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M The fluid viscosity coefficient. 

SV  the fluid velocity in the direction s 

nV  the velocity with n direction 

R the right reservoir side 

L left reservoir dam 



Abstract 

The first objective of this thesis is to study and the variational 

formulation of free and moving boundary value problems. The 

problems investigated are those in which the governing partial 

differential equation is the Laplace equation and the boundary 

conditions are of free type and to make this work of self-contents, as 

possible. 

The second objective of this thesis is to derive the physical and 

mathematical formulation of the problem under consideration, which 

is the pond seepage problem that is considered as a free boundary 

value problem. This problem had been formulated and solved using 

variational approach. The direct Ritz method have been used to solve 

the problem approximately in which computer program is written in 

MATLAB 2016a which as used to solve the problem and find the 

numerical results.  
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Introduction 

       The topic of this thesis is closely related to differential equations 

and calculus of variation. This topic deals with the problem of 

maximizing or minimizing functional that is variable value, which 

depends on а variable running through а set of functions, or on а finite 

number of these variables, and which are completely determined by а 

definite choice of those variable functions. Problems that consist of 

finding maxima or minima of а functional are called vаriational 

problem, [1]. 

        The phrase “vаriational formulation” had been used in recently 

and nowadays in connection with the generalized formulation of 

boundary or initial value problems. In boundary value problems, 

sometimes it happens that a part of the boundary is unknown and must 

be determined as a part of the solution. This unknown boundary 

occurs in two cases; the first one is called the moving boundary, which 

occurs mostly in heat-flow problems with phase changes and in 

certain diffusion processes. The second type is called a free boundary 

which does not move but its position has to be determined as a part of 

the solution of a steady-state problem, [3].   

        Historically, as a literature survey the essential features of 

vаriational methods goes back approximately for more than two 

centuries, when the first notions of the subject for vаriational of 

calculus began to be formulated. Actually, the most primitive ideas of 

vаriational theory had been presented first in Ariistothes writings on 

virtual velocities in 300 B.C., then they were reviewed by Galileo in 

the 16th century. Later, they were formulated into a principle of virtual 
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work by John Bernolli in 1717. The first step toward developing a 

general method for solving vаriational problems was given by Euler 

in 1732 through presenting “a general solution of the isoperimetric 

problem”. In this work and subsequent writing of Euler, the 

vаriational concepts found an acceptance and enduring place in 

mechanics, [7], [9]. 

        A more solid mathematical basis for vаriational theory was 

developed in the 19th and the early of 20th century. Necessary 

conditions for the existence of "minimizing curves" of a certain 

functional were studied during this period, and we found among the 

contributors in this area the familiar names of Legendre, Jacobi and 

Weirstrass. Legendre in 1786 gave a criteria for distinguishing 

between maximum and minimum, without considering criteria of 

existence. Jacobi in 1837 introduced sufficient conditions for 

existence of an extreme of a functionalism, [12]. It is notable that the 

main problem in calculus of variation is to find the extremum 

(maximum or minimum) values of a given functional J, this necessary 

condition is called the Euler-Lagrange equation. This problem is 

called, for simplicity, the direct problem of calculus of variation [7]. 

Roughly speaking, variable values which depends on variable 

function working through a set of functions or on a finite number of 

these variables, and which are completely determined by a specific 

selection of these variable functions, [9]. 

        At the end of the 19th century and in the early years of the 20th 

century, several prominent contributions are found related to the 



Introduction . 
 

v 
 

subject of vаriational ideas, particularly, in the area of problems, in 

which Ritz, Galerkin and Hellinger are the pioneers. 

        Nowadays, vаriational concepts play a fundamental role in 

applied mathematics. As an example, the solution of any ordinary 

problems, such as partial differential equations, ordinary differential 

equations, integral equations, etc. are equivalent to the minimization 

of the functional J that corresponds to this ordinary equation, [13]. 

        As it is well known, the initiation of the study of vаriational 

principles should be attributed to Euler and Lagrange and in a broader 

setting, to Poisson, Cauchy and Hamilton. 

        In recent years, the development of a unified theory for linear 

problems was given by several authors. Hussain in 1987 studied the 

solution of the boundary value problems using vаriational approach, 

[12]. Also, Mahlol in 1993 studied the solution of the direct and 

inverse of eigenvalue problems of Sturm-Lowville problem, and an 

applied it for localizing the size of Brain tumors, [15]. In addition, 

among other studies concerning the direct and inverse problems with 

application, the study given by Ali in 1994 for the mathematical 

inverse problem of acoustic wave scattering, [2]. Jabbar in 2001, 

considered the solution of the two-dimensional moving value 

problems of Hele-Show problem, which is solved using variational 

inequalities, [13]. Finally, Al-Ani In 2001 considered the study of 

two-dimensional inverse problem of the seepage problem in a simple 

rectangular dam, [1], in 2002 Zainab studied variational formulation 

for solving three dimensional moving boundary value problems and 

its application in laser ablation problem, [24], In 2010 Al-Mosawi 
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considered the study about the direct and inverse variational 

formulation of three-dimensional dams, [3].  

        The main objective of this thesis is to study, in general, the 

seepage problems through porous media, which is an important source 

of the free boundary problems, for example the seepage through earth 

dams, seepage out of open channels such as rivers, canals, ponds and 

irrigation system, and then give the physical, mathematical and 

variational formulation of the pond seepage problem and then find its 

numerical solution. 

        The structure of this thesis consist of three chapters. In chapter 

one, we present the basic concepts related to the subject of calculas of 

variation, as well as, free and moving boundary value problems. In 

chapter two, the physical and mathematical derivation of the 

governing model related to the pond seepage problem is presented, as 

well as, it’s free and boundary conditions are given. In chapter three, 

the variational formulation and the numerical solution of the problem 

under consideration is presented. 

        Conclusions and recommendations for future work are also 

presented in the end of this thesis. 

        Finally, computer program written in MATLAB 2016a is 

presented in the appendix.   



 

 

 

 

 

 

 

Chapter One 

Basic Concepts 
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Chapter  

    1 
Basic Concepts 
 

Introduction: 

        This chapter deals with the basic concepts related to this thesis. 

These concepts consist of the fundamentals of calculus of variation, 

free boundary value problem (FBVP) and moving boundary value 

problem (MBVP). 

        It is well known that, the subject of calculus of variation is that 

one driven from the classical extreme important branches of applied 

mathematics, since it has a great importance in solving many 

problems set using mathematical systems. The study may be so 

complicated, which is due to the governing equation and/or types of 

initial and boundary conditions and/or due to the domain of 

definitions, which may be so irregular, etc. 

        This chapter consisted of five sections. First, an introduction of 

this chapter have been introduced. Section (1.1) presents the 

elementary of calculus of variation, including the statement of the 

fundamental lemmas of calculus of variation, as well as, the derivation 

of the simplest vаriational problem. Basic definitions related to 

Magri's approach and its fundamental theorems are given in section 

(1.2).  
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        The symmetry of the Laplace's operator have been proved in 

section (1.3), as well as, its vаriational formulation which is presented 

in section (1.4). Finally, in section (1.5) we presents the free and 

moving boundary value problems for completeness purpose. 

 

1.1 Elementary of Calculus of Variation: 

        We start this section with an important two lemmas in calculus 

of variation. These results are necessary for the derivation of 

necessary condition that must be satisfied by the solution. 

 

Lemma (1.1.1), [20]: 

        If a function g is continuous in an interval [a, b]   and if

b

a

(x)g(x) dx 0  , for an arbitrary function  which is continuously 

and twice differentiable such that (a)  (b)  0. Then g(x)  0, for 

all x  [a,b].  

