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Abstract

In 2013, the authors Asgari and Haghany introduced the concept of t-
semisimple modules as a generalization of semisimple modules. Where "an R-
module M is called t-semisimple if for each A < M, there exists a direct
summand B of M such that B is t-essential in A”. In fact the concept of t-
essential is introduced by Asgari and Haghany in 2011 they said that a
submodule A of "an R-module M is t-essential in M(written A <,.,o M) if
whenever ANC < Z,(M),C <M implies C < Z,(M)"” where Z,(M) is the
second singular submodule of M. This dissertation is devoted for investigations

the following:

e Extending the notions of t-semisimple modules to strongly t-semisimple
modules.

e Generalizing the concepts t-semisimple modules, strongly t-semisimple
modules in to FI-t-semisimple modules, purely t-semisimple modules,
strongly FI-t-semisimple modules, strongly purely t-semisimple modules.

e Introducing various classes of modules related to types of t-semisimple
modules and strongly t-semisimple modules, such as module satisfy
strongly C;,-condition, strongly T,,-type modules, modules satisfy FI-
C;4(strongly FI-C;;)condition, FI-T;,(strongly FI-T;,)-type modules,
modules satisfy purely-C,,(strongly purely -C;,)-condition and purely-

T, 1 (strongly purely -T;,-type) modules.



Introduction

Introduction

It is known that a submodule A of an R-module M is said to be essential in M
(denoted by A <.s M), if ANW =+ (0) for every non-zero submodule W of M.
Equivalently A <.,c M if whenever An W=0, then W = 0[23], [25], [26]. The
concept of extending (also known as CS-module or module with C;-condition) had
been studied and generalized by several authors, (see [17],[34]). " A module M is
called extending if for every submodule N of M there exists a direct
summand W(W <® M) such that N <.,c W "[17]. Equivalently " M is extending
module if every closed submodule is a direct summand”, where a submodule C of
M is called closed if C <,,c C' < M implies that C = C’'[23]. In 2011, Asgari and
Haghany [6] introduced the notion of (t-essential) where ” A submodule A of M is
said to be t-essential in M (written A <.s M)if for every submodule Bof M

ANB<Z,(M) implies that B < Z,(M)"[6] and " Z,(M) is the second singular

(or Goldi torsion) defined by Z(%) = Z;EI\I\:II;

where Z(M) = {x € M:xI = (0)
for some essential ideal of R}. In fact Z(M) = {x € M: ann(x) <.ss R} where
ann(x) = {r € Rixr = 0} [23]. M is called singular (nonsingular) if Z(M) =
M(Z(M) = 0)[23]. Note that Z,(M) = {x € M:xI = (0) for some t-essential ideal I
of R}.M is called Z,-torsion if Z,(M) = M and a ring R is called right Z,-torsion if

Z, (Rr) = Rg [23].

Asgari and Haghany in [6] used the concept of t-essential submodule, to give
the following: " A submodule C of an R-module M is called t-closed (denoted by
C <(c M) if whenever C <.s C' < M implies that C = C'[6]. The concepts of
extending module, t-essential submodule, and t-closed submodule, led Asgari and
Haghany in [6] to say that ” a module M is t-extending if every t-closed submodule
is a direct summand. Equivalently, M is t-extending if every submodule of M is t-
essential in a direct summand "[6]. It is known that a module is semisimple if every

submodule is a direct summand [23].[25]. It is clear that every semisimple module

1



Introduction

Is extending. The following observation: (A module M is semisimple if every
submodule N of M contains a direct summand K such that K <., N). Motivated
Asgari and Haghany in 2013[7] to introduced the notion of t-semisimple modules as
a generalization of semisimple modules. They said that”A module M is t-
semisimple if for every submodule N of M, there exists a direct summand K such
that K <. N” A ring R is right t-semisimple when the module Rj is t-semisimple
[7]. Notice that for module:

Semisimple==F»  t-semisimple === t-extending, but none of these
implications is reversible (see [7, Examples 2.18]).

A comprehensive study of these modules and rings has been carried out by [7].

Our aims in this dissertation are to extend the notion of t-semisimple modules. So
we introduce and study the concept: strongly t-semisimple modules. Also, we
introduce many generalizations of t-semisimple modules and strongly t-semisimple
modules. Fl-t-semisimple modules, strongly Fl-t-semisimple modules, purely t-
semisimple modules and strongly purely t-semisimple modules. Beside these we
investigate some types of modules which are related with above type of t-

semisimple modules.

This thesis consists of four chapters. Chapter one is divided into five sections. In
section one, some known concepts, propositions, Theorems and Examples which
are useful in our work are recalled. Also, some new results are added (see, Theorem
1.1.51, Propositions 1.1.52, 1.1.53, 1.1.54, 1.1.55, 1.1.56, Corollaries 1.1.57, 1.1.58
and Proposition 1.1.59). In section two, the concept of strongly t-semisimple
modules is introduced. An R-module is called strongly t-semisimple if for each
submodule N of M there exists a fully invariant direct summand K  such
that K <,.s N. Itis clear that the class of t-semisimple modules contains the class of

strongly t-semisimple; that is we have the following implication for modules.
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Strongly t-semisimple=—=)p t-semisimple.

The reverse implication is not true in general (see, Remarks and Examples
1.2.2(8)). We investigate conditions which allow the converse to be hold (see,
Proposition 1.2.5, Corollaries 1.2.13, 1.2.15 and Proposition 1.2.17). We provide
several characterizations of strongly t-semisimple modules (see, Theorem 1.2.3 and
Proposition 1.2.10). We show that the property of strongly t-semisimple is inherited
by submodule (see, Proposition 1.2.7). However the direct sums do not inherit this
property (see, Examples 1.2.4). But we explore condition which let a direct sum of
strongly t-semisimple modules to be strongly t-semisimple (see, Theorem 1.2.9).

Many other properties of strongly t-semisimple are presented.

In section three we focus on strongly t-extending module. In fact, as Asgari and

Haghany in [7] proved that every t-semisimple module is t-extending.

. We verify analogous result that ” every strongly t-semisimple module is strongly
t-extending” and the converse is not true in general (see, Theorem 1.3.5). Where ”
An R-module M s called strongly t-extending if every submodule is t-essential in a
stable direct summand "[20]. Some characterizations of strongly t-extending are
given (see, Theorem 1.3.11). Beside these we have proved that every strongly
extending is strongly t-extending, but not conversely (see, Proposition 1.3.7,
Example 1.3.8), where ” an R-module M is strongly extending if every submodule
Is essential in a stable direct summand "[35]. The two concepts are equivalent under
certain conditions (see, Propositions 1.3.9, 1.3.13). Also, under certain condition the
direct sum of two strongly t-extending is strongly t-extending (see, Theorem 1.3.16)
and we give a different proof of the property (strongly t-extending is inherited by a

direct summand) which is given in [20] (see, Proposition 1.3.14).

Section four concerns with strongly t-semisimple rings. Several
characterizations of commutative strongly t-semisimple ring are given. For
examples (see, Propositions 1.4.8 and 1.4.9).

3
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Section five deals with strongly t-Baer. The following implications for a

modules hold:

t-semisimple == t-extending ———Jp t-Baer [7]. This motivate us to
look for connections between strongly t-semisimple modules, strongly t-extending

modules and strongly t-Baer modules, where "An R-module is called t-Baer if
tm(D) = {m € M:Im < Z,(M)} is a direct summand of M for each left ideal I of
End (M)"[6]. ” An R-module is called strongly t-Baer if ty(I) is a direct summand
and fully invariant, for every left ideal I of S, where S = End(M)"[20]. :"A module
M is called Baer if r,(I) <® M for every left ideal I of S where S =
End(Mg).”[33] and ” A module M is called abelian Baer (or strongly Baer by some
authors) if r,, (1) <® M and fully invariant for every left ideal I of S where,
S = End(Mg)"[34]. Many connections between these types of Baer modules are
given (see, Remarks 1.5.5) several characterizations of strongly t-Baer module are
presented (see, Theorem 1.5.8). Theorem 1.5.10, express the connections between
the concepts strongly t-semisimple, strongly t-extending and strongly t-Baer
modules. Beside these relationships between strongly t-extending, strongly t-Baer
modules and strongly extending are given by (Theorem 1.5.12, Corollary 1.5.13).
Then we introduce the concept strongly )-t-extending ring, where a ring R is
called right strongly X' —t — extending if every free R- module is strongly t-

extending.

Many equivalent statements for this concept is given, (see Theorem 1.5.16),
Corollaries 1.5.18, 1.5.19). Finally (Theorem 1.5.20 and Corollary 1.5.21) present

characterizations for strongly t-extending rings.

Chapter two consists of three sections. In section one Fl-semisimple modules is
introduced where an R-module M is called FI-semisimple if for each fully invariant
submodule N of M, there exists K <® M such that K <., N. Clearly every

semisimple module is Fl-semisimple, but not conversely (see, Remarks and

4
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Examples 2.1.3(1)). However they are equivalent under the class of duo modules
(or multiplication modules). The homomorphic image of Fl-semisimple need not be
Fl-semisimple (see, Remarks and Examples 2.1.3(7)). However it is true under
certain condition (see, Corollary 2.1.5). Moreover, we prove the direct sum of two
Fl-semisimple modules is a FI-semisimple and the converse hold if each summand

is a fully invariant submodules of M.

In section two, we provide a generalization of t-semisimple module, namely FI-t-
semisimple, where An R-module M is called Fl-t-semisimple if for each fully
invariant submodule N of M, there exists K <® M such that K <,,; N. We observe
the following every t-semisimple module is FI-t-semisimple module, and every Fl-
semisimple is Fl-t-semisimple but the converses are not true in general (see,
Remarks and Examples 2.2.2,(1),(2),(3)).

The property of Fl-t-semisimple is inherited by fully invariant submodules (see,
Proposition 2.2.3). We prove that every Fl-t-semisimple is Fl-t-extending if
condition (*) hold, where(*): for an R-module M, a complement of Z, (M) is stable
and "an R-module M is called Fl-t-extending module if every fully invariant t-
closed submodule of M is a direct summand of M"[9].. Moreover, condition (*)
allows several statements to be equivalent with FI-t-semisimple module (see,
Theorem 2.2.5(1<-3«>4), Proposition 2.2.10 and Theorem 2.2.12). Moreover other
statements are equivalent to Fl-t-semisimple module under certain condition are

given (see, Proposition 2.2.11).

In section three, the notion of FI-t-semisimple module has been extended where
an R-module M is called strongly Fl-t-semisimple if for each fully invariant
submodule N of M, there exists a fully invariant direct summand K such that

K <;.s N. We have the following implications for a module

Fl-semisimple=—=p> strongly FI-t-semisimple and strongly t-semisimple
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== strongly FI-t-semisimple
The reverse of each implication is not hold in general (see, Remarks and Examples
2.3.2).

We explore condition: any complement of any submodule of a module is stable
which make FI-t-semisimple modules coincide with strongly FI-t-semisimple
modules (see, Proposition 2.3.3). The property of strongly Fl-t-semisimple is
inherited by fully invariant direct summand (or nonsingular fully invariant
submodule) (see, Proposition 2.3.6, Corollary 2.3.7). Then a direct sum of any two
strongly FI-t-semisimple modules is strongly FI-t-semisimple module (see,
Proposition 2.3.11).

Chapter three is divided into five sections. In section one another generalization
of semisimple modules, which we called it purely semisimple is introduced and
studied, where an R-module M is purely semisimple if for every pure submodule N
of M there exists a direct summand K of M such that K <., N. Equivalently an R-
module is purely semisimple if every pure submodule is a direct summand (see,
Proposition 3.1.2). It is clear that every semisimple is purely semisimple, but the
converse may be not true (see, Remarks and Examples 3.1.3(1)). Every pure simple
module (or Noetherain projective or divisible module over a PID or prime injective)

is purely semisimple module (see, Remarks and Examples 3.1.3(5), (6), (7), and
(8)).1f N is a pure submodule of purely semisimple module then N and % are purely

semisimple module (see, Remarks and Examples 3.1.3(3) and Proposition 3.1.4).
Under certain conditions, we have that the direct sum of two purely semisimple
modules is purely semisimple modules (see, Propositions 3.1.7, 3.1.8). Then we
introduce the concept (M is N-purely projective) where M, N be any two R-
modules (see, Definition 3.1.9). By using this concept, we get two equivalent

statements for purely t-semisimple module (see, Theorem 3.1.10).
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In section two, the notion of purely t-semisimple modules, which is a
generalization of t-semisimple modules is given where an R- module M is called
purely t-semisimple, if for each pure submodule N of M there exists K <® M such

that K <;.s N. We notice the following implications

Purely semisimple == t-semisimple ==Jppurely t-semisimple.

However purely t-semisimple module need not t-semisimple (see, Remarks and
Examples 3.2.2 (1), (2) and the concept purely semisimple modules and t-
semisimple modules are coincide in the class of nonsingular module (see Remarks
and Examples 3.2.2(5)). Among many results in this section we have: The property
of purely t-semisimple is inherited by pure submodule (see Proposition 3.2.3). We
investigate conditions, under which the direct sum of two purely t-semisimple
modules is purely t-semisimple (see, Propositions 3.2.5, 3.2.6). We get five
equivalent statements for purely t-semisimple module if a complement of Z,(M) is
a direct summand stable and M has PIP (pure intersection property), (see, Theorem
3.2.8). Another equivalent statement of purely t-semisimple module is given by

Proposition 3.2.12.

