

Nonparametric Estimation of

Hazard Function by Using

Wavelet Transformation

A Thesis

Submitted to College of Education for Pure Science
(Ibn al-Haitham)

University of Baghdad

In Partial Fulfillment of Requirements for the
Degree of Doctor of Philosophy in mathematics

By

Ali Talib Mohammed

Supervised by

Prof. Dr. Iden Hasan Hussein

2019 1440

Republic of Iraq
Ministry of Higher Education and Scientific Research
University of Baghdad
College of Education for Pure Science (Ibn al-Haitham)
Department of Mathematics

http://www.quran-for-all.com/t-48-1-1.html
http://www.quran-for-all.com/t-48-1-1.html
http://www.quran-for-all.com/t-48-1-1.html
http://www.quran-for-all.com/t-48-1-2.html
http://www.quran-for-all.com/t-48-1-2.html
http://www.quran-for-all.com/t-48-1-2.html
http://www.quran-for-all.com/t-48-1-2.html
http://www.quran-for-all.com/t-48-1-3.html
http://www.quran-for-all.com/t-48-1-4.html
http://www.quran-for-all.com/t-48-1-4.html
http://www.quran-for-all.com/t-48-1-4.html
http://www.quran-for-all.com/t-48-1-4.html

Acknowledgments

 First of all, I wish to thank Allah, my creator, for his help and acceptance

of my prayers that make the accomplishment of this work more than a dream

after all what happened. I would like to express my deep thanks and

gratitude to my supervisor Prof. Dr. Iden Hasan Hussein for his valuable

guidance and encouragement during my work.

 Also, I'm very grateful to the faculty members of mathematics Department

in college of education for pure science - Ibn Al-Haitham.

 Finally, the words are unable on stating clearly the extent of my thanks for

my family, especially my mother, my wife, my brother, and my sister for

their supported and encouraged me in all times and help me to obtain my

ambition.

Supervisor Certification

 I certify that this dissertation was prepared under my supervision at the

Department of Mathematics, College of Education for Pure Sciences, Ibn

Al-Haitham, University of Baghdad as partial fulfillment of the requirements

of the Degree of Doctor of Sciences in Mathematics.

Signature:

Name: Prof. Dr. Iden Hasan Hussein

Date: / / 2019

In view of the available recommendation, I forward this dissertation for

debate by the examination committee.

Signature:

Name: Assist. Prof. Dr. Yousif Yaqoub Yousif

Head of the Department of Mathematics.

Date: / / 2019

Committee Certification

 We certify that we have read this dissertation entitle "Nonparametric Estimation of

Hazard Function by Using Wavelet" and as examining committee, we examined the student

(Ali Talib Mohammed) in its contains and what is connected with it, and that in our opinion it

is adequate for the partial fulfillment of the requirement for the degree of Doctor of Science in

Mathematics.

(Chairman) (Member)

Signature: Signature:

Name: Dr. Luma Naji Mohammed Name: Dr. Oday Taha Raheem

Title: Prof. Title: Assist. Prof.

Data: / / 2019 Data: / / 2019

(Member) (Member)

Signature: Signature:

Name: Dr. Saad Naji Al-Azzawi Name: Dr. Suhaila Najm Abdullah

Title: Prof. Title: Assist. Prof.

Data: / / 2019 Data: / / 2019

(Member) (Member and Supervisor)

Signature: Signature:

Name: Dr. Hatam Yahya Khalaf Name: Dr. Iden Hasan Hussein

Title: Assist. Prof. Title: Prof.

Data: / / 2019 Data: / / 2019

Approved by the University Committee of graduate studies

Signature:

Name: Prof. Dr. Hasan Ahmed Hasan

Behalf: the Dean of College of Education for Pure Science / Ibn Al- Haitham, University of

Baghdad.

 Data: / / 2019

 The main objective of the study in this thesis is to enrich the non-

parametric estimation of the hazard rate function using the linear wavelet

estimation for right randomly censoring data. The strategy of the estimation

is based on the use of the wavelet projection of the father function

{ } on the resolution subspace () of the

square integrable function (), with the Breslow estimator of the

cumulative function. The technique to estimate of the hazard function is

built to find the ratio between the linear wavelet estimator of the probability

density function (f(x)) and the empirical estimation to find the survival

function {S(x)=1-F(x)}.

 Applications are based on two types of study. First application, the

simulation study to generate random variables for two experiments, the first

experiment using the Gamm distribution G(5,1) for lifetimes samples of size

n=100,200, and second experiment using bimodal distribution of two

Normal distributions (X=0.4X1~N(5,1)+0.6X2~N(3,0.5)) for lifetimes

samples of size n=400,600. Moreover, to generate the censoring times for

the two experiments we using Exponential distribution (EXP(6)). The

second application, three real application data are applied which are liver

metastases data, nursing home data, and Stanford heart transplant data.

 Comparing has been made using MSE between estimation results and

actual results for two simulation experiments, while for the real data, the

MSE has been made between the estimation results that calculated by

wavelets estimation and the kernel estimator.

Titles N0.

Chapter one: Introduction and Basic Concepts 1-13

1.1 Introduction 2

2.1 The aims of this study 2

1.3 Literature review 3

1.4 Hazard rate function and its properties 6

 1.4.1 Hazard rate function 7

 1.4.2 Cumulative hazard function 8

1.5 Censoring data 8

 1.5.1 Randomly right censoring data 9

 1.5.2 Hazard rate function in censoring case 10

1.6 Non-parametric estimation methods 12

 1.6.1 Kaplan–Meier estimator 12

 1.6.2 Nelson-Aalen estimator 12

 1.6.3 Breslow estimator 13

 1.6.4 Kernel estimator 13

Chapter two: Wavelets 14-39

2.1 Introduction 15

2.2 Fourier series 15

2.3 Some special formulas for the Fourier function 16

 2.3.1 Even Fourier function 16

 2.3.2 Odd Fourier function 17

 2.3.3 Even harmonic Fourier function 17

 2.3.4 Odd harmonic Fourier function 18

2.4 Fourier transformation 18

 2.4.1 Time and Frequency domain 18

 2.4.2 Dirichlet conditions 19

 2.4.3 The continuous Fourier transform 19

 2.4.4 The discrete Fourier transform 20

 2.4.5 The n-point discrete Fourier transform 21

 2.4.6 The inverse n-point discrete Fourier transform 21

2.5 Wavelet and Multiresolution analyses 22

 2.5.1 The multiresolution of L^2 (R) 22

 2.5.2 Wavelet functions 23

 2.5.3 Wavelet transformations 24

 2.5.3.1 Continuous wavelet transformation (CWT) 25

 2.5.3.2 Discrete wavelet transformation (DWT) 27

2.6 Differences between wavelet and Fourier Transformations 39

Chapter three: Methodology 40-58

3.1 Introduction 41

3.2 How wavelet approximate functions 41

 3.2.1 linear wavelet estimation 42

 3.2.2 Nonlinear wavelet estimation 45

3.3 Model-up and Hazard rate function 49

3.4 Estimation of the hazard function 51

 3.4.1 Estimation of density function (̂) 51

 3.4.2 Estimation of survival function (̂) 54

3.5 Algorithm implementation of estimation hazard rate function 55

Chapter four: Applications 59-98

4.1 Introductions 60

4.2 Simulation study 60

 4.2.1 First simulation experiment 61

 4.2.1.1 Discussion and results of First simulation experiment 63

 4.2.2 Second simulation experiment 67

 4.2.2.1 Discussion and results of second simulation experiment 69

4.3 Real application data 74

 4.3.1 Liver Metastases Data 75

 4.3.2 Nursing Home Data 83

 4.3.3 Stanford Heart Transplant data 92

Chapter five: Conclusion and Future studies 99-101

5.1 Conclusion 100

5.2 Future studies 102

References 103

Appendix

i.i.d Independent and identically distributed

Square-integrable function space (Lebesgue

integrable)

DWT Discrete wavelet transformation

CWT Continuous wavelet transformation

 Father wavelet function

 Mother wavelet function

 Multiresolution subspace of index J

 Difference Multiresolution subspace of index J

MSE Mean square error

 Cumulative hazard function

 Hazard rate function

δ,I,or 1 Indicator function

 Bandwidth function of kernel estimator

 Discrete orthogonal Haar transformation matrix

 Daubechies discrete wavelet transformation matrix

 Coiflet discrete wavelet transformation matrix

 Approximation wavelet coefficients

 Detail wavelet coefficients

 () The wavelet projection of in

 Thresholding mother wavelet coefficient

 ̂ Partial probability density function estimation

 ̂ Partial survival function estimation

 The father wavelet projection coefficient

 Father wavelet matrix

 Lower triangular matrix

Table

No.
Titles No.

(4-1) MSE of hazard rate function for first simulation experiment 64

(4-2) MSE of density function for first simulation experiment 66

(4-3) MSE of hazard rate function for second simulation experiment 70

(4-4) MSE of density function for second simulation experiment 72

(4-5)
MSE of kernel smoothing and wavelet estimations of hazard

function for liver metastases data
76

(4-6)
MSE of kernel smoothing and wavelet estimations of hazard

function for nursing home data.
84

(4-7)
MSE of kernel smoothing and wavelet estimations of hazard

function for Stanford Heart Transplant data.
94

No. Title
Figure

No.

23 multiresolution subspaces (2-1)

26 Mexican Hat wavelet function (2-2)

27 Marlet wavelet function (2-3)

29 Haar mother function (2-4)

30 Haar father function (2-5)

31-33 Mother and father Daubechies wavelet functions (2-6)

36-37 Mother and father Coiflet wavelet functions (2-7)

47 Hard and soft thresholds of data curves (3-1)

48 Diagram of wavelet shrinkage and own threshold values (3-2)

64
Estimation of hazard rate function of simulation

experiment given in (4.2.1) with n=100
(4-1)

65
Estimation of hazard rate function of simulation

experiment given in (4.2.1) with n=200
(4-2)

66
Estimation of density function of simulation experiment

given in (4.2.1) with n=100.
(4-3)

67
Estimation of density function of simulation experiment

given in (4.2.1) with n=200
(4-4)

71
Estimation of hazard rate function of simulation

experiment given in (4.2.2) with n=400
(4-5)

71
Estimation of hazard rate function of simulation

experiment given in (4.2.2) with n=600.
(4-6)

73
Estimation of density function of simulation experiment

given in (4.2.2) with n=400
(4-7)

73
Estimation of density function of simulation experiment

given in (4.2.2) with n=600
(4-8)

77

db30_wavelet estimation (red), kernel smoothing

estimation (blue), and square errors (green) of 622 liver

metastases data

(4-9)

78

db32_wavelet estimation (red), kernel smoothing

estimation (blue), and square errors (green) of 622 liver

metastases data

(4-10)

79

db34_wavelet estimation (red), kernel smoothing

estimation (blue), and square errors (green) of 622 liver

metastases data

(4-11)

80

Coif1_wavelet estimation (red), kernel smoothing

estimation (blue), and square errors (green) of 622 liver

metastases data

(4-12)

81

Coif2_wavelet estimation (red), kernel smoothing

estimation (blue), and square errors (green) of 622 liver

metastases data

(4-13)

82

Coif3_wavelet estimation (red), kernel smoothing

estimation (blue), and square errors (green) of 622 liver

metastases data

(4-14)

85

db38_wavelet estimation (red), kernel smoothing

estimation (blue), and square errors (green) of 214 nursing

home data

(4-15)

86 db40_wavelet estimation (red), kernel smoothing (4-16)

estimation (blue), and square errors (green) of 214 nursing

home data

87

db42_wavelet estimation (red), kernel smoothing

estimation (blue), and square errors (green) of 214 nursing

home data

(4-17)

88

db44_wavelet estimation (red), kernel smoothing

estimation (blue), and square errors (green) of 214 nursing

home data

(4-18)

89

db46_wavelet estimation (red), kernel smoothing

estimation (blue), and square errors (green) of 214 nursing

home data

(4-19)

90

db48_wavelet estimation (red), kernel smoothing

estimation (blue), and square errors (green) of 214 nursing

home data

(4-20)

91

db50_wavelet estimation (red), kernel smoothing

estimation (blue), and square errors (green) of 214 nursing

home data

(4-21)

95

db44_wavelet estimation (red), kernel smoothing

estimation (blue), and square errors (green) of 103

Stanford heart transplant data

(4-22)

96

Coif3_wavelet estimation (red), kernel smoothing

estimation (blue), and square errors (green) of 103

Stanford heart transplant data

(4-23)

97

Symm8_wavelet estimation (red), kernel smoothing

estimation (blue), and square errors (green) of 103

Stanford heart transplant data

(4-24)

 First paper

 Paper Title: Density Estimation for Right Censored Data

Using Hybrid Breslow and Semi-Symmetric

Wavelet

 Authors: Ali Talib Mohammed and Iden Hasan Hussein

 Journal Name: Journal of Engineering and Applied Sciences

 ISSN 1816-949X

 Volume 14(1), p:242-246, 2019

 Second paper

 Paper Title: Estimate Hazard Rate Function by Wavelet

Procedures

 Authors: Ali Talib Mohammed and Iden Hasan Hussein

 Journal Name: Journal of Advanced Research in Dynamical and

Control Systems – JARDCS

 ISSN 1943-023X

 Volume 10, No. 10, 2018

 Third paper

 Paper Title: Nonparametric Estimation for Hazard Rate

Function by Wavelet Procedures with Simulation

 Authors: Ali Talib Mohammed and Iden Hasan Hussein

 Acceptation: This paper is accepted in the Second International

conference of Kerbala University, College of

Education for Pure Sciences (ICCEPS)

 Journal Name: IOP Conf. Series: Materials Science and

Engineering 571 (2019) 012013

 Doi: 10.1088/1757-899X/571/1/012013

 Publishing IOP-Publishing

 The survival analysis in the branches of statistics have a great importance

in the study and analysis of events that occur according to time, especially

analysis of the expected time of occurrence of one or more events according

to a specific period or indefinite period. Survival and reliability analysis

deals with many topics, including death in biological organisms and failure

in mechanical and electronic devices.

 There are many questions that the survival and reliability analysis tries to

give answers for it. For example, how long will be expected that mechanical

devices will work according to certain conditions? The expected time of

living a population group in a controlled society by influencing factors?

What are the factors influencing in death or failure? And is it possible to

control these factors and reduce those that do not help?. In these studies it is

very important to identify the lifetime and death (failure) contexts, although

death in biological organisms is considering as an event while in mechanical

and electronic, failure is also an event but it may not actually occur because

it can be caused by a partial failure of the machine or device.

 One important concept in survival analysis is the hazard rate function,

which deals with calculating the incidence of a particular event such as death

or failure at a certain point in time. The hazard function can be used in many

areas, such as engineering, medicine, and economic studies. This common

use is due to how it is calculated based on the probability density function

and the survival function, as well as the availability of valuable information

on failure rates.

 In statistical studies the methods of data collection takes two different

approaches. The first approach depends on the collection of data which is

related to certain hypotheses that enable the researcher to link the data to one

of the statistics distributions and called (parametric data) while the second

approach takes a method of non-hypotheses or restrictions but is free to

collect data, (non-parametric data). One of the major challenges faced by

researchers in statistical and other studies is dealing with non-parametric

data. The important objective is how to estimate functions of these data

without any information about these functions. In statistical studies, non-

parametric data are one of these challenges in terms of estimating density

and hazard functions. Most of the studies that investigated this aspect were

based on the analysis and study of data properties. Non-parametric data

include several types, one of which is the censoring data, which in turn

includes types such as left censoring, right censoring, interval censoring,

randomly (progressively)censoring, type I censoring, and type II censoring.

 A significant property is that for n samples are to be

independent. Kernel and nearest neighbors technical are the most popular

methods to non-parametric density function. Wavelet series could be

considered as good approach for function estimator since the utilize of

wavelet in solving this problem gives an important advantage because it

build up functions belong to . Wavelets are considering as a new class

of functions that are well localized in time and frequency. Moreover, the

wavelet is rapidly decaying wave like oscillation that has zero mean and it

exists for the finite duration. The wavelet transformations could be used in

two types of discrete wavelet transformation (DWT) and continuous wavelet

transformation (CWT). The method that will be displayed focus on (DWT).

Approximation and estimation of functions is one of the important and good

uses of wavelets.

 The content of this thesis includes five chapters, chapter one contains the

literatures review, the aims of this study, and some basic concepts in

statistics such as statistical functions and properties. Chapter two contains

Fourier series and transforms, definitions of wavelets with types and

characteristics, and methods of building wavelets. The content of chapter

three will address the proposed method in this study in order to estimate the

hazard function using wavelet, the application takes two types in this thesis

simulation applications and real, all this includes in chapter four and the

final one is chapter five contain the conclusion and recommendations.

1

Chapter One Introduction and basic concepts

2

1.1 Introduction

 In statistic, the importance of estimators in the information provided and

the calculation of the estimates based on measurements and information in

the sample subject of the test. In censoring data, especially with the type of

randomly censoring data which is considered to have that have wide

applications in the medical fields. This chapter describes and surveys the

aims of this study and literature review as well as presents some basic

concepts, for example hazard rate function, types of censoring data, and

some nonparametric estimation methods such as: Kaplan–Meier, Nelson-

Aalen, Breslow, and Kernel estimators.

1.2 The aims of this thesis

 The main objective of this thesis is estimating the Hazard rate function

using linear wavelet transformation, where the estimation algorithm consists

of two main parts, including the first estimate of the probability density

function f(x) and the second estimate of the survival function s(x). The

structure of the algorithm will rely on the projection property of the father

wavelet function { } on the subspace of

Lebesgue spaces . The data type is an important factor in the

estimation process so data will be used is randomly right censoring data.

Real and simulation applications will be used; in fact three real and two

simulation applications are going to use to estimate the hazard rate function.

Finally, the global main error (MSE) will be applicate to comparing between

the result values.

Chapter One Introduction and basic concepts

3

1.3 Literature review

 In the previous century especially in the 1990s many researchers

widespread use of wavelets in the fields of statistical estimates. First used of

the wavelets in statistics were introduced by a collection of articles such as

Donoho et al. (1993), Kerkyacharian and Picard (1993), and Donoho and

Johnstone (1994, 1995).

 In 1990, Antoniadis, Grégoire and Nason [7] estimated hazard function

based on divided the time into time intervals and then calculate the events in

each interval separately with the survival function by linear wavelet

estimator, then got the hazard function based on the ratio.

 In 2003, Wu and Wells [59] proposed an estimator of hazard rate with

nonparametric based on wavelets of increases cumulative Nielsen-Aalen

estimator of hazard rate function, this estimate based on using of non-linear

wavelet. Moreover, the introduced a new form of the mean integrated

squared error (MISE).

 In 2005, Brunel-Piccinini and Comte [10] presented a projection wavelet

pressure to estimated density and hazard rate functions, two types to

estimate the hazard rate function were applicate, first one was two-steps as a

ratio of density and survival function, second type found estimated the

hazard rate directly with using in both types penalized linear wavelet

projection.

 In 2005, Liang, Mammitzsch and Steinebach [41] used a non-linear

wavelet to estimate density and hazard rate functions with assumption that

hazard function belongs to Besov space
 , for independent and identically

distributed (i.i.d) data in complete case.

Chapter One Introduction and basic concepts

4

 In 2005, Bezandry, Bonney and Gannoun [9] considered a linear wavelet

method to estimate the density function and hazard rate with established the

weak uniform consistency of the density and hazard rate estimators. They

were proved that there was uniform convergence in probability of the

wavelet estimators of the density and hazard rate functions.

 In 2007, Angers and MacGibbon [4] used a monotone wavelet to develop

a non-parametric Bayesian functional estimation method to estimate the

hazard function of censoring data of type randomly right.

 In 2009, Doosti [25] used linear wavelet survival function estimator for

independent and identically distributed (i.i.d) of real random variables to

estimate the survival function that assumed it belong to Besov space.

 In 2009, Plancade [48] presented an estimator of hazard rate function in

censoring case based on unknown quantities in two models of estimators

Non adaptive and adaptive, where these estimators predicated on a

regression-type.

 In 2010, Kim et al. [38] proposed local linear estimation of conditional

hazard function in right censored data, the base of estimator used the kernel

methods with positive optimal bandwidths and .