 

        The generalization of lemma (1.1.1) for two dimensional 

problems may be stated as in the next lemma. 

  

Lemma (1.1.2), [10]: 

        Let g(x,y) be a continuous function on D, which is a simply 

connected region in 2, and if: 

       

D

0η(x,y)g(x,y)dxdy= . 

for an arbitrary function  which is twice continuously  differentiable  
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that vanishes on the boundary of D. Then g(x,y) ≡ 0, (x,y)  D. 

        The simplest vаriational problem that may be considered consists 

of finding an extremum (maximum or minimum) of the functional: 

J(y(x)) =
1

0

x

x

F(x, y (x), y (x)) dx .                                              (1.1) 

where the type of the accepted curves consists of all functions 

y(x0)y0, y(x1)y1, F is a function with continuous first and second 

partial derivatives with respect to all of its arguments. 

        Therefore, to find the necessary condition satisfied by y to be a 

solution for the varitional problem (1.1), we started by letting J to be 

the first variation of the functional J, which is defined by: 

J  J(y + y) – J(y)
Linear part in δy

 

where: 

J(y + y)  
1

0

x

x

F(x, y y, y y )dx   . 

which is equated to zero for the optimum solution y. 

Now, suppose an extremum passes through the curve y  y(x) 

alongside with all admissible solutions yy*(x),  x  [x0,x1] and 

hence the variation of the solution y is defined to be y  y(x)  y*(x) 

and since the first variation of y is a function on x, then it may be 

differentiated with by using the liner property to obtain (y)  y, 

and hence: 

J  J(y + y)  J(y) 

 
1 1

0 0

x x

x x

F(x, y y, y y ) dx F(x, y, y ) dx         
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                  
1

0

x

x

F(x, y y, y y ) F(x, y, y ) dx        

and upon using the first degree approximation of Taylor’s series 

expansion of the incremental function F(x, y + y, y + y) about (x, 

y, y), one may get: 

1

o

x

y y

x

J F y F y dx         

Therefore, using the method of integration by parts and noting that 

J(x0)  J(x1) 0 implies to: 

1

0

x

y y

x

d
J F y F y dx

dx
    

 
  

  

  
1

0

x

y y

x

d
F F y dx 0

dx
  

 
  

 . 

and for extrema, we set J =0 since y is chosen as an arbitrary 

function, which is vanished at x0 and x1. Hence, by using the 

fundamental lemma of calculus of variation (1.2.1), getting: 

       y y

d
F F 0

dx
  .                                                                (1.2) 

which is the  necessary condition that must be satisfied by the solution 

curve y. This condition is also called the Euler-Lagrange equation (for 

simplicity Euler’s equation). 
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Remark (1.1.3): 

        The above ideas may be generalized for more complicated cases, 

such as with higher order functional, functional of extra than one 

dependent variable, or for functional of more than one independent 

variable, etc. (for more details, see [Elsgolc, 1962], [Gelfand, 1963]). 

 

1.2 The Inverse Problem of Calculus of Variation, [14]:  

        The main difficulty in the calculus of variation occurs when the 

necessary condition to represent the Euler-Lagrange equation, 

represents a real life problem under consideration, which may be 

rewritten in operator form as Ly  f, where L is a liner operator and f 

is any given function. The problem is to find an equivalent vаriational 

formulation corresponding this problem. This topic is called the 

inverse problem of calculus of variation, which is aimed for deriving 

the related functional J, which should be minimized.  

 Before indulging this subject and its main theorem, some 

additional basic concepts must be introduced at first. 

 

Definition (1.2.1), [16]: 

        Let U and V be two normed linear spaces, a bilinear form defined 

on U and V is a functional L: UV , which is linear in both u 

and v, where u and v are elements of U and V respectively, and the 

following properties are fulfilled:  

1 2 1 21. L(u +u ,v)=L(u ,v)+L(u ,v)  , 1u , 2u U, vV 

2. L(u,αv)=αL(u,v)  , uU , vV , α  



Concepts Basic                                                                  Chapter One        

 

6 
 

1 2 1 23. L(u,v +v )=L(u,v )+L(u,v )  , uU , 1v , 2v V 

4. L(u,αv)=αL(u,v)  , uU , vV , α  

this functional is usually denoted by the symbol <u,v> . 

 

Definition (1.2.2), [21]:  

Let <u,v>be a bilinear form over U×V , then:  

1. <u,v> is said to be symmetric if <u,v>  <v,u> , for all 

u U, v V    

2. F[u]  
1

<u,u>
2

 is a quadratic form of u. 

3. The bilinear form<u,v> is non-degenerate on U and V if 

i. <u, v> 0 v 0 , u U     . 

ii. <u, v> 0 u 0 , v V     . 

 

        Among the most usual examples of non-degenerate bilinear 

forms, are the following: 

τ

0

<u,v> u(t) v(t) dt   

where u, v : C[0, ]  ,  > 0. 

τ

n n
n0

<u,v> u (t) v (t) dt   

where u, v : C[0, ]  
n
,  > 0. 
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 
τ

0

<u,v> u(t)v τ-t dt   

where u, v : C[0, ]  ,  > 0. 

τ s=τ-t

0 s=0

<u,v> u(t) K(t,s)v(s)ds dt
 
 
  

    

where u, v : C[0, ]  , and K : C[0, ]C[0, ]   is a 

preassigned function that is denoted to the kernel of the bilinear form; 

the above example may be written for higher dimensions as follows:   

τ τ

0 0

<u,v> u(x,t)v(x,t)dtdx     

where u, v : C[0, ][C[0, ]  ,  > 0. 

τ τ

n n
n0 0

<u,v> u (x,t)v (x,t)dtdx   

where u, v : C[0, ]C[0, ]  n ,  > 0.             

   
τ τ

0 0

  <u,v> u x,t v x,τ-t dtdx    

where u, v : C[0, ]C[0, ]  ,  > 0. 

 
τ τ s=τ-t

0 0 s=0

<u,v> u x,t K(t,s)v(x,s)ds dtdx
 
 
  

    . 

where u, v : C[0, ]C[0, ]  ,  > 0 and K : C[0, ]C[0, ]  

 is a pre-assigned function called the kernel of the bilinear form. 
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Definition (1.2.3), [21]: 

A given linear operator L: D (L) →R (L) is called symmetric with 

respect to the chosen bilinear form <u,v>  if it satisfies: 

 <Lu,v> <Lv,u> . 

 

Theorem (1.2.4), [21]: 

 There is a vаriational problem 1
2

J(u)= <Lu,u>-<f,u>

corresponding to initial boundary value problem Lu  f, if and only 

if the operator L is symmetric relative to the chosen bilinear form 

which is non-degenerate. 

 

1.3 Symmetry of Laplace's Operator, [21]: 

Because of the impotency of the operator used in the derivation 

of the varitional problem of the Laplace’s operator used to the seepage 

problem, we will prove next the symmetry of the Laplace’s operator, 

i.e., to prove: 

        <Lu,v>=<Lv,u>. 

 for this purpose, the following form is considered: 

        
2 2

2 2
L

x y

 
 
 

. 

Hence 
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 

 

xx yy

D

xx yy

D

<Lu, v>= u +u vdx dy

u v +u v dx dy




 

                    
x x x y y y

x y x x y y

D

(u v)-u v (u v)-u v dx dy
x y

(u v) (u v) dx dy- u v +u v dx dy
x y

D

D

  
  

  

  
       



 

 

Therefore, upon using Green’s theorem for the fist integral we have: 

   x x y y

D

Lu, v>< u v +u v dxdy 
 

  . 

