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Abstract

The present work involves the synthesis and investigation of liquid

crystalline  behaviors for newly prepared derivatives  containing

pyrazole ring, as following:

1- Synthesis and identification of pyrazole compounds [XI-XVII],}

using the following steps:

a.

Compounds [I],,, Wwere synthesized via the reaction of 1,4-
phenylenediamine or benzidine, chloro acetic acid with sodium
acetate in ethanol as a solvent.

Synthesis of compounds [II],, by refluxing compounds [I]., and
methanol (MeOH) in H,SOy,.

Synthesis of acid hydrazide [III],; by the reaction of compounds
[I[].p, and hydrazine hydrate in ethanol as a solvent.

The reaction of acid hydrazine [lII],, with substituted
acetophenone[IV], to synthesized substituted acetophenone
hydrazones[V-XI],p.

Synthesis of 4-formylpyrazole derivatives [XII-XVIII],, via
cyclisation of substituted acetophenone hydrazones[V-XI],;, with

Vilsmeier-Haack reagent DMF/POCI;.

2- The synthesized compounds were characterized by spectral data.



3- Study of liquid crystal behaviour using Differential scanning
calorametry (DSC) and polarized optical microscope (POM) of the
synthesized compounds showed the following

a. The compounds [V-VIII], displayed enantiotropic nematic phase only
while compounds [IX], , [X]. showed enantiotropic dimorphism SmB
and N nematic phases , and [XI], displayed enantiotropic smectic C

phase and nematic phase.

b. The compounds [V-VIII], displayed enantiotropic nematic phase only
and compound [IX], display enantiotropic dimorphism smectic A phase
besides to nematic phase, but compound [X], showed smectic B only .

Compound [XI], showed smectic A phase only

c. The compounds [XII-XV], showed no liquid crystals behavior or
change from solid crystalline state to the isotropic liquid. The
compounds [XVI-XVIII], exhibited enantiotropic nematic phases only.

d. The compound [XII], showed no liquid crystals behavior or change
from the solid crystalline state to the isotropic liquid on the other hand
the compounds [XIII-XVIII], showed enantiotropic dimorphism smectic
B phase in addition to nematic phase. The present work summarized by

the following Scheme (I).
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Chapter one Introduction

1 Liquid crystal

1.1 Introduction

Liquid crystal is a state of matter which have properties of those
conventional liquid and crystals . For instance , liquid crystals flow like
liquid and oriented in crystals, Figure (1-1). There are different phases of
liquid crystals which have been distinguished using many optical
properties. Under polarized optical microscope, Liquid crystal have many

types of textures depending on the orientation of substance'”.

.kl . M
= \/f\'/ I
1M1

Figure(1-1) state of matter.

The Austrian botanical physiologist Friedrich Reinitzer®, reported the
physico-chemical properties of different compounds of cholesterol which
now belong to the type of substance known as cholesteric liquid crystals.
The workers observed the color of cholesterol compounds effects on
cooling just above the freezing point, however not associated it as a new
phenomenon. Reinitzer observed the color modify in a substance
cholesteryl benzoate were not the most peculiar feature. He noticed that
the cholesteryl benzoate does not melt in the same manner as many
derivatives, it has two melting points. In 145.5 °C it melts to give a
cloudy liquid, while at 178.5°C melts again and the cloudy liquid

becomes clear?
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In 1889 Otto Lehmann® used the expression "liquid crystals" to
describe this state. In 1922 Friedl™, used the term mesophase (from the
Greek word meso, meaning “in between” the crystal and liquid phases).

1.2 Liquid crystal phases

Liquid crystalline materials are generally divided into two categories:
The lyotropic mesophases and thermotropic ®) Figure (1-2).

L
W = oo
L

crystal

lyotropic, Ac thermotropic, AT

Figure (1-2): Placement of the liquid crystal phases within the general scheme.
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1.2.1 Lyotropic liquid crystals

This type of liquid crystals have two or many substance which show
liquid crystals behavior in different concentration. Solvent in this phase
plays important role to prevent the system from turning back to the liquid

state.

The substance which have two parts in same molecule named
amphiphilic substance. These compounds can display lyotropic type. A
lyotropic liquid crystals as soap and cell membranes Figure(1-3)®.

H
- nead .QT,..—
NN D 05 B = i — e e
T o7 NN
ore ‘tal’ ~ @ l ® -
(2 )
el
f“}"\j‘_‘
° Ll
R [
O—CH; h‘ia'j'
0O-CH g [ —] —
v brotig N
0 i . bwo "tails’ 9606
WIN{CHL )5 ”:; *L:):\"
2

®)

Figure (1-3): (a) Soap shape micelles (b) a phospholipids (lecitine) as bilayer
arrangement.



Chapter ane JIntroduction

When the amphiphiles as cylinders form the major shape of
hexagonal columnar , which oriented into a roughly hexagonal lattice.
This is named the middle soap phase. At still higher concentration, a
lamellar phase can be form, where in extended sheets of amphiphiles are
separated via water as thin layers. Also in this type can form a cubic
phase in addition to lamellar phases Figure (1-4)7.

rod-like micelles paed -
in a hexagonal arrangement, a lamellar phase.

Figure(1-4): Lyotropic Types
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1.2.2. Thermotropic liquid crystals

This phase of liquid crystals appear in a range of temperatures. At
high temperatures, thermal force breaks the delicate cooperative direction
of the LC phase and pushing the substance into a conventional isotropic
phase. While at low temperature, the LC materials will form a
conventional solid crystal.®” Figure (1-5) shows the changes in phases of
thermotropic LC with temperature changing."'”

*3-D lattice *1- (2-)D lattice  *nolattice * nolattice

* orientation « orientation s orientation * no orientation
* golid « fluid « fluid * fluid
Y anisotropic % anksotropic & anisotropic % isotropic

Figure(1-5):Solid, liquid crystals and isotropic liquid phase.

1.2,2.1.Calamitic liquid crystals

The materials of liquid crystal which have elongated shape is called
calamitic or rod like LCs"". In this kind of LC the length (1) is greater
than the molecular breadth (b) as shown in the Figure (1-6).

Aliphatic Chains

G}

Figure (1-6): The calamitic liquid crystals( length(1) >> breadth(b)).

5
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— o

The calamitic liquid crystals are divided to the three types:
-Nematic phase
-Cholesteric phase

-Smectic phase

i) Nematic phase

The nematic phase is the common liquid crystal phases. The nematic
word means thread which comes from Greek: nema. When the substance
in the calamitic shaped have no direction, which arrange parallel to the
long axes'?they are called nematic. That means, the substance like flow
of the liquid, also order of position. The direction of director is called
vector n(r). The uniaxial in this phase have one longer axis that’s appear
as rod, Figure (1-7).1?

Figure (1-7): Nematic phase.

The nematics have fluidity like to the ordinary isotropic phase and can
be aligned via electric field or an external magnetic. They also have the
optical properties of uniaxial crystals, and for this can, they have been
used in liquid-crystal displays (LCD) ) The molecules in a nematic
rotate around their long axes. The behave optically as a uniaxial material
and the sign of the director has no physical significance'”
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ii) Cholesteric phases (chiral nematic)

The chiral nematic phase is named the cholesteric phase for first
showed for cholesterol compounds. The chiral compounds can give
same a phase. This phase display a twisting of the compounds
perpendicular to the director with axis parallel to the director. Twist angle
between the molecules makes chiral order'®'”. When liquid crystal
substance twist 360° the distance means pitch(p), Figure (1-8).

Nematic Chiral Nematic

P/2

Figure (1-8): cholesteric phase

The chiral pitch p, is altered with temperature, then the pitch of a
given material to be tuned accordingly. The direction pitch in some liquid
crystal systems is in the same order as wavelength of light. Therefore,
properties such as Bragg reflection have been employed in many optical
applications. '#!?
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iii) Smectic phase

The word smectic originates from the Greek word "Smectic" which
means having similar properties to those for soap. This seemingly have a
wide origin is explained by the fact that the thick, slippery substance often
found at the bottom of a soap dish is actually a type of smectic liquid
crystal. In this phase the compounds have a degree of translational
arrange differ from those in the nematic. The smectic phase has two
dimensional orderand the layers of the substance are flexible in this phase.

The smectic liquid crystals containing many types of phases that
differs in the ordered of layer. When order is high, this means the smectic
state is like a solid. A number of different classes of smectics have been
recognized as smectic —( A,B,C,D,E, F, G, H, I), SmA, SmB, SmC, ...... ,
respectively. When the layer structure are parallel to to the plane, this
formed smectic A (SmA). These are optically uniaxial and hence
homeotropic texture watched on light crossed polarizes. The focal conic

texture or baton nets may be gives®**?,



Chapter one JIntroduction

The smectic C (SmC) is closely related to SmA phase but SmC is a
tilt. The difference between the two phases are tilt of the layers to the
long of axes in the molecule, Figure (1-9).

Smectic A Smectic €

€ (b)
Figure (1-9): Molecular arrangement (a) the SmA phase, and (b) the SmC phase.

In this phase, the molecules are tilted layers and the textures of the
system is characterized as biaxial , Figure (1-10).

. AN
crystal T T a ‘;;:‘ .:! .\;:t“if T o
Cr T “ T2 T 3 i‘l] “I "‘ Ta ¢ ‘
smectic C phase smectic A phase nematic phase isotropic liquld
SmC SmA N |

Figure(1-10) Textures of liquid crystal.
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1.2.2.2. Discotic liquid crystals

Nematic texture is formed in many types of mesophases and
different degrees of organization. It can be divided into two types
mesophases:

a. Nematic discotic b. Columnar.

a. Nematic discotic phase

The least arrangement mesophase is the Nematic discotic
(ND)@, where the molecules have only orientational order being aligned
on average with the director this shown as Figure (1-11). The order is no
positional in this phase.

Figure (1-11) Nematic discotic phase.

10
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__———————,_— e —————

b. Columnar phase

The columnar phase is a class of mesophases in which molecules
assemble into cylindrical structures to act as mesogens. Originally, these
kinds of liquid crystals were called discotic liquid crystals®® because the

structure of discotic is similar to columnar phase as shown in Figure (1-
12).

Figure (1-12) discotic columnar phase.

11
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1.3 Order of appearance
Thermotropic liquid crystals can be classified into three types:

1. Enantiotropic liquid crystals: this can be changed into the liquid
crystalline state by heating and cooling .

Crystalline Liquid crystalline _T Isotropic liquid state
solid state o8 Liquid state

Mesomorphic state

2. Monotropic liquid crystals: this can only be changed into the
liquid crystalline state by cooling.

Tl
Crystlline solid > [sotropic liquid

Mesophase

3. Polymorphism liquid crystals: different types of substances that
display smectic mesophase structure only or exclusively nematic
mesophase structure. While some display two types of mesophase,
smectic and nematic. This phenomenon is known as polymorphism

Figure (1-13).

T, T, T,  Nematic
Crystalline solid === Smectic-] === Smectic-ll =—=  or
Cholesteric
Isotropic liquid
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Figure (1-13): liquid crystal phases.

1.4 General structural of liquid crystals
Liquid crystal phases can be exhibited by molecules having
different molecular shapes.

formed as rod

shape,

it is now named calamatic,

The structure of molecules may be
which is

recently found in discotic liquid crystal phases as disc like molecules.

