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Abstract

Multicollinearity is an important problem in regression analysis which
produces undesirable effects on the least squares estimation. Ridge regression is
one of the most popular solutions to this problem. In this situation, ridge
parameter ( or biasing constant) has an important effect in parameter estimation.
Many statisticians are proposed different methods for selecting the ridge
parameter. In this thesis, we attempted to have our own contribution in this field.
Accordingly,we have proposed a new method for choosing the ridge parameter.
The performance of the suggested method is determined and compared with
other methods already proposed by other researchers through simulation and
practical study. The proposed method seems to be exactly reasonable in the
sense of MSE criterion.

An alternative well known solution to the multicollinearity problem
which is also included in the thesis, is the principal components regression. In
this approach, instead of using the original non orthogonal explanatory variables
in the regression analysis , their principal components are used which are
orthogonal to each other. Two main parts are included in this thesis especially,
the theoretical part and the experimental and practical part. Statistical programs

( MATLAP&SPSS) have been employed to perform the required calculations.
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Chapter One

Introduction & Literature Review

1.1 Introduction

One of the aims of science is to find, describe, and to predict relationships
among events in the world in which we live. One way that this is accomplished by
finding a formula or equation that relates quantities in the real world. For example,
in an industrial situation, it may be known that the tar content in the outlet stream
in a chemical process is related to the inlet temperature. It may be of interest to
develop a method of prediction, that is a procedure for estimating the tar content
for various fuels of the inlet temperature from experimental information. In
medical, we may be interested in how a several vaccines affects a certain disease.
In the economic,we may be interested in the relationship of supply, demand and
the price of certain commodities. Among different models that deal with the real
life situations, the most widely used statistical model is refer to linear regression
model. The term "regression” literally means "step back towards the average" it
was first used by a British biometrician, Sir Francis Galton (1822-1911) in
connection with the inheritance of stature. Galton found that the offspring of
abnormally tall or short parents, tend to "regress or step back" to the average
population height [15].

Although it is desirable to be able to predict one quantity exactly in terms of
others, this is in general not possible, and in most instances we have to be
concerned with predicting averages or expectation. This problem of predicting the

average value of one variable in terms of the known value of another variable
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(or the known values of other variables) is the problem of regression.

To explain this point of view, let us consider an example of income employing
information in income and number of years of formal schooling to estimate the
extent which the man's annual income is related to his years of schooling [40].

One possibility would be that a man who had zero years of school, we would
anticipate his annual income as a (dollars) and for every year of schooling he had
,we would expect his income to be larger by b (dollars),thus for a man having
(x)years of schooling we would expect his annual income to be (a + bx) dollars. The
expect means we are thinking of the average of all men who had (x) years at school,
if one man was picked at random we would expect his income to be (a + bx). The y
denotes to income we write E(y) for expected income and hence E(y) = a + bx.

A general form for the model would be y = f(xy, x,, x3,...,x,) + ¢ where f is

some unknown function and ¢ is the error term. Since we often don't have adequate
information to estimate f directly, we have to assume that it has some more

restricted form, probably linear as:

y=ﬂ0+,6’1x1+...+,3pxp+g ..(1)
Where

B;.j=123,...,p are unknown parameters,

B, is called the intercept term of the model.

¢ 1S not observable, but something about the distribution of ¢ is often stated as a
part of the model. Hence, the problem is reduced to the estimation of (p + 1) values
rather than the complicated function f. The single variable y is called the response
(output or dependent variable) and Xx;,X,,...X, are known as predictor (input,
independent or explanatory variables) when P = 1 ,the model is said to be simple

regression model but if P > 1 it is called multiple linear regression model. When is
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more than one y then the model is called the multivariate multiple regression
model which we will not including in our study. In a linear model, the parameters
enter linearly but the predictors do not have to be linear [2][5].

However, some relationship can be transformed to linearity as the last equation
which can be linearized by taking logarithms.

Recently, a great attention is being focused on biased estimation of regression
parameters of a linear regression model. This attention is due to the inability of
ordinary least squares to provide reasonable estimates when the matrix of
explanatory variables is ill conditioned. Despite possessing the very desirable
property of being the best linear unbiased estimator (BLUE) under the usual
conditions imposed on the model, the least squares estimators can nevertheless,
have extremely large variances, when the data are multicollinear which is one form
of ill conditioning. Therefore ,many researches were performed to achieve biased
estimators with better overall performance than the ordinary least squares
estimators [5][6].

1.2 The Aims of the thesis

In our thesis, we tried to attain different goals that can be summarized as
follows:

1. To assess the performance of PC estimators and RR estimators as an
alternatives to OLS estimators in the case of existence of the multicollinearity
problem.

2. Representing different methods for detecting the multicollinearity problem and

determine its probable effect, on the linear regression model.

3. Studying different methods for estimating the ridge parameter (k say) and
contains our proposed method for estimating the ridge parameter then
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specifying the best of these methods, by using simulation some statistical

measurements.

1.3 Study Limitations

In our study, we assume that there is no missing data or outliers in the
dataset. Moreover, we focus our attention on the multicollinearity problem

irrespective of other problems that the analyst may face, such as the autocorrelation

and heteroscedasticity problems.
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1.4 Literature Review

The problem of multicollinearity among the data set and different topics
related with it , were broadly discussed in literature. The following are some
instances.

In an article about response surfaces, Hoerl (1962).introduced many concepts
which was the basis of ridge regression. This was followed by Hoerl and kennard
(1970) article which gave a major impetus to ridge regression the bulk of the

article was devoted to the ordinary ridge estimator b., =(X 'X +klI )™*X 'y where k
IS an exogenous parameter have to be determined. The authors stated that there

alwayes exists a k > 0 such that mean square error b,, less than mean square error
b,.s - They also mentioned to the generalized form of ridge regression K where K

is a digonal matrix of ridge parameters [30].

Lawrence S . Mayer and Thomas A. Willke (1974) viewed the ridge estimators as
a subclass of the class of linear transforms of the least squares estimator. An
alternative class of estimators, labeled shrunken estimators was considered. It was
shown that these estimators satisfy the admissibilily condition proposed by Hoerl
and Kennard [34].

M. Goldstein and A. F . M . Smith (1974) followed a new derivation of the Hoerl-
Kennard (1970) ridge estimator and its generalization. Comparison was made with
James-stein estimator and with the generalized inverse estimator proposed by
Marquardt (1970). Also a Bayesian approach was noted [24].

Donald, W. Marquardit and Ronald D. Snee (1975) discussed the use of biased
estimation in data analysis and model building A review of the theory of ridge
regression and its relation to generalized inverse regression was presented along
with the results of a simulation experiment and three examples of the use of ridge

regression in practice .Comments on variable selection procedures were included.
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They concluded that when the predictor variables are highly correlated, ridge
regression produces coefficients which predict and extrapolate better than least
squares and is a safe procedure for selecting variables [32].

Richard F . Gunst and Robert L. Mason (1977) employed mean squared error
criterion to compare five estimators of regression coefficients. Specifically, least
squares, Principal components, ridge regression, latent root, and a shrunken
estimator. Each of the biased estimators was shown to offer improvement in mean
squared error over least squares for wide range of choices of the parameters of the
model. The results of a simulation involving all five estimators indicated that the
principal components and latent root estimators perform best overall, but the ridge
regression estimator has the potential of a smaller mean square error than either of
these [29].

William, E. Strawderman (1978) used the generalized ridge regression estimator to
estimate the vector of regression coefficients where the ridge constant was chosen
on the basis of the data. For general quadratic loss he produced such estimators
whose risk function dominates that of the least squares procedure provided the
number of regressors is at least three. He studied the problem by the usual
reduction to estimating the mean vector of a multivariate normal distribution [43].
George Cassela (1980) used an entirely new method of proof to derive conditions
that are necessary and sufficient for minimaxity of a large class of ridge regression
estimators. The conditions he derived were very similar to those derived for
minimaxity of some stein type estimators [13].

George Cassela (1985) mentioned that the ridge regression was originally
formulated with two goals in mind : improvement in mean squared error and
numerical stability of the coefficient estimates. Conditions were given under which
a minimax ridge regression estimator can also improve stability, a quantity that can

be measured with the condition number of the matrix to be inverted. The
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consequences of trading numerical stability for minimaxity were also discussed
[14].

Quirino, Paris . (2001) proposed a novel maximum entropy estimator as an
alternative to ridge regression estimator. The proposed estimator does not depend
upon any additional information and does not affected by any level of
multicollinearity and dominates the OLS estimator uniformly as it was shown by
Monte Carlo experiments. The same experiments provided evidence that it is
asymptotically unbiased and the estimates are normally distributed [38].