In section three, as every t-semisimple is t-Baer, we hope to give an analogues
statement for purely t-semisimple and so we investigate a concept (purely t-Baer
module), where an R-module M is called purely t-Baer if for each ideal I of
End(M) = S, ty (1) is a pure submodule of M. We study this type of modules; we
have by (Theorem 3.3.4) a characterization of purely t-Baer module. We show that
every purely t-extending module is purely t-Baer, (see, Proposition 3.3.5) and every
purely t-semisimple module M with a complement of Z,(M) is pure is purely t-
Baer. More properties related with purely t-Baer module are given by (Propositions
3.3.8, 3.3.9 and Corollary 3.3.10).

In section four, the notion of strongly purely t-semisimple module is introduced.

An R-module M is called strongly purely t-semisimple if for each pure submodule

7
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N of M, there exists a fully invariant direct summand K of M such that K <;.; N.
Examples are provided to illustrate that the concept of purely t-semisimple doesn’t
imply strongly purely t-semisimple (see, Remark and Examples 3.4.2(1)). It is
shown that every pure submodule of strongly purely t-semisimple module inherits
the property. We obtain some characterizations of strongly purely t-semisimple
module, under certain conditions (see, Theorem 3.4.6, Corollaries 3.4.7, 3.4.8).
Then we focus on the direct sum of two strongly purely t-semisimple modules (see,
Theorem 3.4.9 and Proposition 3.4.10).

In section five we introduce the notion of strongly purely t-Baer modules and
looks for some connections between it and strongly purely t-semisimple modules.
An R-module M is called strongly purely t-Baer if ty(I) is a fully invariant pure
submodule of M, for each left ideal I of S=EndM. We give a characterization of
strongly purely t-Baer modules (see, Theorem 3.5.2). We put conditions on a
module M to be strongly purely t-Baer (see, Propositions 3.5.3, 3.5.5). Next we
prove that: For an R-module M such that a complement of Z,(M) is a pure
submodule in M. If M is strongly purely t-semisimple, then M is strongly t-Baer (see
Theorem 3.5.6).

Chapter four is specified for introducing and studying certain types of modules
which are related with the types of t-semisimple, t-extending modules, strongly
extending, FI-t-extending modules. This chapter has six sections. In section one
relevant concepts (modules satisfy C;,-condition and T;,-type modules) and results
are recalled from [10], [38] where " An R-module M is said to be satisfy C;;-
condition if every submodule of M has a complement which is a direct summand”
An R-module M said to be T,,-type module (or M satisfy T, ,-condition) if every t-
closed submodule has a complement which is a direct summand. A ring is said to be
right T;,-type ring if Ry is a Ty,-type module.” Clearly every module satisfying

C;1-condition and every t-extending module is T,;-type, but not conversely, see
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[10]. Hence every t-semisimple modules is T,;-type module, but the converse may
be not true (see, Remarks and Examples 4.1.1(4)). In section two, we introduce the
notions of modules that satisfy strongly C;,-condition and strongly T;,-type
modules, where an R-module M is said to be satisfy strongly C;,-condition if every
submodule has a complement which is a fully invariant direct summand. An R-
module is said to be strongly T, (or strongly T,,-type module) if for each t-closed
submodule, there exists a complement which is a fully invariant direct summand.
We notice the following: module satisfies strongly-C;-condition implies strongly
T;,-type module which implies T,;-type, also module satisfies C;,-condition
implies T;,-type module, but none of these implications is reversible, (see, Remarks
4.2.6 (1),(2),(3)) . Characterizations of both concepts: modules satisfy strongly C;;-
condition and strongly T,,-type module are given (see, Proposition 4.2.4 and
Theorem 4.2.9). Note that under the class nonsingular modules the two concepts are
equivalent (see, Proposition 4.2.7). However, under the class of multiplication (or
duo) modules, the T;,-type module equivalent to strongly T,,-type and module
satisfies C;,-condition equivalent to module satisfies strongly C,,-condition. We
prove that every strongly t-semisimple module is strongly T;,-type module (see,
Proposition 4.2.11) and every strongly extending module is strongly T;,-type
module (see, Theorem 4.2.12). Also, we have the property of strongly T,,-type

module is inherited by a fully invariant direct summand.

In section three, the concepts of modules satisfy FI-C;,-condition and FI-T;,-type
modules as generalizations of modules satisfy C;,-condition and T;,-type modules
are presented where an R-module M is said to be satisfy FI-C,,-condition if every
fully invariant submodule of M has a complement which is a direct summand. An
R-module M is called FI-T;;-type module if every fully invariant t-closed
submodule has a complement which is a direct summand. Module satisfies FI-C; -
condition implies FI-T;,-type module, and the converse may be not true. Many

characterizations of modules satisfy C,,-condition and T,;-type modules are

9
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generalized for modules satisfy FI-C;,-condition and FI-T;,-type modules (see,
Proposition 4.3.3 and Theorems 4.3.6, 4.3.10, 4.3.12). We prove that every FI-t-
extending is FI-T;,-type (see, Proposition 4.3.7) and every Fl-t-semisimple with

condition (*) imply FI-T;,-type (see, Corollary 4.3.9).

In section four, we extend the notions of modules satisfy FI-C;,-condition and
FI-T,,-type modules. We say that an R-module M satisfies strongly FI-C;;-
condition module if for each fully invariant submodule N there exists a fully
invariant direct summand W which is a complement of N. An R-module M is called
strongly FI-T;-type module if for each fully invariant t-closed submodule N of M,
there is a complement of N which is fully invariant direct summand. We noticed
that module satisfies strongly C;,-condition module imply module satisfies strongly
FI-C,,-condition which implies module satisfies FI-C;-condition but none of these
implications is reversible (see Remarks 4.4.3(1), (2)). Also, we have module
satisfies strongly FI-C;;-condition implies strongly FI-T,,-type module which
implies FI-T,,-type module and strongly T;,-type module implies strongly FI-T;,-
type and each of these implications is not reversible (see, Remarks 4.4.5 (1),(2),(3)).
Some characterizations of modules satisfy strongly FI-C,,-condition and strongly
FI-T,-type are given (see, Theorems 4.4.5 and 4.4.6).The property of strongly FI-
T;,-type inherited by a fully invariant direct summand (see, Proposition 4.4.7).
Also, we have if M is Fl-t-extending module and every closed submodule is fully

invariant, then M strongly FI-T,;-type module.

Section five deals with modules satisfy purely C,;-condition and purely T;,-type
where, an R-module M is said to be satisfy purely C,,-condition if every pure
submodule of M has a complement which is a direct summand. An R-module M is
called purely T;,-type if every pure t-closed submodule of M has a complement
which is a direct summand. Clearly every module satisfies C;,-condition is a

module satisfies purely C;,-condition, but not conversely (see, Remarks and

10
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Example 4.5.2(4)). Every pure simple module satisfies C;,-condition and it is
purely T;,-type module but not conversely, for example M = Zg®Z, as Z-module
is purely T,,-type module and satisfies purely C,;-condition, but it is not pure
simple module. Characterizations of such modules are given (see, Proposition
4.5.3). Under conditions we give some equivalent statements for purely T,,-type
module (see, Theorem 4.4.12). Also, we prove that every purely t-semisimple and
nonsingular module satisfies purely C;,-condition (see, Proposition 4.5.4). If M is a
distributive module, the every pure submodule inherits the property of modules
satisfy purely C;,-condition (see, Proposition 4.5.5). Every purely T;,-type module
which is purely t-extending is T, -type (see, Proposition 4.5.9).

Section six is devoted for modules satisfy strongly purely C,,-condition and
strongly purely T, ,-type module. An R-module M has strongly purely C,,-condition
if every pure submodule has a complement which is a fully invariant direct
summand. An R-module M is called strongly purely T,,-type module if every pure
t-closed submodule has a complement which is a direct summand and fully
invariant. Obviously, modules satisfy strongly purely C;;-condition implies
modules satisfy purely C,,-condition and strongly purely T,,-type module implies
purely T,,-type module. But each of these implications is not reversible. Many
analogues properties of modules satisfy strongly C,;-condition and strongly T;,-

type modules are given.

Finally, all modules are right unitary modules. Note that R need not be
commutative except in some special cases and it will be mentioned. Thy symbol o

stands for the end of the proof.
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Chapter One Strongly T-semisimple Modules and Strongly T-semisimple Rings

Introduction

Asgari and Haghany in [6] introduced the concept of t-semisimple as follows” A
module M is t-semisimple if for each N <M there exists K <® M such

that K <;.s N".
This chapter consists of five sections.

In section one, we recall some basic definitions. And list some important
theorems and propositions that are relevant to our work. Also, we add several new

results concerned with t-semisimple modules.

In section two, the notion of strongly t-semisimple is presented, where an R-
module M is called strongly t-semisimple if for each submodule N of M there exists
a fully invariant direct summand K  such thatK <;.; N.It is clear that every
strongly t-semisimple module is t-semisimple. An example is given to show that the
converse is not hold in general. In fact a comprehensive study of this class of

modules is investigated.

In section three, we look for connections between strongly t-semisimple, strongly
t-extending, and strongly extending modules. We proved that every strongly t-
semisimple module is strongly t-extending, and every strongly extending module is
strongly t-extending. Also, many characterizations and properties of strongly t-

extending modules are given.
In section four, some properties of strongly t-semisimple rings are given.

In section five, we give connections between strongly t-semisimple, strongly t-
Baer and strongly t-extending modules. Also, we investigate some new properties

and characritzations of strongly t-Baer modules.
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Chapter One Strongly T-semisimple Modules and Strongly T-semisimple Rings

1.1 Preliminaries

In this section, we introduce some relevant concepts with some basic known

results, which will be needed later; also we present some new results.

Definition (1.1.1)[ 25]: "A submodule A of an R-module M is said to be essential in
M (denoted by A <,,; M), if AnW =+ (0) for every non-zero submodule W of
M.Equivalently A <, M if whenever ANW =0,W <M then W =0."

Definition (1.1.2) [23]: "Z,(M) is the Goldie torsion (or second singular) of an R-
Z,(M)

module M is defined by =2 - = Z(%) [23]",where " Z(M) = {x € M:xI] = 0

forsome I <,4 R}."

Definition (1.1.3) [17]:" A module M is called Z,-torsion (or Goldie-Torsion) if
Z,(M) = M"

"Examples (1.1.4):

(1) Consider Q as Z-module. one can easily show that Z(Q) = 0and hence

Z;(Q) _ Q\ _ ,,Q_ _ 3 _
Q) Z (Z(Q)) = Z(g)— Z(Q)=0.ThusZ,(Q =Z(Q) =0

(2) Foreach,n € Z, the module Z,, as Z-module is Z,-torsion . We know that Z,,

. Zy(Zn) _ Zn \= 7 (%n)\= — —
Is singular as Z-module. So 2T Z (Z(Zn))- Z (Z)_Z(O) =0.Thus Z,(Z,) =

Z(Z,) = Z,,.

. . . Z3(Zy) _ Z(Zy) Zy N _ Z4 N ~ ~
Z, as Z,— module is Z,-torsion since 2 = (oz] ,Z(Z(Z4)) = Z({O’Z}) =7(Z,) =

Z2. HenCE 22(24) - Z4".[27]

(1) Proposition (1.1.5) [27, Proposition 2.2.4]: "Let M be an R-module and let A
be a submodule of M. Then

(2)Z2,(A) < Z,(M);

() Z,(A) =AnZ,(M)".

14
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(4) Corollary (1.1.6)[ 27, Corollary 2.2.5]:" Let M be an R-module and let A be
an essential submodule of M such that Z,(A) = 0,then Z,(M) = 0."

Remark (1.1.7)[6]: Every singular R-module is Goldie torsion.
Remarks (1.1.8):
(1) "Let M be an R-module, then Z,(M) = 0 if and only if M is nonsingular.”[27,

Remarks 2.2.7]

(2) Z, <M/ZZ(M)> = 0 for every module M and this implies if A < M such that A

and M/A are both Z,-torsion, then M is Z,-torsion.[6]

Proposition (1.1.9)[ 27, Proposition 2.2.8]: "Let R be an integral domain and let A
be a submodule of a nonsingular R-module M. If % iIs Goldie torsion, then

A <es M.

Proposition (1.1.10) [27, Proposition 2.2.9] : "Let M and N be two R-modules and
let f: M — N be an R-homomorphism, then f(Z,(M)) < Z,(N).”

Corollary (1.1.11) [27, Corollary 2.2.10]:" Let M and N be two R-modules and let

f:M — N be an R-epimorphism. If M is Goldie torsion, then N is Goldie torsion”.

Proposition (1.1.12)[21]: "Let C be an R-module, then C is nonsingular if and only
if Hom (Z,(M), C) = 0, for every R-module M".

Proposition (1.1.13) [6], [27, proposition 2.2.13]: "Let M = @yep M be an R-
module where M, is a submodule of M, for all «eA. Then
Zy(Buepr Mo)= Buen Z2(My)”

15



Chapter One Strongly T-semisimple Modules and Strongly T-semisimple Rings

Definition (1.1.14)[8]: "A submodule A of M is said to be t-essential in M (denoted
by (A <;.s M) if for every submodule Bof M,AnB < Z,(M) implies that B <
Z,(M)".

Remark (1.1.15)[6]:" Z,(M) ={x € M : anng(x) <(es R}, Where anny(x) = {r €
R:xr = 0}."

