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  The main objective of the study in this thesis is to enrich the non-

parametric estimation of the hazard rate function using the linear wavelet 

estimation for right randomly censoring data. The strategy of the estimation 

is based on the use of the wavelet projection of the father function 

{                        } on the resolution subspace (  ) of the 

square integrable function (     ), with the Breslow estimator of the 

cumulative function. The technique to estimate of the hazard function is 

built to find  the ratio between the linear wavelet estimator of the probability 

density function (f(x)) and the empirical estimation to find the survival 

function {S(x)=1-F(x)}. 

  Applications are based on two types of study. First application, the 

simulation study to generate random variables for two experiments, the first 

experiment using the Gamm distribution G(5,1) for lifetimes samples of size 

n=100,200, and second experiment using bimodal distribution of two 

Normal distributions (X=0.4X1~N(5,1)+0.6X2~N(3,0.5)) for lifetimes 

samples of size n=400,600. Moreover, to generate the censoring times for 

the two experiments we using Exponential distribution (EXP(6)). The 

second application, three real application data are applied which are liver 

metastases data, nursing home data, and Stanford heart transplant data. 

  Comparing has been made using MSE between estimation results and 

actual results for two simulation experiments, while for the real data, the 

MSE has been made between the estimation results that calculated by 

wavelets estimation and the kernel estimator.  
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  The survival analysis in the branches of statistics have a great importance 

in the study and analysis of events that occur according to time, especially 

analysis of the expected time of occurrence of one or more events according 

to a specific period or indefinite period. Survival and reliability analysis 

deals with many topics, including death in biological organisms and failure 

in mechanical and electronic devices. 

  There are many questions that the survival and reliability analysis tries to 

give answers for it. For example, how long will be expected that mechanical 

devices will work according to certain conditions? The expected time of 

living a population group in a controlled society by influencing factors? 

What are the factors influencing in death or failure? And is it possible to 

control these factors and reduce those that do not help?. In these studies it is 

very important to identify the lifetime and death (failure) contexts, although 

death in biological organisms is considering as an event while in mechanical 

and electronic, failure is also an event but it may not actually occur because 

it can be caused by a partial failure of the machine or device.  

  One important concept in survival analysis is the hazard rate function, 

which deals with calculating the incidence of a particular event such as death 

or failure at a certain point in time. The hazard function can be used in many 

areas, such as engineering, medicine, and economic studies. This common 

use is due to how it is calculated based on the probability density function 

and the survival function, as well as the availability of valuable information 

on failure rates. 

 



  In statistical studies the methods of data collection takes two different 

approaches. The first approach depends on the collection of data which is 

related to certain hypotheses that enable the researcher to link the data to one 

of the statistics distributions and called (parametric data) while the second 

approach takes a method of non-hypotheses or restrictions but is free to 

collect data, (non-parametric data). One of the major challenges faced by 

researchers in statistical and other studies is dealing with non-parametric 

data. The important objective is how to estimate functions of these data 

without any information about these functions. In statistical studies, non-

parametric data are one of these challenges in terms of estimating density 

and hazard functions. Most of the studies that investigated this aspect were 

based on the analysis and study of data properties. Non-parametric data 

include several types, one of which is the censoring data, which in turn 

includes types such as left censoring, right censoring, interval censoring, 

randomly (progressively)censoring, type I censoring, and type II censoring.  

  A significant property is that            for n samples are to be 

independent. Kernel and nearest neighbors technical are the most popular 

methods to non-parametric density function. Wavelet series could be 

considered as good approach for function estimator since the utilize of 

wavelet in solving this problem gives an important advantage because it 

build up functions belong to      . Wavelets are considering as a new class 

of functions that are well localized in time and frequency. Moreover, the 

wavelet is rapidly decaying wave like oscillation that has zero mean and it 

exists for the finite duration. The wavelet transformations could be used in 

two types of discrete wavelet transformation (DWT) and continuous wavelet 

transformation (CWT). The method that will be displayed focus on (DWT). 



Approximation and estimation of functions is one of the important and good 

uses of wavelets.  

  The content of this thesis includes five chapters, chapter one contains the 

literatures review, the aims of this study, and some basic concepts in 

statistics such as statistical functions and properties. Chapter two contains 

Fourier series and transforms, definitions of wavelets with types and 

characteristics, and methods of building wavelets. The content of chapter 

three will address the proposed method in this study in order to estimate the 

hazard function using wavelet, the application takes two types in this thesis 

simulation applications and real, all this includes in chapter four and the 

final one is chapter five contain the conclusion and recommendations. 
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1.1 Introduction  

  In statistic, the importance of estimators in the information provided and 

the calculation of the estimates based on measurements and information in 

the sample subject of the test. In censoring data, especially with the type of 

randomly censoring data which is considered to have that have wide 

applications in the medical fields.   This chapter describes and surveys the 

aims of this study and literature review as well as presents some basic 

concepts, for example hazard rate function, types of censoring data, and 

some nonparametric estimation methods such as: Kaplan–Meier, Nelson-

Aalen, Breslow, and Kernel estimators.  

1.2 The aims of this thesis  

 The main objective of this thesis is estimating the Hazard rate function 

using linear wavelet transformation, where the estimation algorithm consists 

of two main parts, including the first estimate of the probability density 

function f(x) and the second estimate of the survival function s(x). The 

structure of the algorithm will rely on the projection property of the father 

wavelet function {       }              on the subspace    of 

Lebesgue spaces      . The data type is an important factor in the 

estimation process so data will be used is randomly right censoring data. 

Real and simulation applications will be used; in fact three real and two 

simulation applications are going to use to estimate the hazard rate function. 

Finally, the global main error (MSE) will be applicate to comparing between 

the result values. 
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1.3 Literature review  

   In the previous century especially in the 1990s many researchers 

widespread use of wavelets in the fields of statistical estimates. First used of 

the wavelets in statistics were introduced by a collection of articles such as 

Donoho et al. (1993), Kerkyacharian and Picard (1993), and Donoho and 

Johnstone (1994, 1995). 

   In 1990, Antoniadis, Grégoire and Nason [7] estimated hazard function 

based on divided the time into time intervals and then calculate the events in 

each interval separately with the survival function by linear wavelet 

estimator, then got the hazard function based on the ratio.  

  In 2003, Wu and Wells [59] proposed an estimator of hazard rate with 

nonparametric based on wavelets of increases cumulative Nielsen-Aalen 

estimator of hazard rate function, this estimate based on using of non-linear 

wavelet. Moreover, the introduced a new form of the mean integrated 

squared error (MISE). 

   In 2005,  Brunel-Piccinini and Comte [10] presented a projection wavelet 

pressure to estimated density and hazard rate functions, two types to 

estimate the hazard rate function were applicate, first one was two-steps as a 

ratio of density and survival function, second type found estimated the 

hazard rate directly with using in both types penalized linear wavelet 

projection. 

   In 2005,  Liang, Mammitzsch and Steinebach [41] used a non-linear 

wavelet to estimate density and hazard rate functions with assumption that 

hazard function belongs to Besov space    
 , for independent and identically 

distributed (i.i.d) data in complete case. 
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   In 2005,  Bezandry, Bonney and Gannoun [9] considered a linear wavelet 

method to estimate the density function and hazard rate with established the 

weak uniform consistency of the density and hazard rate estimators. They 

were proved that there was uniform convergence in probability of the 

wavelet estimators of the density and hazard rate functions. 

   In 2007,  Angers and MacGibbon [4] used a monotone wavelet to develop 

a non-parametric Bayesian functional estimation method to estimate the 

hazard function of censoring data of type randomly right.  

   In 2009, Doosti [25] used linear wavelet survival function estimator for 

independent and identically distributed (i.i.d) of real random variables to 

estimate the survival function that assumed it belong to Besov space. 

   In 2009,  Plancade [48] presented an estimator of hazard rate function in 

censoring case based on unknown quantities in two models of estimators 

Non adaptive and adaptive, where these estimators predicated on a 

regression-type.  

   In 2010,  Kim et al. [38] proposed local linear estimation of conditional 

hazard function in right censored data, the base of estimator used the kernel 

methods with positive optimal bandwidths    and   . 

   In 2010,  Chaubey et al. [13] introduced an estimate of the derivative of 

density function using linear wavelet under right randomly censoring data 

and extended the results regards to the asymptotic convergence rates.    

   In 2012, Ahmadi et al. [3] used Haar wavelet smoothing and Kernel 

smoothing methods to estimate hazard rate function for gastric cancer 

patients in Fayazbakhsh hospital in Tehran. 
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   In 2012,  Abbaszadeh, Chesneau and Doosti [1] estimated the density 

function under bias and multiplicative censoring using two pressures which 

are linear and nonlinear (hard) wavelet methods of the Daubechies wavelets 

db2N. 

   In 2014,  Afshari and Tahmasebi [2] estimated the hazard rate function  in 

two steps, using the  linear wavelet to estimator the probability density 

function, and then used Haar transformation integrate to find  the survival 

function and the ratio between them given hazard rate function, and evaluate 

of mean integral square error with convergence ratio. 

   In 2014,  Salha, Ahmed and Alhoubi [52] used a new kernel estimated 

based on Weibull kernel to estimate the density and hazard functions, and 

showed that the smoothing parameter (h) was The influencing factor on the 

bias which is closed to zero when h 0.   

   In 2016,  Chesneau and Doosti [15] developed a new  adaptive estimator 

g(x, m) based on wavelet methods of multivariate discrete and continuous 

density function, prove its good theoretical performance by determining 

sharp rates of convergence under the    risk with p  1 2 for a wide class of 

unknown conditional density. 

   In 2017, Comte, Samson and Stirnemann [20] proposed a non-parametric 

estimation of the hazard function depended on regression contrast minimized 

in a finite dimensional functional space generated by splines bases. 

   In 2017[30], Grez and Vidakovic [30] estimated the density function based 

on linear orthogonal projection periodic wavelet estimator onto a 
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multiresolution space    using empirical wavelet coefficients related to 

Kaplan-Meier estimator, for randomly right censoring data. 

 

1.4    Hazard rate function and its properties 

  In this section we will discuss and define one of the functions of survival 

analysis, which is the hazard rate function, which describes the risk rate of 

the random variable. 

Before giving the definition of hazard rate function, some functions that 

describe lifetime must be presented such as: 

 The cumulative distribution functions      or knows as lifetime 

distribution function and abbreviated written as CDF.  

             ∫       
 

 

 

 The probability density functions      or known as failure density 

and abbreviated written as PDF. 

     
 (    )

  
     ) 

 The survival functions      or knows as complementary cumulative 

distribution. 

                     

1.4.1    Hazard rate function [2] 
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  In survival analysis studies, the hazard rate function also known as failure 

rate function is defined as the conditional probabilistic condition of the 

individual to test a particular event (death or relapse) within a certain time 

period or predetermined. 

  Mathematically hazard rate function of non-negative random variable X 

defines as a ratio between the probability function      and survival 

function     , and denoted by      or     . 

 

        
    

            

       
 

     

    
 

    

    
 (1-1) 

 

It is possible to form the hazard rate function according to the survival 

function as follows: 

      
 

  
[  (    )] (1-2) 

 

If the random variable X has distribution function      and density 

function     , X is said to be have an increasing (decreasing) hazard rate 

function       if      is increasing (decreasing) for all  . 
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1.4.2    Cumulative hazard function [50] 

  The total number of failures, deaths or relapses over a period of time       

is define as cumulative hazard function denoted by     , and It is an integral 

part of the hazard rate function, according that for        

     ∫       
 

 

 (1-3) 

        (      )     (    ) (1-4) 

            (1-5) 

                (1-6) 

 

1.5    Censoring data [49]  

  The general concept of censoring in statistical data can be defined as 

information about the time of occurrence of the event, but the exact amount 

of time is not known. 

There are three main types of censoring data: 

 Type I censoring data: 

In this type the numbers of items or individuals which inter the experiment 

are random variables, but the lifetimes (failure times) which enter the 

experiment are fixed.  

Type I occurs when determining the time it takes to experiment in advance 

and then follow the individuals of the experiment to the end of time and then 

observe the occurrence of the event or not for the individuals. 
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 Type II censoring data:  

In this type the numbers of items or individuals which inter the experiment 

are specified and determined, but the lifetimes (failure times) which enter 

the experiment are random variables. 

Type II occurs when the event occurrence of a number of predetermined 

individuals and then a failure observing whether or not for all individuals 

depending on the type of observation (right, left). 

  Randomly (Progressively) censoring data: 

In this type the numbers of items or individuals which inter the experiment 

are random variables, and the lifetimes (failure times) which enter the 

experiment are random variables too. 

  This type occurs when each individual has a specific time that statistically 

independent of the individual failure time, and the observed value is the 

minimum (maximum) of the censoring and failure times according to the 

right (left) censoring state. 

Note: It should be noted that the type of data to be studied is of random type,           

so the next definition is a detailed definition. 

 

1.5.1    Randomly right censoring data [4] 

  Let            be an independent and identically distributed 

(i.i.d.) survival times with unknown density and cumulative functions f and 

F respectively. Let            be i.i.d. censoring times unknown density 

and cumulative functions g and G respectively, it is presumed that for 
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                    are typically statistical independence. The observing 

is for          which is an i.i.d. sequences, such that:  

                

The indicator function (δ) defines:                                                      

   {
             
           

 

 

1.5.2    Hazard rate function in censoring case [7],[30] 

  Because of the observing in the case or randomly right censoring data is the 

pair              
 , the target here is to get the joint distribution of the pair 

        it is possible to get: 

                               

 ∫              
 

 

 

             ∫               
 

 

 (1-7) 

 

                             

 ∫                     
 

 

 

 ∫               ∫              
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 ∫                ∫       
 

 

 

 

 

            ∫           
 

 

     (      ) (1-8) 

From (1-7) and (1-8) one can get: 

          (    )
 

(      )
 

(    )
   

(      )
   

 (1-9) 

 

Similarly, from (1-9) it‟s possible to find the marginal density function of 

complete data Z as follows: 

           (       )       (       ) (1-10) 

 

Now let,              

It could be got from that the following: 

       (       )(       ) (1-11) 

 

Finally, the hazard rate function of complete data Z can be formed as 

follows: 

      
     

      
 (1-12) 
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1.6    Non-parametric estimation methods 

  Non-parametric estimator is a statistical method that provides access to a 

functional form that is appropriate for non-parametric data. This section will 

review four of them which are: Kaplan–Meier, Nelson-Aalen, Breslow, and 

Kernel estimators. 

 

1.6.1    Kaplan–Meier estimator [37] 

  It can also be called as product limit estimator, which can be used to 

estimate the survival function      for non-parametric data. The 

mathematical form to estimate      using Kaplan-Meier estimator is given 

by: 

     ∏ [  
  

  
]

      

 

That is, each term in the product is the conditional probability of survival 

beyond time   , meaning the probability of surviving beyond time   , given 

the subject has survived up to time  . 

1.6.2    Nelson-Aalen estimator [49] 

  The Nelson-Aalen estimator is a non-parametric statistical method to 

estimate the cumulative hazard function      for non-parametric censoring 

data. The mathematical form to estimate      using Nelson-Aalen estimator 

is given by: 
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 ̂    ∑
  

  
      

 

  : The number of events occurs at     

  : The total individuals at risk at     

 

1.6.3     Breslow estimator [50] 

  The Breslow estimator is considering as a method to estimate the baseline 

survival function  ̂   . The mathematical form to estimate  ̂    using 

Breslow estimator is given by:  

 ̂       (  ̂   ) 

Where,  ̂    is the cumulative hazard function. 

 

1.6.4     Kernel estimator [49] 

  The general formula of kernel estimation method of hazard rate function 

for censored data case given as follows: 

 ̂    ∑ (
  

     
) (

 

         
)   (

    

         
)     

 

   

 

Where             which represents the bandwidth functions, and    

denoted the censoring indicator. 



 

14 
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2.1   Introduction  

  Wavelet is one of the most important mathematical and statistical tools in 

the past 20 years and its applications are increasing day after day, it is used 

in a wide range of applications. The most important of these applications 

are: the description of non-linear signals, non-parametric estimations, data 

smoothing and decomposition of images, and other applications. The 

statistical alphabet has always been that the best input to the wavelet is by 

describing the Fourier Series (FS), clarifying its types, introducing its 

transformations and inverses of these transformations, as will be explained 

in the following sections. 

This chapter will contain two main sections: section one consist general 

introduction on Fourier series and Fourier transform with a description of the 

matrix and inverse matrix (IFT) transforms and its mathematical formulas. 

Section two will provide a general introduction to the wavelets with 

continuous (CWT) and discrete (DWT) wavelet transforms  

2.2   Fourier series [18]  

  The Fourier series, presented by French scientist Joseph Fourier, is one of 

the most important mathematical tools used in the different fields of 

mathematics, statistics and engineering. The benefit of the Fourier series is 

its ability to transform and rewriting any mathematical function in terms (to 

be addressed later) through infinite sum the sines and cosines.  

For any periodic function             with period    , the general form 

of Fourier series is given by: 
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 ∑(                   )

 

   

 (2-1) 

 

Where      , and    can be found as follows: 

    
 

 
 ∫              

 

  
 

    
 

 
 ∫              

 

  
 

    
 

 
 ∫       

 

  
  

Note that:       {      ∫ |    |     
 

  
} 

 

2.3   Some special formulae for the Fourier series [47] 

  This section presents some special formulae of the Fourier series. 

 

2.3.1   Even Fourier series 

  In statistic, this function is called harmonic cosine function and it is also 

symmetric on y axis, which takes the form as follows:  

     
  

 
 ∑(         )

 

   

 (2-2) 

where:                              
 

 
 ∫              

 

  
 

    
 

 
 ∫       
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2.3.2   Odd Fourier series 

  In statistic, this function is called harmonic sine function and it is also 

symmetric on X axis, which takes the form as follows:  

     ∑(         )

 

   

 (2-3) 

where: 

    
 

 
 ∫              

 

  
 

 

2.3.3   Even harmonic Fourier series 

  This function takes the formula as follows: 

     
  

 
 ∑(                       )

 

   

 (2-4) 

 

where       , and     can be found as follows: 

     
 

 
 ∫               

 

  
 

     
 

 
 ∫               

 

  
 

    
 

 
 ∫       
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2.3.4   Odd harmonic Fourier series 

  This function takes the formula as follows: 

     
  

 
 ∑ (          (       )            (       ))

 

   

 (2-5) 

 

Where       , and     can be found as follows: 

         
 

 
 ∫        (       )  

 

  
 

         
 

 
 ∫        (       )  

 

  
 

    
 

 
 ∫       

 

  
 

 

2.4   Fourier transformation [81],[99]  

  A Fourier transform can be defined as a tool by which the length or 

waveform (function or signal) can be changed to an alternative mathematical 

appearance can be represented by sine and cosine functions. Mathematical 

alphabets have always identified this transformation from time domain to 

frequency domain. 