Fikri Akdeniz and selahttin Kaciranlar (2001) considered the standard multiple
linear regression model where the matrix X was assumed to be of full column rank.
They introduced a new biased estimator known as restricted Liu estimator and
compared it with restricted least squares estimator in the matrix mean squared error
sense [8].

G.R. Pasha, Muhammad Akber Ali shah and Ghosia (2004) adopted an
unconventional method of the principal components for the solution of
multicollinearity and an attempt was made to show that by using such technique,
some fairly precise estimates of the coefficients were obtained. The comparison
between the variance of OLS estimates and principal components estimates was
made on income and consumption model [39].

Yuzo Maruyama and william, E. Strawderman (2005) considered the standard
linear regression model. They considered the estimation of [ under general
quadratic loss functions. In fact , they extended the work of strawderman

(1978) and Cassela (1985) by finding adaptive minimax estimators of 3 , which
have greater numerical stability (i.e., smaller condition number) than the usual
least squares estimator. They gave a subclass of such estimators which have a very
simple form [33].

Hazim Mansoor Gorgees (2009) viewed the ridge estimators as a subclass of the

class of shrinkage estimators. He stated the fact that the shrinkage factor can be
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chosen will guarantee the ridge estimator to have mean square error smaller than
the variance of least squares estimator, [26].

M. Revan Ozkala (2009) Introduced a new estimator when there exist stochastic
linear restrictions on the parameter vector. The new estimator introduced by
combining the ideas underlying the mixed and ridge regression estimators under
the assumption that the errors are not independent and identically distributed. He
called his new estimator as the stochastic restricted ridge regression ( SRRR )
estimator. The performance of ( SRRR ) estimator over the mixed estimator with
respect of the variance and MSE matrices was examined [37] .

A.V. Dorugade and D.N. Kashid (2010) proposed new method for choosing the
ridge parameter. The performance of the proposed method was evaluated and
compared through simulation study in terms of mean square error. The technique
developed seems to be very reasonable because of having smaller MSE [20].
Hazim Mansoor Gorgees (2010) considered a Bayesian formulation of ridge
regression problem which derived from a direct specification of prior informations
about parameters of general linear regression model when the multicollinearity
problem is presented. In addition to the Bayesian estimator of the ridge parameter,
he followed entirely a new approach to derive the conventional estimator for the
ridge parameter proposed by Horel-Kennard. A numerical example was given in
order to compare the performance of such estimators [27].

M. EI - Dereny and N. I. Rashwan (2011) introduced many different methods of
ridge regression. Those methods included ordinary ridge regression( ORR ),
generalized ridge regression ( GRR ) and directed ridge regression

( DRR ). Methods of selecting ridge parameter were discussed. They used
simulation to compare between such methods with OLS method. They were better
than OLS method when the multicollinearity is exist [16].

Feras Sh. M. Batah ( 2011 ) proposed a new estimator. Namely, Generalized

Jackknife ridge regression estimator ( GJR ) by generalizing the modified jackknife
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ridge regression estimator ( MJR ). He showed that the ( GJR ) estimator is
superior in the MSE sense to the LASSO estimator , Generalized ridge regression
estimator, Jackknife ridge regression estimator and modified Jackknifed ridge
regression estimator [12].

Hazim mansoor Gorgees and Bushra Abd alrasool Ali (2013) studied two types of
ordinary ridge regression estimators according to the choice of ridge parameter as
well as the generalized ridge regression estimator. These methods were applied on
a data set suffer from a high degree of multicollinearity. It was found that the
generalized ridge regression estimator perform better than the other two methods in
the sense of MSE and coefficient of determination R? [25].

Yasin Asar, Adnan Karaibrahimoglu and Asir Genc (2014) proposed some
modified ridge parameters. They compared their estimators with some estimators
proposed earlier according to MSE criterion. All results were calculated by a
Monte Carlo simulation. They concluded that their estimators perform better than
the other in most situations in the sense of MSE [11].

Anwar Fitrianto and Lee CinyYik (2014) conducted some simulation study to
compare the performance of ridge regression estimator and the OLS. They found
that Hoerl and Kennard ridge regression estimation method has better performance
than the other approaches [22].

Ashok V. Dorugade (2014) introduced a new approach to obtain the ridge
parameter. Furthermore, he compared the proposed ridge parameter with other
well-known ridge parameters in terms of MSE criterion. Finally, a numerical
example and simulation study had been conducted to illustrate the optimality of the
proposed ridge parameter [18].

Ahlam Abdullah Al somahis, Salwa Mousa and lutfiah ismail ALTurk (2015)
proposed new methods for choosing ridge parameter for logistic regression. The
performance of the proposed methods were evaluated and compared with other

models that having different previously suggested ridge parameter through a
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simulation study in terms of ( MSE ). They concluded that their suggested logistic

ridge regression estimators were superior in most of the cases [10].

10
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Chapter Two

The Theoretical Side

2.1 Multiple Linear Regression

The most widely used regression models is the multiple linear regression
model. In this model the response (dependent) variable y may be regarded as the
weighted sum of the explanatory ( independent) variables Xi,Xa,...,X, (say) with

unknown weights 3, ,,..., 8, . In general ,the multiple linear regression model can

be written as follows:

Yi=B8 +BXis+ X+t B X +&,1 =12,...,n
where p is the number of explanatory variables, n is the number of observations.

The matrix representation of the model is y =X f+¢& where y =(y,,Y,,....Y,)" IS

the vector of the response variable, 8= (4,, 3,,---. ,)" is the vector of the unknown

Ximr Xyp
XZl'” sz ] ]
parameters, X =|. i . iIs an nx(p + 1) matrix of explanatory
1 X, X

variables and ¢'=(g,,¢,,...,&,)" is the vector of random errors.

In this situation many assumptions have to be satisfied, these assumptions can be

summarized as follows:

. . 2
The error terms are independent and have a constant variance O .

10
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Ii. The error terms are normally distribute with mean vector equal to 0 and

variance-covariance matrix ¢ 21n thatis 0N (0, %1 ) .

ii.  The matrix X is of full column rank (i.e.rank (X)=p+1<n).

2.1.1 Ordinary Least Squares Estimators

The ordinary least squares method is the most popular estimation

procedure, based on the minimization of the sum of squared deviations &' where

g'e=(y-XpBy—-Xp)
cg'e=Y'Yy-BX'Yy-YyXB+BX'Xp
g'e= YY-28X'Yy+BX'Xp

This follows due to the fact that #'X 'y isa (1x1) matrix or scalar,
whose transpose (£'X 'y )'=y 'X £ must have the same value.

The least squares estimate of f is the value b . (say) which when substituted in

ols
equation (2.1) minimizes ¢'e. It can be accomplished by differentiating &'s with
respect to £ and setting the resultant matrix equation equal to zero, at the same
time replacing g by b . .This provides the normal equations

ols

(X "X )b, =X 'y

ols

The solution of this equations is

by = (X "X )Xy (21)

11
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2.1.2 Properties of Ordinary Least Squares Estimator of Regression

Coefficients

1.

The ordinary least squares estimator b, has the following properties:

b, 1S an estimate of # which minimizes the error sum of squares &'e

ols

irrespective of any distribution properties of the errors.

In fact, an assumption that the error terms &, i =1,2,...,n are normally

distributed is not required to obtain the estimators of the unknown
parameters, but it is required in order to construct the t and F tests which
depends upon the assumption of normality of error terms as well as
obtaining the confidence intervals for the estimated coefficients, based on

the t and F tests. However, if the error terms are normally distributed with
mean vector 0 and variance-covariance matrix ol ,then the OLS estimator
and the MLE of g are equivalent since maximizing the likelihood function
IS equivalent to minimizing the quantity ¢'¢ [19].

The elements of b . are linear functions of the observations y,, y,, ..., ¥, and
provide unbiased estimates of the elements of £.This can be easily shown

as follows:
by =(X "X )X 'y =(X 'X )X (X B+¢)
bols = 18+(x 'X )_1X '8
E (0,,)=E (B+(X 'X )X &)=+ (X 'X )X 'E (&)
Since E (¢)=0then E(,)=2.