Example (1.1.16): Consider Z,, as Z-module. It is clear that Z,, is singular

module. Hence Z,, is Z,-torsion, that is Z,(Z,,) = Z;5.

Let A= (4) < Z;,. Then for all B <Z,, and (4) N B < Z,(Z,,)=Z;, then B <
Z,(Z13) = Z;,. Hence (4) <;.s M, but (4) is not essential of Z,,.

Proposition (1.1.17)[ 6, Proposition 2.2]: "The following statements are equivalent

for a submodule A of an R-module M

(1) A is t-essential in M ;
(2)(A+Z,(M))/Z,(M) is essential in M/Z,(M);
(3)A+Z,(M) is essential in M;

(4)M/Ais Z, — torsion.”

Corollary (1.1.18):" If A <., M, then A <;.; M , but not conversely "[6].

Proof: IfA <., M, then A+Z,(M) <,,c M and hence by Proposition (1.1.17),
A Stes M.no

The converse is not true in general, see Example 1.1.16.

Corollary (1.1.19): Let M be a nonsingular module, let N < M,N # (0)
N <;osc Mifandonlyif N <., M.

Proof: As M is nonsingular, Z,(M) = 0, then N <;.sc M if and only if
N <,;c M.o
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Proposition (1.1.20) [10,Corollary 1.2]:

"(1) Let M be an R-module A < B < M. Then A <;.,s M ifand only if A <;.; B
and B <;.s M.
(2)Let f:M — N be a homomorphism of modules, and A <;.s N,
then f71(A) <ies M".
Corollary (1.1.21): Let M be an R-module and A<SB<N<M, if A<, c M
then B <;.s N.
Proof: AKB< N <M, if A <;.s M, then by Proposition (1.1.20) if A <;.s N and
N <;.s M.Again, A <;.s N, so by Proposition (1.1.20), A <;,s Band B <;,s N.O
(1) Proposition (1.1.22)[ 10,Corollary 1.3]:" Let A, be a submodule of M, for each

Ainaset A. Then
(2)If Alis afinite setand A; <;.,s My then Ny Ay <;.s Ny M, forallA € A.
(B)BpA) <tes ®aM, Ifand only if Ay <;.c M, forallA € A"
We prove the following
Proposition (1.1.23): Let M and N be R — modules and let f:M — Nbe a
monomorphism if A <,.; M,then f (A) <tes f(M).
Proof: As A <;.s M, then A+Z, (M) <,,c M by (proposition 1.1.17(2)) .Since f is
monomorphism, f(A+Z, (M)) <. f(M). Hence f(A)+f(Zy; (M)) <5 f(M),
but f(Z,(M)) < Z, (f(M)by proposition (1.1.10) hence f(A)+f (Z, (M)) <
f(A)+Z,(f(M) < f(M).It follows that f(A)+Z, (f(M)) <. f(M), thus
f(A) <;es f(M) by Proposition 1.1.17. o

Recall that an "R-module M is called multiplication if for each submodule N of
M, there exists an ideal I of R suchthat N = MI. Equivalently M is a multiplication
R-module if for each submodule N of M, N = M(N:zx M), where (N:M) ={r €
R:Mr < N}".[19]

The following Lemma will be needed in the next Proposition.
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Lemma (1.1.24): Let M be a finitely generated faithful multiplication module over

commutative ring R and let I,/ be ideals of R. Then

(1) IfI <, Jthen MI <., M].
(2) If MI <., MJ, then I <, J, provided that R is regular ring (in sense of Von

Neumann).

Proof: (1) Let W < MJ and MI n W = (0). It follows that W < M and since M is
multiplication, W = MK for some ideal K of R, and by[19, Theorem 3.1], K <J.
Hence MI n MK = 0; and since M is faithful, we get M(I nK) = (0) by [19,
Theorem 1.6]. As M is faithful, we get INn K = (0) which implies K = (0)
because I <., J. It follows that W = (0) and MI <,4 MJ.

(2)Let K be an ideal of J withI N K = (0). K is an ideal of J and J is an ideal of
R implies K is an ideal of R since R is a regular ring. It follows that M(I N K) = (0)
and by [19, Theorem 1.6] MI n MK = (0). But K is an ideal of J, so MK is a
submodule of MJ and as MI <,,; M], we conclude that MK = (0). Hence K = (0)

since M is faithful. Thus I <., J. O

Proposition (1.1.25): Let M be finitely generated a faithful multiplication module
over commutative ring R, and I, ] be ideals of R. Then

(1) MZ,(R) = Z,(M).

(2) If I <;os R;then MI <, M.

(3)If N <,.s M,and N = MIthen I <;.s R.

(4) If I <05 J, then MI <., M], and the converse hold if R is regular.

Proof: (1) First MZ,(R) < Z,(M) hold for any module M as follows. For each

a € Z,(R), thenann(a) <;.s R. Now for any m € M, ann(ma) 2 ann(a).This
implies ann(ma) <;. R; thatis ma € Z,(M) foreachm € M and so

MZ,(R) C Zy(M)--------- (1)

But Z,(M) = M(Z,(M): M) since M is multiplication, which implies MZ,(R) ) <
M(Z,(M):M). Let a € (Z,(M): M), then ann(ma) <,.,s R for all m € M. Since
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M is finitely generated R-module, M =<my,......m, > for some
my, e we..My € M. Now  ann(Ma) = ann(}3j-; m; a) = Nj=, ann(m; a). But
ann(m;a) < ,s R for all i=1,..,n). So Nit,ann(m; a) <;e R. Thus

ann(Ma) <;.s R;.On the other hand, anngz(Ma) = ann(a)y (since M is a faithful

multiplication R-module), thus ann(a) <,,s R and a € Z,(R). Therefore

(Z,(M): M) < Z,(R) and hence M(Z,(M): M) < MZ,(R). But Z,(M) =
M(Z,(M): M), since M is a multiplication module. Therefore
Zy(M) © MZ,(R)----=-mmmmmmmmmmm oo ().

Then Z,(M) = MZ,(R) by (1) and (11).

(2) Since I <tos R, I+Z,(R) <,ss R by Proposition (1.1.17). As M is faithful
multiplication, then MI+MZ,(R) <..c M by [19, Theorem 2.13]. But MZ,(R) <
Z,(M),so MI+MZ,(R) < MI+ Z,(M).Hence MI + Z,(M) <,,s M, Thus
MI <;.s M, by proposition (1.1.17).

(3) Let N <,.s M. Since M is a multiplication R-module, then N = MI for some
ideal I of R. To prove [ <;,s R.Assume INJ < Z,(R) forsome ] <R. As M is
faithful multiplication,M(INJ)=MI n M] by [19, Theorem.1.5] so MInM] <
MZ,(R) . So that NnMJ <M Z,(R). But M is a faithful finitely generated
multiplication  module  implies, MZ,(R) =Z,(M) by (1). Thus
NnM]< MZ,(R) =Z,(M) and hence M] < MZ,(R), which implies ] < Z,(R)
by [19, Theorem 3.1]. Thus | <;.c R

(4) Since I <;cs Jthen I + Z,(J) <.ss J by Proposition (1.1.17). Hence by Lemma
1.1.24(1) M1+ Z,(J)) <¢ss M]. 1t follows that +MZ,(J) <..c M] . But we can
show that MZ,(J) = Z,(M]) as follows: Z,(M]) = Z,(M) n M]. But Z,(M) =
MZ,(R) so that Z,(M]) = MZ,(R) n M]. But by [19, Theorem 1.6] MZ,(R) N
MJ = M(Z,(R)n]) = MZ,()).Thus Z,(M]) = MZ,(J).Then

MI + Z,(M]) <.ss MJ which implies MI <,., M] by Proposition 1.1.17.

Now , if MI <;.,; MJ, then MI + Z,(M]) <.cc M] by Proposition 1.1.17. But
Z,(M]) = MZ,(J). So that MI+MZ,(J) <.ss MJ; that is M(I + Z,(J)) <pss MJ.
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Hence by Lemma 1.1.24(2), I + Z,(J) <.ss J and by Proposition 1.1.17, we have

ISL“GS]'D

Recall that "a submodule N of an R-module M is called closed (N <. M) if
whenever N <., W < M, then N = W in case a submodule N <,,c W and W is
closed in M, the submodule W is closure of N. "[24].In other word,” N <. M, if N
has no proper essential extension in M "[25]. As a generalization of closed
submodule, the concept t-closed, was introduced by Asgari [6].

Definition (1.1.26)[6]: "A submodule C of M is t-closed in M (written C <;. M if
C <ies C' whenever C' < M implies C = C'. In other words, C <;. M, if C has no
proper t-essential extension in M".

Lemma (1.1.27)[ 6, Lemma 2.5]:"” Let M be an R- module. Then

(1) IfC <, M,thenZz,(M) <C.

(2) 0 < M Ifandonlyif M is nonsingular.

(3) IfA<C then C <, Mifandonlyif > <, ="

Proposition (1.1.28)[6, Proposition 2.6]:" Let C be a submodule of an R- module M.

The following statements are equivalent:

(1) There exists a submodule S such that C is maximal with respect to the property
that C N S is Z,-torsion,

(2)C is t-closed in M;

N c . M
ntains Z, (M) and ——is cl module of ;
(3) C contains Z,(M) a dZZ(M) s closed submodule o 700

(4) C contains Z,(M) and C is a closed submodule of M;

(5) C is complement to a nonsingular submodule of M;
(6) % is nonsingular.”
By proposition 1.1.28(4), it follows directly that every t-closed submodule is closed.

However the convers is not true in general. For example in any singular module M,

we have (0) is a closed submodule and it is not t-closed.
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Goodearl in [23], gave the following "a submodule N of M is called Y-closed if %

Is nonsingular”. Hence by Proposition 1.1.28(6) the two concepts t-closed and Y-
closed are coincide.
Corollary (1.1.29)[ 6, Corollary 2.7]:" Let M be a module .Then
(1) Z,(M)ist-closedin M;
(2) If ¢ is an endomorphism of M and C is t-closed submodule of M then
@~1 (C)ist-closed in M.”
Corollary (1.1.30)[6, Corollary 2.8]: "Let C be a submodule of a module M
(1) IfC <, M, then C =Z,(M) iff C is Z,-torsion and there exists a t-essential
submodule S of M for whichC nS < Z,(M).
(2) LetC<N<M.IfC <, M,thenC <, N.
3) HC <, NandN <, . M,thenC <,  M."
Proposition (1.1.31)[6, Proposition 2.9]:" Let M be an R-mmodule. Then
(1) C<M,C <. MthenCnC' <, C;
(2) C<i M, C'<;e MthenCNC' <(c M.
Proposition (1.1.32)[6]: "Let M be a nonsingular module and let A be a submodule
of M. Then A is t-closed if and only if A is closed. ”
Proposition (1.1.33)[6]: "Let M be a singular R-module. Then M is the only t-closed
submodule of M.”
Examples (1.1.34):
(1) 0,7 are the only t-closed submodules of the Z-module Z.
(2)  Inthe Z-module Q, the submodule Z is not t-closed in Q.

Next, we present the following

Definition (1.1.35):” A submodule N of R-module M is fully invariant if f(N) < N
for each R-endomorphism f of M. "[41]. "A submodule N of an R-module M is
called stable, if f(N) < N for each R-homomorphism f: N—->M ." [1]. It is clear
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every stable submodule is fully invariant but not conversely. For instance 2Z in Z-

module Z is fully invariant and it isn’t stable.

Remark (1.1.36): Let K < N <® M such that K is a stable submodule in M, then K

is stable in N.

Proof: Let 6:K — N. Then io6:K — M, where (i:N — M) is inclusion
mapping, so (i o 8)(K) < K (since K is stable in M). But (i o 6)(K) = 8(K). Thus
0(K) < K and K isstablein N.

Definition (1.1.37): "An R-module M is fully stable if every submodule of M is
stable[1] and M is called duo if every submodule of M is fully invariant.”[31]

Proposition (1.1.38)[32]: "Let R be a ring and let L < K be submodules of an R-
module M such that L is a fully invariant submodule of K and K is a fully invariant

submodule of M. Then L is a fully invariant submodule of M."”
Lemma (1.1.39):" Let M be a module.Then

(i) Any sum or intersection of fully invariant submodules of M is again a fully

invariant submodule of M.
(i) If M = B, X; and S is a fully invariant submodule of M, then

S =@ m;(S) = B(X; NnS) where m; is the i — th projection homomorphism of M
and X; N S is fully invariant in M;, for all i € 1.”[11]

(iii) "Let M be an R-module and let M = K@K’ , K,K' < M.Then K is a fully
invariant submodule of M if and only if Hom(K, K") = 0”[32,Lemma 2.6].

Lemma (1.1.40): (1) "Let M be an R-module,let K < L < M. If% is a fully invariant

submodule of % and K is a fully invariant submodule of M, then L is a fully

invariant in M."[9, Proposition 1.3]
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(2)"Let M be an R- module. If K < N is a fully invariant submodule of M and
N <® M, then K is a fully invariant in N”[20] . However, we give a different proof.

Proof: Let 8 € End(N). Define g:M — M by g(x) = {g(X) Oti}]:eivfi.]sve'

As K is a fully invariant submodule of M, g(K) < K. But g(K) = 8(K) since
K < N, hence 8(K) < K and K is a fully invariant submodule of N. o

"Recall that a module M is called SS-module if every direct summand is stable
"[35]. However Ozcan et al in [31], gave the following. "An R-module M is called
weak duo if every direct summand of M is fully invariant. But every direct summand
and fully invariant is stable [35, Lemma 2.1.6] hence the two concepts SS-module

and weak duo are coincide”.

