,X,} be a closed cover of a topological space X such
that X, X, non- countably compact. If X;and X, are almost semi strong

CJ-spaces, then X is also almost semi strong CJ-space.

Proof:

Let K< X beacompact and let K; = KN X, , then K; is a closed subset of K,
and thus compact subset of the almost semi strong CJ]-space X;, so there exists
a countably compact subset L; of X; such that K; c L; and there exists a
connected subset C; of X; such that C; ¢ X;\K; and L;UC; =X, for
i=1,2, by definition of almost semi strong CJ-space. Now let L= L;U
L, and C=C,;UC,,s0 L is a countably compact subset of X with Kc L

and CUL=Xand C c X\K. It remains to show that C is connected, we need
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only cheek that C;NC, # @ since C,andC, are connected. Note that
XN X,\L = @, for if X;NX,\L=9, then X;N X, is a closed subset of L
which is countably compact, so X; N X, is countably compact which is a
contradiction. Also we have

X:\L € X;\L; € C;,s0 (X, nX,)\LE C,NC,,
and thus C;NC, # @. Hence C = C, UC, is connected. Therefor X is an

almost semi strong CJ- space.

Follow, we introduced the diagram which represents the relationship

among all new spaces given in sections one and two of this chapter.
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Almost semi
strong CJ-space

Almost strong
C]-space

il

i1

Almaost C]-space

bl

Almost semi-weak
C]-space

Almost weak
Cl-space
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§3 FUNCTIONAL CHARACTERIZATIONS OF

ALMOST CJ-SPACES

In this section we talk about the functions that preserve property of
being almost CJ- space and almost strong CJ-space, where we have employed
this type of functions to deduce new properties of almost CJ-space and almost

strong CJ- space.

Proposition (3.3.1)
If a space X is an almost CJ- space, then every closed, boundary perfect

function f: X - Y onto a non- countably compact space Y is quasi-perfect.

Proof:

Assume that X is an almost CJ]-space, and let f:X — Y be closed, boundary-
perfect function from X onto Y. We have to show that f is quasi-perfect, let
y €Y, then f~1(y) is a subset of the almost CJ-space X with compact
boundary since f is boundary- perfect, it follows by Theorem (3.1.17) that
either  cl(f~(y)) or cl(X\f*(y)) is countably compact, and since {y} is
closed in the Hausdorff space Y, so f~1(y) is closed subset of X since fis
continuous, then f~1(y) or cl(X\f~1(y)) is countably compact. But cl(X\
f=2(y)) is not countably compact, for if cI(X\f~(y)) is countably compact,
then Y = {y} Uf(cl(X\f -1 (y)) IS countably compact which is a contradiction,

thus f~1(y) is countably compact. Hence f is quasi-perfect.
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Proposition (3.3.2)
If every closed, boundary perfect function f: X — Y from a topological
space X onto a non-countably compact space Y is countably perfect, then X is

an almost CJ- space.

Proof:

Suppose that every closed boundary-perfect function from X onto a non-
countably compactspaceY is countably perfect. To prove that X is an almost
CJ-space, let A,B be two closed subsets of X with X=AUB and ANB
compact. Let Y =X/Band f:X — Y be the quotient map, so f is closed and
continuous function. Let y. = f(B), note that for eachy € Y a(f‘l(y)) i
compact since if y # y., then a(f~(y)) is one-element set, and if y =y,
then 9(f~(y)) is a closed subset of ANB. Therefor fis boundary perfect.
Now if Y is non-countably compact, then f is countably perfect by hypothesis,
and thus B = f~1(y.) is countably compact. If Y is countably compact, so
f (A) is countably compact becausefit is closed subsetof Y. On the other hand

we have f |A:A — f(A) is countably perfect since it is closed function and its
fibers are either one-element sets or equal to AN B which is compact, and thus

countably compact. Hence A = f~*(f(A)) is countably compact.
Proposition (3.3.3)

Let f: X — Y be a countably perfect function from a CJ-space XontoY,

then Y is an almost C]J- space.
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Proof:

To prove Y is an almost CJ- space, let A, B be two closed subsets of Y with
Y=AUB and ANB compact, and thus countably compact. Then
{f~1(A),f~1(B)} is a closed cover of Xsince f is continuous, and
f~1(A)nf 1(B)= f1(AnB) which is countably compact since f is
countably perfect, it follows by Definition (2.1.1) that f=*(A) or f~1(B) is
countably compact, and thus f(f~* (A))and f(f~* (B)) are countably
compact since f continuous, it follows by Proposition (1.1.13(2)) that A or B

Is countably compact since f is surjective. Hence Y is an almost CJ-space.

Proposition (3.3.4)
Let f: X — Y be a countably perfect monotone function from X onto Y.
Then, if Y is an almost CJ-space, so is X.

Proof:

Let A, B be two closed subsets of X with X = A U B and ANB compact, then
{f(A),f(B)} is a closed cover of Y since f continuous, with f(A)Nf(B) =
f(ANB) since fis monotone. But f(ANB) is compact by Proposition (1.1.18),
and since Y is an almost CJ-space, so f(A) or f(B) is countably compact,
therefore £~*(f(A)) orf~(f(B)) is countably compact because f is
countably perfect. But A, B are closed subsets of f=*(f(A)) and f~(f(B))
respectively by Proposition (1.1.13(1)), so A or B is countably compact. Thus

X is an almost CJ- space.
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Proposition (3.3.5)
Let f: X > Y be a countably perfect monotone function from X onto Y.