The typical structure of calamatic liquid crystal molecule

shown in Figure(1-14).

Z

|
=3
B

r—A

A

B'I

— Y

Figure(1-14) general molecular structure of Liquid crystal.

6% jg

X and Y are terminal groups as (C,Hjuv1 , OC,Hone1 , Br, C1, F, CN).

A is a linking group as (-CH,CH;- , -CH=CH- , -CH=N- , -N=N- ).

B and B' are two(or more) ring systems.

Z and Z' are lateral group.

13
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1.5 Application of liquid crystals

liquid crystals have a wide range of application particularly in display
due to their optical properties with or without electric field. In display
device the thick of liquid crystal layer is 4 pm between the
two polarizers that are at 90° oriented to each other. The liquid crystal
alignment is chosen for this is twisted phase!"?.

This twisted phase allow the light to pass through the first and then
the second polarizer. When an electric field applied to the LC layer, the
molecule align in parallel to the electric field redirection light, the first
and second polarizer is absorbed light polarized and when raise voltage,
loses transparency in the device. The electric field may be make a pixel
switch. LCD device employ the same technique, used color filters to
make red, green, and blue pixels'?.

In ferroelectric LCDs used chiral smectic phase, that modulators
switching light . Used same precept to manufacture many liquid crystal
with optical devices®. The filters LC canmade the in a electro
optical devices™, for example hyper spectral imaging.

The liquid crystal thermometers can made from thermo tropic LC
whose pitch change with temperature, the color material is change will
as change the pitch. Color liquid crystal can used on many aquarium in
addition to baths®”. Many substance of LC change the color, for this in
industry used liquid crystal sheets also in map heat flow. In the
semiconductor industry can used liquid crystal in flow type.

Gas chromatography has a great importance in the modern chemical
analysis and physico-chemical investigation. The first use of liquid
crystals as stationary phases in gas liquid chromatography is described by
Kelker and Fresenius in 1963°", the use of liquid crystals especially
nematic as stationary phase in gas liquid chromatography (GLC) has
gained a great interest, for example the separation of m- and p-xylen,
which has been difficult to separate is separated by nematic stationary
phase by GLC chromatography.

Liquid crystal can be used in liquid crystal lasers in the lasing
medium as a replacement to the external mirrors. Emission can made via
the liquid crystals with dielectric structure 239 Moreover, liquid crystals
polymer can used as adhesivethat applied to windows which are
electrically switched between clear and opaque modes.

14
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Different fluids, for instance, soapy water, are in fact liquid crystals.
Many types of liquid crystals can be formed depending on the

. . 4
concentration of soap in water ®*.

1.6. Schiff bases

The first preparation of Schiff bases was reported in 1864 by Hugo
Schiff. Schiff bases are formed when a primary amine reacts with an
aldehyde or a ketone under specific conditions. Structurally, Schiff base
are the compounds containing azomethine group (-HC=N-) [1]. Schiff
bases are of the most widely used organic compounds. They are used as
pigments and dyes, catalysts, intermediates in organic synthesis, and as
polymer stabilizers . Schiff bases have also been shown to exhibit a broad
range of biological activities. Imine or azomethine groups are present in
various natural, natural-derived, and non-natural compounds(3 3, They are
also used as liquid crystals , in analytical ,medical and polymer
chemistry ©%? 7

R, R3 = alkyl , aryl

R%=H, alkyl, aryl
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1.6.1.Synthesis of Schiff bases

Different methods for the synthesis of imines have been described The
classical synthesis reported by Schiff involves the condensation products
of ketones (or) aldehydes with primary amines. Formation of Schiff base
generally takes place under acid or base catalysis or with heat?. Schiff
bases can be synthesized from an aliphatic or aromatic amine and a
carbonyl compound by nucleophilic addition forming a hemiaminal,
followed by dehydration to generate an imine™?.

In the past 12 years a number of innovations and new techniques have
been reported, including solvent-free/clay/microwave irradiation, solid-
state synthesis and silica/ultrasound irradiation. Among these innovations,
microwave irradiation has been extensively used due to its operational
simplicity, enhanced reaction rates, and great selectivity. Microwave
irradiation is less environmentally problematic than other methods and
another feature of this technique is that the reactions achieve high

efficiency in a shorter period of time S

Many workers synthesis Schiff bases as below:

Yang et al.*® developed a microwave-assisted preparation method of
Schiff base[4] via efficient condensation of salicylaldehyde [2] and aryl
amines [3] without solvent, which is described in high yield as well as
environment friendly reaction in organic synthesis.

H
CHO C=N—Ar
M.W
+ Ar-NH, ——»
OH OH

[2] [3] [4]
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Yang and Sun *® reported the synthesis of (E)-4-methyl-N-(3,4,5-
trimethoxybenzylidene) benzenamine [7] by reacting compound [5]with 4-
methyl aniline [6] under microwave irradiation.

o) N
z NH, z

[5] [6] [7]

N-Sulfonyl aldimines [10] are powerful synthetic intermediates in
organic synthesis and industrial application. Sharghi, at el®? were
prepared expeditiously under solvent-free conditions by the reaction
between different aromatic aldehydes [8] and sulfonamides [9] in the
presence of AlCl;.

o)
\ /R2
2 ; N(\S\\o
R)J\H + Rg—g—NHz _AI& R/l\H
1 g RT 1
[8] [%] [10]

AL-Shimary > reported Schiff bases [12] derived from the reaction
of 5-amino-3- mercapto-1,2,4-thiadiazole [11] with salicyaldehyde [2] in
ethanol solvent

N—S GHO N—S y HO
I OH Reflux i

HS/AN)\NHZ + T EoR HS/LN/)\N=(E—©
[11] [2] [12]
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Also , Praveen et al."® synthesized Schiff bases of pyrazole [15] from
reacting 4-formyl pyrazole[13] with aromatic amine [14] using P-
Toluenesulfonic acid (PTSA) in toluene as a catalyst.

R2 PTSA / Toluene J:( Q

[13] [14] [15]

R1 CHO

Argade *” synthesized azomethine compounds [18] and[21] using
condensation reactions of 4-formyl pyrazoles [16]Jand[19] with hetero-
aromatic amine[17] as well as aliphatic amines[20] as below.

Ar CHO AL =
I H )
“N . HZN\g PTSA/Toluene_; \N\ /_
( ; \N

; 1

[16] [17] [18]

R CHO R —N

T X
~N 4 HN AcOH / ethanol N “N

Reflux

[19] [20] [21]
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Kumar ef al®® synthesized better antimicrobial compound using

benzaldehyd [22] with aromatic amine [23] for the formation of Schiff
base [24] in presences of alcohol and acidic reagent.

CHO SO,NH SO,NH,
N 2Ny C2H50H X y /@/
CH3COOH, Reflux Qé_N
H,N -

Shrs
[22] [23] [24]

Kriza et al.*® Developed a synthetic approach for obtaining Schiff
bases [27] via condensation reactions between isatin [25] and various
amines [26].

R
o 3¢,
R /
o + HZN@ = 0
H H

[25] [26] [27]

R=H,2-OCH;,4-OCH;

In addition, synthesis of Schiff bases[30] from reacting 4-amino-2-
aryl-3-oxo-1,2,4-triazoles [28] with aldehyde [29] under Mg(ClOy), as a
catalyst in ethanol as a solvent was performed 50,

” _N NN} N C/
BC : : : '\)\\ 2 CIO /E'[OH H N’” }\
Vlg C
\ t R CHO ( ! 4)2 ? Q—@—

[28] [29] [30]
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Pai and Waghmode ®? used microwave promoted synthesis of Schiff

bases of indolo [2, 3-b] quinoxaline [33] by the reaction of acid hydrazide
[31] with different aldehydes[32] in ethanol and glacial acetic acid GAA.
Microwave assisted synthesis has not only reduced the reaction time
drastically but also gave excellent yields of Schiff bases

~
\ / _CHcoon O \ N
CHOHMW, N
N—N=C
] H
kEH

[31] [32] [33]

R=H, 3-NO,, Furfural, 4-CH3, 2-OH, 4-OH, 4-N(CH3),, 2-Cl, 3-OCH3, 4-OCH3;

N NH,

Girgaonkar and Shirodker ©2) synthesized Schiff base 4-hydroxy-3-(1-
(arylimino)ethyl)chromen-2- ones [36], by condensation of 3-acetyl-4-
hydroxychromen-2-one [34] with primary aromatic amines [35] in ethanol
as a solvent.

Ar
OH (0] OH N~
I
CH Ethanol CH
ijL 3 4 Ar-NHy ——— dr 3
(0] (0] (0] 0

[34] [35] [36]

Ar=Phenyl, Toluyl, 4-chloroPhenyl, 4-anisyl

Hamil, et al.®® synthesized a new Schiff base 2-[2-(E)-(2-
hydroxyphenyl) ethylidene]aminoethyl) ethanimidoyl] phenyl [39], via the
reaction of two mole of 2-hydroxyacetophenone [37] with ethylene-
diamine [38].

OH OH HO

2@0:0 + HZN_EHz ——»@—C:N N=C©
&y HN—CH &, N~ dn,

[37] [38] [39]
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Also, 3-Substituted-4-amino-5-mercapto-1, 2, 4-triazole [42] was
obtained in an excellent yield in a single step by the condensation of
compound [40] with substituted aldehyde [41] 9,

PG,

[40] [41] [42]

Kulkarni, et al ©> synthesized Schiff bases [45] by the condensation
of 2-amino-4,6-dimethyl benzothiazole [43] with 2,5-dihydroxy
acetophenone [44] in ethanol

COCH, oH
H,C S OH Lo | HiC S CHs
NH, + S N=é
S LY EF“%
Hs Hy H
[43] [44] [45]

N-[(E)-phenylmethylidene]-benzenesulfonamide derivatives [48] were
synthesized by the reaction of aldehyde [46] with sulfonamide [47] using
solid SiO,-H;PO, catalyst under solvent free conditions using microwave

irradiation ©?.

o
L 0 Si0, - H;PO, = i
o O o~ O
X X
[46] [47] [48]

X=H, 3-Br, 4-Br, 2-Cl, 4-C], 2-F, 4-OCHj3 , 4-CH; , 4-NO,
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1.7.pyrazole

Pyrazole is an organic compound with the formula of C3H4N,. Itis a

heterocycle characterized by a 5-membered ring of three carbon atoms and

two adjacent nitrogen atoms 6D,

wn
\\h
»IZ2
\
2 w

Pyrazole

The term pyrazole was given to this class of compounds by the
German Chemist Ludwig Knorr in 1883 ©® In a classical method
developed by German chemist Hans von Pechmann in 189847,

Pyrazoles are useful in organic synthesis. They are one of the most
studied groups of compounds among the azole family. Indeed, a huge
variety of synthesis methods and synthetic analogues have been reported
over the years. The presence of the pyrazole nucleus in different structures
leads to diversified applications in different areas such as technology,

medicine and agriculture®®”.
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1.7.1.Synthesis of pyrazole derivatives
Many methods describe the synthesis of pyrazole derivatives as below:

One-pot synthesis of pyrazoles [50] has been accomplished by the

reaction of B-formyl enamides [49] with hydroxylamine hydrochloride

catalyzed by potassium dihydrogen phosphate in acidic medium ©n

R2
R2:[CH° NH,OH.HCI _ ,F
KH,PO - N

Ry "NHAc = 2 ¢ R; N
Ac
[49] [50]

A novel pyrazole derivatives[52] were synthesized from
tosylhydrazone [51] exploiting microwave activation coupled with solvent
free reaction conditions 2.