Similarly: 

D

<Lv,u> uvdx dy  . 

           x x y y

D

u v +u v dxdy 
 

   

i.e. 

<Lu,v> <Lv,u>  .                 

     Hence, the linear operator L related to the Laplace's operation is 

symmetric relative to the chosen non-degenerate bilinear form defined 

by: 

        
D

u,v>< = uvdxdy . 
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1.4 Varitional Formulation of Laplace Equation, [21]: 

Theorem (1.2.4) may be applied to find the functional 

corresponding to the Laplace equation:  

xx yyu +u =0  , (x,y)  D 

where D is a simply connected domain in R2, in which the operator 

L is given by:  

2 2
L

2 2x y

 
 
 

. 

and the corresponding functional is given by:  

1
2

<Lu,u> f,u>J(u)= -< . 

        Now, since f  0, hence upon expanding the bilinear form, then 

the functional J (u), will take the form: 

 

 

1
xx yy2

D

1
xx yy2

D

J(u) u u u dxdy

u u u u dxdy

 

 




 

and recalling that: 

2
x xx x(uu ) uu u

x


 


 

2
y yy y(uu ) uu u

y


 


 

Hence: 

2
xx x xuu (uu ) u

x


 


 



Concepts Basic                                                                  Chapter One        

 

11 
 

Therefore: 

     

     

2 2
x y x y

D

2
x

D D

1
J(u) u u uu uu dxdy

2 x y

1 12u u dx dy uu uu dxdy
y x y2 2 x y

   
      

   

  
     

  



 

 

Finally, upon applying Green's theorem, the functional J will 

take the following final form:     

 2 2
x y

D

J(u) u u dxdy  .                                                         (1.3) 

 

1.5 Initial and Boundary Value Problems, [5]: 

Differential equations can be also classified according to the 

conditions associated with the differential equation under 

consideration, which may be of initial type (i.e., the conditions are 

given at a single initial time t  0) and the problem in this state is 

denoted as an initial value problem, while "boundary value problems" 

are related to the problems at which the case are given at several times 

or the conditions are given about the boundary at the range of solution. 

 

1.5.1 Free Boundary Value Problems, [12], [20]: 

        A FBVP consisted of a partial differential equation of elliptic 

type, which satisfied into a bounded region together with the 

necessary boundary conditions in which one part or more of the 

boundary (the free boundary) is unknown and should be determined 

as a part of the solution. To make this possible, additional conditions 

has to be specified on that free boundary, as an example, problems 
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related to earth dams. In addition, flow through permeable media is 

an important source of free boundary value problems that appear most 

frequently in seepage nature phenomena. Examples are seepage 

through earth dams, seepage out of an open channel such as reveres, 

canals, ponds and irrigation system, or into wells. 

 

Practical interest in FBVPs, in whatever way, is not restricted to 

natural leakage but extended also to another subjects in plasma 

physics, semiconductors and electrochemical machining, [4]. 

 

1.5.2 Moving Boundary Value Problems, [5]: 

        The MBVP is commonly used when the boundary is associated 

with the time-dependent problems and it is already known that the 

boundaries of the domain must be selected as a part of the problem. 

However, moving boundaries are functions of time and space. 

An MBVP will be taken to mean a time-dependent problem 

governed by a parabolic partial differential equation with a prescribed 

initial and boundary conditions. In all cases, two conditions are 

needed on the moving boundary; one for determining the boundary 

itself and the other for completing the definition of the problem to be 

well posed. 

Large classes of MBVPs are usually concerned with fluid flow 

in porous media, and with diffusion and heat flow or chemical 

reactions. Moving boundary value problems are often called Stefan 

problems. Since 1890, Stefan was interested in the melting of the polar 
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ice cap as there is no exact analytical solution available for general 

MBVPs, [5]. 

Among the foremost free and moving boundary value problems, 

are as jolt waves in gas dynamics, as in cracks through solid 

mechanics or optimal stoppage problem in decision theory.
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Chapter  

    2 
Physical and Mathematical Derivation of 

the Pond Seepage Problem  

  
 

Introduction: 

        In this chapter, we will discuss the problem of the free surface 

then address the problem of the seepage in a natural lake from two 

sides and the base of non-permeable water in a realistic application of 

the free surface. After that, we will turn to the physical derivation and 

mathematical modeling of the problem of the pond seepage problem. 

Therefore this chapter consists of two sections, in sections (2.1) the 

physical derivation of the problem will be considered which based on 

the classical laws of physics, such as Darcy’s law, Bernoulli equation 

velocity potentials, stream lines, etc. In section (2.2), the 

mathematical modeling of the seepage problem have been presented, 

as well as, its initial and boundary condition including the free surface. 

 

2.1 Physical Derivation of the Problem: 

        In this section, the physical derivation of the water seepage 

problem in soil sands will be given and presented for the generalized 

dam problem. First of all, some concept of fundamental fluid dynamic 

are presented. 
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2.1.1 Darcy's law, [9],[ 23]: 

        Darcy's law is considered when a water flow in a porous medium 

in one direction. In proper real world, problems such as leaks happen 

in all three dimensional dams, underground water flow, seepage 

through reservoirs, etc. In many situation, two and three dimensional 

problems are simplified into a leakage flow, which will be calculated 

as accordingly. 

        The analysis of the water flow happens when a flux occurs in the 

porous medium from one point to another because there is a difference 

in the total pressure charge resulting from an increase in the kinetic 

energy at a certain point (this will be abbreviated as the total charge). 

Hence, the total charge is a kinetic energy stored in the dam’s body 

that is represented usually as an equivalent height, which is the same 

of the velocity pressure charge and height difference. Thus, the total 

charge may be represented at any point as in the following: 

        

2v p
h z

2g
  


          ,                g  0,   0                           (2.1) 

where 

h: total head charge. 

v: fluid speed through the porous medium at a certain point. 

p: fluid pressure over per the unit area. 

z: point higher the datum line. 

 : fluid weighted density. 

g: acceleration. 

        It is remarkable that equation (2-1) is modeled and developed by 

the Swiss Mathematica Daniela Bernoulli in 1738, and often called 
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Bernoulli’s equation. The velocity of the flow within the porous 

medium is proportional to the rate of change of the total pressure 

relative to the distance. If we compare the total charge between the 

two points A and B (see fig. 2-1), it seems clear that: 

        
2

A A
A A

w

p v
h z

2g
  


                                                                     (2.2) 

as well 

        
2

B B
B B

w

p v
h z

2g
  


                                                                      (2.3) 

which will give 

           A Bh h h                                                                          (2.4) 

where Δh represents the total charge difference between the two 

points A and B. Let 
s 0

h
i lim

s 


 


 which will be called the hydraulic 

gradient. 

 

Fig. (2-1) Heads in Bernoulli’s equation. 
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         In 1856. Henry Darcy, derived the following formula: 

        
dh

v Ki k
ds

   .                                                                      (2.5) 

Equation (2-5) is a labeled as the Darcy's equation, which represent 

the linear relationship between the hydraulic gradient and velocity. In 

this case, K is called the coefficient of the hydraulic conductivity, 

which is a common property between the fluid and the porous medium 

that is called the coefficient of permeability. The permeability 

coefficient may be expressed as: 

        K= cd2.                                                                                  (2.6) 

where                                                                                           

c: Constant.  

d: Average diameter of the soil granules. 

 

        The relationship between K and k may be given as follows: 

        
k

K
M


 , M  0                                                                         (2.7) 

where                                                                                                                                

 : The fluid weighted quality. 

 M: The fluid viscosity coefficient. 