Lemma (1.1.41): "LetM and N be R-modules, and let f € Hom(M,N) be an

epimorphism. Then

(1) If Ker f is a fully invariant in M and L is a fully invariant submodule of N then
f1(L) is a fully invariant submodule of M.

(2) If M is self-projective (quasi —projective) and U is a fully invariant
submodule of M, then £ (U) is a fully invariant submodule of N".[24]

In fact for R-modules N and A. N is said to be A- projective, if every submodule X
of A, any homomorphism @: N +— % can be lifted to a homorphism, y: N +— A4, that

isifm: A — )Ai(, be the-natural epiomorphism, then there exists a homorphism

A———F>A/X
Y:N — Asuchthatm oy = Q. T

M is called projective if M is N-projective for every R-module N. If M is M-
projective, M is called self-projective”. [28] For examples:
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(1) Z as Z-module is projective.
(2) Z, as Z-module is self-projective.
(3) Zp= as Z- module is Z-projective.

Corollary (1.1.42): If M is self-projective and duo R-module and K < M, then % IS

duo R-module.

SIS

Proof: Let n:M—>%, where m is the natural epimorphism. For any %_

% = m(N). Hence % is fully invariant submodule of % by Lemma 1.1.41(2). o

Recall that "an R-module M is semisimple if every submodule is a direct summand
of M "[23]. Equivalently an R-module is semisimple if for each submodule N of M,
there exists a direct summand K of M such that K <., N[7]. For more properties of

semisimple modules see [23],[25].

Corollary (1.1.43): If M is self-projective and duo, K < M such that % IS

semisimple. Then % is fully stable.

Proof: By Corollary (1.1.42), % Is duo. Hence every submodule of % is fully
invariant. But % Is semisimple, so every submodule is fully invariant and direct

summand. Thus every submodule of% is stable. o

In fact the above equivalent statement of semisimple module led Asgari and

Haghany in [6], to introduce and study t-semisimple modules.

Definition (1.1.44)[7]: "A module M is t-semisimple if for every submodule N of M

there exists a direct summand K of M such that K <;.; N.”
Remarks (1.1.45):

(1) Itis clear that every semisimple (hence every simple) module is t-semisimple

but not conversely, see part (2).
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(2) Z, as Z-module is t-semisimple ,but not semisimple, where n = 4,8,12

Proof. Z,(Z,) = Z,. For each N<Z,Z,(N)=Z,(Z,)NN=N so that
(0)+ Z,(N) = N <, N, hence by Proposition 1.1.17(3) (0) <,.; N and (0) <® M.

Thus Z,, is t-semisimple. o

(3) Let M be a non-singular R-module. Then M is t-semisimple if and only if M

Is semisimple.

Proof:= Let N < M, so there exists K <® M such that K <,.; N. But M is non-
singular (so N is non-singular), hence K <,,; N, (by Lemma (1.1.19)), then M is

semisimple.
< Itisclear. o

In particular the Z-module Z is nonsingular and it is not semisimple. So that it is not
t-semisimple . Also Qas Z-module is nonsingular, Q is not semisimple so Q is not t-

semisimple.
The following Theorem gave characterizations of t-semisimple modules.
Theorem (1.1.46)[7]:" The following statements are equivalent for a module M:

(1) M ist-semisimple;
(2)

(3) M=2Z,(M)®M' where M'is a non-singular semisimple module;

IS semisimple;
Zz (M)

(4) Every nonsingular submodule of M is a direct summand;

(5) Every submodule of M which contains Z, (M ) is a direct summand.”

By applying Theorem 1.1.46 we can give the following examples

(1)  Consider the Z-module M = Q@Z,, Z,(M) = Z,. Hence Z”ZM) =2 =
2 2

which is not semisimple. Hence M is not t-semisimple.
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(2) Consider the Z-module M = Zg®Z,.Z,(M) =M. Hence %E (0) is

semisimple. Thus M is t-semisimple.

(3) Let M=2Z,8Z as Z-module where neZ,, =~ 7 which is not

Zz(M)

semisimple. Hence M is not t-semisimple by Theorem (1.1.46).

M
Zy(M)

(4) LetM =Z®DZ as Z-module. ~ 7@®Z is not semisimple, so M is not t-

semisimple.
Corollary (1.1.47)[7, Corollary 2.4]: "Let M be a t-semisimple module.
(1) Every submodule of M is t-semisimple.
(2) Every homomorphic image of M is t-semisimple.”

Corollary (1.1.48)[7, Corollary 2.5]:" Every direct sum of t-semisimple modules is

t-semisimple.”

Corollary (1.1.49)[7, Corollary 2.7]: "A module M is t-semisimple if and only if M

has no proper t-essential submodule which contains Z,(M ).”

Corollary (1.1.50)[7, Corollary 2.8]: "A module M is t-semisimple if and only if N
+ Z,(M )is closed in M, for every submodule N of M.”

We add the following results
Theorem (1.1.51): The following statements are equivalent:

(1) Every R-module M is t-semisimple and Z, (M ) is projective.

(2) R is semisimple.

Proof: (1) = (2) Let M be an R-module. Then M is t-semisimple by hypothesis.
Hence M = Z,(M )®M', where M’ is a nonsingular semisimple by Theorem 1.1.46.
It follows that M’ is projective, but by hypothesis Z,(M ) is projective. Thus M is
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projective, that is every R-module is projective and so by [25, Corollary 8.2.2(e)] R

Is semisimple.

(2= (1) Since R is semisimple, every R-module is semisimple. Hence every R-
module is t-semisimple. Also R is semisimple, then every R-module is projective
[25, Corollary 8.2.2(e)]. Thus Z,(M) is projective. o

Proposition (1.1.52): If M is an indecomposable t-semisimple, then M either

semisimple or Z,-torsion.

Proof: Since M is t-semisimple, then by Proposition 1.1.46(3), M = Z,(M)®M'’,
where M’ is nonsingular semisimple. But M is indecomposable, so either Z,(M) = 0
or M'= (0). If Z,(M) = (0), thenM = M’', but M’ is semisimple, so that M is
semisimple. If M’ = (0), then M = Z,(M) and hence M is Z,-torsion. o

Recall that " if I is an ideal of a ring R, then the ring R is called I-semiperfect if%

Is semisimple and I is strongly lifting (or that is idempotent lift strongly module I)(
that is whenever a? —a € I,a € R, there exists e? = e € aR such that e —a €

1)"[30]. Note that “every nil right ideal is strongly lifting. "[30]
By using in [30, Theorem 49] and Theorem (1.1.46). We get the following.
Proposition (1.1.53): The following assertions are equivalent:

(1) Ry is Z,(R)-semiperfect ring.
(2) Rgist-semisimple.
(3)  Any module Mg, M is t-semisimple.

(4) Every nonsingular right R-module is injective.

Proof: (1) < (3) For any module My, % is semisimple by [30, Theorem 49(6)]

that is M is t-semisimple by Theorem (1.1.46). Hence (1) < (3)
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M
Z>(M)

(3) & (4) By Theorem 1.1.46,

Is semisimple. Hence the result follows by [30,

Theorem 49].
(1) <=(2) It follows by Theorem (1.1.46). o

By combining Lemma (48) in [30] and Theorem (1.1.46), we get another

characterization, for t-semisimple modules.

Proposition (1.1.54): Let M be an R-module. Then M is a t-semisimple if and only
if for each N < M,N = A®B for some A <® M and B < Z,(M).

Proof: M is t-semisimple if and only if M = Z,(M)@®M' where M'is semisimple by
Theorem (1.1.46). Hence the result follows by [30, Lemma 48 (1)<(2)]. o

Burcu, et al in [12] introduced the following” Let F be a fully invariant
submodule of a module M. Then M is called F-inverse split if f~1(F) is a direct
summand of M for every f € S = End(M) [12]. Obviously, every module M is M-
inverse split and every semisimple module M is F-inverse split, and so every module
M over semisimple ring is F-inverse split. Recall that an R-module M is Rickart if
kerf is a direct summand of M [22]” For a module M, since ker f = f~1(0), M is
Rickart if and only if it is (0)-inverse split "[12]. It is clear that every semisimple

module is Rickart.
We prove the following
Proposition (1.1.55): Every t-semisimple module M is Z, (M)-inverse split.

Proof: Since M is t-semisimple, M = Z,(M)®M', where M’ is nonsingular,
semisimple. But M’ is semisimple implies, M" is a Rickart module. Hence by [12,
Theorem 2.3] M is Z,(M)-inverse split. o
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The converse of proposition (1.1.55) is not true in general, for example: Consider
the Z-module Z, Z is not t-semisimple. However Z,(Z) = (0) and for each f €
End(Z), f~1(0) = (0), which is a direct summand, that is Z is Z,(Z) = (0)-inverse
split.

Proposition (1.1.56): If M is Z,(M)-inverse split and M is an Artinian over

commutative ring, then M is t-semisimple.

Proof: Since M is Z,(M)-inverese split, then M = Z,(M)@®M’, where M’ is a

Rickart module by [12, Theorem 2.3]. Since M’ =~ % M'is nonsingular. But M
2

Is Artinain implies M’ is an Artinian module. Hence by [22, Proposition 2.25] M’ is

semisimple. Hence by Theorem (1.1.46), M is t-semisimple. o

Corollary (1.1.57): Let R be a Rickart Artinian commutative ring. Then R is t-

semisimple.

Proof: Since R is a Rickart ring, R is nonsingular [22, Proposition 2.12], hence
Z,(R) = (0). It follows that R = Z,(R)®R = (0)®R. Hence by [12, Theorem 2.3]
R is Z,(R)-inverse. Then by proposition (1.1.56), R is t-semisimple. o

Corollary (1.1.58): Let M be an Artinain module over commutative ring. If M is

Rickart and nonsingular, then M is t-semisimple.

Proof: Since M is nonsingular, Z,(M) = (0). Hence M = (0)®M = Z,(M)®M |,
and since M is Rickart, so that M is Z,(M)-inverse split by [12,Theorem 2.3]. Hence
by Proposition (1.1.56), M is t-semisimple. o

Recall that "an R-module M is called F-regular (simply regular) if every
submodule is pure, where a submodule N of M is pure if for every ideal I of R
MINN = NI.[4]

Next we have the following

29



Chapter One Strongly T-semisimple Modules and Strongly T-semisimple Rings

Proposition (1.1.59): Let M be a F-regular R-module where R is a commutative

ring. Then M is t-semisimple if and only if M is semisimple.

Proof:= Since M is t-semisimple, then M = Z,(M)®M’, where M'is nonsingular

semisimple submodule of M. As M is F-regular, is regular ring for all x e M

ann(x)

IS

[37, Theorem 1.10]. Let x € Z(M). Then ann(x) <cs; R and hence — —

. . R R R . .
singular. That is Z(ann(x))—ann(x). But presey is a regular ring

implies Z (L) = (0).Thus ” R_-0andsoR = ann(x), which implies x = 0

ann(x) nn(x)
and so Z(M) = 0. It follows that Z,(M) = (0) and M = M'. Therefor M is

semisimple.
< ltisclear. o

Proposition (1.1.60): Let M be a finitely generated faithful multiplication over a
commutative regular ring (in sense of Von Neumann). If M is t-semisimple, then R

is t-semisimple.

Proof: Let I be an ideal of R. Then N = MI is a submodule of M. As M is t-
semisimple, there exists a submodule U of M such that U <® M and U <,,; N =
MI. As M is a multiplication module U = M] for some J < R. Hence M] <., MI.
Hence by Proposition 1.1.25(4), ] <;.s I. Also, since U = M] <® M, then | <® R.

Thus R is t-semisimple. o

Note that we see by Proposition 1.1.53 if R is t-semisimple module, then every

R-module is t-semisimple.
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1.2 Strongly t-semisimple Modules

We introduce the concept of strongly t-semisimple modules and give many

characterizations and properties of this class of modules.

Definition (1.2.1): An R-module M is called strongly t-semisimple if for each
submodule N of M there exists a fully invariant direct summand K such that
K <tes N.