4. lrrespective with the distribution of error terms, the fitted values are

obtained from §:X b, -

5. The residuals vector given by e=y —y is orthogonal to all explanatory

variables, that is

12
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Xe=X(y-Y)
thus X 'e=X "y =X X (X X)X 'y=X"'y =X 'y =0

6. The fitted values are orthogonal to the vector of residuals, that is :

e'y =(y —y)

e'y =(y

=(y =X by,)'y

)y
'_bo ‘X l)y\:y 'y_bols|x |y

Is
e ly :(y ‘X bols -y X (X ‘X )_1X ‘X bols
e'y=y'Xb, -y'Xb,=0

7. The variance-covariance matrix of b, denoted as var(b,,)=oc> (X 'X )™

ols

provides the variances (diagonal terms) and covariances (off diagonal

terms) of the estimates. var(b_. ) can be derived as follows:

ols

var(b,, ) =E (b,, —/3) (by, — )’
Since b, —B=(X X)X 'y -8
=(X X)X (X B+e)-f=(X X)X '¢
hence
var(p, )=E[(X 'X )X "e][(X 'X )X ']’
var(b,, )=E[(X 'X )X 'e][&'X (X 'X )]
var(b,,)=[(X "X )X TE (ge)[X (X "X )]
var(p, )= (X 'X)*X 'l X (X 'X)™
var(b,, )= o (X "X )X "X (X 'X ) t=c?(X 'X )*

8. Assuming that y - is a specified 1xp vector of elements which are of the
same form as a row of x so that Y =X 'sby =y X, Is a fitted value at a
specified point X , . Then y, is the value predicted at x, by the regression
equation, and has the variance

Var(Yo):Var(x 'Obols):)( 'o var(bo,s)xozo-zx 'o(x ‘X )_1)(0

13
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9. It can be easily shown that the ordinary least squares estimator is consistent,
sufficient as well as unbiased estimator for £ and its variance attains the
lower bound of Rao-Gramer inequality [28].

2
var(T) > L+ BOI

E L= 2

[ 20 ]

where B (9) is the bias of the estimator

Accordingly, b, is the best linear unbiased estimator [ BLUE] for g .

2.1.3 Testing of Hypothesis in a Linear Regression Model [15]

The different hypothesis concerning the regression parameters may all be
examined in a similar way by a unified approach. Let us reffered to the general
linear regression model as the full model (FM). When some regression coefficients
are specified, the resulting model is said to be the reduced model(RM).The
hypothesis to be tested is
H, : RM is adequate against H,: FM is adequate

In the full model, there are (p+1) parameters ( By, 51, ..., Bp ) t0 be estimated. Let

us assume that for the reduced model there exist k different coefficients. Let Y,

and yAi* be the values predicted for y; by the FM and RM respectively. The

residuals sum of squares obtained when fitting the full and reduced model are

respectively

n

SSE(RM)= Z(yi —Yi *)2

SSE(FM)=>_(Y; -V, )’ } (22)

_ [SSE(RM )-SSE (FM )1/(P +1-K )

F SSE (FM )/(n—P —1)

(2.3)

14
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The FM has (p + 1) regression coefficients, thus, SSE( FM ) has n-p-1 d.f,
similarly, SSE( RM ) has n-k d.f. since the reduced model has k regression
coefficients. Consequently, SSE( RM ) - SSE( FM) has ( n-k ) - ( n-p-1) = p+1-k
d.f., the observed F statistic has F distribution with ( p+1-k ) and ( n-p-1) d.f. If the
observed F value is larger than the theoretical value of F with ( p+1-k ) and (n-p-1

) d.f. and specified value of significant level o then the null hypothesis H, is

rejected at level of significant a.. In other word H,, is rejected if

F> F(p+1—k,n—'p—1,a)
Where F is the observed value of F test in equation (2.3), F(p41-kn-p-1,4) 1S

the tabulated value obtained from the F table , o is the level of significant.
A substantial special case of the F test in equation (2.3) is obtained when the null
hypothesis is Hy: B; = 0,j = 1,2, ...,p which means that all explanatory variables
under consideration have no significant effect. In such a case the reduced and full
models will be :
RM:Hyy= B+ ¢ ..(2.4)
FM:Hy:y= Bo+ BiXi+ ..+ BpXp+ & ..(2.5)
Here, SSE( FM ) = SSE and SSE(RM ) = > (y; —y)? = SST since the least

square estimate of S, in the RM is Y .The F ratio in ( 2.4 ) reduces to

_ (SST —SSE)/P
~ SSE /(n—-P —1)

(26)

Hence, the ANOVA table in multiple regression can be arranged as follows:

Source d.f Sum of squares| Mean square F test
Regression P SSR MSR= %
MSR
Residual n-p-1 SSE MSE= nfff_ - | F=uss
Total n-1 SST
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2.1.4 The Coefficient of Determination [15][3]

(yi _yAi )2 .
Theratio R? = o =1— 3£ =1 — Z— (2.7) is called the

SST SST Z(yi _Y)Z

coefficient of determination .1t can be explained rate as the proportion of total
variability in the response variable y which can be accounted by the set of
predictors xq, X3, ..., X, .

Clearly, the value of R? is close to one when the model fits the data well. In such a

cases the observed and predicted values become close to each other, and > (y, Y, )

will be small, and R? will be near unity. However, the reverse of this term is
inaccurate, which implies that a large value of R? does not necessarily mean that
the model fits the data well. A more detailed analysis is required to in order to
ensure that the model described the data properly.

A value related to R? is called the adjusted R? denoted byR?. It can be obtained

from R? by dividing SSE and SST by their respective d.f. and it is defined as

follows :

SSE/(n—P-1) .(2.8)

2 o —
Ry =1 SST/(n-1)

This measurement is sometimes employed to compare models that have

different numbers of explanatory variables.
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2.2 Singular Value Decomposition

In this section we introduce and discuss the concept of singular value
decomposition of matrices as a powerful technique for analyzing the linear

regression model. Accordingly the following definitions are necessary.

Definition 1

The singular values of a square matrix A is defined to be the square root of
the eigenvalues of matrix (A'A) [ 40 ][26].

Definition 2

The condition number is regarded as a ratio of the largest singular value to

the smallest singular value [14][26] .

Definition 3

If the condition number is too large, the matrix is said to be ill conditioned.
If the condition number is infinite then the determinant of the matrix is equal to

zero and hence the matrix is singular [14][26].

Definition 4

Any symmetric matrix A is said to be positive definite if for each non zero
vector y then y'Ay> 0 [28][26].
Definition 5

Any real symmetric matrix A,,x., has a spectral decomposition of the form

A= UAU'. The columns of U are the normalized eigenvectors of A and A is
diagonal matrix whose diagonal elements represent the eigenvalues of A [42].
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Definition 6

Any real matrix B,«,, , (n > m) has singular value decomposition of the
foomB=UTV"
Where:
U is an n X m matrix with orthonormal columns (U'U = 1), V is an m X m orthonormal
matrix (V'V = 1) and I is an (m X m) diagonal matrix with positive or zero diagonal
elements known as the singular values.

From matrix B we can construct two positive definite matrices BB' and B'B where
BB'=UTVVIU=UT?U

Similarly BB =V I'*v'

Using the decomposition above, we can identify the eigenvectors and eigenvalues

for B'B as the columns of V and the squared diagonal elements of I' respectively.

The latter show that the eigenvalues of B'B must be non negative [42].

2.3 The Case of Collinear Data [2][4][17]

One of the most important assumptions associated with regression analysis
is that the explanatory variables are not strongly interrelated. Usually, the
regression coefficient is interpreted as the change in the response variable when the
corresponding explanatory variable is increased by one unit while all other
explanatory variables are held constant. This explanation will not be useful if there
exist strong linear relationships between the explanatory variables. When the linear
relationship among explanatory variables is completely absent, they are known to
be orthogonal. In most regression problems the explanatory variables are not
orthogonal, generally, the absence of orthogonality is not significant enough to
abort the analysis. However, in many cases the explanatory variables are very
strongly interrelated that the regression results are unclear.

The condition of sever non orthogonality is also referred to as the problem of

collinear data or the problem of multicollinearity. Two types of multicollinearity
18
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may be faced in regression analysis. specifically perfect and near multicollinearity
as an example of perfect multicollinearity, suppose that the four ingredients of a
mixture are studies considered by including their percentages of the total,

P.,P,,Ps,P,- These variables will have the exact linear relationship
p, + P, + p;+ p,=100 The problem of multicollinearity may be highly difficult to

discover. It is not a specification error that can be detected by investigating
regression residual. Actually, it is not modeling error. It is a case of imperfect data.
However, it is necessary to know when multicollinearity is exist and to be aware of
its possible effects. Accordingly, one have to be very careful about any or all
substantive conclusions based on regression analysis in the existence of

multicollinearity.