Then, if Y is an almost strong CJ-space, so is X.

Proof:

Let K < X be compact, then f(K) c Y is compact since f is continuous, so
there exists a countably compact L’ €Y such that f(K) c L and Y\L is
connected by definition of almost strong CJ-space. Let f~' (L) =L, then
Lc X is also countably compact because f is countably perfect, and
Kcf 1 (f(K)cf (@)=L and X\L = £~ (Y\L) which is connected
since fis closed and monotone and by Theorem (1.2.8). Hence X is an almost

strong CJ-space.

Proposition (3.3.6)
Let f: X = Y be a perfect function from X onto Y. Then, if X is an almost

CJ- space, so is Y.

Proof:

Let {A,B} be a closed cover of Y with ANB compact, then {f=*(A),f~1(B)} is
a closed cover of X with f~1(A) nf~1(B) = f~1(A n B) which is compact
since f is continuous and perfect. But X is an Almost CJ-space, it follows by

Definition (3.1.1) that f~1(A) orf~1(B) is countably compact, then
f(f~*(A))or f(f~*(B)) is countably compact since f is continuous and by
Proposition (1.1.20). It follows by Proposition (1.1.13(2)) A or B is countably

compact since f is surjective. Hence Y is an almost CJ-space.
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Proposition (3.3.7)
Let f: X — Y be an injective perfect function from X onto Y. Then, if X is

an almost strong CJ-space, so is Y.

Proof:

Let K c Y be compact, then f 71 (K) < X is compact since f is perfect, but X is
an almost strong CJ- space, so there exists a countably compact set L' € X
where f~*(K) c L and X\L is connected. Let L = f(L) , then L is a countably
compact subset of Y since f is continuous and by Proposition (1.1.20), also
K c L since f is surjective and Y\L = f (X\L’) since f is injective, so Y\L is

connected since f is continuous. Hence Y is an almost strong CJ]-space.

Theorem (3.3.8)
LetY be any space, then the following conditions are equivalent.
1. Y is an almost CJ-space.
2. Y xZis an almost CJ-space for every connected and compact space Z.

3. Y xZis an almost CJ-space for some compact space Z.

Proof:

(1= (2)

Consider the projection function f: Y X Z — Y which is a closed, surjective,
continuous, monotone and perfect, and thus countably perfect. It follows by
Proposition (3.3.4) that Y XZ is an almost CJ-space since Y is an almost

CJ-space.
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2)=0)
Clear.

(3)=(1)
Again we take the projection function f:Y XZ — Y, which is surjective,

continuous and perfect function. It follows by Proposition (3.3.3) that Y is an

almost CJ-space since Y X Z is an almost CJ]-space.

Theorem (3.3.9)
LetY be any space, then the following conditions are equivalent.

1. Y is an almost strong CJ-space.

2. Y XZ is an almost strong CJ-space for every connected and compact
space Z.

3. Y xZis an almost strong CJ-space for some compact space Z.

Proof:

(L= (2)

Consider the projection function f: Y X Z — Y which is a closed, surjective,
continuous, monotone and perfect, and thus countably perfect. It follows by
Proposition (3.3.5) that Y X Z is an almost strong CJ-space since Y is an

almost strong CJ-space.

(2)=(3)

Clear.
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3)= (1)

Again we take the projection function f: Y XZ — Y, which is surjective,
injective, perfect and continuous function. It follows by Proposition (3.3.7)
that Y is an almost strong CJ-space since Y XZ is an almost strong

CJ-space.

Proposition (3.3.10)
Letf: X = Y be an injective perfect function onto Y. Then, if X is an

almost semi- strong CJ- space, so is Y.

Proof:

Let K < Y be compact, then K = f~*(K) is a compact subset of X since f is
perfect. But X is an almost semi- strong CJ-space, so there exists a countably
compactL < X suchthat K c L and a connected C' < X\K withC UL =X
by definition of almost semi- strong CJ-space. Now let L = f(L)and
C=1f(C’), then L is countably compact and C is connected since f is
continuous, moreover K c L since f is surjective and C c Y\K since f is
injective and clear that LUC =Y. Hence Y is an almost semi- strong

CJ-space.

Theorem (3.3.11)
A topological space X is an almost semi weak CJ-space if and only if for

any boundary- perfect function f:X —» Y, f~1(y) is non- countably compact
for at mostone y € Y.
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Proof:

The "if** part

Suppose that X is an almost semi weak CJ-space and y,; #y, inY, and let
A, = f1(y;,) (for i=1,2). Then A;and A, are closed subsets of X with
ANA, =0 and 0A,,0A, are compact since f is boundary-perfect, so

A;or A, is countably compact by definition of almost semi weak CJ-space.