 In 2010, Chaubey et al. [13] introduced an estimate of the derivative of

density function using linear wavelet under right randomly censoring data

and extended the results regards to the asymptotic convergence rates.

 In 2012, Ahmadi et al. [3] used Haar wavelet smoothing and Kernel

smoothing methods to estimate hazard rate function for gastric cancer

patients in Fayazbakhsh hospital in Tehran.

Chapter One Introduction and basic concepts

5

 In 2012, Abbaszadeh, Chesneau and Doosti [1] estimated the density

function under bias and multiplicative censoring using two pressures which

are linear and nonlinear (hard) wavelet methods of the Daubechies wavelets

db2N.

 In 2014, Afshari and Tahmasebi [2] estimated the hazard rate function in

two steps, using the linear wavelet to estimator the probability density

function, and then used Haar transformation integrate to find the survival

function and the ratio between them given hazard rate function, and evaluate

of mean integral square error with convergence ratio.

 In 2014, Salha, Ahmed and Alhoubi [52] used a new kernel estimated

based on Weibull kernel to estimate the density and hazard functions, and

showed that the smoothing parameter (h) was The influencing factor on the

bias which is closed to zero when h 0.

 In 2016, Chesneau and Doosti [15] developed a new adaptive estimator

g(x, m) based on wavelet methods of multivariate discrete and continuous

density function, prove its good theoretical performance by determining

sharp rates of convergence under the risk with p 1 2 for a wide class of

unknown conditional density.

 In 2017, Comte, Samson and Stirnemann [20] proposed a non-parametric

estimation of the hazard function depended on regression contrast minimized

in a finite dimensional functional space generated by splines bases.

 In 2017[30], Grez and Vidakovic [30] estimated the density function based

on linear orthogonal projection periodic wavelet estimator onto a

Chapter One Introduction and basic concepts

6

multiresolution space using empirical wavelet coefficients related to

Kaplan-Meier estimator, for randomly right censoring data.

1.4 Hazard rate function and its properties

 In this section we will discuss and define one of the functions of survival

analysis, which is the hazard rate function, which describes the risk rate of

the random variable.

Before giving the definition of hazard rate function, some functions that

describe lifetime must be presented such as:

 The cumulative distribution functions or knows as lifetime

distribution function and abbreviated written as CDF.

 ∫

 The probability density functions or known as failure density

and abbreviated written as PDF.

 ()

)

 The survival functions or knows as complementary cumulative

distribution.

1.4.1 Hazard rate function [2]

Chapter One Introduction and basic concepts

7

 In survival analysis studies, the hazard rate function also known as failure

rate function is defined as the conditional probabilistic condition of the

individual to test a particular event (death or relapse) within a certain time

period or predetermined.

 Mathematically hazard rate function of non-negative random variable X

defines as a ratio between the probability function and survival

function , and denoted by or .

 (1-1)

It is possible to form the hazard rate function according to the survival

function as follows:

[()] (1-2)

If the random variable X has distribution function and density

function , X is said to be have an increasing (decreasing) hazard rate

function if is increasing (decreasing) for all .

Chapter One Introduction and basic concepts

8

1.4.2 Cumulative hazard function [50]

 The total number of failures, deaths or relapses over a period of time

is define as cumulative hazard function denoted by , and It is an integral

part of the hazard rate function, according that for

 ∫

 (1-3)

 () () (1-4)

 (1-5)

 (1-6)

1.5 Censoring data [49]

 The general concept of censoring in statistical data can be defined as

information about the time of occurrence of the event, but the exact amount

of time is not known.

There are three main types of censoring data:

 Type I censoring data:

In this type the numbers of items or individuals which inter the experiment

are random variables, but the lifetimes (failure times) which enter the

experiment are fixed.

Type I occurs when determining the time it takes to experiment in advance

and then follow the individuals of the experiment to the end of time and then

observe the occurrence of the event or not for the individuals.

Chapter One Introduction and basic concepts

9

 Type II censoring data:

In this type the numbers of items or individuals which inter the experiment

are specified and determined, but the lifetimes (failure times) which enter

the experiment are random variables.

Type II occurs when the event occurrence of a number of predetermined

individuals and then a failure observing whether or not for all individuals

depending on the type of observation (right, left).

 Randomly (Progressively) censoring data:

In this type the numbers of items or individuals which inter the experiment

are random variables, and the lifetimes (failure times) which enter the

experiment are random variables too.

 This type occurs when each individual has a specific time that statistically

independent of the individual failure time, and the observed value is the

minimum (maximum) of the censoring and failure times according to the

right (left) censoring state.

Note: It should be noted that the type of data to be studied is of random type,

so the next definition is a detailed definition.

1.5.1 Randomly right censoring data [4]

 Let be an independent and identically distributed

(i.i.d.) survival times with unknown density and cumulative functions f and

F respectively. Let be i.i.d. censoring times unknown density

and cumulative functions g and G respectively, it is presumed that for

Chapter One Introduction and basic concepts

11

 are typically statistical independence. The observing

is for which is an i.i.d. sequences, such that:

The indicator function (δ) defines:

 {

1.5.2 Hazard rate function in censoring case [7],[30]

 Because of the observing in the case or randomly right censoring data is the

pair
 , the target here is to get the joint distribution of the pair

 it is possible to get:

 ∫

 ∫

 (1-7)

 ∫

 ∫ ∫

Chapter One Introduction and basic concepts

11

 ∫ ∫

 ∫

 () (1-8)

From (1-7) and (1-8) one can get:

 ()

()

()

()

 (1-9)

Similarly, from (1-9) it‟s possible to find the marginal density function of

complete data Z as follows:

 () () (1-10)

Now let,

It could be got from that the following:

 ()() (1-11)

Finally, the hazard rate function of complete data Z can be formed as

follows:

 (1-12)

Chapter One Introduction and basic concepts

12

1.6 Non-parametric estimation methods

 Non-parametric estimator is a statistical method that provides access to a

functional form that is appropriate for non-parametric data. This section will

review four of them which are: Kaplan–Meier, Nelson-Aalen, Breslow, and

Kernel estimators.

1.6.1 Kaplan–Meier estimator [37]

 It can also be called as product limit estimator, which can be used to

estimate the survival function for non-parametric data. The

mathematical form to estimate using Kaplan-Meier estimator is given

by:

 ∏ [

]

That is, each term in the product is the conditional probability of survival

beyond time , meaning the probability of surviving beyond time , given

the subject has survived up to time .

1.6.2 Nelson-Aalen estimator [49]

 The Nelson-Aalen estimator is a non-parametric statistical method to

estimate the cumulative hazard function for non-parametric censoring

data. The mathematical form to estimate using Nelson-Aalen estimator

is given by:

Chapter One Introduction and basic concepts

13

 ̂ ∑

 : The number of events occurs at

 : The total individuals at risk at

1.6.3 Breslow estimator [50]

 The Breslow estimator is considering as a method to estimate the baseline

survival function ̂ . The mathematical form to estimate ̂ using

Breslow estimator is given by:

 ̂ (̂)

Where, ̂ is the cumulative hazard function.

1.6.4 Kernel estimator [49]

 The general formula of kernel estimation method of hazard rate function

for censored data case given as follows:

 ̂ ∑ (

) (

) (

)

Where which represents the bandwidth functions, and

denoted the censoring indicator.

14

 Chapter two Fourier and wavelet transformations

15

2.1 Introduction

 Wavelet is one of the most important mathematical and statistical tools in

the past 20 years and its applications are increasing day after day, it is used

in a wide range of applications. The most important of these applications

are: the description of non-linear signals, non-parametric estimations, data

smoothing and decomposition of images, and other applications. The

statistical alphabet has always been that the best input to the wavelet is by

describing the Fourier Series (FS), clarifying its types, introducing its

transformations and inverses of these transformations, as will be explained

in the following sections.

This chapter will contain two main sections: section one consist general

introduction on Fourier series and Fourier transform with a description of the

matrix and inverse matrix (IFT) transforms and its mathematical formulas.

Section two will provide a general introduction to the wavelets with

continuous (CWT) and discrete (DWT) wavelet transforms

2.2 Fourier series [18]

 The Fourier series, presented by French scientist Joseph Fourier, is one of

the most important mathematical tools used in the different fields of

mathematics, statistics and engineering. The benefit of the Fourier series is

its ability to transform and rewriting any mathematical function in terms (to

be addressed later) through infinite sum the sines and cosines.

For any periodic function with period , the general form

of Fourier series is given by:

 Chapter two Fourier and wavelet transformations

16

 ∑()

 (2-1)

Where , and can be found as follows:

 ∫

 ∫

 ∫

Note that: { ∫ | |

}

2.3 Some special formulae for the Fourier series [47]

 This section presents some special formulae of the Fourier series.

2.3.1 Even Fourier series

 In statistic, this function is called harmonic cosine function and it is also

symmetric on y axis, which takes the form as follows:

 ∑()

 (2-2)

where:

 ∫

 ∫

 Chapter two Fourier and wavelet transformations

17

2.3.2 Odd Fourier series

 In statistic, this function is called harmonic sine function and it is also

symmetric on X axis, which takes the form as follows:

 ∑()

 (2-3)

where:

 ∫

2.3.3 Even harmonic Fourier series

 This function takes the formula as follows:

 ∑()

 (2-4)

where , and can be found as follows:

 ∫

 ∫

 ∫

 Chapter two Fourier and wavelet transformations

18

2.3.4 Odd harmonic Fourier series

 This function takes the formula as follows:

 ∑ (() ())

 (2-5)

Where , and can be found as follows:

 ∫ ()

 ∫ ()

 ∫

2.4 Fourier transformation [81],[99]

 A Fourier transform can be defined as a tool by which the length or

waveform (function or signal) can be changed to an alternative mathematical

appearance can be represented by sine and cosine functions. Mathematical

alphabets have always identified this transformation from time domain to

frequency domain.

2.4.1 Time and Frequency domain

 Mathematically, the time domain defined as the mathematical analysis of

the different functions taking into account the real time of the function. In

 Chapter two Fourier and wavelet transformations

19

other words, the time domain can be considered as the real function domain.

The frequency domain is defined as the mathematical analysis of the

different functions taking into account the real frequency of the function. In

other words, the frequency domain is the real domain of the sine and cosine

functions.

2.4.2 Dirichlet conditions

 Dirichlet put four sufficient conditions for any function f(x) over periodic T

that can be expanded as Fourier series, and they are as follows:

I. f(x) is a signal value function and absolutely integrable function.

II. In each periodic T, f(x) has a finite number of discontinuous points.

III. In each periodic T, f(x) has a finite number of maximum and

minimum points.

IV. ∫ | |

2.4.3 The continuous Fourier transform

 For any continuous and integrable function f(x), it is able to find the

continuous Fourier transform for f(x), as follows:

 ∫

 (2-6)

 The results of this transform is a function in f or and called the

function of the spectrum of the function f.

 Chapter two Fourier and wavelet transformations

21

In order to find f(x) from , it could be used the inverse continuous

Fourier transforms, as follows:

 ∫

 (2-7)

It is worth to know that:

 is complex function, and can be written as:

 The Fourier spectrum of f(x) is ‖ ‖ √()

 ()

.

 The power Fourier spectrum is ‖ ‖ ()

 ()

 The phase angle is (

).

2.4.4 The discrete Fourier transform

 The discrete Fourier transform of continuous function f(x) is defined as:

 ∑

 (

) (2-8)

where, and .

In order to find f(x) from , it could be used the inverse discrete Fourier

transforms, as follows:

 Chapter two Fourier and wavelet transformations

21

 ∑

 (

) (2-9)

2.4.5 The n-point discrete Fourier transform

 The n-point discrete Fourier transform is define as matrix of

complex numbers denoted by and define as follows:

 []

[

]

 (2-10)

where, and (

).

2.4.6 The inverse n-point discrete Fourier transform

 The inverse n-point discrete Fourier transform is denoted by
 and define

as:

 (2-11)

where,
 is the adjoint (transpose and complex conjugate) of .

 Chapter two Fourier and wavelet transformations

22

2.5 Wavelet and Multiresolution analyses [36]

 This section will be presented in some detail to the mathematical

construction of wavelets as well as the continuous and discrete wavelet

transformations, and to access these subjects we will first give a detailed

view of the space from the perspective of the multiresolution analysis.

2.5.1 The multiresolution of [51],[42]

 The multiresolution is a tool to describe the construction of spaces and to

give an analytical description of the components and bases of these spaces.

Let‟s first give the definition of a square integrable function or known as the

space of Lebesgue measurable functions, which denoted as and

defined:

 , ∫ | |

-

The multiresolution analysis of the space is defined as nested

sequences of closed (resolution) subspaces { } , and have the

following properties:

 .

 if and only if .

 if and only if .

 .

 .

 and .

 Chapter two Fourier and wavelet transformations

23

Figure (2-1): multiresolution subspaces

Now, define another subspace of which denoted as and

define as:

Also, known as difference subspaces, generally we have the following:

 (

)

2.5.2 Wavelet functions [33]

 The wavelet is one of the types of the mathematical functions used to

divide the given function to different frequency compound and study each

compound with an appropriate solution at each measurement.

Mathematically, the wavelet is defined as a real value function on the real

axis and oscillates up and down regularly around zero.

Any wavelet function () must satisfy the following three conditions:

Ѵ Ѵ Ѵ

 Chapter two Fourier and wavelet transformations

24

1. ∫

, this condition ensures that the wavelet function

vibrations must balance higher and lower zero.

2. ∫ ()

, this property is called unit energy, and for any

 there exist such that: ∫ ()

.

This condition ensures that most of waving‟s contained in the portion

of interval and for specific width.

3. The wavelet function has ability to admissible.

2.5.3 Wavelet transformations [36]

 The wavelet expression indicates the meaning of the little wave, which

contains the least oscillations, and will fast decay to zero in both positive

and negative directions, this is the admissibility condition for the function

that requires the wavelet transformation. The first definition for wavelet was

introduced by Jean Morlat in 1980.

 The wavelet group is used to approximate the signal in order to find a set of

wavelet subsets which will be built from expansion or compression and

shifting of the original wavelet, which represent the signal or data to be

analyzed. This process is in short of the transformation from large

measurements to accurate measurements by paving these data or signals.

This is exactly the same as the kernel methods, which was discussed by

many statisticians in the second half of the 20th century and beyond. The

main outcome of the transformation process is the mother wavelet function,

which is described below as:

√
 (

) (2-12)

 Chapter two Fourier and wavelet transformations

25

There are two types of wavelet transformations, which are continuous and

discrete wavelet transformations.

2.5.3.1 Continuous wavelet transformation (CWT) [21],[42]

 The mathematical concept of CWT is to divide the continuous function in

time range into a set of wavelets. This transformation will have the

possibility to build a common signal representation (data) between the time

band and the frequency band, which will give a prelude to data in both time

and frequency range. The mathematical formula for this transformation is:

 ∫

√

 (

) (2-13)

 represents a continuous function in the time and frequency range

together and is also known as the mother wavelet function.

the mathematical formula of the inverse continuous wavelet transformation

(ICWT) will be as follows:

 ∫ ∫

√

 ̆ (

)

 (2-14)

Where, ̆ is dual function and could be found as follows:

 ∫
(̆)
̅̅ ̅̅ ̅̅ ̅̅ ̅

| |

(̆)
̂

 (2-15)

(̆)
̂

 is indicates the Fourier transform that was previously mentioned.

 Chapter two Fourier and wavelet transformations

26

The two most famous wavelet functions of are compatible with the CWT

are:

1. Mexican Hat wavelet function

 (

)

Figure (2-2): Mexican Hat wavelet function

2. Morlet wavelet function

 (

)

Such that is the frequency and is a measure of the support.

𝛹 𝑡

t

 Chapter two Fourier and wavelet transformations

27

t

Figure (2-3): Marlet wavelet function

2.5.3.2 Discrete wavelet transformation (DWT) [27],[46],[42]

 DWT is considered one of the most famous and application of the wavelet

transformation tools in various fields of engineering, mathematics, statistics

and other applications. The input and output of this transformation is

discrete data and simulates the discrete Fourier transformation in procedure.

Where the data is transform from the time range (original data field) to

wavelet domain where the results will be vector-shaped and of the same

original vector size. DWT can be expressed in linear equations and also by

matrices as see below: (Van Fleet, 2011)[27].

Let Ƒ(x) be a function defines on equally-spaced observations, the DWT can

be calculated using the following relationship:

 ∑ ∑ ∑

 (2-16)

𝛹 𝑡

 Chapter two Fourier and wavelet transformations

28

Where , , and:

∑ is called “Approximation” coefficients.

∑ is called “Detail” coefficients.

The functions and are known as father and mother wavelet

functions, and define as:

 ⁄ () (2-17)

 ⁄ () (2-18)

 In matrices form, the difference here about the Fourier transform is to

describe the matrix of the wavelet transform that will not be a single

constant matrix as in Fourier transform where transform matrices will vary

according to their associated functions, and we will explain that with three

examples as follows:

1. Haar wavelet [39]

 Haar wavelet considering as the simplest and oldest that used in wavelet

transformation, it is based on Haar series which was presented by Alfred

Haar in 1909. The mother and father Haar wavelet functions are defined as:

{

 ⁄

 ⁄

(2-19)

 Chapter two Fourier and wavelet transformations

29

 ,

 (2-20)

The orthogonal Haar matrix for DWT is taking the form:

 *

 [√ √]
+ (2-21)

The symbol is representing the Kronecker product.

Where is the identity matrix of degree , and is define as

follows:

 *

+

Figure (2-4): Haar mother function

𝛹 𝑥

https://en.wikipedia.org/wiki/Kronecker_product

 Chapter two Fourier and wavelet transformations

31

Figure (2-5): Haar father function

2. Daubechies wavelet[22]

 Daubechies wavelet is an orthogonal discrete wavelet and was presented by

Belgian mathematician Ingrid Daubechies in (Daubechies, 1992)[22] as a

coronation for her advanced research on wavelets that have vanishing points.

The Daubechies wavelet functions denoted according to how many

vanishing points its own it, and denoted by db2,db4, … , db50.

It is worth mentioning the wavelet function is said to have a

number of vanishing points if ∫ , each wavelet has a number

of zero moments, vanishing points or vanishing moments equal to half the

number of coefficients. For example, D2 (the Haar wavelet) has one

vanishing moment, D4 has two, etc. A vanishing moment limits the wavelets

ability to represent polynomial behavior or information in a signal.

𝛷 𝑥

 Chapter two Fourier and wavelet transformations

31

 Mother daubechies wavelet Father daubechies wavelet

db4

db6

db8

db10

 Chapter two Fourier and wavelet transformations

32

db12

db14

db16

db18

 Chapter two Fourier and wavelet transformations

33

db20

Figure (2-6): Mother and father Daubechies wavelet functions

Ingrid Daubechies has shown several mathematical equations, from which

we will need the wavelet transformations matrix, and we will describe two

of them, db4 and db6, where the number of parameters in db4 and db6 are

only eight and six respectively.

The db4 parameters are:

 √

 √

 √

 √

 √

 √

 √

 √

The db4 discrete wavelet transformation denoted by ,

 Chapter two Fourier and wavelet transformations

34

[

]

 (2-22)

And the inverse of is:

[

]

 (2-23)

The matrix is an orthogonal and the parameters satisfying:

 .

 .

The db6 parameters are:

 √

 √

 √

 √

 √

 √

 √ √ √

Therefore, the db6 discrete wavelet transformation of degree is:

 Chapter two Fourier and wavelet transformations

35

[

]

 (2-24)

Note: the db2 wavelet transformation matrix is the same Haar wavelet.

3. Coiflet wavelet [27]

 There are several advantages for the vanishing points in wavelets and we

will mention two of them for their importance in mathematical and statistical

studies.

 The smoother of the function increases as the number of

vanishing points increases.

 Whenever the wavelet functions have a lot of vanishing points, the

wavelet series of the estimator function will converges fast to the

original function.