Remarks and Examples (1.2.2):

(1) It is clear that every strongly t-semisimple module is t-semisimple, but the
convers is not true.
(2) t-semisimple module need not be strongly t-semisimple, for example.
Let T = M@M where M is a non-singular semisimple R-module, M # (0).
Hence T is semisimple, and so T is t-semisimple. Let N= M @(0), so there exists
K <® M such that K <. N.
Hence K =K; @(0) for some K; < M. If K;= (0), then K =< (0, 0)> and K <;.,; M
®(0).
S0<(0,0)>+ Z,(M)B(0)) < s MB(0) (by Proposition 1.1.17(3) )
Thus Z, (M) <., M. But Z,(M) = (0), hence (0) <.,c M and so M = (0), which is
a contradiction. It follows that K; # (0), so K #< (0,0 >.But in this case K is not
fully invariant suomodule of T.
To see this: Let f:T+— T defined by f(x,y) = (y,x), for all (x,y)e T, Then
f(K;®((0)) =) &K, € K;®(0). Thus K=K; @(0) is not fully invariant
submodule of T, such that K <. N.Therefore T is not strongly t-semisimple. o

In particular, R as R—module is simple non-singular R -module, SoR @ R as R -
module is semisimple and so it is t-semisimple .But R @ R is not strongly t-
semisimple: To see this

Let N=R @ (0). As < (0, 0)> is the only direct summand fully invariant of
R @ R, such that <(0,0)><N=R @ (0).But <(0,0)>%,.s N because if we assume
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that <(0,0)> <(es N then <(0,0)> +Z,(N) <. N, so that <(0,0)> +<(0,0)>= <(0,0)>
<essN Which is a contradiction.
(3) IfMisZ,-torsion, then M is strongly t-semisimple.
Proof: Since M is Z,-torsion, Z,(M) =M. So that forall A < M,
Z,(A)=Z,M)NA= M N A= A, then (0) + Z,(A) = A <. A.
Thus (0) <(.s Afor all A< M by Proposition (1.1.17(3)).But (0) is a direct
summand of M, and (0) is fully invariant. Hence M is strongly t-semisimple. o
(4) Every singular module is strongly t-semisimple.
Proof: Let M be a singular R-module. Then Z (M) = M, it follows that Z,(M) =
Z (M) = M. Thus M is Z, —torsion, hence M is strongly t-semisimple by part (2). o
Thus, in particular Z,, as Z-module is strongly t-semisimple forallne Z, ,n> 1.
(5) The converse of (4) is not true in general, for example
Z, as Z, -module is not singular, but it is Z,-torsion, so it is strongly t-semisimple.
(6) If M is t-semisimple module and weak duo (SS-module). Then M is strongly t-

semisimple.
Proof: LetN <M. Since M s t-semisimple, there exists K<® M such
that K <. N. But M is SS-module so K is stable; hence K is fully invariant direct
summand. Thus M is strongly t-semisimple. o
(7) If M is a t-semisimple module and duo (or fully stable) then M is strongly t-
semisimple. Hence every t-semisimple multiplication R-module is strongly t-
semisimple.
(8) If M is cyclic t-semisimple module over commutative ring R then M is
strongly t-semisimple.
Proof: Since M is cyclic module over commutative ring, then M is multiplication
module. Thus M is duo. Therefore the result follows by part (7).

By the following Theorem we shall give several characterizations of strongly t-

semisimple module.

Theorem (1.2.3): The following statements are equivalent for an R -module M:
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(1) M isstrongly t-semisimple,
2 =

Zy (M)
3) M =7Z,(M)®M' where M'is a nonsingular semisimple fully stable module
and M’ is stable in M,

Is a fully stable semisimple and isomorphic to a stable submodule of M,

(4) Every nonsingular submodule is stable direct summand,

(5) Every submodule of M which contains Z, (M) is a direct summand of M and

M

Z is fully stable and isomorphic to a stable submodule of M.
2 (M)

Proof: (1) =(4) Let N be a nonsingular submodule of M. Since M is strongly t-
semisimple, there exists a fully invariant direct summand K of M such that
K <tes N. Assume that M =K@K' for some K' < M.Hence N=(K®K')n N and

so N=K@®(K' nN) by modular law. Thus K <® N and %z (Nn K'). But
. . N . . . N N .

K <;os N implies — s Z, -torsion, that is Z, (E) == (by Proposition (1.1.17)). On

the other hand (N n K')< N and N is nonsingular, so (N n K') is nonsingular

N

submodule, and hence % is nonsingular, which implies that Z, (E) = 0.Thus % =0

and hence N = K. Therefore N is a fully invarent direct summand, and hence N is a

stable direct summand.

(4)=(3) Let M’ be a complement of Z, (M).Hence M'@Z, (M) <,,c M

And so M’ <;.¢ M by Proposition (1.1.17(3)).Thus % Is Z, -torsion, by proposition

(1.1.17. (4)).We claim that M’is nonsingular. To explain our assertion, suppose
XE Z(M"), so x € M' < M and ann(x)<,s; R.Hence ann(x) <R and this implies
x € Z,(M). Thus x € Z,(M)n M'=(0), thus x=0 and M" is a nonsingular. So that by
hypothesis, M’ is a stable direct summand of M and so that M =M'@L for some

L < M.Thus L= % which is Z, —torsion, hence L is Z,-torsion .On other hand,

Z,(M) = Z,(M")+ Z,(L)=0+L = L.
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It follows that M =Z,(M)@®M' and M’ is a nonsingular hence M’ is stable in M by
condition (4). Now let N < M', so N is a nonsingular and hence N is stable direct
summand in M by hypothesis. It follows that M =N @ W for some W < M and
hence M' = (N®W)nM' and so M' = N®(W nM") by modular law. Thus
N <® M’ and hence M’ is semisimple . On the other hand every submodule N of
M'is fully invariant, by Lemma 1.1.40(2) but N <® M, so that N is stable in M’ and
hence M’ is fully stable.

(3)=(1) Let M = Z, (M)® M', where M'is a nonsingular semisimple fully stable
module, M’is stable in M. LetN < M, then(NnM')< M’, so(NnM')<® M’

(since M’ is semisimple). It follows that M’ = (N n M")@W for some W < M'and

N
NnM'

~

hence M = Z,(M)®(N n M)W . Hence(N n M') <® M. On other hand,

N+M'
M/

then by (Proposition 1.1.17(4)) (NN M") <;.s N. But (NN M') is stable in
M'(since M’ is fully stable) and since M’ is stable in M, then by Lemma (1.1.38) N n

< % = 7,(M). But Z,(M) is Z, —torision. Hence,ﬁ Is Z, —torision and

M’ is fully invariant in M. But N n M'is direct summand of M. Thus NN

M' <® Mand N nM' <,,, N, hence M is strongly t-semisimple.

(3)=(B) Let N<M,N22Z, (M). Since M =Z, (M)® M', where M' is a
nonsingualr semisimple fully stable, M’ is stable in M. Then N = (Z, (M)® M) n
N =27, (M)®(NNM") by modular law. But (NNM") < M' and M'is semisimple
implies(N N M") <® M’. It follows that (N nM") @W = M'for some W < M’
Hence M =Z, (M)®(N n M"@W=NOW.

M
Zy (M)

Thus N <® M, also = M"and M’ is a fully stable module and M’ is stable

M
Zy (M)

in M, so that is fully stable semisimple and isomorphic to stable submodule of

M.
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(2)=(3) Since Z, (M) is tclosed—) Is nonsingular. By condition (2), T IS

semisimple, hence % Is projective by [23, Corollary 1.25, P.35]. Now let

( ) be the natural epiomorphism and as % IS projective, we get
2

ker m = Z, (M)is a direct summand of M. Hence M = Z,(M)®M'.Thus M' ~

M-

Z I?M) which is a nonsingular semisimple fully stable module. Then M’ is nonsingular
2

semisimple fully stable .Also M'is stable submodule of M by condition (2).

(3)=(2) By condition (3), M = Z,(M)®M', where M, is a nonsingular semisimple

, M
2( 5 M.ThusZZ(M)

semisimple fully stable and isomorphic to stable submodule M' of M.

IS

fully stable module and M'is stable in M. It follows that

(2)=(5) It follows directly (since (2)<(3)=(5) then( 2)=(5)).

N

C=@) Let = <7 w0

. Then N 2 Z, (M), so by condition (5), N is stable direct

summand of M, so that N®W = M for some W < M.Thus N + Wiz, M) _
Zy (M) Zy (M)
. But we can show that N _ Wtz M) _ 0, as follows.
Z, (M) Zz (M) Zy (M)
Let £ € —— 022%™ Then x = n +Z,(M)=w+ Z,(M) for somen € N,w €

Zy (M) Zy (M)
W, and so n—w € Z,(M) € N. It follow thatn —w = n,; for some n, € N and

N w+Z,(M) M
hencen —n;, =w e NNnW = 0. Th = n o '
encen—n, =w W=0 us x O%a d so ZZ(M)@ Z,(M) Zy(M)

This |mpI|es Is semisimple. By condition (5), %fully stable and isomorphic

( )

to stable submodule of M. But Is nonsingular, so —— is projective and

M
Z,(M) ( )

hence M = Z,(M)®@®M’'. Thus M'is nonsingular semisimple (since M’ = Z?M)). It
2

follows that M’ is a fully stable module and M'is stable in M. o
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Examples (1.2.4):

M
' Zy(M)

IR

(1) Let M = Q&®Z,, as Z-module. Z,(M) = Z Zﬂ = (@ is not semisimple.

Hence M is not t-semisimple, so it is not strongly t-semisimple.

(2)Let M =Z,®Z, as Zs,-module. M is t-semisimple since =2 =Mis
Z(M)  (0)
semisimple. But Z ’:’M) = M is not fully stable, hence by Theorem (1.2.3) M is not
2

strongly t-semisimple.

Recall that "an R-module M is called quasi-Dedekind if Hom (%,M) = 0 for all

nonzero submodule N of M. Equivantally, M is quasi-Dadekind if for each f €
End(M), f # 0, then Ker f = 0.[29]

Proposition (1.2.5): If M is a quasi-Dedekind, then M is t-semisimple if and only

if M is strongly t-semisimple.

Proof:= since M is quasi-Dedekind, then for each f € End (M) if f # 0, then f is
monomorphism, and hence ker f = (0) which is stable and then by [36, Proposition
1.16], M is SS-module and so that M is strongly t-semisimple by Remarks and
Examples 1.2.2(5).

< Itisclear. o
To prove the next result, we state and prove the following Lemma.

Lemma (1.2.6): Let K < N < M such that K is a fully invariant direct summand of

M. Then K is a fully invariant submodule in N.

Proof. To prove K is a fully invariant submodule of N. Letgp: N—> N be an R-

homomorphism, to show ¢ (K)< K.

Consider the sequence M SkSNEND M. Where p is the natural projection and

i,j are the inclusion mappings. Then (j e @ ci o p)eEnd(M) , and since K is a fully
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invariantin M,so0 (j cpoiop)(K)cK.But j cpoiop(K)=¢@(K).ThusK isa

fully invariant submodule of N. o

Proposition (1.2.7): Every submodule of strongly t-semisimple module is strongly t-

semisimple.

Proof: Let M be a strongly t-semisimple R-module and N < M. Assume W < N,
so W < M. Since M is strongly t-semisimple, there exists fully invariant direct
summand K of M such that K <;,; W < N. Hence by Lemma (1.2.6) K is fully
invariant -submodule of N. As K <® M ,M =K @K' for some K' < M then, N
=Nn (K ®K)=K®(K' n N). So that K <® N. Therefore, K is fully invariant
direct summand of N such that K <;,; W < N.Thus N is a strongly t-semisimple

module. o

Now we consider the direct sum of strongly t-semisimple. First we notice that
direct sum of strongly t-semisimple modules need not be strongly t-semisimple for

example:

Consider R as R -module. R is strongly t-semisimple. But M=R& R is not
strongly t-semisimple by Remarks and Examples 1.2.2(8). However, the direct sum
of strongly t-semisimple is strongly t-semisimple under certain conditions. Before

giving our next result, we present the following lemma.

Lemma (1.2.8): Let M; and M, be R-modules such that annM; + annM, =
R.Then Hom (M,, M,) =0 and Hom(M,, M;) = 0.

Proof: Since R = annM;+ annM,, then M; = M; (annM,)+M;(annM,).
PUt anan = Al’ ananzAz, therefore M1:M1A1 + M1A2 = M1A2 y then fOf

each ¢ € Hom (M, M,),p(M,) = ¢(M;)A, < M,A, = 0,hence ¢ = 0.Thus
Hom(M,, M,) = 0 .Similarly, Hom(M,, M;) = 0.0
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Theorem (1.2.9): Let M = M;@®M, such that annM; + annM,=R. Then M;, M,

are strongly t-semisimple if and only if M = M; @M, is strongly t-semisimple.
Proof: < It follows by Proposition (1.2.7).

= Let N < M. Since annM, + annM,=R, N = N;@N, for some N; and N,
submodules of M; and M, respectively by [1, Theorem 4.2]. As M, and M, are
strongly t-semisimple, then there exist K; < M; and K, < M, such that K; isa fully
invariant direct summand of M;, and K, is t-essential in N;, K, is a fully invariant
direct summand of M, , and K, is t-essential in N,.But K; <® M, and K, <® M,
imply K, ®K, <® M\®M, and K, <,sN; , K, <(ess N, imply K,®
K; <tess NN, by Proposition 1.1.22 and

EndM; Hom(M,, M, ))_(EndMl 0

End(M) = (Hom(Ml,MZ) EndM, 0  EndM,

) by Lemma

1.2.8.
Let <p:((%1 </?2> for some ¢, € EndM, , ¢, € End(M,). Then ¢(K;® K,) =
01(Ky)) ®p,(K,) < K;® K, since K; is fully invariant in M; and K, is fully

invariant in M,. Hence M is strongly t-semisimple. o
Now we shall give other characterizations of strongly t-semisimple module.