The "only if"" part
Suppose A and A, are closed sets in X such that A, n A, =0 and
0A,, 0A, are compact .Define a relation R on X such that

xRy ©x,y € Ajor X,y € A,.Then

A, ifx € Ay
{x} ifx ¢ A;andx ¢ A,

Let Y be the quotient space of X with respect to the relation R, and let f:X - Y
be the quotient function, so f is a closed, continuous and onto map. Now to
show that f is boundary- perfect, it is sufficient to prove that a(f=(y)) is
compact foreachy € Y. Let y € Y, then

A, ifx € A;
f~1(y) =41A, ifx € A,
{y} ifx ¢ Ajandx ¢ A,

But dA,,0A, are compact by hypothesis and d{y} is also compact, so f is
boundary-perfect, and thus A;or A, is countably compact by (b). Hence X is

an almost semi weak CJ-space.
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Chapter four CONTRACTIBILE J-SPACES

INTRODUCTION

A space X is called contractible space if the identity map Ix:X - X is
null- homotopic, equivalently if it a homotopy equivalent to a point. We used

this concept to define other new topological space called contractible J-space.

This chapter consists of two sections, section one includes definition of
contractible J-space with its properties and its relationship with contractible
space. We gave many miscellaneous examples about this space. Several

equivalents for contractible J-space are given in Theorem (4.1.11).

In section two, new types of functions are given, like contractible
function and contractible perfect function. We prove that a contractible
perfect function maintains the property of being contractible J-space, see
Proposition (4.2.9). While a contractible perfect function transfers the
inverse image of contractible J- space to a contractible J- space, see
Proposition (4.2.15).
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§1 CONTRACTIBLE ]-SPACE

As a generalization of the concepts of CJ- space and almost CJ-space, we
introduce the concept of contractible J-space. We give many characterizations
and many properties of these concepts.

We begin with the following definition.

Definition (4.1.1)
A topological space X is said to be contractible J-space if for every
proper closed cover {E,F} of X with ENnF compact, either E or F is

contractible.

Remark (4.1.2)
If the closed cover in Definition (4.1.1) is not proper, then every

contractible J- space must be contractible.

Remark (4.1.3)
If a topological space Xhas no proper closed cover, then X is a

contractible J-space.
The following remark, follows from Remark (4.1.3).

Remark (4.1.4)
Every indiscrete space is a contractible J-space.
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Remark (4.1.5)
If X'is any topological space with every subspace of it is contractible,

then X is a contractible J- space.

The following example illustrate the contractible J-space.

Example (4.1.6)

The usual space R is a contractible J-space, for if {E,F} is a closed
cover of Rwith ENF compact, then E and F can not be both discrete, thus
E or F is contractible ( see Remark (1.2.33(2)).

Remark (4.1.7)
A discrete space with more than two points is not contractible J-space,
follows from Example (1.2.32).

The following remark indicating when the subspace of R be

contractible J-space.

Remark (4.1.8)

A subspace Y of R is a contractible J-space if it is not discrete space
(with more than two elements) follows from (Remark (1.2.33(2)) and
Example (1.2.32).
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Example (4.1.9)
Let X be a non empty set and A is a proper subset of X. Define a
topology on X by t={X,®, A}, then (X,T) is a contractible J-space since X

has no proper closed cover.

Remark (4.1.10)
A contractible space need not be contractible J-space.

For example

Let X be a subspace of  Euclidian space R? such that
X={xy)eER:(x—1)2+y?<1}u{(xy) ER%(x+1)2+y2 <1}
Let E,F betwo subsets of X such that
E={(xy)eR?(x—1)>+y?<1}Uu{(xy) ER?* (x+1)*+y? =1},
F={(xy) eER? (x—1)*+y?=1}U{(x,y) € R?, (x+ 1)+ y? < 1},
then {E, F} is a closed cover of X with
ENF={(x,y) ER:,(x—1)?+y2=1}Uu{(x,y) ER?, (x+1)?+y%2 =1}
which is compact subset of X, but neither E nor F is contractible. Hence X is

not contractible J-space, but X is contractible since X is closed ball in R?.

Remark (4.1.11)

A contractible J-space need not be contractible.
For example

The unite circle S* as a subspace of R? is not contractible, but it is

contractible J-space since every proper subset of S is contractible.
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Theorem (4.1.12)
The following conditions are equivalent for any space X.

=

X is a contractible J- space.

2. For every proper closed cover {E,F} with ENF compact EorF is
homotopy equivalent to a point.

3. Forevery proper closed cover {E,F} with E N F compact, there exists
X. € E(or x. € F) such that {x.} is a deformation retract of E (or of F).

4. For every proper closed cover {E,F} with ENnF compact, EorF is a
retract of any cone over it.

5. For every proper closed cover {E, F} with E n F compact, every function
f fromE (or F) to an arbitrary space Y, is null- homotopic.

6. For every proper closed cover {E, F} with E n F compact, every function

f from an arbitrary space Y to E (or F) is null- homotopic.

Proof
Follows from Theorems (1.2.37), (1.2.38), (1.2.39), (1.2.40) and
(1.2.41), and Definition (4.1.1).

Proposition (4.1.13)
If X is a contractible J- space, then for every proper closed cover {E, F}

with E N F compact, E or F is path connected.

Proof
Follows from Proposition (1.2.42) and Definition (4.1.1).
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Remark (4.1.14)
The converse of Proposition (4.1.12) is not true in general.