When Ingrid Daubechies presented daubechies wavelets, only the mother

wavelets have the vanishing points. A mathematician at Yale

University Ronald Raphael Coifman suggests her that the father (scaling)

wavelet functions to have vanishing points. Because of that, she come out

with new wavelets both father (scaling) and mother (wavelet) functions have

(N/3)-1 and N/3 vanishing points respectively. The new wavelet is called

Coiflet and it is semi-symmetric wavelets, and denoted by

Coif1,Coif2,…,Coif9.

https://en.wikipedia.org/wiki/Ingrid_Daubechies

 Chapter two Fourier and wavelet transformations

36

 Mother coiflet wavelet Father coiflet wavelet

Coif1

Coif2

Coif3

Coif4

 Chapter two Fourier and wavelet transformations

37

Coif5

Figure (2-7): Mother and father Coiflet wavelet functions

For more information about Coiflet wavelets, we will give a description of

Cof4 discrete wavelet transformation matrix as follows:

Cof4 has the following parameters:

 √

√

 √

√

 √

 √

 ,
 (√)

 (√)
 ,

 (√)

 (√)

These parameters have the properties:

 Chapter two Fourier and wavelet transformations

38

Then the Cof4 discrete wavelet transformation matrix can be written as:

 0 0 0 0 0 0 0 0

 0 0 0 0 0 0 0 0

 0 0 0 0 0 0 0 0

 0 0 0 0 0 0 0 0

 0 0 0 0 0 0 0 0 (2-25)

 0 0 0 0 0 0 0 0

 0 0 0 0 0 0 0 0

 0 0 0 0 0 0 0 0

 0 0 0 0 0 0 0 0

 0 0 0 0 0 0 0 0

The two solutions can be compensated to find two matrices that are both

orthogonal.

4. Symmlet wavelet

Symmlets are also wavelets within a minimum size support for a given

number of vanishing moments, but they are as symmetrical as possible, as

opposed to the Daubechies filters which are highly asymmetrical. General

characteristics: Compactly supported wavelets with least asymmetry highest

number of vanishing moment for a given support width. Associated scaling

filters are near linear-phase filters.

 Chapter two Fourier and wavelet transformations

39

2.6 Differences between wavelet and Fourier Transformations

 Some differences can be identified between Fourier and Wavelet

transformations according to the formulas and procedures in which the

transform procedure is performed. From our point of view four important

differences can be identified as follows:

1. Fourier transformations can be done appropriately for stable signals

and data, while wavelet transformations can be performed

appropriately for stable and unstable signals (data).

2. Fourier transformations do not have solutions for a function in the

time domain and have solutions for the function in the frequency

domain, comparing to wavelet transformations that have solutions in

both time and frequency domains.

3. The Fourier transformations essentially transform the signals or the

functions to waves of the sines and cosines in a different capacity, but

wavelet transformations transform the signals or the function to a

different measurement of mother and father wavelet functions.

4. In Fourier transformations, the inputs could be real or complex

functions, while the outputs are complex functions. In wavelet

transformations, both inputs and outputs could be real or complex

functions.

41

Chapter three methodology

41

3.1 Introduction

 This chapter introduces the methodology used in this thesis in terms of

details for each step in it to estimate the function of the hazard. In addition,

present some of the basic properties wavelets to utilizing the estimation the

functions and the discrete wavelet transformation (DWT). Where this

estimation have two types nonlinear and linear wavelet transformations, then

introducing the mathematical structure of each one, it worth to know that the

linear wavelet transformation is be used method in this thesis.

3.2 How wavelet approximate functions

 In multiresolution analysis (as explained in chapter two), the space of all

square integrable functions contains two kinds of subspaces

resolution and different subspaces and denoted ae and

respectively. The sequence of functions { } { }

 are two basis for the subspaces respectively, where

 which is called the father wavelet function, and

 which is called the mother wavelet function.

It's possible that for any function could be approximated using

{ } { } sequences with , is an arbitrary

starting scale, and .

There are two techniques to estimate the functions by wavelet nonlinear and

linear wavelet estimations.

Chapter three methodology

42

3.2.1 linear wavelet estimation [13],[30]

 The linear wavelet estimation for any function is defined as

follows:

 ∑

 ∑ ∑

 (3-1)

 ⟦ ⟧ (3-2)

 ⟦ ⟧

(3-3)

From (3-2) and (3-3) the coefficients and can be written as:

∑ is called “Approximation”

coefficients.

∑ is called “Detail” coefficients.

From (3-1) showing that j is start and end with infinity. Based on that,

f(x) could be approximated from to . The maximum value of scale index

 and k is belong to { }. Therefore,

equation (3-1) reformulate as follows:

Chapter three methodology

43

 ∑ (

∑

)

 ∑ ∑ (

∑

)

(3-4)

For periodic wavelets and constant periodic value h, it can be defining the

father and mother wavelets in [0,1] as:

 ̂ ∑

 (3-5)

 ̂ ∑

 (3-6)

Base on (equ.s. (3-5) and (3-6)), it is possible to rewrite (equ. (3-1)) as:

 ∑ ̂ ̂

 ∑ ∑ ̂

 ̂

 ̂ (3-7)

The function in (3-7) is an approximation result for using periodic

wavelets with the two coefficients ̂ and ̂

And according to orthogonality projection of on the subspaces

 , then ̂ and ̂ could be written as follows:

Chapter three methodology

44

 ̂ ∫

 ̂ 〈 ̂ 〉 (3-8)

 ̂ ∫

 ̂ 〈 ̂ 〉 (3-9)

Because of { ̂ } , is an orthogonal basis of the

subspace , it's possible to write any function as

follows:

 ∑ ∑ 〈 ̂ 〉 ̂

 (3-10)

One of the good advantages for wavelet is to estimate any function f ∊

 which approximate this function based on orthogonality projection.

Basically, for fixed scale the orthogonal projection of onto the

subspace is denoted ().

Generally, fixed ̂ and rewrite equation (3-7) as a projection of in

 and represented as:

 () ∑〈 ̂ 〉

 ̂ (3-11)

Moreover, from periodic wavelet it could be shown that

‖ () ‖

Chapter three methodology

45

‖ () ‖

 .

3.2.2 Nonlinear wavelet estimation [12],[43],[54]

 The nonlinear wavelet estimation for any function is defined as

follows:

 ∑

 ∑ ∑

Where is known as wavelet threshold parameter and considering as

one of the fundamentals of WT if it is discrete (DWT) or continuous (CWT),

 is defined as thresholding mother wavelet coefficient and has two

forms according to the wavelet threshold parameter either hard or soft

thresholding rule known as follows:

 ,

Where
 and

 are given as follows:

 ,

 | |

 | |

 {

 | |

Chapter three methodology

46

The wavelet threshold parameter will be used to remove any

interference in the signal data after transmitting. The wavelet threshold will

take the role of a preapprehension parameter in the functions where the

increase or decrease will affect the amount of data preapprehension. There

are two types wavelet threshold rules according to the method of data

preapprehension, defined as follows:

 Hard wavelet threshold

The hard threshold will be used to make data whose values are less than the

threshold value equal to zero.

(̂)
 {

 | |

 | |

 Soft wavelet threshold

(̂)
 {

 | |

Chapter three methodology

47

Figure (3-1): hard and soft thresholds of data curves.

There are many methods to determine the value of wavelet threshold

parameter depend on the way of collection:

 Universal thresholding.

 Sub band adaptive thresholding.

 Spatially adaptive thresholding.

 Cross Validation.

 Sure thresholding.

 Bayesian methods.

 False-Discovery rate.

Chapter three methodology

48

 Exact minimax.

For clarification, we will present the formula given by (Donoho et al., 1996)

[24] as follows:

 √

 | |

Where, E(M)= and M is the absolute vale of independent Gaussian

random variable with zero mean and variance
 .

In order to get more details you can check the reference of (Luo and Zhang,

2012) [43].

Figure (3-2): diagram of wavelet shrinkage and own threshold values.

Wavelet
Shrinkage

Threshold
Function

Hard

Soft

Threshold
Values

Universal
Threshold

Sub Band
Adaptive
Threshold

Saptially
Adaptive
Threshold

Chapter three methodology

49

3.3 Model-up and Hazard rate function [7],[49]

 In this thesis we will study the samples which are randomly right censoring

data and follows the assumptions:

 Lifetimes: let be a non-negative i.i.d distributed with

continuous cumulative (F) and density (f) functions.

 Censoring times: let be non-negative i.i.d distributed

with continuous cumulative (G) and density (g) functions.

 Independence includes both Lifetimes and Censoring times.

Let be the survival times (observed times)

with the indicator function
 and 0 otherwise, so there is censoring

for observed time if .

Hazard function known as failure rate function and denoted by ,

Hazard rate function has a special form in the censored case with

 as:

which usually defined as:

()

()

Chapter three methodology

51

And as a direct result of above, we get:

 () ()

() ()

Now, let that,

 () ()

Rewrite the hazard rate function with assuming that

 () ()

And

 and be the density and survival functions, then:

 (3-12)

Before start estimating the hazard rate function, there are some details that

are important to know.

Assuming that and to make sure that all

observed times belong to [0,1], putting all observing in normalized form,

such that ̂

 and { ̂ } be the ranked of { ̂ }

Chapter three methodology

51

The estimator is on the , it‟s clear that and

 . Depending on what was mentioned above, suppose that .

3.4 Estimation of the hazard function

 Our strategy to estimate Hazard function follows partially estimation, first

estimate the probability density function denoted as(̂) and then

estimate survival function denoted as(̂ ̂).

3.4.1 Estimation of density function (̂)

 In order to estimate (̂), The wavelet projection method previously

referred to as (3-11). It will be followed by the creation of a hybrid between

the wavelet and the Breslow estimate.

 ̂ ∑〈 ̂ 〉

 ̂ (3-13)

Chapter three methodology

52

Based on equ. (3-13), need to find the coefficient〈 ̂ 〉, so let first

denoted it as . Moreover, since is unknown density function, for that

use the cumulative functions (cdf) F and G to collect .

From the observed data , the joint distribution of

is:

 ∫ ()

 (3-14)

 ∫ ∫

 ∫

 () (3-15)

Dependent on equations (3-14) and (3-15):

 () () (3-16)

As a result for equation (3-16):

 ()

 (3-17)

From (3-17) it possible to express and formed =〈 〉, as

 ∫ *

 ()

 +

 ̂

Chapter three methodology

53

 ⟦
 ̂

⟧ ⟦

() ̂

⟧ (3-18)

Using the approach (

∑) for

 :

 ∑
 ̂

()

 ∑
 ̂

()

(3-19)

Now, (̂) ̂ for can be estimated using Breslow

estimator for survival function as follows:

 ̂(̂) ∑

 (∑

)

 (3-20)

 ̂(̂) ∑

 (∑

)

 (3-21)

 (̃(̂))

(̃ ̂)
 (3-22)

Rewrite equation (3-19) as follows:

 ∑

 ̂ ̂ (̂) (3-23)

Chapter three methodology

54

Finally, the estimate of density function ̂ for chosen scale index ()

can be formed as:

 ̂ ∑

 ̂ (̂) (3-24)

3.4.2 Estimation of survival function (̂)[10]

 The strategy of finding and estimating the survival function (̂) which

is depend on using the empirical cumulative function (Ecdf). The empirical

distribution function has a lot of statistical applications especially in

nonparametric studies such as survival and reliability analyses, resampling

methods, nonparametric regression models, sequential testing, and many

other applications.

Mathematically, suppose that for some integer index n, be

random variables with unknown distribution function F. the empirical

distribution function denoted as (̂) and define as follows:

 ̂ ∑

 (3-25)

Where () is known as the indicator function and defined as:

 ,

 (3-26)

Chapter three methodology

55

To be ensure that the empirical function and hence the survival function will

be belong to the interval (0,1), ̂ take the form:

 ̂ ∑

 (3-27)

Now, the survival function defines as:

 ̂ ̂ (3-28)

Then:

 ̂ . ∑

/ (3-29)

Then finally, the hazard rate function defines as:

 ̂
 ̂

 ̂
 (3-30)

3.5 Algorithm implementation of estimation hazard rate

function

This section introduces the algorithm implement of estimation the hazard

rate function using wavelet. The algorithm presents a sequence steps with

the order of finding the following:

 Determinate the sample size (n).

 The projection multiresolution space of index ().

Chapter three methodology

56

 Father wavelet matrix.

 Breslow estimator of ̂(̂) and ̂(̂).

 The coefficient .

 The probability density function ̂ .

 The empirical survival function ̂ .

 The hazard rate function ̂ .

 Step 1

Determinate the sample size (n) and normalized the data by divide all data

samples by .

 Step 2

Collect the maximum value of the projection multiresolution space index

 (())

 Step 3

Constriction the father wavelet matrix
 for ,

and , as follows:

Chapter three methodology

57

[

 ̂ (̂) ̂ (̂)

 ̂ (̂) ̂ (̂)

 ̂

(̂)

 ̂

(̂)

 ̂ (̂) ̂ (̂) ̂

(̂)]

 Step 4

For collect ̂(̂) and ̂(̂) using Breslow estimator, then

find the following:

 the vector matrices[̂(̂)]

 and [̂(̂)]

 ([̂(̂)]

)

[

 ̂(̂)

 ̂(̂)

 ̂(̂)]

 (

 ̂(̂)

 ̂(̂)

 ̂(̂))

 [̂(̂)]

 Step 5

This is collection of the coefficient , but first must find the values of

 using the values and from step (4):

 [([])]

Chapter three methodology

58

Now for find the coefficient :

 Step 6

Compute the probability density function ̂ for

 ̂

 Step 7

Compute the survival function ̂ :

 Construction lower triangular matrix

 For compute

 For i the survival function computing as follows:

 ̂

 Step 8

Finally, for compute the hazard rate function:

 ̂
 ̂

 ̂

59

Chapter four Applications

61

4.1 Introductions

 The content that included in this chapter is the application which determine

the quality and reliability of the proposed method. The application is divided

into two parts, including the first part including the simulation techniques

and the second part the real data application.

4.2 Simulation study

 Simulation is one of the most important techniques in statistics, it is

provides the possibility of generating samples that can be studied and

analyzed in case they are difficult to obtain from reality. The advantage of

simulations, especially in the case of right randomly censoring data, is the

knowledge of the actual values of X and C. In addition, it is possible to

identify the approaches of the statistical functions (probability density

function, the hazard rate function) which provide great potential for

comparison between them and the estimators.

It should be noted that the estimation process in simulation studies follows

the experimental method, in the sense of clarity and more detailed, that there

are some constraints to be taken into account. These constrains can be listed

as follows:

1. The samples size.

2. The wavelet type.

3. The number of vanishing points.

4. The projection multiresolution space index.

Chapter four Applications

61

In the simulation studies and because of the number of repetitions, the

process of compatibility between the constraints takes a course of difficulty,

so in order to reach a consensus between constraints as soon as possible, we

have taken partial samples from the experiment so that the experiment is

divided into four parts and then from each part we chose a set of samples for

experimentation. According to all those reasons, the estimation of hazard

rate function in simulations studies will be done with one type of wavelet.

4.2.1 First simulation experiment

 First simulation experiment is generated data that distributed as Gamma

distribution for lifetimes
 with two parameters, shape parameter equal

to 5 and scale parameter equal to 1. The independent censoring times

are generated using exponential distribution with one parameter equal to 6.

The aim of choosing parameters with ~G(5,1) and ~EXP(6) is to have

simulation data with 50% censoring. For data generation, n = 100, 200 were

selected. The following algorithm steps showing how generating and

preparing the database for n=100,200 using Gamma distribution (G(5,1))

and Exponential distribution (Exp(6)).

 Step 1

The first step is important since it determines the data size (n=100,200) and

all next steps depend on it.

 Step 2

Generate random samples for the lifetime‟s data
 use G(5,1) in

Matlab 2018a programing with order (gamrnd(A,B)).

Chapter four Applications

62

 Step 3

Generate random samples The independent censoring times
 use

Exp(6) in Matlab 2018a programing with order (exprnd(mu)).

 Step 4

Finding indicator function for i=1,2,..n, where:

 {

 Step 5

Finding the failure times vectors Z, such that for

i=1,2,…,n.

 Step 6

Organizes the data-matrix as matrix with ‟s as first column and

 ‟s as the second column for i=1,2,..n.

 Step 7

Applying the algorithm of finding the actual density function and hazard rate

function which are defined in chapter three (section 3.2).

 Step 8

Finally, applying the data-matrix from the step 6 in algorithm that

introduced in chapter three (section 3.4) to estimate the density function and

hazard rate function.

Chapter four Applications

63

4.2.1.1 Discussion and results of First simulation

experiment

 Before reviewing the results it is important to review some important

details that play a role in the estimation process.

 The process of determining the wavelet resolution index and the

wavelet type is considered the basis of the estimation process of the hazard

rate function by wavelets, and many have been trying to derive a general

method for finding the appropriate wavelet resolution index for any set

of data, but the researcher's experience is the most important and decisive in

this aspect.

 New, to determine the maximum wavelet resolution index , set

), with using the experimentation process can determine

the type of wavelet, wavelet resolution index , and number of vanishing

points as follows: the Daubecheis (db50) is the wavelet type with . For

comparing between the actual and estimation of hazard rate function, use the

global error measurement with the form as follows:

 ∑ ∑ (̂)

Where R =200 is the number to repeat the experience.

Table (4-1) showing the results of MSE for the first simulation experiment

of size sample n=100,200, in figures (4-1) and (4-2) the red curves represent

the wavelet estimation of hazard rate functions and the blue curves represent

the actual hazard rate functions of data generating by Gamma distribution

Chapter four Applications

64

and the independent censoring times generating by Exponential distribution

for n=100,200.

n MSE_Hazard

100 0.273224908

200 0.201609502

Table (4-1): MSE of hazard rate function for first simulation experiment

The table (4-1) showing that the MSE for the hazard rate estimation using

wavelet (dN50 and) and MSE is minimized especially for n=200 and

R=200.

Figure (4-1): Estimation of hazard rate function of simulation experiment

given in (4.2.1) with n=100.

Chapter four Applications

65

Figure (4-2): Estimation of hazard rate function of simulation experiment

given in (4.2.1) with n=200.

 From figure (4-1) noting that the estimation of hazard rate functions are

convergent to actual hazard rat functions when n=100, but in figure (4-2)

noting that the estimation of hazard rate functions are more convergent to

actual hazard rat functions when n=200.

 Table (4-2) showing the results of MSE for the first simulation experiment

of size sample n=100,200, in figures (4-3) and (4-4) the red curves represent

the wavelet estimation of density functions and the blue curves represent the

actual density functions of data generating by Gamma distribution and the

independent censoring times generating by Exponential distribution for

n=100,200.

Chapter four Applications

66

n MSE_Density

100 0.323315

200 0.214655

Table (4-2): MSE of density function for first simulation experiment

The table (4-2) showing that the MSE of probability density function

estimation using wavelet (dN50 and) and MSE is minimized

especially for n=200 and R=200.

Figure (4-3): Estimation of density function of simulation experiment given

in (4.2.1) with n=100.

Chapter four Applications

67

Figure (4-4): Estimation of density function of simulation experiment given

in (4.2.1) of with n=200.

From figure (4-3) noting that the estimation of probability density functions

are convergent to actual probability density functions when n=100, but in

figure (4-4) noting that the estimation of probability density functions are

more convergent to actual probability density functions when n=200.

4.2.2 Second simulation experiment

 Second simulation data is generated using bimodal distribution for

lifetimes
 , such that where

and . The independent censoring times
 are generated

using exponential distribution with one parameter equal to 6. The aim of

choosing parameters for both distributions is to have simulation data with an

average 45% censoring. For data generation, n = 400, 600 were selected.

The following algorithm steps showing how generating and preparing the

Chapter four Applications

68

database for n=400,600 using bimodal distribution and Exponential

distribution.

 Step 1

The first step is important since it is determined the data size (n=100,200)

and all next steps dependent on it.

 Step 2

Generate random samples for the lifetime‟s data
 with following

Matlab 2018a programing:

 First, generate a bimodal variable, which 40% of the time (on

average) will be equal to 1, and 60% of the time (on average) will be

equal to zero, with order:

 (frac = rand(n,1) < 0.4;)

 Generate the two normal distributions to sample from with orders

norm1=5+randn(n,500);

 norm2=3+0.5*randn(n,500);}

 Generate lifetimes
 with order :

 X= frac.*norm1 + (1-frac).*norm2;

 Step 3

Generate random samples the independent censoring times
 use

Exp(6) in Matlab 2018a programing with order (exprnd(mu)).

 Step 4

Finding indicator function for i=1,2,..n, where:

Chapter four Applications

69

 {

 Step 5

Finding the failure times vectors Z, such that for

i=1,2,…,n.