 

2.4.1   Time and Frequency domain 

  Mathematically, the time domain defined as the mathematical analysis of 

the different functions taking into account the real time of the function. In 
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other words, the time domain can be considered as the real function domain. 

The frequency domain is defined as the mathematical analysis of the 

different functions taking into account the real frequency of the function. In 

other words, the frequency domain is the real domain of the sine and cosine 

functions.   

 

2.4.2   Dirichlet conditions 

  Dirichlet put four sufficient conditions for any function f(x) over periodic T 

that can be expanded as Fourier series, and they are as follows: 

I. f(x) is a signal value function and absolutely integrable function. 

II. In each periodic T, f(x) has a finite number of discontinuous points. 

III. In each periodic T, f(x) has a finite number of maximum and 

minimum points. 

IV. ∫ |    |    
 

 
  

 

2.4.3   The continuous Fourier transform 

  For any continuous and integrable function f(x), it is able to find the 

continuous Fourier transform for f(x), as follows: 

     ∫                   

 

  

 (2-6) 

 The results of this transform is a function in f or      and called the 

function of the spectrum of the function f. 
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In order to find f(x) from     , it could be used the inverse continuous 

Fourier transforms, as follows: 

 

     ∫                  

 

  

 (2-7) 

 

It is worth to know that: 

      is complex function, and can be written as:                   

 The Fourier spectrum of f(x) is ‖    ‖  √(    )
 

 (     )
 
. 

 The power Fourier spectrum is  ‖    ‖  (    )
 

 (     )
 
 

 The phase angle is        (
     

    
). 

 

2.4.4   The discrete Fourier transform  

  The discrete Fourier transform of continuous function f(x) is defined as: 

     ∑     

   

   

    (
      

 
) (2-8) 

 

where,             and          . 

In order to find f(x) from     , it could be used the inverse discrete Fourier 

transforms, as follows: 
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     ∑     

   

   

    (
     

 
) (2-9) 

 

2.4.5   The n-point discrete Fourier transform 

  The n-point discrete Fourier transform is define as       matrix of 

complex numbers denoted by      and define as follows: 

   [      ]
         

 

[
 
 
 
 

  
   

  
 

  
     

   

          
           

          
]
 
 
 
 

 (2-10) 

 

where,         and       (
    

 
). 

 

2.4.6   The inverse n-point discrete Fourier transform 

  The inverse n-point discrete Fourier transform is denoted by   
   and define 

as: 

  
   

 

 
   

  (2-11) 

 

where,   
  is the adjoint (transpose and complex conjugate) of    . 
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2.5   Wavelet and Multiresolution analyses [36]  

  This section will be presented in some detail to the mathematical 

construction of wavelets as well as the continuous and discrete wavelet 

transformations, and to access these subjects we will first give a detailed 

view of the space       from the perspective of the multiresolution analysis.  

 

2.5.1   The multiresolution of       [51],[42] 

  The multiresolution is a tool to describe the construction of spaces and to 

give an analytical description of the components and bases of these spaces. 

Let‟s first give the definition of a square integrable function or known as the 

space of Lebesgue measurable functions, which denoted as       and 

defined: 

      ,       ∫ |    |   
 

  

- 

The multiresolution analysis of the space       is defined as nested 

sequences of closed (resolution) subspaces {  }    , and have the 

following properties:  

             . 

         if and only if           . 

         if and only if              . 

              . 

         . 

         and         . 
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Figure (2-1): multiresolution subspaces 

Now, define another subspace of       which denoted as        and 

define as: 

           

Also,    known as difference subspaces, generally we have the following: 

           

                       

       (    
   

   ) 

 

2.5.2   Wavelet functions [33]   

  The wavelet is one of the types of the mathematical functions used to 

divide the given function to different frequency compound and study each 

compound with an appropriate solution at each measurement. 

Mathematically, the wavelet is defined as a real value function on the real 

axis and oscillates up and down regularly around zero. 

Any wavelet function (    ) must satisfy the following three conditions: 

Ѵ  Ѵ  Ѵ  
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1. ∫         
 

  
, this condition ensures that the wavelet function 

vibrations must balance higher and lower zero. 

2. ∫ (    )
 
    

 

  
, this property is called unit energy, and for any 

      there exist        such that: ∫ (    )
 
      

 

  
. 

This condition ensures that most of waving‟s contained in the portion 

of interval and for specific width.   

3. The wavelet function      has ability to admissible. 

 

2.5.3   Wavelet transformations [36] 

  The wavelet expression indicates the meaning of the little wave, which 

contains the least oscillations, and will fast decay to zero in both positive 

and negative directions, this is the admissibility condition for the function 

that requires the wavelet transformation. The first definition for wavelet was 

introduced by Jean Morlat in 1980.  

  The wavelet group is used to approximate the signal in order to find a set of 

wavelet subsets which will be built from expansion or compression and 

shifting of the original wavelet, which represent the signal or data to be 

analyzed. This process is in short of the transformation from large 

measurements to accurate measurements by paving these data or signals. 

This is exactly the same as the kernel methods, which was discussed by 

many statisticians in the second half of the 20th century and beyond. The 

main outcome of the transformation process is the mother wavelet function, 

which is described below as: 

 

        
 

√ 
 (

   

 
) (2-12) 
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There are two types of wavelet transformations, which are continuous and 

discrete wavelet transformations. 

 

2.5.3.1   Continuous wavelet transformation (CWT) [21],[42] 

  The mathematical concept of CWT is to divide the continuous function in 

time range into a set of wavelets. This transformation will have the 

possibility to build a common signal representation (data) between the time 

band and the frequency band, which will give a prelude to data in both time 

and frequency range. The mathematical formula for this transformation is: 

 

           ∫     
 

√ 

 

  

 (
   

 
)      (2-13) 

 

     represents a continuous function in the time and frequency range 

together and is also known as the mother wavelet function. 

the mathematical formula of the inverse continuous wavelet transformation 

(ICWT) will be as follows: 

 

           ∫ ∫           
 

√ 

 

  

 

  

 ̆ (
   

 
)

     

  
 (2-14) 

 

Where,  ̆    is dual function and    could be found as follows: 

 

   ∫
( ̆   )
̅̅ ̅̅ ̅̅ ̅̅ ̅

| |
 

 

  

( ̆   )
̂

   (2-15) 

( ̆   )
̂

 is indicates the Fourier transform that was previously mentioned. 
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The two most famous wavelet functions of are compatible with the CWT 

are: 

 

1. Mexican Hat wavelet function 

               (
   

 
) 

 

Figure (2-2): Mexican Hat wavelet function 

 

2. Morlet wavelet function 

                  (
   

   
 ) 

Such that    is the frequency and   is a measure of the support. 

𝛹 𝑡  

t 
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t 

Figure (2-3): Marlet wavelet function 

 

2.5.3.2    Discrete wavelet transformation (DWT) [27],[46],[42] 

  DWT is considered one of the most famous and application of the wavelet 

transformation tools in various fields of engineering, mathematics, statistics 

and other applications. The input and output of this transformation is 

discrete data and simulates the discrete Fourier transformation in procedure. 

Where the data is transform from the time range (original data field) to 

wavelet domain where the results will be vector-shaped and of the same 

original vector size. DWT can be expressed in linear equations and also by 

matrices as see below: (Van Fleet, 2011)[27].   

Let Ƒ(x) be a function defines on equally-spaced observations, the DWT can 

be calculated using the following relationship: 

         ∑                  ∑ ∑        

   

       

 

       

 (2-16) 

 

𝛹 𝑡  



 Chapter two                                                                                                                     Fourier and wavelet transformations 

28 
 

Where       ,       , and: 

         
 

 
∑                 is called “Approximation” coefficients. 

        
 

 
∑               is called “Detail” coefficients. 

The functions      and       are known as father and mother wavelet 

functions, and define as: 

            ⁄  (     ) (2-17) 

           ⁄  (     ) (2-18) 

 

 In matrices form, the difference here about the Fourier transform is to 

describe the matrix of the wavelet transform that will not be a single 

constant matrix as in Fourier transform where transform matrices will vary 

according to their associated functions, and we will explain that with three 

examples as follows: 

1. Haar wavelet [39] 

  Haar wavelet considering as the simplest and oldest that used in wavelet 

transformation, it is based on Haar series which was presented by Alfred 

Haar in 1909. The mother and father Haar wavelet functions are defined as: 

     

{
 
 

 
               

 ⁄

           
 ⁄     

                      

  

 

(2-19) 
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     ,
              
                  

 (2-20) 

 

The orthogonal Haar matrix for DWT is taking the form: 

    
 

 
 *

                    

    [√   √ ]
+ (2-21) 

The symbol  is representing the Kronecker product. 

Where    is the identity matrix of degree      , and    is define as 

follows: 

   *
  
   

+ 

 

 

 

Figure (2-4): Haar mother function 

𝛹 𝑥  

https://en.wikipedia.org/wiki/Kronecker_product


 Chapter two                                                                                                                     Fourier and wavelet transformations 

31 
 

 

Figure (2-5): Haar father function 

 

2. Daubechies wavelet[22] 

  Daubechies wavelet is an orthogonal discrete wavelet and was presented by 

Belgian mathematician Ingrid Daubechies in (Daubechies, 1992)[22] as a 

coronation for her advanced research on wavelets that have vanishing points. 

The Daubechies wavelet functions denoted according to how many 

vanishing points its own it, and denoted by db2,db4, … , db50. 

It is worth mentioning the wavelet function      is said to have a     

number of vanishing points if  ∫           , each wavelet has a number 

of zero moments, vanishing points  or vanishing moments  equal to half the 

number of coefficients. For example, D2 (the Haar wavelet) has one 

vanishing moment, D4 has two, etc. A vanishing moment limits the wavelets 

ability to represent polynomial behavior or information in a signal. 

𝛷 𝑥  
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 Mother daubechies wavelet      Father daubechies wavelet      

 

 

db4 

  

 

db6 

  

db8 

  

db10 
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db12 

  

db14 

  

db16 

  

db18 
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db20 

  

 

Figure (2-6): Mother and father Daubechies wavelet functions 

 

Ingrid Daubechies has shown several mathematical equations, from which 

we will need the wavelet transformations matrix, and we will describe two 

of them, db4 and db6, where the number of parameters in db4 and db6 are 

only eight and six respectively.  

The db4 parameters are: 

 

   
  √ 

 √ 
    

  √ 

 √ 
    

  √ 

 √ 
    

  √ 

 √ 
  

                          

The db4 discrete wavelet transformation denoted by      , 



 Chapter two                                                                                                                     Fourier and wavelet transformations 

34 
 

     

[
 
 
 
 
 
 
    

    

  
  

    

    

    

    

   
   

     
     

 

   
   
   
   

   
    

    

  
  

   
   

 
   

   

  

  ]
 
 
 
 
 
 

 (2-22) 

 

And the inverse of       is: 

         

[
 
 
 
 
 
 
    

    

  
  

    

    

    

    

   
   

     
     

 

   
   
   
   

   
    

    

  
  

   
   

 
   

   

  

  ]
 
 
 
 
 
 

 (2-23) 

The matrix      is an orthogonal and the parameters satisfying: 

   
    

    
    

   . 

   
    

    
    

   . 

The db6 parameters are: 

   
       

  √ 
    

        

  √ 
    

         

  √ 
  

   
          

  √ 
    

        

  √ 
    

       

  √ 
   

   √       √   √   

Therefore, the db6 discrete wavelet transformation of degree       is: 
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   ]
 
 
 
 
 
 
 

 (2-24) 

Note:  the db2 wavelet transformation matrix is the same Haar wavelet. 

 

3. Coiflet wavelet [27] 

  There are several advantages for the vanishing points in wavelets and we 

will mention two of them for their importance in mathematical and statistical 

studies. 

 The smoother of the function      increases as the number of 

vanishing points increases. 

 Whenever the wavelet functions have a lot of vanishing points, the 

wavelet series of the estimator function will converges fast to the 

original function.  

When Ingrid Daubechies presented daubechies wavelets, only the mother 

wavelets      have the vanishing points. A mathematician at Yale 

University Ronald Raphael Coifman suggests her that the father (scaling) 

wavelet functions to have vanishing points. Because of that, she come out 

with new wavelets both father (scaling) and mother (wavelet) functions have 

(N/3)-1 and N/3 vanishing points respectively. The new wavelet is called 

Coiflet and it is semi-symmetric wavelets, and denoted by 

Coif1,Coif2,…,Coif9. 

https://en.wikipedia.org/wiki/Ingrid_Daubechies
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 Mother coiflet wavelet      Father coiflet wavelet      

 

 

Coif1 

  

 

 

Coif2 

  

 

 

Coif3 

  

 

 

Coif4 
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Coif5 

  

 

Figure (2-7): Mother and father Coiflet wavelet functions 

For more information about Coiflet wavelets, we will give a description of 

Cof4 discrete wavelet transformation matrix as follows: 

Cof4 has the following parameters: 

    
 √   

  
     

√       

  
    

 √       

  
 

   
√        

  
    

 √   

  
    

 √   

  
 

   ,
   (√   )

    (√   )
     ,

   (  √ )

   (  √ )
 

These parameters have the properties: 
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Then the Cof4 discrete wavelet transformation matrix can be written as: 

                      0 0  0 0 0 0 0 0   

 0 0                       0 0 0 0 0 0  

                   

 0 0 0 0 0 0 0 0                       

         0 0 0 0 0 0  0 0              

                      0 0 0 0   0 0 0 0       (2-25) 

                        0 0  0 0 0 0 0 0  

 0 0                         0 0 0 0 0 0  

                   

 0 0 0 0 0 0 0 0                          

        0 0 0 0 0 0   0 0                  

               0 0 0 0  0 0 0 0           

 

The two solutions can be compensated to find two matrices that are both 

orthogonal.  

4. Symmlet wavelet  

Symmlets are also wavelets within a minimum size support for a given 

number of vanishing moments, but they are as symmetrical as possible, as 

opposed to the Daubechies filters which are highly asymmetrical. General 

characteristics: Compactly supported wavelets with least asymmetry highest 

number of vanishing moment for a given support width. Associated scaling 

filters are near linear-phase filters. 
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2.6  Differences between wavelet and Fourier  Transformations 

  Some differences can be identified between Fourier and Wavelet 

transformations according to the formulas and procedures in which the 

transform procedure is performed. From our point of view four important 

differences can be identified as follows: 

1. Fourier transformations can be done appropriately for stable signals 

and data, while wavelet transformations can be performed 

appropriately for stable and unstable signals (data). 

2. Fourier transformations do not have solutions for a function in the 

time domain and have solutions for the function in the frequency 

domain, comparing to wavelet transformations that have solutions in 

both time and frequency domains. 

3. The Fourier transformations essentially transform the signals or the 

functions to waves of the sines and cosines in a different capacity, but 

wavelet transformations transform the signals or the function to a 

different measurement of mother and father wavelet functions. 

4. In Fourier transformations, the inputs could be real or complex 

functions, while the outputs are complex functions. In wavelet 

transformations, both inputs and outputs could be real or complex 

functions.



  

41 
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3.1   Introduction  

  This chapter introduces the methodology used in this thesis in terms of 

details for each step in it to estimate the function of the hazard. In addition, 

present some of the basic properties wavelets to utilizing the estimation the 

functions and the discrete wavelet transformation (DWT). Where this 

estimation have two types nonlinear and linear wavelet transformations, then 

introducing the mathematical structure of each one, it worth to know that the 

linear wavelet transformation is be used method in this thesis.  

 

3.2   How wavelet approximate functions 

  In multiresolution analysis (as explained in chapter two), the space of all 

square integrable functions       contains two kinds of subspaces 

resolution and different subspaces and denoted ae    and        

respectively. The sequence of functions {       }     {       }     

         are two basis for the subspaces           respectively, where 

          
 

        which is called the father wavelet function, and 

          
 

        which is called the mother wavelet function. 

It's possible that for any function          could be approximated using  

{       }     {       } sequences with            ,    is an arbitrary 

starting scale, and     . 

There are two techniques to estimate the functions by wavelet nonlinear and 

linear wavelet estimations. 
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3.2.1   linear wavelet estimation [13],[30] 

  The linear wavelet estimation for any function         is defined as 

follows: 

     ∑                  

   

 ∑ ∑         

   

 

    

        (3-1) 

 

          ⟦        ⟧ (3-2) 

 

         ⟦       ⟧ 

 

(3-3) 

From (3-2) and (3-3) the coefficients    and    can be written as: 

          
 

 
∑                 is called “Approximation” 

coefficients. 

         
 

 
∑                 is called “Detail” coefficients. 

From (3-1) showing that j is start     and end with infinity. Based on that, 

f(x) could be approximated from     to  . The maximum value of scale index  

                   and k is belong to {          }. Therefore, 

equation (3-1) reformulate as follows: 
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     ∑ (
 

 
∑               

 

)         

 

 ∑ ∑ (
 

 
∑               

 

)

 

        

 

    

 

(3-4) 

 

For periodic wavelets and constant periodic value h, it can be defining the 

father and mother wavelets in [0,1] as: 

 ̂         ∑       

   

 (3-5) 

  

 ̂        ∑       

   

 (3-6) 

  

Base on (equ.s. (3-5) and (3-6)), it is possible to rewrite (equ. (3-1)) as: 

     ∑   ̂        ̂       

   

 ∑ ∑   ̂      

   

 ̂

    

 ̂       (3-7) 

The function      in (3-7) is an approximation result for using periodic 

wavelets with the two coefficients   ̂       and   ̂             

        

And according to orthogonality projection of      on the subspaces 

         , then   ̂       and   ̂      could be written as follows: 
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  ̂        ∫     

 

 

 ̂          〈      ̂       〉 (3-8) 

  ̂      ∫     

 

 

 ̂         〈      ̂      〉 (3-9) 

Because of { ̂      }             , is an orthogonal basis of the 

subspace     , it's possible to write any function                    as 

follows: 

     ∑ ∑ 〈      ̂      〉    ̂      

    

      

 (3-10) 

 

One of the good advantages for wavelet is to estimate any function f ∊ 

      which approximate this function based on orthogonality projection. 

Basically, for fixed scale   the orthogonal projection of        onto the 

subspace    is denoted   (     ). 

Generally, fixed    ̂ and rewrite equation (3-7) as a projection of       in 

   and represented as: 

 (     )  ∑〈      ̂      〉

    

   

 ̂       (3-11) 

 

Moreover, from periodic wavelet it could be shown that 

‖ (     )      ‖
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‖ (     )      ‖
 

         . 