Proposition (1.2.10): The following statements are equivalent for a module M, such

that any direct summand has a unique complement:

(1) Miis strongly t-semisimple,

(2)  For each submodule N of M, there exists a decomposition M = K @ L such
that K< Nand LisstableinMand NN L < Z,(L),

(3)  For each submodule N of M , N = K @ K' such that K is a direct summand

stable in M and K’ is Z,-torsion.
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Proof: (1) = (2) Let N <M and let K be a complement of Z,(N) inN. Then
K®Z,(N) <,.,c N and let C be a complement of K &Z,(M) in M.So
K ®Z,(M)®C <,,c M and hence K ®©Z,(M)® C <,.c M . But M is strongly t-
semisimple  implies M is t-semisimple, hence K &Z,(M)®C = M( by
Corollary(1.1.49) .Put Z,(M)®C =L. Then M=K®L and hence N =
(K@®L)NN = K®(N n L) (by modular law ). But K + Z,(N) <, N implies = is
Z,-torsion (by Proposition (1.1.17)). On the other hand, % =NNL,sothat NNnLis

Z,-torsion. ThusNNL= Z, (LNN) <Z,(L). Now, C is a complement of K&
Z,(M) which is a direct summand of M, so by hypothesis ,C is the unique
complement and hence by[1,Theorem 4.8, p.31] C is stable in M and hence
L=Z,(M)®C is a stable submodule in M. Thus M = K@ L is the desired

decomposition.

(2=(3) By condition (2) M =K &L such that K < N, L is stable in M and
NNnL<Z,(L).Hence N = (K®L)NN = KO&(LNN).PutK' =LNN,so N = K®

K’ g ~K'= LNN is Z,-torsion , K is stable in M (since K is complement of L

which is direct summand of M).

(3)=>(1) By condition (3), N = K®K' , K <® M and K is stable in M and K’ is
Z,-torsion. Then K <® M, K < N and % ~ K' is Z,-torsion. Hence K <;,; N and

so that M is strongly t-semisimple. o

Definition (1.2.11)[5]: "An R-module M is called comultiplication if anny

anngN = N for every submodule N of M.”
To prove the next result. We need the following Lemma.

Lemma (1.2.12): Every multiplication module is fully stable.
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Proof: Let M be a comultiplication R-module. Then ann,anngN = N for all
N < M.Hence annyanng(xR) = xR for all cyclic submodule xR in M.Thus M is
fully stable by [1, Corollary 3.5, p.22]. o

Proposition (1.2.13): Let M be a comultiplication R —module. Then M is t-

semisimple if and only if M is strongly t-semisimple.
Proof: <= It is clear
= It follows directly by Lemma 1.2.12 and Remarks and Examples 1.2.2(6). o

Recall that” an R-module M is called a principally injective if for any a € R, any R
-homomorphism  f:aR - M extends to an R-homomorphism from Ry to

M"Equivalently M is principally injective if and only if annyanng(x) = (x)” [26].

Corollary (1.2.14): Let M be a principally injective. Then M is t-semisimple if and

only if M strongly t-semisimple.
Proof: < Itis clear.

= M is principally injective implies M is fully stable by [1,Corollary 3.5,P.22] and
so by Remark and Examples1.2.2(6), M is strongly t-semisimple. o

Recall the following:

"For R-modules M and N. M is called N-injective if for each monomorphism
h:A— N where A is any submodule of N and any homomorphism y: A +— M,
there is a homomorphism ¢: N — M such that ¢ o h = y".[28].[17].” M is called
injective module if M is N-injective, for any R-module M. M is called self-injective
(quasi-injective) if M is M-injective "[28] ,[17].

Corollary (1.2.15): Let M be an injective R- module. Then M is t-semisimple R —

module if and only if M is strongly t-semisimple.

Recall the following definition.
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Definition (1.2.16)[26]: "An R-module M is called scalar if for all ¢ € End (M),
there exists r € R such that ¢(x) = xr for all x € M, where R is a commutative

ring.”

Proposition (1.2.17): Let M be a scalar R-module, where R is commutative.
Then M is t-semisimple if and only if M is strongly t-semisimple

Proof: <= It is clear.

= Let N < M and, let ¢ € End (M). Since M is scalar, there exists » € R such that
@(x) = xr, for all x € M. Hence ¢(N) = Nr < N and so that N is fully invariant
submodule. Thus M is duo. But M is duo and t-semisimple implies M is strongly t-

semisimple by Remarks and Examples 1.2.2(6). o

Proposition (1.2.18): If R is semisimple then every duo R-module is strongly t-

semisimple.

Proof: Since R is semisimple, then every R-module is semisimple and so every R-
module is t-semisimple. Then by Remarks and Examples 1.2.2(6), every duo R-

module is strongly t-semisimple.o
Now we introduce the following:

Definition (1.2.19): An R-module M is called t-uniform if every submodule of M is

t-essential.

Remark (1.2.20): A uniform modules and t-uniform are independent concepts. The

following two examples show that.
(1) Z as Z —module is uniform, but (0) <%, Z (since (0) + Z,(Z) = 0 £,..2).

(2) Let M = Z, as Z-module, Z,(M) = Zg=M,(0) <;.c M since (0) +Z,(M) =
M <, M. Nj=<2> <;,c M since <2>+Z,(M)=M <., M, and similarly

N,=<3 > <;ps M,N; =M <,,, M.Thus M is t-uniform, but M is not uniform.
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Proposition (1.2.21): If M is a t-uniform module, then %is strongly t-semisimple

forall N < M.

Proof: ForeachN < M, N <;,s M. Then % Is Z,-torsion (by proposition 1.1.17(4)

).Hence %is strongly t-semisimple by Remarks and Examples 1.2.2(2). o

1.3 Strongly t-extending and strongly t-semisimple modules

Recall that” an R-module M is called t-extending if every submodule is t-essential
in a direct summand” [6]. Equivalently” M is t-extending if every t-closed is direct

summand” [6].

Some authors said that M is CLS-extending if every Y-closed submodule is a
direct summand [40]. Thus the concepts t-extending modules and CLS-extending

modules are coincide.

Recall that, "M is called strongly extending if every submodule of M is essential
in a stable direct summand. Equivalently M is strongly extending if and only if
every closed submodule is stable direct summand” [35]. Also, this concept is studied
in [18].

Asgari in [7] proved that every t-semisimple module is t-extending. We shall see
later that strongly t-semisimple module implies strongly t-extending module which

is introduced in [20]:

Definition (1.3.1)[20]: "An R-module M is called strongly t-extending if every

submodule is t-essential in a stable direct summand”.

We study this class of modules, so many characterizations and properties of this
class of modules are given. Also some connections between strongly t-extending and
other classes of modules such as strongly extending, strongly t-semisimple are

introduced.
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The following Proposition gives a characterization of strongly t-extending which is

appeared in [20]. However we present a different proof.

Proposition (1.3.2):" An R-module M is strongly t-extending if and only if  every

t-closed submodule is stable direct summand.”

Proof: = Let N be a t-closed submodule of M.Since M is strongly t- extending,
N <,.s K forsome K < M , K is stable direct summand .As N is t-closed, N =K,

so N is stable direct summand.

< Let A < M. By [20, Lemma 2.3] there exists a t-closed submodule K of M such
that A <,.s K, .By hypothesis, K is a stable direct summand, .Thus M is strongly t-

extending. o
Remarks (1.3.3):
(1) Every singular R-module is a strongly t-extending.

Proof: Let M be a singular R-module, then M is the only t-closed submodule of M
by Proposition (1.1.33) and M is stable direct summand; hence M is strongly t-
extending by Proposition 1.3.2. o

(2)"Every strongly t-extending module is t-extending, but the convers doesn’t hold

F F
0 F

be an arbitrary R-module. Then Z,(M)®R is a t-extending module which is not

in general as the following example shows”:"” Let F be a field, R = ( ) and M

strongly t-extending since Ry is not strongly extending.”[20, Example 3.4]
(3) If M is a t-extending R-module and duo module then M is strongly t-extending.

Proof: Let N <,. M. Since M is t-extending, then N is a direct summand. But M is
duo, so N is fully invariant submodule of M. Hence N is a stable by [35, Lemma

2.1.6, P.21].Thus M is strongly t-extending. o

(4) If M is a multiplication t-extending module, then M is strongly t-extending.
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Proof. As M is a multiplication module, then M is a duo module, hence the result

follows by part (3). o

(5) If M is cyclic module over commutative ring and M is t-extending, then M is

strongly t-extending.

Proof: As M is cyclic module over commutative ring, M is a multiplication module

.Hence the result follows by part (4). o

(6) Let R be a commutative self-injective ring "that is R as R-module is injective,

then M is strongly t-extending.

Proof: R is self-injective implies R is extending, so R is t-extending but R is cyclic,

hence R is strongly t-extending by part (5). o
(7) If M is a multiplication t-semisimple, then M is strongly t-extending.

Proof. Since M is t-semisimple, M is t-extending [7, Proposition 2.16].But M is

multiplication t-extending hence M is strongly t-extending by part (4). o
(8) Every SS -t-extending -module is strongly t-extending.

Proof: It is easy. o

Examples (1.3.4):

(1) For all neZz,, n> 1, Z, is t-semisimple multiplication Z-module. So Z, is

strongly t-extending by Remarks1.3.3 (7).

(2)Zp~ as Z-module is strongly t-extending, since (0), Zp« are the only t-closed

which are stable direct summands.

Theorem (1.3.5): If M is a strongly t-semisimple module, then it is strongly t-

extending, hence every multiplication t-semisimple is strongly t-extending.
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Proof: Let N be a t-closed submodule of M .As M is strongly t-semisimple, then M
is t-semisimple and hence M is t-extending thus N <® M.To prove N is fully
invariant in M. Since M is strongly t-semisimple, there exists a fully invariant direct
summand K of M such that K <,. N and hence K + Z, (N) <,,c N . Also M is
strongly t-semisimple implies N is strongly t-semisimple, and so N is t-semisimple
.Then by Corollary 1.1.49, N has no proper t-essential submodule containing
Z,(N).ButK + Z, (N) <;.s N ,hence K + Z, (N)= N. As N is t-closed, N 2 Z,(M)
and so Z,(N)=Z,(M)nN =Z,(M).ThusK + Z,(N) =K + Z,(M) = N. Since
K and Z, (M) are fully invariant submodules of M, then N is a fully invariant by

Lemma 1.1.39(1).Hence M is strongly t-extending. o

The converse of Theorem 1.3.5 is not true in general. Consider Q as Z-module. (0)
and Q are the only t-closed submodules of the Z-module Q and they are stable direct
summands, hence Q is strongly t-extending .But Q is not strongly t-semisimple by

Remarks and Examples 1.2.2(7).
The following Theorem is a consequence of Theorem 1.3.5 and Proposition 1.3.2

Theorem (1.3.6): If M is a strongly t-semisimple module, then N + Z,(M) is t-

closed stable direct summand for every submodule N of M.

Proof: As M is strongly t-semisimple, implies M is t-semisimple, hence N + Z, (M)
Is a closed submodule of M,for every submodul N of M by Corollary 1.1.50. But
N+ Z,(M) is closed and N + Z,(M) = Z,(M) imply N + Z,(M) is t-closed, by
proposition 1.1.28 (4< 2). On the other hand, M is strongly t-semisimple implies M
is strongly t-extending by Theorem (1.3.5) and hence by Proposition (1.3.2) N +

Z,(M) is stable direct summand. o
The following observation mention in [20].

Remark (1.3.7): "If M is strongly extending then M is strongly t-extending.”
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Proof: Let N be a submodule of M. Since M is strongly extending, then N is
essential in a stable direct summand K of M. Hence N is t-essential in K, and K is

stable direct summand .Thus M is strongly t-extending. o

Example (1.3.8): Consider M = Z,,®Z as a Z-module where n is a positive integer.
We shall see by Theorem 1.3.11(4), M is strongly t-extending. However M is not
strongly extending, of M.

The following Theorem was given in [20]. A different proof is introduced

Proposition (1.3.9): Let M be a nonsingular module. Then M is strongly extending

if and only if M is strongly t-extending.
Proof: = It follows by Remark (1.3.7).

< Let N < M. Since M is strongly t-extending,N <;.; K, for some stable direct
summand K of M. But M is nonsingular, then K is nonsingular hence N <,,; K .

Thus M is strongly extending. o

Proposition (1.3.10): Let M be a multiplication t-semisimple R-module.Then % IS

semisimple fully stable for every t-closed submodule C of M, and the converse hold .

Proof: Let C be a t-closed submodule of M. Then % Is nonsingular by Proposition
1.1.28(6) and semisimple by [7, Corollary 2.17]. But M is a multiplication R-module

implies % is multiplication t-semisimple module so % is duo and hence % is strongly
t-semisimple. Then by Theorem 1.3.5, % is strongly t-extending. As % IS
nonsingular, we conclude that % is strongly extending by Proposition 1.3.9. It

follows that% is fully stable by [35, Remarks and Examples 2.2.2(11)].

The converse holds by Theorem 1.2.3. o

The following Theorem gives characterizations of strongly t-extending is appeared

in [20]. However we present a different proof.
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Theorem (1.3.11): The following statements are equivalent for an R-module M.

(1) M is strongly t-extending;

(2) Each t-closed submodule of M is a fully invariant direct summand.

(3) M is t-extending and each direct summand of M which contains Z,(M) is
fully invariant.

4 M=Z,(M)®M' Where M’ is a strongly extending module.

(5) Every submodule of M which contains Z,(M) is essential in a fully invariant
direct summand.

(6) Every submodule of M which contains Z, (M) is t-essential in a fully invariant
direct summand.

(7) For every submodule A of M, N is a fully invariant direct summand of M,

where N 2 A and %: Zz(%).

(8) For each submodule A, of M, there exists a decomposition % = %@NX such

that N is fully invariant direct summand of M and N' <;.; M, N 2 A.

M M
Proof: (1)=(7) % :NZ‘ ~ Zz(M//fl ) Is nonsingular. Hence N is t-closed in M so N

Is stable direct summand.