For example
Let us take the example of Remark (4.1.9), as we saw in this example

X is not contractible J-space, but for every proper closed cover {E,F} of

X with E N F compact, E or F is path connected.

Proposition (4.1.15)
If X is a contractible J- space, then for every proper closed cover {E, F}
with E N F compact, E or F is simply connected.

Proof
Follows from Proposition (1.2.43) and Definition (4.1.1).

Remark (4.1.16)
The converse of Proposition (4.1.14) is not true in general.

For example
Let X be a subspace of R3 such that X = E U F, where
E={(xy,z) ER3 (x—1)2+y?+z2=1}
and
F={(xy,z) € R3(x—3)*+y?+z% =1}
then {E, F} is a closed cover of X with EN F = {(2,0,0)} which is compact,
but neither E nor F is contractible. Hence X is not contractible J-space, but

E and F are simply connected since both of them homotopic equivalent to S2.
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Remark (4.1.17)
The property of being contractible J-space is not a weak hereditary

property, and thus not hereditary property.

For example:
The usual space R is a contractible J-space, but the natural numbers N
as a subspace of R is not contractible J-space since the induced topology of

the usual topology with respect to N is the discrete topology.

Proposition (4.1.18)
If A is a subset of a contractible J-space with compact boundary, then
cl(A) or cl(X\A) is contractible.

Proof

Consider the closed cover {cl(A),c(X\A)} of X, such that
cl(A) nc(X\A) = 0A which is compact, it follows by definition of
contractible J- space that cl(A) or cl(X\A) is contractible.

Remark (4.1.19)
The converse of Proposition (4.1.18) is not true in general.

For example
Let us take the finite set X = {1,2,3} with the discrete topology, and let

A = {1,2} be a subset of X, then A has a compact boundary since it is finite,
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moreover cl(A) = A and cl(X\ A) = {3} which are contractible sets, but X is
not contractible J-space.

Remark (4.1.20)

If X and Y are two contractible J-spaces, then X X Y need not be so.

For example

Let X={1,2} and =D, then X is contractible J-space since
{{1},{2}} is the only proper closed cover of X with {1}N{2} = @ which is
compact and {1} and {2} are contractible.

But X x X = {(1,1),(1,2),(2,1),(2,2)}, is not contractible J-space since
it has more than two elements and by Remark (4.1.7).
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§2 FUNCTIONAL CHARACTERIZATIONS OF

CONTRACTIBLE J-SPACE:

This section consists of new types of functions which are contractible
function and contractible perfect function, and we discussed how to save the
property of being contractible ]J-space under the effect of these functions.
We'll start with the definition of first type.

Definition (4.2.1)
A function f: X = Y is said to be contractible function if it preserves the
property of being contractible space. That is the image of any contractible

subspace of Xis a contractible subspace of Y.

Proposition (4.2.2)
The identity function on any topological space is a contractible

function.

Proof:
Let X be any topological space and let Iy: X — X be the identity function on X,
let S be a contractible subset of X, then I (S) = S is also contractible subset of

X. Hence I is a contractible function.

Proposition (4.2.3)

Any constant function is a contractible function.
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Proof:

Let k:X > Y be a constant function from a topological space X into a
topological space Y, thatis, k(x) = c, V x € X,where c € Y. To show that k
is a contractible function, let S be a contractible subset of X, then k(S) = cis
a contractible subset of Y by Remark (1.2.33(3)).

Proposition (4.2.4)
Any function defined from any topological space to an indiscrete space

is contractible function.

Proof:
Follows from Remark (1.2.33(3)).

Proposition(4.2.5)
The composition of two contractible functions is contractible.

Proof:
Let f:X -» Yand gY = Z be two contractible functions. To prove that

go f:X— Z is contractible, let A be a contractible subset of X, then f(A) is a
contractible subset of Y since f is contractible function. On the other hand g is

also contractible function, so g(f(A)) is contractible subset of Z. But

g(f(A)) = g o f(A).Hence g o fis a contractible function.
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Example (4.2.6)

Let R be the usual topological spaceand (R, I) be the indiscrete space, a
function f: (R,I) - R such that f(x) = x, Vx € R, is not contractible function
since N is a contractible subspace of R with the indiscrete topology, but

f(N) = N is not contractible subset of R with the usual topology.

Remark (4.2.7)

A continuous function need not be contractible function.

For example:
Let f: [a,b] = S* such that f(x) = e?* ,v¥x € [a, b], clear that f is continuous
onto function, but not contractible function since [a,b] is a contractible set

while St is not.

Remark (4.2.8)

A contractible function need not be continuous function.

For example: Let X ={1,2,3},and t = {X, @,{1}}, and let f: X — X such that
f(2) =f(3) =1 and f(1) = 2, then f is a contractible function since every
subset of X is contractible, and thus f(A) € X is contractible for each

contractible A € X. But fis not continuous function since {1} € Tt while
f=1({1) ={23} ¢ 1.