2.3.1Consequences of Multicollinearity [5][6][3]

During regression calculations, the exact linear relationship among the
explanatory variables implies a division by zero which in turn causes the
calculations to be aborted. When the relationship is not exact the division by zero
does not happen and the calculations would not aborted but the division by a very
small quantity still deform the results. In the case of near multicollinearity it is
impossible to estimate the unique effects of individual variables in the regression
equation because the multicollinearity can be thought of as a situation where two or
more explanatory variables move together, consequently, it is impossible to
determine which of the explanatory variables is producing the observed change in
the response variable .

The estimated values of the coefficient are very sensitive to inconsiderable
variations in the data and addition or deletion of variables in the equation. The
regression parameters would have large standard errors which influence both

inference and forecasting that is based on the regression equation. Multicollinearity
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deflate the partial t tests for the regression coefficients and give false non

significant P values.

2.3.2 Sources of Multicollinearity [1][7][21]

In order to deal with multicollinearity problem we have to be able to
identify its sources because the source of multicollinearity affects the analysis, the
correction and interpretation of the linear regression model. The origins of
multicollinearity may be summarized as follows:

1. The multicollinearity has been created by the sampling technique . In this case
the data have been collected from a narrow subspace of the explanatory
variables. Collecting more data on an expanded range would treat this kind of
multicollinearity problems.

2. Substantial restrictions of the linear regression model or population. This
source of multicollinearity exist whatever the sampling technique is applied.
Many industrial or economic processes have restrictions on explanatory
variables, either physically, legally or politically which will cause
multicollinearity.

3. Model choice or specification. This source of multicollinearity results from
using explanatory variables that are powers or interactions of the original
variables.

4. Extreme values or outliers in the X space can cause multicollinearity. This

should be remove before any treatment is applied.
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2.3.3 Detection of Multicollinearity [3][5][15][32]

Different methods of detecting multicollinearity are presented, we review
some of them:

1. At the first , we consider pair wise scatter plots of pairs of explanatory
variables looking for near exact relationships. Also glance at the correlation
matrix for high correlations. However, multicollinearity does not always clear
when studying the variables two at a time next, we investigate variance
inflation factors (VIF)values.VIF greater than 10 indicates the existence of
multicollinearity problem.

2. Eigen values of the correlation matrix of explanatory variables near zero
indicate . the existence of multicollinearity problem

3. The large condition numbers is an indicator of the presence of
multicollinearity .

4. Explanatory variables whose regression coefficients are opposite in sign from
what we believed may reveal multicollinearity problem.

5. Farrar-Glouber test.

This test is based on the chi square statistic . The null hypothesis to be tested is
H, : Xjare orthogonal,j =1,2,...,P

Against the alternative hypothesis
H, : X; are not orthogonal

The test statistic is
1
X =-[(n-1)-g(2P+5)] In D ..(2.9)

Where
n is the number of observations
P is the number of explanatory variables

ID|is the determinant of the correlation matrix.
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Comparing the calculated value y2 with the tabulated value at P( P -1)/ 2 degrees of
freedom and specified level of significant « .
If the calculated value y; is greater than the tabulated value, then the null

hypothesis H, will be rejected which means that the explanatory variables are

interrelated. otherwise, the null hypothesis cannot be rejected.

2.3.4 The Class of Shrinkage Estimators [26][34][36]

Assuming that an (n X p) matrix of explanatory variables X and an
(n X 1) vector of the associated response variable y are known. Moreover

let us assume that the sample means have been removed from the dataset so that

1'X =0 and 1'y = 0 where] is an (n) vector of ones. The singular value

decomposition technique will be employed in order to obtain a deeper
understanding of our data set. Consequently , we decompose the matrix X as

follows :

1
X=H A2G' .(2.10)

1
Where H is an n x p matrix satisfy HH = I, , A? is a p x p diagonal matrix of

1 1 1
ordered singular values of X, that is 12, >42,>..>4% >0 so that f is estimable G

IS (p X p) orthogonal matrix whose columns are the eigenvectors of X'X.

Using this techniques the information matrix X'X can be written as follows:
1 1
X'X=G A’ HH A2 G'=G AG' ..(2.11)
Accordingly , the ordinary least squares estimator can be rewritten as :
1
bos =(X X)Xy =(GAG )G A?H 'y
1 1
bos =GA'G'GAZH'y=G A 2H'y =GC
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Where the vector C = A_% H 'y is the vector of uncorrelated components of b, .
Obviously :

E(C)=E(G'b,)=GB=ry (say) and var( C )=var ( G' b, ) = G' var (b, )G
Hence,

var(C)=o’G' (GAG)'G=0°GG AGG= o A

Which is a diagonal matrix , therefore the components of C are uncorrelated since

the off diagonal elements of var(C) which represent the covariance terms are equal

to zero.

The class of shrinkage estimators denoted by bg,, will have the general form

by =GAC= Yg,sc, (212)
-1

Where g—; is the j™ column of the matrix G, ¢, is the j" diagonal element of

the shrinkage factors matrix A, the range of shrinkage factors is usually restricted
and it be:

0<s,<1,j=12,..p,C; isthe jth element of vector C.

2.3.5 Properties of Shrinkage Estimators [31][35][41]

In general the shrinkage estimators are biased since

E( by, )=E(GAC)=GAE(C) =GA 7 and this vector is never equal to =G v
unless A=1. Hence, bias(b,, )=G(I-A) vy

The variance matrix of b, for non stochastic shrinkage factors is

var(b, )= var(G A C)=G Avar(C)AG'=c>G A* A G'

The mean square error matrix of b, is given by

MSE( bSH ): E( bs|—| _B)( bSH _B)'

Equivalently:
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MSE(b,, ) = MSE(GAC) =G MCE(AC) G

Here, we focus our attention on MSE( A C ) which can be derived as :

MSE( AC)=var ( AC)+ (bias AC) (biasAC)'
MSE( AC)=c? A A+ (1- A)yyy' (1- A)

Clearly, MSE ( AC) is the sum of two matrices, the diagonal variance matrix

o? A’ A*and the matrix (1 - A) yy' (I- A) with squared bias terms on the
diagonal.
Let us consider the i™ diagonal element of the matrix MSE ( AC ) denoted by
o, C. Hence,

2 62

MSE (5, C,) = Gf‘ +(1-8)" »/ ..(2.13)

Clearly, MSE (&, C,) changes as the i " shrinkage factor &, changes. Actually, the

first partial derivative of MSE (6, C; ) with respect to &, is

OMSE (5,C,) 26°5
05

-2(1-8) 7! ..(2.14)

While the second partial derivative is

2 2
0 Ms;gd Ci)_ 2; 1257 ..(2.15)

To obtain the optimal value of o, denoted as @MSE Minimize MSE(J; C,), we

equate the first partial derivative to zero and solve for o, as follows:
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OMSE (6, C.) 26°0, )
=0 = L_2(1-5,)y" =
% 0 P @-6)r =0
2 2
= 75 +5i7i2:7i2 =2 [i_"' 7/i2] :7i2

It follows that

é‘iMSE __ 7 _ i - A 7?

Dividing both the numerator and denominator by 77 to get

é‘iMSE :/1—. ( 216)

2
A+

(o3
2

7i

Clearly é‘iMSE of equation ( 2.16 ) can never be negative nor larger than 1.

2.4 Ordinary Ridge Regression Estimator

Different methods have been suggested to deal with co-linear data by
adjusting the least squares method in order to allow introducing some bias in the
estimators of regression parameters. One of the most popular methods is labeled as
ridge regression method. The ridge regression estimators depend exactly upon an
external parameter (k say) known as the ridge parameter or biasing constant for
any k> 0, we define the ridge regression estimator p__ as follows:

Do =(X "X +kI)*X 'y .(2.17)
Where the value of k is chosen by the analyst according to some reasonable criteria
established by Hoerl and kennard [30][21].
It can be easily shown that the ridge regression estimator given in equation (2.17)

is a member of the class of shrinkage estimators as follows:

By using singular value decomposition approach and matrix algebra we have
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1

D e =(X 'X +kI )X 'y =[G(A+kI)GT'GA?H 'y

1
b ..=G(A+kl)'G'GA’H 'y

1
D =G (A+kI)*A?H 'y
1

b . =GL(A+kI)"AJA ?H 'y

D« —GAC ..(2.18)

Where A=(A+kl)™A which is a diagonal matrix . The j™ diagonal element of the

matrix A has the form

/1j .
S, :;t. T =1,2,...,P

]

Where 4, is the j™ element (eigenvalue) of the diagonal matrix Aand K is the

ridge parameter [21].