       In the present problem of this work, the soil will be considered as 

the porous medium, which is considered to be homogenous and 

isotropic, i.e., the permeability coefficient is considered to be 

uncharged for every point of the medium.   
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2.1.2 The Continuity Equation, [23]: 

        The fluid flow amount which is usually called the discharge that 

represent the amount of the fluid volume passing through the time 

unit. Hence, in order to derive the continuity equation, which states 

that “the difference between the entering mass flow rate average and 

the outcome mass flow rate average which permit the area are 

assumed to be equal”. For illustration consider an element of the 

liquid as it is shown in Fig. (2-2).  

 

                              Fig. (2-2) Element of the liquid. 

        In Fig. (2-2) it is assumed that; p is a point located in the center 

of the middle of the element; u, v and w are the velocity point 

decompositions with respect to time t.  

        Hence the average unit time mass flow rate at a point p = mass 

density × velocity × the area of the vertical section on the direction of 

velocity.         
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 The three fluid flux may be considered as follows: 

1. Flux in  x-direction: 

        Average of mass p flux for a unit time equals to u y z   where ρ 

is the mass density. Therefore, the rate of mass that flowing and 

entering the cube from the left hand side with respect to the unit time 

is given by: 

            
 u x

u y z y z
x 2

  
     


                                                    (2.8) 

hence, the cube out rate flow from the right hand side with respect to 

the unit time is: 

            
 u x

u y z y z
x 2

  
     


                                                   (2.9) 

thus, subtracting (2.8) from (2.9) yields to: 

          
 u

x y z
x

 
   


                                                                        (2.10)    

2. Flux in y-direction: 

        Similarly, as in the flux in the x-direction, we may note that the 

difference between the entering and out coming rate flow to be: 

           
 v

x y z
y

 
   


.                                                                  (2.11) 

3. Flux in  z-direction: 

         Also, in the z-direction 

           
 w

x y z
z

 
   


 .                                                                       

        Thus, form the flux rate in the x, y and z-direction, it will implies 

that the rate of mass flowing through the cube element in a unit time 

is given by: 
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     u v w

x y z
x y z

      
      

   
.                                  (2.12)           

Now, since  

        mass = volume × density 

                 = x y z   . 

Hence, the mass flowing in a unit time is:  

        
( x y z)

t

   


.                                                                              (2.13) 

Therefore, for equations (2.12) and (2.13), one may get: 

         
( u) ( v) ( w)

x y z t

      
   

   
.                                              (2.14) 

        Since the water is incompressible, i.e., 0
t





 and for steady state 

flow (which means that the following property are unchanged with 

respect to time, such as velocity and pressure). Shown in Fig. (2-3). 

 

Fig. (2-3) Equation of continuity, mass flows in the x-direction  

across the faces of a parallelepiped in three-dimensional flow. 
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        Therefore, the continuity equation resulting from (2.14) will take 

the following form: 

         
u v w

0
x y z

  
  

  
.                                                              (2.15) 

 

2.1.3 The Velocity Potential Function, [9]: 

        Let the velocity potential function Φ is a function of state 

variables x, y, z, and time t. Its first order partial derivatives in any 

direction represents the partial velocity in that direction. Hence, if Vs 

is the fluid velocity in the direction s then following: 

         SV
s





. 

         The function Vs satisfies two conditions really, namely:  

1. The function Vs is the continuity equation; where if

u and v
x y

 
 
 

, then by substituting in equation (2.15) for two-

dimensional cross section will give:  

          xx yy 0   .                                                                           (2.16) 

i.e., Φ satisfies the Laplace equation.  

2. The fluid flow is laminar, because if the flow is not laminar, i.e., 

turbulent or rotational, then it will implies that Φ is not a harmonic 

function. 
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       Now, from the definition of Φ, SV
s





  and from Darcy’s 

equation, we have: 

         x,y,z Kh C    .                                                           (2.17) 

where h is the total charge which is equals to the pressure charge
p


is 

a height plus its potential energy for a certain height Z (in which 
2v

2g

may be neglected as a small value because the fluid velocity in the 

porous medium is relatively small), i.e. 

        
p

K Z C
 

     
 

 .                                                             (2.18) 

        For completeness purpose, we introduce the following 

definitions as a basic concepts: 

 

1.  The stream lines:  

        The stream lines are that curves in which at every point and for 

a certain time the tangent lines determines the velocity driven and 

therefore it is not possible that liquid flows through the stream line. 

The stream line equation may be described as 

        C   .                                                                                          (2.19) 

where   is the stream function, [20]. 
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2.  The Equipotential lines:  

         They are not real curves which representing the line joint 

between that points with equal charge in which they are vertical to the 

stream lines. 

 

3.  The Flow net: 

        It is that net produced from the stream lines and equipotential 

lines. This net has its utility for describing the velocity at each point 

of the domain. 

 

2.1.4 The boundary conditions:   

        For steady state flow with, incompressible fluid and homogenous 

soil, there will be four types of non-compressible fluid and 

homogeneous soil. In addition, there are four types of boundary 

conditions for the irregular region: 

 

1. The impervious boundary:  

        The fluid cannot pass through this boundary and hence it is a 

non-permeable layer. If we consider this layer is attached in placed in 

the t-direction and n be the normal direction on the layer, the velocity 

with n direction equals zero, i.e., there is no breach through the layer, 

and hence: 

        nV 0
n


 


. 

which is the stream line, [8]. 

 

2. The reservoir boundary:  
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        Along this boundary the pressure distribution is hydrostatic, let 

M be any point in this boundary, the pressure will equals to, (see Fig 

(2-4)): 

         p h y   .                                                                         (2.20) 

where p is the pressure and   is the weighted density of the fluid. 

Hence substituting equation (2.17) will yields to: 

        Kh C   

where c, h and k are constants. 

 

                               Fig. (2-4) Reservoir boundary. 

 

3. Seepage surface boundary condition:  

        The surface in where the fluid emerge out of the porous medium 

and the flow is free. A pressure on this surface is atmospheric and will 

be constant along the seepage surface, and therefore: 

        0

p
K( y) C    


. 

whereas 
p


  is a constant say C1 ,i.e.: 

        1 0K(C y) C     .                                                            (2.21) 
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ifwill depend on y, it will be not a constant, not an equipotential 

line, not a stream line. Since it will intersects with the other stream 

lines. 

        As an illustration for the above, we consider Fig (2-5).  

 

  

 

 

 

 

 

 

 

Fig. (2-5)Two dimensional cross section. 

 

4.  Free surface:    

        The free surface is the first stream line from the flow network in 

the flowing reign, which may considered as an interface between the 

saturated and unsaturated soil areas, the leakage line is a stream line 

and so   will be constant along this line. Similarly, for the leakage 

surface, will satisfy: 

        ky  Constant                                                                (2.22) 

the boundary condition on the free surface are:   

         y=H(x)          ,         0 1xx x   

of the lateral fact: 

        0 0H(x )=H                                                                         (2.23.a) 

0H 

 

C 

 

D 

 

A 

 

B 

 

1H 

 

 

 O 

Free surface 

  Surface of seepage 

 

Equipotential lines 

 

Impervious boundary 
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        0
0

1
H (x )= –

M
    ,     0M ≠ 0                                             (2.23.b) 

        1 2 1H(x )=E ( )x                                                                   (2.23.c) 

        1 2 1H (x )=E ( )x                                                                   (2.23.d) 

 

 Remark: 

        In this chapter, we will use the velocity potential function of  

  so that: 

       Kh C                                                                                  (2.24) 

        In the next chapter, we will select C = 0 by choosing a given level 

and use a function equal to the voltage of . So that the   uses in the 

therefore,   is not depend on k in the next chapter, which is: 

         
1

k
              , k≠ 0                                                        (2.25) 

 

2.2 The Governing Equations: 

        Crank and Gupta in their book entitled "Free and Moving 

Boundary Value Problems", [5] described an accurate description and 

overview of the most analytical and numerical methods used to solve   

some of the real life problems of free and moving boundary value 

problems, in which the evaluation of the free or the moving surface is 

considered as a part of the problem. Therefore, in this section, we do 

not need to study such methods, which are dealt with in a number of 

research papers that are appeared recently (see for example [7], [11], 

and [21].  
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        The proposed approach can be described in the following steps 

1. Gonverting the boundary problem into given extreme vаriational 

problem. 