CH;y H
(@]
dfé{ N = N,N-dimethylformamid
H H =

[51] [52]
Synthesis of 1,3- and 1,3,5-substituted pyrazoles[55] from regioselective
reaction of diarylhydrazones [53] and vicinal diols [54] in iron-
catalyzed 63),

CHsy
HsC

N
HN3
[

-

Ar HO 5mol% FeCl; Ar

j\l o j\ 2eq. acetylacetone U
leq. TBHP,O;(1atm) ~N R
~ HO R
IH 90°C or 120°C, 6h A
r.I
[53] [54] [55]
R=H,CH3;
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Also, a ruthenium (II)-catalyzed intramolecular oxidative (C=N)
coupling method for the facile synthesis of a tri- and tetra-substituted
pyrazoles [57]. Oxygen gas was employed as an oxidant in this
transformation and the reaction demonstrated excellent reactivity .

\ R Rz
i N N Ru(lly /}/—\(
RN AR, O y N'N
Ra R1
[56] [57]

R;=Aryl R,,R3;,R,=H, Aryl, Alkenyl

In addition to synthesized 1-aryl-3,5-bisarylpyrazoles[60] via reaction of
1,3-diketone[58] and arylhydrazines[59] with complementary

regioselectivity at position 3 and 5 ©3),

Ar"
(0] 0] !
H EtOH : AT
S O -
Ar Ar' HN” SAr" Reflux 4h \
A
[58] [59] [60]
Ar=4-CIC¢H,4
AI‘", Ar' = C6H5
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Vilsmeier—Haack reaction

The Vilsmeier Haack reagent, a halomethylenium salt formed from
phosphorus oxychloride (POCl;) and N,N-dimethylformamide (DMF), has
attracted the attention of synthetic organic chemists since its discovery in
1927. The Vilsmeier Haack reaction is a mild method for the introduction
of formyl group in various activated aromatic and heteroaromatic
compounds. The Vilsmeier Haack reagent is also utilized for synthesis of
many heterocyclic derivatives (66)

Many researchers synthesized pyrazole derivatives using Vilsmeier—
Haack reaction as below:

Rajput and Girase® converted 2-acetyl benzofurans [61] into

benzofuran phenyl hydrozone [62] via reaction with phenyl hydrazine in
ethanol and acetic acid. The intermediate phenyl hydrazone [62] was
cyclized to product pyrazoles derivatives [63] when subjected to
Vilsmeier-Haack reaction conditions.

Ry H
S

EtOH / AcOH

%

[62]

R,=H,CH, [63]

R,=H,NO, 2
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Also, Goudarshivannanavar et al.®” reported the reaction of 2-acetyl
benzofurohydrozones [64] with Vilsmeier-Haack reagent then via
formylation to produce 3-(benzofuran-2-yl)-1-(substituted phenyl)- 1H-

pyrazole-4-carbaldehyde [65] .
OHC

CH, \ <
% DME / POCl, \
— Reflux / 2hr g

R=H,CH;,0CH;,CLF,Br
[64] [65]

Condensation of acetylferrocene [66] and phenyl hydrazine [67] then

intramolecular cyclization of the intermediate hydrazone [68] under

Vilsmeier-Haack conditions to produce 1H-3-ferrocenyl-1-phenyl

pyrazole-4- carboxaldehyde [69] were reported by Damljanovic et al (*®

ITh
o -~ ~
N\
Ph
| Ethanol
+ N E——
HN- H reflux
Fe Fe
) ©)
Ph
[66] 4 [68]
POCl; (3equiv) N7
—DBMF Tt N/

HO

Fe

©

[69]
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Ramu, and Rajagopal ® have reported the synthesis of 3,6-
di(pyrazol-4-yl) carbazoles [72]. The reaction of the Vilsmeier reagent
with hydrazones of diacetylcarbazoles [71] yielded the corresponding
pyrazole dicarbaldehydes [72] in good yields.

o}
Me PhHNN
(@ NNHPh
Me O O _PhNHNH, Q
N AcOH
R

[7o] @

1 DMF excess

POCl;, 80 °C

R = Me, Et, n-Bu, CH,Ph
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1.8. Liquid crystal compounds containing heterocyclic rings

Many liquid-crystalline substance containing heterocyclic units has
been synthesized over many years. This research area has grown in
recent years for substantial synthetic methodologies. When the
thermotropic materials containing heterocyclic as core units, this lead to
importance to their ability to impart lateral and longitudinal dipoles
combined with changes in the molecular shape. Moreover, presence
heteroatoms may influence considerable changes in the liquid-crystalline
phases as well as in the physical properties of the showed phases, this is
because of the heteroatoms (S, O, and N) that are more polarizable than
carbon.

Many researchers reported that five-membered heterocyclic display
mesophases and the presence of a heteroatom can influence the
mesomorphic behavior, due to the electronegativity difference presented in
relation to carbon or through changes in geometry of compounds. The
heterocyclic compounds are used due to their large dipolar moment. The
five membered ring with disubstituted is not linear also this infulance of
linearity, don’t formed the mesophases. However, studied the relation
between structural of five membered heterocyclics unity and liquid
crystals properties ao,

In recent years the research synthesized liquid crystals that have
heterocyclic due the development new mesogenic compounds which has
attracted their attention. There are many types of heterocyclic liquid
crystals such as compounds containing 1,3,4-oxadiazole and 1,3,4-
thiadiazole moiety. The later compounds were very useful in producing of
stable thermotropic smectic and nematic phases than the 1,3,4-oxadiazole
substance. Moreover, recently research have investigated the influence
of length the alkoxy or alkyl chain , cores of mesogenic and hetero ring
on liquid crystal behavior 7"
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Murza et al. " prepared new liquid crystalline azomethines with
thiazole moiety [73] showed nematic mesomorphism. The study showed
the correlation between the geometric parameters and liquid crystalline

properties.
Q o) ] N
2 \
0Oz S)\ Nzﬁ@oan2n+1

[73]

n=1-8

Also, U. Kauhanka and M. Kauhanka."? synthesized and reported
new liquid crystalline for compounds 3-aryl-5-alkyl-1H-pyrazoles with
ether [74] and ester[75]. They also discussed the influences of core
heterocycle type and bridging group on the mesomorphic properties for
the synthesized compounds.

N—NH
ArCH204©—</\\
CsHy;

[74]

Ar=NC-©— , CHOLO)—C)— - CHOC )~ )~

o)
ﬂ N—NH
& CSHII

[73]
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Thaker, et al.” synthesized and studied liquid crystalline properties
of two new homologous series of calamitic liquid crystals containing a
substituted pyrazole ring 4-(4-n-alkoxybenzoyl)-5-methyl-2-( phenyl or
4- methyl phenyl ) -2,4- dihydro -3H- pyrazole -3-one [76]. Both series
show liquid crystalline properties from the heptyl homologue. Middle
members of Series-A and Series-B exhibit nemetogenic behavior while
higher homologues exhibit smectogenic behavior only €2

CH,
N—
XOM COOR
hod
[76]

Where, X=H or CH3; R=C,Hy,;,n =210 8, 10, 12, 14, 16, 18

Karam, et al. "® synthesized amino compounds with 1,3-thiazole
[73].. All compounds [77], displayed enantiotropic mesomorphism. The
compounds[77], ( when n=1-5 ) display enantiotropic nematic mesophase
while the compounds of series [77], (when n=6-8) displayed an
anantiotropic smectic C and nematic phases.

Hons1CnO ] N
>—NH2
S

[77]

n=1-8
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Shanker et al.”> synthesized and studied liquid crystalline properties
for compounds containing 1,2,4 —oxadiazole ring [78], these compounds
showed the nematic phase.

N—O
4

R2

0]

3
[78]
R'= C4Hy, CsHyy, CeHys

R*=0C¢H,; R’=H

Also, Subrao et al. "” synthesized and studied liquid crystalline

properties for compounds containing 1,2,4 —oxadiazole ring [79]. These
compounds showed the semactic SmA phase only when R=PhCH, but
showed SmA and SmC’ phases when R=C,Hs.

RO L
)\{
CnH2n+1

[79]

RZPhCHz, C 12H25
n=8,9,10,12
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Lim et al. ™ synthesized compounds containing pyridyl ring[80].
The decyloxy compound not displayed LC, but n-dodecyloxy to n-
hexadecyloxy compounds showed Sm A phase.

Hans1CnO

[80]

nz12

Al-Karawi, et al.”” synthesized and studied mesomorphism behavior
of pyrazoles compounds 3,5-bis[4-(n-alkoxy)phenyl]-1H-pyrazole (where,
n-alkoxy: O(CH;),H, n = 6,7,8,9 or 10)[81]. The studies showed that all of
these compounds of the pyrazole derivatives are liquid crystal materials.

[81]

R=C,Hzn n=6,7,8,9,10
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In addition synthesis and investigation of liquid -crystalline,
properties for 1,2,3-triazolederivatives [82] via cycloaddition reaction
derived from 3-phenylenediamine or 4-phenylenediamine %

0O N=N 0
\}: " 8 0 N=N 0
/ M —@ﬂ_&vn\}&
H

[82]
R=C,Hjn+
n=1,2,3,5,6,7,8

Recently, Karam et al.®)  synthesized and investigated the
mesomorphic  properties for new series of triazine-core[83]. The
formation of mesomorphic properties was found to be dependent on the
number of methylene unit in alkyl side chains.

[83]

n=3,4,5,6,7,8

33



The aim of the work

This work including the synthesis, structural characterisation and
studying of liquid crystal behaviour for two series containing pyrazole

ring. This contains:

-Synthesis and characterization of new compounds containing pyrazole
ring derived from 1,4-phenilinediamine and benzidine compounds.

- Study the effect of heterocyclic on the liquid crystal behavior of
synthesis derivatives.

- Study the effect of rigid core, imine linkage and alkoxy as a terminal
group in synthesized derivatives on the liquid crystal behaviors.
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2. Chemicals and techniques

2.1 Chemicals

The chemicals and solvents used in present work and supplies companies

are listed in Table (2-1).

Table(2-1) Chemicals used in this work and their suppliers

Company Puri
compound % urity
supplied %o
Aldrich Benzidine 98
1-Bromo 99
(ethane,propane,pentane
,hexane heptane ,octane)
chloro acetic acid 99
Ethyl acetate 90
Hydrazine hydrate 80
1-Iodo methane 99.5
Iodine 99.9
4-phenlenedi amine 99.9
Phosphorus oxychloride 99
(POCls)
Sodium acetate 99.9
BDH N,N-Dimethylformamide |99
(DMF)
4-Hydroxy acetophenone | 99
Fluka Acetone 99.5
Methanol 99.9
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GPR Anhydrous potassium 99
carbonate

Merck Diethyl Ether 99.5
Dimethyl sulphoxide 99
(DMSO)
glacial acetic acid 98
Sodium bicarbonate 98

Riedel-deHean | Benzene 99.5
Hydrochloric acid 37
Sulfuric acid 98

Scharlau Absolute ethanol 99.9
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2.2. Techniques

2.2.1.Spectroscopy
a) Fourier transform infra-red spectrophotometer (FTIR)

The spectra of FTIR were measurement using SHIMADAZU (IR
Affinity-1) FTIR spectroscopy at College of Education for Pure Science
(Ibn-Al-Haitham), University of Baghdad; and to FTIR-600 spectrometer,
(UK) at College of Education for pure Science (Ibn- Al-Haitham)\
Central Service Laboratory, University of Baghdad.

b) Nuclear magnetic resonance spectrometer (IH-NMR)

'HNMR spectra were measurement using Ultra Shield 300 MHz,
Bruker, Switzerland, at University of Tehran, Center Lab (Islamic
Republic of Iran). The measurement were in ppm(3), DMSO as a solvent

and TMS as internal standard.