Proposition (4.2.9)
Let f:X — Y be a perfect and contractible function from X onto Y. If X is

a contractible J-space, thenso is Y.
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Proof:

Let {E,F} be a closed cover of Y with E N F compact, then {f 1 (E),f 1 (F)}is
a closed cover of X since fis continuous, and f™*(E)nf *(F) =f"Y(ENnF)
which is compact since fis perfect, but X is contractible J-space, so
f~1(E) or f~*(F) is contractible, it follows by definition of contractible
function that f(f~(E))or f(f~*(F)) is contractible, but fis surjective, so

E or F is contractible. Hence Y is contractible J- space.

Proposition (4.2.10)

Every homeomorphism function is a contractible function.

Proof:

f: X - Y be a homeomorphism function, and let A be a contractible subset of
X, we have to show that f(A) is contractible subset of Y. Note that
A and f(A) are homeomorphic spaces, it follows by Proposition (1.2.49) that
A and f(A) are homotopy equivalent. But A is contractible, so A is homotopy
equivalent to a point by Theorem (1.2.37), it follows by Remark (1.2.50(1)),
that f(A) is homotopy equivalent to a point, and thus contractible.

Remark (4.2.11)

A contractible function need not be a homeomorphism function.

For example:

See example of Remark (4.2.8).
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Definition (4.2.12)
A function f:X =Y is said to be contractible perfect function if it is
closed and the inverse image of any contractible subspace of Y is a

contractible subspace of X.

Example (4.2.13)
Any closed function from indiscrete space to any topological space is a
contractible perfect function.

Proposition (4.2.14)

The composition of two contractible functions is contractible.

Proof:
Let f:X — Yand g:Y — Z be two contractible perfect functions. To prove that
g o f: X —> Zis contractible perfect, let B be a contractible subset of Z, then
g~1(B) is a contractible subset of Y since g is contractible perfect function. On
the other hand f is also contractible perfect function, so f~1(g1(A)) is
contractible subset of X.

But f1(g7*(A))=f"10o g 1(A)= (go H7I(A). Hence g o fis a

contractible perfect function.

Proposition (4.2.15)
Let f:X — Y be a contractible perfect function from Xonto Y. If Y is a

contractible J-space, then so is X.
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Proof:

Let {E, F} be a closed cover of X with E N F compact, then {f (E),f (F)}is a
closed cover of Y since fis closed, and f (E)nf (F) =f (EnF) which is
compact since f'is continuous, but Y is contractible J-space, so f (E) or f (F)
IS contractible, it follows by definition of contractible perfect function that
f=(f (E)) or f~*(f (F)) is contractible, but fis surjective, so EorF is

contractible. Hence X is contractible J- space.

Proposition (4.2.16)

Every homeomorphism function is a contractible perfect function.
Proof:

f: X =Y be a homeomorphism function, and let B be a contractible subset of
Y, we have to show that f~*(B) is contractible subset of X.

Note that B and f~!(B) are homeomorphic spaces, it follows by
Proposition (1.2.49) that B and f~!(B) are homotopy equivalent. But B is
contractible, so B is homotopy equivalent to a point by Theorem (1.2.37), it
follows by Remark (1.2.50(1)), that f~*(B) is homotopy equivalent to a point,

and thus contractible.

Corollary (4.2.17)

The property of being contractible J-space is a topological property.

Proof:
Follows from Propositions (4.2.9), (4.2.10), (4.2.15) and (4.2.16).
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Chapter five CONCLUSIONS AND FUTURE STUDIES

INTRODUCTION

This chapter consists of two sections, section one includes most

important results obtained during this thesis.

In section two, we suggest some proposals concerning our thesis, for

use in future studies on the subject.

§1 CONCLUSIONS

In the following we review main results we have obtained:

1. Every countably compact space is a strong CJ-space, but not conversely,
see Proposition (2.1.5) and Remark (2.1.6).

2. Every strong CJ-space is a CJ-space, but not conversely, see Proposition
(2.1.8) and Remark (2.1.9).

3. Every countably compact space is a CJ-space, but not conversely, see
Proposition (2.1.10) and Remark (2.1.11).

4. The concepts CJ-space and strong CJ-space are equivalent, when the
space is locally connected, see Theorem (2.1.17).

5.  The following conditions equivalent to property of being CJ-space.
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6.

/7
0’0

/7
%

10.

11.

For any A c X with countably compact boundary, cl(A) or cl(X\A)
IS countably compact,
If A and Bare closed sets in Xsuchthat A N B =@ and JA or 0B
IS countably compact, then A or B is countably compact,
If K < X is countably compact, and if « is a disjoint open cover of
X\K ,then there exists W € w, such that X\W is countably compact.
Same as (4), but with card w = 2.
Every strong CJ-space is a semi-strong CJ-space, but not conversely, see
Theorem (2.2.4) and Remark (2.2.5).
Every semi-strong CJ-space is a CJ-space, but not conversely, see
Theorem (2.2.4) and Remark (2.2.6).
Every CJ-space is a semi-weak CJ-space, but not conversely, see
Theorem (2.2.4) and Remark (2.2.8).
Every semi- weak CJ- space is a weak CJ- space, but not conversely, see
Theorem (2.2.4) and Remark (2.2.10).
The concepts CJ-space and weak CJ-space are equivalent, when the
space is locally compact, see Theorem (2.2.12).
The continuous image of CJ-space is not CJ-space in general, see

example of Remark (2.3.5).
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12.