M . . . . M
()= (4) Zeon Is nonsingular (since Z, (M) is t-closed) so Z, (ZZ (M)) = (0) =

_? EZ; .By condition (7), Z, (M) is a fully invariant direct summand, so it is stable.
2

Thus M =Z, (M)®M’', hence M’ zZAZM) iIs nonsingular. Let C be a closed
2

. . . . . M. .
submodule in M’. Since M’ is nonsingular, C is t-closed, hence — s nonsingular.

This implies

is nonsingular, thus Z, (M) + C is t-closed in M by Proposition
Z, (M)+C

(1.1.28). Therefore Z, (M) + C is stable direct summand in M by condition (7). To
prove C is a stable direct summand in M’. Since Z, (M) + C is stable direct
summand of M, then (Z, (M) + C)®W = M. But C is a submodule of M".
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Hence M' =([Z, (M) + C)®W)]In M' =C®[(Z, M)SW)n M'] by modular

law, so C <® M’. To prove C is stable in M’, it is enough to prove C is fully

invariant in M’. Let f: M’ — M'. Consider the sequnces M S5M A M’ —l> M where
p is the natural projection and i is the inclusion mapping. Hence io f o p € End
(M).Therefore (io f o p)(Z,(M)DC) < Z,(M)DC.Butio fo p)(Z,(M)BC) =

iof(p(Z,(M)®BC)) = iof(C)=f(C).Thus f(C) < Z,(M)®C, so for any x €
C, f(x)=y+t for some ye Z,(M) and t e C. But f: M' » M', so f(x) € M,
hence f(x) —t=y €Z,(M)NnM’'so f(x)—t=y =0, theny=0and f(x) =t
€ C. Thus C is a fully invariant in M’, but C <® M'.Hence C is a stable direct

summand M.

(4)=(5) Let K be a submodule of M which contains Z,(M). Since M = Z,(M)®M',
where M’ is nonsingular strongly extending. Hence K = (Z,(M)®M')NK =
Z,(M) ®(K nM") by modular law. Hence KnM'<M' , and M'is strongly
extending, so (KNM') <, L<M', for some stable direct summand
L of M'.Therefore Z,(M) ®(K N M") <,ss Z,(M) @®L, by [25, Corollary 5.1.7,
P.110], hence K <.,c Z,(M) @®L. But we can prove that Z,(M) @®L is stable direct
summand of M. Since L <® M'so L®W = M’, for some W < M’, but M =
Z,(M)® M'Hence M = Z,(M) &(LAW), thus Z,(M)®L <® M .To prove
Z,(M) ®L is fully invariantin M . Let :M = M so (f(Z,(M) ®L) = f(Z,(M)) +
fL) £ Z,(M) + f(L).

Consider the sequence M’ 5 ML M 5 M’ where p is the natural projection, and i is
the inclusion mapping therefore (p o f o i)(L) = p o f(L) = p(f(L)).But L is a
fully invariantin M’,so (p o f o i)(L) < L.

Hence p(f(L)) < L < M'.Now for any x € L, f(x) € M, so that

f(x)=y+c for some y €Z,(M),c € M’'. On the other hand, p(f(x)) =
p(y+c)=c, and hence c € L. This implies f(x) =y+c €Z,(M)®L that
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is f(L) S Z;(M)®L.  Now  f(Z;(M)®L) = f(Z(M)) + f(L)) < Z,(M) +
f(L) <Z,(M) + (Z,(M)®L). Hence f(Z,(M)®L) ) < Z,(M)®L. Thus Z,(M)DL
Is a fully invariant direct summand of M, so it is stable direct summand. Thus M is

strongly t-extending.

(5)=(1) LetA < M. Then A+ Z,(M) 2 Z,(M) so by condition (5), there exists a
stable direct summand L of M such that A+ Z,(M) <, L. ButZ,(M) <A+
Z,(M\) <L, so Z,(M)<L, also Z,(L) =Z,(M)nL =27Z,(M). So that A+
Z,(L) <,ss L. Hence A <;.s L and L is stable direct summand. Thus condition (1)
hold.

(1)= (8) Let A < M. By condition (1) there exists a stable direct summand N of M

such thatA <,,; N. Since N<® M, N®L =M for someL < N. Hence%=

N . L+A M M,y N o : .
20— but Lea = @A) S " Which is Z,-torsion by Proposition (1.1.17).Thus

% IS Z,-torsion, hence we conclude that L + A <;.; M by Proposition (1.1.17).

(8)=(1) Let C be a t-closed submodule of M, then % is nonsingular, that is Z(%):O.

By condition (8), there exists a decomposition % = %EB N? where N is stable direct

summand and N’ <;.s M. But% IS nonsingular then % Is nonsingular, thus C is t-

closed in N. Also we have N’ <,., M, hence % IS Z,-torsion and so % ~ % IS Z,-
torsion, hence C <;.s N, but C is t-closed in N, so C = N. Thus C is stable direct

summand of M.
(5) =(6) Itis clear.

(6) =(5) Let A<M and A 2 Z,(M). Since A <;.s K, where K is fully invariant
direct summand, then A + Z,(K) <., K by Proposition (1.1.17).But A + Z,(K) <
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(1)  (2) It follows by Proposition (1.3.2) and Definition 1.3.1.

(3) = (2) Let N be a t-closed of M. Since M is t-extending, N is a direct summand
of M. But N is at-closed, so N 2 Z,(M). Thus by hypothesis N is a fully invariant,

and so N is a fully invariant direct summand.

(1) = (3) since M is strongly t-extending, and then M is t-extending. Let N <® M
and N 2 Z,(M). Since N <® M, N is closed. Hence N is t-closed by Proposition
(1.1.28). Then by Proposition (1.3.2) N is a stable direct summand, so N is fully

invariant. o

Now we give the following result which is another characterization of strongly

t-extending

Theorem (1.3.12): Let M be an R —module. Then M is strongly t-extending if and
only if for each submodule A of M there exists direct decomposition M = M, @M,
,such that A < M,, where M, is stable submodule of M and A +M, <;.. M.

Proof:= Suppose M is strongly t-extending. Let A< M, then there exists a stable
direct summand M, of M such that A <,.; M,;.Since M; <® M, M;®M,=M for
some M, < M, and as A <;.,; M; and M, <;.; M, then A®M, <;.c M\;®M, =M
by Proposition 1.1.22(2).

<Let A < M. By hypothesis M = M;®M, with A < M;, M; is a stable direct
summand of M and A®M, <;.; M.Let A NnB <Z,(M;),B< M;. Since A+
M, <ies M , then A+ M, + Z,(M) <,,c M by Proposition. 1.1.17. Hence A+M,+
(Z, M)BZ,(M;)) <gss M. So that A+Z,(M)® M, <., M (since Z,(M,) <
M,). Thus A+Z,(M)®M, <,,c M{BM, which
implies A+Z,(M;) <.ss M;,hence A<, M; by Proposition 1.1.17(3). Thus M is
strongly t-extending by Definition 1.3.1. o
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Proposition (1.3.13): Let M be an R- module such that for every submodule N
of M, there exists a t-closed submodule A with N <., A .Then M is strongly t-

extending if and only if M is strongly extending.

Proof: = Let N < M . By our assumption there exists t-closed submodule A of M
such that N <, A. Since M is strongly t-extending, then A is stable direct
summand of M by Theorem 1.3.11(2) and hence M strongly extending.

< Itis clear by Remark (1.3.7). o
The following Proposition was given in [20]. A different proof is introduced

Proposition (1.3.14): Any direct summand of a strongly t-extending module is

strongly t-extending module.

Proof: If A <® M.Let M = A®B be a strongly t-extending module, let K be a t-

M A®B A . . . . .
closed submodule of A, we have — = —— ~ — . which is nonsingular since K is
K®B K®B K

a t-closed submodule of A.Thus K@B is a t-closed of M, but M is strongly t-
extending module, therefore K@B is a stable direct summand in M and so M =
(K®B)®D for some submodule D of M. Henced = [K®(B®D)INA =
K®[(B®D)NA]. So that K <® A. Also K®B is stable in M = A®B, which implies
that K is stable in A. Let f:A—>A be any R-homorphism. Define h: M —>M by

h(x) = {7; (x)ot;'l/; xe ;4, hence h(K)=f(K)<A (since f € End (A)).

Moreover h(K®B) = h(K) + h(B) = f(K) + 0 = f(K). But h(K®B) < K®B(
since K@®B is stable in M). So that h(K) < (K®&B)NA = K. Thus K is a fully

invariant submodule of A, so it is stable..Therefore A is strongly t-extending. o

Corollary (1.3.15): Every t-closed submodule of a strongly t-extending is a strongly

t-extending.

Proof: It follows directly by Proposition 1.3.2 and Proposition 1.3.14. o
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Theorem (1.3.16): Let M = M;®M, where M; and M, are R-modules with
annM; + annM, = R. Then M is strongly t-extending module if and only if M; and

M, are strongly t-extending modules.
Proof:= It is clear by Proposition (1.3.14).

< Let N <. M. Since annM; + annM, = R, then N = N;®N, for some N; < M;,
N, < M, by [1,Proposition 4.2,P.28]. As N <. M, N, is at-closed in M; and N, is
a t-closed in M, by[27,Proposition 2.1.20,P.29]. But M; and M, are strongly t-
extending. N; is a fully invariant direct summand of M; and N, is a fully invariant
direct summand of M, by Theorem 1.3.11. Since N; <® M; and N, <® M, imply

N, ®N, <® M, so it is enough to verify that N, ®N, is a fully invariant in M

_( End(M,) Hom(M,, Ml)) _
End(M) =~ (Hom(Ml, M, End(M,) But Hom(M,M,) = 0,
E M
Hom(M,, M;) = 0 by Lemma 1.2.8. Hence End(M) = ( nd(() 1) End(()M )) and
2

fy
0

Hence f(N;®N,) = f;(N,)®f,(N,) € N;BN,. Thus N,;@®N, is fully invariant

submodule of M. o

so for each fe End(M) f=( fO) where f; € End(M;), f, € End(M,).
2

Proposition (1.3.17): Let A and B be submodules of a module M. If B is a strongly

t-extending module and A <,. M , then A N B is a stable direct summand of B.

Proof: As A <;,. M and B < M, then An B <;. B by Proposition 1.1.31(1). But B

is strongly t-extending, so that A N B is a stable direct summand in B. o
Proposition (1.3.18): Let M be a semisimple module. Consider the following:
(1) M is strongly t-extending;

(2) M is SS-module (weak duo);

(3) M is duo;
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(4) M is fully stable;
(5) M is strongly extending. Then (1)<(2)<(3)<=(4)<=(5).
Proof: (2)<(3)=(4)<(5). [35, Remarks and Examples 2.2.2(11)p.40]

(2)= (1) Let N be a t-closed submodule of M. Since M is semisimple, N <® M .
But M is SS-module, so that every direct summand is stable. Thus N is stable direct

summand. Therefor M is strongly t-extending by Proposition (1.3.2)

(1) = (4) Let A < M. Since M is semisimple, M = A@®B for some submodule B of
M. On the other hand, M is strongly t-extending, hence by Theorem (1.3.11) there
exists a decomposition M = M; @M, such that A < M; and M, is stable in M and
ABM, <;.c M. It follows that M = A@B < M;®B and hence M = A®B =
M,@®B, and since M, is a stable submodule of M, A = M, by [1, Theorem 4.8,p.30].
Thus A is a stable submodule of M. Thus every submodule A of M is stable that is ,

M is fully stable. o

Recall that” an R —module M satisfies SIP if the intersection of two summands of
M is asummand in M "[42].

Proposition (1.3.19): If M is a nonsingular strongly t-extending module then M has
SIP.

Proof: Since M is strongly t-extending and nonsingular, then, M is strongly
extending. Thus M has SIP by [35, Corollary 2.2.8]. o

Remark (1.3.20): If M is t-uniform, then % Is strongly t-extending for each N < M.

Proof: It follows by Proposition 1.2.21 and Theorem 1.3.5. o

Proposition (1.3.21): If M is strongly t-extending and indecomposable then
N <;.c M foreach0 #N <M
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Proof: Let (0) # N <M . Since M is strongly t-extending, there exists a stable
direct summand submodule K of M such that N <., K.But M is indecomposable,
SOK =M. Thus N <;,c M .O

1.4 Strongly t-semisimple rings

This section concerns with strongly t-semisimple rings. Several characterizations of
commutative strongly t-semisimple rings are introduced. Also some

characterizations of nonsingular strongly t-semisimple ring, are given.

Proposition (1.4.1): Every commutative t-semisimple ring R is strongly t-

semisimple ring R.

Proof: Since R is commutative ring, then R is duo R-module. This implies R is

strongly t-semisimple, by Examples and Remarks 1.2.2(6). o

Proposition (1.4.2): Let R be a commutative Artinian ring with Rad R <;.. R.
Then R is strongly t-semisimple. In particular every commutative local Artinain ring

is strongly t-semisimple.

Proof: By [7, Proposition 3.1], R is t-semisimple ring. Hence by Proposition (1.4.1),

R is strongly t-semisimple. o
Examples (1.4.3):

(1) The ring Zpw is Artnian and Rad Zpw = Zpo <,gs Zpw. Thus Zpw IS t-
semisimple. Hence by Proposition (1.4.2), Zp is strongly t-semisimple.