¢) Mass spectroscopy:

The mass spectral of measurement were done using: Agilent
Technology(HP). MS model:5973Network Mass Selective Detector. Ion
source electron Impact (El) was 70ev. Ton source temperature was230°C

at University of Sanfati Sharif-Tehran /Iran.
2.2.2. Melting point measurements

Uncorrected melting points were determined using hot-stage, Gallen

Kamp melting point apparatus.
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2.2.3. Hot stage polarizing microscopy

The texture as while as transition temperatures were recorded via
polarized optical microscope model Leica DM2500 M, College of
Education for Pure Science (Ibn-Al-Haitham)\ Central Service

Laboratory, University of Baghdad.

2.2.4. Differential scanning calorametry (DSC)

The differential scanning calorametry DSC measurements were
determined using STAPT-1000LINSIS, German origin, average heat rate
5°C/minute, College of Education for Pure Science (Ibn-Al-Haitham)\
Central Service Laboratory, University of Baghdad.
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2.3.Synthetic procedures

2.3.1. Preparation of 2,2'-(1,4-phenylene bis (azanediyl)) di acetic
acid [I], and 2,2'-([1,1'-biphenyl]-4,4'-diylbis(azanediyl))diacetic acid
1,

O O

H Hy H H Hy u
HO—C—C —N N—C —C—OH
X

[I] a,b

A mixture of 1,4-phenylenediamine (0.108gm , 0.001 mol) or
benzidine (0.184gm, 0.001mol), chloro acetic acid (0.188 gm ,0.002mol)
with sodium acetate(0.16gm , 0.002mol) in ethanol(SmL) was prepared.
The mixture was refluxed for 4 hrs. The mixture was then Cooled and
ice water added. After the mixture was filtered and acidified using
10%HCI. After adding ethyl acetate, the organic layer was separated,
dried and recrystallized. The nomenclature, structural formula, molecular
formula, yield, melting point and color of these compounds are listed in
Table (2-2).
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2.3.2. Preparation of di methyl 2,2'-(1,4-phenylene bis (azanediyl))
diacetate[II], and di methyl 2,2'-([1,1'-bi phenyl]-4,4'-diyl bis
(azanediyl)) di acetate[II],*”

0] 0]
Hy H H H, H
H,C—O0—C—C —N N—C —C—-0O—CH4,4
X
X=1,2
[]ab

To 200 mL of absolute methanol 55.158gm (0.246mol) of
compound [I], or 73.8gm (0.246mol) of compound [I], and (5.4mL) of
Conc. H,SO,4 wasadded. The mixture was refluxed for 6hrs, cooled then
solution of sodium bicarbnate 5% was added. After that precipat was
filtered then washed with water and ethanol was for recrystallized. The
nomenclature, structural formula, molecular formula, yield, melting point

and color are summarized in Table (2-2).

2.3.3. Synthesis 2,2'-(1,4-phenylene bis (azanediyl))di(acetohydrazide)
[III], and 2,2' -( [ 1,1' — biphenyl | - 4,4' - diyl bis (azanediyl)) di
(acetohydrazide) [III] 2

0] 0]
a [/—\] =

H2N—H— —gz—N [\ /J N_gz—g—H_NHz
7 X

X=1,2

[ ]ap

To compound [II], (1.5gm , 0.006mol) or compound [II], (1.97gm
, 0.006mol), 3mL of hydrazine hydrate (80%) and absolute ethanol SmL
were added. The mixture was refluxed for 3hrs and left to cool at room

temperature; then dried and recrystallized by ethanol. The
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nomenclature,structural formula, molecular formula, yield, melting point

and color of these compound are summarized in Table(2-2).

2.3.4.General procedure of prepared 4-n-alk0xyacet0phenone[IV],,(78)

O

n=1,2,3,5,6,7.8
[1V],

A mixture of 4-hydroxyacetophenone (0.204gm , 0.0015mol) and
anhydrous potassium carbonate (0.8gm , 0.012mol) was dissolved in
20mL of acetone. After that, n-alkylbromide (0.004mol ) was added and
the mixture was refluxed overnight. After word, the mixture was poured
onto ice water. The mixture was extracted by ethyl acetate and the
organic phase was removed after that and evaporated to yield 4-n-
alkoxyacetophenone. The nomenclature, structural formula, molecular
formula, yield, melting point and color of these compounds are listed in

Table (2-3).

2.3.5.Synthesis of  2,2'-(1,4-phenylenebis(azanediyl))bis(N'-(1-(4-
alkoxyphenyl)ethylidene)acetohydrazide)[V-XI], and 2,2'-([1,1'-bi
phenyl]-4,4'-diyl bis (azanediyl)) bis (N'-((E)-1-(4-alkoxyphenyl)
ethylidene) acetohydrazide) [V-XI],

0 o
H Hy H H H H )
CoHony E=N—N—&-C —N@N—CZ—&—N—N=C Colyna
H3 X éHs

X=1,2
n=1,2,3,5,6,7,8

[V-XTI]ap
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Acid hydrazide [III], or [II], (0.001mol),4-alkoxy acetophenone
[TV], (0.002mol), SmL of absolute ethanol and some drops from glacial
acetic acid (GAA) were mixed. The solution was heated for 4-Shrs then
cooled after that filtered and recrystallized from ethanol to give the
compounds [V-XI], and [V-XI],, The nomenclature, structural formula,
molecular formula, yield, melting point and color for derivatives [V-XI],,
[V-XI], summarized in Table (2-4) and (2-5), respectively.

2.3.6. Synthesis of 1,1'-(2,2'-(1,4-phenylene bis (azanediyl)) bis
(acetyl)) bis (3-(4-alkoxyphenyl)-1H-pyrazole-4-carbaldehyde) [XII-
XVIII], and 1,1'-(2,2'-([1,1'-biphenyl]-4,4'-diyl bis (azanediyl)) bis
(acetyl)) bis (3-(4-ethoxyphenyl)-1H-pyrazole-4-carbaldehyde) [XII-

XVII],

n llI / \N &'gz_h’@' 22 @ N/ \¥ |1 2r|+|
X=1,2
n=1,2,3,5,6,7,8

[XII-X VI,

The derivatives [V-XI], or [V-XI], (0.0lmole) were added to a
mixture of Vilsmeier-Haack reagent (prepared by drop wise addition of
6mL of phosphorus oxychloride POCI; and 50mL of dimethyl formamid
DMF in ice cooled). The reaction mixture was refluxed for 6 hrs. After
that the mixture was cooled and poured onto ice cold water. Following,
the solution was neutralized using sodium bicarbonate than was filtered to
obtained the products. The nomenclature, structural formula, molecular
formula, yield, melting point and color for derivatives[XII-XVIII], , [XII-
XVIII], were summarized in Tables (2-6) and(2-7), respectively.
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Chapter thyee Results and Discussion

3. Results and discussion

3.1. Preparation and characterization of 2,2'-(1,4-phenylene bis
(azanediyl))diacetic acid[I], and 2,2'-([1,1'-biphenyl]-4,4'-diyl bis
(azanediyl))diacetic acid [I],

The substances [I],, prepared via the reaction of 1,4-
phenylenediamine or benzidine and two moles of chloro acetic acid in
ethanol and sodium acetate.

o 0 o)
CH,COONa / EtOH H H H
HzN—@—NH{" 2 CH,C—8 —op SHBCOONa/BOH Ho-g—CZ-N@N—CZ—E-OH
X X

X=1,2 [apb

I

The compounds [I],, were characterized using melting points
measurements and FTIR spectroscopy.

The spectra of FTIR for compounds [I], and [I], showed
disappearance of stretching bands of NH, groups of starting materials
and showed absorption of stretching bands at 3404-2596 cm™ , 3363-
2590 cm™ of OH groups,3404 cm™ (interference with OH group),3186
cm’” for NH groups in addition to C=0O (carboxylic groups) at (1728) cm’
', (1712) em™, respectively. Figures (3-1) and (3-2) show the data of
FTIR spectra for [I], and [I], respectively.

3.2. Preparation and Characterization of di methyl 2,2'-(1,4-
phenylene bis (azanediyl)) diacetate[II], di methyl 2,2'-([1,1'-bi
phenyl]-4,4'-diyl bis (azanediyl)) di acetate[II]},

The reaction of compound [I], or [I], and two moles of methanol
with H,SO, produced substance [II], or [II],

o} o) o} o
Hy H H H 2CH,0H / H,S0 Hy H H M
Ho-&—c -N@N—C Lo ZEHOHT T30, H3CO—(l.l,—C -N N—C —(l!—OCHa
X X

[Mab [1]a,b

X=1,2
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The mechanism®” for synthesize of these compounds is shown
Scheme (3-1) below:

o) o) ot &
I e H@J m | P H@H ne
HO—C—C —N N—C —C-OH === [HO-C—C —N N—C —C-OH
X p X (
H-0-CHj CH;-0-H

OH OH [ oH oH |
(L Hy H H H é e J: H, H H H é
HO—C—C —N N—C —C-OH == |HO-C—C —N N—C —C-OH
+ +
! x| x

H”* NcH, Hee” T NH
|' PT
: HY H
OH OH ot 5/
il (B4~ 1m0
Hy H H H H 2 H H
:\_ _ =N N—cz—Jz-oﬁ =Haco—| —c*-R H—Cz—g-OCHa
" A X
CH, e +2H,0
‘ 2H
0 0
H, H H H
H3C0—ﬁ—CZ—N N—CZ—H—OCHa
X
X=1,2

Scheme(3-1): The mechanism for synthesized [I1],,

Compounds [II],, identified via melting points and FTIR
spectroscopy. The data spectral of FTIR displayed disappearance of
stretching band of C=0 and OH groups for carboxylic acid[I],,. They
also showed bands at (1735)cm™, (1728) cm” for C=0 ( ester groups) and
C-O groups at (1253)cm'1, (1261)cm'1 , respectively. Figures (3-3) , (3-
4) show FTIR spectra for substances [II], and [I] , ,respectively .
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Chapter three Results and Discussion

3.3. Synthesis and Characterization of 2,2'-(1,4-phenylene bis
(azanediyl)) di (acetohydrazide) [III], and 2,2'-(]1,1'-biphenyl]-4,4'-
diyl bis (azanediyl)) di (acetohydrazide) [111],,

The derivatives [I1I],, synthesized by the reaction of [II], or [II]s
with two moles of hydrazine hydrate (80%) and ethanol .

o) o) o o)
H, H H H 2NH,NH, H,0 Hy H H Ho
H3CO—E—C -NO-N—C —(!-OCH3 —{?(—”Tz—- H2NHN-g—C -N N—c”—&_NHNH,
X ’ X

[H] a,b [IH] a,b
X=1,2

The acid hydrazide compounds [III],}, identified via melting points
and FTIR spectroscopy .