 

3.2.2   Nonlinear wavelet estimation [12],[43],[54]  

  The nonlinear wavelet estimation for any function         is defined as 

follows: 

     ∑                  

   

 ∑ ∑   
       

   

 

    

        

Where     is known as wavelet threshold parameter and considering as 

one of the fundamentals of WT if it is discrete (DWT) or continuous (CWT), 

  
       is defined as thresholding mother wavelet coefficient and has two 

forms according to the wavelet threshold parameter     either hard or soft 

thresholding rule known as follows: 

  
       ,

  
                        

  
                        

 

Where    
       and   

       are given as follows: 

  
       ,

               |       |   

                        |       |   
 

 

  
       {

                           

                            

                           |       |   
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The wavelet threshold parameter     will be used to remove any 

interference in the signal data after transmitting. The wavelet threshold will 

take the role of a preapprehension parameter in the functions where the 

increase or decrease will affect the amount of data preapprehension. There 

are two types wavelet threshold rules according to the method of data 

preapprehension, defined as follows: 

 

 Hard wavelet threshold  

The hard threshold will be used to make data whose values are less than the 

threshold value equal to zero. 

( ̂ ) 
 {

      |  |   

     |  |   
 

 

 Soft wavelet threshold 

 

( ̂ ) 
 {

        |  |   
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Figure (3-1): hard and soft thresholds of data curves. 

 

There are many methods to determine the value of wavelet threshold 

parameter     depend on the way of collection: 

 Universal thresholding. 

 Sub band adaptive thresholding. 

 Spatially adaptive thresholding. 

 Cross Validation. 

 Sure thresholding. 

 Bayesian methods. 

 False-Discovery rate. 
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 Exact minimax. 

For clarification, we will present the formula given by (Donoho et al., 1996) 

[24] as follows: 

   √       

  
       |             | 

      
 

Where, E(M)=        and M is the absolute vale of independent Gaussian 

random variable with zero mean and variance   
 . 

In order to get more details you can check the reference of (Luo and Zhang, 

2012) [43].  

 

 

Figure (3-2): diagram of wavelet shrinkage and own threshold values. 
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3.3   Model-up and Hazard rate function [7],[49] 

  In this thesis we will study the samples which are randomly right censoring 

data and follows the assumptions: 

 Lifetimes: let            be a non-negative i.i.d distributed with 

continuous cumulative (F) and density (f) functions.  

 Censoring times: let            be non-negative i.i.d distributed 

with continuous cumulative (G) and density (g) functions. 

 Independence includes both Lifetimes and Censoring times. 

Let                            be the survival times (observed times) 

with the indicator function          
 and 0 otherwise, so there is censoring 

for     observed time if     . 

 

Hazard function known as failure rate function and denoted by             ,  

     
    

      
 

Hazard rate function has a special form in the censored case with      

             as: 

                 

which usually defined as: 

     
     

(      ) 
 

    

(      )
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And as a direct result of above, we get: 

     
     (      )       (      )

(      ) (      )
  

Now, let that,  

                       

                

     (      ) (      ) 

Rewrite the hazard rate function with assuming that  

           (      )       (      ) 

And  

             

      and       be the density and survival functions, then: 

     
     

     
 (3-12) 

 

Before start estimating the hazard rate function, there are some details that 

are important to know. 

Assuming that                     and to make sure that all 

observed times    belong to [0,1], putting all observing in normalized form, 

such that  ̂  
 

 
    and { ̂        } be the ranked of  { ̂    }  
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The estimator is on the      , it‟s clear that      and               

 . Depending on what was mentioned above, suppose that       . 

 

3.4   Estimation of the hazard function 

  Our strategy to estimate Hazard function follows partially estimation, first 

estimate the probability density function denoted as( ̂    ) and then 

estimate survival function denoted as( ̂        ̂   ). 

 

3.4.1   Estimation of density function ( ̂    ) 

  In order to estimate ( ̂    ), The wavelet projection method previously 

referred to as (3-11). It will be followed by the creation of a hybrid between 

the wavelet and the Breslow estimate. 

 

 ̂     ∑〈      ̂      〉

    

   

 ̂       (3-13) 
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Based on equ. (3-13), need to find the coefficient〈      ̂       〉, so let first 

denoted it as   . Moreover, since      is unknown density function, for that 

use the cumulative functions (cdf) F and G to collect    . 

From the observed data                  , the joint distribution of       

is: 

           ∫ (      )      
 

  

      (3-14) 

 

           ∫            ∫           
 

 

 

  

 

           ∫            
 

  

    (      ) (3-15) 

 

Dependent on equations (3-14) and (3-15): 

           (       )       (       ) (3-16) 

 

As a result for equation (3-16):  

      
     

       
     

     (       )

       
 (3-17) 

 

From (3-17) it possible to express and formed    =〈             〉, as 

   ∫ *
     

       
     

     (       )

       
 +

 

 

  ̂             
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    ⟦
 ̂       

      
⟧   ⟦

(      )   ̂       

      
⟧ (3-18) 

 

Using the approach (         
 

 
∑                ) for           

         : 

      ∑
 ̂        

(       )

 

   

    ∑
                ̂        

(       )

 

   
 

(3-19) 

 

Now,  ( ̂   )        ̂     for           can be estimated using Breslow 

estimator for survival function as follows: 

 ̂( ̂   )  ∑
    

     

 

   

  
 (∑

    

     
   
   )

 (3-20) 

 ̂( ̂   )  ∑
      

     

 

   

  
 (∑

      

     
   
   )

 (3-21) 

   
       (   ̃( ̂   ))

(   ̃  ̂    )
 (3-22) 

 

Rewrite equation (3-19) as follows: 

      ∑   

 

   

  ̂ ̂  ( ̂ ) (3-23) 
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Finally, the estimate of density function  ̂     for chosen scale index (   ) 

can be formed as: 

 ̂     ∑   

    

   

 ̂   ( ̂   ) (3-24) 

 

3.4.2   Estimation of survival function ( ̂    )[10] 

  The strategy of finding and estimating the survival function ( ̂    ) which 

is depend on using the empirical cumulative function (Ecdf). The empirical 

distribution function has a lot of statistical applications especially in 

nonparametric studies such as survival and reliability analyses, resampling 

methods, nonparametric regression models, sequential testing, and many 

other applications. 

Mathematically, suppose that            for some integer index n, be 

random variables with unknown distribution function F. the empirical 

distribution function denoted as ( ̂   ) and define as follows: 

 ̂         ∑        

 

   

 (3-25) 

 

Where (       ) is known as the indicator function and defined as: 

        ,
           
           

 (3-26) 
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To be ensure that the empirical function and hence the survival function will 

be belong to the interval (0,1),  ̂    take the form: 

 ̂              ∑        

 

   

 (3-27) 

 

Now, the survival function defines as: 

 ̂        ̂    (3-28) 

Then: 

 ̂       .          ∑        

 

   

/ (3-29) 

 

Then finally, the hazard rate function defines as: 

 ̂    
 ̂    

 ̂    
 (3-30) 

 

3.5 Algorithm implementation of estimation hazard rate   

function 

This section introduces the algorithm implement of estimation the hazard 

rate function using wavelet. The algorithm presents a sequence steps with 

the order of finding the following: 

 Determinate the sample size (n). 

 The projection multiresolution space of index ( ). 
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 Father wavelet matrix. 

 Breslow estimator of   ̂( ̂   ) and  ̂( ̂   ). 

 The coefficient   . 

 The probability density function  ̂    . 

 The empirical survival function  ̂    . 

 The hazard rate function  ̂   . 

 

 Step 1 

Determinate the sample size (n) and normalized the data by divide all data 

samples by                    .  

 

 Step 2 

Collect the maximum value of the projection multiresolution space index  

          (    (      )) 

 

 Step 3 

Constriction the father wavelet matrix        
 for             , 

and          , as follows: 
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[
 
 
 
  ̂   ( ̂   )  ̂   ( ̂   )

 ̂   ( ̂   )  ̂   ( ̂   )
 

 ̂
      

( ̂   )

 ̂
      

( ̂   )

   
 ̂   ( ̂   )  ̂   ( ̂   )   ̂

      
( ̂   )]

 
 
 
 

 

 

 Step 4 

For           collect  ̂( ̂   ) and  ̂( ̂   ) using Breslow estimator, then 

find the following: 

 the vector matrices[      ̂( ̂   )]
   

 and [      ̂( ̂   )]
   

 

 

 ([      ̂( ̂   )]
   

 )
   

 

[
 
 
 
 
 

 

   ̂( ̂   )

 

   ̂( ̂   )

 
 

   ̂( ̂   )]
 
 
 
 
 

 

    (
 

   ̂( ̂   )

 

   ̂( ̂   )
      

 

   ̂( ̂   )) 

    [      ̂( ̂   )]
   

 

 

 

 Step 5 

This is collection of the coefficient   , but first must find the values of  

             using the values   and    from step (4): 

           [             (       [     ])] 
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Now for              find the coefficient   : 

           

 

 Step 6 

Compute the probability density function  ̂     for               

 ̂                  

 

 Step 7 

Compute the survival function  ̂    : 

 Construction lower triangular matrix      

 For           compute              

 For i         the survival function  computing as follows: 

 

 ̂                          

 

 Step 8 

Finally, for           compute the hazard rate function: 

 ̂    
 ̂    

 ̂    
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4.1   Introductions 

  The content that included in this chapter is the application which determine 

the quality and reliability of the proposed method. The application is divided 

into two parts, including the first part including the simulation techniques 

and the second part the real data application.  

 

4.2 Simulation study 

  Simulation is one of the most important techniques in statistics, it is 

provides the possibility of generating samples that can be studied and 

analyzed in case they are difficult to obtain from reality. The advantage of 

simulations, especially in the case of right randomly censoring data, is the 

knowledge of the actual values of X and C. In addition, it is possible to 

identify the approaches of the statistical functions (probability density 

function, the hazard rate function) which provide great potential for 

comparison between them and the estimators.  

It should be noted that the estimation process in simulation studies follows 

the experimental method, in the sense of clarity and more detailed, that there 

are some constraints to be taken into account. These constrains can be listed 

as follows: 

1. The samples size. 

2. The wavelet type. 

3. The number of vanishing points. 

4. The projection multiresolution space index. 
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In the simulation studies and because of the number of repetitions, the 

process of compatibility between the constraints takes a course of difficulty, 

so in order to reach a consensus between constraints as soon as possible, we 

have taken partial samples from the experiment so that the experiment is 

divided into four parts and then from each part we chose a set of samples for 

experimentation. According to all those reasons, the estimation of hazard 

rate function in simulations studies will be done with one type of wavelet.  

 

4.2.1   First simulation experiment  

  First simulation experiment is generated data that distributed as Gamma 

distribution for lifetimes        
  with two parameters, shape parameter equal 

to 5 and scale parameter equal to 1. The independent censoring times        
  

are generated using exponential distribution with one parameter equal to 6. 

The aim of choosing parameters with   ~G(5,1) and   ~EXP(6) is to have 

simulation data with 50% censoring. For data generation, n = 100, 200 were 

selected. The following algorithm steps showing how generating and 

preparing the database for n=100,200 using Gamma distribution (G(5,1)) 

and Exponential distribution (Exp(6)). 

 Step 1 

The first step is important since it determines the data size (n=100,200) and 

all next steps depend on it. 

 Step 2 

Generate random samples for the lifetime‟s data        
  use G(5,1) in 

Matlab 2018a programing with order (gamrnd(A,B)). 
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 Step 3 

Generate random samples The independent censoring times        
  use 

Exp(6) in Matlab 2018a programing with order (exprnd(mu)). 

 Step 4 

Finding indicator function for i=1,2,..n, where: 

   {
          

          
 

 Step 5 

Finding the failure times vectors Z, such that               for 

i=1,2,…,n. 

 Step 6 

Organizes the data-matrix as       matrix with   ‟s as first column and 

  ‟s as the second column for i=1,2,..n. 

 Step 7 

Applying the algorithm of finding the actual density function and hazard rate 

function which are defined in chapter three (section 3.2). 

 Step 8  

Finally, applying the data-matrix from the step 6 in algorithm that 

introduced in chapter three (section 3.4) to estimate the density function and 

hazard rate function. 
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4.2.1.1 Discussion and results of  First simulation 

experiment 

  Before reviewing the results it is important to review some important 

details that play a role in the estimation process. 

  The process of determining the wavelet resolution index     and the 

wavelet type is considered the basis of the estimation process of the hazard 

rate function by wavelets, and many have been trying to derive a general 

method for finding the appropriate wavelet resolution index      for any set 

of data, but the researcher's experience is the most important and decisive in 

this aspect.  

  New, to determine the maximum wavelet resolution index    , set   

               ), with using the experimentation process can determine 

the type of wavelet, wavelet resolution index    , and number of vanishing 

points as follows: the Daubecheis (db50) is the wavelet type with    . For 

comparing between the actual and estimation of hazard rate function, use the 

global error measurement with the form as follows: 

  

       ∑    ∑ (       ̂       )
 

 

   

 

   

 

Where R =200 is the number to repeat the experience. 

Table (4-1) showing the results of MSE for the first simulation experiment 

of size sample n=100,200, in figures (4-1) and (4-2) the red curves represent 

the wavelet estimation of hazard rate functions and the blue curves represent 

the actual hazard rate functions of data generating by Gamma distribution 
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and the independent censoring times generating by Exponential distribution 

for n=100,200. 

n MSE_Hazard 

100 0.273224908 

200 0.201609502 

Table (4-1): MSE of hazard rate function for first simulation experiment  

The table (4-1) showing that the MSE for the hazard rate estimation using 

wavelet (dN50 and    ) and MSE is minimized especially for n=200 and 

R=200.  

 

Figure (4-1): Estimation of hazard rate function of simulation experiment 

given in (4.2.1) with n=100. 
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Figure (4-2): Estimation of hazard rate function of simulation experiment 

given in (4.2.1) with n=200. 

 

  From figure (4-1) noting that the estimation of hazard rate functions are 

convergent to actual hazard rat functions when n=100, but in figure (4-2) 

noting that the estimation of hazard rate functions are more convergent to 

actual hazard rat functions when n=200. 

  Table (4-2) showing the results of MSE for the first simulation experiment 

of size sample n=100,200, in figures (4-3) and (4-4) the red curves represent 

the wavelet estimation of density functions and the blue curves represent the 

actual density functions of data generating by Gamma distribution and the 

independent censoring times generating by Exponential distribution for 

n=100,200. 
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n MSE_Density 

100 0.323315 

200 0.214655 

Table (4-2): MSE of density function for first simulation experiment 

 

The table (4-2) showing that the MSE of probability density function 

estimation using wavelet (dN50 and    ) and MSE is minimized 

especially for n=200 and R=200. 

 

Figure (4-3): Estimation of density function of simulation experiment given 

in (4.2.1) with n=100. 
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Figure (4-4): Estimation of density function of simulation experiment given 

in (4.2.1) of with n=200. 

From figure (4-3) noting that the estimation of probability density functions 

are convergent to actual probability density functions when n=100, but in 

figure (4-4) noting that the estimation of probability density functions are 

more convergent to actual probability density functions when n=200. 

 

4.2.2   Second simulation experiment 

  Second simulation data is generated using bimodal distribution for 

lifetimes       
 , such that                   where           

and            . The independent censoring times        
  are generated 

using exponential distribution with one parameter equal to 6. The aim of 

choosing parameters for both distributions is to have simulation data with an 

average 45% censoring. For data generation, n = 400, 600 were selected. 

The following algorithm steps showing how generating and preparing the 
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database for n=400,600 using bimodal distribution and Exponential 

distribution. 

 Step 1 

The first step is important since it is determined the data size (n=100,200) 

and all next steps dependent on it. 

 Step 2 

Generate random samples for the lifetime‟s data        
  with following 

Matlab 2018a programing: 

 First, generate a bimodal variable, which 40% of the time (on 

average) will be equal to 1, and 60% of the time (on average) will be 

equal to zero, with order:  

 (frac = rand(n,1) < 0.4;) 

 Generate the two normal distributions to sample from with orders 

norm1=5+randn(n,500);  

  norm2=3+0.5*randn(n,500);} 

 Generate lifetimes        
  with order : 

        X= frac.*norm1 + (1-frac).*norm2; 

 Step 3 

Generate random samples the independent censoring times        
  use 

Exp(6) in Matlab 2018a programing with order (exprnd(mu)). 

 

 Step 4 

Finding indicator function for i=1,2,..n, where: 
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   {
          

          
 

 Step 5 

Finding the failure times vectors Z, such that               for 

i=1,2,…,n. 

 Step 6 

Organizes the data-matrix as       matrix with   ‟s as first column and 

  ‟s as the second column for i=1,2,..n. 

 Step 7 

Applying the algorithm of finding the actual density function and hazard rate 

function which are defined in chapter three (section 3.2). 

 Step 8 

Finally, applying the data-matrix from the step 6 in algorithm that 

introduced in chapter three (section 3.4) to estimate the density function and 

hazard rate function. 

 

4.2.2.1 Discussion and results of  second simulation 

experiment 

  As mentioned earlier in the subsection (4.2.1.1), the process of determining 

the level and type of wavelet is considered the most important process in the 

estimation. In this subsection, the data generation process is considered more 

complex than the first one, because there are two normal distributions in the 

process of data generation (lifetimes) which also includes the weight (factor) 

controls the process of generating, so the previous process in finding the 
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level is not useful here, but it determines the upper limits and through 

experimentation we can determine the level required. So the resolution      

is choosing here and equal to (3). Furthermore, the wavelet type is choosing 

to be the Daubechies (dN20). 

Table (4-3) showing the results of MSE for the bimodal simulation 

experiment of size sample n=400,600 with repetition R=500, in figures (4-5) 

and (4-6) the red curves represent the wavelet estimation of hazard rate 

functions and the blue curves represent the actual hazard rate functions of 

data generating by bimodal distribution and the independent censoring times 

generating by Exponential distribution for n=400,600. 

 

n MSE_Hazard 

400 0.632627407 

600 0.541041413 

Table (4-3): MSE of hazard rate function for second simulation experiment 

The table (4-3) showing that the MSE for the hazard rate estimation using 

wavelet (dN20 and    ) and MSE is minimized especially for n=600, and 

R=500.  
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Figure (4-5): Estimation of hazard rate function of simulation experiment 

given in (4.2.2) with n=400. 

 

Figure (4-6): Estimation of hazard rate function of simulation experiment 

given in (4.2.2) with n=600. 
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  From figure (4-5) noting that the estimation of hazard rate functions are 

convergent to actual hazard rat functions when n=400, but in figure (4-6) 

noting that the estimation of hazard rate functions are more convergent to 

actual hazard rat functions when n=600. 

  Table (4-4) showing the results of MSE for the bimodal simulation 

experiment of size sample n=400,600 with repetition R=500, in figures (4-7) 

and (4-8) the red curves represent the wavelet estimation of density 

functions and the blue curves represent the actual density functions of data 

generating by bimodal distribution and the independent censoring times 

generating by Exponential distribution for n=400,600. 

