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 الإهداء
إلى رسول الإنسانية ،الرسول الأمي، معلم البشرية إلى من  ضانا  

دربنا بنور الهدى إلى من  دندانا إلنى الإنى إلنى معللأننا الأ ل  ينر 

)  رسننول ) ل نن   سننيد اللأرسننلي    ننابم النبينني  مإلأنند الأنننا 

  سلم(.   على اله   إبه عليه

إلى م   انع  ربني اننال  لندحت بإن     الأمانالإب  نبع الإنان إلى

طريقنني بضننيا هنانهننا  سننهرل الليننالي ل نني  ضاننا لقنندميها ... منن  

 ) لي .  ضدامها) في علأردا  ضطالالغالية(  ضمي ل ضكون

إلى نبا قلبي  قرة عينني إلنى من  ربناني  عللأنني إلنى من  ضفننى 

  رإلى م  ضهلأ  ضسلأه ب   فخعلأرح لأالي إلى م  شجعني 

 ل ضبي الغالي ( ضطال ) علأرك  ادامك ) لي.

 نور هينابي إلىرفقا  دربي  إلىإلى م  ضشدد بهم ضزري في الإياة 

 . ضهبتي ضدلي داد، فارس(  الأيع  هسي ،ل

كنن  منن  منند ينند العننون لنني  سنناعدني ضدنندي ل ننم  لأننرة اهنندي  إلننى

   الص دعائي.

   فاطمة                                                            

   

 



 

 شكر وتقدير
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.  وجههاأ أنعندها ويشُرفني  أقفوتقدير وعرفاناً بالجميل  وامتنانكلمة شكر 

من كان مثالا علميا يحتذي به فلم يبخل بنصيحة وإرشاد وجهد في أي وقت  إلى

         وكان نبراس دعم وتشجيع مؤثرين وعنوانا لي في إعداد هذه الرسالة أستاذي

 () أ.م.د.حازم منصور كوركيس 

سلمان ( لتشجيعه س نجم ) أ.عبا الأستاذ  إلىوالامتنان  بالشكر أتقدمكما 
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 جميع من لم يسعني ذكرهم.
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وزملائي تذة المتميزين لمساعدتهم العلمي.وجميع الرياضيات والأسا

 .وأصدقائي

 فاطمة                                                                             

الله

 



 
Multicollinearity is an important problem in regression analysis which 

produces undesirable effects on the least squares estimation. Ridge regression is 

one of the most popular solutions to this problem. In this situation, ridge 

parameter ( or biasing constant) has an important effect in parameter estimation. 

Many statisticians are proposed different methods for selecting the ridge 

parameter. In this thesis, we attempted to have our own contribution in this field. 

Accordingly,we have proposed a new method for choosing the ridge parameter. 

The performance of the suggested method is determined and compared with 

other methods already proposed by other researchers through simulation and 

practical study. The proposed method seems to be exactly reasonable in the 

sense of MSE criterion. 

An alternative well known solution to the multicollinearity problem 

which is also included in the thesis, is the principal components regression. In 

this approach, instead of using the original non orthogonal explanatory variables 

in the regression analysis , their principal components are used which are 

orthogonal to each other. Two main parts are included in this thesis especially, 

the theoretical part and the experimental and practical part. Statistical programs  

( MATLAP&SPSS) have been employed to perform the required calculations. 
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1.1 Introduction 

 
One of the aims of science is to find, describe, and to predict relationships 

among events in the world in which we live. One way that this is accomplished  by 

finding a formula or equation that relates quantities in the real world. For example, 

in an industrial situation, it may be known that the tar content in the outlet stream 

in a chemical process is related to the inlet temperature. It may be of interest to 

develop a method of prediction, that is a procedure for estimating the tar content 

for various  fuels of the inlet temperature from experimental information. In 

medical, we may be interested in how a several vaccines affects a certain disease. 

In the economic,we may be interested in the relationship of supply, demand and 

the price of certain commodities. Among different models that deal with the real 

life situations, the most widely used statistical model is refer to linear regression 

model. The term ''regression'' literally means ''step back towards the average'' it 

was first used by a British biometrician, Sir Francis Galton (1822-1911) in 

connection with the inheritance of stature. Galton found that the offspring of 

abnormally tall or short parents, tend to ''regress or step back'' to the average 

population height [15]. 

Although it is desirable to be able to predict one quantity exactly in terms of 

others, this is in general not possible, and in most instances we have to be 

concerned with predicting averages or expectation. This problem of predicting the 

average value of one variable in terms of the known value of another variable 
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(or the known values of other variables) is the problem of regression. 

To explain this point of view, let us consider an example of income employing 

information in income and number of years of formal schooling to estimate the 

extent which the  man's annual income is related to his years of schooling [40]. 

One possibility would be that a man who had zero years of school, we would 

anticipate his annual income as a (dollars) and for every year of schooling he had 

,we would expect his income to be  larger by b (dollars),thus for a man having 

(x)years of schooling we would expect his annual income to be (a + bx) dollars. The 

expect means we are thinking of the average of all men who had (x) years at school, 

if one man was picked at random we would expect his income to be (a + bx). The y 

denotes to income we write E(y) for expected income and hence E(y) = a + bx. 

A general form for the model would be y = f(                   where f is 

some unknown function and  is the error term. Since we often don't have adequate 

information to estimate f directly, we have to assume that it has some more 

restricted form, probably linear as: 

 

0 1 1y ... p px x                ...(1) 

Where 

j , j = 1,2,3,...,p are unknown parameters, 

   is called the intercept term of the model. 

 

 is not observable, but something about the distribution of  is often stated as a 

part of the model. Hence, the problem is reduced to the estimation of (p + 1) values 

rather than the complicated function f. The single variable y is called the response 

(output or dependent variable) and x1,x2,...,xp are known as predictor (input, 

independent or explanatory variables) when P = 1 ,the model is said to be simple 

regression model but if P > 1 it is called multiple linear regression model. When is 
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more than one y then the model is called the multivariate multiple regression 

model which we will not including in our study. In a linear model, the parameters 

enter linearly but the predictors do not have to be linear [2][5]. 

However, some relationship can be transformed to linearity as the last equation 

which can be linearized by taking logarithms. 

Recently, a great attention is being focused on biased estimation of regression 

parameters of a linear regression model. This attention is due to the inability of 

ordinary least squares to provide reasonable estimates when the matrix of 

explanatory variables is ill conditioned. Despite possessing the very desirable 

property of being the best linear unbiased estimator (BLUE) under the usual 

conditions imposed on the model, the least squares estimators can nevertheless, 

have extremely large variances, when the data are multicollinear which is one form 

of ill conditioning. Therefore ,many researches were performed to achieve biased 

estimators with better overall performance than the ordinary least squares 

estimators [5][6]. 

1.2 The Aims of the thesis 

 
In our thesis, we tried to attain different goals that can be summarized as 

follows: 

1. To assess the performance of PC estimators and RR estimators as an 

alternatives to OLS estimators in the case of existence of the multicollinearity 

problem. 

2. Representing different methods for detecting the multicollinearity problem and 

determine its probable effect, on the linear regression model. 

3. Studying different methods for estimating the ridge parameter (k say) and 

contains our proposed method for estimating the ridge parameter then 
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specifying the best of these methods, by using simulation some statistical 

measurements. 

1.3 Study Limitations 

 
In our study, we assume that there is no missing data or outliers in the 

dataset. Moreover, we focus our attention on the multicollinearity problem 

irrespective of other problems that the analyst may face, such as the autocorrelation 

and heteroscedasticity problems. 
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1.4 Literature Review 

 

The problem of multicollinearity among the data set and different topics 

related with it , were broadly discussed in literature. The following are some 

instances. 

In an article about response surfaces, Hoerl (1962).introduced many concepts 

which was the basis of ridge regression. This was followed by Hoerl and kennard 

(1970) article which gave a major impetus to ridge regression the bulk of the 

article was devoted to the ordinary ridge estimator 1( ' ) 'RRb X X kI X y  where k 

is an exogenous parameter have to be determined. The authors stated that there  

alwayes exists a k  > 0 such that mean square error RRb less than mean square error 

OLSb  . They also mentioned to the generalized form of ridge regression K where K  

is a digonal matrix of ridge parameters [30]. 

Lawrence S . Mayer and Thomas A. Willke (1974) viewed the ridge estimators as 

a subclass of the class of linear transforms of the least squares estimator. An 

alternative class of estimators, labeled shrunken estimators was considered. It was 

shown that these estimators satisfy the admissibilily condition proposed by Hoerl 

and Kennard [34]. 

M. Goldstein and A. F . M . Smith (1974) followed a new derivation of the Hoerl-

Kennard (1970) ridge estimator and its generalization. Comparison was made with 

James-stein estimator and with the generalized inverse estimator proposed by 

Marquardt (1970). Also a Bayesian approach was noted [24]. 

Donald, W. Marquardit and Ronald D. Snee (1975) discussed the use of biased 

estimation in data analysis and model building A review of the theory of ridge 

regression and its relation to generalized inverse regression was presented along 

with the results of a simulation experiment and three examples of the use of ridge 

regression in practice .Comments on variable selection procedures were included. 
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They concluded that when the predictor variables are highly correlated, ridge 

regression produces coefficients which predict and extrapolate better than least 

squares and is a safe procedure for selecting variables [32]. 

Richard F . Gunst and Robert L. Mason (1977) employed mean squared error 

criterion to compare five estimators of regression coefficients. Specifically, least 

squares, Principal components, ridge regression, latent root, and a shrunken 

estimator. Each of the biased estimators was shown to offer improvement in mean 

squared error over least squares for wide  range of choices of the parameters of the 

model. The results of a simulation involving all five estimators indicated that the 

principal components and latent root estimators perform best overall, but the ridge 

regression estimator has the potential of a smaller mean square error than either of 

these [29]. 

William, E. Strawderman (1978) used the generalized ridge regression estimator to 

estimate the vector of regression coefficients where the ridge constant was chosen 

on the basis of the data. For general quadratic loss he produced such estimators 

whose risk function dominates that of the least squares procedure provided the 

number of regressors is at least three. He studied the problem by the usual 

reduction to estimating the mean vector of a multivariate normal distribution [43]. 

George Cassela (1980) used an entirely new method of proof to derive conditions 

that are necessary and sufficient for minimaxity of a large class of ridge regression 

estimators. The conditions he derived were very similar to those derived for 

minimaxity of some stein type estimators [13]. 