2.4.1 Properties of Ridge Estimator

We proceed our discussion with the following theorem since it is of great

importance as we believe to clarity the properties of ridge regression estimator.
Theorem 1 [28]
Lety be an nx1random vector. Let E(y)= 4£ andvar(y)= > . Then

E(YAY)=trAY + H{'AHU ..(2.19)

In order to control the inflation and general instability associated with the least

squares estimate, Hoerl, A.E.(1962) suggested using the estimator

b =(X "X +kI)*X 'y , k>0
Putting W=(X 'X +klI )™ then b, can be rewritten as follows:

by, =W X 'y ..(2.20)
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The following alternative form describe the relationship of ridge estimate with the

least squares estimate
Dag =(X "X +KI) X "Xbos = [1, +k (X X )T bors = Z by ..(2.21)
Where :
Z=[1+k (X 'X)'T" From (2.21) it is clear that b, is a linear transformation of
bo s and that b, is a biased estimate of  since E( b, ) = E(Z b, ) =Z E(b, )
=7ZB
The variance-covariance matrix of b., can be obtained as follows:
var( b, ) =var(W X'y) = WX' [ var(y)] XW'
var( b, ) =WX'[ &%, ] XW'= WX 'XW
var( be, ) = o (X 'X +KI )X "X (X 'X +klI)™ ..(2.22)
The residual sum of squares may be written as
SSE (k) = (y- Xbgg )" (Y- Xbgg )
SSE (k) = (y- Xboys )" (Y- Xboys ) + ( Brg - boys ) XX (bgg - boys ) -.(2.23)
The formula in (2.23) can be demonstrated as follows:
= (Y- Xbgg )" (Y- Xbgg )
= (Y- Xbg + Xbgs - Xbgs ) (Y- Xbge + Xbys - Xbys)
= [y - Xbgs ) - X( b = bois ) ' [ (Y - Xboys ) - X(bgg - bis) ]
= (Y- Xbos )" (Y- Xbgis) + (brp - Bors ) XX ( bgg - bos ) - ( bre -
bors ) X'(Y- Xboys ) - (Y- Xbos )" X(beg - by )
= (Y- Xbgs )" (Y- Xbos ) + (g = Boys ) XX ((brp - bois) - ((brg -
bors )'( XY-XXbgys ) - (XY - XX b5 ) ( brg - bos )
Clearly, the last two terms are equal to zero since X'y = X'Xb, and hence the

result.

the total mean square error is
TMSE(bRR )=E( bRR 'B)'( bRR 'B)
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By applying theorem 1 we get
TMSE (b, ) = o?tr[(X 'X +kI )X "X (X "X +kD)+8'@Z -1)'@Z -1)p ..(2.24)
Substituting from Z by [ 1 + k(X 'X )™*]™ in the second term of the right hand side

of equation (2.24) and using matrix algebra for simplification we obtain

TMSE( by, ) = "Zzuﬁk)z

TMSE( b, ) = wi(k ) +y, (k)

+kZ2 (X 'X +kI)?p ..(2.25)

The first term on the right hand side of equation(2.25) w,(k)is the sum of
variances ( total variance ) of b, components and the second term y,(k)is the

square of the bias.

Theorem 2 [30]

The total variance y, (k) is a continuous, monotonically decreasing function
of k.
Corollary 2.1

The first derivative w.r.to k of the total variance y,'(k ) approaches (- o)
as k approaches 0 and A, ——>0, moreover the matrix X'X becomes singular.
The proof of theorem (1) and its corollary (2.1) is readily obtained by expressing
w,(k)andy,'(k ) in terms of 4 .

Theorem 3 [28]

The squared bias v, (k ) is continuous, monotonically increasing function of
k.
Proof:

Recalling that X'X = G A G' where G is the orthogonal matrix whose columns
are the normalized eigenvectors of X'X and Ais the diagonal matrix whose
elements are the eigenvalues of X'X. Then v, (k ) can be rewritten as

w, (K)=k?B' (X 'X +kl )?
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v, (K)=k2B'[G AG '+k GG TS

v, (k)=k*GB)' (A+kl )*Gp
Putting & =G £ and expressing v, (k ) in terms of its components we get

P 2

wz(k)=k2;(lojk)2 ..(2.26)

Each element 4 +k is positive since 2, > 0 for all i and k > 0 ,hence there are no

singularities in the sum. Also it is clear that v, (0)=0,

Then y, (k)is a continuous function for k > 0 . If k > 0,y, (k) can be written as

follows :
v (K)= Y —— .(227)
= (1+?)

Since A, > 0 for all i, the functions ’i— are obviously monotone decreasing as k

increase and consequently each term of y, (k )is monotone increasing. This yield
w, (k )to be monotone increasing.
Corollary 2.2
The squared bias y, (k )approaches 'B as an upper limit
Proof:
From (2.27), we have
limyco v, () = limyo ¥ —% —=Sa?-a'a =P G G p=pp

(1+20)

Theorem 4 ( Existence Theorem ) [30]

There alwayes exists a k > 0 such that :

TMSE (bg, ) < TMSE (b, )
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Proof :

First , we have to note that

P

w,(0)= Gzzi and v, (0)=0

o A
Moreover
dTMSE (b ) _dya(k)  dy,(k)
dk dk dk
d TMSE (bRR):_Z 2 ﬂfl 2k ﬂfl Otiz 2 28
dk T LGy LG ~(2.28)

Each of w,(k)and w,(k) was established to be monotonically decreasing and

increasing respectively. Their first derivatives are alwayes non positive and non
negative respectively. The proof is completed whenever there exist, a k > 0 such
that:

dTMSE (by) _
dk

From equation (2.28) it can be shown that the above inequality have been satisfied
2
O

2
ax

when k <

(229)

2.4.2 Choice of Ridge Parameter

The ordinary ridge regression estimator does not provide a unique solution
to the multicollinearity problem , but provide a family of solutions. These solutions
depend upon the value of k ( the ridge parameter). No explicit optimum value can
be found for k. Yet, several stochastic choices have been proposed for this ridge

parameter. Some of these choices may be summarized as follows .
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Hoerl and Kennard ( 1970).Proposed graphical method called ridge trace to select
the value of the ridge parameter k. When viewing the ridge trace, the analyst picks
the value of k for which the regression coefficients have stabilized [18][7].

Often, the regression coefficients will vary widely for small values of k and then
stabilize. We have to choose the smallest value of k(which introduces the smallest
bias) after which the regression coefficients have seem to remain constant.

Hoerl, Kennard and Baldwin (1975) ,proposed another method to select a single

value of k given as[30] .

A pSz
K hks = -
bovs Bovs ..(2.30)

Where p is the number of explanatory variables, s? is the OLS estimator of s and

b, s 1S the OLS estimator of the vector of regression coefficients 2.

Lawless and Wang (1976) proposed selecting the value of k by using the following
formula
[3].

A psz

K = — .. (2.31)
bos "X "X Do

Assuming that the regression coefficients vector has certain prior distribution
srivastava followed Bayesian approach to estimate the ridge parameter . He

concluded that [42].

tr(X 'X)
n-p-3 bOLS XX bOLS _
n—p—l( S? )=P

lzBayes :MaX[O, ( 232)

[ ]

Where tr (X'X) denoted to the trace of the matrix X'X.

2.4.3 Proposed Method
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Our contribution in this topic represented by utilizing the concept of
condition number in order to select the ridge parameter. The condition number is
defined to be the ratio of the largest to the smallest singular value of the matrix of

the explanatory variables X [14].
The suggested estimator denoted as K ov is defined as follows :
psS 2 1

Ken =Max [0, bOLS 'bOLS _CN ] ( 233)

Where CN referred to condition number.

Our proposed estimator is the modification ofk s . The small amount CiNis

subtracted fromkw .This amount , however ,varies with the strength of

multicollinearity in the model.

If the condition number is too large then k;N would coincide with k,:KB since in
such case , the fraction %would approach to zero.

On the other hand if the condition number is too small (approximately equal to 1)

SZ
(—

OLS ™~OLS

then the possibility that _ 1L ) be negative is too large.

In this case we choose kev to be equal to zero which means that the ridge
regression estimator would coincide with the ordinary least squares estimator and

the data set is not influenced by the multicollinearity problem.