 Step 6

Organizes the data-matrix as matrix with ‟s as first column and

 ‟s as the second column for i=1,2,..n.

 Step 7

Applying the algorithm of finding the actual density function and hazard rate

function which are defined in chapter three (section 3.2).

 Step 8

Finally, applying the data-matrix from the step 6 in algorithm that

introduced in chapter three (section 3.4) to estimate the density function and

hazard rate function.

4.2.2.1 Discussion and results of second simulation

experiment

 As mentioned earlier in the subsection (4.2.1.1), the process of determining

the level and type of wavelet is considered the most important process in the

estimation. In this subsection, the data generation process is considered more

complex than the first one, because there are two normal distributions in the

process of data generation (lifetimes) which also includes the weight (factor)

controls the process of generating, so the previous process in finding the

Chapter four Applications

71

level is not useful here, but it determines the upper limits and through

experimentation we can determine the level required. So the resolution

is choosing here and equal to (3). Furthermore, the wavelet type is choosing

to be the Daubechies (dN20).

Table (4-3) showing the results of MSE for the bimodal simulation

experiment of size sample n=400,600 with repetition R=500, in figures (4-5)

and (4-6) the red curves represent the wavelet estimation of hazard rate

functions and the blue curves represent the actual hazard rate functions of

data generating by bimodal distribution and the independent censoring times

generating by Exponential distribution for n=400,600.

n MSE_Hazard

400 0.632627407

600 0.541041413

Table (4-3): MSE of hazard rate function for second simulation experiment

The table (4-3) showing that the MSE for the hazard rate estimation using

wavelet (dN20 and) and MSE is minimized especially for n=600, and

R=500.

Chapter four Applications

71

Figure (4-5): Estimation of hazard rate function of simulation experiment

given in (4.2.2) with n=400.

Figure (4-6): Estimation of hazard rate function of simulation experiment

given in (4.2.2) with n=600.

Chapter four Applications

72

 From figure (4-5) noting that the estimation of hazard rate functions are

convergent to actual hazard rat functions when n=400, but in figure (4-6)

noting that the estimation of hazard rate functions are more convergent to

actual hazard rat functions when n=600.

 Table (4-4) showing the results of MSE for the bimodal simulation

experiment of size sample n=400,600 with repetition R=500, in figures (4-7)

and (4-8) the red curves represent the wavelet estimation of density

functions and the blue curves represent the actual density functions of data

generating by bimodal distribution and the independent censoring times

generating by Exponential distribution for n=400,600.

n MSE_Density

400 0.761276695

600 0.710094605

Table (4-4): MSE of density function for second simulation experiment

Table (4-4) showing that the MSE of probability density function estimation

using wavelet (dN20 and) and MSE is minimized especially for n=600

and R=500.

Chapter four Applications

73

Figure (4-7): Estimation of density function of simulation experiment given

in (4.2.2) with n=400.

Figure (4-8): Estimation of density function of simulation experiment given

in (4.2.2) with n=600.

Chapter four Applications

74

From figure (4-7) noting that the estimation of probability density functions

are convergent to actual hazard rat functions when n=400, but in figure (4-8)

noting that the estimation of hazard rate functions are more convergent to

actual hazard rat functions when n=600.

4.3 Real application data

 This section will include three real applications to find the hazard rate

function which are liver metastases data, nursing home data, and Stanford

heart transplant data. Data were selected with different sample sizes for

diversification to give options in terms of estimation.

 As explained previously in Section (2.3), the estimation process is

constrained by constraints that determine how to deal with the data in order

to have the best compatibility between the constraints. Dealing with the real

data in general is easier to deal with simulation data because it simply

consists of one experiment (column), while simulation Because of

repetitions consists of several experiments (columns).

 For all this reasons here we can choose more than one type of wavelet in

addition to choosing more than one value of the number of vanishing points

for each type of wavelets. This provided an opportunity to make

comparisons between the values of the estimates for each type of wavelet as

well as the comparison between wavelet types.

Chapter four Applications

75

4.3.1 Liver Metastases Data

 The data is of 622 patients survival times suffering from liver metastases

from a colorectal primary tumor collected by Haupt and Mansmann (1995).

The survivals times of patients collected in months with 259 censored

samples (41.62%). Moreover, the data is available in one of R program

packages called locfit. We estimated the hazard function of the data using

the wavelet method dependent on the wavelet level (Ĵ=3). Then the results

were then compared with the results obtained from kernel smoothing

estimation as shown in Figures (4-9), (4-10), and (4-11) for daubechies type

with sizes of vanishing points (db30,db32, and db34), and figures (4-12), (4-

13), and (4-14) for coilet type of sizes of vanishing points (coif1, coif2, and

coif3). The blue curve represents the wavelet estimation, the red curve is

kernel smoothing estimation, and the green curve represents the square error

between wavelet and kernel estimations. In order to add more information

about the estimation method, the MSE was calculated and shown in table

(4-5).

The Square Error is formal is given as:

 (̂)

The Mean Square Error is given as:

∑ (̂)

Chapter four Applications

76

Wavelet type MSE

db30 0.071486331

db32 0.012129634

db34 0.000693777

coif1 0.000506636

coif2 0.00610061

coif3 0.00285396

Table (4-5): MSE of kernel smoothing and wavelet estimations of hazard

function for liver metastases data.

The table (4-5) showing that the MSE for the types of Daubechies wavelets

are minimized especially for the type (db34) which equal to 0.000693777

and for Coiflet wavelets are minimized especially for the type (coif1) which

equal to 0.000506636.

Chapter four Applications

77

Figure (4-9): db30_wavelet estimation (blue), kernel smoothing estimation

(red), and square errors (green) of 622 liver metastases data.

Chapter four Applications

78

Figure (4-10): db32_wavelet estimation (blue), kernel smoothing estimation

(red), and square errors (green) of 622 liver metastases data.

Chapter four Applications

79

Figure (4-11): db34_wavelet estimation (blue), kernel smoothing estimation

(red), and square errors (green) of 622 liver metastases data.

Chapter four Applications

81

Figure (4-12): coif1_wavelet estimation (blue), kernel smoothing estimation

(red), and square errors (green) of 622 liver metastases data.

Chapter four Applications

81

Figure (4-13): coif2_wavelet estimation (blue), kernel smoothing estimation

(red), and square errors (green) of 622 liver metastases data.

Chapter four Applications

82

Figure (4-14): coif3_wavelet estimation (blue), kernel smoothing estimation

(red), and square errors (green) of 622 liver metastases data.

Chapter four Applications

83

 In the first three figures (4-9), (4,10), and (4-11), the using of the

Daubechies wavelets showing the remarkable effect of the wavelet type in

the estimation by observing the change in the estimation curves (blue

curves) when the value of the vanishing points has changed, as well as the

approximation of the estimation curve to kernel curve, which shows the

effectiveness of the wavelets to obtain estimations as close as possible.

 The last three figures (4-12), (4-13), and (4.14) of the using of Coiflet

wavelets shows a slightly different approach from their predecessors due to a

kind of oscillation in the values of the estimates which can be observed by

the estimation curves (blue curves), oscillation can be observed more clearly

in the square error curves (green curves), although the MSE appears to be of

lower value when used the Coiflet wavelets.

4.3.2 Nursing Home Data

 For data application, the data named is nursing home data, which was first

introduced by Morris, Norton, and Zhou (1994). Data were collected for

patients in a nursing home for the elderly between (1980-1982). The original

study contains 1601 patients of home nursing and collected by the National

Center for Health Services. For application using a subset of original data

(n=214).

 The approach with this data differs from its predecessor in terms of

comparison where the kernel smoothing estimation method was used to

estimate the hazard function. While, in wavelet estimation for hazard rate

function, the type of wavelet was used is Daubechies with different seven

sizes of vanishing points (db38,db40,db42,db44,db46,db48, and db50).

Chapter four Applications

84

The following table (4-6) shows the Mean Square Error (MSE) for home

nursing data between the kernel smoothing and wavelet estimation methods.

The Square Error is formal is given as:

 (̂)

The Mean Square Error is given as:

∑ (̂)

Dbaubechies wavelets MSE

db38 0.062838135

db40 0.029342693

db42 0.01081316

db44 0.003186177

db46 0.000739611

db48 0.00012561

db50 1.68099E-05

Table (4-6): MSE of kernel smoothing and wavelet estimations of hazard

function for nursing home data.

The figures (4-15), (4-16), (4-17), (4-18), (4-19), (4-20), and (4-21) shows

the curves or kernel smoothing estimation, wavelet estimation, and the

square errors of nursing home data. Where the red curve represents the

wavelet estimation, the blue curve represents the kernel smoothing

estimation, and the green curve represents the square errors.

Chapter four Applications

85

Figure (4-15): db38_wavelet estimation (blue), kernel smoothing estimation

(red), and square errors (green) of 214 nursing home data.

Chapter four Applications

86

Figure (4-16): db40_wavelet estimation (blue), kernel smoothing estimation

(red), and square errors (green) of 214 nursing home data.

Chapter four Applications

87

Figure (4-17): db42_wavelet estimation (blue), kernel smoothing estimation

(red), and square errors (green) of 214 nursing home data.

Chapter four Applications

88

Figure (4-18): db44_wavelet estimation (blue), kernel smoothing estimation

(red), and square errors (green) of 214 nursing home data.

Chapter four Applications

89

Figure (4-19): db46_wavelet estimation (blue), kernel smoothing estimation

(red), and square errors (green) of 214 nursing home data.

Chapter four Applications

91

Figure (4-20): db48_wavelet estimation (blue), kernel smoothing estimation

(red), and square errors (green) of 214 nursing home data.

Chapter four Applications

91

Figure (4-21): db50_wavelet estimation (blue), kernel smoothing estimation

(red), and square errors (green) of 214 nursing home data.

Chapter four Applications

92

 In this application, we try to show the change in the values of the estimates

when using one type of wavelet with the possibility of a change in the

number of vanishing points. This is an opportunity given by the lower

sample size compared to the first application. The change in the number of

vanishing points was serialized from 38 to 50, where the curve of the

estimates showed an approach that takes approximation whenever the

greater the level in the vanishing points, and all that was shown in figures (4-

15), (4-16), (4-17), (4-18), (4-19), (4-20), and (4-21). This is confirmed by

the value of MSE where it was the lowest possible when used of (db50) and

equal to 1.68099E-05.

4.3.3 Stanford Heart Transplant data

 For the application will use here real dataset called (Stanford Heart

Transplant data), which he classifies them and analyzed (Crowley and Hu in

1977). The study was conducted between 1970 and 1974 and provides a

survival time for 103 patients who need heart transplants. During this study,

67% (69 patients) received heart transfusion while the rest did not, at the end

of the study in April 1974 73% (75 patients) died. Data representation

includes the survival time in days, which is the difference between the last

time the patient was seen and the time he entered the study. The survival

status (censored status) formed as alive=0 and died=1. For more details

about data, you can find it in (http://lib.stat.cmu.edu/datasets/stanford). In

order to determine the appropriateness of the proposed method for

estimating the hazard function, we will compare here the proposed method

http://lib.stat.cmu.edu/datasets/stanford

Chapter four Applications

93

with a classical estimation method, which is kernel smoothing estimation, in

order to collect the hazard rate function. Moreover, using the Mean Square

Error (MSE) to compare between values of the proposed method and the

kernel smoothing estimation.

The Square Error is formal given as:

 (̂)

The Mean Square Error is given as:

∑ (̂)

 As mentioned before, the method used to choose the wavelet type and the

value of vanishing points is an experimental method and since one of the

constraints to be taken into consideration in the use of wavelets is the size of

the sample in an attempt to use the most number of wavelet types with a

different number of vanishing points and this is provided by this application

It is possible to use three types of wavelets

 The wavelet method used to estimate the hazard rate function was

performed using three types of wavelets (Daubechies, Coiflit, and Symmlet)

to compare the results. Each type of wavelets used with three sizes of

vanishing points, for Daubechies (db40, db42, and db44), for Coiflet (coif2,

coif3, and coif4), and for Symmlet (symm6, symm8, and symm10).

 The following table (4-7) showed the MSE‟s values to denote each user

type of wavelets compared with kernel smoothing estimation.

Chapter four Applications

94

Wavelet type MSE

db40 0.000123733

db42 7.45457E-06

db44 7.18966E-07

coif2 7.34425E-05

coif3 1.66059E-06

coif4 1.77922E-06

symm6 1.53041E-05

symm8 1.77525E-06

symm10 1.77932E-06

Table (4-7): MSE of kernel smoothing and wavelet estimations of hazard

function for Stanford Heart Transplant data.

 The figures (4-22), (4-23), (4-24) shows the curves of using daubechies,

coiflet, and symmlet waveletes of smallest MSE values comparing to the

kernel smoothing estimation, wavelet estimation, and the square errors of

Stanford heart transplant data. Where the red curve represents the wavelet

estimation, the blue curve represents the kernel smoothing estimation, and

the green curve represents the square errors.

Chapter four Applications

95

Figure (4-22): db44_wavelet estimation (blue), kernel smoothing estimation

(red), and square errors (green) of 103 Stanford heart transplant data.

Chapter four Applications

96

Figure (4-23): coif3_wavelet estimation (blue), kernel smoothing estimation

(red), and square errors (green) of 103 Stanford heart transplant data.

Chapter four Applications

97

Figure (4-24): symm8_wavelet estimation (blue), kernel smoothing

estimation (red), and square errors (green) of 103 Stanford heart transplant

data.

Chapter four Applications

98

 In figures (4-22), (4-23), and (4-24), can be noting that the results of the

estimations take a kind of stability when using a wavelet (db44) compared to

the results that come with the use of (coif3) and (symm8). In addition, this

stability and convergence between the values of the estimates proved by the

smaller values of the Mean Square Error which equal to:

99

Chapter five Conclusion and future studies

111

5.1 Conclusion

1. The main object of this thesis is to study the nonparametric

estimation of the hazard rate function for randomly right censored

data using linear wavelet estimation.

2. The strategy to estimate hazard function follows partially

estimation, at first estimate the probability density function denoted

as(̂) and then estimate survival function denoted as(̂

 ̂).

3. In order to estimate (̂), The wavelet projection method

previously referred in equation (3-23) using the projection property

of the father wavelet function { } on

the subspace of Lebesgue spaces , followed by the creation

of a hybrid between the wavelet and the Breslow estimate.

4. The survival function (̂) found using the empirical

distribution function formula.

5. There are a set of constraints that control the estimation process

which is the size of the sample, the wavelet type, the length of the

wavelet, and the value of the resolution index .

6. Two types of applications were used, the first is the simulation

study and the second is a real application.

7. First simulation generated of n=100, 200 samples used Gamma

distribution (G(5,1)) for lifetimes
 , and Exponential

distribution (Exp(6)) for censoring times
 . The type of

wavelet was used in this simulation is Daubechies (db50).

Chapter five Conclusion and future studies

111

8. Second simulation generated of n=400, 600 samples used bimodal

distribution for lifetimes
 , and Exponential distribution

(Exp(6)) for censoring times
 . The resolution index is

choosing here and equal to (2 and 3). Furthermore, the wavelet type

is choosing to be the Daubechies (dN20).

9. Three real applications used to study the estimation of hazard rate

function which is liver metastases data, nursing home data, and

stanford heart transplant data. Moreover, in real application for

comparing with our method we used the nonparametric kernel

smoothing estimation.

10. Because of the ease of dealing with real data, unlike the simulation

data, the estimation process was done using three types of wavelets

(Daubecheis, Coiflet, and Symmlet) with different wavelengths in

order to know the effect of wavelets in the estimation process and

make comparisons to reach the preferred result

11. In order to compare and determine the effectiveness of the method

used in the estimation we used the Mean Square Error (MSE).

12. According to MSE results, in the simulation study we note that the

sample size has an effect on the values of the results and the size of

the larger sample gives the best results as we noted in tables (4-1)

and (4-3), while the effect in the real data applications depends on

the type of wavelet and wavelength in giving the best results as we

noted in the tables (4-5), (4-6), and (4-7).

13. Finally, we use Matlab (17b and 18a) to program the proposal

method of estimation the hazard rate function.

Chapter five Conclusion and future studies

112

14. It is worth noting that the method used to reach to the best

compatibility between the constraints (sample size, wavelet type,

vanishing points, resolution index), which gives us an estimation

results as best as possible, is an experimental method.

5.2 Future studies

1. Estimation the hazard rate function using non-linear wavelet

estimation for randomly censored data.

2. Study the nonparametric estimation of hazard rate function using

wavelets for different types of censored data such as left, interval,

type I, and type II.

3. Hybrid between the wavelets estimation and the others

nonparametric estimation such as Kaplan-Meier, Nalson-Aalen, and

Kernel estimations.

4. Designation of a new mathematical style or system that allows for

the best compatibility between the constraints (sample size, wavelet

type, vanishing points, resolution index), which makes the

estimation results to be the best as possible as it could

113

1. Abbaszadeh, M., Chesneau, C. and Doosti, H. (2012) „Nonparametric

estimation of density under bias and multiplicative censoring via

wavelet methods‟, Statistics & Probability Letters. Elsevier, 82(5), pp.

932–941.

2. Afshari, M. and Tahmasebi, S. (2014) „Estimation of hazard function

for censoring random variable by using wavelet decomposition and

evaluation of MISE, AMSE with simulation‟, Journal of Data

Analysis and Information Processing. Scientific Research Publishing,

2(01), p. 1.

3. Ahmadi, A. et al. (2012) „Estimation of hazard function and its

associated factors in gastric cancer patients using wavelet and kernel

smoothing methods‟, Asian Pacific Journal of Cancer Prevention.

Asian Pacific Organization for Cancer Prevetion, 13(11), pp. 5643–

5646.

4. Angers, J.-F. and MacGibbon, B. (2007) Bayesian estimation of the

hazard function with randomly right censored data. Wiley Online

Library.

5. Antoniadis, A., Bigot, J. and Sapatinas, T. (2001) „Wavelet estimators

in nonparametric regression: a comparative simulation study‟, Journal

of statistical software, 6, p. pp-1.

6. Antoniadis, A., Gregoire, G. and McKeague, I. W. (1994) „Wavelet

methods for curve estimation‟, Journal of the American Statistical

Association, 89(428), pp. 1340–1353. doi:

114

10.1080/01621459.1994.10476873.

7. Antoniadis, A., Grégoire, G. and Nason, G. (1999) „Density and

hazard rate estimation for right-censored data by using wavelet

methods‟, Journal of the Royal Statistical Society. Series B: Statistical

Methodology, 61(1), pp. 63–84. doi: 10.1111/1467-9868.00163.

8. Bagkavos, D. (2011) „Local linear hazard rate estimation and

bandwidth selection‟, Annals of the Institute of Statistical

Mathematics. Springer, 63(5), pp. 1019–1046.

9. Bezandry, P. H., Bonney, G. E. and Gannoun, A. (2005) „Consistent

estimation of the density and hazard rate functions for censored data

via the wavelet method‟, Statistics and Probability Letters, 74(4), pp.

366–372. doi: 10.1016/j.spl.2005.04.058.

10. Brunel-Piccinini, E. and Comte, F. (2005) „Penalized contrast

estimation of density and hazard rate with censored data‟, Sankhyā:

The Indian Journal of Statistics. JSTOR, pp. 441–475.

11. Brunel, E. and Comte, F. (2009) „Cumulative distribution function

estimation under interval censoring case 1‟, Electronic Journal of

Statistics, 3, pp. 1–24. doi: 10.1214/08-EJS209.

12. CAI, J.-J. and LIANG, H.-Y. (2011) „Nonlinear Wavelet Density

Estimation for Truncated and Dependent Observations‟, International

Journal of Wavelets, Multiresolution and Information Processing,

09(04), pp. 587–609. doi: 10.1142/s0219691311004237.

13. Chaubey, Y. P. et al. (2010) „Linear wavelet-based estimation for

derivative of a density under random censorship‟. JOURNAL OF

THE IRANIAN STATISTICAL SOCIETY (JIRSS).

14. Chesneau, C., Dewan, I. and Doosti, H. (2016) „Nonparametric

estimation of a quantile density function by wavelet methods‟,

115

Computational Statistics and Data Analysis, 94, pp. 161–174. doi:

10.1016/j.csda.2015.08.006.