George Cassela (1985) mentioned that the ridge regression was originally 

formulated with two goals in mind : improvement in mean squared error and 

numerical stability of the coefficient estimates. Conditions were given under which 

a minimax ridge regression estimator can also improve stability, a quantity that can 

be measured with the condition number of the matrix to be inverted. The 
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consequences of trading numerical stability for minimaxity were also discussed      

[14]. 

Quirino, Paris . (2001) proposed a novel maximum entropy estimator as an 

alternative to ridge regression estimator. The proposed estimator does not depend 

upon any additional information and does not affected by any level of 

multicollinearity and dominates the OLS estimator uniformly as it was shown by 

Monte Carlo experiments. The same experiments provided evidence that it is 

asymptotically unbiased and the estimates are normally distributed [38]. 

Fikri Akdeniz and selahttin Kaciranlar (2001) considered the standard multiple 

linear regression model where the matrix X was assumed to be of full column rank. 

They introduced a new biased estimator known as restricted Liu estimator and 

compared it with restricted least squares estimator in the matrix mean squared error 

sense [8]. 

G.R. Pasha, Muhammad Akber Ali shah and Ghosia (2004) adopted an 

unconventional method of the principal components for the solution of 

multicollinearity  and an attempt was made to show that by using such technique, 

some fairly precise estimates of the coefficients were obtained. The comparison 

between the variance of OLS estimates and principal components estimates was 

made on income and consumption model [39]. 

Yuzo Maruyama and william, E. Strawderman (2005) considered the standard 

linear regression model.They considered the estimation of  β under general 

quadratic loss functions. In fact , they extended the work of strawderman 

(1978) and Cassela (1985) by finding adaptive minimax estimators of β , which 

have greater numerical stability (i.e., smaller condition number) than the usual 

least squares estimator. They gave a subclass of such estimators which have a very 

simple form [33]. 

Hazim Mansoor Gorgees (2009) viewed the ridge estimators as a subclass of the 

class of shrinkage estimators. He stated the fact that the shrinkage factor can be 
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chosen will guarantee the ridge estimator to have mean square error smaller than 

the variance of least squares estimator, [26]. 

M. Revan Ozkala (2009) Introduced a new estimator when there exist stochastic 

linear restrictions on the parameter vector. The new estimator introduced by 

combining the ideas underlying the mixed and ridge regression estimators under 

the assumption that the errors are not independent and identically distributed. He 

called his new estimator as the stochastic restricted ridge regression ( SRRR ) 

estimator. The performance of ( SRRR ) estimator over the mixed estimator with 

respect of the variance and MSE matrices was examined [37] . 

A.V. Dorugade and D.N. Kashid (2010) proposed new method for choosing the 

ridge parameter. The performance of the proposed method was evaluated and 

compared through simulation study in terms of mean square error. The technique 

developed seems to be very reasonable because of having smaller MSE [20]. 

Hazim Mansoor Gorgees (2010) considered a Bayesian formulation of ridge 

regression problem which derived from a direct specification of prior informations 

about parameters of general linear regression model when the multicollinearity 

problem is presented. In addition to the Bayesian estimator of the ridge parameter, 

he followed entirely a new approach to derive the conventional estimator for the 

ridge parameter proposed by Horel-Kennard. A numerical example was given in 

order to compare the performance of such estimators [27]. 

M. EI - Dereny and N. I. Rashwan (2011) introduced many different methods of 

ridge regression. Those methods included ordinary ridge regression( ORR ), 

generalized ridge regression ( GRR ) and directed ridge regression  

( DRR ). Methods of selecting ridge parameter were discussed. They used 

simulation to compare between such methods with OLS method. They were better 

than OLS method when the multicollinearity is exist [16]. 

Feras Sh. M. Batah ( 2011 ) proposed a new estimator. Namely, Generalized 

Jackknife ridge regression estimator ( GJR ) by generalizing the modified jackknife 
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ridge regression estimator ( MJR ). He showed that the ( GJR ) estimator is 

superior in the MSE sense to the LASSO estimator , Generalized ridge regression 

estimator, Jackknife ridge regression estimator and modified Jackknifed ridge 

regression estimator [12]. 

Hazim mansoor Gorgees and Bushra Abd alrasool Ali (2013) studied two types of 

ordinary ridge regression estimators according to the choice of ridge parameter as 

well as the generalized ridge regression estimator. These methods were applied on 

a data set suffer from a high degree of multicollinearity. It was found that the 

generalized ridge regression estimator perform better than the other two methods in 

the sense of MSE and coefficient of determination     [25]. 

Yasin Asar, Adnan Karaibrahimoglu and Asir Genc (2014) proposed some 

modified ridge parameters. They compared their estimators with some estimators 

proposed earlier according to MSE criterion. All results were calculated by a 

Monte Carlo simulation. They concluded that their estimators perform better than 

the other in most situations in the sense of MSE [11]. 

Anwar Fitrianto and Lee CinyYik (2014) conducted some simulation study to 

compare the performance of ridge regression estimator and the OLS. They found 

that Hoerl and Kennard ridge regression estimation method has better performance 

than the other approaches [22]. 

Ashok V. Dorugade (2014) introduced a new approach to obtain the ridge 

parameter. Furthermore, he compared the proposed ridge parameter with other 

well-known ridge parameters in terms of MSE criterion. Finally, a numerical 

example and simulation study had been conducted to illustrate the optimality of the 

proposed ridge parameter [18]. 

Ahlam Abdullah Al somahis, Salwa Mousa and lutfiah ismail ALTurk (2015) 

proposed new methods for choosing ridge parameter for logistic regression. The 

performance of the proposed methods were evaluated and compared with other 

models that having different previously suggested ridge parameter through a 
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simulation study in terms of ( MSE ). They concluded that their suggested logistic 

ridge regression estimators were superior in most of the cases [10]. 
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 2.1 Multiple Linear Regression 

 
The most widely used regression models is the multiple linear regression 

model. In this model the response (dependent) variable  y  may be regarded as the 

weighted sum of the explanatory ( independent) variables x1,x2,...,xp (say) with 

unknown weights 1 2, ,..., p   . In general ,the multiple linear regression model can 

be written as follows: 

 

0 1 1 2 2 ... , 1,2,...,i i i p ip iy x x x i n          
 

 
where p is the number of explanatory variables, n is the number of observations. 

 

The matrix representation of the model is y X     where 1 2( , ,..., ) 'ny y y y  is 

the vector of the response variable, 0 1( , ,..., ) 'p     is the vector of the unknown 

parameters,

11 1

21 2

1

1

1

1

p

p

n np

x x

x x
X

x x

 
 
 
 
  
 

 is an  n (p + 1)  matrix of explanatory 

variables and 1 2' ( , ,..., ) 'n     is the vector of random errors. 

In this situation many assumptions have to be satisfied, these assumptions can be 

summarized as follows: 

i. The error terms are independent and have a constant variance 
2 . 
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ii. The error terms are normally distribute with mean vector equal to 0 and 

variance-covariance matrix 
2    that is 2(0 , )nN I   . 

iii. The matrix X is of full column rank ( i.e. rank (X) = p + 1 < n ). 

 

2.1.1 Ordinary Least Squares Estimators 

The ordinary least squares method is the most popular estimation 

procedure, based on the minimization of the sum of squared deviations '   where 

 '  = ( )'( )y X y X    

'  = ' ' ' ' ' 'y y X y y X X X       

'   =  ' 2 ' ' ' 'y y X y X X     

This follows due to the fact that ' 'X y  is a  (11) matrix or scalar, 

 whose transpose ( ' 'X y )' = 'y X   must have the same value. 

The least squares estimate of    is the value olsb  (say) which when substituted in 

equation (2.1) minimizes '  . It can be accomplished by differentiating '   with 

respect to   and setting the resultant matrix equation equal to zero, at the same 

time replacing   by olsb .This provides the normal equations 

  

               ( ' ) 'olsX X b X y                                                           

 

The solution of this equations is  

 

1( ' ) 'olsb X X X y                                                     ...(  2.1  ) 
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2.1.2 Properties of Ordinary Least Squares Estimator of Regression 

Coefficients 

The ordinary least squares estimator      has the following properties: 

1. 
olsb  is an estimate of   which minimizes the error sum of squares '   

irrespective of any distribution properties of the errors. 

2. In fact, an assumption that the error terms 
i , i =1,2,...,n are normally 

distributed is not required to obtain the estimators of the unknown 

parameters, but it is required in order to construct the t  and F  tests which 

depends upon the assumption of normality of error terms as well as 

obtaining the confidence intervals for the estimated coefficients, based on 

the  t  and F  tests. However, if the error terms are normally distributed with 

mean vector 0 and variance-covariance matrix 2

nI ,then the OLS estimator 

and the MLE of   are equivalent since maximizing the likelihood function 

is equivalent to minimizing the quantity '    [19]. 

3. The elements of 
olsb  are linear functions of the observations            and 

provide  unbiased estimates of the elements of  .This can be easily shown 

as follows: 

1 1( ' ) ' ( ' ) '( )olsb X X X y X X X X       

                            
1( ' ) 'olsb X X X    

    
1 1( ) ( ( ' ) ' ) ( ' ) ' ( )olsE b E X X X X X X E         

         Since ( ) 0E    then ( )olsE b  . 

4. Irrespective with the distribution of error terms, the fitted values are 

obtained   from  olsy X b


 . 

5. The residuals vector given by e y y


    is orthogonal to all explanatory 

variables, that is 
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                                         X'e = X' ( y - y


) 

 thus                
1' ' ' ( ' ) ' ' ' 0X e X y X X X X X y X y X y      

6. The fitted values are orthogonal to the vector of residuals, that is : 

ˆ ˆ ˆ ˆ' ( )' ( )'olse y y y y y X b y     

      ˆ ˆ ˆ ˆ' ( ' ' ') ' ' 'ols olse y y b X y y y b X y     

         
1ˆ' ( ' ' ( ' ) 'ols olse y y X b y X X X X X b   

                                       ˆ' ' ' 0ols olse y y X b y X b    

7. The variance-covariance matrix of  
olsb denoted as 2 1var( ) ( ' )olsb X X   

provides the variances (diagonal terms) and covariances (off diagonal  

terms) of the estimates. var( )olsb can be derived as follows: 

                                var( ) ( )( )'ols ols olsb E b b     

Since                  
1( ' ) 'olsb X X X y     

                 
1 1( ' ) '( ) ( ' ) 'X X X X X X X         

hence  

 
1 1var( ) [( ' ) ' ][( ' ) ' ]'olsb E X X X X X X    

  
1 1var( ) [( ' ) ' ][ ' ( ' ) ]olsb E X X X X X X    

  
1 1var( ) [( ' ) '] ( ')[ ( ' ) ]olsb X X X E X X X   

   
1 2 1var( ) ( ' ) ' ( ' )ols nb X X X I X X X   

      
2 1 1 2 1var( ) ( ' ) ' ( ' ) ( ' )olsb X X X X X X X X      

8. Assuming that 
0
'X  is a specified 1 p  vector of elements which are of the 

same form as a row of x so that 
0 0

0
' 'ˆ ols olsX b b Xy    is a fitted value at a 

specified point 
0X  . Then 

0ŷ  is the value predicted at 
0x  by the regression 

equation, and has the variance 

2 1

0 0 0 0 0 0
ˆvar( ) var( ' ) ' var( ) ' ( ' )ols olsy X b X b X X X X X     
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9. It can be easily shown that the ordinary least squares estimator is consistent, 

sufficient as well as unbiased estimator for   and its variance attains the 

lower bound of Rao-Gramer inequality [28]. 

var(T)  
2

2

[1 ( )]

ln
[ ]

B

L
E











 where ( )B   is the bias of the estimator 

Accordingly, 
olsb  is the best linear unbiased estimator [ BLUE] for   . 