 

n MSE_Density 

400 0.761276695 

600 0.710094605 

Table (4-4): MSE of density function for second simulation experiment 

 

Table (4-4) showing that the MSE of probability density function estimation 

using wavelet (dN20 and    ) and MSE is minimized especially for n=600 

and R=500. 
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Figure (4-7): Estimation of density function of simulation experiment given 

in (4.2.2) with n=400. 

 

Figure (4-8): Estimation of density function of simulation experiment given 

in (4.2.2) with n=600. 



Chapter four                                                                                                                                                          Applications  

74 
 

From figure (4-7) noting that the estimation of probability density functions 

are convergent to actual hazard rat functions when n=400, but in figure (4-8) 

noting that the estimation of hazard rate functions are more convergent to 

actual hazard rat functions when n=600. 

 

4.3    Real application data  

  This section will include three real applications to find the hazard rate 

function which are liver metastases data, nursing home data, and Stanford 

heart transplant data. Data were selected with different sample sizes for 

diversification to give options in terms of estimation. 

  As explained previously in Section (2.3), the estimation process is 

constrained by constraints that determine how to deal with the data in order 

to have the best compatibility between the constraints. Dealing with the real 

data in general is easier to deal with simulation data because it simply 

consists of one experiment (column), while simulation Because of 

repetitions consists of several experiments (columns). 

  For all this reasons here we can choose more than one type of wavelet in 

addition to choosing more than one value of the number of vanishing points 

for each type of wavelets. This provided an opportunity to make 

comparisons between the values of the estimates for each type of wavelet as 

well as the comparison between wavelet types. 
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4.3.1   Liver Metastases Data 

  The data is of 622 patients survival times suffering from liver metastases 

from a colorectal primary tumor collected by Haupt and Mansmann (1995). 

The survivals times of patients collected in months with 259 censored 

samples (41.62%). Moreover, the data is available in one of R program 

packages called locfit. We estimated the hazard function of the data using 

the wavelet method dependent on the wavelet level (Ĵ=3). Then the results 

were then compared with the results obtained from kernel smoothing 

estimation as shown in Figures (4-9), (4-10), and (4-11) for daubechies type 

with sizes of vanishing points (db30,db32, and db34), and figures (4-12), (4-

13), and (4-14) for coilet type of sizes of vanishing points (coif1, coif2, and 

coif3). The blue curve represents the wavelet estimation, the red curve is 

kernel smoothing estimation, and the green curve represents the square error 

between wavelet and kernel estimations. In order to add more information 

about the estimation method, the MSE was calculated and shown in table   

(4-5).  

The Square Error is formal is given as: 

   ( ̂          )
 
 

The Mean Square Error is given as:  

    
 

 
∑ ( ̂          )
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Wavelet type MSE 

db30 0.071486331 

db32 0.012129634 

db34 0.000693777 

coif1 0.000506636 

coif2 0.00610061 

coif3 0.00285396 

Table (4-5): MSE of kernel smoothing and wavelet estimations of hazard 

function for liver metastases data. 

The table (4-5) showing that the MSE for the types of  Daubechies wavelets 

are minimized especially for the type (db34) which equal to 0.000693777 

and for Coiflet wavelets are minimized especially for the type (coif1) which 

equal to 0.000506636. 
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Figure (4-9): db30_wavelet estimation (blue), kernel smoothing estimation 

(red), and square errors (green) of 622 liver metastases data. 
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Figure (4-10): db32_wavelet estimation (blue), kernel smoothing estimation 

(red), and square errors (green) of 622 liver metastases data. 
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Figure (4-11): db34_wavelet estimation (blue), kernel smoothing estimation 

(red), and square errors (green) of 622 liver metastases data. 
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Figure (4-12): coif1_wavelet estimation (blue), kernel smoothing estimation 

(red), and square errors (green) of 622 liver metastases data. 
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Figure (4-13): coif2_wavelet estimation (blue), kernel smoothing estimation 

(red), and square errors (green) of 622 liver metastases data. 
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Figure (4-14): coif3_wavelet estimation (blue), kernel smoothing estimation 

(red), and square errors (green) of 622 liver metastases data. 
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  In the first three figures (4-9), (4,10), and (4-11), the using of the 

Daubechies  wavelets showing the remarkable effect of the wavelet type in 

the estimation by observing the change in the estimation curves (blue 

curves) when the value of the vanishing points has changed, as well as the 

approximation of the estimation curve to kernel curve, which shows the 

effectiveness of the wavelets to obtain estimations as close as possible. 

  The last three figures (4-12), (4-13), and (4.14) of the using of Coiflet 

wavelets shows a slightly different approach from their predecessors due to a 

kind of oscillation in the values of the estimates which can be observed by 

the estimation curves (blue curves), oscillation can be observed more clearly 

in the square error curves (green curves), although the MSE appears to be of 

lower value when used the Coiflet wavelets.  

4.3.2   Nursing Home Data 

  For data application, the data named is nursing home data, which was first 

introduced by Morris, Norton, and Zhou (1994).  Data were collected for 

patients in a nursing home for the elderly between (1980-1982). The original 

study contains 1601 patients of home nursing and collected by the National 

Center for Health Services. For application using a subset of original data 

(n=214). 

  The approach with this data differs from its predecessor in terms of 

comparison where the kernel smoothing estimation method was used to 

estimate the hazard function. While, in wavelet estimation for hazard rate 

function, the type of wavelet was used is Daubechies with different seven 

sizes of vanishing points (db38,db40,db42,db44,db46,db48, and db50). 
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The following table (4-6) shows the Mean Square Error (MSE) for home 

nursing data between the kernel smoothing and wavelet estimation methods.  

The Square Error is formal is given as: 

   ( ̂          )
 
 

The Mean Square Error is given as:  

    
 

 
∑ ( ̂          )

 
 

   

 

Dbaubechies wavelets MSE 

db38 0.062838135 

db40 0.029342693 

db42 0.01081316 

db44 0.003186177 

db46 0.000739611 

db48 0.00012561 

db50 1.68099E-05 

Table (4-6): MSE of kernel smoothing and wavelet estimations of hazard 

function for nursing home data. 

The figures (4-15), (4-16), (4-17), (4-18), (4-19), (4-20), and (4-21) shows 

the curves or kernel smoothing estimation, wavelet estimation, and the 

square errors of nursing home data. Where the red curve represents the 

wavelet estimation, the blue curve represents the kernel smoothing 

estimation, and the green curve represents the square errors. 
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Figure (4-15): db38_wavelet estimation (blue), kernel smoothing estimation 

(red), and square errors (green) of 214 nursing home data. 
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Figure (4-16): db40_wavelet estimation (blue), kernel smoothing estimation 

(red), and square errors (green) of 214 nursing home data. 
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Figure (4-17): db42_wavelet estimation (blue), kernel smoothing estimation 

(red), and square errors (green) of 214 nursing home data. 
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Figure (4-18): db44_wavelet estimation (blue), kernel smoothing estimation 

(red), and square errors (green) of 214 nursing home data. 
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Figure (4-19): db46_wavelet estimation (blue), kernel smoothing estimation 

(red), and square errors (green) of 214 nursing home data. 
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Figure (4-20): db48_wavelet estimation (blue), kernel smoothing estimation 

(red), and square errors (green) of 214 nursing home data. 

 

 

 



Chapter four                                                                                                                                                          Applications  

91 
 

 

 

 

 

 

Figure (4-21): db50_wavelet estimation (blue), kernel smoothing estimation 

(red), and square errors (green) of 214 nursing home data. 
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  In this application, we try to show the change in the values of the estimates 

when using one type of wavelet with the possibility of a change in the 

number of vanishing points. This is an opportunity given by the lower 

sample size compared to the first application. The change in the number of 

vanishing points was serialized from 38 to 50, where the curve of the 

estimates showed an approach that takes approximation whenever the 

greater the level in the vanishing points, and all that was shown in figures (4-

15), (4-16), (4-17), (4-18), (4-19), (4-20), and (4-21). This is confirmed by 

the value of MSE where it was the lowest possible when used of (db50) and 

equal to 1.68099E-05. 

 

4.3.3   Stanford Heart Transplant data 

  For the application will use here real dataset called (Stanford Heart 

Transplant data), which he classifies them and analyzed (Crowley and Hu in 

1977). The study was conducted between 1970 and 1974 and provides a 

survival time for 103 patients who need heart transplants. During this study, 

67% (69 patients) received heart transfusion while the rest did not, at the end 

of the study in April 1974 73% (75 patients) died.  Data representation 

includes the survival time in days, which is the difference between the last 

time the patient was seen and the time he entered the study. The survival 

status (censored status) formed as alive=0 and died=1. For more details 

about data, you can find it in (http://lib.stat.cmu.edu/datasets/stanford). In 

order to determine the appropriateness of the proposed method for 

estimating the hazard function, we will compare here the proposed method 

http://lib.stat.cmu.edu/datasets/stanford
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with a classical estimation method, which is kernel smoothing estimation, in 

order to collect the hazard rate function. Moreover, using the Mean Square 

Error (MSE) to compare between values of the proposed method and the 

kernel smoothing estimation.  

The Square Error is formal given as: 

   ( ̂          )
 
 

The Mean Square Error is given as:  

    
 

 
∑ ( ̂          )

 
 

   

 

  As mentioned before, the method used to choose the wavelet type and the 

value of vanishing points is an experimental method and since one of the 

constraints to be taken into consideration in the use of wavelets is the size of 

the sample in an attempt to use the most number of wavelet types with a 

different number of vanishing points and this is provided by this application 

It is possible to use three types of wavelets 

  The wavelet method used to estimate the hazard rate function was 

performed using three types of wavelets (Daubechies, Coiflit, and Symmlet) 

to compare the results. Each type of wavelets used with three sizes of 

vanishing points, for Daubechies (db40, db42, and db44), for Coiflet (coif2, 

coif3, and coif4), and for Symmlet (symm6, symm8, and symm10). 

  The following table (4-7) showed the MSE‟s values to denote each user 

type of wavelets compared with kernel smoothing estimation. 
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Wavelet type MSE 

db40 0.000123733 

db42 7.45457E-06 

db44 7.18966E-07 

coif2 7.34425E-05 

coif3 1.66059E-06 

coif4 1.77922E-06 

symm6 1.53041E-05 

symm8 1.77525E-06 

symm10 1.77932E-06 

Table (4-7): MSE of kernel smoothing and wavelet estimations of hazard 

function for Stanford Heart Transplant data. 

  The figures (4-22), (4-23), (4-24) shows the curves of using daubechies, 

coiflet, and symmlet waveletes of smallest MSE values comparing to the 

kernel smoothing estimation, wavelet estimation, and the square errors of 

Stanford heart transplant data. Where the red curve represents the wavelet 

estimation, the blue curve represents the kernel smoothing estimation, and 

the green curve represents the square errors. 
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Figure (4-22): db44_wavelet estimation (blue), kernel smoothing estimation 

(red), and square errors (green) of 103 Stanford heart transplant data. 
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Figure (4-23): coif3_wavelet estimation (blue), kernel smoothing estimation 

(red), and square errors (green) of 103 Stanford heart transplant data. 
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Figure (4-24): symm8_wavelet estimation (blue), kernel smoothing 

estimation (red), and square errors (green) of 103 Stanford heart transplant 

data. 
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  In  figures (4-22), (4-23), and (4-24), can be noting that the results of the 

estimations take a kind of stability when using a wavelet (db44) compared to 

the results that come with the use of (coif3) and (symm8). In addition, this 

stability and convergence between the values of the estimates proved by the 

smaller values of the Mean Square Error which equal to:  
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5.1   Conclusion  

1. The main object of this thesis is to study the nonparametric 

estimation of the hazard rate function for randomly right censored 

data using linear wavelet estimation.  

2. The strategy to estimate hazard function follows partially 

estimation, at first estimate the probability density function denoted 

as( ̂    ) and then estimate survival function denoted as( ̂     

   ̂   ). 

3. In order to estimate ( ̂    ), The wavelet projection method 

previously referred in equation  (3-23) using the projection property 

of the father wavelet function {       }              on 

the subspace    of Lebesgue spaces      , followed by the creation 

of a hybrid between the wavelet and the Breslow estimate. 

4. The survival function ( ̂    ) found using the empirical 

distribution function formula. 

5. There are a set of constraints that control the estimation process 

which is the size of the sample, the wavelet type, the length of the 

wavelet, and the value of the resolution index     . 

6. Two types of applications were used, the first is the simulation 

study and the second is a real application. 

7. First simulation generated of n=100, 200 samples used Gamma 

distribution (G(5,1)) for lifetimes        
 , and Exponential 

distribution (Exp(6)) for censoring times        
 .  The type of 

wavelet was used in this simulation is Daubechies (db50).  
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8. Second simulation generated of n=400, 600 samples used bimodal 

distribution for lifetimes        
 , and Exponential distribution 

(Exp(6)) for censoring times        
 . The resolution index      is 

choosing here and equal to (2 and 3). Furthermore, the wavelet type 

is choosing to be the Daubechies (dN20). 

9. Three real applications used to study the estimation of hazard rate 

function which is liver metastases data, nursing home data, and 

stanford heart transplant data. Moreover, in real application for 

comparing with our method we used the nonparametric kernel 

smoothing estimation. 

10.  Because of the ease of dealing with real data, unlike the simulation 

data, the estimation process was done using three types of wavelets 

(Daubecheis, Coiflet, and Symmlet) with different wavelengths in 

order to know the effect of wavelets in the estimation process and 

make comparisons to reach the preferred result  

11. In order to compare and determine the effectiveness of the method 

used in the estimation we used the Mean Square Error (MSE). 

12. According to MSE results, in the simulation study we note that the 

sample size has an effect on the values of the results and the size of 

the larger sample gives the best results as we noted in tables (4-1) 

and (4-3), while the effect in the real data applications depends on 

the type of wavelet and wavelength in giving the best results as we 

noted in the tables (4-5), (4-6), and (4-7). 

13. Finally, we use Matlab (17b and 18a) to program the proposal 

method of estimation the hazard rate function. 

 



Chapter five                                                                                                               Conclusion and future studies 

112 
 

14. It is worth noting that the method used to reach to the best 

compatibility between the constraints (sample size, wavelet type, 

vanishing points, resolution index), which gives us an estimation 

results as best as possible, is an experimental method. 

 

 

5.2   Future studies 

1. Estimation the hazard rate function using non-linear wavelet 

estimation for randomly censored data. 

2. Study the nonparametric estimation of hazard rate function using 

wavelets for different types of censored data such as left, interval, 

type I, and type II. 

3. Hybrid between the wavelets estimation and the others 

nonparametric estimation such as Kaplan-Meier, Nalson-Aalen, and 

Kernel estimations. 

4. Designation of a new mathematical style or system that allows for 

the best compatibility between the constraints (sample size, wavelet 

type, vanishing points, resolution index), which makes the 

estimation results to be the best as possible as it could
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Estimation of hazard rate function using 

wavelet 

 

n=…;                         % samples size 

J=3;                         % default coarsest 

level 

tt=0;sd=0;sd1=0;sd2=0;sd3=0; 

%------father Wavelet function My_pHjk------- 

filter = MakeONFilterExt('symmlet',11);  % wavelet 

filters 

%filter = coifwavf('coif2'); 

%filter=symwavf('sym6'); 

%filter=dbwavf('db5'); 

%filter=symwavf('bior1.4'); 

  

y=x(:,1);                     % column of lifetimes 

observations   

d=x(:,2);            % column of censoring and 

uncensoring cases     

M=zeros(n,2^J);      % father wavelet function 

matrix 

for k = 0:(2^J-1) 

    for i = 1:n 

       M(i,k+1)=Phijk(y(i),J,k,filter,20);    

    end 

end  

% -------berslow_estimayor-----  

  

b=zeros(n,1);       

  

%--------estimation of G(Yi)------ 

for i1=1:n 

   for j=1:i1-1 

       b(j)=(1-d(j))/(n-j+1); 

        c(i1)=b(j);  

    end 

  end  



 

 

 for k1=1:n 

     sd=sd+c(k1); 

     u(k1)=sd; 

  for f=1:k1 

       a(f)=(1-d(f))/(n-f+1); 

  end 

   m(k1)=a(k1)*exp(-u(k1));  

   sd1=sd1+m(k1); 

   v(k1)=sd1; 

 end 

  

 %------ estimation of F(Yi)------ 

 for i6=1:n 

   for j1=1:i6-1 

       b1(j1)=(d(j1))/(n-j1+1); 

        c1(i6)=b1(j1);  

    end 

  end  

 for k2=1:n 

     sd2=sd2+c1(k2); 

     u1(k2)=sd2; 

  for f1=1:k2 

       a1(f1)=(d(f1))/(n-f1+1); 

  end 

   m1(k2)=a1(k2)*exp(-u1(k2));  

   sd3=sd3+m1(k2); 

   v1(k2)=sd3; 

 end 

 %------phij cofficient (Cjk)----- 

 for i2=1:n 

   A1(i2)=1/(1-v(i2)); 

   A2(i2)=1-v1(i2); 

    

 end 

  A3=(A1)*(diag(A2)*diag(1-d)); 

A=(1/n)*(A1-A3); 

A; 

for i3=1:2^J 

    cjk(i3)=(A)*(M(:,i3)); 

end 



 

 

cjk; 

  

%---------density function estimator------ 

for i4=1:2^J 

    f2(:,i4)=cjk(i4)*M(:,i4);     

end 

f2; 

for j2=1:2^J 

    tt=tt+f2(:,j2); 

end 

ff=(tt); 

ff; 

% ------ empirical estimation of S(Yi)-----  

R=ones(n); 

F=tril(R); 

for r=1:n 

    Q(r)=1-((1/(n+1))*sum(F(1:n,r))); 

End 

 

%--------hazard estimator----- 

for i5=1:n 

FF(i5)=ff(i5)/Q(i5); 

end 

F1=abs(FF'); 

 

%-------------------------------------------------- 

 

Gamma simulation random samples 

 

m=…;                %---number of Repetitions---  

n=…;                %---size of samples -------- 

% ------generates random samples from the gamma 

distribution with shape parameters =5 and scale 

parameters =1%------ 

x=gamrnd(5,1,[n m]); 

%-----generates random samples from the exponential 

distribution with mean parameter =6%-------   

c=exprnd(6,[n m]); 

 for j=1:m 

        for i=1:n 



 

 

          if x(i,j)<=c(i,j) 

              d(i,j)=1; 

          else 

              d(i,j)=0; 

          end 

          y(i,j)=min(x(i,j),c(i,j)); 

        end 

 end 

%-------------------------------------------------- 

 

 Hazard rate function for Gamma distribution 

 

n=…;                 %----size of samples -------- 

m=…;                 %----number of Repetitions--- 

for j=1:m 

    for i=1:n 

den(i,j)=((pdf('gamma',yy(i,j),5,1))*(1cdf('exponen

tial',yy(i,j),6)))+((pdf('exponential',yy(i,j),6))*

(1-cdf('gamma',yy(i,j),5,1))); 

sur(i,j)=((1cdf('gamma',yy(i,j),5,1)))*(1cdf('expon

ential',yy(i,j),6));     

    end 

end 

for jj=1:m 

    for ii=1:n 

         haz(ii,jj)=den(ii,jj)/sur(ii,jj); 

    end 

end 

%-------------------------------------------------- 

 

Bimodal simulation random samples 

 

% The number of random samples to generate 

N =…; 

%---number of Repetitions--- 

M=…; 

% First, generate a binomial variable, which 40% of 

the time (on average) will be equal to 1, 

% and 60% of the time (on average) will be equal to 

zero. 