15. Chesneau, C. and Doosti, H. (2016) „A note on the adaptive

estimation of a conditional continuous-discrete multivariate density by

wavelet methods‟, Chinese Journal of Mathematics. Hindawi, 2016.

16. Chesneau, C., Doosti, H. and Stone, L. (2018) „Adaptive wavelet

estimation of a function from an m-dependent process with possibly

unbounded m‟, Communications in Statistics - Theory and Methods.

Taylor & Francis, 0926, pp. 1–13. doi:

10.1080/03610926.2018.1423700.

17. Chesneau, C. and Willer, T. (2015) „Estimation of a cumulative

distribution function under interval censoring “case 1” via warped

wavelets‟, Communications in Statistics-Theory and Methods. Taylor

& Francis, 44(17), pp. 3680–3702.

18. Chui, C. K. and Jiang, Q. (2013) „Applied Mathematics‟, Data

Compression. Spectral Methods, Fourier Analysis, Wavelets and

Applications. Springer.

19. Comte, F. et al. (2015) „Hazard estimation for censored data

contaminated with additive measurement error : application to length

of pregnancy‟, (1), pp. 1–19.

20. Comte, F., Samson, A. and Stirnemann, J. J. (2017) „Hazard

estimation with censoring and measurement error: application to

length of pregnancy‟, TEST. Springer, pp. 1–22.

21. Conraria, L. A. and Soares, M. J. (2011) „The continuous wavelet

transform: A primer‟, NIPE Working Paper. Universidade do Minho.

Núcleo de Investigação em Políticas Económicas (NIPE), 16, pp. 1–

43.

116

22. Daubechies, I. (1992) Ten lectures on wavelets. Siam.

23. Dixit, A. and Sharma, P. (2014) „A Comparative Study of Wavelet

Thresholding for Image Denoising‟, IJ Image, Graphics and Signal

Processing, 12, pp. 39–46.

24. Donoho, D. L. et al. (1996) „Density estimation by wavelet

thresholding‟, The Annals of Statistics. JSTOR, pp. 508–539.

25. Doosti, H. (2009) „A new wavelet linear survival function estimator‟,

World Applied Sciences Journal, 6(2), pp. 191–195.

26. Farhadian, M. et al. (2014) „Supervised wavelet method to predict

patient survival from gene expression data‟, The Scientific World

Journal. Hindawi, 2014.

27. Van Fleet, P. J. (2011) Discrete wavelet transformations: An

elementary approach with applications. John Wiley & Sons.

28. Gaul, W. A. and Locarek-Junge, H. (2012) Classification in the

Information Age: Proceedings of the 22nd Annual GfKl Conference,

Dresden, March 4–6, 1998. Springer Science & Business Media.

29. Gomes, J. and Velho, L. (2015) From fourier analysis to wavelets.

Springer.

30. Grez, G. A. S. and Vidakovic, B. (2017) „An Empirical approach to

Survival Density Estimation for randomly-censored data using

Wavelets‟, 1(1997), pp. 1–31. Available at:

http://arxiv.org/abs/1709.09298.

31. Grez, G. A. S. and Vidakovic, B. (2018) „Least Squares Wavelet-

based Estimation for Additive Regression Models using Non Equally-

Spaced Designs‟, pp. 1–38. Available at:

http://arxiv.org/abs/1804.03015.

32. Herrick, D. R. M., Nason, G. P. and Silverman, B. W. (2001) „Some

117

new methods for wavelet density estimation‟, Sankhyā: The Indian

Journal of Statistics, Series A. JSTOR, pp. 394–411.

33. In, F. and Kim, S. (2013) „An introduction to wavelet theory in

finance: a wavelet multiscale approach‟. World scientific.

34. Jawerth, B. and Sweldens, W. (1994) „An overview of wavelet based

multiresolution analyses‟, SIAM review. SIAM, 36(3), pp. 377–412.

35. Jiang, Y. (2011) „Estimation of hazard function for right truncated

data‟. Availbale at:

https://scholarworks.gsu.edu/cgi/viewcontent.cgi?article=1095&conte

xt=math_theses

36. Kaiser, G. (2010) A friendly guide to wavelets. Springer Science &

Business Media.

37. Kim, C. et al. (2005) „Non-parametric hazard function estimation

using the Kaplan-Meier estimator‟, Journal of Nonparametric

Statistics, 17(8), pp. 937–948. doi: 10.1080/10485250500337138.

38. Kim, C. et al. (2010) „A local linear estimation of conditional hazard

function in censored data‟, Journal of the Korean Statistical Society.

Elsevier, 39(3), pp. 347–355.

39. Lepik, Ü. and Hein, H. (2014) „Haar wavelets‟, Mathematical

Engineering, 1(9783319042947), pp. 7–20. doi: 10.1007/978-3-319-

04295-4_2.

40. Li, L. (2002) „Hazard rate estimation for censored data by wavelet

methods‟, Communications in Statistics - Theory and Methods, 31(6),

pp. 943–960. doi: 10.1081/STA-120004191.

41. Liang, H.-Y., Mammitzsch, V. and Steinebach, J. (2005) „Nonlinear

wavelet density and hazard rate estimation for censored data under

dependent observations‟, Statistics & Decisions. Oldenbourg

118

Wissenschaftsverlag GmbH, 23(3/2005), pp. 161–180.

42. Liu, C.-L. (2010) „A tutorial of the wavelet transform‟, NTUEE,

Taiwan.

43. Luo, G. and Zhang, D. (2012) „Wavelet denoising‟, in Advances in

wavelet theory and their applications in engineering, physics and

technology. IntechOpen.

44. Misiti, M. et al. (2014) Wavelet Toolbox
TM

 User’s Guide R 2014 b,

MATLAB version.

45. Naono, K. (1995) „Comparative computations of non-parametric

density estimation between some kernel method and the wavelet

method *‟, Monte Carlo Methods and Applications, 1(2), pp. 147–

163. doi: 10.1515/mcma.1995.1.2.147.

46. Olkkonou, H. (2011) „Discrete wavelet transforms: Algorithms and

applications‟. Intech.

47. Pinsky, M. A. (2008) Introduction to Fourier analysis and wavelets.

American Mathematical Soc.

48. Plancade, S. (2009) „Non parametric estimation of hazard rate in

presence of censoring‟.

49. Rinne, H. (2014) The Hazard rate: Theory and inference (with

supplementary MATLAB-Programs).

50. Rodrıguez, G. (2005) „Non-parametric estimation in survival models‟.

Available at:

https://data.princeton.edu/pop509/NonParametricSurvival.pdf.

51. Ruch, D. K. and Van Fleet, P. J. (2011) Wavelet theory: an

elementary approach with applications. John Wiley & Sons.

52. Salha, R. B., Ahmed, H. I. E. S. and Alhoubi, I. M. (2014) „Hazard

Rate Function Estimation Using Weibull Kernel‟, Open Journal of

119

Statistics. Scientific Research Publishing, 4(08), p. 650.

53. Schlossnagle, G., Restrepo, J. M. and Leaf, G. K. (no date)

„TECHNICAL REPORT ANL-93/34 PERIODIZED WAVELETS‟.

54. Shirazi, E. et al. (2012) „Wavelet based estimation for the derivative

of a density by block thresholding under random censorship‟, Journal

of the Korean Statistical Society. Elsevier, 41(2), pp. 199–211.

55. Sifuzzaman, M., Islam, M. R. and Ali, M. Z. (2009) „Application of

Wavelet Transform and its Advantages Compared to Fourier

Transform‟, Journal of Physical Sciences, 13, pp. 121–134. doi:

10.5194/hess-15-1835-2011.

56. Vannucci, M. (1995) Nonparametric density estimation using

wavelets. Institute of Statistics & Decision Sciences, Duke University.

57. Varanis, M. and Pederiva, R. (2017) „The influence of the wavelet

filter in the parameters extraction for signal classification: An

experimental study.‟, Proceeding Series of the Brazilian Society of

Computational and Applied Mathematics, 5(1).

58. Weng, Y.-P. and Wong, K.-F. (2007) „Baseline survival function

estimators under proportional hazards assumption‟, Institute of

Statistics, National University of Kaohsiung, Kaohsiung, Taiwan, 811.

59. Wu, S. S. and Wells, M. T. (2003) „Nonparametric estimation of

hazard functions by wavelet methods‟, Journal of Nonparametric

Statistics, 15(2), pp. 187–203. doi: 10.1080/1048525031000089301.

60. Zhang, Z. et al. (2014) „Achieving complex discrete wavelet

transform by lifting scheme using Meyer wavelet‟, International

Conference on Wavelet Analysis and Pattern Recognition, 2014-

Janua, pp. 170–175. doi: 10.1109/ICWAPR.2014.6961310.

Estimation of hazard rate function using

wavelet

n=…; % samples size

J=3; % default coarsest

level

tt=0;sd=0;sd1=0;sd2=0;sd3=0;

%------father Wavelet function My_pHjk-------

filter = MakeONFilterExt('symmlet',11); % wavelet

filters

%filter = coifwavf('coif2');

%filter=symwavf('sym6');

%filter=dbwavf('db5');

%filter=symwavf('bior1.4');

y=x(:,1); % column of lifetimes

observations

d=x(:,2); % column of censoring and

uncensoring cases

M=zeros(n,2^J); % father wavelet function

matrix

for k = 0:(2^J-1)

 for i = 1:n

 M(i,k+1)=Phijk(y(i),J,k,filter,20);

 end

end

% -------berslow_estimayor-----

b=zeros(n,1);

%--------estimation of G(Yi)------

for i1=1:n

 for j=1:i1-1

 b(j)=(1-d(j))/(n-j+1);

 c(i1)=b(j);

 end

 end

 for k1=1:n

 sd=sd+c(k1);

 u(k1)=sd;

 for f=1:k1

 a(f)=(1-d(f))/(n-f+1);

 end

 m(k1)=a(k1)*exp(-u(k1));

 sd1=sd1+m(k1);

 v(k1)=sd1;

 end

 %------ estimation of F(Yi)------

 for i6=1:n

 for j1=1:i6-1

 b1(j1)=(d(j1))/(n-j1+1);

 c1(i6)=b1(j1);

 end

 end

 for k2=1:n

 sd2=sd2+c1(k2);

 u1(k2)=sd2;

 for f1=1:k2

 a1(f1)=(d(f1))/(n-f1+1);

 end

 m1(k2)=a1(k2)*exp(-u1(k2));

 sd3=sd3+m1(k2);

 v1(k2)=sd3;

 end

 %------phij cofficient (Cjk)-----

 for i2=1:n

 A1(i2)=1/(1-v(i2));

 A2(i2)=1-v1(i2);

 end

 A3=(A1)*(diag(A2)*diag(1-d));

A=(1/n)*(A1-A3);

A;

for i3=1:2^J

 cjk(i3)=(A)*(M(:,i3));

end

cjk;

%---------density function estimator------

for i4=1:2^J

 f2(:,i4)=cjk(i4)*M(:,i4);

end

f2;

for j2=1:2^J

 tt=tt+f2(:,j2);

end

ff=(tt);

ff;

% ------ empirical estimation of S(Yi)-----

R=ones(n);

F=tril(R);

for r=1:n

 Q(r)=1-((1/(n+1))*sum(F(1:n,r)));

End

%--------hazard estimator-----

for i5=1:n

FF(i5)=ff(i5)/Q(i5);

end

F1=abs(FF');

%--

Gamma simulation random samples

m=…; %---number of Repetitions---

n=…; %---size of samples --------

% ------generates random samples from the gamma

distribution with shape parameters =5 and scale

parameters =1%------

x=gamrnd(5,1,[n m]);

%-----generates random samples from the exponential

distribution with mean parameter =6%-------

c=exprnd(6,[n m]);

 for j=1:m

 for i=1:n

 if x(i,j)<=c(i,j)

 d(i,j)=1;

 else

 d(i,j)=0;

 end

 y(i,j)=min(x(i,j),c(i,j));

 end

 end

%--

 Hazard rate function for Gamma distribution

n=…; %----size of samples --------

m=…; %----number of Repetitions---

for j=1:m

 for i=1:n

den(i,j)=((pdf('gamma',yy(i,j),5,1))*(1cdf('exponen

tial',yy(i,j),6)))+((pdf('exponential',yy(i,j),6))*

(1-cdf('gamma',yy(i,j),5,1)));

sur(i,j)=((1cdf('gamma',yy(i,j),5,1)))*(1cdf('expon

ential',yy(i,j),6));

 end

end

for jj=1:m

 for ii=1:n

 haz(ii,jj)=den(ii,jj)/sur(ii,jj);

 end

end

%--

Bimodal simulation random samples

% The number of random samples to generate

N =…;

%---number of Repetitions---

M=…;

% First, generate a binomial variable, which 40% of

the time (on average) will be equal to 1,

% and 60% of the time (on average) will be equal to

zero.

frac = rand(N,1) < 0.4;

% Generate the two normal distributions to sample

from

norm1 = 5 + randn(N,M);

norm2 = 3 + 0.5*randn(N,M);

% If "frac" is equal to 1, then the choice will be

from the first normal.

% If "frac" is equal to 0, then the choice will be

from the second normal.

d = frac.*norm1 + (1-frac).*norm2;

% Plot the resulting distribution

figure

histogram(d)

c=exprnd(6,[N,M]);

%--

Hazard rate function for bimodal

distribution

alpha=0.4; %----weight factor-----------

n=…; %----size of samples --------

m=…; %----number of Repetitions---

for k=1:m

 for t=1:n

density(t,k)=(alpha*(pdf('normal',yy(t,k),5,1)))+((

1-alpha)*(pdf('normal',yy(t,k),3,0.5)));

Cdf(t,k)=(alpha*(cdf('normal',yy(t,k),5,1)))+((1-

alpha)*(cdf('normal',yy(t,k),3,0.5)));

hazard(t,k)=density(t,k)/(1-Cdf(t,k));

 end

end

%for j=1:m

 % for i=1:n

for j=1:m

 for i=1:n

den(i,j)=((density(i,j))*((1-

cdf('exponential',yy(i,j),6))))

+((pdf('exponential',yy(i,j),6))*(1-Cdf(i,j)));

sur(i,j)=(1-Cdf(i,j))*(1-

cdf('exponential',yy(i,j),6));

haz(i,j)=den(i,j)/sur(i,j);

 end

end

%--

Indicator function

n=…; %----size of samples --------

m=…; %----number of Repetitions---

for j=1:m

 for i=1:n

 y(i,j)=min(x(i,j),c(i,j));

 end

end

for j1=1:m

for i1=1:n

if x(i1,j1)<=c(i1,j1)

d(i1,j1)=1;

else d(i1,j1)=0;

 end

 end

end

%--

Father wavelet function (Phijk)

“function yy = Phijk(z, j, k, filter, n)”

%--

“% yy=Phijk(z, j, k, filter, n)”

“% Evaluation of the scaling function”

“corresponding to an Orthogonal”

“% inputs: z -- the argument”

“% j – scale”

“% k – shift”

“% filter -- ON finite wavelet filter,

might be an”

“% output of WaveLab's:”

“MakeONFilter”

“% n -- precision of approximation”

“maesured by the number (n=20)”

“% output: yy -- value of father wavelet (j,k)

coresponding to”

“% 'filter' at z.”

%--

 “if (nargin == 4)”

 n=20;

 end

 “daun=length(filter)/2;”

 “N=length(filter)-1;”

 “x=(2^j)*z-k;”

 “if(x<=0||x>=N) yy=0;”

else

 “int=floor(x);”

 “dec=x-int;”

 “dy=dec2bin(dec,n);”

 “t0=t0(filter);”

 “t1=t1(filter);”

 “prod=eye(N);”

 “for i=1:n”

 “if dy(i)==1 prod=prod*t1;”

 “else prod=prod*t0;”

 end

 end

 “y=2^(j/2)*prod;”

 “yyy = mean(y');”

 “yy = yyy(int+1);"

 end

 %----------functions ----------

“function a = dec2bin(x,n)”

 a=[];

 for i = 1:n

 “if(x <= 0.5) a=[a 0]; x=2*x;”

 “else a=[a 1]; x=2*x-1;”

 end

 end

 %-----------

 “function t0 = t0(filter)”

%

“n = length(filter);”

“nn = n - 1;”

“t0 = zeros(nn);”

“for i = 1:nn”

 “for j= 1:nn”

 “if (2*i - j > 0 & 2*i - j <= n)”

 “t0(i,j) = sqrt(2) * filter(2*i - j);”

 end

 end

end

%------------------

“function t1 = t1(filter)”

“n = length(filter);”

“nn = n - 1;”

“t1 = zeros(nn);”

“for i = 1:nn”

 “for j= 1:nn”

 “if (2*i -j+1 > 0 & 2*i - j+1 <= n)”

 “t1(i,j) = sqrt(2) * filter(2*i - j+1);”

 end

 end

end

%--

Wavelet filters

“function f = MakeONFilterExt(Type,Par)”

%--%

“if strncmpi(Type,'Haar',2),”

 f = [1 1];

end

“if strncmpi(Type,'Beylkin',2),”

 “f = [.099305765374, .424215360813, .699825214057

 ...

 .449718251149, -.110927598348, -.264497231446

 ...

 .026900308804, .155538731877, -.017520746267

 ...

 -.088543630623, .019679866044, .042916387274

 ...

 -.017460408696, -.014365807969, .010040411845

 ...

 .001484234782, -.002736031626, .000640485329

];”

end

“if strncmpi(Type,'Coiflet',3),”

 if Par==1,

 “f = [.038580777748 -.126969125396 -

.077161555496 ...

 .607491641386 .745687558934

 .226584265197];”

 end

 “if Par==2,

 f = [0.016387336463203640427491273259, -

0.041464936786871774009717085107,...

 -0.06737255472372559380457322478,

0.38611006682276285041905816429, ...

 0.8127236354494134953442245286,

0.4170051844232390480477852360, ...

 -0.07648859907828075427761388352, -

0.05943441864643108730683975853, ...

 0.023680171946847768805923800248,

0.005611434819368834245631844722, ...

 -0.0018232088709110320946081317474, -

0.0007205494455203469950740392992];”

 end

 “if Par==3,”

 “f = [-0.00379351286438080167548512785,

0.00778259642567274575655572678, ...

 0.0234526961420771662427503659, -

0.0657719112814693671835016013, ...

 -0.0611233900029725412769257018,

0.405176902409118199272476181, ...

 0.793777222626087174791808049,

0.428483476377369981014779057, ...

 -0.071799821619154834013236764, -

0.0823019271062998184866387774, ...

 0.0345550275732977330127285765,

0.0158805448636694509418667488, ...

 -0.00900797613673062389869059132, -

0.00257451768813679701027860332,...

 0.001117518770830630223506747086,

0.000466216959820402869469087739, ...

 -0.0000709833025063790056111913832, -

0.0000345997731972727738834567238];”

 end

 “if Par==4,

 “f = [0.0008923139025370029644343566865134121737383, ...

 -0.0016294924252267858123213544087120913158161, ...

 -0.007346167936268049768871523349607132118705,...

 0.01606894713157502651287763071920848497, ...

 0.02668230466960483260703486399047107194, ...

 -0.08126671024919372334475952281575884847,...

 -0.05607731960356925565970517606545448541,...

 0.4153084270006822731294692964046182739,...

 0.78223893442428258982647576237494028015, ...

 0.43438603311435654244291809279435858752, ...

 -0.06662747236681715660425633300924304564,...

 -0.09622042453595263696014466746929391735,...

 0.03933442260558914633132668418129075104, ...

 0.02508225333794960681821191769918797238, ...

 -0.01521172818769721159723577657069625373, ...

 -0.0056582838001308837068552084504470416875092,...

 0.003751434697146086349179148345354230545201, ...

 0.0012665610789256602060212989509419260626456, ...

 -0.000589020224633216477985278808337632907002, ...

 -0.0002599743371222568031968013258330909296978, ...

 0.0000623388543127871811259366755429554393222, ...

 0.0000312298615991952653049475548892070819932, ...

 -3.259647940030750678302345930717926596838865*10^-6, ...

 -1.78499091449334668126754831733930940802101*10^-6];”

 end

 “if Par==5,”

 “f = [-0.0002120818620674939996481902944136410414047, ...

 0.0003585777411617576912682212568176855692809, ...