2.1.3 Testing of Hypothesis in a Linear Regression Model [15] 

 
The different hypothesis concerning the regression parameters may all be 

examined in a similar way by a unified approach. Let us reffered to the general 

linear regression model as the full model (FM). When some regression coefficients 

are specified, the resulting model is said to be the reduced model(RM).The 

hypothesis to be tested is 

   : RM is adequate against   : FM is adequate 

 In the full model, there are (p+1) parameters (            ) to be estimated. Let 

us assume that for the reduced model there exist k different coefficients. Let 
^

iy

and 
^

*iy   be the values predicted for iy by the FM and RM respectively. The 

residuals  sum of squares obtained when fitting the full and reduced model are 

respectively 

                           SSE( FM ) =
^

2( )i iy y                                         ...( 2.2 ) 

                           SSE( RM ) =  
^

2( *)i iy y                                  

                   F = 
[ ( ) ( ) ] / ( 1 )

( ) / ( 1)

SSE RM SSE FM P K

SSE FM n P

  

 
                 ...( 2.3 ) 
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The FM has (p + 1) regression coefficients, thus, SSE( FM ) has n-p-1 d.f., 

similarly,  SSE( RM ) has n-k d.f. since the reduced model has k regression 

coefficients. Consequently, SSE( RM ) - SSE( FM) has ( n-k ) - ( n-p-1 ) = p+1-k 

d.f., the observed F statistic has F distribution with ( p+1-k ) and ( n-p-1 ) d.f. If the 

observed F value is larger than the theoretical value of F with ( p+1-k ) and (n-p-1 

) d.f. and specified value of significant level  then the null hypothesis    is 

rejected at level of significant . In other word    is rejected if  

                                            ≥  (             ) 

Where F is the observed value of F test in equation (2.3),  (             )  is 

the tabulated value obtained from the F table ,  is the level of significant. 

A substantial special case of the F test in equation (2.3) is obtained when the null 

hypothesis is                    which means that all explanatory variables 

under consideration have no significant effect. In such a case the reduced and full 

models will be : 

              RM :                                                                ...( 2.4 ) 

              FM :                                           ...( 2.5 ) 

Here, SSE( FM ) = SSE and SSE( RM ) = 2( )iy y  = SST since the least 

square estimate of    in the RM is y .The F ratio in ( 2.4 ) reduces to 

               F = 
( ) /

/ ( 1)

SST SSE P

SSE n P



                                                  
 ...( 2.6 ) 

Hence, the ANOVA table in multiple regression can be arranged as follows: 

Source d.f Sum of squares Mean square F test 

Regression P SSR MSR= 
   

 
 

F = 
   

   
 Residual n-p-1 SSE MSE= 

   

     
 

Total n-1 SST  
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2.1.4 The Coefficient of Determination [15][3] 

The ratio     
   

   
    

    

   
    

2( )i iy y



2( )iy y

   (2.7) is called the 

coefficient of determination .It can be explained rate as the proportion of total 

variability in the response variable y which can be accounted by the set of 

predictors            . 

Clearly, the value of    is close to one when the model fits the data well. In such a 

cases the observed and predicted values become close to each other, and 2( )i iy y


  

will be small, and    will be near unity. However, the reverse of this term is 

inaccurate, which implies that a large value of    does not necessarily mean that 

the model fits the data well. A more detailed analysis is required to in order to 

ensure that the model described the data properly. 

A value related to    is called the adjusted    denoted by 2

aR . It can be obtained 

from    by dividing SSE and SST by their respective d.f. and it is defined as 

follows : 

                2

aR  =    
    (      ) 

    (   )
                                                  ...( 2.8 ) 

This measurement is sometimes employed to compare models that have 

different numbers of explanatory variables. 
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2.2 Singular Value Decomposition 

 
In this section we introduce and discuss the concept of singular value 

decomposition of matrices as a powerful technique for analyzing the linear 

regression model. Accordingly the following definitions are necessary. 

Definition 1 

The singular values of a square matrix A is defined to be the square root of 

the eigenvalues of matrix (A'A) [ 40 ][26]. 

Definition 2 

The condition number is regarded as a ratio of the largest singular value to 

the smallest singular value [14][26] . 

Definition 3 

If the condition number is too large, the matrix is said to be ill conditioned. 

If  the condition number is infinite then the determinant of the matrix is equal to 

zero and hence the matrix is singular [14][26]. 

 

Definition 4 

Any symmetric matrix A is said to be positive definite if for each non zero 

vector y then y'Ay 0 [28][26]. 

 

Definition 5 

Any real symmetric matrix      has a spectral decomposition of the form 

 A= UU'. The columns of U are the normalized eigenvectors of A and   is 

diagonal matrix whose diagonal elements represent the eigenvalues of A [42]. 
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Definition 6 

Any real matrix      , (n  m) has singular value decomposition of the 

form           . 

Where: 

U is an     matrix with orthonormal columns (U'U = I ) , V is an     orthonormal 

matrix (V'V = I) and   is an (   )  diagonal matrix with positive or zero diagonal 

elements known as the singular values. 

From matrix B we can construct two positive definite matrices BB' and B'B where   

BB'= U   V'V   U' = U 
2 U' 

Similarly B'B = V 
2 V' 

Using the decomposition above, we can identify the eigenvectors and eigenvalues 

for B'B as the columns of V and the squared diagonal elements of    respectively. 

The latter show that the eigenvalues of B'B must be non negative [42]. 

2.3 The Case of Collinear Data [2][4][17] 

 
One of the most important assumptions associated with regression analysis 

is that the explanatory variables are not strongly interrelated. Usually, the 

regression coefficient is interpreted as the change in the response variable when the 

corresponding explanatory variable is increased by one unit while all other 

explanatory variables are held constant. This explanation will not be useful if there 

exist strong linear relationships between the explanatory variables. When the linear 

relationship among explanatory variables is completely absent, they are known to 

be orthogonal. In most regression problems the explanatory variables are not 

orthogonal, generally, the absence of orthogonality is not significant enough to 

abort the analysis. However, in many cases the explanatory variables are very 

strongly interrelated that the regression results are unclear. 

The condition of sever non orthogonality is also referred to as the problem of 

collinear data or the problem of multicollinearity. Two types of multicollinearity 
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may be faced in  regression analysis. specifically perfect and near multicollinearity 

as an example of perfect multicollinearity, suppose that the four ingredients of a 

mixture are studies considered by including their percentages of the total, 

1 2 3 4, , ,p p p p . These variables will have the exact linear relationship

1 2 3 4 100p p p p     The problem of multicollinearity may be highly difficult to 

discover. It is not a specification error that can be detected by investigating 

regression residual. Actually, it is not modeling error. It is a case of imperfect data. 

However, it is necessary to know when multicollinearity is exist and to be aware of 

its possible effects. Accordingly, one have to be very careful about any or all 

substantive conclusions based on regression analysis in the existence of 

multicollinearity. 

2.3.1Consequences of Multicollinearity [5][6][3] 

 
During regression calculations, the exact linear relationship  among the 

explanatory variables implies a division by zero which in turn causes the 

calculations to be aborted. When  the relationship is not exact the division by zero 

does not happen and the calculations would not aborted  but the division by a very 

small quantity still deform the results. In the case of near multicollinearity it is 

impossible to estimate the unique effects of individual variables in the regression 

equation because the multicollinearity can be thought of as a situation where two or 

more explanatory variables move together, consequently, it is impossible to 

determine which of the explanatory variables is producing the observed change in 

the response variable . 

The estimated values of the coefficient are very sensitive to inconsiderable 

variations in the data and addition or deletion of variables in the equation. The 

regression parameters would have large standard errors which influence both 

inference and forecasting that is based on the regression equation. Multicollinearity 
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deflate the partial t tests for the regression coefficients and give false non 

significant P values. 

2.3.2 Sources of Multicollinearity [1][7][21] 

 
In order to deal with multicollinearity problem we have to be able to 

identify its sources because the source of multicollinearity affects the analysis, the 

correction and interpretation of the linear regression model. The origins of 

multicollinearity may be summarized as follows: 

1. The multicollinearity has been created by the sampling technique . In this case 

the data have been collected from a narrow subspace of the explanatory 

variables. Collecting more data on an expanded range would treat this kind of 

multicollinearity problems. 

2. Substantial restrictions of the linear regression model or population. This 

source of multicollinearity exist whatever the sampling technique is applied. 

Many industrial or economic processes have restrictions on explanatory 

variables, either physically, legally or politically which will cause 

multicollinearity. 

3. Model choice or specification. This source of multicollinearity results from 

using explanatory variables that are powers or interactions of the original 

variables. 

4. Extreme values or outliers in the X space can cause multicollinearity. This 

should be remove before any treatment is applied. 
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2.3.3 Detection of Multicollinearity [3][5][15][32] 

 
Different methods of detecting multicollinearity are presented, we review 

some of them: 

 

1. At the first , we consider pair wise  scatter plots of pairs of explanatory 

variables looking for  near exact relationships. Also glance at the correlation 

matrix for high correlations. However, multicollinearity does not always clear 

when studying the variables two at a time next, we investigate variance 

inflation factors (VIF)values.VIF greater than 10 indicates the existence of 

multicollinearity problem. 

2. Eigen values of the correlation matrix of explanatory variables near zero 

indicate . the existence of multicollinearity problem 

3. The large condition numbers is an indicator of  the presence of 

multicollinearity . 

4. Explanatory variables whose regression coefficients are opposite in sign from 

what we believed may reveal multicollinearity problem. 