 

 

frac = rand(N,1) < 0.4; 

% Generate the two normal distributions to sample 

from 

norm1 = 5 + randn(N,M); 

norm2 = 3 + 0.5*randn(N,M); 

% If "frac" is equal to 1, then the choice will be 

from the first normal. 

% If "frac" is equal to 0, then the choice will be 

from the second normal. 

d = frac.*norm1 + (1-frac).*norm2; 

% Plot the resulting distribution 

figure 

histogram(d) 

c=exprnd(6,[N,M]); 

%-------------------------------------------------- 

 

Hazard rate function for bimodal 

distribution 

 

alpha=0.4;            %----weight factor----------- 

n=…;                  %----size of samples -------- 

m=…;                  %----number of Repetitions--- 

for k=1:m 

    for t=1:n 

density(t,k)=(alpha*(pdf('normal',yy(t,k),5,1)))+((

1-alpha)*(pdf('normal',yy(t,k),3,0.5))); 

Cdf(t,k)=(alpha*(cdf('normal',yy(t,k),5,1)))+((1-

alpha)*(cdf('normal',yy(t,k),3,0.5))); 

hazard(t,k)=density(t,k)/(1-Cdf(t,k)); 

    end 

end 

%for j=1:m 

   % for i=1:n 

for j=1:m 

    for i=1:n 

den(i,j)=((density(i,j))*((1-

cdf('exponential',yy(i,j),6))))  

+((pdf('exponential',yy(i,j),6))*(1-Cdf(i,j))); 

sur(i,j)=(1-Cdf(i,j))*(1-

cdf('exponential',yy(i,j),6)); 



 

 

haz(i,j)=den(i,j)/sur(i,j); 

    end 

end 

%-------------------------------------------------- 

 

Indicator function 
 

n=…;                  %----size of samples -------- 

m=…;                  %----number of Repetitions---  

for j=1:m 

    for i=1:n 

        y(i,j)=min(x(i,j),c(i,j)); 

    end 

end 

for j1=1:m 

for i1=1:n 

if x(i1,j1)<=c(i1,j1) 

d(i1,j1)=1; 

else d(i1,j1)=0; 

    end 

  end 

end 

%-------------------------------------------------- 

 

Father wavelet function (Phijk) 

 

“function yy = Phijk(z, j, k, filter, n)” 

%--------------------------------------------------

-------- 

“%  yy=Phijk(z, j, k, filter, n)” 

“%  Evaluation of the scaling function” 

“corresponding to an Orthogonal”  

“%  inputs:  z -- the argument” 

“%           j – scale” 

“%           k – shift” 

“%           filter -- ON finite wavelet filter, 

might be an” 

“%                     output of WaveLab's:” 

“MakeONFilter” 



 

 

“%           n -- precision of approximation” 

“maesured by the       number (n=20)” 

“%  output:  yy -- value of father wavelet (j,k) 

coresponding to” 

“%                  'filter' at z.” 

%-------------------------------------------------- 

    “if (nargin == 4)”  

        n=20; 

    end 

    “daun=length(filter)/2;” 

    “N=length(filter)-1;” 

    “x=(2^j)*z-k;” 

    “if(x<=0||x>=N) yy=0;” 

else 

    “int=floor(x);” 

    “dec=x-int;” 

    “dy=dec2bin(dec,n);” 

    “t0=t0(filter);” 

    “t1=t1(filter);” 

    “prod=eye(N);” 

    “for i=1:n” 

            “if dy(i)==1 prod=prod*t1;” 

            “else prod=prod*t0;” 

            end 

    end 

    “y=2^(j/2)*prod;” 

      “yyy = mean(y');” 

      “yy = yyy(int+1);" 

     end 

         

  %----------functions ---------- 

“function a = dec2bin(x,n)” 

            a=[]; 

             for i = 1:n 

             “if(x <= 0.5) a=[a 0]; x=2*x;” 

              “else a=[a 1]; x=2*x-1;” 

             end 

            end 

 %----------- 

 “function t0 = t0(filter)” 



 

 

% 

“n = length(filter);” 

“nn = n - 1;” 

“t0 = zeros(nn);” 

“for i = 1:nn” 

    “for j= 1:nn” 

        “if (2*i - j > 0 & 2*i - j <= n)”  

           “t0(i,j) = sqrt(2) * filter( 2*i - j );”  

        end 

    end 

end 

%------------------ 

“function t1 = t1(filter)” 

“n = length(filter);” 

“nn = n - 1;” 

“t1 = zeros(nn);” 

“for i = 1:nn” 

    “for j= 1:nn” 

        “if (2*i -j+1 > 0 & 2*i - j+1 <= n)”  

         “t1(i,j) = sqrt(2) * filter( 2*i - j+1 );”  

        end 

    end 

end 

%-------------------------------------------------- 

 

Wavelet filters 

 

“function f = MakeONFilterExt(Type,Par)” 

%----------------------------------------------------% 

“if strncmpi(Type,'Haar',2),” 

 f = [1 1]; 

end 

 

“if strncmpi(Type,'Beylkin',2),” 

 “f = [ .099305765374, .424215360813, .699825214057

 ... 

   .449718251149, -.110927598348, -.264497231446

 ... 

   .026900308804, .155538731877, -.017520746267

 ... 

   -.088543630623, .019679866044, .042916387274

 ... 

   -.017460408696, -.014365807969, .010040411845

 ... 



 

 

   .001484234782, -.002736031626, .000640485329

 ];” 

end 

 

“if strncmpi(Type,'Coiflet',3),” 

 if Par==1, 

  “f = [ .038580777748 -.126969125396 -

.077161555496 ... 

    .607491641386 .745687558934

 .226584265197 ];” 

 end 

     

    “if Par==2, 

    f = [   0.016387336463203640427491273259,    -

0.041464936786871774009717085107,... 

            -0.06737255472372559380457322478,    

0.38611006682276285041905816429, ... 

            0.8127236354494134953442245286,      

0.4170051844232390480477852360, ... 

            -0.07648859907828075427761388352,    -

0.05943441864643108730683975853, ... 

            0.023680171946847768805923800248,    

0.005611434819368834245631844722, ... 

            -0.0018232088709110320946081317474,  -

0.0007205494455203469950740392992  ];” 

    end 

     

 “if Par==3,” 

 “f = [ -0.00379351286438080167548512785,     

0.00778259642567274575655572678, ... 

            0.0234526961420771662427503659,       -

0.0657719112814693671835016013, ... 

            -0.0611233900029725412769257018,      

0.405176902409118199272476181, ... 

            0.793777222626087174791808049,        

0.428483476377369981014779057, ... 

            -0.071799821619154834013236764,       -

0.0823019271062998184866387774, ... 

            0.0345550275732977330127285765,       

0.0158805448636694509418667488, ... 

            -0.00900797613673062389869059132,     -

0.00257451768813679701027860332,...  

            0.001117518770830630223506747086,     

0.000466216959820402869469087739, ... 

            -0.0000709833025063790056111913832,   -

0.0000345997731972727738834567238    ];”  

 end 

 “if Par==4, 

 “f = [ 0.0008923139025370029644343566865134121737383, ... 

            -0.0016294924252267858123213544087120913158161, ... 

            -0.007346167936268049768871523349607132118705,... 

            0.01606894713157502651287763071920848497, ... 

            0.02668230466960483260703486399047107194, ... 

            -0.08126671024919372334475952281575884847,... 

            -0.05607731960356925565970517606545448541,... 

            0.4153084270006822731294692964046182739,... 

            0.78223893442428258982647576237494028015, ... 



 

 

            0.43438603311435654244291809279435858752, ... 

            -0.06662747236681715660425633300924304564,... 

            -0.09622042453595263696014466746929391735,... 

            0.03933442260558914633132668418129075104, ... 

            0.02508225333794960681821191769918797238, ... 

            -0.01521172818769721159723577657069625373, ... 

            -0.0056582838001308837068552084504470416875092,... 

            0.003751434697146086349179148345354230545201, ... 

            0.0012665610789256602060212989509419260626456, ... 

            -0.000589020224633216477985278808337632907002, ... 

            -0.0002599743371222568031968013258330909296978, ... 

            0.0000623388543127871811259366755429554393222, ... 

            0.0000312298615991952653049475548892070819932, ... 

            -3.259647940030750678302345930717926596838865*10^-6, ... 

            -1.78499091449334668126754831733930940802101*10^-6 ];” 

 end 

 “if Par==5,” 

    “f = [   -0.0002120818620674939996481902944136410414047, ... 

            0.0003585777411617576912682212568176855692809, ... 

            0.0021782943778456947603953983474818156341871, ... 

            -0.00415931262757863965550073295937883585, ... 

            -0.01013158484690027491468212287890872587, ... 

            0.02340832211892778307799159801168871895, ... 

            0.02816974427053235189367516327102039599, ... 

            -0.09192158806008608329572694314371482072, ... 

            -0.05204667025355475665111819740782967482, ... 

            0.42157126673075435177306894142751870946, ... 

            0.77429362286032745160292654060366328807, ... 

            0.43798230665916331792682237681050656764, ... 

            -0.06203775157498195089253405688027513479, ... 

            -0.10556315130733722646960604243367891954, ... 

            0.04128753047211783146902068483243193175, ... 

            0.03267479946705735095365614221278235227, ... 

            -0.01975839160096546513890474068990811885, ... 

            -0.00915950733867616299494402122283339758, ... 

            0.00676152022062041680244768896723500979, ... 

            0.00243157544253828849057946143095553203, ... 

            -0.00166162730392987877456474532860529682, ... 

            -0.0006375589261258811091711893522661460267423, ... 

            0.0003018579416682447498632500676391103210754, ... 

            0.0001403563281237324269902880098227066632525, ... 

            -0.0000412198619242655021970132036154651202458, ... 

            -0.0000212702216725156138191910478670808515531, ... 

            3.7007277113394795164497963176580918909*10^-6, ... 

            2.061220398578878156703380849619661817616506*10^-6, ... 

            -1.623799517204833517470973891374972010523*10^-7, ... 

            -9.6040101127678921250276359452964329236689*10^-8     ];” 

 end   

     

    “if Par==6,” 

    “f = [   0.0000507754878363405645519850534163840843165, ... 

            -0.0000811700262678483995046181490233613985991, ... 

            -0.0006246130439256835305179694992775427, ... 

            0.00109162471232590294442838718434499367, ... 

            0.00353901987154099797676760943833152463, ... 

            -0.0070294063910027282793426873312339407, ... 

            -0.0122315777900379124123273915243790564, ... 



 

 

            0.0296457728913238384799204963927926239, ... 

            0.02878611434666556772409353364797199855, ... 

            -0.09967300204601174242984746022593529319, ... 

            -0.04876407217567387113947461609898074377, ... 

            0.42581954501283846862581982539011507381, ... 

            0.76840325757989240980175151406668436853, ... 

            0.44040119112685278573807906593541182503, ... 

            -0.05810891797261479980792242839864804553, ... 

            -0.11226080796481722835521943382584647799, ... 

            0.04185249067613626961123692570448481718, ... 

            88132625151075695394346028782838898, ... 

            -0.02295015327984906593564514384952096935, ... 

            -0.01265006790873235128443679361740086299, ... 

            0.0095910901759040523779620252393710208, ... 

            0.0038576582705936865436976506707985877, ... 

            -0.00307393950720855902712037718563727489, ... 

            -0.00115743501342733471307799963492014289, ... 

            0.00076985473075072663977499623866755922, ... 

            0.00032522235901024078543874829743760233, ... 

            -0.0001545771992797995031124549459146267672004, ... 

            -0.0000752800430693596467873933651612964301517, ... 

            0.0000247365593287232279603704234893930555683, ... 

            0.0000131398513540214409493534116753473623518, ... 

            -2.9243855597575228935454275531139308156*10^-6, ... 

            -1.6596192951024207899178040891830917997*10^-6, ... 

            2.2559978528161819589808604991860492120455*10^-7, ... 

            1.35032449935614466786292988820562494224512*10^-7, ... 

            -8.48714339626243656886371228346090530144*10^-9, ... 

            -5.309088417196893107804939769143263956288*10^-9     ];” 

    end 

 

    “if Par==7,” 

    “f = [   -0.0000122222506240657722515671975289535857529, ... 

            0.0000187113550014121788669954534985164043626, ... 

            0.00017510216778483177090611162179579673, ... 

            -0.00028720237535706120447042471464670833, ... 

            -0.00116931442857976331460374091300655394, ... 

            0.00210577204141054775881535169988563035, ... 

            0.00482944656070203826696178626298526452, ... 

            -0.00993889526908057960572882007938886914, ... 

            -0.01380255423628839963367753293728221376, ... 

            0.03491050510474272385481698744097843335, ... 

            0.028937041983523145219795493887430926, ... 

            -0.105556168221561286439976038553264, ... 

            -0.046033397038466299456031132666155, ... 

            0.428888807249422575091962148625108, ... 

            0.763815365416733324438841273059202, ... 

            0.442137461401842576513194010237757, ... 

            -0.054751241648150457251886153404776, ... 

            -0.11729357104319278932816154494452, ... 

            0.041705357602576791714703721102373, ... 

            0.043993046163079415501169643274255, ... 

            -0.025154257568539024269946527565349, ... 

            -0.01594684681956793914268132891215748334, ... 

            0.01205233824184162260808679717618820937, ... 

            0.00543131644288009511292299727400037979, ... 

            -0.00461784213043311846868060141284295354, ... 



 

 

            -0.00180153728333304248757700982439011759, ... 

            0.00143474185665241227759908616270387381, ... 

            0.00057949944823409528234503848853150457, ... 

            -0.00036906682873489535803766645994529048, ... 

            -0.00016781721215484972023899538482096261, ... 

            0.00007971050025993866031131537354202557,... 

            0.00004043048241714020221822226691074551, ... 

            -0.0000142356369784515012815941734288435861855, ... 

            -7.7712435473118614835496973116889804922*10^-6, ... 

            2.0020780498554181311877559696846812794*10^-6, ... 

            1.1579769069489572558429154565596032359*10^-6, ... 

            -2.069320524393852523963248525127217416*10^-7, ... 

            -1.2550913190794570507641433432157*10^-7, ... 

            1.3935103885216451572958098811601798785366*10^-8, ... 

            8.796593384856986494818762397984045253733*10^-9, ... 

            -4.57833406779295070172598474467844779766*10^-10,... 

            -2.990566231736865818869246704034628*10^-10   ];” 

    end 

     

 “if Par==8,” 

    “f = [   2.9543365214148866341203791795460856498*10^-6, ... 

            -4.3682648203200749764069604318588208253*10^-6, ... 

            -0.00004829631521409294057518294825489293, ... 

            0.0000754736783816503960229241373762259,... 

            0.00037129499560741243768356918203220247, ... 

            -0.000623560447457940255198422634539581, ... 

            -0.0017832600085971970719359953695042521, ... 

            0.00330082501061611042248776517113013568, ... 

            0.00599484919215588549270790383484069611, ... 

            -0.012742370632719795227140215081485, ... 

            -0.014978462081708433651627145924743, ... 

            0.039372037877979845479596171012811, ... 

            0.0288286217592880052319436606959, ... 

            -0.110169976983470152889118086934849, ... 

            -0.043718983365945585858147809196713, ... 

            0.431209815555087578822264464482984, ... 

            0.760113302017940493745162524428594, ... 

            0.443442549841526025692112583885702, ... 

            -0.051860743161188676553989081315791, ... 

            -0.121211168231496469284998600458647, ... 

            0.041185806676256539334644934268549, ... 

            0.048252371085682255135905588083649, ... 

            -0.026656710542648603662636753258155,... 

            -0.018985244695254866708424157255454, ... 

            0.014117470077618781611698797024736, ... 

            0.007065827011035095989298841611896, ... 

            -0.006156659548258420573069188973804, ... 

            -0.00254400371024527345236589153040776921, ... 

            0.00223564942204810318055673180460398378, ... 

            0.00089677606307967974957481016931868077, ... 

            -0.00068717164334800449242695373185778567, ... 

            -0.00029777893219563999563276515831158818, ... 

            0.00018169287648431022077202247294296659, ... 

            0.00008754452091843061802876156718818633, ... 

            -0.00004147478606916181410858912360731484, ... 

            -0.0000218020007670103510682515219710687, ... 

            8.03150299544078598193257904121228*10^-6, ... 



 

 

            4.4969364435793914273785796464354612539*10^-6, ... 

            -1.2754542996407563978284360515425311001*10^-6, ... 

            -7.515021558886325576948331510944306958*10^-7, ... 

            1.589351722153064827424614721183710204*10^-7, ... 

            9.77241850836779841772791655334636543*10^-8, ... 

            -1.45400085337535265756124266441*10^-8, ... 

            -9.27120559154629669404888252582*10^-9, ... 

            8.66999508233871095247749588290123221829*10^-10, ... 

            5.70481033390973565849135525930314738442*10^-10, ... 

            -2.52542349388545683771492079914226*10^-11, ... 

            -1.70798959470554833493549816182562*10^-11  ];” 

    end 

    “if Par==9,” 

    f = [   -7.16492043124788565371403735975293033*10^-7, ... 

            1.0293200668945786770405655113884578169*10^-6, ... 

            0.000013158885645425329074979104138, ... 

            -0.00001978720443246248037040643941679284, ... 

            -0.00011443395278590282934418618091927519, ... 

            0.00018228485966342260297101418742753238, ... 

            0.00062647303213971596119107011420463634, ... 

            -0.00107545827274123797178950374028066576, ... 

            -0.002421241673651648413361568634198, ... 

            0.004597056424920538374827274829998, ... 

            0.007022340460196237076042911551157, ... 

            -0.015376649629718763882304372940094, ... 

            -0.015860223894792907821940082437559, ... 

            0.043181727608250448896169058852939, ... 

            0.028572667556949285468700689166121, ... 

            -0.11388350819004508033470728829253, ... 

            -0.04172611020585279692877750305357, ... 

            0.433026751103154194437395990290928, ... 

            0.757045523384378918975393007517394, ... 

            0.444457893176447943769221898235793, ... 

            -0.049348866293629167579705877288589, ... 

            -0.124345589539290622348246574254961, ... 

            0.040473767455728960140784447715682, ... 

            0.051844615686247315779705446014627, ... 