 0.0021782943778456947603953983474818156341871, ...

 -0.00415931262757863965550073295937883585, ...

 -0.01013158484690027491468212287890872587, ...

 0.02340832211892778307799159801168871895, ...

 0.02816974427053235189367516327102039599, ...

 -0.09192158806008608329572694314371482072, ...

 -0.05204667025355475665111819740782967482, ...

 0.42157126673075435177306894142751870946, ...

 0.77429362286032745160292654060366328807, ...

 0.43798230665916331792682237681050656764, ...

 -0.06203775157498195089253405688027513479, ...

 -0.10556315130733722646960604243367891954, ...

 0.04128753047211783146902068483243193175, ...

 0.03267479946705735095365614221278235227, ...

 -0.01975839160096546513890474068990811885, ...

 -0.00915950733867616299494402122283339758, ...

 0.00676152022062041680244768896723500979, ...

 0.00243157544253828849057946143095553203, ...

 -0.00166162730392987877456474532860529682, ...

 -0.0006375589261258811091711893522661460267423, ...

 0.0003018579416682447498632500676391103210754, ...

 0.0001403563281237324269902880098227066632525, ...

 -0.0000412198619242655021970132036154651202458, ...

 -0.0000212702216725156138191910478670808515531, ...

 3.7007277113394795164497963176580918909*10^-6, ...

 2.061220398578878156703380849619661817616506*10^-6, ...

 -1.623799517204833517470973891374972010523*10^-7, ...

 -9.6040101127678921250276359452964329236689*10^-8];”

 end

 “if Par==6,”

 “f = [0.0000507754878363405645519850534163840843165, ...

 -0.0000811700262678483995046181490233613985991, ...

 -0.0006246130439256835305179694992775427, ...

 0.00109162471232590294442838718434499367, ...

 0.00353901987154099797676760943833152463, ...

 -0.0070294063910027282793426873312339407, ...

 -0.0122315777900379124123273915243790564, ...

 0.0296457728913238384799204963927926239, ...

 0.02878611434666556772409353364797199855, ...

 -0.09967300204601174242984746022593529319, ...

 -0.04876407217567387113947461609898074377, ...

 0.42581954501283846862581982539011507381, ...

 0.76840325757989240980175151406668436853, ...

 0.44040119112685278573807906593541182503, ...

 -0.05810891797261479980792242839864804553, ...

 -0.11226080796481722835521943382584647799, ...

 0.04185249067613626961123692570448481718, ...

 88132625151075695394346028782838898, ...

 -0.02295015327984906593564514384952096935, ...

 -0.01265006790873235128443679361740086299, ...

 0.0095910901759040523779620252393710208, ...

 0.0038576582705936865436976506707985877, ...

 -0.00307393950720855902712037718563727489, ...

 -0.00115743501342733471307799963492014289, ...

 0.00076985473075072663977499623866755922, ...

 0.00032522235901024078543874829743760233, ...

 -0.0001545771992797995031124549459146267672004, ...

 -0.0000752800430693596467873933651612964301517, ...

 0.0000247365593287232279603704234893930555683, ...

 0.0000131398513540214409493534116753473623518, ...

 -2.9243855597575228935454275531139308156*10^-6, ...

 -1.6596192951024207899178040891830917997*10^-6, ...

 2.2559978528161819589808604991860492120455*10^-7, ...

 1.35032449935614466786292988820562494224512*10^-7, ...

 -8.48714339626243656886371228346090530144*10^-9, ...

 -5.309088417196893107804939769143263956288*10^-9];”

 end

 “if Par==7,”

 “f = [-0.0000122222506240657722515671975289535857529, ...

 0.0000187113550014121788669954534985164043626, ...

 0.00017510216778483177090611162179579673, ...

 -0.00028720237535706120447042471464670833, ...

 -0.00116931442857976331460374091300655394, ...

 0.00210577204141054775881535169988563035, ...

 0.00482944656070203826696178626298526452, ...

 -0.00993889526908057960572882007938886914, ...

 -0.01380255423628839963367753293728221376, ...

 0.03491050510474272385481698744097843335, ...

 0.028937041983523145219795493887430926, ...

 -0.105556168221561286439976038553264, ...

 -0.046033397038466299456031132666155, ...

 0.428888807249422575091962148625108, ...

 0.763815365416733324438841273059202, ...

 0.442137461401842576513194010237757, ...

 -0.054751241648150457251886153404776, ...

 -0.11729357104319278932816154494452, ...

 0.041705357602576791714703721102373, ...

 0.043993046163079415501169643274255, ...

 -0.025154257568539024269946527565349, ...

 -0.01594684681956793914268132891215748334, ...

 0.01205233824184162260808679717618820937, ...

 0.00543131644288009511292299727400037979, ...

 -0.00461784213043311846868060141284295354, ...

 -0.00180153728333304248757700982439011759, ...

 0.00143474185665241227759908616270387381, ...

 0.00057949944823409528234503848853150457, ...

 -0.00036906682873489535803766645994529048, ...

 -0.00016781721215484972023899538482096261, ...

 0.00007971050025993866031131537354202557,...

 0.00004043048241714020221822226691074551, ...

 -0.0000142356369784515012815941734288435861855, ...

 -7.7712435473118614835496973116889804922*10^-6, ...

 2.0020780498554181311877559696846812794*10^-6, ...

 1.1579769069489572558429154565596032359*10^-6, ...

 -2.069320524393852523963248525127217416*10^-7, ...

 -1.2550913190794570507641433432157*10^-7, ...

 1.3935103885216451572958098811601798785366*10^-8, ...

 8.796593384856986494818762397984045253733*10^-9, ...

 -4.57833406779295070172598474467844779766*10^-10,...

 -2.990566231736865818869246704034628*10^-10];”

 end

 “if Par==8,”

 “f = [2.9543365214148866341203791795460856498*10^-6, ...

 -4.3682648203200749764069604318588208253*10^-6, ...

 -0.00004829631521409294057518294825489293, ...

 0.0000754736783816503960229241373762259,...

 0.00037129499560741243768356918203220247, ...

 -0.000623560447457940255198422634539581, ...

 -0.0017832600085971970719359953695042521, ...

 0.00330082501061611042248776517113013568, ...

 0.00599484919215588549270790383484069611, ...

 -0.012742370632719795227140215081485, ...

 -0.014978462081708433651627145924743, ...

 0.039372037877979845479596171012811, ...

 0.0288286217592880052319436606959, ...

 -0.110169976983470152889118086934849, ...

 -0.043718983365945585858147809196713, ...

 0.431209815555087578822264464482984, ...

 0.760113302017940493745162524428594, ...

 0.443442549841526025692112583885702, ...

 -0.051860743161188676553989081315791, ...

 -0.121211168231496469284998600458647, ...

 0.041185806676256539334644934268549, ...

 0.048252371085682255135905588083649, ...

 -0.026656710542648603662636753258155,...

 -0.018985244695254866708424157255454, ...

 0.014117470077618781611698797024736, ...

 0.007065827011035095989298841611896, ...

 -0.006156659548258420573069188973804, ...

 -0.00254400371024527345236589153040776921, ...

 0.00223564942204810318055673180460398378, ...

 0.00089677606307967974957481016931868077, ...

 -0.00068717164334800449242695373185778567, ...

 -0.00029777893219563999563276515831158818, ...

 0.00018169287648431022077202247294296659, ...

 0.00008754452091843061802876156718818633, ...

 -0.00004147478606916181410858912360731484, ...

 -0.0000218020007670103510682515219710687, ...

 8.03150299544078598193257904121228*10^-6, ...

 4.4969364435793914273785796464354612539*10^-6, ...

 -1.2754542996407563978284360515425311001*10^-6, ...

 -7.515021558886325576948331510944306958*10^-7, ...

 1.589351722153064827424614721183710204*10^-7, ...

 9.77241850836779841772791655334636543*10^-8, ...

 -1.45400085337535265756124266441*10^-8, ...

 -9.27120559154629669404888252582*10^-9, ...

 8.66999508233871095247749588290123221829*10^-10, ...

 5.70481033390973565849135525930314738442*10^-10, ...

 -2.52542349388545683771492079914226*10^-11, ...

 -1.70798959470554833493549816182562*10^-11];”

 end

 “if Par==9,”

 f = [-7.16492043124788565371403735975293033*10^-7, ...

 1.0293200668945786770405655113884578169*10^-6, ...

 0.000013158885645425329074979104138, ...

 -0.00001978720443246248037040643941679284, ...

 -0.00011443395278590282934418618091927519, ...

 0.00018228485966342260297101418742753238, ...

 0.00062647303213971596119107011420463634, ...

 -0.00107545827274123797178950374028066576, ...

 -0.002421241673651648413361568634198, ...

 0.004597056424920538374827274829998, ...

 0.007022340460196237076042911551157, ...

 -0.015376649629718763882304372940094, ...

 -0.015860223894792907821940082437559, ...

 0.043181727608250448896169058852939, ...

 0.028572667556949285468700689166121, ...

 -0.11388350819004508033470728829253, ...

 -0.04172611020585279692877750305357, ...

 0.433026751103154194437395990290928, ...

 0.757045523384378918975393007517394, ...

 0.444457893176447943769221898235793, ...

 -0.049348866293629167579705877288589, ...

 -0.124345589539290622348246574254961, ...

 0.040473767455728960140784447715682, ...

 0.051844615686247315779705446014627, ...

 -0.027661239498680462969772984800219, ...

 -0.021754553510948844842224556518026, ...

 0.015818715815925058996552193553275, ...

 0.00870275744622918259271751762546, ...

 -0.007614042448258917034725577898924, ...

 -0.00335767452658657858715596317976, ...

 0.003113227788384303748628662551515, ...

 0.001269690925135339902432735868585, ...

 -0.001095745627952606905597323576061, ...

 -0.000462729085505304259448585243503, ...

 0.00033691386928482709390080467507365391, ...

 0.00015541352126673885121571732427354289, ...

 -0.0000913559550874647589464752293334731, ...

 -0.00004613708198462493130010596723498088, ...

 0.00002177639641002902622301367776630784, ...

 0.00001181440945157869423274009466836094, ...

 -4.48811147515276409894428352856613*10^-6, ...

 -2.5723835744866872047576035075266140512*10^-6, ...

 7.802480329370884277020245409489075814*10^-7, ...

 4.67958476945429845632280519885662523*10^-7, ...

 -1.109667018087942287625120969747463337*10^-7, ...

 -6.91654704121803749849331616866102242*10^-8, ...

 1.23752566198101243190950477343359362*10^-8, ...

 7.9740058868468296718526928424325241*10^-9, ...

 -1.0136275688170465755191268077623618*10^-9, ...

 -6.723464414885983563896598608983936*10^-10, ...

 5.417100964283037831066085959289093026*10^-11, ...

 3.6861797364451787327421599467079620161*10^-11, ...

 -1.416273550918584069801563786746191819*10^-12, ...

 -9.85843726123707759474964697066431047*10^-13];”

 end

end

“if strncmpi(Type,'Daubechies',3),”

 “if Par==2,”

 “f = [0.707106781186547524400844362104849,

0.707106781186547524400844362104849];

 end

 “if Par==4,

 “f = [0.4829629131445341433748716,

0.836516303737807905575294, ...

 0.224143868042013381025973, -

0.1294095225512603811744494];

 end

 if Par==6,

 f = [0.332670552950082615998512,

0.806891509311092576494494, ...

 0.459877502118491570095152, -

0.135011020010254588696390, ...

 -0.085441273882026661692819,

0.0352262918857095366027407];”

 end

 “if Par==8,”

 “f = [0.2303778133088965, 0.7148465705529158, ...

 0.630880767929859, -0.02798376941686011, ...

 -0.1870348117190932, 0.0308413818355608, ...

 0.03288301166688522, -0.01059740178506904];”

 end

 “if Par==10,”

 “f = [0.1601023979741924, 0.6038292697971881, ...

 0.7243085284377715, 0.1384281459013217, ...

 -0.2422948870663802, -0.03224486958463778, ...

 0.07757149384004565, -0.006241490212798174, ...

 -0.01258075199908194, 0.003335725285473757];”

 end

 “if Par==12,

 f = [0.11154074335011, 0.4946238903984554, ...

 0.7511339080210982, 0.315250351709197, ...

 -0.2262646939654429, -0.1297668675672638,...

 0.0975016055873231, 0.02752286553030565, ...

 -0.03158203931748625, 0.0005538422011615105, ...

 0.004777257510945544, -0.001077301085308486];”

 end

 “if Par==14,”

 “f = [0.07785205408500813, 0.3965393194819123, ...

 0.7291320908462274, 0.4697822874051917, ...

 -0.1439060039285563, -0.2240361849938672, ...

 0.07130921926683042, 0.080612609151082, ...

 -02993693501439, -0.016574541630667, ...

 0.01255099855609955, 0.0004295779729213739, ...

 -0.001801640704047446, 0.0003537137999745171

];”

 end

 “if Par==16,”

 “f = [0.05441584224310704, 0.3128715909143165, ...

 0.6756307362973218, 0.5853546836542239, ...

 -0.01582910525637238, -0.2840155429615815, ...

 0.0004724845739030209, 0.1287474266204823, ...

 -0.01736930100181088, -0.04408825393079791, ...

 0.01398102791739956, 0.00874609404740648, ...

 -0.004870352993451852, -0.000391740373376942, ...

 0.0006754494064506183, -0.0001174767841247786

];”

 end

 “if Par==18,”

 “f = [07794736388813, 0.2438346746126514, ...

 0.6048231236902548, 0.6572880780514298, ...

 0.1331973858249681, -0.2932737832793372, ...

 -0.0968407832230689, 0.148540749338104, ...

 0.03072568147931585, -0.06763282906135907, ...

 0.0002509471148277948, 0.02236166212368439, ...

 -0.004723204757752752, -0.004281503682464633, ...

 0.001847646883056686, 0.0002303857635232296, ...

 -0.0002519631889427889, 0.00003934732031628112

];”

 end

 “if Par==20,”

 “f = [0.02667005790054869, 0.188176800077648, ...

 0.527201188931628, 0.6884590394535462, ...

 0.2811723436606982, -0.2498464243271048, ...

 -0.1959462743773243, 0.127369340335694, ...

 0.0930573646035142, -0.07139414716638016, ...

 -0.0294575368218849, 0.03321267405931551, ...

 0.003606553566951515, -0.0107331754833277, ...

 0.001395351747051327, 0.001992405295184184, ...

 -0.0006858566949593225, -0.0001164668551292262, ...

 0.0000935886703200315, -0.00001326420289451403

];”

 end

 “if Par==22,”

 “f = [0.01869429776144806, 0.1440670211504498, ...

 0.4498997643555165, 0.6856867749154562, ...

 0.4119643689476272, -0.1622752450269621, ...

 -0.2742308468172826, 0.06604358819685894, ...

 0.1498120124663909, -0.04647995511648684, ...

 -0.06643878569486228, 0.03133509021904213, ...

 0.02084090436017028, -0.01536482090617611, ...

 -0.003340858873009247, 0.0049284176560525, ...

 -0.0003085928588149355, -0.00089302325066525, ...

 0.0002491525235524301, 0.00005443907469928305, ...

 -0.00003463498418694142, 0.000004494274277230458

];”

 end

 “if Par==24,

 “f = [0.01311225795736534, 0.1095662728222715, ...

 0.3773551352176745, 0.657198722584349, ...

 0.5158864784293156, -0.04476388565908393, ...

 -0.3161784537592869, -0.02377925725693821, ...

 0.1824786059298069, 0.00535956967427179, ...

 -0.0964321200976865, 0.0108491302560784, ...

 0.04154627749559747, -0.01221864906995923, ...

 -0.01284082519846823, 0.00671149900888981, ...

 0.002248607241020708, -0.002179503618657147, ...

 0.000006545128213682533, 0.0003886530628261407, ...

 -0.0000885041092094801, -0.00002424154575734139, ...

 0.00001277695221955214, -0.000001529071758089919

];”

 end

 “if Par==26,”

 “f = [0.00920213353936357, 0.082861243876398, ...

 0.3119963221728867, 0.6110558511805082, ...

 0.5888895704451372, 0.0869857261666496, ...

 -0.314972907739053, -0.124576730762086, ...

 0.1794760794355785, 0.07294893365742099, ...

 -0.1058076181950538, -0.02648840647689916, ...

 0.05613947710301562, 0.002379972253836755, ...

 -0.02383142071161908, 0.003923941449079961, ...

 0.007255589402002825, -0.002761911234808676, ...

 -0.001315673911943637, 0.000932326130928484, ...

 0.00004925152513188404, -0.0001651289885636495, ...

 0.00003067853758174376, 0.00001044193057207212, ...

 -0.000004700416479607929 , 0.0000005220035098765021

];”

 end

 “if Par==28,

 f = [0.006461153459818989, 0.0623647588469322, ...

 0.2548502677833766, 0.5543056179241174, ...

 0.6311878490950694, 0.2186706877760189, ...

 -0.2716885522429336, -0.2180335299738394, ...

 0.138395213856541, 0.1399890165735457, ...

 -0.0867484115685856, -0.07154895550625034, ...

 0.05523712625188016, 0.02698140830446938, ...

 -0.0301853515397028, -0.005615049530747707, ...

 0.01278949326524909, -0.000746218989436958, ...

 -0.003849638867994312, 0.001061691085418039, ...

 0.0007080211541344865, -0.0003868319473184179, ...

 -0.00004177724577935138, 0.00006875504251988474, ...

 -0.00001033720918460207, -0.000004389704901652653,

...

 0.000001724994675254821, -0.000000178713996820958

];”

 end

 “if Par==30,”

 “f = [0.004538537356680069, 0.0467433948433292, ...

 0.2060238637760462, 0.4926317712332494, ...

 0.6458131398235114, 0.339002535383428, ...

 -0.19320413905893, -0.2888825960016258, ...

 0.06528295291444258, 0.1901467139017971, ...

 -0.03966617641454303, -0.1111209358626346, ...

 0.03387714389352461, 0.05478055052762776, ...

 -0.0257670072911817, -0.02081005014572826, ...

 0.01508391800773139, 0.005101000354434229, ...

 -0.006487734552531616, -0.0002417564910950625,

...

 0.001943323977748212, -0.0003734823537271217,

...

 -0.0003595652439869339, 0.0001558964896924794, ...

 0.00002579269911910246, -0.00002813329623232866,

...

 0.000003362987176654478, 0.000001811270405641324,

...

 -0.0000006316882317817563, 0.00000006133359905269254

];”

 end

 “if Par==32,”

 “f = [0.003189220905181802, 0.0349077141074775, ...

 0.1650642824989111, 0.4303127204089899, ...

 0.6373563289234388, 0.4402902557886062, ...

 -0.0897510867287953, -0.3270633068118058, ...

 -0.02791820715372535, 0.2111906930487478, ...

 0.02734026408611786, -0.1323883043443139, ...

 -0.00623972263724492, 0.07592423555847598, ...

 -0.00758897425298305, -0.03688839741760147, ...

 0.01029765955546528, 0.01399376876290007, ...

 -0.006990014507518413, -0.003644279596729619, ...

 0.003128023357662664, 0.000407896978913364, ...

 -0.000941021742187743, 0.000114241519113091, ...

 0.0001747872440135933, -0.00006103596571228747,

...

 -0.00001394566888488284, 0.00001133660857799308, ...

 -0.000001043571333041443, -0.0000007363656730469882,

...

 0.0000002308784069376313, -0.0000000210933961377445

];”

 end

 “if Par==34,”

 “f = [0.002241806968367765, 0.02598539333038641, ...

 0.1312149014643511, 0.3703507191428474, ...

 0.6109966080619875, 0.5183157592365552, ...

 0.02731497388861195, -0.3283207398752789, ...

 -0.1265997478695799, 0.1973105883690036, ...

 0.1011354893285621, -0.1268156885448092, ...

 -0.05709141812622551, 0.081105985705437, ...

 0.02231233608959475, -0.04692243752178137, ...

 -0.003270955473782776, 0.02273367623263168, ...

 -0.003042989911563062, -0.00860292137975392, ...

 0.002967996640915282, 0.002301205207197428, ...

 -0.001436845280352317, -0.0003281325149411173,

...

 0.0004394654201169656, -0.00002561010931458864,

...