5. Farrar-Glouber test. 

   This test is based on the chi square statistic .The null hypothesis to be tested is 

                                         

  Against the alternative hypothesis  

                                 

 The test statistic is 

        
2

0  = - [ ( n-1) - 
1

6
(2P + 5 )] ln D                                            ...( 2.9 ) 

Where 

  n is the number of observations  

  P is the number of explanatory variables  

 D is the determinant of the correlation matrix. 
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Comparing the calculated value 2

0  with the tabulated value at P( P -1)/ 2 degrees of 

freedom and specified level of significant . 

If the calculated value 2

0  is greater than the  tabulated value, then the null 

hypothesis    will be rejected which means that the explanatory variables are 

interrelated. otherwise, the null hypothesis cannot be rejected. 

2.3.4 The Class of Shrinkage Estimators [26][34][36] 

 
Assuming that an  (   ) matrix of explanatory variables X and an  

 (   ) vector of the associated response variable y are known. Moreover 

let us assume that the sample means have been removed from the dataset so that           

'1


X = 0'  and '1


y = 0 where1


 is an (n) vector of ones. The singular value 

decomposition technique will be employed in order to obtain a deeper 

understanding of our data set. Consequently , we decompose the matrix X as 

follows : 

                  X = H 
1

2 G'                                                            ...( 2.10 ) 

Where H is an     matrix satisfy H'H =    , 
1

2  is a     diagonal matrix of 

ordered singular values of X, that is 
1 1 1

2 2 2
1 2 ... 0p       so that β is estimable G 

is  (   ) orthogonal matrix whose columns are the eigenvectors of X'X. 

Using this techniques the information matrix X'X can be written as follows: 

               X'X = G 
1

2  H'H 
1

2  G' = G G'                              ...( 2.11 ) 

 

Accordingly , the ordinary least squares estimator can be rewritten as : 

        

1

1 1 2( ' ) ( ') 'OLSb X X Xy G G G H y      

       

1 1

1 2 2' ' 'OLSb G G G H y G H y GC


       
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Where the vector  C = 
1

2 'H y


  is the vector of uncorrelated components of OLSb . 

Obviously : 

E( C ) = E ( G' OLSb ) = G'β = γ (say) and var( C ) = var ( G' OLSb ) = G' var ( OLSb )G 

Hence, 

var( C ) = 
2 G' 

1) '( G G  G = 
2 G'G 

1 G'G = 
2 1  

Which is a diagonal matrix , therefore the components of C are uncorrelated since 

the off diagonal elements of var(C) which represent the covariance terms are equal 

to zero. 

The class of shrinkage estimators denoted by SHb will have the general form  

      SHb = GC =  
1

p

j j j

j

g C


                                                   ...( 2.12 ) 

Where jg  is the thj  column of the matrix G , j  is the thj  diagonal element of 

the shrinkage factors matrix  , the range of shrinkage factors is usually restricted 

and it be:  

              0 ≤ 
j ≤ 1 , j=1,2,...,p,     is the 

thj element of vector C. 

2.3.5 Properties of Shrinkage Estimators [31][35][41] 

 
In general the shrinkage estimators are biased since 

 E( SHb  ) = E( GC)= G E(C) =G   and this vector is never equal to β = G γ  

unless = I . Hence, bias( SHb )=G(I- ) γ  

The variance matrix of SHb for non stochastic shrinkage factors is 

var( SHb )= var(GC)=G var(C)G'=
2 G

2 1 G' 

The mean square error matrix of 
SHb is given by  

              MSE( 
SHb )= E( 

SHb - β ) ( 
SHb - β )' 

Equivalently: 
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              MSE( SHb ) = MSE(GC) = G MCE(C ) G' 

Here, we focus our attention on MSE( C ) which can be derived as : 

 

              MSE( C ) = var ( C ) + ( bias C ) ( biasC )' 

              MSE( C ) = 
2 2 1 + ( I -  ) γ γ' ( I -  ) 

 

Clearly, MSE ( C ) is the sum of two matrices, the diagonal variance matrix 

 
2 2 1 and the matrix ( I -  ) γ γ' ( I -  ) with squared bias terms on the 

diagonal.  

Let us consider the 
thi  diagonal element of the matrix MSE ( C ) denoted by    

i iC Hence,  

                 MSE ( i iC ) = 

2 2
2 2(1 )i

i i

i

 
 


 

                            
...( 2.13 ) 

Clearly, MSE ( i iC ) changes as the 
thi shrinkage factor i changes. Actually, the 

first partial derivative of MSE ( i iC ) with respect to i is  

 

    

2
2( ) 2

2(1 )i i i
i i

i i

MSE C  
 

 


  


                                   ...( 2.14 ) 

 

While the second partial derivative is  

 

     

2 2
2

2

( ) 2
2i i

i

i i

MSE C 


 


 


                                                      ...( 2.15 ) 

To obtain the optimal value of i denoted as 
MSE

i  Minimize MSE( i iC ), we 

equate the first partial derivative to zero and solve for i as follows: 
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( )i i

i

MSE C






 = 0 

2
22

2(1 )i
i i

i

 
 


   = 0 

        
2

2 2i
i i i

i

 
  


  

2
2 2[ ]i i i

i


  


   

It follows that 

       

2 2

2 2 2
2

2

MSE i i
i

i i
i

i i

 


   


 

 




= 
2

2 2

i i

i i



 
 

Dividing both the numerator and denominator by 
2

i  to get  

                   
2

2

MSE i
i

i

i













                                                              ...( 2.16 ) 

Clearly 
MSE

i of equation ( 2.16 ) can never be negative nor larger than 1. 

2.4 Ordinary Ridge Regression Estimator 

 

    Different methods have been suggested to deal with co-linear data by 

adjusting the least squares method in order to allow introducing some bias in the 

estimators of regression parameters. One of the most popular methods is labeled as 

ridge regression method. The ridge regression estimators depend exactly upon an 

external parameter (k say) known as the ridge parameter or biasing constant for 

any k ≥ 0, we define the ridge regression estimator 
RRb  as follows: 

             
1( ' ) '

RR
X X kI X yb

 
 
                                                            ...( 2.17 ) 

Where the value of k is chosen by the analyst according to some reasonable criteria 

established by Hoerl and kennard [30][21]. 

It can be easily shown that the ridge regression estimator given in equation (2.17) 

is a member of the class of shrinkage estimators as follows: 

By using singular value decomposition approach and matrix algebra we have 
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1

1 1 2( ' ) ' [ ( ) '] '
RR

X X kI X y G kI G G H yb
       

 

1

1 2( ) ' '
RR

G kI G G H yb
    

1

1 2( ) '
RR

G kI H yb
    

1

1 2[( ) ] '
RR

G kI H yb


     

RR
G Cb                                                                   ...( 2.18 ) 

Where 1( )kI     which is a diagonal matrix . The thj diagonal element of the 

matrix  has the form  

           

,
j

j

j k








  

j=1,2,...,P 

Where 
j is the thj element (eigenvalue) of the diagonal matrix  and k is the 

ridge parameter [21]. 

2.4.1 Properties of Ridge Estimator 

 
We proceed our discussion with the following theorem since it is of great 

importance as we believe to clarity the properties of ridge regression estimator. 

Theorem 1  [28] 

Let y be an 1n  random vector. Let E( y ) =   and var( y ) = .  Then 

E( y'Ay ) = tr A  +  ' A
                                               ...( 2.19 ) 

 

In order to control the inflation and general instability associated with the least 

squares estimate, Hoerl, A.E.(1962) suggested using the estimator 

1( ' ) 'RRb X X kI X y  , k ≥ 0 

Putting  W= 1( ' )X X kI   then RRb can be rewritten as follows: 

        'RRb W X y                                                                         ...( 2.20 ) 
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The following alternative form describe the relationship of ridge estimate with the 

least squares estimate  

1( ' ) 'RR OLSb X X kI X Xb   = [ 1 1( ' ) ]p OLSI k X X b  = Z OLSb          ...( 2.21 ) 

 Where : 

Z= [ I + 1 1( ' ) ]k X X     From (2.21) it is clear that RRb is a linear transformation of 

OLSb and that  RRb is a biased estimate of β since E( RRb  ) = E( Z OLSb ) =Z E( OLSb ) 

 = Z β 

The variance-covariance matrix of RRb  can be obtained as follows: 

var( RRb ) = var(W X' y) = WX' [ var(y)] XW' 

var( RRb ) = WX' [ 2

nI  ] XW' = 2 ' 'WX XW  

var( RRb ) =   2 1 1( ' ) ' ( ' )X X kI X X X X kI                                   ...( 2.22 ) 

The residual sum of squares may be written as  

SSE ( k ) = ( y- X RRb )' ( y- X RRb ) 

SSE ( k ) = ( y- X OLSb )' ( y- X OLSb ) + ( RRb - OLSb )' X'X ( RRb - OLSb ) ...( 2.23 ) 

The formula in (2.23) can be demonstrated as follows: 

= ( y- X RRb )' ( y- X RRb ) 

= ( y - X RRb  + X OLSb  - X OLSb )' ( y - X RRb  + X OLSb  - X OLSb ) 

= [ ( y - X OLSb ) - X( RRb - OLSb ) ]' [ ( y - X OLSb ) - X( RRb - OLSb ) ] 

      = ( y- X OLSb )' ( y- X OLSb ) + ( RRb - OLSb )' X'X ( RRb - OLSb ) - ( RRb - 

OLSb )' X'( y- X OLSb ) -  ( y- X OLSb )' X( RRb - OLSb ) 

= ( y- X OLSb )' ( y- X OLSb ) + ( RRb - OLSb )' X'X ( RRb - OLSb ) - ( RRb - 

OLSb )'( X'y-X'X OLSb ) - (X'y - X'X OLSb )' ( RRb - OLSb ) 

Clearly, the last two terms are equal to zero since X'y = X'X OLSb and hence the 

result. 

the total mean square error is 

TMSE ( RRb  ) = E (  RRb  - β )' (  RRb  - β ) 
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By applying theorem 1 we get  

TMSE ( RRb  ) = 2 1 1[( ' ) ' ( ' ) ] '( ) '( )tr X X kI X X X X kI Z I Z I           ...( 2.24 ) 

Substituting from Z by [ I + k 1 1( ' ) ]X X    in the second term of the right hand side 

of equation (2.24) and using matrix algebra for simplification we obtain 

TMSE( RRb ) = 
 

2 2 2

2
1

' ( ' )
( )

P
i

i i

k X X kI
k


  







 



                  

...( 2.25 )     

TMSE( RRb  ) = 1 2( ) ( )k k   

The first term on the right hand side of equation(2.25) 1( )k is the sum of 

variances ( total variance ) of RRb components and the second term 2 ( )k is the 

square of the bias. 