13.

14,

15.

16.

17.

18.

19.

20.

21,

A countably compact function preserves the property of being
CJ-space, see Proposition (2.3.6).

The property of being "CJ-space” is a topological property, see
Proposition (2.3.8).

We used the concept boundary countably perfect function to conclude
the equivalent theorem of definition of CJ-space, see Theorem (2.3.9).
We used the concept boundary countably perfect function to conclude
the equivalent theorem of definition of semi-weak CJ-space, see
Theorem (2.3.12).

Every almost strong CJ-space is an almost CJ-space, but not conversely,
see Proposition (3.1.5) and Remark (3.1.6).

Every countably compact space is an almost strong CJ-space, but not
conversely, see Proposition (3.1.9) and Remark (3.1.10).

Every CJ-space is an almost CJ-space, see Proposition (3.1.3).

Every strong CJ-space is an almost strong CJ-space, see Proposition
(3.1.4).

The concepts almost CJ-space and almost strong CJ- space are equivalent
if the space is locally connected, see Theorem (3.1.18).

Every semi-strong CJ-space is an almost semi-strong CJ-space, see

Proposition (3.2.4).
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22. Every weak CJ]-space is an almost weak CJ-space, see Proposition
(3.2.5).

23. Every semi-weak CJ-space is an almost semi-weak CJ-space, see
Proposition (3.2.6).

24. The following conditions are equivalent to definition of almost strong
CJ- space.

% Y X Zis an almost strong CJ-space for every connected and compact

L)

space Z.
% Y XZis an almost strong CJ-space for some compact space Z, see
Theorem (3.3.8).

25. The following conditions are equivalent to definition of almost CJ-space.
¢ Y xZis an almost CJ-space for every connected and compact space Z.
s Y XZis an almost CJ-space for some compact space Z, see Theorem

(3.3.7).
26. A continuous and perfect function transfers an almost CJ-space to almost
CJ-space, see Proposition (3.3.5).
27. An injective continuous perfect function transfers an almost strong
CJ-space to almost strong CJ-space, see Proposition (3.3.6).
28. An injective perfect function transfers an almost semi-strong CJ-space to

almost semi-strong CJ-space, see Proposition (3.3.9).
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29. The following conditions are equivalent to definition of contractible

K/
0’0

\/
0’0

L)

/7
¢

)
0’0

J-space.

For every proper closed cover {E,F} with ENF compact EorF is
homotopy equivalent to a point.

For every proper closed cover {E, F} with E n F compact, there exists
X. € E(or x. € F) such that {x.} is a deformation retract of E (or of F).
For every proper closed cover {E,F} with E N F compact, EorF is a
retract of any cone over it.

For every proper closed cover {E,F} with ENnF compact, every
function f from E (or F) to an arbitrary space Y, is null-homotopic.

For every proper closed cover {E,F} with ENF compact, every
functionf from an arbitrary space Y to E (or F) is null-homotopic.

See Theorem (4.1.11).

30. A perfect and contractible function transfers a contractible J-space to

31

contractible J-space, see Proposition (4.2.11).
The property of being contractible J-space is a topological property, see

Corollary (4.2.19).
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§2 FUTURE STUDIES

In the finally of thesis, we suggest some problems to future studies.
1.  Wecan use the concept pseudocompact to define new topological space,
and can be call pseudo J-space,
" A space X is pseudo J- space if for every closed cover {N,M} of X
with N N M countably compact, then N or M is pseudocompact”. Or
strong pseudo J- space,
" A space X is strong pseudo - space if every countably compact E € X

IS contained in a pseudocompact W < X with X \W connected".

2. Another concept can be used to deduce a new space, which is
connectedness. New space can be named united J- space,
" A space X is united J- space if for every closed cover {N,M} of X with
N N M connected, then N or M is compact”. Or strong united J-space,
" A space X is strong united ]- space if every connected E c X is

contained in a compact W c X with X \W connected".

3. Contractibility and retraction can be used together to define a

reco J- space,
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" A space X is reco ]- space if, whenever {N, M} is a closed cover of X

with NNM #= @ and aretract of N, then M is contractible".

Similarly, we can use many known concepts as: path connectedness,

locally compactness, limit point compactness and manifold space, to define

new topological spaces.

116



[1] A.Hatcher, "*Algebraic Topology", Cambridge University Press, (2002).

[2] A.Kornitowicz, "A proof of the Jordan Curve Theorem Via the Brouwer
Fixed Point Theorem", Vol. 6, No.1, pp.33-40, (2007).

[3] A.Quahab, L. Go'miewicz and S. Djebali, "Solution Sets for Differential
Equations and Inclusions™, Walter De Gruyter, (2012).

[4] A.R. Shastri, "Algebraic Topology", CRC Press, (2013).

[5] B.Mendelson, "Introduction to Topology”, Third Edition, Courier
Corporation, (1990).

[6] C.Jordan, "Cours D'analyse Del'cole Polytechnique"”, Second Edition ,
Completely Revised Edition, Gauthier Villars son Booksellers Printers,
(1893).

[7] C. Kosniowski, "A First cours in Algebraic Topology", Cambridge
University Press, First Published (1980).