2. Using the direct Ritz method to solve the equivalent vаriational 

problem, where it is supposed that the solution when to be found has 

the following form: 

          
1

N

n n
n

u a


                      ,                n = 1, 2… N          (2.26) 

where na  parameters to be found and n  is a complete set of 

functions.   

        What is the different between other methods and the vаriational 

approach is the assumptions that the unknown part of the free surface 

can be expressed as an approximated function of other linearly 

independent functions, more generally, or complete set of function. 

The determination of this function is considered as a part of the 

problem under consideration. 

        Therefore, when compensating for the unknown surface in this 

way, the approximate solution of the vаriational problem will be 

turned into an equivalent problem, which is of finding the unknown 

parameters defining the solution and/or the free surface. 

         The rest of this chapter, we will explain how to find the solution 

of the water seepage problem in soil porous medium using series 

expansion in terms of polynomial basis function. 

        The problem of seepage in an earth dam in which its base ground 

is not permeable will be modeled in this section. The governing 

equation for this problem takes the form:  
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           xx yy 0   . 

where     
1

k
            ,   k   0. 

where   is the velocity potential functional and k is a constant. 

        To determine the boundary conditions of the problem, let us try 

to draw the following illustration figure for the two dimensional cross 

section of the earth dam (see Fig. (2-6)): 

Fig. (2-6) Cross sectional through two-dimensional dam. 

where 

H0: The water level in the reservoir. 

H1: The seepage water level through the dam. 

OA: The length of the dam base which are equivalent mathematically 

to y = 0, and   y(x,0)=0 . 
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OD: The height of the dam which passes through the origin (0, 0). If 

the slope of the rectum is M0, then M0 is given with the following 

relationship: 

         0

DN
M

ON
    .                                                                        (2.27) 

and if   ON = x0, then 

        0
0

0

H
M =

x
         ,           0x   0.                                             (2.28) 

Thus, if y = E1 (x) represents the equation of the straight line OD, then 

it is given by the following relationship E1(x) = M0 x and so

1 0
(x, E  (x)) = H . 

AB: is the dam reservoir side, which passes through the point (L, 0), 

where L is the length of the base of the dam. If the slope of this 

rectangle is M1, then M1 may be given as in the following relationship: 

          2A M = L – x                                                                                  (2.29) 

          2
O M = x                                                                                     (2.30) 

          1

MB
M =

AM
        ,       AM   0.                                                (2.31) 

therefore: 

         
1

1
2

H
M

L–x
        ,        

2
L x .                                                  (2.32) 

If 2 (x)y=E  represents the equation of the straight line with slope M1 

and AB passes through (L, 0), then E2 may be written as: 

         2 1=M( ) (L– )E x x           ,        2x   x  L                          (2.33) 

Therefore, from (2-32) and (2-33) we have: 

          2 1( (x))=x E H,                                                                            (2.34) 
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DC: represents the free surface and which may written using the curve 

y = H (x). Because  the evaluation of this curve is considered as a part 

of the problems, then it must be: 

          H H(x, (x))= (x)       ,       0 1x xx                       (2.35) 

where 1x =OP  

 CB: The line of the seepage surface which is the extension of the AB 

line, and then its equation has the form: 

          2
Ey= (x)         ,       1 2x xx                                               (2.36) 

and therefore  

         2 2(x,E (x))=E (x) .                                                   (2.37) 

 

        Thus, the governing equations and the boundary conditions of 

the underground water seepage problem are as follows: 

        xx yy+ =0                                                                          (2.38) 

        

1

2 1

0

2 1

2

y

0

2

0 1

2

(x)) =

(x)) =

H

(x,E (x))=H

(x,H(x))=H(x)

E (x)

(x,0)=0 , 0

(x,E , 0

,

,

(x,E ,  

x L

x x L

x x x

x xx

x x











  



  

  

  

 

                               (2.39) 

 

        Now, for the problem under consideration of this thesis, the 

above mathematical derivation of the system of governing equations 

(2.38) and (2.39) may be extended to the real life problem of the pond 

seepage problem (see Fig. (2-7)).  
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Fig. (2-7) Pond seepage  

        The boundary conditions related to the governing equation of the 

duplicated (one for the right side and the other for the left side), which 

will take the following final from: 

         xx yyΦ +Φ =0 ,  x,y ΩRor ΩL  

with initial and boundary condition for the right reservoir side: 

        yR x,0 =0 , 0 x LR    

        1 0 0R x,ER (x) HR , 0 x xR    

        2 1 2R x,ER (x) HR , xR x LRΦ     

       0 1
(x,HR(x))=HR(x)R , xR x xR    

       2 12 2
(x))=ER (x)R (x,ER , x xRxR    

        For illustration and simplicity, consider the above formulation 

for right reservoir as is at given in Fig. (2-8).    
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Fig. (2-8)One side of the right dam. 

        Also, the initial and boundary conditions for left reservoir dam 

(see Fig. (2-9)) is given by: 

                y x,0 =0 , 0 x LLΦL    

                  1 0 0L x,EL (x) HL , 0 x xL    

                  2 1 2L x,EL (x) HL , xL x LL    

                 0 1
(x,HL(x))=HL(x) ,L xL x xL    

                 2 12 2
(x))=EL (x) ,L (x,EL x xLxL    
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Fig. (2-9)One side of the left dam. 

        Figures (2-8) and (2-9) may be collected for our problem as it is 

shown in Fig (2-10). 

 

Fig. (2-10)Two – sided dams.
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Chapter   

    3 

The Variational Formulation 

and the Numerical Solution of 

the Pond Seepage Problem      
 

Introduction: 

        The organization of this chapter as follows. Where consisted of 

three section. In section 3.1, the mathematical formulation of the 

problem using Magri’s approach which was given in chapter one is 

presented, while in section 3.2, vаriational formulation of the problem 

to solve pond seepage problem. Finally, numerical simulation for the 

considered problem is presented with certain dam’s dimension, in 

section 3.4. 
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3.1 Mathematical Formulation of the Problem: 

        The mathematical formulation and modeling the pond seepage 

problem must pass through the physical derivation of the problem, 

which will not present here using by Darcy’s low for deriving the 

continuity equation and velocity potential function of the problem, 

[20]. 

        The mathematical modeling of the problem is formulated as a 

free boundary value problem and have the governing equation with 

initial and boundary condition of the pond seepage problem, which 

will has the form (see Fig. 3-1). 

   xx yyΦ +Φ =0 , x,y ΩRor ΩL                                               (3.1) 

with initial and boundary condition for the right dam side 

  

 

 

 

2 1

y

1 0 0

2 1 2

2

0 1

2(x)) =

R x,0 =0 0 x LR

R x,ER (x) =HR 0 x xR

R x,ER (x) =HR xR x LR

(x,HR(x)) = HR(x)

ER (x)

R xR x xR

R (x,ER x xR

Φ

xR

,

,

,

,

,

 

  

  

  

  










                             (3.2) 

  Also, the initial and boundary conditions for the left dam side one 

given by: 

       

 

 

 

2 1

y

1 0 0

2 1 2

2

0 1

2(x)) =

x,0 =0 0 x LL

L x,EL (x) =HL 0 x xL

L x,EL (x) =HL xL x LL

( ,HL(x)) = HL(x)

EL (x)

L

L x xL x xL

L (x,EL x xL

Φ

Φ

Φ

xL

,

,

,

,

,

 

 

 

  

  










                           (3.3) 
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Fig. (3-1) The free surface of the pond seepage problem. 