Theorem 2 [30] 

The total variance 1( )k is a continuous, monotonically decreasing function 

of k. 

Corollary 2.1 

   The first derivative w.r.to k of the total variance 1 '( )k  approaches (-  ) 

as k approaches 0 0t

Pand   , moreover the matrix X'X becomes singular. 

The proof of theorem (1) and its corollary (2.1) is readily obtained by expressing 

1( )k and 1 '( )k  in terms of i . 

Theorem 3 [28] 

The squared bias 2 ( )k is continuous, monotonically increasing function of 

k. 

Proof: 

  Recalling that X'X = G G' where G is the orthogonal matrix whose columns 

are the normalized eigenvectors of X'X and  is the diagonal matrix whose 

elements are the eigenvalues of X'X. Then 2 ( )k can be rewritten as  

2 2

2 ( ) '( ' )k k X X kI     
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2 2

2 ( ) '[ ' ']k k G G k GG      

2 2

2 ( ) ( ) '( )k k G kI G     

Putting G  and expressing 2 ( )k  in terms of its components we get  

2
2

2 2
1

( )
( )

P
i

i i

k k
k









                                                                 ...( 2.26 ) 

Each element i k  is positive since i  0 for all i and k ≥ 0 ,hence there are no 

singularities in the sum. Also it is clear that 2 (0) 0  . 

Then 2 ( )k is a continuous function for k ≥ 0 . If k  0, 2 ( )k  can be written as 

follows : 

2

2
21

( )

(1 )

P
i

ii

k

k










                                                                     ...( 2.27 ) 

Since i  0 for all i, the functions i

k


 are obviously monotone decreasing as k 

increase and consequently each term of 2 ( )k is monotone increasing. This yield 

2 ( )k to be monotone increasing. 

Corollary 2.2 

The squared bias 2 ( )k approaches β'β as an upper limit 

Proof: 

From (2.27), we have  

      2 ( )k         
2

2

2

'

(1 )

i
i

i

k


  


 


    = β' G' G β = β'β 

Theorem 4 ( Existence Theorem ) [30] 

 

There alwayes exists a k  0 such that :  

TMSE ( RRb  )  TMSE ( OLSb  ) 
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Proof : 

First , we have to note that  

    

2

1

1

1
(0)

P

i i

 


   and 2 (0) 0   

   Moreover 

    
1 2( ) ( ) ( )RRd TMSE b d k d k

dk dk dk

 
   

    

2
2

3 3

( )
2 2

( ) ( )

RR i i i

i i

d TMSE b
k

dk k k

  


 
 

 
                       ...( 2.28 ) 

 

Each of 1 ( )k and 2 ( )k  was established to be monotonically decreasing and 

increasing respectively. Their first derivatives are alwayes non positive and non 

negative respectively. The proof is completed whenever there exist, a k  0 such 

that: 

         
( )RRd TMSE b

dk
 0  

From equation (2.28) it can be shown that the above inequality have been satisfied   

when k 
2

2

MAX




                                                                        ...( 2.29 ) 

2.4.2 Choice of Ridge Parameter 

 
The ordinary ridge regression estimator does not provide a unique solution 

to the multicollinearity problem , but provide a family of solutions. These solutions 

depend upon the value of k ( the ridge parameter). No explicit optimum value can 

be found for k. Yet, several stochastic choices have been proposed for this ridge 

parameter. Some of these choices may be summarized as follows . 
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Hoerl and Kennard ( 1970).Proposed graphical method called ridge trace to select 

the value of the ridge parameter k. When viewing the ridge trace, the analyst picks 

the value of k for which the regression coefficients have stabilized [18][7]. 

Often, the regression coefficients will vary widely for small values of k and then 

stabilize. We have to choose the smallest value of k(which introduces the smallest 

bias) after which the regression coefficients have seem to remain constant. 

Hoerl, Kennard and Baldwin (1975) ,proposed another method to select a single 

value of k given as[30] . 

 

         

2

'
HKB

OLS OLS

p S
k

b b





                                                          ...( 2.30 ) 

 
 

Where p is the number of explanatory variables, 2S  is the OLS estimator of 2  and 

OLSb is the OLS estimator of the vector of regression coefficients  . 

Lawless and Wang (1976) proposed selecting the value of k by using the following 

formula 

[3]. 

      
2

' '
LW

OLS OLs

p S
k

b X X b



                                                     ... ( 2.31 ) 

 

Assuming that the regression coefficients vector has certain prior distribution 

srivastava followed Bayesian approach to estimate the ridge parameter . He 

concluded that [42]. 

        

2

( ' )
[0,

' '3
[ ( ) ]

1

Bayes

OLS OLS

tr X X
k Max

b X X bn p
p

n p S




 


 

                    ...( 2.32 ) 

Where tr (X'X) denoted to the trace of the matrix X'X. 

2.4.3 Proposed Method 
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Our contribution in this topic represented by utilizing the concept of 

condition number in order to select the ridge parameter. The condition number is 

defined to be the ratio of the largest to the smallest singular value of the matrix of 

the explanatory variables X [14]. 

The suggested estimator denoted as CNK


is defined as follows : 

 

          
2 1

[0, ]
'

CN

OLS OLS

pS
k Max

b b CN



                                            ...( 2.33 ) 

 

Where CN referred to condition number. 

Our proposed estimator is the modification of HKBk


. The small  amount 
1

CN
is 

subtracted from HKBk


.This amount , however ,varies with the strength of 

multicollinearity in the model. 

If the condition number is too large then CNk


would coincide with HKBk


 since in 

such case , the fraction 
1

CN
would approach to zero. 

On the other hand if  the condition number is too small (approximately equal to 1) 

then the possibility that (
2 1

'OLS OLS

p S

b b CN
 ) be negative is too large. 

In this case we choose CNk


 to be equal to zero which means that the ridge 

regression estimator would coincide with the ordinary least squares estimator and 

the data set is not influenced by the multicollinearity problem. 

2.4.4 Generalized Ridge Regression [21][36][43] 

By using the singular value decomposition technique in order to derive the 

generalized ridge regression , we can rewrite the linear regression model as 

follows: 
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1

2( ) ( ' )y X H G         

     or    y Z                                                              ...( 2.34 ) 

    Where :  

1

2 , 'Z H G     

The model in equation(2.34) is called the canonical model or uncorrelated 

components model . The OLS estimator of  is given as: 

 

      
1 1( ' ) ' 'OLS Z Z Z y Z y                                                      ...( 2.35 ) 

And  
2 1 2 1( ) ( ' )OLSVar Z Z       which is diagonal. This shows the important 

property of this parameterization since the elements of OLS , namely,  

( 1 2, ,..., )p OLS    are uncorrelated. 

The generalized ridge estimator for  is given by: 

1 1( ' ) ' ( ) 'GRR Z Z K Z y K Z y                                       ...( 2.36 ) 

1 1 1( ) ' ( )OLS OLSK Z Z I K         

  =  ( )i
K OLS OLS

i i

W diag
K


 





, i=1,2,...,p 

Where K= diag 1 2( , ,..., )pK K K and, 1 1( )KW I K     diag ( )i

i iK



 
 i= 1,2 ,...,p 

The mean square error of GRR is given by  

( ) var( ) ( )( ) 'GRR GRR GRR GRRMSE bias bias      

= 
2 1( ') ( ) ( ) 'K K K OLS OLS Ktr W W W I W I       

= 
2 2

( )2

2
1 1( ) ( )

p p
i i OLSi

i ii i i i

K

K K




  




 
                                                ...( 2.37 ) 

To obtain the value of iK that minimize ( )GRRMSE  we differentiate equation (2.37) 

with respect to iK and  equating the resultant derivative to zero. Thus 
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2

( )2

3 3

( )
0

( ) ( )

i i i OLSGRR i

i i i i i

KMSE

K K K

  


 


  

  
   

By solving for iK we obtain  
2

2

( )

i

i OLS

K



 Since the value of 2  is usually 

unknown, we use the estimated value 2


. Therefore, when the matrix K satisfies: 

 

2

2

( )

i

i OLS

K







 = diag (

2 2 2

2 2 2

1 ( ) 2 ( ) ( )

, ,...,
OLS OLS p OLS

  

  

  

) 

 

Then the MSE of generalized ridge regression attains the minimum value . 

The original form of generalized ridge regression estimator can be converted back 

from the canonical form by (GRR) (GRR)b =Gα                                      ...( 2.38 ) 

 

 

 

 

 

 

 

 

 

2.5 Principal Components Regression  

Ridge regression was offered as a technique which attempted to overcome 

the multicollinearity problem. An alternative procedure known as principal 

components approach ,was first proposed by Harold Hoteling ( 1933 ). 
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In order to obtain a good realization of this approach let us proceed our discussion 

with the case of two predictors         .If these predictors are correlated then the 

matrix X will not be orthogonal consequently, this will complicate the 

interpretation of the effects of    and    on the response variable y [5][3]. 

From the geometric point of view, let us rotate the coordinate axis so that in the 

new system, the independent variables are orthogonal. Moreover, let us make the 

rotation so that the first axis lies in the direction of the largest variation in the data, 

the second axis lies in the direction of the second largest variation in the data [44]. 

These rotated directions (  and    say in our two predictors case ) are simply 

linear combinations of the original predictors. 

 

 

 

 

 

 

 
 

 

 

Figure (2-1) 

Original independent variable are X1 and X2, Principal Components are Z1and Z2 

 

We now illustrate how these directions can be calculated. Using singular value 

decomposition then X = H 
1

2  G' where each of H,   , G is defined earlier   

X'X = G 
1

2  H'H 
1

2  G' = G G'  

Since G is orthogonal matrix then the general linear regression model y = Xβ +  

can be rewritten as follows: 
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y = X GG' β +  = Z +                                                          ...( 2.39 ) 

Where Z= XG and  = G'β 

Hence 

Z'Z = G'X'XG = G' ( G G' ) G =   = diag(            )   

where               are the eigenvalues of X'X. The columns of G are 

the eigenvectors of X'X and the columns of Z are the principal components of X 

and these are orthogonal to each other [44][9][23]. 

Thus, the procedure creats a set of artificial variables 
's

jz  from the original ' s

jX via 

a linear transformation Z = XG in such a way that the Z vectors are orthogonal to 

each other. The    corresponding to the largest    value is called the principal 

component and it explains the largest proportion of the variation in the 

standardized dataset. 