[8] C. R. F. Maunder, "Algebraic Topology", Courier Corporation, (1996).

117



References

[9] E. Bouassida, "The Jordan Curve Theorem in the Khalimsky Plane",
Applied General Topology, Vol. 9, No.2, pp. 253- 262, (2008).

[10] E. D. Khalimsky, R.Kopperman and P. R. Meyer, "Computer Graphics
and Connected Topologies on Finite Closed Sets", Topology Appl.,
Vol.36, pp.1-7, (1967).

[11] E. H. Spanier, "Algebraic Topology"”, Springer Science & Business
Media, (1994).

[12] E. Michael, "J- spaces"”, Topology and its Application, Vol. 102,
pp.315-339,(2000).

[13] G. Bery, W.Julian, R. Mines and F. Richman, "The Constructive
Jordan Curve Theorem", Rocky Mountain Journal of Mathematics,
Vol.5, No.2, pp.225-236,(1975).

[14] G.L. Garg and Asha Goel, "Perfect Maps In Compact (Countably
Compact) Spaces”, Internet J. Math. & Math. Sci., Vol. 18, No.4,

pp. 773-776, (1995).

[15] H. Abelson and A.A. Desessa, "Turtle Geometry: The Computer as a
Medium for Exploring Mathematics™, MIT Press, (1986).

[16] H.G.Eggleston, "Convexity", Cambridge University Press, London.
New York. Melbourne, (1958).

118



References

[17] H.H.Schafer and M.P.Wolff, "Topological Vector Spaces", Second
Edition, Springer Science & Business Media, (2012).

[18] J.D.Baum, "Elements of Point Set Topology"”, Dover Publications,
INC. New York, (1964).

[19] J. E. Vaughan, Jun- iti Nagata, K. P. Hart, "Encyclopedia of General
Topology", Elsevier, (2003).

[20] J.J.Stoker," Differential Geometry", John Wiley & Sons, New York.
London. Sydney. Toronto, (1989).

[21] J.L.Kelley, "General Topology", Springer- Verlag Berlin Heidelberg
New York, (1975).

[22] J. R. Munkres, "Topology A First Course™, Prentice- Hall, (1974).

[23] J. Rotman, "An Introduction to Algebraic Topology", Springer Science
& Business Media, (2013).

[24] K. D. Joshi," Introduction to General Topology", New AGE
International (p) Limited, Publishers, First Edition 1983, Reprint (2004).

[25] K. Jacobs,” Invitation to Mathematics™, Princeton University Press,
New Jersey, (1992).

119



References

[26] L. Narens, "A Nonstandard proof of the Jordan Curve Theorem",
Pasific Journal of Mathematics, Vol. 36, No.1, (1971).

[27] M. Anthony Armstrong, "Basic Topology", Mc Graw- Hill Book Co.,
(1979).

[28] M.C.Gemignani, "Elementary Topology", New York, California,
London, second edition, (1972).

[29] M. Hazewinked, "Encyclopedia of Mathematics", Springer Science and
Business Media, B.V.,(1995).

[30] M. Manetti, "Topology", Springer- Verlag Italia, Milano, (2014).

[31] M. Nakahara, "Geometry Topology and Physics"”, Second Edition,
Taylor and Francis Group, New York London, (2003).

[32] M.O.Gonzalez, "Classical Complex Analysis", CRC Press, (1991).

[33] M.Ranjan Adhikari, "Basic Algebraic Topology and its Applications"”,
Springer India, (2016).

[34] M.Reid and B. Szendrdi, "Geometry and Topology", Cambridge
University Press, (2005).

120



References

[35] M. Stroppel, "Locally Compact Groups", European Mathematical
Society, (2006).

[36] M. Tkachenko and A. Arhangel's Kii, "Topological Groups and
Related Structures, An Introduction to Topological Algebra™, Springer

Science & Business Media, (2008).

[37] N.Bourbaki, "General Topology Chaptersl-4", second printing
Springer- Verlag Berlin Heidelberg NewYork, (1989).

[38] P.L.Shick, "Topology Point- Set and Geometric", John wiley & Sons,
Inc, Publication, (2007).

[39] R. Engelking, "General Topology", Heldermann Verlag, (1989).

[40] S. C. Sharma, "Topology Connectedness and Separation", Discovery
Publishing House, First Published, (2006).

[41] S. T. Bahadur," Elements of Topology", CRC Press, Taylor & Francis
Group, (2015).

[42] S.Willard, "General Topology", Dover Publications, INC. Mineola,
New York, (1998).

[43] T.Babinec, T.Klein, A.Fung, and others, "Introduction to Topology",
Renzo's Math490, Winter, (2007).

121



References

[44] T. C. Hates," Jordan's proof of the Jordan Curve Theorem", studies in
logic, grammar and rhetoric, Vol. 10, No.23, (2007).

[45] T. C. Hates, "The Jordan Curve Theorem", Formally and Informally, to
appear in the Amer. Math. Monthly.

[46] T.Eisworth, "CH and First Countable, Countably Compact Spaces"”,
Topology and its Applications Journal, Vol. 109, pp. 55-73, (2001).

[47] T. Husain, "Topology and Maps", Springer Science & Business Media,
(2012).