2.4.4 Generalized Ridge Regression [21][36][43]
By using the singular value decomposition technique in order to derive the

generalized ridge regression , we can rewrite the linear regression model as

follows:
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1

y =X B+e=(H A2)G'S)+¢

o 'y =Zc—+& ..(2.34)

1

Where: Z =HA2 ,a=G'p

The model in equation(2.34) is called the canonical model or uncorrelated
components model . The OLS estimator of « is given as:

ags =(2'2)'Z2'y=A"Z"y ..(2.35)
And Var(ay)=0°(Z'Z)" =0c°A"" which is diagonal. This shows the important
property of this parameterization since the elements of «,, ., namely,
(o, a,,...,a,), s areuncorrelated.
The generalized ridge estimator for « is given by:
Qerr =(Z2 'Z +K)Y'Z'y=(A+K)'Z'y ..(2.36)
=(A+K)*Z'Zag s =(1 +KA ™) a6

4
A +K,

= Wy aq s =diag ( )oos , i=1,2,...,p

Where K= diag (K, ,K,,...,K )and, W, =(I +KA™)*=diag (ﬁ) i=1,2,.p

The mean square error of a. IS given by

MSE (agrg ) =Var(agrg ) + (bids agrg )(biaS g )|

O'Ztr(\NK A_lWK Y+ Wy =g ags W —1)'

2 2
< A P KT+ a o)

i=1 i i +§ (I2’|+Ki)2

|
qI\J

{\d

N

+ 13

x

(2.37)

To obtain the value of K, that minimize MSE (.., ) We differentiate equation (2.37)

with respect to K, and equating the resultant derivative to zero. Thus
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Chapter Two
6MSE(0{GRR):_O_ZZ ﬂfl +Z/l| Kiaiz(oLS):
oK, (4 +K;) (4 +K;)?
O_2
By solving for K,we obtain K, =2 Since the value of &? is usually
i (OLS)

unknown, we use the estimated value o2 . Therefore, when the matrix K satisfies:

A o . o o o
Ki=— = diag (— 12 e TR )
@ oLs) & os) @2 oLs) &, oLs)

Then the MSE of generalized ridge regression attains the minimum value .
The original form of generalized ridge regression estimator can be converted back

from the canonical form by bgqe) =Gagrg ..(2.38)

2.5 Principal Components Regression
Ridge regression was offered as a technique which attempted to overcome

the multicollinearity problem. An alternative procedure known as principal

components approach ,was first proposed by Harold Hoteling ( 1933).
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In order to obtain a good realization of this approach let us proceed our discussion
with the case of two predictors x; and x,.1f these predictors are correlated then the
matrix X will not be orthogonal consequently, this will complicate the
interpretation of the effects of x;, and x, on the response variable y [5][3].

From the geometric point of view, let us rotate the coordinate axis so that in the
new system, the independent variables are orthogonal. Moreover, let us make the
rotation so that the first axis lies in the direction of the largest variation in the data,
the second axis lies in the direction of the second largest variation in the data [44].
These rotated directions (Z;and Z, say in our two predictors case ) are simply

linear combinations of the original predictors.

Figure (2-1)
Original independent variable are X; and X, Principal Components are Z;and Z,

We now illustrate how these directions can be calculated. Using singular value

1

decomposition then X = H A2 G' where each of H, A , G is defined earlier
1 1
XX=G A? HH A2 G'=G AG'
Since G is orthogonal matrix then the general linear regression model y = X3 + ¢

can be rewritten as follows:
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y=XGG'PB+te=Za+e ..(2.39)
Where Z= XG and o = G'p
Hence

ZZ=GXXG=G"(G AG')G = A =diag( 14,15, ..., 1p)

where 4; = A, = -+ > 1, >0 are the eigenvalues of X'X. The columns of G are
the eigenvectors of X'X and the columns of Z are the principal components of X
and these are orthogonal to each other [44][9][23].

Thus, the procedure creats a set of artificial variables z* from the original X, **via

a linear transformation Z = XG in such a way that the Z vectors are orthogonal to
each other. The Z; corresponding to the largest A; value is called the principal

component and it explains the largest proportion of the variation in the

standardized dataset.

Further, Z j'S explain smaller and smaller until all variation is explained. Typically,

one does not use all the zj'S but follows some type of selection rule. No universal

rule is presented for selecting the components. Some statisticians use the rule that
only eigenvalues greater than 1 are of interest. Other statisticians suggested that the
components might be computed until some arbitrarily large proportion (may be
0.75 or more) of the variances has been explained the OLS estimator of o is given
as:

&:(z 'Z)'Z'y=AG'X'y ..(2.40)
Assuming that the first g ( q < p ) principal components are selected, then the

reduced estimator can be written as follows:

a,=(Z,'2,)"Z',y =AG' Xy ..(241)
Where Z,=XG,, G, is the matrix of the first q eigenvectors of X'X and A, is the

diagonal matrix contains the first g eigenvalues of X'X.
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To find the principal component estimator of the regression coefficients in terms of

the original variables, by solving o = G'B for  to get B = Ga. that is because G is

orthogonal matrix. Let b.. denoted to the principal component estimator of 3 then
b =G @
If g principal components are selected then

Bipcyg =Gq @a =G, A;'G ', X 'y (2.42)
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Chapter Three

The Experimental and The Practical side

The Experimental Side

3.1 Introduction

Whereas, simulation in a narrow sense (also referred to as stochastic
simulation) is defined as experimenting with the model over time, it includes
sampling stochastic variates from probability distribution. Usually, simulation is
regarded as " method of last resort " to be employed when every other approach
else has failed. The development of software's and the used techniques have made
the simulation one of the most popular and accepted tools for researchers in the
system structure and analysis.
simulation approach has a numerous fields of applications. For instance,
conducting and analyzing manufacturing systems, evaluating military weapons
systems or their logistical requirements and analyzing economic systems.

The main purpose of this chapter is to employ the results obtained from the
simulation study which assess the performance of some ridge regression methods
as well as the principle component method to the data obtained from Tagi gas
distribution plant explained in the practical side of this chapter.

In this section, we will discuss the simulation study that compares the ridge
estimators with principal component estimator under several degrees of
multicollinearity, especially when correlation level between explanatory variables
(p=0.70,0.80, 0.90,0.95). We consider four different ordinary ridge estimators

corresponding to four different values of ridge parameter k .
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The values of k are K.k, »Ksae 85 Well @s our proposed value of the ridge

Bayes
parameter which we denote it byk,,, .

The several values of k were calculated by using equations (2.30),(2.31) ,(2.32),
and (2.33).

Moreover, the generalized ridge regression estimator and principal component
estimators were obtained from equation (2.36) and (2.42) respectively .Since the
performance of different estimators is influenced by the sample size , we choose
four types of samples, small of size 10 , median of size 40 and large of size 100
and very large of size 200. The error terms were generated at different levels of

standard deviations, In particular, at (o=5,10,20and 25).

The mean square error (MSE) is used as a measure to assess the performance of

the stated methods.
3.1.1 Study Design

In our experimental study, we aim to assess and compare the performance
between the several estimation methods that was already stated. The simulation
technique was used for this situation and the experiment was repeated 1000 time.
Moreover , we assume that the error term is normally distributed as N( 0, &% ).The
random variables were generated according to the equations
x1=sqrt((1-row”2)).*x(:,1)+row*x(:,1);
x2=sqrt((1-row”2)).*x(:,2)+row*x(:,2);
x3=sqrt((1-row”2)).*x(:,3)+row*x(:,3);
x4=sqrt((1-row”2)).*x(:,4)+row*x(:,4);

Xi=[x1 x2 x3 x4]

The measurment MSE is used as
MSE = sgrt(sum(y-yhad).”2/(n*r));
when r = 1000

Table (3-1): The values of MSE at p =0.70
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Standard deviation o

n Method = 0 0 >0
PC 1.4043e-017 2.1065e-017 | 2.1065e-017 7 37286.017
I Grr 0.0197 0.0227 0.0233 I 0.0233 I
I K e 0.0229 0.0238 0.0235 I 0.0233 I
I 10 K i 0.0024 0.0024 0.0024 I 0.0024 I
I K gayes 0.0039 0.0039 0.0039 I 0.0039 I
Ko 73728e-017 | 7.3728e-017 | 7.3728e-017 || 14043€-017
PC 1.7115e-017 3.9497e-018 | 2.1943e-01 6.58280-018
I Grr 0.0126 0.0125 0.0125 I 0.0125 I
I I2 s 0.0764 0.0747 0.0742 I 0.0742 I
40 K " 0.0031 0.0031 0.0031 0.0031
K Bayes 0.1128 0.1134 0.1136 0.1136
K en 0.0037 5.7051e-018 | 7.5922e-017 1.00506-016
PC 8.8818e-018 6.8834e-017 | 6.6613e-018 1 | ;00 017
Grr 0.0078 0.0078 0.0078 0.0078
100 if s 0.0355 0.0303 0.0273 0.0268
K L 4.3631e-004 4.3625e-004 | 4.3623e-004 4.36236-004
K Bayes 0.0436 0.0438 0.0439 0.0439
K on 0.0012 3.8272e-004 | 3.9968e-017 0 o0 oo
PC 4.7495¢-017 9.0280e-017 | 8.5963e-017 [| 1.9116e-016
Grr 0.0054 0.0054 0.0054 0.0054
200 K 0.0525 0.0499 0.0490 0.0489
K 3.4149e-004 3.4148e-004 | 3.4148e-004 (I 3.4148e-004
k Bayes 0.0732 0.0734 0.0735 0.0735
K on 8.5901e-004 5.1013e-004 | 7.6542e-017 [§ 1.8723e-016