Further,
's

jz explain smaller and smaller until all variation is explained. Typically, 

one does not use all the 
's

jz  but follows some type of selection rule. No universal 

rule is presented for selecting the components. Some statisticians use the rule that 

only eigenvalues greater than 1 are of interest. Other statisticians suggested that the 

components might be computed until some arbitrarily large proportion (may be 

0.75 or more) of the variances has been explained  the OLS estimator of  is given 

as: 

^
1 1( ' ) ' ' 'Z Z Z y G X y                                                ...( 2.40 ) 

Assuming that the first q ( q  p ) principal components are selected, then the 

reduced estimator can be written as follows: 

^
1 1( ' ) ' ' 'q q q q q qZ Z Z y G X y   

                                         
...( 2.41 )   

Where qZ = X qG , qG is the matrix of the first q eigenvectors of X'X and q is the 

diagonal matrix contains the first q eigenvalues of X'X. 
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To find the principal component estimator of the regression coefficients in terms of 

the original variables, by solving  = G'β for β to get β = G that is because G is  

orthogonal matrix. Let PCb denoted to the principal component estimator of β then 

^

PCb G   

If q principal components are selected then 

 
^

1

( ) ' 'qPC q q q q qb G G G X y                                                 ...( 2.42 ) 
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The Experimental Side 

 

3.1  Introduction 

Whereas, simulation in a narrow sense (also referred to as stochastic 

simulation) is defined as experimenting with the model over time, it includes 

sampling stochastic variates from probability distribution. Usually, simulation is 

regarded as " method of last resort " to be employed when every other approach 

else has failed. The development of software's and the used techniques have made 

the simulation one of the most popular and accepted tools for researchers in the 

system structure and analysis. 

simulation approach has a numerous fields of applications. For instance, 

conducting and analyzing manufacturing systems, evaluating military weapons 

systems or their logistical requirements and analyzing economic systems. 

The main purpose of this chapter is to employ the results obtained from the 

simulation study which assess the performance of some ridge regression methods 

as well as the principle component method to the data obtained from Tagi gas 

distribution plant explained in the practical side of this chapter. 

In this section, we will discuss the simulation study that compares the ridge 

estimators with principal component estimator under several degrees of 

multicollinearity, especially when correlation level between explanatory variables  

( 0.70,0.80, 0.90,0.95  ). We consider four different ordinary ridge estimators 

corresponding to four different values of ridge parameter k . 

 

Chapter Three 

The Experimental and The Practical side 
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The values of k  are  , ,HKB LW Bayesk k k as well as our proposed value of the ridge 

parameter which we denote it by CNk . 

The several values of k were calculated by using equations (2.30),(2.31) ,(2.32), 

and (2.33). 

Moreover, the generalized ridge regression estimator and principal component 

estimators were obtained from equation (2.36) and (2.42) respectively .Since the 

performance of different estimators is influenced by the sample size , we choose 

four types of samples, small of size 10 , median of size 40 and large of size 100 

and very large of size 200. The error terms were generated at different levels of 

standard deviations, In particular, at ( 5,10,20 25and  ). 

 The mean square error (MSE) is used as a measure to assess the performance of  

the stated methods. 

3.1.1 Study Design  

       In our experimental study, we aim to assess and compare the performance 

between the several estimation methods that was already stated. The simulation 

technique was used for this situation and the experiment was repeated 1000 time. 

Moreover , we assume that the error term is normally distributed as N( 0,   ).The 

random variables were generated according to the equations 

x1=sqrt((1-row^2)).*x(:,1)+row*x(:,1(; 

x2=sqrt((1-row^2)).*x(:,2)+row*x(:,2(; 

x3=sqrt((1-row^2)).*x(:,3)+row*x(:,3(; 

x4=sqrt((1-row^2)).*x(:,4)+row*x(:,4(; 

xi=[x1 x2 x3 x4] 

The measurment MSE is used as  

MSE = sqrt(sum(y-yhad).^2/(n*r)(; 

when r = 1000 

 

 

                       

                         Table (3-1): The values of MSE at 𝜌 = 0.70 
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n Method 
Standard deviation   

5 10 20  25 

10 

PC 1.4043e-017   2.1065e-017 2.1065e-017 
  

   7.3728e-017  

 GRR 0.0197 0.0227 0.0233 
       

      0.0233 

  HKBk


 0.0229 0.0238 0.0235 
       

      0.0233 

 LWk


 0.0024 0.0024 0.0024 
       

      0.0024 

  Bayesk


 0.0039 0.0039 0.0039 
       

      0.0039 

CNk


 7.3728e-017 7.3728e-017 7.3728e-017 
  1.4043e-017 

40 

PC 1.7115e-017 3.9497e-018 2.1943e-01 
     

   6.5828e-018 

GRR 0.0126 0.0125 0.0125 
        

        0.0125 

  HKBk


 0.0764 0.0747 0.0742 
       

        0.0742 

LWk


 0.0031 0.0031 0.0031 
       

        0.0031 

 Bayesk


 0.1128 0.1134 0.1136 
        

        0.1136 

CNk


 0.0037 5.7051e-018 7.5922e-017 
     

   1.0050e-016 

100 

PC 8.8818e-018 6.8834e-017 6.6613e-018 
  

  1.1102e-017    

GRR 0.0078 0.0078 0.0078 
     

      0.0078 

  HKBk


 0.0355 0.0303 0.0273 
        

      0.0268 

LWk


 4.3631e-004 4.3625e-004 4.3623e-004 
   

   4.3623e-004 

 Bayesk


 0.0436 0.0438 0.0439 
       

        0.0439 

CNk


 0.0012 3.8272e-004 3.9968e-017 
   

  2.6645e-017 

200 

PC 
   

   4.7495e-017 

     

    9.0280e-017 

   

   8.5963e-017 

   

   1.9116e-016 

GRR 
      

        0.0054 

       

        0.0054 

    

       0.0054 

     

       0.0054 

  HKBk


 
      

        0.0525 

        

        0.0499 

     

       0.0490 

      

       0.0489 

LWk


 
    

   3.4149e-004 

    

    3.4148e-004 

   

   3.4148e-004 

    

   3.4148e-004 

 Bayesk


 
      

        0.0732 

      

       0.0734 

       

       0.0735 

    

       0.0735 

CNk


 
     

   8.5901e-004 

    

   5.1013e-004 

   

   7.6542e-017 

   

  1.8723e-016 

  

Table ( 3-2 ): The values of MSE at ρ = 0.80 
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n Method 
Standard deviation   

5 10 20  25 

10 

PC 

 

  2.1065e-017 

 

  4.9152e-017 

  

   3.1598e-017 

 

   1.4043e-017 

 GRR 

   

      0.0197 

     

      0.0227 

      

       0.0233 

      

      0.0233 

  HKBk


 

    

      0.0228 

    

      0.0238 

     

       0.0235 

      

      0.0233 

 LWk


 

      

      0.0024 

   

      0.0024 

       

       0.0024 

      

      0.0024 

  Bayesk


 
    

      0.0039 

   

      0.0039 

      

       0.0039 

      

      0.0039 

CNk


 

  

  4.2130e-017 

 

   4.2130e-017 

  

   4.2130e-017 

  

   5.9684e-017 

40 

PC 

  

  7.4605e-018 

   

   1.2727e-017 

   

    4.8713e-017 

   

   2.6770e-017 

GRR 
     

      0.0126 

      

        0.0125 

       

        0.0125 

       

       0.0125 

  HKBk


 

    

      0.0764 

      

        0.0747 

      

        0.0742 

     

       0.0742 

LWk


 

      

      0.0031 

      

        0.0031 

     

        0.0031 

     

       0.0031 

 Bayesk


 
       

      0.1128 

     

       0.1134 

      

       0.1136 

       

       0.1136 

CNk


 

       

      0.0038 

   

  4.6957e-017 

   

    2.1943e-018 

   

   1.1279e-016 

100 

PC 

    

   6.6613e-018 

 

   6.6613e-018 

  

    2.8866e-017 

   

    4.8850e-017 

GRR 
        

        0.0078 

        

       0.0078 

      

        0.0078 

      

      0.0078 

  HKBk


 

      

        0.0356 

       

       0.0304 

        

        0.0273  

     

       0.0268 

LWk


 

   

    4.3631e-004 

  

    4.3625e-004 

   

    4.3623e-004 

   

    4.3623e-004 

 Bayesk


 
        

        0.0436  

         

       0.0438 

       

        0.0439 

     

       0.0439 

CNk


 
0.0012 

    

    3.9946e-004 

   

    2.4425e-017 

 

    7.3275e-017 

200 

PC 
 

   1.5308e-017 

 

   2.2766e-017 

 

  7.3009e-017 

 

  5.4561e-017 

GRR 
      

        0.0054 

 

        0.0054 

    

      0.0054 

    

      0.0054 

  HKBk


 
       

        0.0525 

     

        0.0499 

    

       0.0490 

    

      0.0489 

LWk


 
 

   3.4149e-004 

 

   3.4148e-004 

 

  3.4148e-004 

 

  3.4148e-004 

 Bayesk


 
      

       0.0732 

     

       0.0734 

     

       0.0735 

       

      0.0735 

CNk


 
8.5901e-004 

 

   5.1794e-004 

   

  3.0617e-017 

   

  2.3787e-016 

  

Table ( 3-3 ): The values of MSE at ρ = 0.90 
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n Method 
Standard deviation   

5 10 20  25 

10 

PC 
  

  7.0217e-018 

   

   1.0533e-017 

    

   2.1065e-017 

   

    3.8619e-017 

 GRR 
     

       0.0192 

       

        0.0226 

        

      0.0232 

        

       0.0233 

  HKBk


 
      

       0.0227 

       

        0.0238 

        

      0.0235 

         

       0.0234 

 LWk


 
     

       0.0024 

       

        0.0024 

         

      0.0024 

        

       0.0024 

  Bayesk


 
      

       0.0039 

      

        0.0039 

         

      0.0039 

         

       0.0039 

CNk


 
  

  1.0533e-017 

    

    6.6706e-017 

     

   6.6706e-017 

    

   7.0217e-018 

40 

PC 
    

   2.3259e-017 

       

   4.1691e-017  

      

    2.1943e-018 

  

   4.3447e-017 

GRR 
       

       0.0126 

         

        0.0125 

         

        0.0125 

         

        0.0125 

  HKBk


 
        

       0.0766 

         

        0.0748 

          

        0.0742 

         

        0.0742 

LWk


 
       

       0.0031 

          

        0.0031 

        

        0.0031 

       

        0.0031 

 Bayesk


 
     

       0.1127 

         

       0.1134 

      