[48] T.W.Gamelin,” Complex Analysis”, Springer Science & Business
Media, Inc., (2003).

[49] T. Y. Kong, R. Kopperman and P. R. Meyer, "A Topological Approach
to Digital Topology", American Math. Monthly, Vol.98, pp.901-917,

(1991).

[50] V.Runde, "A Teste of Topology", Springer Science & Business Media,
Inc., (2007).

[51] W. F. Basener, "Topology and its Applications”, John Wiley & Sons,
(2006).

122



References

[52] W. Fulton, "A first Cours: Algebraic Topology", Springer Science &
Business Media, (1997).

[53] W. Stefan, "Topology: An Introduction”, Springer, Mathmatics,
(2014).

[54] W. S. Massey, "A Basic Course in Algebraic Topology", Springer
Science & Business Media, (1991).

[55] W. Tu Loring, "An Introduction to Manifolds"”, Second Edition,
Springer Science & Business Media, (2011).

[56] Y. Nanjing, "LJ- spaces", Czechoslovak Math. Journal, Vol.57,
No0.132, pp.1223-1237, (2007).

123



o, oo |

& sl (e Agm ol gl lelizadl) Al 50 g Aa g5l (e )l Caagll
.contractible J- s almost strong CJ- < almost CJ- « strong CJ- « C]J-
J8 (e Gy Al strong J- g sl J- g sl e das o gl Cileliadl Clagasd e Sl
[12] Michael &bl
O La i gy il A 5 4y 5 el g 31 (e Gaai (5 AT Aali e
S s mall byl il almost CJ- g s (e 5l CJ- 53 (o (o s) sl clizadll
«strong CJ(almost strong CJ)- sL=é sa CJ(almost CJ)- sbad J< Jaay s
«CJ(almost CJ)- sLxi s strong CJ(almost strong CJ)- slad JS ol a5 s
O 2paadl @l (e Ml Liraia go (al jie sbiadll OIS B Y] i e (Sl (8]
O slaill b aaliall 02a 5 ¢al s 5 Atialy Leayia 55 ae 08 28 3030410 apaliall
g 5 e clusadll 5 semi-weak CJ- g sl (= eluadll 5 semi-strong CJ- & s
almost & sl (e eLadll 5 almost semi-strong CJ- & s (e eLadl sweak CJ-

. almost weak CJ- ¢ sl (s ebadll 5 semi-weak CJ-



Ssm@3e )&A

SN @ s G A M\

Dyt [ Pl Saim fopSIAY S

Ol 5 sl g SEIL aasl L gl s eV AL JSy L adAY s sl il S

o o ol VL Leladll gl bl e a7 B gisal) selual) MY il e )

Cillaadle (e a3l Lo IS0 caie ot Lo O saelusall g am gill 8 Taga Il o1 i)y dda g ylaY)

o A ) ad waay JaST e 4l Al deadl 13a il (B Sl Y L GlS dad lala )
() daal siall Leac ] g 07 Ly ol B ) gisal) Ml it ) Al ) e aaiil LS o) 3al)

& A e/ Lo eial) sebaaldl ALY il )l and iy s el Sal LS
s o d 4588l deluall SULY) 3T 50 el 5 ST g Jaadl 3 5 oL Liiga) 5 1 cilad) J03
DS LS il ) g ) S G Al jal) 3 5 oL Liigal 5 ) il N 8t ladu
and W Sy il 5y 5 ol Lladl bl 5al) ) e S A1 5 Olader and (uulse Hiall) (3
i pall g sl 5 Y
G Gudl a2 el S e dlaieg A KA e alaml L) aal oy clalSI Sl
Olbadar Aot 54580 Gl ALaldl) 330l eUandl )l o) A ely (OS] aslaill 5 alal) (S
il g Al @l jle gl (S)) e e aladf § eSS ) ) ALaldl 3l g 4 peae

Janll Jlae (3 Gt (e ool Wl b)) and (3 (D5 (D) aen ST O il Y
W auds Flaa O i delwal) i) danall Sal 5 ablS I ga Geper o dinall SAL (aal

LM tans e 58l (gl 0y AR sl (g da g kY] delds L saclie (e ) Aledd

iy ",U 'BJ.::LMAJ ped (e A_,,J aJAJE Lol éwaG .J/Jéyu_,\_m\ (,:‘Lr_j Lﬁ_)s-‘:‘ dﬂ_);" (‘M‘ RS
e 505 aghaing 5 agaany o A Ol ¢l 5o alasY Aol G hall

-

Y oAV ek K\:j\ﬁ.\’:b\ad



Gl Ay ) seen
alall il el el 555,

Aazy dzala

el (ol / &yl o slall s 501 A

3.\3,.).%-\ Z:,?-JSJ.,'M Sl Lail) U2N Jf

.
i Lrals calighl Sl / 4 puall o glell dus yill IS (N o

dduli 4 o) )il da o (Loi Slilhie ge e ja 4
il uialy 4l 2 gle

euM}CﬁDAQJMUA

il sl

390 sl e a0

YoV 119

I ASAAAAAAAAAAAAAAAAAAAAAAAAAAAAAS O]

[ S e e e e e e e e e e e e e e e e e e e s e e e e e e e e e ==