3.2 Variational Formulation of the Problem: 

To solve pond seepage problem, we have to solve equation with 

its relevant boundary and initial conditions, as well as the evaluation 

of the free surface as a part of solution of the problem. In this section, 

we turn to the vаriational formulation problem. The related functional 

derived using Magri’s approach is given by: 

        2 2

x yJ( ) dxdy



     
                                                         (3.4) 

where =  1 U  2, and  1 is the right sided seepage region which 

is decomposed for computation purpose into the following sub 

regions:    

         RR1  {(x, y): 0  x xR0, 0  y  ER1(x)} 

         RR2  {(x, y): xR0  x xR1, 0  y  HR(x)} 

         RR3 {(x, y): xR1  x xR2, 0  y  ER2(x)} 

         RR4 {(x, y): xR2  x LR, 0  y  ER2(x)} 

While  2 is the left sided seepage region and also for computation 

purpose is decomposed into the following sub regions:  
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        RL1  {(x, y): 0  x sL0, 0  y  ML1(x)} 

        RL2  {(x, y): sL0  x sL1, 0  y  GL(x)} 

        RL3 {(x, y): sL1  x sL2, 0  y  ML2(x)} 

        RL4 {(x, y): sL2  x KL, 0  y  ML2(x)} 

 

       Hence, the functional J may be rewritten for  1 and  2 

respectively as follows: 

       J ( )  
(x)1

2 2

x y

0 0

R ER0x

dydx   
   + 

xR HR (x)1
2 2

x y

xR 00

dydx   
    + 

                    

R 2ER (x)

2 2

x y

R 01

x 2

x

dydx   
   +

2

2

ER (x)LR
2 2

x y

xR 0

dydx   
        (3.5) 

       J ( )  
0 1sL ML (x)

2 2

x y

0 0

dydx   
    + 

1

0

sL GL(x)
2 2

x y

sL 0

dydx   
   + 

                      
2 2

1

sL ML (x)

2 2

x y

sL 0

dydx   
   +

2

2

ML (x)KL
2 2

x y

sL 0

dydx   
    (3.6)  

also,
1

 ,
2

  , 
3

 and
4

  on the region  1 or  2 respectively in the 

following form: 

       

1

2

0

1

1

M N

nm 0
m=0 n=0

M N

nm 0 1
m=0 n=0

M N

nm
m=0 n=0

M N

nm
m=0 n=0

n m

2 n m

2 n m

2 1
2 n m

2

(

2

1 2

1

2

3

4

x)

a

a

a

a

x y +H , 0

y (y-H(x)) x y +H(x) ,

y (y-E (x)) x y +E ,

, x x L

x x

y (y-E (x)) x y +H

y (y-E (x)) x x

= x

= x x x

=

=

  



  

 

 









     (3.7) 

and functions  
X Y
,   take the following formulas: 
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          x
x


 


        ,       

y
y


 


  

When the derivation of the x variable: 

     

11 1 0

2

3

2

2 n m 2 n m

2 n m 2 n
2 2

M N M N
2

nm nm
m=0 n=0 m=0 n=0

M N M N

nm nm 0 1
m=0 n=0 m=0 n=0

M N M N

nm nm
m=0 n=0 m=0 n=0

n mn mx ,

x= ,

x=

(-E (x)) 0

y (y-H(x)) x y +y (-H (x)) x y +H (x)

y (y-E (x)) x y +y (-E (x)) x

y (y-E (x)) a a

a a

a a

x yx y +y=

x x x

x x

 





 

  

 

 

2

2

4 2

m
1 0 2

2

M N M N
2

nm nm
m=0 n=0 m=0 n=0

n m n m
,x (-

y +E (x) ,

E (x))y (y-E (x)) a ax y x y= +y

x x x

x x L

  

   

 

When the derivation of the y variable: 

    

3 2

1 1 1

n m 3 2 n m

2

n m 3 2

3 2 2

M N M N
2

nm nm
m=0 n=0 m=0 n=0

M N M N

nm nm
m=0 n=0 m=0 n=0

M N
2

nm nm
m=0 n=0

n m n m
0

2
0 1

y - )(

y=( -2yH(x)) x y +(y -y H(x))( x y ) y

y=( E (x)) x y +(y -y E (x))(

3y -2yE a y E (x)) a y

3 a a

3y (y-2y a a

( (x)) x y + x y 0 x x

y , x x x

(y= ,





 

 

 

 



2

n m

3 2

4 2

M N

m=0 n=0

M N M N
2

nm nm
m=0 n=0 m=0 n=0

0 2

2)
n m n m

-

x y ) y

y (x))( y3y -2yE a y E a

, x x x

, x x L( (x)) x y +(y x y=

 

 



 

   

let us assume that the function H (x) is given: 

        
K

k
k

k=0

H(x)= b x         0 1
x x x   

on the free surface, as well as, functions definition, as follows: 

        2 3
0 1 0 2 0 3 0H(x)=b +b (x-x )+b (x-x ) +b (x-x )  

and     

        
2 0 0

2
1 3) (x-x )(x-xH (x)=b +2b +3b   

 

 

  



Chapter Three                                The Varіational Formulation and the 

Numerical Solution of the Pond Seepage Problem  

 

39 
 

 

3.3 Numerical Simulation of the Problem: 

        In order to solve the problem of this work, numerical simulation 

was carried using computer program written in MATLAB 2016a. For 

this purpose, suppose for  1 the following parameters are considered 

x0=0.5, x1=1, x2=1.5, L=2, H0=1.0, H1=0.5. Also, the free surface is 

assumed to be.     

           2 3
0 1 0 2 0 3 0

H(x)=b +b (x-x )+b (x-x ) +b (x-x )                           (3.8)  

for applying the boundary conditions, the formula becomes as 

follows: 

           0

2 3
0 0 3 0

0

1
H(x)=H (x-x )+B(x-x ) +b (x-x )

M
                           

So,   

           2b =B   

           
1

0
1 0

2
1 0

3

M
M

2B(x -x )

3(x -x )

1
+ +

b =                    , 
1 0

x x                     (3.9) 

         

 

The approximation of the function  using Ritz method over the 

four sub reigns R1, R2, R3 and R4, respectfully are:  

         

2
1 0

2

2
2 1

2
2 1

1 0

2 0 1

3 1 2

4 2

=y (y-E (x))(A+CX+DY)+H

=y (y-H(x))(A+CX+DY)+H(x)

=y (y-E (x))(A+CX+DY)+E (x)

=y (y-E (x))(A+CX+DY)+H

, 0 x x

, x x x

, x x x

, x x L

  

  

  

  

  (3.10) 
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        In order to find the coefficients A, B, C and D which minimized 

the functional (3.10), we evaluate the partial derivations of J with 

respect to those constants and everting to zero will leads to a liner 

system ,i.e., if: 

)11.3(  

2 2
1 1

2 2

2 2
2

2 2
2 2

1 0

2 0 2

3 1 1 2

4 2

=y (y-E (x))C+y (-E (x))(A+CX+DY)