            -0.027661239498680462969772984800219, ... 

            -0.021754553510948844842224556518026, ... 

            0.015818715815925058996552193553275, ... 

            0.00870275744622918259271751762546, ... 

            -0.007614042448258917034725577898924, ... 

            -0.00335767452658657858715596317976, ... 

            0.003113227788384303748628662551515, ... 

            0.001269690925135339902432735868585, ... 

            -0.001095745627952606905597323576061, ... 

            -0.000462729085505304259448585243503, ... 

            0.00033691386928482709390080467507365391, ... 

            0.00015541352126673885121571732427354289, ... 

            -0.0000913559550874647589464752293334731, ... 

            -0.00004613708198462493130010596723498088, ... 

            0.00002177639641002902622301367776630784, ... 

            0.00001181440945157869423274009466836094, ... 

            -4.48811147515276409894428352856613*10^-6, ... 

            -2.5723835744866872047576035075266140512*10^-6, ... 

            7.802480329370884277020245409489075814*10^-7, ... 

            4.67958476945429845632280519885662523*10^-7, ... 



 

 

            -1.109667018087942287625120969747463337*10^-7, ... 

            -6.91654704121803749849331616866102242*10^-8, ... 

            1.23752566198101243190950477343359362*10^-8, ... 

            7.9740058868468296718526928424325241*10^-9, ... 

            -1.0136275688170465755191268077623618*10^-9, ... 

            -6.723464414885983563896598608983936*10^-10, ... 

            5.417100964283037831066085959289093026*10^-11, ... 

            3.6861797364451787327421599467079620161*10^-11, ... 

            -1.416273550918584069801563786746191819*10^-12, ... 

            -9.85843726123707759474964697066431047*10^-13    ];” 

    end 

end 

 

“if strncmpi(Type,'Daubechies',3),” 

    “if Par==2,” 

        “f = [ 0.707106781186547524400844362104849, 

0.707106781186547524400844362104849 ]; 

    end 

 “if Par==4,   

  “f = [ 0.4829629131445341433748716, 

0.836516303737807905575294, ... 

                0.224143868042013381025973, -

0.1294095225512603811744494  ]; 

 end 

 if Par==6,  

  f = [ 0.332670552950082615998512,  

0.806891509311092576494494, ... 

                0.459877502118491570095152, -

0.135011020010254588696390, ... 

               -0.085441273882026661692819,  

0.0352262918857095366027407  ];” 

 end 

 “if Par==8,” 

  “f = [  0.2303778133088965,     0.7148465705529158, ... 

                0.630880767929859,     -0.02798376941686011, ... 

               -0.1870348117190932,     0.0308413818355608, ... 

                0.03288301166688522,   -0.01059740178506904  ];” 

 end 

 “if Par==10,” 

  “f = [ 0.1601023979741924,     0.6038292697971881, ... 

                0.7243085284377715,     0.1384281459013217, ... 

               -0.2422948870663802,    -0.03224486958463778, ... 

                0.07757149384004565,   -0.006241490212798174, ... 

               -0.01258075199908194,    0.003335725285473757  ];” 

 end 

 “if Par==12, 

  f = [ 0.11154074335011,       0.4946238903984554, ... 

                0.7511339080210982,     0.315250351709197, ... 

               -0.2262646939654429,    -0.1297668675672638,... 

                0.0975016055873231,     0.02752286553030565, ... 

               -0.03158203931748625,    0.0005538422011615105, ... 

                0.004777257510945544,  -0.001077301085308486  ];” 

 end 

 “if Par==14,” 

  “f = [ 0.07785205408500813,    0.3965393194819123, ... 

                0.7291320908462274,     0.4697822874051917, ... 

               -0.1439060039285563,    -0.2240361849938672, ... 



 

 

                0.07130921926683042,    0.080612609151082, ... 

               -02993693501439,   -0.016574541630667, ... 

                0.01255099855609955,    0.0004295779729213739, ... 

               -0.001801640704047446,   0.0003537137999745171  

 ];” 

 end 

 “if Par==16,” 

 “f = [ 0.05441584224310704,    0.3128715909143165,  ... 

                0.6756307362973218,     0.5853546836542239, ... 

               -0.01582910525637238,   -0.2840155429615815, ... 

                0.0004724845739030209,  0.1287474266204823, ... 

               -0.01736930100181088,   -0.04408825393079791, ... 

                0.01398102791739956,    0.00874609404740648, ... 

               -0.004870352993451852,  -0.000391740373376942, ... 

                0.0006754494064506183, -0.0001174767841247786  

 ];” 

 end 

 “if Par==18,” 

  “f = [ 07794736388813,        0.2438346746126514, ... 

                0.6048231236902548,         0.6572880780514298, ... 

                0.1331973858249681,        -0.2932737832793372, ... 

               -0.0968407832230689,         0.148540749338104, ... 

                0.03072568147931585,       -0.06763282906135907, ... 

                0.0002509471148277948,      0.02236166212368439, ... 

               -0.004723204757752752,      -0.004281503682464633, ... 

                0.001847646883056686,       0.0002303857635232296, ... 

               -0.0002519631889427889,      0.00003934732031628112 

 ];” 

 end 

 “if Par==20,” 

 “f = [ 0.02667005790054869,        0.188176800077648, ... 

                0.527201188931628,          0.6884590394535462, ... 

                0.2811723436606982,        -0.2498464243271048, ... 

               -0.1959462743773243,         0.127369340335694, ... 

                0.0930573646035142,        -0.07139414716638016, ... 

               -0.0294575368218849,         0.03321267405931551, ... 

                0.003606553566951515,      -0.0107331754833277, ... 

                0.001395351747051327,       0.001992405295184184, ... 

               -0.0006858566949593225,     -0.0001164668551292262, ... 

                0.0000935886703200315,     -0.00001326420289451403  

 ];” 

 end 

    “if Par==22,” 

       “f = [    0.01869429776144806,        0.1440670211504498, ... 

                0.4498997643555165,         0.6856867749154562, ... 

                0.4119643689476272,        -0.1622752450269621, ... 

               -0.2742308468172826,         0.06604358819685894, ... 

                0.1498120124663909,        -0.04647995511648684, ... 

               -0.06643878569486228,        0.03133509021904213, ... 

                0.02084090436017028,       -0.01536482090617611, ... 

               -0.003340858873009247,       0.0049284176560525, ... 

               -0.0003085928588149355,     -0.00089302325066525, ... 

                0.0002491525235524301,      0.00005443907469928305, ... 

               -0.00003463498418694142,     0.000004494274277230458   

];” 

    end 

        “if Par==24, 



 

 

       “f = [    0.01311225795736534,        0.1095662728222715, ... 

                0.3773551352176745,         0.657198722584349, ... 

                0.5158864784293156,        -0.04476388565908393, ... 

               -0.3161784537592869,        -0.02377925725693821, ... 

                0.1824786059298069,         0.00535956967427179, ... 

               -0.0964321200976865,         0.0108491302560784, ... 

                0.04154627749559747,       -0.01221864906995923, ... 

               -0.01284082519846823,        0.00671149900888981, ... 

                0.002248607241020708,      -0.002179503618657147, ... 

                0.000006545128213682533,    0.0003886530628261407, ... 

               -0.0000885041092094801,     -0.00002424154575734139, ... 

                0.00001277695221955214,    -0.000001529071758089919   

];” 

    end 

        “if Par==26,” 

       “f = [    0.00920213353936357,        0.082861243876398, ... 

                0.3119963221728867,         0.6110558511805082, ... 

                0.5888895704451372,         0.0869857261666496, ... 

               -0.314972907739053,         -0.124576730762086, ... 

                0.1794760794355785,         0.07294893365742099, ... 

               -0.1058076181950538,        -0.02648840647689916, ... 

                0.05613947710301562,        0.002379972253836755, ... 

               -0.02383142071161908,        0.003923941449079961, ... 

                0.007255589402002825,      -0.002761911234808676, ... 

               -0.001315673911943637,       0.000932326130928484, ... 

                0.00004925152513188404,    -0.0001651289885636495, ... 

                0.00003067853758174376,     0.00001044193057207212, ... 

               -0.000004700416479607929 ,   0.0000005220035098765021    

];” 

    end 

        “if Par==28, 

       f = [    0.006461153459818989,       0.0623647588469322, ...  

                0.2548502677833766,         0.5543056179241174, ... 

                0.6311878490950694,         0.2186706877760189, ... 

                -0.2716885522429336,        -0.2180335299738394, ... 

                0.138395213856541,          0.1399890165735457, ... 

                -0.0867484115685856,        -0.07154895550625034, ... 

                0.05523712625188016,        0.02698140830446938, ... 

                -0.0301853515397028,        -0.005615049530747707, ... 

                0.01278949326524909,        -0.000746218989436958, ... 

                -0.003849638867994312,      0.001061691085418039, ... 

                0.0007080211541344865,      -0.0003868319473184179, ... 

                -0.00004177724577935138,    0.00006875504251988474, ... 

                -0.00001033720918460207,    -0.000004389704901652653, 

... 

                0.000001724994675254821,    -0.000000178713996820958      

];” 

    end 

        “if Par==30,” 

       “f = [    0.004538537356680069,       0.0467433948433292, ... 

                0.2060238637760462,         0.4926317712332494, ... 

                0.6458131398235114,         0.339002535383428, ... 

                -0.19320413905893,          -0.2888825960016258,  ... 

                0.06528295291444258,        0.1901467139017971,  ... 

                -0.03966617641454303,       -0.1111209358626346, ... 

                0.03387714389352461,        0.05478055052762776, ... 

                -0.0257670072911817,        -0.02081005014572826,  ... 



 

 

                0.01508391800773139,        0.005101000354434229, ... 

                -0.006487734552531616,      -0.0002417564910950625,  

... 

                0.001943323977748212,       -0.0003734823537271217,  

... 

                -0.0003595652439869339,     0.0001558964896924794,  ... 

                0.00002579269911910246,     -0.00002813329623232866,  

... 

                0.000003362987176654478,    0.000001811270405641324, 

... 

                -0.0000006316882317817563,  0.00000006133359905269254     

];” 

    end 

 

         “if Par==32,” 

       “f = [    0.003189220905181802,       0.0349077141074775,  ... 

                0.1650642824989111,         0.4303127204089899,  ... 

                0.6373563289234388,         0.4402902557886062, ... 

                -0.0897510867287953,        -0.3270633068118058,  ... 

                -0.02791820715372535,       0.2111906930487478,  ... 

                0.02734026408611786,        -0.1323883043443139, ... 

                -0.00623972263724492,       0.07592423555847598,  ... 

                -0.00758897425298305,       -0.03688839741760147,  ... 

                0.01029765955546528,        0.01399376876290007, ... 

                -0.006990014507518413,      -0.003644279596729619,  ... 

                0.003128023357662664,       0.000407896978913364,  ... 

                -0.000941021742187743,      0.000114241519113091,  ... 

                0.0001747872440135933,      -0.00006103596571228747,  

... 

                -0.00001394566888488284,    0.00001133660857799308, ... 

                -0.000001043571333041443,   -0.0000007363656730469882,  

... 

                0.0000002308784069376313,   -0.0000000210933961377445    

];” 

    end 

         “if Par==34,” 

       “f = [    0.002241806968367765,       0.02598539333038641,  ... 

                0.1312149014643511,         0.3703507191428474,  ... 

                0.6109966080619875,         0.5183157592365552, ... 

                0.02731497388861195,        -0.3283207398752789,  ...  

                -0.1265997478695799,        0.1973105883690036,  ... 

                0.1011354893285621,         -0.1268156885448092, ...  

                -0.05709141812622551,       0.081105985705437,  ... 

                0.02231233608959475,        -0.04692243752178137,  ... 

                -0.003270955473782776,      0.02273367623263168, ... 

                -0.003042989911563062,      -0.00860292137975392,  ... 

                0.002967996640915282,       0.002301205207197428,  ... 

                -0.001436845280352317,      -0.0003281325149411173,  

... 

                0.0004394654201169656,      -0.00002561010931458864, 

... 

                -0.0000820480308801988,     0.00002318681330990614, ... 

                0.000006990600842366534,    -0.000004505942411707292,  

... 

                0.0000003016549532645506,   0.0000002957700881589635,  

... 



 

 

                -0.0000000842394830828037,  0.000000007267492843919008     

];” 

    end 

          “if Par==36,” 

       “f = [    0.001576310332632241,        0.01928853309434481,  ... 

                0.1035884729715391,          0.3146789620466176,  ... 

                0.571826841995251,           0.5718016803655575, ... 

                0.147223099399332,           -0.2936540837163994,  ... 

                -0.2164809618743174,         0.1495339814252923,  ... 

                0.1670813196471977,          -0.0923318969776604, ... 

                -0.1067522571200224,         0.0648872212223416,  ... 

                0.05705125157931265,         -0.04452614611490133,  ... 

                -0.02373321210978654,        0.02667070832113655, ... 

                0.006262168357742094,        -0.01305148206344844,  ... 

                0.0001186301071328846,       0.004943344018360076,  ... 

                -0.001118732786346494,       -0.001340596411265555,  

... 

                0.0006284657384942994,       0.0002135815764103265,  

... 

                -0.000198648570821057,       -0.000000153591634265962, 

... 

                0.00003741238184339052,      -0.00000852060341054129,  

... 

                -0.00000333263477007513,     0.00000176871313748643,  

... 

                -0.00000007691633640217469,  -0.0000001176098869880653,  

... 

                0.00000003068836137122469,   -

0.000000002507934683892356     ];” 

    end 

        “if Par==38,” 

      “f = [    0.001108669779715294,         0.01428109865333334,  ... 

                0.081278114333354,            0.2643884347822977,  ... 

                0.5244363819574067,           0.6017045501513535, ... 

                0.2608949440110274,           -0.2280914100170829,  ... 

                -0.285838641929714,           0.07465227262054114,  ... 

                0.2123497512548378,           -0.03351853842979753, ... 

                -0.1427856935054576,          0.02758435493215239,  ... 

                0.0869067594236619,           -0.02650123589611068,  

... 

                -0.04567422669495623,         0.02162376812192859, ... 

                0.01937555029280247,          -0.01398838901012597,  

... 

                -0.00586692239134182,         0.007040747519198927,  

... 

                0.0007689543646753964,        -0.002687551858597481, 

... 

                0.0003418086639330359,        0.0007358025360798398,  

... 

                -0.0002606761416764582,       -0.0001246007941078683,  

... 

                0.0000871127066319985,        0.000005105950548947162,  

... 

                -0.00001664017665533139,      0.000003010964385934741,  

... 

                0.000001531931507655374,      -

0.0000006862755810090276, ... 



 

 

                0.00000001447088339408005,    

0.00000004636937873589416,  ... 

                -0.000000011164020912898,     

0.000000000866684902796269    ];” 

    end 

        “if Par==40,” 

      “f = [    0.0007799530020084384,        0.0105493864101072,  ... 

                0.06342373157542249,          0.2199419467839922,  ... 

                0.4726958375631425,           0.6104928215175741, ... 

                0.3615021297395791,           -0.139211825416023,  ... 

                -0.3267863905078842,          -0.01672694530514085,  

... 

                0.2282909876975237,           0.03985032729018178, ... 

                -0.1554585361790331,          -0.02471674917392653,  

... 

                0.1022916746204368,           0.005632268726873665,  

... 

                -0.06172283526148656,         0.005874682288534986, ... 

                0.03229427583633914,          -0.00878931595226129,  

... 

                -0.01381051445886118,         0.006721621652169426,  

... 

                0.004420538864131319,         -0.003581491222634283, 

... 

                -0.00083156152944895,         0.001392558453825609,  

... 

                -0.00005349753868856166,      -0.0003851044297986765,  

... 

                0.0001015328014373285,        0.00006774275277093538,  

... 

                -0.00003710583043522718,      -0.000004376140493506968,  

... 

                0.000007241242222701708,      -0.000001011993125412585, 

... 

                -0.0000006847073928591012,    0.0000002633921999175421,  

... 

                0.0000000002014328820034285,  -

0.0000000181484172957345, ... 

                0.000000004056123630675098,   -

0.0000000002998833944499773     ];” 

    end 

        “if Par==42,” 

       “f = [    0.0005488240399453808,        0.007776660464348811,  

... 

                0.04924790475876491,          0.1813601028599902,  ... 

                0.419688998145241,            0.6015074510688103, ... 

                0.4445910837993439,           -0.03572381948901234,  

... 

                -0.33566575122537,            -0.1123978514710653,  ... 

                0.2115648260162405,           0.1152333439473735, ... 

                -0.1399410472763452,          -0.08177625782428998,  

...  

                0.09660066710664022,          0.04572352417673011,  ... 

                -0.06497770623152748,         -0.01865389796875268, ... 

                0.03972696757220106,          0.003357765554657301,  

... 



 

 

                -0.02089211624987374,         0.002403482102825579,  

... 

                0.008988852342563074,         -0.002891344156898007, 

... 

                -0.002958382842307337,        0.001716612683276365,  

... 

                0.0006394203289590759,        -0.0006906733219030776,  

... 

                -0.00003196410553726866,      0.0001936652571660039,  

... 

                -0.0000363553295677002,       -0.00003499676704742804,  

... 

                0.00001535487521020741,       2.79033850314008*10^-6, 

... 

                -3.090027001911602*10^-6,     3.16610662424439*10^-7,  

... 

                2.99214595113828*10^-7,       -1.000404119487493*10^-7,  

... 

                -2.254019869522092*10^-9,     7.058055911572644*10^-9,  

... 

                -1.471958939283684*10^-9,     1.038808947669207*10^-10    

];” 

    end 

        “if Par==44,” 

       “f = [    0.0003862673246197253,          0.005721914066631049,  

... 

                0.03807032187691932,            0.1483689789282081,  

... 

                0.3677320057234413,             0.5784372354311235, ... 

                0.5079033273631367,             0.07372115020105462,  

... 

                -0.3127333476121842,            -0.2005720141344328,  

... 

                0.1640948426591233,             0.179974931810035, ... 

                -0.0971123372197599,            -0.1317696149504392,  

... 

                0.06807740848784511,            0.08455839833964807,  

... 

                -0.05136497255398131,           -0.04653131832736136, 

... 

                0.03697137276735332,            0.02058693268949487,  

... 

                -0.02348031395539096,           -0.006213835918293782,  

... 

                0.01256489065516637,            0.0003001305020824184, 

... 

                -0.005455761185358356,          0.001044278408986017,  

... 

                0.001827032986409597,           -0.000770702101944467, 

... 

                -0.0004237923063271874,         0.0003286138886837352,  

... 

                0.0000434593692542139,          -

0.00009405347080647135,  ... 

                0.00001137454223403893,         0.00001737397675279249, 

... 



 

 

                -6.166816318076451*10^-6,       -1.565197277819435*10^-

6,  ... 