The spectra of FTIR of [III],;, displayed disappearance of stretching
band of C=0 for ester groups for compounds [II],;, and appearance of
asymmetric and symmetric bands for NH, and NH groups in (3311-
3197)em™, (3332-3180)cm™ and bands at (1662)cm™ , (1664) cm™ to
C=0 (amide groups), respectively. Figures (3-5) and (3-6) show FTIR
spectra for compounds [II1], and [III] , respectively.

3.4. Preparation and characterization 4-n-alkoxyacetophenone
v,

The compounds [[V], were preparation from the reaction of 4-
hydroxyacetophenone with n-alkylbromide and anhydrous potassium
carbonate in acetone.

0 hy. K;CO
1o Ybooy + Gt BrmEO o0 () boon,

[IV]a

n=1,2,3,5,6,7,8
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The mechanism® for synthesized compounds is illustrated in Scheme
(3-2) below:

0
K,CO -
HOO—E—CHazca—/mm—;— (%@7&—0”3 -

RCH,-Br
-

& 0]

&- J: - 9
Br--'-‘) i;-O‘@_&_CHa e — RCHZO@—&—CH;,
s || I
C.H,,,,0 —Q—B—CH:;

R=H,CH;,C,H;s,C4Hy,CsH;;,CsH i3 and C,Hys

Scheme (3-2): The mechanism for synthesized compounds [IV}],

The compounds [IV], were characterized using FTIR spectroscopy .
The FTIR spectra for these compounds showed the disappearance of a
absorption stretching band of OH group of 4-hydroxyacetophenone and
the appearance absorption stretching bands of C-O groups of 4-n-
alkoxyacetophenone [IV], in the region (1225-1259) cm’’. The data of
FTIR for [IV]n were summarized in Table (3-1), Figures (3- 7) and (3-8).
The FTIR spectra for compounds [IV]; and [IV],, respectively.
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3.5. Synthesis and characterization of 2,2'-(1,4-phenylene bis
(azanediyl)) bis (N'-(1-(4-n-alkoxyphenyl)ethylidene) acetohydrazide)
[V-XI], and 2,2'-([1,1'-bi phenyl]-4,4'-diyl bis (azanediyl)) bis
(N'-((E)-1-(4-n-alkoxyphenyl) ethylidene) acetohydrazide) [V-XI},

The Schiff bases compounds [V-XI], and [V-XI], were synthesized
from the reaction of acid hydrazide [III], or [III], and two moles of 4-n-

alkoxyacetophenone[IV], and some drops of glacial acetic acid (GAA)
in solvent as ethanol.

0 0 o
g Ho H H Hp E U EtOH/ GAA
H,NHN-C—C =N N—C —C-NHNH, + 2 H;C— OCiHonyy —————
X

(], [IV]n
0 o]
H g Hy H H H LK
H2n+1cn0 C=N—N— —C -N N—C —C—-N—N=C OCnH2n+1
J:H3 X (I5H3
[V-XI]ap

X=1,2 n=1,2,3,5,6,7,8
compounds [V-XI], when X=1

compounds [V-XI], when X=2
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The mechanism® for synthesized compounds is shown in Scheme
(3-3) below:

+
(0] OH
l! i - 4
CyHapiy O —CHs » CH,,,0 —CHs
2
&(ﬂ)H
CoHyt O i—CHs H,C— j©_ OCyHagsy

/

0]

o
> H u Hy H H Hy || H
H,N—N—C—C —N N—C —C-N—NH,
X

0 o) o
H 7 H H H H H
CyHyy, O ¢ ﬁ—N—C-cz-N@N—cz-é—N-ﬁ)—é@—oc..uzn..
2WAN VAV
P.T
+ +
{OH, o] [¢) { OH,
. H Hy H H H H 4
Culyn O & q—N—C-Cz—N@N—Cz—&—N—N—(EA@—UC..I-Im.n
éH3 'L X |l| éH3
l-szo
0 0
® H H, H H H H
CyHy O C—= -—N—C-Cz—N@N—Cz—é—Nt%:—C‘@_OCnHM
6H34]_T\ X (,J_.t CHs _
H,0 l-zH+ H,0
o} 0
H » HoH H H H
CoHyy, O C=N-N_C-CZ—N@N—Cz-&-N—N=C—©—0Cnﬂm
&H, X EH,
X=1,2
n=1,2,3,5,6,7,8

Scheme (3-3) The mechanism for synthesized compounds [V-XI],y,
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Synthesized derivative compounds were characterized these via FTIR
and "HNMR spectroscopy.

The FTIR data for derivatives [V-XI],, displayed disappearance of
stretching bands of NH, groups of [III],;, and C=O(ketone) for 4-n-
alkoxyacetophenone[IV], and appear bands of (C=N) group in (1635-
1610) cm™ and (1630-1620) cm’ ,respectively. Also, appear bands of
NH groups in (3390-3290) cm™ and (3373-3310 ) em™ ,respectively. Also
showed stretching bands of carbonyl groups (C=O amid) in the region
(1670-1660) cm™ and (1674-1664 ) cm” ,respectively. Figures (3-9 ) ,(3-
10) for compounds [V], , [X]. and Figures (3-11) ,(3-12) for compounds
[VII]p,[ VIIT],, respectively.

The values of FTIR of derivatives[V-XI], and [V-XI],, are
summarized in Tables (3-2) and (3-3) ,respectively.

The spctrum of 'HNMR (in DMSO-d6) for [VII], Figure (3-13)
displayed a singlet signal at § 10.33 ppm of two protons of NH of (-CO
NH -)groups, a singlet signal at 5 9.80 ppm of two protons of NH of (-
NHCH,-) groups, signals at & (7.84-6.84) ppm for twelve aromatic
protons, signal at § 3.99ppm for four protons of OCH; groups , signals
at & (3.51) ppm for protons of (-CH,-) groups , a singlet signal at 5 2.28
ppm for six protons of two CHj groups and triplet signal at & (1.76-
0.85)ppm of six protons of two CH; groups(-CH,CH3).

The "HNMR (in DMSO-d6) for [X], Figure (3-14) showed a singlet
signal at § 10.37 ppm of two protons of NH of (-CO NH -)groups, a
singlet signal at § 7.92 ppm of two protons of NH of (-NHCH,-) groups,
signals at 8 (7.91-6.84) ppm for twelve aromatic protons, triplet signal at
8 (4.06-4.04) ppm of four protons of (-OCH,-) groups , signal at 6 3.72
ppm for four protons of (-CH,-)of (-NHCH,-) groups signals at region 5
(1.70-1.11) ppm for twenty protons of (-OCH, (CsH;o)CHj3) groups ,a
singlet signal at § 2.47 ppm for six protons of two CH; groups and triplet
signal at § (0.88-0.86) ppm of six protons of two CH; (-CH,CHj). 2.47
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'HNMR (in DMSO-d6) of [XI],, Figure (3-15), displayed a singlet
signal at 8 10.37 ppm of two protons of NH of (-CO NH -), a singlet
signal at 6 8.41 ppm for two protons of NH of (-NHCH,-), signals in
(7.92-6.84) ppm for twelve aromatic protons, triplet signal at & (4.06-
4.03) ppm of four protons of (-OCH,-) groups , signal at & 3.75 ppm for
four protons of (-CH,-)of (-NHCH,-), signals at region 6 (1.7-1.11) ppm
for twenty four protons for (-OCH, (C¢H;,)CH3) groups ,a singlet signal
at & 2.54 ppm for six protons of two CHj; groups and triplet signal at o
(0.88-0.85) ppm for six protons of two CHj groups(-CH,CH3).

The 'HNMR spectrum (in DMSO-d6) for [VIII],, Figure (3-16),
displayed a singlet signal at 6 10.41 ppm of two protons of NH of (-CO
NH -), a singlet signal at & 7.70 ppm of two protons of NH of (-NHCH,-
), signals in & (7.84-6.85) ppm of sixteen aromatic protons, signals at 6
(4.05) ppm of four protons of (-OCH,;-) groups , signal at & 2.47ppm of
four protons of (-CH,-)of (-NHCH,-) groups, many signals at § (2.27 -
1.35) ppm of twelve protons of (-OCH,(CH,); CHj3), a singlet signal at
& 2.09 ppm for six protons for two CHj , signals at region 6 (1.24 -0.90)
ppm for six protons for (-OCH,(CH,); CH3).

Mass spectrum for [VII],, Figure(3-17), showed many peaks may be
to related the formation of compound [VII],.
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3.6. Synthesis and characterization of 1,1'-(2,2'-(1,4-phenylene bis
(azanediyl)) bis (acetyl)) bis (3-(4-n-alkoxyphenyl)-1H-pyrazole-4-
carbaldehyde) [XII-XVIII], and 1,1'-(2,2'-([1,1'-biphenyl]-4,4'-diyl
bis (azanediyl)) bis (acetyl)) bis (3-(4-n-alkoxyphenyl)-1H-pyrazole-4-
carbaldehyde) [XII-XVIII],

Synthesized 4-formyl pyrazole derivatives [XII-XVIII],, via
cyclisation substituted acetophenone hydrazones [V-XI], or [V-XI], with
Vilsmeier-Haack reagent DMF/POCI,

Hy H H, B
Hyre1CnO _N_N-d_c2 R —C°—C-N—N= OCnHaneq
J;Ha

[V- XI]ab
j 2POCl, / DMF

0 0
H H
H2n+1CnO©—C// WN—CC’ N Ki}}m 0 Uy \\C—O—OCnHZM
@ L
XII-XVIII
OHC [ Jap HO

X=1,2 n=1,2,3,5,6,7,8
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The Scheme(3-4) shows the mechanism reaction®”

A-
HsC o HsC H HsC H
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Ar—CLN—N—&-C N N-C’-8—N—ND—c-Ar
X
Hzé‘\)\ (; &H,
H l H
HsC H o H o HsC H
i H H H H - N
Ni__cg Broci, Hil H_C-CZ-N@N_CZ-C_N RH “—og Broc,
Hie” e Ar X Ar Hie” Nei
\\CHZ l H2
i HO O H, H H H, O /N _H |
\Q_H_C-CZ-N@}N-CZ-LH—@/
X
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[ O ey
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H o oM
H, H H H
N——I!I—C-Cz—N N-Cz-C—l!l—N
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H o l oM
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C- OH H, O
N——N—C—Cz-“ n-cz-C-N—-N
Ar—gh /éHr@w X %H(]:\ ﬁlé-m
C M C
l) C| = E’2|j l\I
H H H H
HC HsC H
: \N_céc%})oaz
HaC Hac/ I
NMe,
|
C/
WIS
ILD H,0
Fd
L on
H, O N
z_ﬁ@}n_cz_e-,« Ne_ar
- T
OHC CHO
X=1,2
Ar= @—oc,,}[_,n,,
n=1,2,3,5,6,7,8

Scheme (3-4): The mechanism for synthesized compounds[XII-XVIII],},
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The 4-formyl pyrazole derivatives [XII-XVIII],, were characterized
via FTIR, '"HNMR in addition to mass spectroscopy (for compound
[XVI],).