 -0.0000820480308801988, 0.00002318681330990614, ...

 0.000006990600842366534, -0.000004505942411707292,

...

 0.0000003016549532645506, 0.0000002957700881589635,

...

 -0.0000000842394830828037, 0.000000007267492843919008

];”

 end

 “if Par==36,”

 “f = [0.001576310332632241, 0.01928853309434481, ...

 0.1035884729715391, 0.3146789620466176, ...

 0.571826841995251, 0.5718016803655575, ...

 0.147223099399332, -0.2936540837163994, ...

 -0.2164809618743174, 0.1495339814252923, ...

 0.1670813196471977, -0.0923318969776604, ...

 -0.1067522571200224, 0.0648872212223416, ...

 0.05705125157931265, -0.04452614611490133, ...

 -0.02373321210978654, 0.02667070832113655, ...

 0.006262168357742094, -0.01305148206344844, ...

 0.0001186301071328846, 0.004943344018360076, ...

 -0.001118732786346494, -0.001340596411265555,

...

 0.0006284657384942994, 0.0002135815764103265,

...

 -0.000198648570821057, -0.000000153591634265962,

...

 0.00003741238184339052, -0.00000852060341054129,

...

 -0.00000333263477007513, 0.00000176871313748643,

...

 -0.00000007691633640217469, -0.0000001176098869880653,

...

 0.00000003068836137122469, -

0.000000002507934683892356];”

 end

 “if Par==38,”

 “f = [0.001108669779715294, 0.01428109865333334, ...

 0.081278114333354, 0.2643884347822977, ...

 0.5244363819574067, 0.6017045501513535, ...

 0.2608949440110274, -0.2280914100170829, ...

 -0.285838641929714, 0.07465227262054114, ...

 0.2123497512548378, -0.03351853842979753, ...

 -0.1427856935054576, 0.02758435493215239, ...

 0.0869067594236619, -0.02650123589611068,

...

 -0.04567422669495623, 0.02162376812192859, ...

 0.01937555029280247, -0.01398838901012597,

...

 -0.00586692239134182, 0.007040747519198927,

...

 0.0007689543646753964, -0.002687551858597481,

...

 0.0003418086639330359, 0.0007358025360798398,

...

 -0.0002606761416764582, -0.0001246007941078683,

...

 0.0000871127066319985, 0.000005105950548947162,

...

 -0.00001664017665533139, 0.000003010964385934741,

...

 0.000001531931507655374, -

0.0000006862755810090276, ...

 0.00000001447088339408005,

0.00000004636937873589416, ...

 -0.000000011164020912898,

0.000000000866684902796269];”

 end

 “if Par==40,”

 “f = [0.0007799530020084384, 0.0105493864101072, ...

 0.06342373157542249, 0.2199419467839922, ...

 0.4726958375631425, 0.6104928215175741, ...

 0.3615021297395791, -0.139211825416023, ...

 -0.3267863905078842, -0.01672694530514085,

...

 0.2282909876975237, 0.03985032729018178, ...

 -0.1554585361790331, -0.02471674917392653,

...

 0.1022916746204368, 0.005632268726873665,

...

 -0.06172283526148656, 0.005874682288534986, ...

 0.03229427583633914, -0.00878931595226129,

...

 -0.01381051445886118, 0.006721621652169426,

...

 0.004420538864131319, -0.003581491222634283,

...

 -0.00083156152944895, 0.001392558453825609,

...

 -0.00005349753868856166, -0.0003851044297986765,

...

 0.0001015328014373285, 0.00006774275277093538,

...

 -0.00003710583043522718, -0.000004376140493506968,

...

 0.000007241242222701708, -0.000001011993125412585,

...

 -0.0000006847073928591012, 0.0000002633921999175421,

...

 0.0000000002014328820034285, -

0.0000000181484172957345, ...

 0.000000004056123630675098, -

0.0000000002998833944499773];”

 end

 “if Par==42,”

 “f = [0.0005488240399453808, 0.007776660464348811,

...

 0.04924790475876491, 0.1813601028599902, ...

 0.419688998145241, 0.6015074510688103, ...

 0.4445910837993439, -0.03572381948901234,

...

 -0.33566575122537, -0.1123978514710653, ...

 0.2115648260162405, 0.1152333439473735, ...

 -0.1399410472763452, -0.08177625782428998,

...

 0.09660066710664022, 0.04572352417673011, ...

 -0.06497770623152748, -0.01865389796875268, ...

 0.03972696757220106, 0.003357765554657301,

...

 -0.02089211624987374, 0.002403482102825579,

...

 0.008988852342563074, -0.002891344156898007,

...

 -0.002958382842307337, 0.001716612683276365,

...

 0.0006394203289590759, -0.0006906733219030776,

...

 -0.00003196410553726866, 0.0001936652571660039,

...

 -0.0000363553295677002, -0.00003499676704742804,

...

 0.00001535487521020741, 2.79033850314008*10^-6,

...

 -3.090027001911602*10^-6, 3.16610662424439*10^-7,

...

 2.99214595113828*10^-7, -1.000404119487493*10^-7,

...

 -2.254019869522092*10^-9, 7.058055911572644*10^-9,

...

 -1.471958939283684*10^-9, 1.038808947669207*10^-10

];”

 end

 “if Par==44,”

 “f = [0.0003862673246197253, 0.005721914066631049,

...

 0.03807032187691932, 0.1483689789282081,

...

 0.3677320057234413, 0.5784372354311235, ...

 0.5079033273631367, 0.07372115020105462,

...

 -0.3127333476121842, -0.2005720141344328,

...

 0.1640948426591233, 0.179974931810035, ...

 -0.0971123372197599, -0.1317696149504392,

...

 0.06807740848784511, 0.08455839833964807,

...

 -0.05136497255398131, -0.04653131832736136,

...

 0.03697137276735332, 0.02058693268949487,

...

 -0.02348031395539096, -0.006213835918293782,

...

 0.01256489065516637, 0.0003001305020824184,

...

 -0.005455761185358356, 0.001044278408986017,

...

 0.001827032986409597, -0.000770702101944467,

...

 -0.0004237923063271874, 0.0003286138886837352,

...

 0.0000434593692542139, -

0.00009405347080647135, ...

 0.00001137454223403893, 0.00001737397675279249,

...

 -6.166816318076451*10^-6, -1.565197277819435*10^-

6, ...

 1.295199441207159*10^-6, -8.78003044824892*10^-

8, ...

 -1.283352833826032*10^-7, 3.761280659022215*10^-

8, ...

 1.680187679020641*10^-9, -2.729659356918619*10^-

9, ...

 5.33601149622179*10^-10, -3.60216327759258*10^-

11];”

 end

 “if Par==46,”

 “f = [0.0002719278182602901, 0.004203109552950134,

...

 0.02931247643736339, 0.1205254471036576,

...

 0.3184759568589838, 0.5449708209347766, ...

 0.5510501337055957, 0.1813841378320262,

...

 -0.2614398761995617, -0.2714429864972958,

...

 0.0921245749243952, 0.2235864349031235, ...

 -0.03304774793732929, -0.164030308293076,

...

 0.02028436820991752, 0.1123069840244809,

...

 -0.0211292480280753, -0.07021415427385447,

...

 0.02176834655240395, 0.03849895908078205,

...

 -0.01852549112315692, -0.01753870400805271,

...

 0.01275326613768589, 0.006032371159860696,

...

 -0.00707603267773538, -0.001134947880346942,

...

 0.003123184807392083, -0.000246537026777104,

...

 -0.001061334361043996, 0.000319454992361999,

...

 0.0002567865998070605, -0.0001500373078747796,

...

 -0.00003379188332733358, 0.00004426515179248939,

...

 -2.635561787093299*10^-6, -8.348692795439998*10^-

6, ...

 2.397822036092728*10^-6, 8.148343038224153*10^-

7, ...

 -5.339546450998099*10^-7, 1.853340229309923*10^-

8, ...

 5.418084825798256*10^-8, -1.400079829615052*10^-

8, ...

 -9.473736128438874*10^-10, 1.050551729533758*10^-

9, ...

 -1.93260193304542*10^-10, 1.250331739337031*10^-

11];”

 end

 “if Par==48,”

 “f = [0.0001914240079776934, 0.003081894336144903,

...

 0.02248099723913652, 0.09725657409395711,

...

 0.272893661713225, 0.5043448957614517, ...

 0.5749146829767083, 0.2809851510053765, ...

 -0.1872418464658568, -0.3179111538203686,

...

 0.004781510762825361, 0.2392258659829295, ...

 0.042531243536347, -0.1711600617797226,

...

 -0.03877318682438014, 0.1210092088290207,

...

 0.02098022912439134, -0.08215538086453539,

...

 -0.004578395730450242, 0.05129798128535279,

...

 -0.004944235600686442, -0.02821125709939177,

...

 0.007661004281903052, 0.01304905186620713,

...

 -0.006290964935213451, -0.004746267936383896,

...

 0.00373576397589871, 0.001153694353296646,

...

 -0.001696334910033699, -

0.00004416435334971148, ...

 0.0005860851561798487, -0.000118113728929818,

...

 -0.0001459980983446589, 0.00006558881863639525,

...

 0.00002183096348720674, -

0.00002022741617379432, ...

 1.337052417608915*10^-8, 3.900821594914755*10^-

6, ...

 -8.979550384702172*10^-7, -4.032228084773544*10^-

7, ...

 2.166180932866001*10^-7, -5.054643465620961*10^-

10, ...

 -2.255577015054618*10^-8, 5.157391468496204*10^-

9, ...

 4.748066278754132*10^-10, -4.024365393060184*10^-

10, ...

 6.991284124010881*10^-11, -4.342457865150871*10^-

12];”

 end

 “if Par==50,”

 “f = [0.0001349140099190347, 0.002258811421928896,

...

 0.01720076826024011, 0.07809905498823061,

...

 0.2318787664012299, 0.4600423810287615, ...

 0.5820659400767751, 0.3680932821030804,

...

 -0.0973914656330337, -0.3369053502250008,

...

 -0.08780821918435377, 0.2245876085890194, ...

 0.118127995249711, -0.1507901382415503,

...

 -0.09866413500669811, 0.1066759749914026,

...

 0.06677659879664328, -0.07716829308409851,

...

 -0.03721412413495515, 0.05365935822485196,

...

 0.01555326324900022, -0.03407222558276132,

...

 -0.003082422156835764, 0.01893883135517686,

...

 -0.001991310900912701, -0.00886823166517666,

...

 0.002729324227909382, 0.003325513663082694,

...

 -0.001844076742849583, -0.0009007311640167205,

...

 0.0008780108981336599, 0.0001154141401669138,

...

 -0.0003101446827543741, 0.00003546902687895924,

...

 0.00007911359754985811, -

0.00002735413947239519, ...

 -0.00001278271963847119, 8.998380584459695*10^-

6, ...

 5.236962340729562*10^-7, -1.780721007596221*10^-

6, ...

 3.214832263002398*10^-7, 1.924439055598693*10^-

7, ...

 -8.66437988387495*10^-8, -2.613650299345624*10^-

9, ...

 9.287154489811888*10^-9, -1.882036245600092*10^-

9, ...

 -2.230357347052905*10^-10, 1.537216399287396*10^-

10, ...

 -2.529795306330366*10^-11, 1.510990558374748*10^-

12] ;”

 end

end

“if strncmpi(Type,'Symmlet',3),”

 “if Par==1,”

 “f = [0.707106781186547524400844362104849,

0.707106781186547524400844362104849];”

 end

 “if Par==2,”

 “f = [0.4829629131445341433748716,

0.836516303737807905575294, ...

 0.224143868042013381025973, -

0.1294095225512603811744494];”

 end

 “if Par==3,

 f = [0.332670552950082615998512,

0.806891509311092576494494, ...

 0.459877502118491570095152, -

0.135011020010254588696390, ...

 -0.085441273882026661692819,

0.0352262918857095366027407];”

 end

 “if Par==4,”

 “f = [-0.07576571478950221, -0.029635527646002493,

...

 0.497618667632775, 0.8037387518051321, ...

 0.29785779560530606, -0.09921954357663353, ...

 -0.012603967262031304, 0.032223100604051466];”

 end

 “if Par==5,”

 “f = [0.0195388827352498268, -

0.0211018340246890410, ...

 -0.175328089908056224, 0.016602105764510848, ...

 0.63397896345679206, 0.72340769040404079, ...

 0.199397533976855597, -0.039134249302313844,

...

 0.0295194909257062613, 0.0273330683449987688

];”

 end

 “if Par==6,”

 “f = [0.01540410932704474, 0.003490712084221531,

...

 -0.1179901111485212, -0.04831174258569789, ...

 0.4910559419279768, 0.7876411410286536, ...

 0.3379294217281644, -0.07263752278637825, ...

 -0.02106029251237119, 0.04472490177078142, ...

 0.001767711864253766, -0.007800708325032496];”

 end

 “if Par==7,”

 “f = [0.01026817670846495, 0.004010244871523197,

...

 -0.1078082377032895, -0.1400472404429405, ...

 0.2886296317506303, 0.7677643170048699, ...

 0.5361019170905749, 0.01744125508685128, ...

 -0.04955283493703385, 0.06789269350122353, ...

 0.03051551316588014, -0.01263630340323927, ...

 -0.001047384888679668, 0.002681814568260057

];”

 end

 “if Par==8,”

 “f = [-0.003382415951003908, -

0.000542132331797018, ...

 0.03169508781151886, 0.00760748732494897, ...

 -0.1432942383512576, -0.06127335906765891, ...

 0.4813596512592537, 0.7771857516996492, ...

 0.3644418948360139, -0.05194583810802026, ...

 -0.02721902991713553, 0.04913717967372511, ...

 0.003808752013880463, -0.01495225833706814, ...

 -0.0003029205147226741, 0.001889950332768561

];”

 end

 “if Par==9,”

 “f = [0.001069490032908175, -

0.0004731544986808867, ...

 -0.01026406402762793, 0.008859267493410117, ...

 0.06207778930285313, -0.01823377077946773, ...

 -0.1915508312971598, 0.03527248803579076, ...

 0.6173384491414731, 0.7178970827644066, ...

 0.2387609146068536, -0.05456895843120489, ...

 0.0005834627459892242, 0.03022487885821281, ...

 -0.01152821020772933, -0.01327196778183437, ...

 0.0006197808889867399, 0.001400915525915921];”

 end

 “if Par==10,”

 “f = [0.0007701598091036597,

0.00009563267068491565, ...

 -0.008641299277002591, -0.001465382581138532,

...

 0.04592723923095083, 0.0116098939028464, ...

 -0.1594942788849671, -0.0708805357805798, ...

 0.4716906669415791, 0.7695100370206782, ...

 0.3838267610640166, -0.03553674047551473, ...

 -0.03199005688220715, 0.04999497207760673, ...

 0.005764912033412411, -0.02035493981234203, ...

 -0.0008043589319389408, 0.004593173585320195, ...

 0.00005703608359777954, -0.0004593294210107238

];”

 end

 “if Par==11,”

 “f = [0.0004892636102790465, 0.00011053509770077, ...

 -0.006389603666537886, -0.002003471900538333,

...

 0.04300019068196203, 0.03526675956730489, ...

 -0.1446023437042145, -0.2046547945050104, ...

 0.2376899090326669, 0.7303435490812422, ...

 0.5720229780188006, 0.09719839447055164, ...

 -0.02283265101793916, 0.06997679961196318, ...

 0.03703741598066749, -0.0240808415947161, ...

 -0.009857934828835874, 0.006512495674629366, ...

 0.0005883527354548924, -0.001734366267274675,

...

 -0.00003879565575380471, 0.0001717219506928879

];”

 end

 “if Par==12,”

 “f = [-0.0001790665869786187, -0.0000181580788773471,

...

 0.002350297614165271, 0.0003076477963025531,

...

 -0.01458983644921009, -0.002604391031185636,

...

 0.05780417944546282, 0.01530174062149447, ...

 -0.1703706972388913, -0.07833262231005749,

...

 0.4627410312313846, 0.7634790977904264, ...

 0.3988859723844853, -0.0221623061807925, ...

 -0.03584883074255768, 0.04917931829833128, ...

 0.007553780610861577, -0.02422072267559388,

...

 -0.001408909244210085, 0.007414965517868044,

...

 0.0001802140900854918, -0.001349755755614803,

...

 -0.00001135392805049379, 0.0001119671942470856

];”

 end

 “if Par==13,”

 “f = [0.00007042986709788876, 0.00003690537416474083,

...

 -0.0007213643852104347, 0.0004132611973679777,

...

 0.00567485376954048, -0.00149244724795732,

...

 -0.02074968632748119, 0.01761829684571489, ...

 0.09292603099190611, 0.008819757923922775, ...

 -0.1404900930989444, 0.1102302225796636, ...

 0.6445643835707201, 0.6957391508420829, ...

 0.1977048192269691, -0.1243624606980946, ...

 -0.05975062792828035, 0.01386249731469475, ...

 -0.01721164274779766, -0.02021676815629033,

...

 0.005296359721916584, 0.007526225395916087,

...

 -0.0001709428497111897, -0.001136063437095249,

...

 -0.0000357386241733562, 0.00006820325245288671

];”

 end

 “if Par==14,”

 “f = [0.00004461898110644152, 0.00001932902684197359,

...

 -0.0006057602055992672, -0.00007321430367811753,

...

 0.004532677588409982, 0.001013142476182283, ...

 -0.01943931472230284, -0.002365051066227485,

...

 0.06982761641982026, 0.02589859164319225, ...

 -0.1599974161449017, -0.05811184934484923, ...

 0.4753357348650867, 0.7599762436030552, ...

 0.3932015487235067, -0.03531809075139569, ...

 -0.05763449302747868, 0.03743308903888159, ...

 0.004280522331795536, -0.02919621738508546, ...

 -0.002753775776578359, 0.01003769335863697, ...

 0.000366476770515625, -0.002579441672422145,

...

 -0.00006286548683867455, 0.0003984356519092697,

...

 0.00001121086996816579, -0.00002587908845615303

];”

 end

 “if Par==15,”

 “f = [0.000028660707399511618, 0.00002171788180828788,

...

 -0.00040216855725720875, -0.00010815440716833184,

...

 0.0034810287335767247, 0.0015261379816940614,

...

 -0.01717125379613366, -0.008744790172337504,

...

 0.06796982852319061, 0.06839330814883558, ...

 -0.13405630898495416, -0.19662638205515043,

...

 0.24396267904975416, 0.7218430182315695, ...

 0.5786404260768322, 0.11153371778633057, ...

 -0.04108264654576916, 0.040735492211698726,

...

 0.021937649685129356, -0.03887671343231794,

...

 -0.019405010502865788, 0.010079976851620261,

...

 0.0034234504500168204, -0.003590165561744339,

...

 -0.0002673165193090753, 0.0010705671659500386,

...

 0.00005512253152945822, -0.0001606618644005603,

...

 -7.359664544811822*10^-6, 9.712420111966456*10^-6

];”

 end

 “if Par==16,”

 f = [-0.000010797985444060825, -5.3964960594326874*10^-6,

...

 0.0001654568107575125, 0.00003656600318814429,

...

 -0.001338720814110487, -0.00022211728990382076,

...

 0.006937761277326152, 0.0013598467013441263,

...

 -0.024952761177797576, -0.00351028784332523,

...

 0.07803784806236971, 0.030721150497025267,

...

 -0.15959221677565338, -0.05404070849544753,

...

 0.4753426930640303, 0.7565249925494576, ...

 0.3971230417468278, -0.034574136859023705,

...

 -0.06698302069147749, 0.03233309920319836, ...

 0.004869285298401547, -0.031051198943356957,

...

 -0.003126520186702648, 0.012666730821216037,

...

 0.0007182134482533401, -0.0038809118096674354,

...

 -0.00010844597239036113, 0.0008523546022172409,

...

 0.000028078644213177975, -0.00010943145921454754,

...

 -3.1135618941800743*10^-6, 6.230004737262791*10^-6

];”

 end

 “if Par==17,”

 “f = [4.2973506629986956*10^-6, 2.7801688647505625*10^-6,

...

 -0.00006293696990392763, -0.000013506396803548528,

...

 0.00047599681001429773, -0.00013864025450273018,

...

 -0.002741673289197601, 0.0008567721508596517,

...