        0.1136 

         

        0.1136 

CNk


 
     

       0.0042 

     

   2.7648e-017 

     

    4.9591e-017 

   

   6.9778e-017 

100 

PC 
   

   8.8818e-018 

 

   4.4409e-018 

   

   8.8818e-018 

 

   7.3275e-017 

GRR 
      

       0.0078 

       

         0.0078 

     

        0.0078 

       

       0.0078 

  HKBk


 
      

       0.0359 

      

         0.0307    

     

        0.0274  

   

        0.0269 

LWk


 
   

    4.3632e-004 

      

    4.3625e-004 

  

    4.3623e-004 

  

   4.3623e-004 

 Bayesk


 
        

       0.0435    

      

         0.0438   

      

        0.0439 

     

        0.0439 

CNk


 
       

       0.0013 

 

   4.7300e-004 

 

    2.8866e-017 

    

    4.8850e-017 

200 

PC 
    

   6.2019e-017 

   

    6.2411e-017 

   

  3.6112e-017 

 

  4.9065e-017 

GRR 
        

         0.0054 

       

        0.0054 

     

       0.0054 

      

       0.0054 

  HKBk


 
      

         0.0528 

        

       0.0500 

      

       0.0490 

       

       0.0489 

LWk


 
     

   3.4150e-004 

       

   3.4148e-004 

    

  3.4148e-004 

   

   3.4148e-004 

 Bayesk


 
        

        0.0731 

        

       0.0734 

    

       0.0735 

     

       0.0735 

CNk


 
    

   8.8349e-004 

    

    5.5233e-004 

   

  1.7153e-016 

  

   9.8131e-018 

   

Table ( 3-4 ): The values of MSE at ρ = 0.95 
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n Method 
Standard deviation   

5 10 20  25 

10 

PC 
    

   2.8087e-017 

     

  2.1065e-017 

    

   5.9684e-017 

    

   7.0217e-017 

 GRR 
        

        0.0185 

          

      0.0225 

         

        0.0232 

        

       0.0233 

  HKBk


 
      

        0.0225 

          

      0.0237 

       

        0.0235 

        

       0.0235 

 LWk


 
         

        0.0024 

         

      0.0024 

       

        0.0024 

        

       0.0024 

  Bayesk


 
       

        0.0039 

        

      0.0039 

      

        0.0039 

      

       0.0039 

CNk


 
    

    1.0533e-016  

 

   7.6210e-17 

            

   7.6120e-17 

      

   8.7771e-017       

40 

PC 
   

  1.0094e-017 

 

 1.6238e-017 

  

  8.3382e-018 

  

 1.1849e-017 

GRR 
    

       0.0126 

      

      0.0125 

      

      0.0125 

     

     0.0125 

  HKBk


 
    

       0.0768 

     

      0.0749 

     

      0.0743 

      

      0.0743 

LWk


 
    

       0.0031 

     

      0.0031 

      

      0.0031 

    

      0.0031 

 Bayesk


 
   

       0.1126 

     

      0.1134 

     

      0.1136 

       

      0.1136 

CNk


 
     

       0.0047 

 

 5.3979e-017 

  

 4.8713e-017 

 

  3.9058e-017 

100 

PC 
  

   6.6613e-018 

 

  1.5543e-017 

 

  3.9968e-017 

 

  1.3323e-017 

GRR 
    

     0.0078 

   

      0.0078  

   

     0.0078 

   

      0.0078 

  HKBk


 
   

     0.0363 

  

      0.0311 

    

     0.0276 

     

      0.0270 

LWk


 
  

 4.3633e-004 

 

  4.3625e-004 

  

  4.3623e-004 

   

   4.3623e-004 

 Bayesk


 
    

     0.0435    

    

      0.0438 

    

      0.0439 

 

      0.0439 

CNk


 
    

     0.0013 

 

  5.5274e-004 

 

  1.7764e-017 

 

  4.4409e-017 

200 

PC 
  

  1.5230e-016  

    

   4.9458e-017 

     

   8.7140e-017 

    

   2.0804e-017 

GRR 
   

      0.0054 

      

       0.0054 

       

        0.0054 

         

       0.0054 

  HKBk


 
       

      0.0531 

     

       0.0502 

       

        0.0491 

       

       0.0489 

LWk


 
  

  3.4150e-004 

    

   3.4148e-004 

    

   3.4148e-004 

      

   3.4148e-004 

 Bayesk


 
      

      0.0731 

       

       0.0734 

      

         0.0735 

      

       0.0735 

CNk


 
  

 9.0803e-004 

    

   3.8924e-004 

    

   6.1626e-017 

    

   1.1116e-016 



Chapter Three                                                                       The Experimental & The Practical side 

 

04 

 

3.2  The Practical side 

      In the practical side of this chapter, we apply the procedures discussed 

earlier employing the data obtained from Tagi gas filling company during the 

period ( 2008-2016 ). The company is one of the formations of the oil ministry that 

had set up in (1967).the company is linked to more than 250 gas filling plants in 

Baghdad and other provinces. The company produces each of liquid gas from 

propane gas mixture and liquid butane gas, as well as the production of some 

solvents such (as hexane) to meet the need for business activity. 

In our study we wish to determine the effect of four explanatory variables 

                 on the response variable Y. Where Y it represents the annual 

output of liquid gas cylinders, and the explanatory variables                  

refer to craftsmen, administrators, technicians and engineers respectively. We 

assume that the explanatory variables and the response variable represented 

according to the linear model from as follows: 

                                  0 1 1 2 2 3 3 4 4Y X X X X                                      (3.1)  

Table ( 3-5 )  

Values of four explanatory variables                 and the response variable Y 

            Y                                                         

      29024876         2186           490          1673        312 

      29024876         2184           464          1673        325 

     28259383         2397           510          1836        357 

    31691496         2552           544          1955        380 

     32655027         2575           549          1973        383 

     33691061         2828           604          2166          421 

     35441678         2787           593          2135          415 

     36872615         2929           624          2244          436 

     39256145         3297           702          2524          490 
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The table below represents descriptive statistics for the explanatory variables and the 

dependent variable. 

                                                     Table ( 3-6 )  

    Descriptive Statistics 

   variable     N   Minimum    Maximum       Mean Standard .Deviation 

      Y      9       28259383     39256145 32879684.11       3813683.112 

         
     9       2184         3297   2637.222        363.51127 

         
     9       464          702   564.4444         74.2460 

         
     9       1673         2524    2019.889        278.35249 

        
     9         312          490        391        56.16939 

 

In table below, the correlation matrix is displayed which involve the correlation 

coefficients between the explanatory variables themselves and between each 

explanatory variable and the response variable Y.     

             Table ( 3-7 )  

           Matrix of Correlation coefficients 

          Y        1X         2X          3X          4X   

         Y    1.0000     0.9578     0.9596    0.9578     0.9498 

            
    0.9578     1.0000     0.9951    1.0000     0.9974 

            
    0.9596     0.9951    1.0000     0.9949     0.9855 

           
    0.9578     1.0000     0.9949    1.0000     0.9976 

           
    0.9498     0.9974     0.9855     0.9976    1.0000 

 

 

 

 



Chapter Three                                                                       The Experimental & The Practical side 

 

04 

 

 The table below ,the eignvalues and condition numbers of the correlation matrix are 

represented.  

          Table ( 3-8 )  

Analyses of eigenvalues for correlation and matrix condition numbers    

                 Eigen value       Condition numbers 

                   31.882165                        1 

  

                   0.117604                 271.0976 

 

                   0.000219                145580.7 

 

                   0.000009                3542462.8 

 

 

The eigenvectors of the correlation matrix are give in table ( 3-9) 

Table ( 3-9 )   

      Eigenvectors of correlation matrix 

           1X             2X              3X           4X  

       -0.5670         0.0527         1.08514       0.5009 

        0.4087        -0.7635        -1.11670             0.4988 

       -0.4183         0.0697         1.10856         0.5009 

        0.5800         0.6398        -1.11163        0.4994 
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3.2.1 The Farrar-Glauber test :- 

      As we mentioned earlier, the Farrer-Glouber test is used to detect the existence 

of  multicollinearty problem. For our dataset the test is applied as follows. 

              

1 2 1 3 1 4

2 1 2 3 2 3

3 1 3 2 3 4

4 1 4 2 4 3

1

1

1

1

X X X X X X

X X X X X X

X X X X X X

X X X X X X

r r r

r r r
D

r r r

r r r

 
 
 

  
 
 
 

 

Where we have a specific matrix 

 

        

 1.0000    0.9951    1.0000    0.9974  

    0.9951    1.0000    0.9949    0.9855

    1.0000    0.9949    1.0000    0.9976

    0.9974    0.9855    0.9976    1.0000

D   

 

By applying the equation ( 2.9 ) ,    

 the chi-square 2

0  =  157.3983 

The tabulated value with 6 degrees of freedom and  = 0.05 level of significant was 

found to be ( 1.64 ) ,hence, we reject    since  
2

0 = 157.3983  1.64,               

consequently, the problem of multicollinearity is exist among the explanatory 

variables. 
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3.2.2 The Ridge regression analysis  

  
    The next step in our practical study represented by applying different types of 

ridge regression estimators in order to deal with the  multicollinearity problem. For 

this situation we start with the generalized ridge regression estimator,     . 

By employing equation(2.36), we found that  

 

    0.7776    

   -4.5126

   12.2599

   -7.6087

GRRb

 
 
 
 
 
 

     

The analysis of variance calculations are summarized in the following ANOVA 

table 

                                                                Table ( 3-10 ) 

 ANOVA in case of      

    Source     d.f  Sum of squares Mean square       F test 

 Regression 4    7.446678   1.861669  
13.458148    Residual 4    0.553321   0.138330 

      Total 8            8  

Hoerl, Kennard and Baldwin estimator for the ridge parameter HKk


 is obtained by 

using equation ( 2.30 ). It was (0.00000303) . Accordingly, the ridge regression 

estimator is 

 

  -78.3946  

  -12.6418

  113.7304

  -21.8538

HKBkb

 
 
 
 
 
 
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The analysis of variance calculations are summarized in the following ANOVA table 

                                                       

                                                       Table ( 3-11 ) 

   ANOVA in case of 
HKB

kb  

    Source      d.f  Sum of squares  Mean square       F test 

  Regression 4      7.714816      1.928704  

 27.052126    Residual 4      0.285183     0.071295 
      Total 8            8  

Lawless and Wang estimator for the ridge parameter  LWk


is obtained by using 

equation ( 2.31 ). It was (0.01325400)  . Accordingly, the ridge regression 

estimator is 

 
    0.3264  

    0.4550

    0.4513

   -0.2740

LW
kb

 
 
 
 
 
 

 

     

 

    

The analysis of variance calculations are summarized in the following ANOVA table 

                                                         

                                                           Table ( 3-12 ) 

     ANOVA in case of 
LW

kb  

    Source      d.f  Sum of squares Mean square       F test 

  Regression 4      7.370573    1.842643  

11.709980    Residual 4      0.629426    0.157356 
      Total 8            8  

 

  Applying the Bayesian approach stated earlier the value of k  was 
 

0.21783861 Bayesk




obtained by using equation ( 2.32 ).   