The data FTIR for these compounds showed disappearance of
stretching bands of Schiff bases groups for starting materials [V-XI],p
also appearance bands in region (1708-1674) cm™ and (1695-1690) cm™
assigned to C=0 aldehyde groups and absorption bands at region ( 1649-
1630 ) cm™ and (1649-1630) cm™ for C=N groups of pyrazole rings®®,
respectively. This is a good evidence for cyclization of pyrazole ring.
The FTIR data for [XII-XVIII], , [XII-XVIII], were summarized in
Tables (3-4) and (3-5) ,respectively. Figures (3-18),(3-19) for compounds
[XII], , [XV]. and (3-20), (3-21) for compounds [XIII], , [XV]y ,

respectively.

The 'HNMR spectrum for [XII], (in DMSO-d6), Figure (3-22),
showed a singlet signal at 8 9.92 ppm of two protons for CH of (-CHO,
a singlet signal at 6 8.63ppm of two protons NH for (-NHCH,-) , signals
at & (7.93-6.83) ppm of twelve aromatic protons and two protons of
pyrazole rings®. A singlet signal at & 3.81 ppm for six protons of OCH;
groups , a singlet signal at & 2.93ppm for four protons of (-CH,-) groups
were also observed.

The 'HNMR spectrum for [XV], (in DMSO-d6), Figure (3-23),
showed  a singlet signal at & 12.62 ppm for two protons NH for (-
NHCH,-), a singlet signal at 6 9.87 ppm for two protons of CH of (-CHO
-) groups, signals at & (8.07-6.77) ppm for twelve aromatic protons and
two protons of pyrazole rings, triplat signal at 6 ( 4.09-3.98) ppm of four
protons for OCH,, a singlet signal at 6 2.95ppm for four protons of (-
CH,-), signals at (1.7 -1.24) ppm for twelve protons of (-CH,-); groups
and triplet signal at 8 ( 0.91-0.89)ppm of six protons of CHs.

Mass spectrum for [XVI], , Figure(3-24), showed many peaks that
can be to formed from pyrazol ring.
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The "THNMR spectrum  of [XIV], (in DMSO-d6 as a solvent), Figure
(3-25), appeared a singlet signal at 6 10.28 ppm of two protons for CH of
(CHO), a singlet signal at 6 9.82ppm of two protons NH for (-NHCH,-)
, signals at o (8.30-6.77) ppm of sixteen aromatic protons and two
protons for pyrazole rings, triplat signal at 6 ( 4.05-3.95) ppm of four
protons of (-OCH,-) , a singlet signal at 6 2.95ppm of four protons for (-
CH,N-), signals at (2.09 -1.72) ppm of four protons for (-OCH,CH,CHj3)
and triplet signal at 6 ( 1.24-0.86)ppm of six protons of (-OCH,CH,CH3;).

The 'HNMR spectrum of [XVII], (in DMSO-d6 as a solvent),
Figure (3-26), displayed a singlet signal at & 10.30 ppm of two protons of
CH for(CHO), a singlet signal at & 8.20ppm of two protons NH for (-
NHCH,-) , signals at 6 (7.92-6.84) ppm of sixteen aromatic protons and
two protons for pyrazole rings, triplat signal at 6 ( 4.08-3.98) ppm of four
protons for(-OCH,-) , a singlet signal at & 3.12ppm of four protons for (-
NCH,-), signals at (2.95 -1.23) ppm of twenty protons for (-
OCH,(CH,)sCH3 ) groups and triplet signal at 8(0.88-0.85)ppm of six
protons of groups (-OCH,(CH;)sCH3).
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3.7. Liquid crystalline properties

The transition phase temperatures and mesophase type (texture
identity) of all compounds were investigated by using hot-stage
polarizing optical microscopy (POM) and by differential scanning
calorimetry (DSC). Phase identification was made by comparing the
observed textures with those reported in the literature®*"".

3.7.1. The mesomorphic properties of Schiff bases [V-XI],

0 0
H Il HH H il o
CiHyuu O C|3=N-N—C—C -N N—C -C—N—N=(|J OC,Hy4g

n=1,2,3,5,6,7.8

The transition phase temperatures and phase assignment of series [V-
XI], are summarized in Table (3-6). The derivatives [V-VIII], displayed
enantiotropic nematic phase only as in Figures (3-27) and (3-28) for
compounds[V], and[VII],, respectively, the DSC thermogram for [V], as
in Figure (3-29). While the compounds [IX], and [X], showed
enantiotropic dimorphism SmB phase besides to N phase as in Figures (3-
30) of smectic B phase for compounds [IX],. The Figure (3-31)shows
nematic texture for compound [X],. In addition, compound [XI], showed
enantiotropic smectic C phase and nematic phase as Figure (3-32) of
textures smectic C phase for compound [XI],. The Schiff bases [V-VIII],
with n= 1-3,5 showed nematogenic behavior, while the compounds [IX-
X1], with n=6-8 exhibited dimorphism Smectic(Sm) and nematic(N).
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Gray and Goodby (°® were explain this results in expression of ratio
of terminal/lateral (/1) interaction forces. If the ratio is high, the
substances tend to show nematic phase, while , if the ratio is low the
substance tend to display smectic phase.

A plot of the transition temperature against the number (n) of
carbon atoms in the alkoxy chain for compounds [V-XI], is shown in
Figure (3-33). The geometry of the compounds[V-XI], is shown in
Figure (3-34).

Figure (3-34): 3D structure of [V-XI],
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3.7.2. The mesomorphic properties of Schiff bases [V-XI],,

0
H Il By H, ||
C,Hy, O T=N_N_C—C -N - -C—N—N—c 0C H,,.;

n=1,2,3,5,6,7,8

The phase transition temperatures of Schiff bases [V-XI],
summarized in Table (3-7). Compounds [V-VIII], displayed
enantiotropic nematic phase only as in Figure (3-35) for compound[VI]s.
The compound [IX]» showed enantiotropic dimorphism smectic A phase
besides to nematic phase as Figure (3-36) for texture smectic A phase of
compound [IX],. But the compound [X], showed SmB phase only as in
Figures (3-37) and (3-38) for texture of smectic B phase and DSC
thermogram , respectively.. In addition to the compound [XI], display
SmA phase only as Figures(3-39) and (3-40) for texture of smectic A
phase and DSC therrmogram, respectively. The geometry of these
compounds is in Figure (3-41).

The transition temperature versus the number (n) of carbon atoms in
the alkoxy chain for compounds [V-XI], were plotted in Figure (3-42).
The homologous series shows nematogenic and smectogenic behavior
with good thermal stability when n=7,8.

Figure (3-41) 3D structure for compounds [V-XI]y
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Chapter thee Results and Discussion

3.7.3. The mesomorphic properties of [ XII-XVIII],

0 0
N N
/2N ” H2 H H Hz "
CnHZnHO‘@'C/ N—C—C'-N N—c-Cc-N" ¢ OC H,
OHC CHO

[XI-XVIII], c

n=1,2,3,5,6,7.8

The phase transitions temperatures for compounds [XII-XVIII], are
summarized in Table (3-8).

The derivatives [XII-XV], did not reveal any liquid crystalline
behavior but simpl changes from the solid crystalline state to the isotropic
liquid.

The compounds [XVI-XVIII], gave enantiotropic nematic phases only,
as shown Figures (3-43),(3-44) and (3-45),respactivaly. The geometry of
the compounds [XII-XVIII], is in Figure (3-46).

The transition temperature versus the number (n) of carbon atoms in
the alkoxy chain for compounds [XII-XVIII], were plotted, in Figure (3-
47). The regular odd-even effect of both the crysral to nematic and
nematic to isotropic transition can be clearly seen in this Figure. The
homologous series shows nematogenic behavior with good thermal
stability when n=6.

Figure (3-46) Three dimensional structure for derivatives [XII-XVIII],
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Chapter three Results and Discussion

3.7.4. The mesomorphic properties of [ XII-XVIII],

N TN
2\ 2 H H H
CnH2n+IOQC/ N—-C—C -NN—c -c—N" \C‘QOCHHZW
OHC ‘

(XX VIIT], CHO

n=1,2,3,5,6,7.8

The phase transition temperatures of compounds [XII-XVIII], were
summarized in Table (3-9). The compound [XII], did not show any liquid
crystalline behavior, but simple changes from the solid crystalline state to
the isotropic liquid. On the other hand, the compounds [XIII-XVIII],
showed enantiotropic dimorphism SmB phase besides to N phase as in
Figure (3-48) for texture of smectic B phase of compound [XIV]y,. The
nematic phase texture for compound [XVI],, is shown in Figure (3-49). In
addition to Figure (3-50) for nematic phase for compound [XVIII],. The
geometry of the compounds [XII-XVIII], is shown in Figure (3-51).

The transition temperature versus the number (n) of carbon atoms in
the alkoxy chain for compounds [XII-XVIII], were plotted in Figure (3-
52). The odd-even effect of the crysral to smectic B, smectic B to
mematic and nematic to isotropic transition can be clearly seen in this
Figure when the n=5-8.

Figure (3-51) 3D structure for derivatives [XII-XVIII]y,
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Chapter three Results and Discussion

In this study, comparison between the homologous series [V-XI], and

series [V-XI], revealed many findings.
0
H Hy |l
N—C -c—N—N=(|: OC,Hy.

Hz
CHy O |_N -N
H || Hz H
CnHEII"'|O T:N N=(|: OCnH2n+]

n=1,2,3,5,6,7.8
[V-XI],

au)

f‘é

[V-X1],

n=1,2,3,5,6,7,8

We found that both of the homologous series [V-XI],, showed
different types of nematogenic and smectogenic behavior in addition to
the series [V-XI], which gave mesomorphic transitions N-I at lower
temperatures than series [V-XI]s,

Also, when compared between the homologous series [XII-
XVIII], and series [XII-XVIII] .

N
Z
CnH2n+]0‘©’C/ @ —C C N O n 2n+l

OHC [XI-XVIT], C]-[O
n=1,2,3,5,6,7,8
P || H, 8
CnHzm IOAO'Cé 2 —N oC H2n+l
O]‘IC
[XI-XVITI],
n=1.23,5,6,7,8
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Chapter three Results and Discussion

The compounds[XII],, didn’t show any liquid crystalline behavior,
but simply changes from the solid crystalline state to the isotropic liquid
this result may be attributed to the shorter of alkoxy chain (when n=1). In
addition, the compounds [XIII-XV], showed no liquid crystalline
behavior while the homologous series [XIII-XV], gave enantiotropic
nematic phase for compound [XIII], and enantiotropic nematogenic and
smectogenic behavior for compounds [XIV],,[X V], .