Table (3-2): The values of MSE at p = 0.80
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Standard deviation o

n | Method 5 10 20 25
PC 2.1065¢-017 4.9152e-017 | 3.1598e-017 || 1.4043¢-017
I Crr 0.0197 0.0227 0.0233 I 0.0233 I
I 10 K s 0.0228 0.0238 0.0235 I 0.0233 I
I K w 0.0024 0.0024 0.0024 I 0.0024 I
I K gayes 0.0039 0.0039 0.0039 I 0.0039 I
‘ K on 4.2130e-017 4.2130e-017 | 4.2130e-017 ‘ 5.9684¢-017 ‘
PC 7.4605¢-018 127276017 | 4.8713-017 || 2.6770e-017
I Crr 0.0126 0.0125 0.0125 I 0.0125 I
I 40 K e 0.0764 0.0747 0.0742 I 0.0742 I
I K w 0.0031 0.0031 0.0031 I 0.0031 I
I K gayes 0.1128 0.1134 0.1136 I 0.1136 I
‘ K on 0.0038 4.6957e-017 2.1943e-018‘ 1.1279¢-016 ‘
PC 6.6613¢-018 6.6613¢-018 | 2.8866e-017 || 4.8850e-017
Crr 0.0078 0.0078 0.0078 0.0078
100 E HE 0.0356 0.0304 0.0273 0.0268
K uw 4.3631e-004 436250004 |  4.3623e-004 ||  4.3623¢-004
K gayes 0.0436 0.0438 0.0439 0.0439
K on 0.0012 3.09460-004 |  2.44250-017 I  7.32750-017
PC 1,5308¢-017 22766e-017 | 7.3009e-017 || 5.4561-017
Grr 0.0054 0.0054 0.0054 0.0054
- K 0.0525 0.0499 0.0490 0.0489
K 3.4149¢-004 34148¢-004 | 3.4148¢-004 || 3.4148¢-004
K gayes 0.0732 0.0734 0.0735 0.0735
K on 8.5901e-004 5.1794e-004 | 3.0617e-017 || 2.3787¢-016

Table (3-3): The values of MSE at p =0.90
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Standard deviation o

N | Method 5 10 20 25
PC 7.0217e-018 1.0533¢-017 | 2.1065¢-017 || 3.8619e-017
I Grr 0.0192 0.0226 0.0232 I 0.0233 I
I 10 K e 0.0227 0.0238 0.0235 I 0.0234 I
I K w 0.0024 0.0024 0.0024 I 0.0024 I
I K gayes 0.0039 0.0039 0.0039 I 0.0039 I
‘ K on 1,0533¢-017 6.67066-017 | 6.6706¢-017 ‘ 7.0217e-018 ‘
PC 2.3259¢-017 4.1691e-017 | 2.1943¢-018 || 4.3447e-017
I Grr 0.0126 0.0125 0.0125 I 0.0125 I
I 10 K e 0.0766 0.0748 0.0742 I 0.0742 I
I K w 0.0031 0.0031 0.0031 I 0.0031 I
I K gayes 0.1127 0.1134 0.1136 I 0.1136 I
‘ K on 0.0042 2 7648¢-017 4.9591e-017‘ 6.97786-017 ‘
PC 8.8818¢-018 44409018 | 8.8818¢-018 || 7.3275e-017
Crr 0.0078 0.0078 0.0078 0.0078
100 K 0.0359 0.0307 0.0274 0.0269
K 4.3632¢-004 4.3625¢-004 | 4.3623¢-004 || 4.3623¢-004
K gayes 0.0435 0.0438 0.0439 0.0439
K on 0.0013 4.7300e-004 | 28866017 || 4.8850e-017
PC 6.2019¢-017 6.2411e-017 | 3.6112¢-017 || 4.9065-017
Crr 0.0054 0.0054 0.0054 0.0054
200 IE HKB 0.0528 0.0500 0.0490 0.0489
K Lw 3.4150e-004 3.41480-004 | 3.41480-004 || 3.4148¢-004
K gayes 0.0731 0.0734 0.0735 0.0735
K on 8.8349¢-004 5.5233¢-004 | 1.7153¢-:016 || 9.8131e-018

Table ( 3-4 ): The values of MSE at p = 0.95
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Standard deviation o
n Method
5 10 20 25
PC 2.8087e-017 2.1065¢-017 | 5.9684e-017 || 7.0217e-017
I Grr 0.0185 0.0225 0.0232 I 0.0233 I
I 10 K b 0.0225 0.0237 0.0235 I 0.0235 I
I K o 0.0024 0.0024 0.0024 I 0.0024 I
I K gayes 0.0039 0.0039 0.0039 I 0.0039 I
‘ K on 1,0533¢-016 7.6210e-17 | 7.6120e-17 ‘ 8.7771e-017 ‘
PC 1,0094e-017 16238017 | 8.3382e-018 || 1.1849-017
I Grr 0.0126 0.0125 0.0125 I 0.0125 I
I 40 K b 0.0768 0.0749 0.0743 I 0.0743 I
I K w 0.0031 0.0031 0.0031 I 0.0031 I
I K gayes 0.1126 0.1134 0.1136 I 0.1136 I
‘ K on 0.0047 5.3979¢-017 | 4.8713e-017 ‘ 3.9058¢-017 ‘
PC 6.6613¢-018 15543017 | 3.9968e-017 || 1.3323¢-017
Grr 0.0078 0.0078 0.0078 0.0078
100 IE HKE 0.0363 0.0311 0.0276 0.0270
K uw 4.3633¢-004 4.3625¢-004 | 4.3623e-004 || 4.3623¢-004
K gayes 0.0435 0.0438 0.0439 0.0439
K on 0.0013 55274004 | 17764e-017 || 4.4409e-017
PC 1,5230e-016 4.9458¢-017 | 871400017 || 2.0804e-017
Grr 0.0054 0.0054 0.0054 0.0054
200 IE HKE 0.0531 0.0502 0.0491 0.0489
K uw 3.4150e-004 34148¢-004 | 3.4148¢-004 || 3.4148¢-004
K gayes 0.0731 0.0734 0.0735 0.0735
K on 9.0803¢-004 3.8024e-004 | 6.1626e-017 || 1.1116e-016
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3.2 The Practical side

In the practical side of this chapter, we apply the procedures discussed
earlier employing the data obtained from Tagi gas filling company during the
period ( 2008-2016 ). The company is one of the formations of the oil ministry that
had set up in (1967).the company is linked to more than 250 gas filling plants in
Baghdad and other provinces. The company produces each of liquid gas from
propane gas mixture and liquid butane gas, as well as the production of some
solvents such (as hexane) to meet the need for business activity.

In our study we wish to determine the effect of four explanatory variables

X1,X,, X5 and X, on the response variable Y. Where Y it represents the annual
output of liquid gas cylinders, and the explanatory variables X,,X,, X;and X,
refer to craftsmen, administrators, technicians and engineers respectively. We
assume that the explanatory variables and the response variable represented

according to the linear model from as follows:

Y :ﬂo+ﬁlxl+ﬂ2x2+ﬂ3xs+ﬂ4x4+g (3-1)
Table (3-5)
Values of four explanatory variables X4, X, , X;and X, and the response variable vy

Y
29024876
29024876
28259383
31691496
32655027
33691061
35441678
36872615
39256145
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The table below represents descriptive statistics for the explanatory variables and the

dependent variable.

variable

Table (3-6)

Descriptive Statistics

Minimum

28259383

Maximum

39256145

32879684.11

Standard .Deviation

3813683.112

2184

3297

2637.222

363.51127

464

702

564.4444

74.2460

1673

2524

2019.889

278.35249

312

490

391

56.16939

In table below, the correlation matrix is displayed which involve the correlation

coefficients between the explanatory variables themselves and between each

explanatory variable and the response variable Y.
Table (3-7)
Matrix of Correlation coefficients
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The table below ,the eignvalues and condition numbers of the correlation matrix are

represented.