 0.010482379074328828, -0.004819175075474626,

...

 -0.03329133163029172, 0.017904007873400175,

...

 0.10475473990614559, 0.017271442186243685,

...

 -0.1185666208590123, 0.1423985355331832, ...

 0.6507166482523769, 0.6814888952815437, ...

 0.18053935219589717, -0.15507633780169236,

...

 -0.0860711490606599, 0.016158692741874165,

...

 -0.0072616521550352585, -0.01803889816207702,

...

 0.009952983267225308, 0.012396993805630462,

...

 -0.0019054056198378236, -0.003932327920107898,

...

 0.00005839844001157818, 0.0007198270212964605,

...

 0.000025208218893204052, -0.00007607121225156968,

...

 -2.452745060439947*10^-6, 3.791246551426962*10^-6

];”

 end

 “if Par==18,”

 “f = [2.6140187028148005*10^-6, 1.3597256411120972*10^-6,

...

 -0.000045260099151022276, -0.000014073709856766986,

...

 0.0003962647703053168, 0.00007059203923948904,

...

 -0.002314325309127317, -0.00041350784379068383,

...

 0.009503146264507371, 0.001648937806891975,

...

 -0.03033018760379904, -0.00510180660253373,

...

 0.08421406918773965, 0.034024019305781264,

...

 -0.15998146275864744, -0.05223243824458295,

...

 0.47375599169059157, 0.7536405256423095, ...

 0.4016913034776937, -0.0323059809889792, ...

 -0.07374895242999176, 0.028536771134301076,

...

 0.006292693377765397, -0.03170873328122627,

...

 -0.0032688666608867664, 0.01500986633652236, ...

 0.0010909833425781458, -0.005238814002156449,

...

 -0.0001897773119942463, 0.0014277813050762765,

...

 0.000047650786275655254, -0.0002657505546476236,

...

 -9.890224232299607*10^-6, 0.00002954545735292322,

...

 7.866685781899692*10^-7, -1.5123391551795506*10^-6

];”

 end

 “if Par==19,”

 “f = [1.6822101374310987*10^-6, 1.5736233900352247*10^-6,

...

 -0.000029084130082422266, -0.000016290552278010628,

...

 0.00027537426211342433, 0.00010455921733678424,

...

 -0.0017655593234062173, -0.0006524693932405551,

...

 0.008240792309156801, 0.003903523253914178,

...

 -0.028979337236055096, -0.01858176253516738,

...

 0.08265001836815583, 0.09052455442917737, ...

 -0.12553103109717628, -0.1933024666109857, ...

 0.24104659627671224, 0.7125038682183499, ...

 0.5857258835982894, 0.12559052557160855, ...

 -0.051417687498444706, 0.019505347664693754,

...

 0.012438665386547568, -0.04432391883451796,

...

 -0.022155886952494982, 0.015464312015532047,

...

 0.0076454965207025565, -0.005198489304476271,

...

 -0.0011616402526739716, 0.0021058625600138578,

...

 0.00015660905060254328, -0.0006245052918345595,

...

 -0.00004106344742558738, 0.0001139524500214609,

...

 7.487464336562946*10^-6, -0.000011966487988902881,

...

 -5.34322686486931*10^-7, 5.711932378486931*10^-7

];”

 end

 “if Par==20,

 f = [-6.299929076393514*10^-7, -1.788381654723433*10^-7,

...

 0.000013267792274307285, 5.715455163913879*10^-6,

...

 -0.00012638480147829343, -0.00006060770430172846,

...

 0.0007316472152793887, 0.00026095442734033774,

...

 -0.003170803376848161, -0.00043732670748901353,

...

 0.012090589576786489, 0.0019211676342072246,

...

 -0.03663262584755033, -0.013703513480057003,

...

 0.07424185717192522, 0.021714054253910882,

...

 -0.1609037041111548, -0.03440166000144136, ...

 0.4894006264128903, 0.7507502982136451, ...

 0.3886194419202543, -0.04521583665884769,

...

 -0.07854049760146452, 0.038482757401527116,

...

 0.021702142828213884, -0.023834246491111964,

...

 -0.0005786000109801912, 0.01717848841075394, ...

 0.0006324619136888966, -0.007342682291732647,

...

 -0.0005183408270565881, 0.002204695518355125,

...

 0.00017752923953843423, -0.00048232152518013383,

...

 -0.00003434395791274426, 0.00007406549050117618,

...

 3.2530365938639585*10^-6, -7.413187876923192*10^-6,

...

 -1.0539262586695314*10^-7, 3.7126642825501105*10^-7

];”

 end

 “if Par==21,”

 “f = [2.4666687655533695*10^-7, 7.914248389737127*10^-8,

...

 -5.098478772975259*10^-6, -1.8332525199414118*10^-6,

...

 0.00004694842985874322, 6.088937039539296*10^-6,

...

 -0.00028648787462784116, 0.0000620228593209885,

...

 0.0014213616519049683, -0.000432897763752902,

...

 -0.005353988694277162, 0.0017655806658982696,

...

 0.015402169297438343, -0.008988082355110115,

...

 -0.04716066845359608, 0.010671178775815944,

...

 0.10149319625091788, 0.007388554132196435,

...

 -0.12355469595545877, 0.14411131060308363, ...

 0.6461733765248382, 0.6815923286559533, ...

 0.19203957652810966, -0.1513192612796282, ...

 -0.08711940361369748, 0.02790507569203459, ...

 0.00625184607285568, -0.015083074728218489,

...

 0.011187152328141188, 0.01450803878862172, ...

 -0.004094954089873776, -0.006749289429682182,

...

 0.0006955275549391147, 0.002031175814309811,

...

 -0.00002051693327729468, -0.00041348833873143716,

...

 -0.000010572800078769339, 0.000058204303827933644,

...

 1.8409309631189882*10^-6, -5.161165596805668*10^-6,

...

 -7.41575536253381*10^-8, 2.3113011977605634*10^-7

];”

 end

 “if Par==22,”

 “f = [1.5469892096783629*10^-7, 5.5743916934275646*10^-8,

...

 -3.4968422679833534*10^-6, -1.4370363121605532*10^-6,

...

 0.000037380396807580654, 0.00001758094055422716,

...

 -0.00024483364534030704, -0.00010585417623386842,

...

 0.0011466583097184356, 0.0003226285920630637,

...

 -0.004398948577001492, -0.0005350221246800008,

...

 0.015051009425518232, 0.003114197433178795,

...

 -0.03983484859283483, -0.014316309998756563,

...

 0.07823387878992308, 0.023785426002814004,

...

 -0.1593358890186262, -0.029991258060954408,

...

 0.4905406567562972, 0.7486689893282149, ...

 0.38946084846091966, -0.04646770047156702,

...

 -0.08505017544453836, 0.03554141495048075, ...

 0.023467779250349607, -0.02426659585361798,

...

 -0.0019440502814989976, 0.01780655171188534, ...

 0.0003877388938834633, -0.008837354866518892,

...

 -0.0006023488806178174, 0.0030309320519889987,

...

 0.00025194457519336455, -0.0007945748785723063,

...

 -0.00006608462189094136, 0.00015493987521617144,

...

 0.000010202851313391099, -0.000021749524061348802,

...

 -8.277216867302219*10^-7, 2.011485781107503*10^-6,

...

 3.24106151598103*10^-8, -8.994488134257862*10^-8

];”

 end

 “if Par==23,”

 “f = [-6.088466993156109*10^-8, -1.6615204304595472*10^-

8, ...

 1.4054134729420521*10^-6, 5.065545930484757*10^-7,

...

 -0.000014639159377583806, -3.935849604669885*10^-6,

...

 0.00009610455472740267, -3.235179654211356*10^-7,

...

 -0.0004912392092331126, 0.0001158628187825532,

...

 0.0020794420582160053, -0.0005397239075479521,

...

 -0.006723311075642093, 0.0023801024676674445,

...

 0.018427107312302106, -0.009708672972735352,

...

 -0.052966594269723166, 0.006024328570134602,

...

 0.09868192677853799, 0.0026702039747034177,

...

 -0.1299766448268073, 0.13550672099058436, ...

 0.6387382588927035, 0.6863848550710899, ...

 0.20649267004039606, -0.14369715652684245,

...

 -0.08651297991591521, 0.032763741913238865,

...

 0.012533684345771838, -0.014070855072454728,

...

 0.01062794083550241, 0.015024638946099386,

...

 -0.004866076235991217, -0.007967029103383086,

...

 0.0010722016128121928, 0.0028093755854430584,

...

 -0.00008313779295501525, -0.0006970208534264938,

...

 -0.00001326126189449906, 0.00012603730932265127,

...

 4.446291783441227*10^-6, -0.000016139269667555554,

...

 -4.77553521844591*10^-7, 1.3365100765666046*10^-6,

...

 1.523804807305629*10^-8, -5.5838351515000746*10^-8

];”

 end

 “if Par==24,”

 “f = [-5.2761865436863985*10^-8, -8.690427954503197*10^-8,

...

 1.0423208461508862*10^-6, 1.3969259517138812*10^-6,

...

 -0.000011118982675005505, -0.000012657478427953705,

...

 0.0000773048286026619, 0.00007342863308434417,

...

 -0.00039834902286264043, -0.0003016488762115482,

...

 0.001633599109508149, 0.0009177057961552579,

...

 -0.005702626293286814, -0.002525604130488947,

...

 0.017026080554935406, 0.007861303957162372,

...

 -0.040982600612933254, -0.021283796275817276,

...

 0.08372034358295327, 0.05437314304210483, ...

 -0.12818178218050752, -0.035646434246813574,

...

 0.46244307077589863, 0.7501914811592109, ...

 0.4182481983661332, -0.04590755369598393,

...

 -0.1204529195912711, 0.010585497932626633,

...

 0.023513400494410315, -0.022539152872931466,

...

 -0.0050215879773052394, 0.01833813846077915, ...

 0.0021823244607757, -0.009954852329009839,

...

 -0.0015175250406422927, 0.0038357471744951996,

...

 0.0007028294509160195, -0.0011116911888874527,

...

 -0.00021118156525038934, 0.0002507142923455971,

...

 0.0000442170717380261, -0.000043237491892894634,

...

 -6.45525681719476*10^-6, 5.343044886829498*10^-6,

...

 5.953891366605391*10^-7, -4.1947862803617735*10^-7,

...

 -2.5954357139211734*10^-8, 1.5757584826821534*10^-8

];”

 end

 “if Par==25,”

 “f = [1.3559364540611227*10^-8, -9.795737094326415*10^-

10, ...

 -3.5324698866183274*10^-7, -2.864726752719305*10^-8,

...

 4.222032788604233*10^-6, 5.49693105547489*10^-7,

...

 -0.00003092830508017534, -4.212835064605567*10^-7,

...

 0.00016479057910264333, -0.000037508744144871775,

...

 -0.0007330652888770748, 0.0002658102686466399,

...

 0.002714164795025192, -0.000968322030306876,

...

 -0.00785635517951613, 0.0037969122058442175,

...

 0.02059795248498291, -0.012308050256422173,

...

 -0.05640015507726106, 0.007187328235056668,

...

 0.0956457447512976, -0.0058027884901894556,

...

 -0.12231754226725715, 0.1631514710968921, ...

 0.6543719294101015, 0.6715904122541644, ...

 0.18132650835646258, -0.15599473760485902,

...

 -0.08362502581802364, 0.041304200470714036,

...

 0.017768444024218653, -0.013548122888083406,

...

 0.010296151957318115, 0.014633468106540926,

...

 -0.006440853043345421, -0.008929653602321046,

...

 0.0019327781450455884, 0.0036421681089588136,

...

 -0.00033935744667514006, -0.0010791779886949856,

...

 0.000027173893640607642, 0.000238698525771045,

...

 1.0500229544977402*10^-6, -0.000039832648663228424,

...

 -5.410954871718931*10^-7, 4.768328003833541*10^-6,

...

 3.284183959667723*10^-8, -3.759486167421689*10^-7,

...

 1.085292734525874*10^-9, 1.5021122420804858*10^-8

];”

 end

end

“if strncmpi(Type,'Vaidyanathan',3),”

 “f = [-.000062906118 .000343631905 -.000453956620

 ...

 -.000944897136 .002843834547 .000708137504

 ...

 -.008839103409 .003153847056 .019687215010

 ...

 -.014853448005 -.035470398607 .038742619293

 ...

 .055892523691 -.077709750902 -.083928884366

 ...

 .131971661417 .135084227129 -.194450471766

 ...

 -.263494802488 .201612161775 .635601059872

 ...

 .572797793211 .250184129505 .045799334111

];”

end

“if strncmpi(Type,'Battle',3),”

 if Par == 1,

 “g = [0.578163 0.280931 -0.0488618 -0.0367309 ...

 0.012003 0.00706442 -0.00274588 -0.00155701 ...

 0.000652922 0.000361781 -0.000158601 -0.0000867523

];”

 end

 “if Par == 3,”

 “g = [0.541736 0.30683 -0.035498 -0.0778079 ...

 0.0226846 0.0297468 -0.0121455 -0.0127154 ...

 0.00614143 0.00579932 -0.00307863 -0.00274529 ...

 0.00154624 0.00133086 -0.000780468 -0.00065562 ...

 0.000395946 0.000326749 -0.000201818 -0.000164264 ...

 0.000103307

];”

 end

 “if Par == 5,”

 “g = [0.528374 0.312869 -0.0261771 -0.0914068 ...

 0.0208414 0.0433544 -0.0148537 -0.0229951 ...

 0.00990635 0.0128754 -0.00639886 -0.00746848 ...

 0.00407882 0.00444002 -0.00258816 -0.00268646 ...

 0.00164132 0.00164659 -0.00104207 -0.00101912 ...

 0.000662836 0.000635563 -0.000422485 -0.000398759 ...

 0.000269842 0.000251419 -0.000172685 -0.000159168 ...

 0.000110709 0.000101113

];”

 end

 “l = length(g);”

 “f = zeros(1,2*l-1);”

 “f(l:2*l-1) = g;

 “f(1:l-1) = reverse(g(2:l));”

end

“if strncmpi(Type,'Lemarie',3),”

 “f = [3.0620193e-005 3.8631712e-005 -5.9878645e-005 ...

-7.4997553e-005 1.1762624e-004 1.4604017e-004 ...

-2.3234459e-004 -2.8538040e-004 4.6210986e-004 ...

 5.5993014e-004 -9.2718796e-004 -1.1037270e-003 ...

 1.8821116e-003 2.1866870e-003 -3.8823801e-003 ...

-4.3537889e-003 8.2013819e-003 8.6851939e-003 ...

-1.7982112e-002 -1.7176116e-002 4.2067863e-002 ...

 3.2080525e-002 -1.1003574e-001 -5.0201141e-002 ...

 4.3391759e-001 7.6612115e-001 4.3391759e-001...

 -5.0201141e-002 -1.1003574e-001 3.2080525e-002 ...

4.2067863e-002 -1.7176116e-002 -1.7982112e-002 ...

8.6851939e-003 8.2013819e-003 -4.3537889e-003 ...

-3.8823801e-003 2.1866870e-003 1.8821116e-003 ...

-1.1037270e-003 -9.2718796e-004 5.5993014e-004 ...

 4.6210986e-004 -2.8538040e-004 -2.3234459e-004 ...

1.4604017e-004 1.1762624e-004 -7.4997553e-005 ...

-5.9878645e-005];”

end

“if strncmpi(Type,'Pollen',3),”

 “s = 2 * sqrt(2);”

 “if length(Par) == 1”

 “phi = Par(1);”

 “f =[(1 + cos(phi) - sin(phi))/s ...

 (1 + cos(phi) + sin(phi))/s ...

 (1 - cos(phi) + sin(phi))/s ...

 (1 - cos(phi) - sin(phi))/s];”

 end

 “if length(Par)==2”

 “phi1 = Par(1);”

 “phi2 = Par(2);”

 “s = 2 * sqrt(2);”

“f=[(1+cos(phi1) - cos(phi2) - cos(phi1) * cos(phi2) ...

 + sin(phi1) - cos(phi2) * sin(phi1) - sin(phi2) ...

 + cos(phi1) * sin(phi2) - sin(phi1) * sin(phi2))/ (2*s)

...

 (1-cos(phi1) + cos(phi2) - cos(phi1) * cos(phi2) ...

 + sin(phi1) + cos(phi2) * sin(phi1) - sin(phi2) ...

 - cos(phi1) * sin(phi2) - sin(phi1) * sin(phi2))/ (2*s) ...

 (1 + cos(phi1) * cos(phi2) + cos(phi2) * sin(phi1) ...

 - cos(phi1) * sin(phi2) + sin(phi1) *sin(phi2))/s ...

 (1 + cos(phi1) * cos(phi2) - cos(phi2) * sin(phi1) ...

 + cos(phi1)* sin(phi2) + sin(phi1)* sin(phi2))/s ...

 (1-cos(phi1) + cos(phi2)- cos(phi1)* cos(phi2) ...

 - sin(phi1) - cos(phi2) * sin(phi1) + sin(phi2) ...

 + cos(phi1)* sin(phi2)- sin(phi1)* sin(phi2)) /(2*s)...

 (1+cos(phi1)- cos(phi2)- cos(phi1)* cos(phi2) ...

 - sin(phi1) + cos(phi2) * sin(phi1) + sin(phi2) ...

 - cos(phi1) * sin(phi2) - sin(phi1)* sin(phi2))/

(2*s)];”

 end

end

“f = f ./ norm(f);”

 الوستخلص

هعذل الخطش تاسرخذام ذقذيش ذالحهزه الأطشوحح هى دساسح الرقذيش غيش الوعلوي لللهذف الشئيسي

. ذعروذ اسرشاذيجيح الرقذيش على اسرخذام الإسقاط هن اليوينالوىيجح الخطيح لثياناخ الشقاتح العشىائيح

هن () الفضاء الجضئيعلى { } الأب ذالحالوىيجي ل

 .للذالح الرشاكويح تشسلى ، هع هقذّس L ^ 2 (R) الذوال الوشتعح فضاء

يح كثافح الاحروالال لذالحإيجاد النسثح تين هقذس الوىيجح الخطيح تذن ذصوين ذقنيح ذقذيش دالح الخطش

(f(x)) ذالح الثقاءلوالرقذيش الرجشيثي .{S(x)=1-F(x)}

ذعروذ الرطثيقاخ على نىعين هن الذساسح. الرطثيق الأول ، دساسح الوحاكاج لرىليذ هرغيشاخ عشىائيح

، والرجشتح n = 100،200 لعيناخ تالحجن G(5،1) كاها تاسرخذام ذىصيع الاولى رجشتحاللرجشترين ،

 طثيعيينالثانيح تاسرخذام الرىصيع الثنائي الأتعاد لرىصيعرين

(X=0.4X1~N(5,1)+0.6X2~N(3,0.5)) لعيناخ تالحجن .n=400,600 ، علاوج على رلك

الرطثيق الثاني ، يرن ذطثيق (EXP (6)). لرىليذ أوقاخ الشقاتح للرجشترين نسرخذم الرىصيع الأسي

سرانفىسد ، وتياناخالونضلي، وتياناخ الروشيض ذليف الكثذ الىتائيوهي تياناخ حثلاز تياناخ حقيقي

 .قلةال حعاضسل

تالنسثح اهاوحاكاج ، التين نرائج الرقذيش والنرائج الفعليح لرجشتري MSE ذود الوقاسنح تاسرخذام

جاخ وهقذس يتين نرائج الرقذيش الري ذن حساتها تىاسطح ذقذيش الوى MSE للثياناخ الحقيقيح ، ذن إجشاء

 .النىاج

الخطىرة باستخذام تحىيل التقذير اللاهعلوي لذالت

 الوىيجت

 أطروحت

 هقذهت الى كليت التربيت للعلىم الصرفت)ابي الهيثن(

 جاهعت بغذاد

 وهي جسء هي هتطلباث ًيل شهادة الذكتىراه في فلسفت الرياضياث

 هي قبل

 علي طالب هحوذ

 بأشراف

 أ.د. أيذى حسي حسيي

2019 1440

 جوهىريت العراق

 وزارة التعلين العالي والبحث العلوي

 جاهعت بغذاد

 كليت التربيت للعلىم الصرفت)ابي الهيثن(

 قسن الرياضياث