The compounds [XVI-XVIII], showed only enantiotropic
nematogenic behavior but the compounds[XVI-XVIII], showed
enantiotropic dimorphism SmB phase in addition to N phase. The above
structures of derivatives[V-XI],p, and the derivatives [XII-XVIII],,p
appear that have the same structure but different in rigid core, the
compounds [V-XI], and [XII-XVIII], containing phenyl core but the
compounds [V-XI], and [XII-XVIII], containing biphenyl core. The
biphenyl system is fairly rigid and if the individual biphenyl rings are
near planer, conjugative interactions in the molecule will be enhanced®”.,

Thus the monophenyl compounds [V-XI], and [XII-XVIII], gave
mesomorphic transitions N-I at lower temperatures in comparison with
the homologues containing two aromatic rings compounds[V-XI], and
[XII-XVIIT]y,respactivaly. It means that the increasing of the aromatic
rings on the core structures of a liquid crystal compounds can largely
effect on the transition temperature of that particular compounds®?.
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Conclusions

According to the obtained result from this study, the following
conclusions can be drawn:

1- Synthesis of new pyrazole derivatives derived from
1,4-phenylenediamine or benzdine. The FTIR, 'HNMR, and mass data

gave a good evidence for the formation derivatives.

2- Studying the liquid crystalline behaviors of synthesized derivatives

gave:

a) Schiff bases [V-XI],, with different alkoxy terminal groups which
showed different types of mesomorphic phases. This behavior may by

related to geometry of structure and interaction forces in compounds.

b) The compounds containing pyrazole ring [XII-XV], did not display
liquid crystal behavior, but the compounds [XVI-XVIII], exhibit
enantiotropic nematic phases. Also, derivatives [XII], showed no liquid
crystalline behavior, but the compounds [XIIT-XVIII], showed
mesomorphases behavior smectic B phase besides nematic phase and
study the influence of the terminal groups in addition to the geometry of

the molecules on mesophases properties.
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Suggestion for future work

1. Synthesis and determine the liquid crystalline properties of new
pyrazole derivatives derived from 1,2-phenylenediamine or 1,3-

phenylenediamine

2. Synthesis and determine liquid crystalline behavior of new Schiff
bases dervived from 4-formylpyrazole derivatives with different aromatic
amines.
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Table(2-2): The nomenclature, structural formula, molecular
formula, yield, melting point and color of compounds [I-III],

Comp. Molecular | Yield | M.P
Nomenclature Structural formula n Color
No. formula % C
2,2'-(14-
0 phenylenebis(aza . E o . QZE o C1oH;2N>O | 65% | 98-100 | brown
| nediyl))diacetic wees O e i
acid[1],
2,2-([1,1"-
(1o d;t;/ll;l))}ilse(rzi};gr-lig;/l) HO—E—SZ—H“—SZ—LOH CmHTNZO 68% | >300" | brown
)diacetic acid
dimethyl 2,2'-
(1,4-phenylene HyC—O: I EZH i H;E oH o
(. | bis (azanediyhy | "~ AL EHoen | CoHiNoO | go, | 5300 il
diacetate )
dimethyl 2,2'-
([1,1'-biphenyl]- i # S
(1, s |t B0 O e | CuHaNi0 | g | 1450 | prown
diylbis(azanediyl) 4
)diacetate
2,2-(1,4- o, o
1], | phenylenebis(aza HZN_H_ﬂ_cZ-H_< >7H_c2_ _fowm, | CigH16N6O . dark
L] nediyl))di(acetoh 2 85% | Gummy brown
ydrazide)
2,2([1,1-
biphenyl]-4,4'- M X el it "’E N
(s | diylbis(azanediyl) | e 0@ =e-iiws | Cr6H20N6O 75% 165 | brown
)di(acetohydrazid 2
e)

65




Table(2-3): The nomenclature, structural formula, molecular
formula, yield, melting point and color of compounds [IV],

Comp.

Nomenclature

Structural formula

Molecular

formula

Yield
%

M. P

Color

[IV]i

1-(4-
methoxyphenyl)
ethan-1-one

O
HSC_O_QE_%

CoH10 02

78

32-34

brown

[IV]2

1-(4-
ethoxypheny!)
ethan-1-one

0]
csz_o@LCHa

C1oH1202

70

oily

brown

[IV]s

1-(4-
propoxyphenyl)et
han-1-one

o
C3H7—O—©—g—CH3

C11H140,

77

Oily

brown

[IV]s

1-(4-

(pentyloxy)pheny
1) ethan-1-one

o
CsHﬁ—OAQ—g—CHa

Ci3H;302

72

28-30

brown

[TV]e

1-(4-
(hexyloxy)phenyl
) ethan-1-one

0]
CGH13_OG£_CH3

C14H2002

74

Oily

brown

[IV],

1-(4-

(heptyloxy)pheny
1) ethan-1-one

0
c7|-|15_04<37g_w3

Ci15sH220;

78

40-42

brown

[IV]s

1-(4-

(octyloxy)phenyl)
ethan-1-one

o]
CBHH_OO_H_CHB

CisH2402

70

Oily

brown

66




Table(2-4): The nomenclature, structural formula, molecular
formula, yield, melting point and color of compounds [V-XI],

Comp
. No.

Nomenclature

Structural formula

Molecular

formula

Yield
%

M. P
¢

Color

[Vla

2,2'-(1.,4-

phenylenebis(azaned
iyl)bis(N'-((E)-1-(4-
methoxyphenyl)ethyl
idene)acetohydrazide

)

Hﬁﬂ@c—u O u-c-@om,
\”f \C/ \./ \

Cy3H3oNgO4

75

156-
158

brown

[Vl

2,2'-(1,4-
phenylenebis(azaned
iyD)bis(N'-((E)-1-(4-
ethoxyphenyl)
ethylidene)acetohydr
azide)

0 . 0
Cﬁﬁ@—trﬁ\ ’!VHGIVH\ = —Q&C;ﬂ,
éHs b iy i, ! éHJ

C30H36NO4

73

162-
164

brown

[V},

2,2'-(1,4-
phenylenebis(azaned
iy))bis(N'-((E)-1-(4-
propoxyphenyl)
ethylidene)acetohydr
azide)

T
cq_m-@v-en\ H—@—H P oot
WYY Y4

Ci32H4oNgO4

70

158-
160

brown

[VIII]

2,2'-(1,4-
phenylenebis(azaned
iyD))bis(N'-((E)-1-(4-
(pentyloxy)phenyl)et
hylidene)acetohydraz
ide)

G0 éH A e G—R\E W z—@-oc,u.

C3H4sNgO4

69

150-
152

brown

[IX]a

2,2'-(1,4-
phenylenebis(azaned
iyl))bis(N'-((E)-1-(4-
(hexyloxy)phenyl)et
hylidene)acetohydraz
ide)

Cebhd

Ci3Hs5oN6O4

75

143-
145

brown

[X]a

2,2'-(1,4-
phenylenebis(azaned
iyl)bis(N'-((E)-1-(4-
(heptyloxy)phenyl)et
hylidene)acetohydraz
ide)

Ca0Hs6NsO4

70

218-
220

brown

[XI]a

2,2'-(1,4-
phenylenebis(azaned
iyD)bis(N'-((E)-1-(4-
(octyloxy)phenyl)eth
ylidene)acetohydrazi
de)

C42HeoNgO4

73

248-
250

brown

67




Table(2-5): The nomenclature, structural formula, molecular
formula, yield, melting point and color of compounds [V-XI];,

Comp.

Nomenclature

Structural formula

Molecular

formula

Yield
%

M.P
°’c

Color

[Vl

2,2'-([1,1'-biphenyl]-
4.4'-
diylbis(azanediyl))bi
s(N'-((E)-4-
methoxybenzylidene
)acetohydrazide)

0 0
ot A
M@\jy \?“@“@’"@ WAL

T

Hy H éH
3

C3HNeOy

65

59-61

brown

[VI]

2,2'-([1,1"-biphenyl]-
4,4
diylbis(azanediyl))bi
S(N(E)-4-
ethoxybenzylidene)a
cetohydrazide)

0

Qa@wigj‘mw

by "

0CHe
&y

C34H36N6O4

67

76-78

brown

[VO]s

2,2'-([1,1'-biphenyl]-
4.4
diylbis(azanediyl))bi
s(N'-((E)-4-
propoxybenzylidene)
acetohydrazide)

0 0
cge,o@ﬁ}{! \EZH-Q_Q_H;: E}{Ném 0o

C36H10N6O4

63

148-
150

brown

[VIiI],

2,2'-([1,1'-biphenyl]-
4.4'-
diylbis(azanediyl))bi
s(N'-((E)-4-
(pentyloxy)benzylid
ene)acetohydrazide)

0 0

b OHOHAA

H by H
b Ty,

Cty0

CaoH4gNeO4

70

>300°

brown

[X]b

2,2'-([1,1'-biphenyl]-
4,4'-
diylbis(azanediyl))bi
S(N((E)-4-
(hexyloxy)benzylide
ne)acetohydrazide)

0 0
. H F. U]
w0l 000

by " &,

Ca2Hs5oNgO4

66

132-
135

brown

iXIs

2,2"-([1,1'-biphenyl]-
4.4'-
diylbis(azanediyl))bi
s(N'-((E)-4-
(heptyloxy)benzylid
ene)acetohydrazide)

w‘,o@&:viym% e

by' ™ KA

C4sHs56N6O4

68

150-
152

brown

[Xo

2,2'-([1,1'-biphenyl]-
4.4'-
diylbis(azanediyl))bi
S(N'((E)-4-
(octyloxy)benzylide
ne)acetohydrazide)

0

0
o 4 M@ .
3

é H, Hy H éHg

CasHeoNeO4

73

138-
140

brown

68




Table(2-6): The nomenclature, structural formula, molecular

formula, yield, melting point and color of compounds [XII-XVIII],

Comp.

Nomenclature

Structural formula

Molecular

formula

Yield
%

M. P
oc

Color

[X1I],

1,1-(2,2'-(1 4-
phenylenebis(azanedi
yl))bis(acetyl))bis(3-

(4-methoxyphenyl)-
1H-pyrazole-4-
carbaldehyde)

PR | Jd ) 8
el DN, W W

C32H2sN6Os

70

83-
85

brown

[XI].

1,1'-(2,2'-(1,4-
phenylenebis(azanedi
yl))bis(acetyl))bis(3-
(4-ethoxyphenyl)-1H-
pyrazole-4-
carbaldehyde)

St li_N—e “—O——u E_‘:?_Q_

" Ca4H3;NgO6

68

102-
104

brown

[XIV]a

1,1'-(2,2'-(1,4-
phenylenebis(azanedi
yl))bis(acetyl))bis(3-
(4-propoxyphenyl)-
1H-pyrazole-4-
carbaldehyde)

o o
N'—N—E H—Q—n‘tl!-ﬂ-"
o - ORGP

C36H36NgO6

65

95-
97

brown

[XV]a

1,1'-(2,2'-(1,4-
phenylenebis(azanedi
yl))bis(acetyl))bis(3-
(4
(pentyloxy)phenyl)-
1H-pyrazole-4-
carbaldehyde)

o D_Q_%%:a\%n_{}.u\g:e_% _ro,n«

C40H44NgOg

73

120-
122

dark
brown

[XVI]a

1,1'-(2,2'-(1,4-
phenylenebis(azanedi
yl))bis(acetyl))bis(3-

(4-(hexyloxy)phenyl)-

1H-pyrazole-4-
carbaldehyde)

[}
& now

g@_{f* W OO

C42H4gNeOg

77

180-
182

dark
brown

[XVII],

1,1'-(2,2'-(1,4-
phenylenebis(azanedi
yl))bis(acetyl))bis(3-
-
(heptyloxy)phenyl)-
1H-pyrazole-4-
carbaldehyde)

o Wi &
:at.,n_Q_Eg-!\ﬁ:”_O_d‘g:a 1;:;5-@ oMy
HE

C44Hs52NgOg

68

200-
202

dark
brown

[XVII],

1,1'-(2,2'-(1,4-
phenylenebis(azanedi
yl))bis(acetyl))bis(3-
(4-(octyloxy)phenyl)-

1H-pyrazole-4-

carbaldehyde)

s @,\ﬁ* SRaSE . wr}w

C4sHs56N6Os

65

158-
160

dark
brown

69




Table(2-7): The nomenclature, structural formula, molecular

formula, yield, melting point and color of compounds [XII-XVIII],

Comp.
No.