Table (3-8)

Analyses of eigenvalues for correlation and matrix condition numbers

Eigen value Condition numbers

31.882165 1
0.117604 271.0976

0.000219 145580.7
0.000009 3542462.8

The eigenvectors of the correlation matrix are give in table ( 3-9)
Table (3-9)
Eigenvectors of correlation matrix

X

3
1.08514

-1.11670
1.10856

-1.11163
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3.2.1 The Farrar-Glauber test :-

As we mentioned earlier, the Farrer-Glouber test is used to detect the existence

of multicollinearty problem. For our dataset the test is applied as follows.

1

rx ZXl

My x,

i Iy X,

rX lx 2

1

Mx

X,

rx 1X3

I ,x,

1

I x,

Where we have a specific matrix

1.0000
0.9951
1.0000
0.9974

0.9951
1.0000
0.9949
0.9855

1.0000
0.9949
1.0000
0.9976

I ,x,

X 35X 4

1

My x,

0.9974
0.9855
0.9976
1.0000

The Experimental & The Practical side

By applying the equation (2.9),

the chi-square »Z = 157.3983

The tabulated value with 6 degrees of freedom and o = 0.05 level of significant was
found to be ( 1.64 ) ,hence, we reject H, since ;= 157.3983 > 1.64,

consequently, the problem of multicollinearity is exist among the explanatory
variables.
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3.2.2 The Ridge regression analysis

The next step in our practical study represented by applying different types of
ridge regression estimators in order to deal with the multicollinearity problem. For
this situation we start with the generalized ridge regression estimator, b;zg.

By employing equation(2.36), we found that

0.7776
45126
R 7| 122599
7.6087

The analysis of variance calculations are summarized in the following ANOVA
table

Table (3-10)
ANOVA in case of Ggg
Source d.f Sum of squares | Mean square F test
Regression 4 7446678 1.861669
Residual | 4 0.553321 0.138330 | 13458148
Total 8 8

Hoerl, Kennard and Baldwin estimator for the ridge parameter k;K is obtained by

using equation ( 2.30 ). It was (0.00000303) . Accordingly, the ridge regression

estimator is
-78.3946

b -12.6418

ke | 113.7304
-21.8538
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The analysis of variance calculations are summarized in the following ANOVA table

Table (3-11)
ANOVA in case of b,
Source d.f Sum of squares| Mean square F test
Regression 4 7.714816 1.928704
Residual 4 0.285183 0.071295 | 27.052126
Total 8 8

Lawless and Wang estimator for the ridge parameter k:W Is obtained by using

equation ( 2.31). It was (0.01325400) . Accordingly, the ridge regression

estimator is
0.3264

| 0.4550
“w | 0.4513
-0.2740

The analysis of variance calculations are summarized in the following ANOVA table

Table (3-12)
ANOVA in case of b,
Source d.f Sum of squares | Mean square F test
Regression 4 7.370573 1.842643
Residual 4 0.629426 0.157356 | 11.709980
Total 8 8

A

Applying the Bayesian approach stated earlier the value of k was kg, =0.21783861

obtained by using equation ( 2.32).
Hence, the ridge regression estimator is
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0.2359
0.3699
b, =
0.2408
0.1067
The analysis of variance calculations are summarized in the following ANOVA table

Table ( 3-13)
ANOVA in case of b,
Source d.f Sum of squares | Mean square F test
Regression 4 7.304121 1.826030
Residual 4 0.695878 0.173969 | 10.496257
Total 8 8

By applying our proposed method and from equation ( 2.33 ), the value of k was found

A

kev = 0.000013. Accordingly, the ridge regression estimator equation is

~38.8359
~10.1881
koo T 66.9740
_17.0856

The analysis of variance calculations are summarized in the following ANOVA table

Table (3-14)
ANOVA in the case of b, _
Source d.f Sum of squares | Mean square| F test
Regression 4 7.603587 1.900896
Residual 4 0.396412 0.099103 | 19.180991
Total 8 8

51



Chapter Three The Experimental & The Practical side

3.2.3 The Principal component method :-

An alternative popular approach that is widely used to remedy the multicollinearity

problem is the principal component approach. For our dataset the following

calculations are performed.

Table ( 3-15)

Principal Component Analysis

PC1

PC2

PC3

PC4

-0.567

0.053

1.085

0.510

0.409

-0.763

-1.117

0.499

-0.418

0.070

1.109

0.510

0.580

0.640

-1.112

0.500

31.882165

0.117604

0.000219

0.000009

| Eigen Value
| Proportion

0.99631765625

0.00367512500

0.00000684375

0.00000028125

Cumulative

0.996

0.999

1.000

1.000

Obviously, the first two components, with larger eigenvalues explain 99.9 % of the

total variance. Hence, only the first two principal components are introduced into

analysis. We have to find Z= XG* where G* is a (4x2) matrix obtained from the

first two columns of principal components matrix, is found :

[ -0.000013989 0.000523899 |
0.000503686 0.006293600
0.000996264 -0.000208627
0.000199344 -0.004299124
-0.001374345 0.000120307
0.001018815 -0.010413387
-0.000878755 0.001565974
-0.001711530 -0.000660762
0.001260510 0.007078122
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By applying the principal of ordinary least squares to fit the model Y =Z o+ ,Where

o =G*' we obtain :

S

Thus the regression equation is:

Q>

—183.2070}

L J =(Z22)'zY =
21.2568

2

y=a,pci+ é,pc, = -183.2070pc; +21.2568 pc;
In terms of the original values we have:
y=—107.3581X, —14.9086X, +147.1196 X, —24.9894 X,

The Variance-covariance matrix is given as

[ 2717.2833750 0.00000028854}

var-cov (&) = S*(2'2)* =
0.00000028854  117.4586773

The analysis of variance calculations are summarized in the following ANOVA table.

Table (3-16)
ANOVA in the case of bp,
Source d.f Sum of squares | Mean square F test
Regression 2 7.581678 3.790839
Residual 6 0.418321 0.069720 | 54.372080
Total 8 8
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3.2.4 Coefficient of Determination

The following table shows the coefficient of determination obtained from
different methods

Table (3-17)

Method R- Square

PC 94.770975

93.083484

96.435207

92.132167

91.301517

95.044821

3.2.5 Conclusions and discussion
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From our theoretical, experimental and practical study, we believe that the
following points are considerable.
1- The simulation results displayed that the principal components estimator
performs better than almost all types of generalized and ordinary ridge regression
estimators that are included in the study,under different conditions of
multicollinearity levels, sample sizes and different levels of standard deviations of
the error terms.
2- As we stated earlier, our proposed method for estimating the ridge parameter
depends upon the level of multicollinearity between the explanatory variables. It
shows the importance of the condition number as an indicator of the presence of

multicollinearity problem. Moreover, the simulation results imply that the ordinary

ridge regression estimator based on the proposed ridge parameter ng performs

well in the sense of MSE. It seems to be better all other types of ridge regression
estimators included in this study whatever the level of multicollinearity, the sample
size , or the value of standard deviation is.

3- In our practical study, the Farrer-Glauber test established the existence of
multicollinearity problem in our real data set. Many other indicators ensure the
presence of this problem, such as the large values of correlation coefficients
between some explanatory variables ( close to 1) as it is shown in table (3-8) and a
very small eigenvalues( near zero ) which imply a very large values of condition
numbers as it is displayed in table (3-9).

4-The analysis of variance tables demonstrate that the principal component
estimator is superior to all types of ridge regression estimators in the sense of MSE
as it is shown in table (3-16).

5- With regard to different types of ridge regression estimators, the ANOVA tables

displayed that the ordinary ridge regression estimator based on kHAKB is the best ,

followed by the ordinary ridge regression estimator based on our proposed ridge
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parameter ng in the sense of MSE as it is shown in tables ( 3-11) and ( 3-14)

respectively.

6- At 0.05 level of significant, it was found that the observed values of the F
statistic from all ANOVA tables is greater than the corresponding tabulated values
with p and n-p-1 degrees of freedom. This implies that the null hypothesis

Hy: B; = 0,j = 1,2,3,4 is rejected. Consequently, a statistically regression
equations have been obtained and the studied variables have an explanatory power.
7- As mentioned earlier, the coefficient of determination denoted by R? is defined
to be the percent of variations in the response variable that can be explained by the

regression equation. With regard to our practical study, the regression equation

based on kHAKB explain approximately 96.4 % of variations in the response variable,

while the regression equation based on our proposed ridge parameter ng explain

about 95.04 % of variations in the response variable, as it is shown in table (3-17).
8- For the purpose of future works, many other estimators can be employed to
overcome the multicollinearity problem such as the generalized inverse estimator,
Liu estimator, the restricted ridge regression estimator and Jackknife ridge

regression estimator.
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