                1.295199441207159*10^-6,        -8.78003044824892*10^-

8,  ... 

                -1.283352833826032*10^-7,       3.761280659022215*10^-

8,  ... 

                1.680187679020641*10^-9,        -2.729659356918619*10^-

9,  ... 

                5.33601149622179*10^-10,        -3.60216327759258*10^-

11   ];”  

    end 

        “if Par==46,” 

       “f = [    0.0002719278182602901,          0.004203109552950134,  

... 

                0.02931247643736339,            0.1205254471036576,  

... 

                0.3184759568589838,             0.5449708209347766, ... 

                0.5510501337055957,             0.1813841378320262,  

... 

                -0.2614398761995617,            -0.2714429864972958,  

... 

                0.0921245749243952,             0.2235864349031235, ... 

                -0.03304774793732929,           -0.164030308293076,  

... 

                0.02028436820991752,            0.1123069840244809,  

... 

                -0.0211292480280753,            -0.07021415427385447, 

... 

                0.02176834655240395,            0.03849895908078205,  

... 

                -0.01852549112315692,           -0.01753870400805271,  

... 

                0.01275326613768589,            0.006032371159860696, 

... 

                -0.00707603267773538,           -0.001134947880346942,  

... 

                0.003123184807392083,           -0.000246537026777104,  

... 

                -0.001061334361043996,          0.000319454992361999,  

... 

                0.0002567865998070605,          -0.0001500373078747796,  

... 

                -0.00003379188332733358,        0.00004426515179248939, 

... 

                -2.635561787093299*10^-6,       -8.348692795439998*10^-

6,  ... 

                2.397822036092728*10^-6,        8.148343038224153*10^-

7,  ... 

                -5.339546450998099*10^-7,       1.853340229309923*10^-

8,  ... 

                5.418084825798256*10^-8,        -1.400079829615052*10^-

8,  ... 

                -9.473736128438874*10^-10,      1.050551729533758*10^-

9, ... 

                -1.93260193304542*10^-10,       1.250331739337031*10^-

11    ];” 

    end 



 

 

        “if Par==48,” 

       “f = [    0.0001914240079776934,          0.003081894336144903,  

... 

                0.02248099723913652,            0.09725657409395711,  

... 

                0.272893661713225,              0.5043448957614517, ... 

                0.5749146829767083,             0.2809851510053765, ...  

                -0.1872418464658568,            -0.3179111538203686,  

... 

                0.004781510762825361,           0.2392258659829295, ... 

                0.042531243536347,              -0.1711600617797226,  

... 

                -0.03877318682438014,           0.1210092088290207,  

... 

                0.02098022912439134,            -0.08215538086453539, 

... 

                -0.004578395730450242,          0.05129798128535279,  

... 

                -0.004944235600686442,          -0.02821125709939177,  

... 

                0.007661004281903052,           0.01304905186620713, 

... 

                -0.006290964935213451,          -0.004746267936383896,  

... 

                0.00373576397589871,            0.001153694353296646,  

... 

                -0.001696334910033699,          -

0.00004416435334971148,  ... 

                0.0005860851561798487,          -0.000118113728929818,  

... 

                -0.0001459980983446589,         0.00006558881863639525, 

... 

                0.00002183096348720674,         -

0.00002022741617379432,  ... 

                1.337052417608915*10^-8,        3.900821594914755*10^-

6,  ... 

                -8.979550384702172*10^-7,       -4.032228084773544*10^-

7,  ... 

                2.166180932866001*10^-7,        -5.054643465620961*10^-

10,  ... 

                -2.255577015054618*10^-8,       5.157391468496204*10^-

9, ... 

                4.748066278754132*10^-10,       -4.024365393060184*10^-

10,  ... 

                6.991284124010881*10^-11,       -4.342457865150871*10^-

12    ];” 

    end 

        “if Par==50,” 

       “f = [    0.0001349140099190347,          0.002258811421928896,  

... 

                0.01720076826024011,            0.07809905498823061,  

... 

                0.2318787664012299,             0.4600423810287615, ... 

                0.5820659400767751,             0.3680932821030804,  

... 

                -0.0973914656330337,            -0.3369053502250008,  

... 



 

 

                -0.08780821918435377,           0.2245876085890194, ...  

                0.118127995249711,              -0.1507901382415503,  

... 

                -0.09866413500669811,           0.1066759749914026,  

... 

                0.06677659879664328,            -0.07716829308409851, 

... 

                -0.03721412413495515,           0.05365935822485196,  

... 

                0.01555326324900022,            -0.03407222558276132,  

... 

                -0.003082422156835764,          0.01893883135517686, 

... 

                -0.001991310900912701,          -0.00886823166517666,  

...  

                0.002729324227909382,           0.003325513663082694,  

... 

                -0.001844076742849583,          -0.0009007311640167205,  

... 

                0.0008780108981336599,          0.0001154141401669138,  

... 

                -0.0003101446827543741,         0.00003546902687895924, 

... 

                0.00007911359754985811,         -

0.00002735413947239519,  ... 

                -0.00001278271963847119,        8.998380584459695*10^-

6,  ... 

                5.236962340729562*10^-7,        -1.780721007596221*10^-

6,  ... 

                3.214832263002398*10^-7,        1.924439055598693*10^-

7,  ... 

                -8.66437988387495*10^-8,        -2.613650299345624*10^-

9, ... 

                9.287154489811888*10^-9,        -1.882036245600092*10^-

9,  ... 

                -2.230357347052905*10^-10,      1.537216399287396*10^-

10,  ... 

                -2.529795306330366*10^-11,      1.510990558374748*10^-

12     ] ;” 

    end 

end 

 

“if strncmpi(Type,'Symmlet',3),” 

    “if Par==1,” 

        “f = [ 0.707106781186547524400844362104849, 

0.707106781186547524400844362104849 ];” 

    end 

 “if Par==2,”   

  “f = [ 0.4829629131445341433748716, 

0.836516303737807905575294, ... 

                0.224143868042013381025973, -

0.1294095225512603811744494  ];” 

 end 

 “if Par==3,  

  f = [ 0.332670552950082615998512,  

0.806891509311092576494494, ... 



 

 

                0.459877502118491570095152, -

0.135011020010254588696390, ... 

               -0.085441273882026661692819,  

0.0352262918857095366027407  ];”     

    end 

 “if Par==4,” 

  “f = [   -0.07576571478950221,       -0.029635527646002493,   

... 

                0.497618667632775,          0.8037387518051321,   ... 

                0.29785779560530606,        -0.09921954357663353,   ... 

                -0.012603967262031304,      0.032223100604051466 ];” 

 end 

 “if Par==5,” 

  “f = [   0.0195388827352498268,      -

0.0211018340246890410,   ... 

                -0.175328089908056224,      0.016602105764510848,   ... 

                0.63397896345679206,        0.72340769040404079,   ... 

                0.199397533976855597,       -0.039134249302313844,   

... 

                0.0295194909257062613,      0.0273330683449987688 

 ];” 

 end 

 “if Par==6,”   

  “f = [   0.01540410932704474,        0.003490712084221531,   

... 

                -0.1179901111485212,        -0.04831174258569789,   ... 

                0.4910559419279768,         0.7876411410286536,  ... 

                0.3379294217281644,         -0.07263752278637825,   ... 

                -0.02106029251237119,       0.04472490177078142,   ... 

                0.001767711864253766,       -0.007800708325032496 ];” 

 end 

 “if Par==7,” 

  “f = [   0.01026817670846495,        0.004010244871523197,   

... 

                -0.1078082377032895,        -0.1400472404429405,   ... 

                0.2886296317506303,         0.7677643170048699,  ... 

                0.5361019170905749,         0.01744125508685128,   ... 

                -0.04955283493703385,       0.06789269350122353,   ... 

                0.03051551316588014,        -0.01263630340323927,  ... 

                -0.001047384888679668,      0.002681814568260057   

  ];” 

 end 

 “if Par==8,”  

  “f = [  -0.003382415951003908,     -

0.000542132331797018,   ... 

                 0.03169508781151886,       0.00760748732494897,   ... 

                 -0.1432942383512576,       -0.06127335906765891,   ... 

                 0.4813596512592537,        0.7771857516996492,   ... 

                 0.3644418948360139,        -0.05194583810802026,   ... 

                 -0.02721902991713553,      0.04913717967372511,   ... 

                 0.003808752013880463,      -0.01495225833706814,   ... 

                 -0.0003029205147226741,    0.001889950332768561  

 ];” 

 end 

 “if Par==9,” 

  “f = [  0.001069490032908175,      -

0.0004731544986808867,   ... 



 

 

                 -0.01026406402762793,      0.008859267493410117,   ... 

                 0.06207778930285313,       -0.01823377077946773,   ... 

                 -0.1915508312971598,       0.03527248803579076,   ... 

                 0.6173384491414731,        0.7178970827644066,   ... 

                 0.2387609146068536,        -0.05456895843120489,   ... 

                 0.0005834627459892242,     0.03022487885821281,   ... 

                 -0.01152821020772933,      -0.01327196778183437,   ... 

                 0.0006197808889867399,     0.001400915525915921 ];” 

 end 

 “if Par==10,” 

  “f = [  0.0007701598091036597,     

0.00009563267068491565,   ... 

                 -0.008641299277002591,     -0.001465382581138532,   

... 

                 0.04592723923095083,       0.0116098939028464,   ... 

                 -0.1594942788849671,       -0.0708805357805798,   ... 

                 0.4716906669415791,        0.7695100370206782,   ... 

                 0.3838267610640166,        -0.03553674047551473,   ... 

                 -0.03199005688220715,      0.04999497207760673,   ... 

                 0.005764912033412411,      -0.02035493981234203,   ... 

                 -0.0008043589319389408,    0.004593173585320195,   ... 

                 0.00005703608359777954,    -0.0004593294210107238  

  ];” 

 end 

    “if Par==11,” 

        “f = [    0.0004892636102790465,     0.00011053509770077,   ... 

                 -0.006389603666537886,     -0.002003471900538333,   

... 

                 0.04300019068196203,       0.03526675956730489,   ... 

                 -0.1446023437042145,       -0.2046547945050104,   ... 

                 0.2376899090326669,        0.7303435490812422,   ... 

                 0.5720229780188006,        0.09719839447055164,   ... 

                 -0.02283265101793916,      0.06997679961196318,   ... 

                 0.03703741598066749,       -0.0240808415947161,   ... 

                 -0.009857934828835874,     0.006512495674629366,   ... 

                 0.0005883527354548924,     -0.001734366267274675,   

... 

                 -0.00003879565575380471,   0.0001717219506928879    

];” 

 end 

    “if Par==12,” 

        “f = [    -0.0001790665869786187,     -0.0000181580788773471,   

... 

                 0.002350297614165271,       0.0003076477963025531,   

... 

                 -0.01458983644921009,       -0.002604391031185636,   

... 

                 0.05780417944546282,        0.01530174062149447,   ... 

                 -0.1703706972388913,        -0.07833262231005749,   

... 

                 0.4627410312313846,         0.7634790977904264,   ... 

                 0.3988859723844853,         -0.0221623061807925,   ... 

                 -0.03584883074255768,       0.04917931829833128,   ... 

                 0.007553780610861577,       -0.02422072267559388,   

... 

                 -0.001408909244210085,      0.007414965517868044,   

... 



 

 

                 0.0001802140900854918,      -0.001349755755614803,  

... 

                 -0.00001135392805049379,    0.0001119671942470856     

];” 

 end 

    “if Par==13,” 

        “f = [    0.00007042986709788876,     0.00003690537416474083,   

... 

                 -0.0007213643852104347,     0.0004132611973679777,   

... 

                 0.00567485376954048,        -0.00149244724795732,   

... 

                 -0.02074968632748119,       0.01761829684571489,   ... 

                 0.09292603099190611,        0.008819757923922775,  ... 

                 -0.1404900930989444,        0.1102302225796636,   ... 

                 0.6445643835707201,         0.6957391508420829,   ... 

                 0.1977048192269691,         -0.1243624606980946,   ... 

                 -0.05975062792828035,       0.01386249731469475,   ... 

                 -0.01721164274779766,       -0.02021676815629033,   

... 

                 0.005296359721916584,       0.007526225395916087,   

... 

                 -0.0001709428497111897,     -0.001136063437095249,   

... 

                 -0.0000357386241733562,     0.00006820325245288671     

];” 

 end 

    “if Par==14,” 

        “f = [    0.00004461898110644152,     0.00001932902684197359,   

... 

                 -0.0006057602055992672,     -0.00007321430367811753,  

... 

                 0.004532677588409982,       0.001013142476182283,  ... 

                 -0.01943931472230284,       -0.002365051066227485,  

... 

                 0.06982761641982026,        0.02589859164319225,  ... 

                 -0.1599974161449017,        -0.05811184934484923,  ... 

                 0.4753357348650867,         0.7599762436030552,  ... 

                 0.3932015487235067,         -0.03531809075139569,  ... 

                 -0.05763449302747868,       0.03743308903888159,  ... 

                 0.004280522331795536,       -0.02919621738508546,  ... 

                 -0.002753775776578359,      0.01003769335863697,   ... 

                 0.000366476770515625,       -0.002579441672422145,   

... 

                 -0.00006286548683867455,    0.0003984356519092697,   

... 

                 0.00001121086996816579,     -0.00002587908845615303     

];” 

 end 

    “if Par==15,” 

        “f = [    0.000028660707399511618,    0.00002171788180828788,   

... 

                 -0.00040216855725720875,    -0.00010815440716833184,   

... 

                 0.0034810287335767247,      0.0015261379816940614,   

... 



 

 

                 -0.01717125379613366,       -0.008744790172337504,   

... 

                 0.06796982852319061,        0.06839330814883558,   ... 

                 -0.13405630898495416,       -0.19662638205515043,   

... 

                 0.24396267904975416,        0.7218430182315695,   ... 

                 0.5786404260768322,         0.11153371778633057,   ... 

                 -0.04108264654576916,       0.040735492211698726,   

... 

                 0.021937649685129356,       -0.03887671343231794,   

... 

                 -0.019405010502865788,      0.010079976851620261,   

... 

                 0.0034234504500168204,      -0.003590165561744339,   

... 

                 -0.0002673165193090753,     0.0010705671659500386,   

... 

                 0.00005512253152945822,     -0.0001606618644005603,   

... 

                 -7.359664544811822*10^-6,   9.712420111966456*10^-6   

];” 

 end 

    “if Par==16,” 

        f = [    -0.000010797985444060825,   -5.3964960594326874*10^-6,   

... 

                 0.0001654568107575125,      0.00003656600318814429,   

... 

                 -0.001338720814110487,      -0.00022211728990382076,   

... 

                 0.006937761277326152,       0.0013598467013441263,   

... 

                 -0.024952761177797576,      -0.00351028784332523,   

... 

                 0.07803784806236971,        0.030721150497025267,   

... 

                 -0.15959221677565338,       -0.05404070849544753,   

... 

                 0.4753426930640303,         0.7565249925494576,   ... 

                 0.3971230417468278,         -0.034574136859023705,   

... 

                 -0.06698302069147749,       0.03233309920319836,   ... 

                 0.004869285298401547,       -0.031051198943356957,   

... 

                 -0.003126520186702648,      0.012666730821216037,   

... 

                 0.0007182134482533401,      -0.0038809118096674354,   

... 

                 -0.00010844597239036113,    0.0008523546022172409,   

... 

                 0.000028078644213177975,    -0.00010943145921454754,   

... 

                 -3.1135618941800743*10^-6,  6.230004737262791*10^-6   

];” 

 end 

    “if Par==17,” 

        “f = [    4.2973506629986956*10^-6,   2.7801688647505625*10^-6,   

... 



 

 

                 -0.00006293696990392763,    -0.000013506396803548528,   

... 

                 0.00047599681001429773,     -0.00013864025450273018,   

... 

                 -0.002741673289197601,      0.0008567721508596517,   

... 

                 0.010482379074328828,       -0.004819175075474626,   

... 

                 -0.03329133163029172,       0.017904007873400175,   

... 

                 0.10475473990614559,        0.017271442186243685,   

... 

                 -0.1185666208590123,        0.1423985355331832,   ... 

                 0.6507166482523769,         0.6814888952815437,   ... 

                 0.18053935219589717,        -0.15507633780169236,   

... 

                 -0.0860711490606599,        0.016158692741874165,   

... 

                 -0.0072616521550352585,     -0.01803889816207702,   

... 

                 0.009952983267225308,       0.012396993805630462,   

... 

                 -0.0019054056198378236,     -0.003932327920107898,   

... 

                 0.00005839844001157818,     0.0007198270212964605,   

... 

                 0.000025208218893204052,    -0.00007607121225156968,   

... 

                 -2.452745060439947*10^-6,   3.791246551426962*10^-6   

];” 

 end 

    “if Par==18,” 

        “f = [    2.6140187028148005*10^-6,   1.3597256411120972*10^-6,   

... 

                 -0.000045260099151022276,   -0.000014073709856766986,   

... 

                 0.0003962647703053168,      0.00007059203923948904,   

... 

                 -0.002314325309127317,      -0.00041350784379068383,   

... 

                 0.009503146264507371,       0.001648937806891975,   

... 

                 -0.03033018760379904,       -0.00510180660253373,   

... 

                 0.08421406918773965,        0.034024019305781264,   

... 

                 -0.15998146275864744,       -0.05223243824458295,   

... 

                 0.47375599169059157,        0.7536405256423095,   ... 

                 0.4016913034776937,         -0.0323059809889792,   ... 

                 -0.07374895242999176,       0.028536771134301076,   

... 

                 0.006292693377765397,       -0.03170873328122627,   

... 

                 -0.0032688666608867664,     0.01500986633652236,   ... 

                 0.0010909833425781458,      -0.005238814002156449,   

... 



 

 

                 -0.0001897773119942463,     0.0014277813050762765,   

... 

                 0.000047650786275655254,    -0.0002657505546476236,   

... 

                 -9.890224232299607*10^-6,   0.00002954545735292322,   

... 

                 7.866685781899692*10^-7,    -1.5123391551795506*10^-6   

];” 

 end 

    “if Par==19,” 

        “f = [    1.6822101374310987*10^-6,   1.5736233900352247*10^-6,   

... 

                 -0.000029084130082422266,   -0.000016290552278010628,   

... 

                 0.00027537426211342433,     0.00010455921733678424,   

... 

                 -0.0017655593234062173,     -0.0006524693932405551,   

... 

                 0.008240792309156801,       0.003903523253914178,   

... 

                 -0.028979337236055096,      -0.01858176253516738,   

... 

                 0.08265001836815583,        0.09052455442917737,   ... 

                 -0.12553103109717628,       -0.1933024666109857,   ... 

                 0.24104659627671224,        0.7125038682183499,   ... 

                 0.5857258835982894,         0.12559052557160855,   ... 

                 -0.051417687498444706,      0.019505347664693754,   

... 