=y (y-H(x))C+y (-H (x))(A+CX+DY)+H (x)

=y (y-E (x))C+y (-H (x))(A+CX+DY)+

=y (y-E (x))C+Y (-E (x))(A+CX+DY

, 0 x x

, x x x

E (x) , x x x

, x x L

x

x

x

x



 





 

 

 

 









           

and 

         

2 3 2
1 1

2 3 2

2 3 2
2

2 3 2
2 2

1 0

2 0 1

3 2 1 2

4 2

=3y -2yE (x)(A+CX+DY)+y -y E (x))D

=3y -2yH(x)(A+CX+DY)+(y -y H(x))D

=3y -2y (x)(A+CX+DY)+(y -y E (x))D

=3y -2yE (x)(A+CX+DY)+(y -y E (x))D

, 0 x x

, x x x

E , x x x

, x x L

y

y

y

y

  

  

  

  

(3.12) 

then 

          

0 1

1

0

2 2

1

x E (x)

2 2

1x 1 1y 1

0 0

x H(x)

2 2

2x 2y

x 0

x E (x)

2 2

3x 2 3y 2

x 0

2 2

4x 2 4y 2

I
2 (y (-E (x))+2 (3y -2yE (x)) dydx

A

2 (y (-H (x))+2 (3y -2yH(x)) dydx

2 (y (-E (x))+2 (3y -2yE (x)) dydx

2 (y (-E (x))+2 (3y -2yE (x))

+

+

+


 



 

 

 

   

  

  

 

 

 

2

2

E (x)L

x 0

dydx   

(3.13) 
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and 

    

0

0

x1 3

2 2 20

0 2x 2y y=H(x)

1 0x

H(x)x1 3

2 2 20

2x 0 0

1 0x 0

2

20

2y 0

1 0

3

20

0

1 0

I
= (

B

+

2(x-x )
((x-x ) + ) + ) dx

3(x -x )

2(x-x )
2 (y (-(x-x ) - )C+y (-2(x-x )

3(x -x )

2(x-x )
- )(A+Cx+Dy)+2 (-2y((x-x )

x -x

2(x-x ) 2
+ )(A+Cx+Dy)-y D(x-x )+

3(x -x )





 
  

 







 

3

0

1 0

(x-x )
))dydx

3(x -x )

(3.14) 

and 

       

0 1

1

0

2

x E (x)

2 2 2

1x 1 1 1y 1

0 0

x H(x)

2 2 2

2x 2y

x 0

E (x)

2 2 2

3x 2 2 3y 2

0

I

C

+

+

2 ((y (y-E (x))+y (-E (x))x)+2 ((3y _2yE (x))x) dydx

2 ((y (y-H(x))+y (-H (x)x)+2 (3y -2yH(x))x dydx

2 (y (y-E (x))+y (-E (x)x)+2 (3y -2yE (x))x





   

   

   

 

 

2

1

2

2

x

x

E (x)L

2 2 2

4x 2 2 4y 2

x 0

+

dydx

2 (y (y-E (x))+y (-E (x)x)+2 (3y -2yE (x))x dydx   

 

 

(3.15) 

and 

        

0 1

1

0

2

x E (x)

3 2 2 3 2

1x 1 1y 1 1

0 0

x H(x)

3 3 2 3 2

2x 2y

x 0

E (x

3 3 2 3 2

3x 2 3y 2 2

0

I

D

+

+

2 (y (-E (x))+2 ((3y -2y E (x))y)+(y -y E (x))) dydx

2 ((y (-H (x))+2 (3y -2y H(x))y+y -y H(x)) dydx

2 (y (-E (x))+2 (3y -2y E (x))y+y -y E (x))





   

   

   

 

 

2

1

2

2

x )

x

E (x)L

3 3 2 3 2

4x 2 4x 2 2

x 0

dydx

+ 2 (y (-E (x))+2 (3y -y E (x))y+y -y E (x)) dydx   

 

 

(3.16) 
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and upper carry the computer program, we get the following results:  

        H0=1.00,         H1=0.5,       x0=0.5,      x1=1,      x2=1.5,       L=2: 

               2 3
0 1 0 2 0 3 0

H(x)=b +b (x-x )+b (x-x ) +b (x-x )                 (3.17) 

then         A= -0.0706,   B= -0.0037,    C= -0.0677,    D= -0.0403 

and          b0=1.0000    ,   b1=0.5000   ,   b2=-1.0000 ,    b3= -0.6667 

 

Fig. (3-2) The right-hand side free surface of the two-dimensional 

pond seepage. 

         Similarly, we carry out the simulation for the left dam region 

 2 with the free surface is assumed to be:    

Using MATLAB R2016a, the following results have emerged when:       

      H0=1.00   ,    H1=0.5   ,     s0=-0.5   ,   s1=-1   ,   s2=-1.5,       K=2: 

              2 3
0 1 0 2 0 3 0

G(x)=r +r (x-s )+r (x-s ) +r (x-s )                       (3.18) 

              A= 0.1475,   B= 0.0000,    C= -0.2040,    D= 0.0527 

and 
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         r0= 0.5000 ,   r1= 1.0000 ,   r2= 0.5000 ,   r3= 2.0000 

 

Fig. (3-3)The left-hand side free surface of the two-dimensional 

pond seepage. 
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Conclusions and Recommendations  

 

  Conclusions and Recommendations for Future Work: 

      From the present work, we may conclude that the variational 

approach that may be used to formulate and solve many real life 

problems especially those problems which have so many initial and/or 

boundary condition and/or those problems which consists boundary 

condition of free or moving boundaries which must be determined as 

a part of the solution. 

        Also, we may recommend some problems for future work 

concerning to topic of this thesis, such as: 

1. Studying the three-dimensional pond seepage problems. 

2. Study the physical and mathematical formulation of the invers 

problem of pond seepage problem. 

3. Study and solve the underground water or oil or gas reservoirs. 

4. Use other numerical methods to solve the pond seepage problem, 

such the methods of lines and finite difference methods.    
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Appendix 

Using MATLAB R2016a. 

clc 

clear 

syms x y A B C D b2; 

x0=0.5; 

x1=1; 

x2=1.5;    

L=2; 

H0=1; 

H1=0.5; 

m0=H0/x0; 

m1=H1/(L-x2); 

b0=H0; 

b1=H0-(1/m0); 

B=H1/(x0-x1); 

b3=-(m1+1/m0+2*B*(x1-x0))/(3*(x1-x0)^2); 

b2=B; 

E1(x)=m0*x; 

E2(x)=m1-m1*x; 

H(x)=b0+b1*(x-x0)+b2*(x-x0)^2+b3*(x-x0)^3 

u1=y^2*(y-E1(x))*(A+C*x+D*y)+H0; 

u2=y^2*(y-H(x))*(A+C*x+D*y)+H(x); 

u3=y^2*(y-E2(x))*(A+C*x+D*y)+E1(x); 

u4=y^2*(y-E2(x))*(A+C*x+D*y)+H1; 

u=u1+u2+u3+u4; 

U1=diff(u1,A); 

U2=diff(u2,A); 

U3=diff(u3,A); 
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B 
 

U4=diff(u4,A); 

a1=int(int(U1,y,0,E1(x)),x,0,x0); 

a2=int(int(U2,y,0,H(x)),x,x0,x1); 

a3=int(int(U3,y,0,E2(x)),x,x1,x2); 

a4=int(int(U4,y,0,E2(x)),x,x2,L); 

A=a1+a2+a3+a4; 

C1=diff(u1,C); 

C2=diff(u2,C); 