Nomenclature

Structural formula

Molecular

formula

Yield
%

M.P
’c

Color

[XI]s

LI-(2,2'-([1,1™-
biphenyl]-4,4'-
diylbis(azanediyl))bis(ac
etyl))bis(3-(4-
methoxyphenyl)-1H-
pyrazole-4-carbaldehyde)

"| C3sH32N6Os

63

>300°

dark
brown

[XIII],

1L,1'-(2,2'-([1,1"-
biphenyl]-4,4'-
diylbis(azanediyl))bis(ac
etyl))bis(3-(4-
ethoxyphenyl)-1H-
pyrazole-4-carbaldehyde)

C4oH36NgO¢

60

134-
136

dark
brown

[XIV]p

L1I-(2,2-([1,1*-
biphenyl]-4,4'-
diylbis(azanediyl))bis(ac
etyl))bis(3-(4-
propoxyphenyl)-1H-
pyrazole-4-carbaldehyde)

'| C42HaoNgOs

65

65-67

brown

[XV]

1,1'-(2,2'-([1,1"-
biphenyl]-4,4'-
diylbis(azanediyl))bis(ac
etyl))bis(3-(4-
(pentyloxy)phenyl)-1H-
pyrazole-4-carbaldehyde)

CasHagNgOg

72

90-92

dark
brown

[XVI]y

L,1'-(2,2'-([1,1"-
biphenyl]-4,4'-
diylbis(azanediyl))bis(ac
etyl))bis(3-(4-
(hexyloxy)phenyl)-1H-
pyrazole-4-carbaldehyde)

CagHs5oNgOg

72

118-
120

dark
brown

[XVII],

L1-(2,2'-([1,1-
biphenyl]-4,4'-
diylbis(azanediyl))bis(ac
etyl))bis(3-(4-
(heptyloxy)phenyl)-1H-
pyrazole-4-carbaldehyde)

CsoHs6NsOs

67

98-100

dark
brown

[XVII],

1,1'-(2,2'-([1,1"-
biphenyl]-4,4'-
diylbis(azanediyl))bis(ac
etyl))bis(3-(4-
(octyloxy)phenyl)-1H-
pyrazole-4-carbaldehyde)

Cs:HsoNgOs

69

150-
152

dark
brown

70




Table(3-1):FTIR absorption bands of [IV],

Characteristic bands FTIR spectra(cm™)

Comp.
No. v (C-H) v (C- H) v (C=0) v (C=C) v (C-0)
aromatic aliphatic keto aromatic ether
[TV], 3045 2964-2843 1672 1600 1225
[IV], 3050 2983-2885 1668 1598 1249
[IV]s 3060 2966-2877 1674 1597 1251
[IV]s 3040 2960-2868 1676 1600 1259
[IV]e 3055 2931-7862 1670 1597 1249 1it™
[IV] 3047 2945-2852 1672 1600 1244 1it"
[IVIs 3060 2954-2854 1676 1598 1253 1it™®
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Table(3-2): FTIR absorbtion bands of [V-XI],

Characteristic bands FTIR spectra(cm™)

Comp.
No. v(NH) | © (C- H) v (C-H) v (C=0) | v (C=N) v (C=C)
aromatic aliphatic amid aromatic
[V]a 3390 3010 2956-2837 1660 1635 1593
[VI], 3354 3025 2962-2850 1664 1626 1598
[VII], 3300 3045 2962-2873 1670 1625 1593
[VII], 3340 3060 2935-2866 1666 1615 1593
[1X]a 3300 3035 2931-2862 1670 1610 1598
[X]a 3290 3050 2927-2858 1670 1615 1597
[X1]a 3330 3040 2924-2858 1670 1610 1597
Table(3-3): FTIR absorption bands of [V-XI],
- Characteristic bands FTIR spectra(cm™)
omp.
No. v (N-H) v (C- H) v (C- H) v (C=0) | v (C=N) v (C=C)
aromatic aliphatic amid aromatic
[V 3356 =00 2960-2850 1664 1630 1604
[VI], 3350 3028 2966-2885 1665 1620 1604
[VII]s 3310 20 2966-2877 1670 1620 1597
[VIII], 3325 S 2943-2866 1666 1620 1593
[1X]b 3373 3020 2931-2866 1674 1630 1600
[XTb 3371 201G 2927-2854 1674 1625 1599
[(XT]p 3370 3018 2924-2854 1670 1620 1600
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Table(3-4):Characteristics FTIR absorption bands of [XII-XVIII],

Comp. Characteristic bands FTIR spectra(cm™)
No. v (N-H) v (C- H) LV .(C- H) v(C=0) | v (C.=O) v (C=N). LY (C=C)
aromatic aliphatic alde amide endocyclic | aromatic
[XII], 3390 3008 29352835 | 1674 1664 1645 1606
[XII], | 3335 3035 2980-2883 | 1680 1666 1635 1598
(XIV]. | 3360 3060 2958-2858 | 1695 1665 1649 1597
[XV]a 3340 3040 2927-2866 | 1701 1670 1640 1600
[XVIl. | 3330 3045 2927-2862 | 1708 1670 1630 1597
[XVII], | 3320 3060 2924-2858 | 1705 1670 1635 1597
[XVII], | 3335 3040 2930-2860 | 1698 1666 1642 1600
Table(3-5):Characteristics FTIR absorption bands of [XII-XVIII],
Characteristic bands FTIR spectra(cm'l)
C;'(?p' V(N-H) [v(C-H) | v(C-H) |v(C=0)|v(C=0)| v(C=N) | v(C=C)
aromatic aliphatic alde amide | endocyclic | aromatic
X1, 3400 3016 2951-2850 | 1695 1665 1649 1598
[XII1], 3410 050 2985-2885 | 1690 1678 1631 =
[XIVl, | 3410 30101 29622880 | 1690 | 1662 1630 e
[XV] 3410 3020 | 59580870 | 1693 | 1662 1640 1604
XV, | 3409 30391 29312858 | 1690 | 1660 1631 Fe0s
[XVI]s | 3400 3066 2954-2858 | 1695 1662 1630 R
[(XVI} | 3405 3062 2927-2854 | 1690 1674 1630 1602
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Table(3-6):Phase transition temperatures of series[V-XI],

Comp.
Phase transition temperatures
No.
195 253
cr -~ N - 1
[Vla = 150 -
175 205
120 180
[VII]a oOf m——= N =—= ]|
150 195
[VIIT], cr N I
110 135 160
[IX]a cr SmB =—/—/= N =/—= |
155 185 210
[X]a cr SmMB =—/= N =—= |
140 175 200
[XI]a cr SMC =—= N =——= |

Cr, crystalline phase;SmB smectic B phase ;SmC smecticC phase; N, nematic phase;
I, isotropic liquid
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Table(3-7):Phase transition temperatures of series[V-XI],

Comp.
Phase transition temperatures

No.

V1, 2o N é I

[V, > R é I
[VH]b cr . N ._—li |
[VIII] e 25

[1X]s o mm SmA ‘145 ~ ——=y g
[XTs o L SmB o |
[XI]y ..

Cr, crystalline phase; SmA smectic A phase; SmB smecticB phase; N, nematic phase;

I, isotropic liquid

75



Table(3-8):Phase transition temperatures of series[ XII-XVIII],

Comp.
Phase transition temperatures
No.
(1], o m— |
[X111], or =——=1
[XIV], or === |
[XV], or — |
[XVI], R N,
[XVII], o e N g
[XVIII], o —a

Cr, crystalline phase; N, nematic phase; I, isotropic liquid

76




Table(3-9):Phase transition temperatures of series[XII-XVIII],,

Comp.
Phase transition temperatures
No.
285
[XH]b or—/—>]
140 160
[XII]s o == N =—= ]
75 90 110
[XIV]b cr SmB —=— N =——== |
85 105 120
[XV]b cr SmMB —= N =—= |
120 135 150
[XVI]y cr SmB —= N =—= |
80 100 125
[XVIL]y | er SmB =—= N =—= |
105 125 145
[XVIII], cr SMB ——= N =—= ]

Cr, crystalline phase;SmB, smectic B phase; N, nematic phase; I, isotropic liquid
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Figure (3-17): The mass spectrum of compound [VII],
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Figure (3-24): The mass spectrum of compound [XVI],
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Figure(3- 27):Cross polarizing optical textures of nematic phase for
compound [V], at 203°C

_ s

Figure(3-28): Cross polarizing optical textures of nematic thread-like
texture for compound [VII], at 130 °C
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Figure(3-29): DSC thermogram for compound [V],

Figure(3- 30) : Cross polarizing optical textures of smectic B phase for
compound [IX], at 120°C
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Figure(3-31): Cross polarizing optical textures of nematic thread-like
texture for compound [X], at 200 °C

Figure(3-32): Cross polarizing optical textures of smectic C phase of
compound [XI], at 160 °C
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Figure(3-33): Dependence of transition temperatures on the increasing
number of carbon atoms (7) in the terminal alkoxy chains for the [V-XI],

series compounds

Figure(3-35): Cross polarizing optical textures of nematic texture for
compound [VI], at 200°C
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Figure(3-36) : Cross polarizing optical textures of smectic A phase for
compound [IX], at 130 °C

Figure(3-37) : Cross polarizing optical textures of smectic B phase for
compound[X]; at 185°C
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Figure(3-38): DSC thermogram for compound [X],

Figure (3-39) : Cross polarizing optical textures of smectic A phase for
compound[XI], at 140 °C
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Figure(3-40): DSC therrmogram for compound [XI],
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Figure(3-42): Dependence of transition temperatures on the increasing
number of carbon atoms () in the terminal alkoxy chains for the [V-XI],

series compounds
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Figure (3-43): Cross polarizing optical textures of nematic phase
for compound [XVI], at 135 °C

Figure (3-44): Cross polarizing optical textures of droplets nematic phase
for compound [XVII], at 95 °C
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Figure (3-45): Cross polarizing optical textures of nematic phase for
compound [XVIII], at 125 °C
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Figure(3-47): Dependence of transition temperatures on the
increasing number of carbon atoms (#) in the terminal alkoxy chains for
the [XII-XVIII], series compounds
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Figure (3-48): Cross polarizing optical textures of smectic B phase for
compound [XIV], at 80 °C

Figure (3-49): Cross polarizing optical textures of nematic phase thread-
like texture for compound [XVI], at 145 °C
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Figure (3-50): Cross polarizing optical textures of nematic phase thread-
like texture for compound [XVIII], at 130 °C
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Figure(3-52): Dependence of transition temperatures on the increasing
number of carbon atoms (#) in the terminal alkoxy chains of [ XII-XVIII],
series compounds
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