                 0.012438665386547568,       -0.04432391883451796,   

... 

                 -0.022155886952494982,      0.015464312015532047,   

... 

                 0.0076454965207025565,      -0.005198489304476271,   

... 

                 -0.0011616402526739716,     0.0021058625600138578,   

... 

                 0.00015660905060254328,     -0.0006245052918345595,   

... 

                 -0.00004106344742558738,    0.0001139524500214609,   

... 

                 7.487464336562946*10^-6,    -0.000011966487988902881,   

... 

                 -5.34322686486931*10^-7,    5.711932378486931*10^-7    

];” 

 end 

    “if Par==20, 

        f = [    -6.299929076393514*10^-7,   -1.788381654723433*10^-7,   

... 

                 0.000013267792274307285,    5.715455163913879*10^-6,   

... 

                 -0.00012638480147829343,    -0.00006060770430172846,   

... 

                 0.0007316472152793887,      0.00026095442734033774,   

... 

                 -0.003170803376848161,      -0.00043732670748901353,   

... 



 

 

                 0.012090589576786489,       0.0019211676342072246,   

... 

                 -0.03663262584755033,       -0.013703513480057003,   

... 

                 0.07424185717192522,        0.021714054253910882,    

... 

                 -0.1609037041111548,        -0.03440166000144136,  ...  

                 0.4894006264128903,         0.7507502982136451,   ...  

                 0.3886194419202543,         -0.04521583665884769,   

... 

                 -0.07854049760146452,       0.038482757401527116,   

... 

                 0.021702142828213884,       -0.023834246491111964,   

... 

                 -0.0005786000109801912,     0.01717848841075394,   ... 

                 0.0006324619136888966,      -0.007342682291732647,   

... 

                 -0.0005183408270565881,     0.002204695518355125,   

... 

                 0.00017752923953843423,     -0.00048232152518013383,   

... 

                 -0.00003434395791274426,    0.00007406549050117618,   

... 

                 3.2530365938639585*10^-6,   -7.413187876923192*10^-6,   

... 

                 -1.0539262586695314*10^-7,  3.7126642825501105*10^-7   

];” 

 end 

    “if Par==21,” 

        “f = [    2.4666687655533695*10^-7,   7.914248389737127*10^-8,   

... 

                 -5.098478772975259*10^-6,   -1.8332525199414118*10^-6,  

...  

                 0.00004694842985874322,     6.088937039539296*10^-6,   

... 

                 -0.00028648787462784116,    0.0000620228593209885,   

... 

                 0.0014213616519049683,      -0.000432897763752902,   

... 

                 -0.005353988694277162,      0.0017655806658982696,   

... 

                 0.015402169297438343,       -0.008988082355110115,   

...   

                 -0.04716066845359608,       0.010671178775815944,   

... 

                 0.10149319625091788,        0.007388554132196435,   

... 

                 -0.12355469595545877,       0.14411131060308363,   ... 

                 0.6461733765248382,         0.6815923286559533,   ... 

                 0.19203957652810966,        -0.1513192612796282,   ... 

                 -0.08711940361369748,       0.02790507569203459,   ... 

                 0.00625184607285568,        -0.015083074728218489,   

... 

                 0.011187152328141188,       0.01450803878862172,   ... 

                 -0.004094954089873776,      -0.006749289429682182,   

... 



 

 

                 0.0006955275549391147,      0.002031175814309811,   

... 

                 -0.00002051693327729468,    -0.00041348833873143716,   

... 

                 -0.000010572800078769339,   0.000058204303827933644,   

... 

                 1.8409309631189882*10^-6,   -5.161165596805668*10^-6,   

... 

                 -7.41575536253381*10^-8,    2.3113011977605634*10^-7   

];” 

 end 

    “if Par==22,” 

        “f = [    1.5469892096783629*10^-7,   5.5743916934275646*10^-8,   

... 

                 -3.4968422679833534*10^-6,  -1.4370363121605532*10^-6,   

... 

                 0.000037380396807580654,    0.00001758094055422716,   

... 

                 -0.00024483364534030704,    -0.00010585417623386842,   

... 

                 0.0011466583097184356,      0.0003226285920630637,   

... 

                 -0.004398948577001492,      -0.0005350221246800008,   

... 

                 0.015051009425518232,       0.003114197433178795,   

... 

                 -0.03983484859283483,       -0.014316309998756563,   

... 

                 0.07823387878992308,        0.023785426002814004,   

... 

                 -0.1593358890186262,        -0.029991258060954408,   

... 

                 0.4905406567562972,         0.7486689893282149,   ... 

                 0.38946084846091966,        -0.04646770047156702,   

... 

                 -0.08505017544453836,       0.03554141495048075,   ... 

                 0.023467779250349607,       -0.02426659585361798,   

... 

                 -0.0019440502814989976,     0.01780655171188534,   ... 

                 0.0003877388938834633,      -0.008837354866518892,   

... 

                 -0.0006023488806178174,     0.0030309320519889987,   

... 

                 0.00025194457519336455,     -0.0007945748785723063,   

... 

                 -0.00006608462189094136,    0.00015493987521617144,   

... 

                 0.000010202851313391099,    -0.000021749524061348802,   

... 

                 -8.277216867302219*10^-7,   2.011485781107503*10^-6,   

... 

                 3.24106151598103*10^-8,     -8.994488134257862*10^-8    

];” 

 end 

    “if Par==23,” 

        “f = [    -6.088466993156109*10^-8,   -1.6615204304595472*10^-

8,   ... 



 

 

                 1.4054134729420521*10^-6,   5.065545930484757*10^-7,   

... 

                 -0.000014639159377583806,   -3.935849604669885*10^-6,   

... 

                 0.00009610455472740267,     -3.235179654211356*10^-7,   

... 

                 -0.0004912392092331126,     0.0001158628187825532,    

... 

                 0.0020794420582160053,      -0.0005397239075479521,   

... 

                 -0.006723311075642093,      0.0023801024676674445,   

... 

                 0.018427107312302106,       -0.009708672972735352,   

... 

                 -0.052966594269723166,      0.006024328570134602,   

... 

                 0.09868192677853799,        0.0026702039747034177,   

... 

                 -0.1299766448268073,        0.13550672099058436,   ... 

                 0.6387382588927035,         0.6863848550710899,   ... 

                 0.20649267004039606,        -0.14369715652684245,   

... 

                 -0.08651297991591521,       0.032763741913238865,   

... 

                 0.012533684345771838,       -0.014070855072454728,   

... 

                 0.01062794083550241,        0.015024638946099386,   

... 

                 -0.004866076235991217,      -0.007967029103383086,   

... 

                 0.0010722016128121928,      0.0028093755854430584,   

... 

                 -0.00008313779295501525,    -0.0006970208534264938,   

... 

                 -0.00001326126189449906,    0.00012603730932265127,   

... 

                 4.446291783441227*10^-6,    -0.000016139269667555554,   

... 

                 -4.77553521844591*10^-7,    1.3365100765666046*10^-6,   

... 

                 1.523804807305629*10^-8,    -5.5838351515000746*10^-8   

];” 

 end 

    “if Par==24,” 

        “f = [    -5.2761865436863985*10^-8,  -8.690427954503197*10^-8,   

... 

                 1.0423208461508862*10^-6,   1.3969259517138812*10^-6,   

... 

                 -0.000011118982675005505,   -0.000012657478427953705,   

... 

                 0.0000773048286026619,      0.00007342863308434417,   

... 

                 -0.00039834902286264043,    -0.0003016488762115482,   

... 

                 0.001633599109508149,       0.0009177057961552579,   

... 



 

 

                 -0.005702626293286814,      -0.002525604130488947,   

... 

                 0.017026080554935406,       0.007861303957162372,   

... 

                 -0.040982600612933254,      -0.021283796275817276,   

... 

                 0.08372034358295327,        0.05437314304210483,   ... 

                 -0.12818178218050752,       -0.035646434246813574,   

... 

                 0.46244307077589863,        0.7501914811592109,   ... 

                 0.4182481983661332,         -0.04590755369598393,   

... 

                 -0.1204529195912711,        0.010585497932626633,   

... 

                 0.023513400494410315,       -0.022539152872931466,   

... 

                 -0.0050215879773052394,     0.01833813846077915,   ... 

                 0.0021823244607757,         -0.009954852329009839,   

... 

                 -0.0015175250406422927,     0.0038357471744951996,   

... 

                 0.0007028294509160195,      -0.0011116911888874527,   

... 

                 -0.00021118156525038934,    0.0002507142923455971,   

... 

                 0.0000442170717380261,      -0.000043237491892894634,   

... 

                 -6.45525681719476*10^-6,    5.343044886829498*10^-6,   

... 

                 5.953891366605391*10^-7,    -4.1947862803617735*10^-7,   

... 

                 -2.5954357139211734*10^-8,  1.5757584826821534*10^-8   

];” 

 end 

    “if Par==25,” 

        “f = [   1.3559364540611227*10^-8,    -9.795737094326415*10^-

10,   ... 

                 -3.5324698866183274*10^-7,  -2.864726752719305*10^-8,   

... 

                 4.222032788604233*10^-6,    5.49693105547489*10^-7,   

... 

                 -0.00003092830508017534,    -4.212835064605567*10^-7,   

... 

                 0.00016479057910264333,     -0.000037508744144871775,   

... 

                 -0.0007330652888770748,     0.0002658102686466399,   

... 

                 0.002714164795025192,       -0.000968322030306876,   

... 

                 -0.00785635517951613,       0.0037969122058442175,   

... 

                 0.02059795248498291,        -0.012308050256422173,   

... 

                 -0.05640015507726106,       0.007187328235056668,   

... 

                 0.0956457447512976,         -0.0058027884901894556,   

... 



 

 

                 -0.12231754226725715,       0.1631514710968921,   ... 

                 0.6543719294101015,         0.6715904122541644,   ... 

                 0.18132650835646258,        -0.15599473760485902,   

... 

                 -0.08362502581802364,       0.041304200470714036,   

... 

                 0.017768444024218653,       -0.013548122888083406,   

... 

                 0.010296151957318115,       0.014633468106540926,   

... 

                 -0.006440853043345421,      -0.008929653602321046,   

... 

                 0.0019327781450455884,      0.0036421681089588136,   

... 

                 -0.00033935744667514006,    -0.0010791779886949856,   

... 

                 0.000027173893640607642,    0.000238698525771045,   

... 

                 1.0500229544977402*10^-6,   -0.000039832648663228424,   

... 

                 -5.410954871718931*10^-7,   4.768328003833541*10^-6,   

... 

                 3.284183959667723*10^-8,    -3.759486167421689*10^-7,   

... 

                 1.085292734525874*10^-9,    1.5021122420804858*10^-8    

];” 

 end 

     

end 

  

“if strncmpi(Type,'Vaidyanathan',3),” 

 “f = [ -.000062906118 .000343631905 -.000453956620

 ... 

   -.000944897136 .002843834547 .000708137504

 ... 

   -.008839103409 .003153847056 .019687215010

 ... 

   -.014853448005 -.035470398607 .038742619293

 ... 

   .055892523691 -.077709750902 -.083928884366

 ... 

   .131971661417 .135084227129 -.194450471766

 ... 

   -.263494802488 .201612161775 .635601059872

 ... 

   .572797793211 .250184129505 .045799334111 

 ];” 

end 

 

“if strncmpi(Type,'Battle',3),” 

 if Par == 1, 

     “g = [0.578163    0.280931    -0.0488618   -0.0367309 ... 

          0.012003    0.00706442  -0.00274588  -0.00155701 ... 

          0.000652922 0.000361781 -0.000158601 -0.0000867523 

     ];” 

 end 

 



 

 

 “if Par == 3,” 

         

 “g = [0.541736    0.30683      -0.035498    -0.0778079 ... 

         0.0226846   0.0297468    -0.0121455   -0.0127154 ... 

         0.00614143  0.00579932   -0.00307863  -0.00274529 ... 

         0.00154624  0.00133086   -0.000780468 -0.00065562 ... 

      0.000395946 0.000326749  -0.000201818 -0.000164264 ... 

         0.000103307 

     ];” 

 end 

 

 “if Par == 5,” 

  “g = [0.528374    0.312869    -0.0261771   -0.0914068 ... 

         0.0208414   0.0433544   -0.0148537   -0.0229951  ... 

         0.00990635  0.0128754   -0.00639886  -0.00746848 ... 

         0.00407882  0.00444002  -0.00258816  -0.00268646 ... 

         0.00164132  0.00164659  -0.00104207  -0.00101912 ... 

      0.000662836 0.000635563 -0.000422485 -0.000398759 ... 

      0.000269842 0.000251419 -0.000172685 -0.000159168 ... 

      0.000110709 0.000101113 

     ];” 

 end 

        “l = length(g);” 

        “f = zeros(1,2*l-1);” 

        “f(l:2*l-1) = g; 

        “f(1:l-1) = reverse(g(2:l));” 

end 

“if strncmpi(Type,'Lemarie',3),” 

     “f = [  3.0620193e-005  3.8631712e-005 -5.9878645e-005 ... 

-7.4997553e-005 1.1762624e-004 1.4604017e-004 ... 

-2.3234459e-004 -2.8538040e-004 4.6210986e-004  ... 

 5.5993014e-004 -9.2718796e-004 -1.1037270e-003 ... 

 1.8821116e-003 2.1866870e-003 -3.8823801e-003 ... 

-4.3537889e-003  8.2013819e-003  8.6851939e-003 ... 

-1.7982112e-002 -1.7176116e-002 4.2067863e-002 ... 

 3.2080525e-002 -1.1003574e-001 -5.0201141e-002 ... 

 4.3391759e-001 7.6612115e-001 4.3391759e-001... 

 -5.0201141e-002 -1.1003574e-001  3.2080525e-002  ... 

4.2067863e-002 -1.7176116e-002 -1.7982112e-002 ... 

8.6851939e-003 8.2013819e-003 -4.3537889e-003 ... 

-3.8823801e-003 2.1866870e-003 1.8821116e-003 ... 

-1.1037270e-003 -9.2718796e-004  5.5993014e-004 ... 

 4.6210986e-004  -2.8538040e-004 -2.3234459e-004  ... 

1.4604017e-004  1.1762624e-004 -7.4997553e-005 ... 

-5.9878645e-005 ];” 

end 

“if strncmpi(Type,'Pollen',3),” 

     “s = 2 * sqrt(2);” 

     “if length(Par) == 1” 

         “phi = Par(1);” 

 “f =[ (1 + cos(phi) - sin(phi))/s ... 

      (1 + cos(phi) + sin(phi))/s ... 

      (1 - cos(phi) + sin(phi))/s ... 

      (1 - cos(phi) - sin(phi))/s];” 

     end 

     “if length(Par)==2” 

    “phi1 = Par(1);” 



 

 

    “phi2 = Par(2);” 

    “s = 2 * sqrt(2);” 

“f=[( 1+cos(phi1) - cos( phi2 ) - cos( phi1) * cos( phi2) ... 

       + sin( phi1 ) - cos( phi2) * sin( phi1) - sin( phi2 )  ... 

       + cos( phi1) * sin( phi2) - sin( phi1) * sin( phi2 ) )/ (2*s) 

... 

   ( 1-cos( phi1) + cos( phi2) - cos( phi1) * cos( phi2) ... 

       + sin( phi1) + cos( phi2) * sin( phi1) - sin( phi2) ... 

       - cos( phi1) * sin( phi2) - sin( phi1) * sin( phi2) )/ (2*s) ... 

   ( 1 + cos( phi1) * cos( phi2) + cos( phi2) * sin( phi1) ... 

       - cos( phi1) * sin( phi2 ) + sin( phi1) *sin( phi2 ) )/s ... 

   ( 1 + cos( phi1 ) * cos( phi2 ) - cos( phi2 ) * sin( phi1 ) ... 

       + cos( phi1 )* sin( phi2 ) + sin( phi1)*  sin( phi2) )/s ...  

   ( 1-cos( phi1) + cos( phi2 )- cos( phi1 )* cos( phi2 ) ... 

       - sin( phi1 ) - cos( phi2 ) * sin( phi1 ) + sin( phi2 ) ... 

       + cos( phi1 )* sin( phi2 )- sin( phi1 )* sin( phi2) ) /(2*s)... 

   ( 1+cos( phi1 )- cos( phi2 )- cos( phi1 )* cos( phi2 ) ... 

       - sin( phi1 ) + cos( phi2 ) * sin( phi1 ) + sin( phi2 ) ... 

       - cos( phi1 ) * sin( phi2 ) - sin( phi1 )*  sin( phi2) )/ 

(2*s)];” 

     end 

end 

“f = f ./ norm(f);” 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 الوستخلص

هعذل الخطش تاسرخذام ذقذيش  ذالحهزه الأطشوحح هى دساسح الرقذيش غيش الوعلوي لللهذف الشئيسي 

. ذعروذ اسرشاذيجيح الرقذيش على اسرخذام الإسقاط هن اليوينالوىيجح الخطيح لثياناخ الشقاتح العشىائيح 

هن  (  )  الفضاء الجضئيعلى  {                        }  الأب ذالحالوىيجي ل

 .للذالح الرشاكويح تشسلى ، هع هقذّس L ^ 2 (R) الذوال الوشتعح فضاء

يح كثافح الاحروالال لذالحإيجاد النسثح تين هقذس الوىيجح الخطيح تذن ذصوين ذقنيح ذقذيش دالح الخطش 

(f(x))      ذالح الثقاءلوالرقذيش الرجشيثي .{S(x)=1-F(x)} 

ذعروذ الرطثيقاخ على نىعين هن الذساسح. الرطثيق الأول ، دساسح الوحاكاج لرىليذ هرغيشاخ عشىائيح 

، والرجشتح  n = 100،200 لعيناخ تالحجن G(5،1) كاها تاسرخذام ذىصيع الاولى رجشتحاللرجشترين ، 

 طثيعيينالثانيح تاسرخذام الرىصيع الثنائي الأتعاد لرىصيعرين 

(X=0.4X1~N(5,1)+0.6X2~N(3,0.5))  لعيناخ تالحجن  .n=400,600 ، علاوج على رلك

الرطثيق الثاني ، يرن ذطثيق  (EXP (6)). لرىليذ أوقاخ الشقاتح للرجشترين نسرخذم الرىصيع الأسي

سرانفىسد  ، وتياناخالونضلي، وتياناخ الروشيض ذليف الكثذ الىتائيوهي تياناخ  حثلاز تياناخ حقيقي

 .قلةال حعاضسل

تالنسثح  اهاوحاكاج ، التين نرائج الرقذيش والنرائج الفعليح لرجشتري  MSE ذود الوقاسنح تاسرخذام

جاخ وهقذس يتين نرائج الرقذيش الري ذن حساتها تىاسطح ذقذيش الوى MSE للثياناخ الحقيقيح ، ذن إجشاء

 .النىاج
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