C3=diff(u3,C); 

C4=diff(u4,C); 

c1=int(int(C1,y,0,E1(x)),x,0,x0); 

c2=int(int(C2,y,0,H(x)),x,x0,x1); 

c3=int(int(C3,y,0,E2(x)),x,x1,x2); 

c4=int(int(C4,y,0,E2(x)),x,x2,L); 

C=c1+c2+c3+c4; 

D1=diff(u1,D); 

D2=diff(u2,D); 

D3=diff(u3,D); 

D4=-diff(u4,D); 

d1=int(int(D1,y,0,E1(x)),x,0,x0); 

d2=int(int(D2,y,0,H(x)),x,x0,x1); 

d3=int(int(D3,y,0,E2(x)),x,x1,x2); 

d4=int(int(D4,y,0,E2(x)),x,x2,L); 

D=d1+d2+d3+d4; 

u(x)=diff(u,x); 

u(y)=diff(u,y); 

u2=y^2*(y-H(x))*(A+C*x+D*y)+H(x); 
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C 
 

R=diff(u2,x); 

N=diff(u2,y); 

g=diff(R,y); 

G=int(g,y,0,H(x)); 

j=diff(N,y); 

J=int(j,y,0,H(x)); 

t1=2*G*((y^2*(-(x-x0)^2)-(2*(x-x0)^3/(3*x1-3*x0)))*C+y^2*((-

2*x+2*x0)-2*(x-x0)^2/(x1-x0))*(A+C*x+D*y))+2*J*(-2*y*((x-

x0)^2+2*(x-x0)^3/(3*x1-3*x0)))*(A+C*x+D*y)-y^2*D*((x-

x0)^2+2*(x-x0)^3/(3*x1-3*x0)); 

B1=int(int(t1, y,0,H(x)),x,x0,x1); 

t2=((x-x0)^2+2*(x-x0)^3/(3*x1-3*x0))*(G^2+J^2); 

B2=int(t2,x,x0,x1); 

B=B1+B2 

[A,B,C,D]; 

[b0,b1,b2,b3] 

x=linspace(0,2); 

e=H(x)-2*x 

e1=(H(x))-3*x 

e2=H(x)-4*x 

v=plot(x,e,'k',x,e1,'^',x,e2,'<') 
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D 
 

Using MATLAB R2016a 

clc 

clear 

syms x y A B C D; 

x0=-0.25; 

x1=-.75; 

x2=-1.25;    

L=-1.75; 

H0=0.5; 

H1=0.25; 

m0=H0/x0; 

m1=H1/(L-x2); 

r0=H0; 

r1=H0-(1/m0); 

B=H1/(x0-x1); 

r2 =B; 

r3=-(m1+1/m0+2*B*(x1-x0))/(3*(x1-x0)^2); 

E1(x)=m0*x; 

E2(x)=m1-m1*x; 

I(x)=r0+r1*(x-x0)+r2*(x-x0)^2+r3*(x-x0)^3; 

u1=y^2*(y-E1(x))*(A+C*x+D*y)+H0; 

u2=y^2*(y-I(x))*(A+C*x+D*y)+I(x); 

u3=y^2*(y-E2(x))*(A+C*x+D*y)+E1(x); 

u4=y^2*(y-E2(x))*(A+C*x+D*y)+H1; 

u=u1+u2+u3+u4; 

U1=diff(u1,A); 

U2=diff(u2,A); 

U3=diff(u3,A); 
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E 
 

U4=diff(u4,A); 

a1=int(int(U1,y,0,E1(x)),x,0,x0); 

a2=int(int(U2,y,0,I(x)),x,x0,x1); 

a3=int(int(U3,y,0,E2(x)),x,x1,x2); 

a4=int(int(U4,y,0,E2(x)),x,x2,L); 

A=a1+a2+a3+a4; 

C1=diff(u1,C); 

C2=diff(u2,C); 

C3=diff(u3,C); 

C4=diff(u4,C); 

c1=int(int(C1,y,0,E1(x)),x,0,x0); 

c2=int(int(C2,y,0,I(x)),x,x0,x1); 

c3=int(int(C3,y,0,E2(x)),x,x1,x2); 

c4=int(int(C4,y,0,E2(x)),x,x2,L); 

C=c1+c2+c3+c4; 

D1=diff(u1,D); 

D2=diff(u2,D); 

D3=diff(u3,D); 

D4=-diff(u4,D); 

d1=int(int(D1,y,0,E1(x)),x,0,x0); 

d2=int(int(D2,y,0,I(x)),x,x0,x1); 

d3=int(int(D3,y,0,E2(x)),x,x1,x2); 

d4=int(int(D4,y,0,E2(x)),x,x2,L); 

D=d1+d2+d3+d4; 

u(x)=diff(u,x); 

u(y)=diff(u,y); 

u2=y^2*(y-I(x))*(A+C*x+D*y)+I(x); 
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F 
 

R=diff(u2,x); 

N=diff(u2,y); 

v=diff(R,y); 

G=int(v,y,0,I(x)); 

j=diff(N,y); 

J=int(j,y,0,I(x)); 

t1=2*G*((y^2*(-(x-x0)^2)-(2*(x-x0)^3/(3*x1-3*x0)))*C+y^2*((-

2*x+2*x0)-2*(x-x0)^2/(x1-x0))*(A+C*x+D*y))+2*J*(-2*y*((x-

x0)^2+2*(x-x0)^3/(3*x1-3*x0)))*(A+C*x+D*y)-y^2*D*((x-

x0)^2+2*(x-x0)^3/(3*x1-3*x0)); 

B1=int(int(t1, y,0,I(x)),x,x0,x1); 

t2=((x-x0)^2+2*(x-x0)^3/(3*x1-3*x0))*(G^2+J^2); 

B2=int(t2,x,x0,x1); 

B=B1+B2; 

[A,B,C,D] 

[r0,r1,r2,r3] 

x=linspace(0,-2) 

e=I(x)-x 

e1=(I(x))-x/2 

e2=I(x)-x/5 

v=plot(x,e,'k',x,e1,'^',x,e2,'<') 

 



 

 

 المستخلص

 

لمسائل القيم  التغايرية لدراسة الصياغةالرئيسي الاول لهذه الرسالة هو  الهدف        

المسائل التي تناولناها كانت معادلتها المتحكمة من . الحدودية ذات السطح الحر والمتحرك

 والشروط الحدودية من نوع السطح الحر. نوع معادلة لابلاس

سة ، لهذه الرسالة هو اشتقاق الصياغة الفيزيائية والرياضياتية قيد الدراالهدف الثاني         

صياغة وحل والتي يمكن اعتبارها مسألة ذات سطح حر. ثم  وهي مسألة النضوح في البرك 

اسلوب التغاير. كما واستخدمت طريقة رتز العددية  لحل  مالمسألة قيد الدراسة باستخدا

( لحل (MATLAB 2016a) المسألة تقريبيا، حيث تم كتابة برامج حاسوبية باستخدام لغة

  المسألة وايجاد النتائج العددية.



 

 
 

 

 جمهورية العراق            

 وزارة التعليم العالي والبحث العلمي

 جامعة بغداد              

 كلية التربية للعلوم الصرفة /ابن الهيثم

 قسم الرياضيات            

 

الصياغة التغايرية لحل مسائل القيم 

الحدودية الخطية ذات السطح الحر 

 والمتحرك
 

 رسالة

 جامعة بغداد –مقدمة الى كلية التربية للعلوم الصرفة / ابن الهيثم 

 ماجستير علوم درجةوهي جزء من متطلبات نيل 

 لرياضياتفي ا
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