Hence, the ridge regression estimator is   
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    0.2359  

    0.3699

    0.2408

    0.1067

Bayeskb

 
 
 
 
 
 

 

The analysis of variance calculations are summarized in the following ANOVA table 

 

 

                                                                   Table ( 3-13 ) 

    ANOVA in case of 
Bayeskb  

    Source       d.f  Sum of squares Mean square     F test 

  Regression 4     7.304121    1.826030  
10.496257 
 

   Residual 4     0.695878    0.173969 
      Total 8            8  

By applying our proposed method and from equation ( 2.33 ), the value of k was found 

 

CNk



= 0.000013. Accordingly, the ridge regression estimator equation is

 
 

38.8359

10.1881

66.9740

17.0856

CNkb

 
 


 
 
 
   

The analysis of variance calculations are summarized in the following ANOVA table 

                                                           

                                                         Table ( 3-14 ) 

                                                    ANOVA in the case of
 CNkb  

    Source       d.f   Sum of squares  Mean square     F test 

  Regression 4      7.603587    1.900896   

19.180991    Residual 4       0.396412      0.099103 

      Total 8            8  
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3.2.3 The  Principal component method :- 

  An alternative popular approach that is widely used to remedy the multicollinearity 

problem is the principal component approach. For our dataset the following 

calculations are performed. 

                                                       Table ( 3-15 ) 

Principal Component Analysis 

Variable PC1 PC2 PC3 PC4 

X1 
     -0.567         0.053         1.085       0.510 

X2 
      0.409        -0.763        -1.117             0.499 

X3 
     -0.418         0.070         1.109         0.510 

X4 
      0.580         0.640        -1.112       0.500 

Eigen Value 31.882165 0.117604 0.000219 0.000009 

Proportion 0.99631765625 0.00367512500 0.00000684375 0.00000028125 

Cumulative       0.996       0.999        1.000         1.000 

 

Obviously, the first two components, with larger eigenvalues explain 99.9 % of the 

total variance. Hence, only the first two principal components are introduced into 

analysis. We have to find Z= XG* where G* is a (4×2) matrix obtained from the 

first two columns of principal components matrix, is found : 

 

 -0.000013989   0.000523899

   0.000503686   0.006293600

   0.000996264  -0.000208627

   0.000199344  -0.004299124

  -0.001374345   0.000120307

   0.001018815  -0.010413387

  -0.000878755   0.001565974

  -

Z 

0.001711530  -0.000660762

   0.001260510   0.007078122

 
 
 
 
 
 
 
 
 
 
 
 
 
 
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By applying the principal of ordinary least squares to fit the model Y =Z α+ ,Where  

α =G*'β we obtain :   

 

1

2

ˆ

ˆ
ˆ

 
   

  = (Z'Z)
-1

Z'Y = 
183.2070

21.2568

 
 
 

 

 

Thus the regression equation is:  

ŷ =
1

̂ pc1 + 
2

̂ pc2 =  -183.2070pc1 +21.2568 pc2 

In terms of the original values we have: 

1 2 3 4ŷ 107.3581X 14.9086X 147.1196X 24.9894X     

The Variance-covariance matrix is given as 

var-cov ( ̂ ) = S
2 
(Z'Z)

-1
 

2717.2833750 0.00000028854

0.00000028854 117.4586773

 
 
 

 

 

The analysis of variance calculations are summarized in the following ANOVA table.  

                                                        Table ( 3-16 ) 

                                                ANOVA in the case of     

    Source         d.f Sum of squares Mean square     F test 

  Regression 2     7.581678   3.790839  

54.372080 

 

   Residual 6     0.418321    0.069720 

      Total 8            8  

 

 

 

 

 



Chapter Three                                                                       The Experimental & The Practical side 

 

40 

 

 

3.2.4 Coefficient of  Determination  

 
         The following  table shows the coefficient of determination obtained from 

different methods 

     Table ( 3-17 ) 

 

    Method             

 

       R- Square      

 

                 PC 

 

        94.770975 

 

                GRR  

 

        93.083484   

 
                HKBk  

 

        96.435207 

 
               LWk  

 

        92.132167 

 
              Bayesk  

 

        91.301517 

 
             CNk  

 

        95.044821 

 

 

 

 

3.2.5  Conclusions and discussion 
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From our theoretical, experimental and practical study, we believe that the 

following points are considerable. 

1- The simulation results displayed that the principal components estimator 

performs better than almost all types of generalized and ordinary ridge regression 

estimators that are included in the study,under different conditions of 

multicollinearity levels, sample sizes and different levels of standard deviations of 

the error terms. 

2- As we stated earlier, our proposed method for estimating the ridge parameter 

depends upon the level of multicollinearity between the explanatory variables. It 

shows the importance of the condition number as an indicator of the presence of 

multicollinearity problem. Moreover, the simulation results imply that the ordinary 

ridge regression estimator based on the proposed ridge parameter CNk


 performs 

well in the sense of MSE. It seems to be better all other types of ridge regression 

estimators included in this study whatever the level of multicollinearity, the sample 

size , or the value of standard deviation is. 

3- In our practical study, the Farrer-Glauber test established the existence of 

multicollinearity problem in our real data set. Many other indicators ensure the 

presence of this problem, such as the large values of correlation coefficients 

between some explanatory variables ( close to 1) as it is shown in table (3-8) and a 

very small eigenvalues( near zero ) which imply a very large values of condition 

numbers as it is displayed in table (3-9). 

4-The analysis of variance tables demonstrate that the principal component 

estimator is superior to all types of ridge regression estimators in the sense of MSE 

as it is shown in table (3-16). 

5- With regard to different types of ridge regression estimators, the ANOVA tables 

displayed that the ordinary ridge regression estimator based on HKBk


 is the best , 

followed by the ordinary ridge regression estimator based on our proposed ridge 
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parameter CNk


in the sense of MSE as it is shown in tables ( 3-11) and ( 3-14 ) 

respectively. 

6- At 0.05 level of significant, it was found that the observed values of the F 

statistic from all ANOVA tables is greater than the corresponding tabulated values 

with p and n-p-1 degrees of freedom. This implies that the null hypothesis 

                    is rejected. Consequently, a statistically regression 

equations have been obtained and the studied variables have an explanatory power. 

7- As mentioned earlier, the coefficient of determination denoted by    is defined 

to be the percent of variations in the response variable that can be explained by the 

regression equation. With regard to our practical study, the regression equation 

based on HKBk


 explain approximately 96.4 % of variations in the response variable, 

while the regression equation based on our proposed ridge parameter CNk


 explain 

about 95.04 % of variations in the response variable, as it is shown in table (3-17). 

8- For the purpose of future works, many other estimators can be employed to 

overcome the multicollinearity problem such as the generalized inverse estimator, 

Liu estimator, the restricted ridge regression estimator and Jackknife ridge 

regression estimator.  
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جامعة  -( دار الكتب للطباعة والنشر1991الحيالي, طالب حسن نجم " مقدمة في القياس الاقتصادي " )[1] 

 الموصل.

كلية الزراعة والغابات  -جامعة الموصل ( 1995الراوي, خاشع محمود " المدخل الى تحليل الانحدار " )[2]

 دار الكتب للطباعة والنشر. -

جبريل, محمد سليمان محمد " التعدد الخطي أسبابة وتأثيراته والمعالجة بانحدار الحافة وانحدار المركبات [3]

معة السودان للعلوم جا أطروحة دكتوراه (4112البيانات الافتراضية" ) علىالرئيسية مع التطبيق 

 .لتكنولوجياوا

كاظم, أموري هادي, الصفاوي, صفاء يونس, "توظيف البيانات العرضية في معالجة مشكلة التعدد [4]

 (.4111, )11-1, ص 1الخطي", المجلة العراقية للعلوم الاحصائية, المجلد 

والتطبيق", ( "القياس الاقتصادي المتقدم: النظرية 4114كاظم, اموري هادي, مسلم, باسم شليبه. )[5]

 مطبعة الطيف, بغداد, العراق.

( شركة الاعتدال 1999النظرية والتطبيق " )  -محبوب, عادل عبد الغني " أصول الاقتصاد القياسي [6]

 للطباعة بغداد.
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تعد مشكلة التعدد الخطي أحدى أهم المشاكل في تحليل الانحدار لما لها من أثار غير مرغوبة على 

في هذه ف .أن انحدار الحرف هو احد الحلول الأكثر شيوعا لهذه المشكلة .مقدرات المربعات الصغرى

لقد أقترح العديد من  .المعلمات أو ثابت التحيز ( لها دور مهم في تقدير الحالة فان معلمة الحرف )

في هذه الرسالة حاولنا أن يكون لنا أضافه خاصة ق مختلفة لاختيار معلمة الحرف. ائطر  علماء الإحصاء

ق ائعلى هذا الأساس اقترحنا طريقه جديدة لإيجاد معلمة الحرف ومقارنتها مع الطر  .بنا في هذا المجال

خلال المحاكاة والدراسة التطبيقية وقد تبين لنا أن الطريقة المقترحة سابقا من قبل باحثين آخرين من 

 متوسط مربعات الخطأ كمعيار للمفاضلة. مقترحة هي طريقة مقبولة تماما باعتمادال

التعدد الخطي والذي تمت تغطيته أيضا في هذه الرسالة وهو لحل البديل الشائع الأخر لمشكلة أن ا

استخدام المتغيرات التوضيحية الأصلية والغير  من بدلاا ففي هذا الأسلوب  .انحدار المركبات الرئيسية

متعامدة في تحليل الانحدار فان مركباتها الرئيسية هي التي تستخدم في التحليل والتي تكون متعامدة 

 الواحدة مع الأخرى.

لعملي الذي والجزء اين رئيسيين وعلى وجه الخصوص, الجزء النظري يتشتمل هذه الرسالة على جزئ

&  MATLAP) البرامج الإحصائية .قد تم استخداميشتمل على الجانب التجريبي والجانب التطبيقي

SSPS )   .لإنجاز الحسابات المطلوبة 
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