(2) LetR bethering Zpn, R is an Artnian local ring , so by(Proposition(1.4.2)) R
is strongly t-semisimple

Proposition (1.4.4): The following statements are equivalent for a commutative ring
(1) R isstrongly t-semisimple;

(2) R ist-semisimple;

(3) Every R-module is t-semisimple;
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(4) Every nonsingular R —module is semisimple;
(5) Every nonsingular R —module is injective;
(6) Fore every R —module M there is an injective submodule M’ such that
M = Z,(M)®M’;

R
(7) Z>(R)

(8) Every maximal ideal which contains Z,(R) is a direct summand,;

IS a semisimple ring.

(99 R is a direct product of two ring, one is Z, — torsion and the other is

semisimple ring.
Proof: (1)=>(2) it is clear

(2) = (1) Itis follows by (Proposition 1.4.1).

(2) = (3) & (4) & (5) < (6) & (7) (see [7, Theorem (3.2)]).
(2) < (8) <(9) It follows by [7, Theorem 3.8]. o

Corollary (1.4.5):"Let R be a t-semisimple ring(and hence if R is strongly t-

semisimple).

(1) A maximal right ideal I of R is a direct summand if and only if it

contains Z, (R).

(2) A minimal right ideal J of R is a direct summand if and only if it is nonsingular

"[7,Corollary 3.9].

Recall that a ring R "is called quasi-Frobenius if R is self-injective and
Noetherain”. Equivalently "R is quasi-Frobenius if R is self-injective and

Avrtinian.”[21]

Corollary (1.4.6)[7, Corollary 4.6]: "Let R be a right nonsingular. Then R is quasi-

Frobenius if and only if R is semisimple”.
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Proposition (1.4.7): Let R be a nonsingular commutative ring. Then the following

statements are equivalent:

(1) R isquasi-Frobenius;

(2) R issemisimple ;

(3) Rist-semisimple ( R is strongly t-semisimple);

(4) Every R —module is t-semisimple;

(5) Every nonsingular R —module is semisimple;

(6) Every nonsingular R —module is injective;

(7)  For every R —module M , there exists an injective submodule M’ such that
M =2Z,(M)® M’

(8)

is a semisimple ring.
Zy(R) P g

Proof: (3)  (4) < (5) < (6) < (7) < (8) by Proposition (1.4.4).

(1)< (2) It follows by Corollary (1.4.6)
(2) =(3) It follows by [7,Theorem 3.2] and Proposition (1.4.4). o

Proposition (1.4.8): The following statements are equivalent for a commutative ring
R

(1) R is t-semisimple (R is strongly t-semisimple );
(2) Every weak duo module (SS-module) is strongly t-semisimple;

(3) Every R —module is t-semisimple.
Proof: (1) < (3) by Proposition (1.4.4)
(3)=(2) It follows by Remarks Examples 1.2.2(5).

(2) = (1) R is duo (because R is commutative ring with unity), so R is strongly t-

semisimple. o
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Proposition (1.4.9): The following statements are equivalent for a commutative

ring R:

(1) R ist-semisimple(R is strongly t-semisimple);

(2)  Every nonsingular R-module is strongly t-semisimple;

(3) For every R-module M, there exists a strongly t-semisimple R-module M’
suchthat M = Z,(M) @ M'.

Proof: (1) = (2) Let M be a nonsingular R-module. Hence M is semisimple by
Proposition (1.4.7)(3=5) and so M is t-semisimple. Also M is injective by
(Proposition(1.4.7) ((3) = (6)). It follows that M is strongly t-semisimple by
(Corollary (1.2.15))

(2)=(1) By condition (2) every nonsingular module M is strongly t-semisimple,
hence every nonsingular module M is t-semisimple. Thus every nonsingular is
semisimple by (Remarks 1.1.45(3)). It follows that R is t-semisimple by (Proposition
(1.4.4) (4)=(2)).

(1) = (3) By (Proposition (1.4.4) (2)= (6)), M = Z,(M)@®M' for some injective R-

M

module M'. But M’ ~
Z (M)

which is nonsingular module. Hence M’ is semisimple

by (proposition (1.4.4) (2)=(4)). Thus M’ is t-semisimple and injective, so M’ is
strongly t-semisimple by Corollary (1.2.15).

3) =(1) M=_Z,(M)®M' where M"is strongly t-semisimple. Hence M'is t-

semisimple. But M’ = %00 which is nonsingular, so M'is nonsingular t-semisimple.
2

Thus M'is semisimple by Remarks 1.1.45(3). So that M'is injective. Thus R is t-
semisimple by (Proposition (1.4.4) (6) =(2)). o
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1.5 Strongly t-Baer modules and strongly t- semisimple modules

"For a left ideal I of End (M), set the right annihilator in M of I by n,(I) =
fmeM:Im=0}and t,(I) = {m € M:Im < Z,(M)}"[33]. Recall that "a module
M is (quasi)-Baer if the right annihilator in M of any left (two sided) ideal I of
End(M) )y (I) is a direct summand of M " [33]. A close connection was established
between (quasi-)Baer modules and Fl-extending modules which is introduced in
[33]. As a generalization of t-extending, hence extending module and of a
nonsingular Baer, the notion of t-Baer is introduced in [6]. Connections between t-

extending and t-Baer were established; see [6, Theorem 3.9].

In this section we introduce the notions of strongly Baer module and strongly t-
Baer module. Many connections between these concepts and other related concepts
such as Baer module, t-Baer, strongly t-semisimple modules, strongly extending

strongly t-extending and noncosingular modules are presented.

Definition (1.5.1):"A module M is called Baer if r,,(I) <® M for every left ideal I
of S where S = End(Mg)."[33].

Definition (1.5.2):" A module M is called abelian Baer (or strongly Baer by some
authors) if r,(I) <® M and fully invariant for every left ideal I of S where,
S = End(Mg)"[34].

Definition (1.5.3):"A module M is called t-Baer if t,,(1) <® M for every left ideal
I of S where S = End(Mpg)."[6]

Definition (1.5.4): "A module M is called strongly t-Baer if t,,(1) <® M and fully
invariant, for every left ideal I of S where, S = End(My)"[20].

Remarks and Examples (1.5.5):

(1) It is clear every strongly Baer module is Baer module, and every strongly t-Baer

module is t-Baer module.
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(2) Every Z,-torsion module is strongly t-Baer.

Proof: Let M be a Z,-torsion module, so Z,(M) = M. For any left ideal I of S =
End(Mg), ty() = {m € M: Im < Z,(M) =M} =M.But M <® M and it is fully

invariant .Thus M is a strongly t-Baer. o
(3) If M is anonsingular module, then r, (I) = t,, (1) for every left ideal I of S.

Proof: Since M is nonsingular, Z,(M) = 0. Hence ry(I) ={m € M:Im =0} =
(meM:Im < Z,(M) =0} =t (). 0

(4)Let M be a nonsingular R —module. Then M is strongly Baer if and only if M
strongly t-Baer.

Proof: It follows directly by (3). o

(5) Let M be anonsingular R-module. Then M is Baer if and only if M is t-Baer.
(6) The Z-module Z@Z, is t-Baer which is neither Baer nor Z,-torsion [6,
Example 3.4(1)]

(7) The Z-module Z is strongly t-Baer, since End( Z) = Z and so for any ideal I
of End(2),] =nZThus t,(I)={meZmnZ<Z,(Z)=0}={meZ:mn=
0} = {0} is a fully invariant direct summand of Z.

End (Z) End (2)
End (Z) End (Z))

~

(8) Let M =Zé®Z as Z-module, End M =~ ( (Z A

7 Z) and

Z,(M) = (0)®(0)

Let = {(8 :Z) :nis a fixed postive integer} ,then for any (JZC 3‘;) €

End(M)

G o0 5= XTI Thus 1 s a left ideal of End(M).ty(1) =

() ezez(5 )G) =0 ={G): () = (o)} hence ) =

Z®(0) <® M, but t,,(M) is not fully invariant.
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For ¢: Z®Z—Z®Z which is defined by ¢(x,y) = (y,x) for all (x,y) € ZBZ.
Then, ¢(x,0)=(0,x) forall x € Z and @(t,, (1)) = (0)DZ £ t),(I). Thus M is not
strongly t-Baer.

Lemma (1.5.6): LetM = Z,(M)®M’, let I be a left ideal of S = End(M), let

m: M—M' be the natural epimorphism, and

A ={mo6 | w0 €I}, let I'=5'A", where S"=EndM'. Then ty,()=
Zy(M)@ry (1),

Proof: Let m; +m, € t,(I) so m; € Z,(M),m, € M" Then I(m;+m,) S
Z,(M), hence for any 8 €1, 6(my+m,) € Z,(M), that is@(m,)+6(m,) €
Z,(M), so  6(my) € Zy(M).Nowm o 8|, (m;) = m(8(m,)) = 0.Thus m, €
ry(1),50 ty (1) €S Z,(M)@ 1y (I").Letmy + my € Z,(M)®ryr(I'), SO my €
Z,(M) and I'm, = 0. Hence S'A'm, =S'm 6 | v’ (my) = 0. This implies 6(m,) €
Z,(M) and so 8(m,; + m,) = 6(my)+6(m,) € Z,(M). Thus my; +m, € t,, (1),
hence Z,(M)®r,,(I") € ty (). Thus ty,,(I) = Z,(M)®r(I"). O

Lemma (1.5.7): LetM = Z,(M)®M’, let I' be an ideal of S = End(M") let
A={ldg,g +y¥:p €l'}and I = SA. Then ty (I) = Z,(M)®r i (I').

Proof: Let m; + m, € t)(I), so @(m, + m,) € Z,(M) for any @ €1 , then
SA(m; + my) € Z,(M), so S +yY)(my +m,) =S(m,; + Yym,), hence (m, +
Yym,)) € Z,(M). As m, € Z,(M), so that p(m,) € Z,(M). Hence yP(m,) €
Z,(M)n M'=0, s0 m, €ry(I"). Thus my + m, € Z,(M)®r,(I'). Conversely,
let m; +m, € Z,(M)®r,,(I'). Then m,; € Z,(M) and m, € rp(l'). SO m; €
Z(M) and Y(m,) =0,
I(my + my) = SA(my + my) = S(dz,y +P)(My,my) = S(my +P(my) =
Smy € Z,(M),thenm,; + m, € t,,(I).Thus Z,(M)®r,, (I") € ty (1). Hence
ty (1) = Z;(M)@ry(I'). o
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The following result gives some characterizations of strongly t-Baer module which

are analogous generalization of Theorem 3.2 in [6].
Theorem (1.5.8): The following statements are equivalent for a module M:

(1) M is strongly t-Baer;

(2) M=2Z,(M)®M' where M’ is a (nonsingular) strongly Baer module;"[20]

(3) M has strongly summand intersection property for direct summands which
contain  Z,(M) and ¢~ (Z,(M)) <® M and fully invariant for allgp € S =
End(M);

(4) ne 1t (Z,(M)) <® M and fully invariant , for every, ¢ € S = End(M).

Note that (1)<(2) is given in[20, Theorem 4.2]. But our proof is different.

Proof: (1) = (2) Since M is strongly t-Baer, Z,(M) = t,,(S) <® M where
S =End(M) Hence M =Z,(M)®M’' for some M' < M; M’ is nonsingular. To
prove M’ is strongly Baer. Let I’ be a left ideal of S' = End(M") , let A= {I +
Y:p €'} and I = SA. Then ty, (1) = Z,(M) & ry (I")by Lemma (1.5.7). Since M
is strongly t-Baer,t,, (1) <® M and fully invariant, so M = t,,(I) @& K for some
K<M; that isM=Z,(M)® ry,(I")®OK.But M'=(Z,(M)® 1, (I"OK) N
M'=7,, (INB[(Z,(M))®K)Nn M'] by modular law. Hencer, (I') <® M'.
Let f € End(M")then I, ,,y®f € S.Hence (IBf)(ty(I) <ty () since ty () is
fully invariant in M so (Ieaf)(tM(I)) =Z,(M)®f (ryy(I") < Z,(M)Br,,(I") =
ty (D). Thus f(ry(I") < ry(I"), which implies r,,/(I") is fully invariant in M’.
Thus M’ is strongly Baer.

(2) = (1) Assume M =2Z,(M) & M' , where M’ is strongly Baer. LetS’ =
End(M"), let I be a left ideal of S. Letp €1, hence ¢ : M—M . Consider the

sequence M SmS M’ ,where 7’ the natural projection. Put A’ = {n" o ¢l ,» : @ €
I},A"<S', putl’=S"A".Then ty(I) = Z,(M)®r,,(I") by Lemma (1.5.6). Since

M’ is strongly Baer, r,,/(I') <® M’ and fully invariant in M’ . Hence M' = 7, (I')
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@K for someK < M’, thus M = Z,(M) @ M’ = Z,(M) @r,y (") ®K=ty, (DDK.
Hence t,, (1) <® M.

To prove ty, (1) is fully invariant in M, lety: M—M. Since ty,(I) =Z,(M)
@®r,,r (1), then for all m € ty,(I), m = m;+m, such that m; € Z,(M), m, €
Ty (1), Yp(m) = P(myyp(my) . Assume Pp(m,) =c+d € M such that ¢ €
Z,(M),d € M'. Now t’ o 1| P (1) ry’(I')—> M', where ' the natural projection,
then 7' o rar (1) (ryrdD) )Ery ), hence ©w'o YP(m,) € ryy(I'), that is
n'(c+d) € ry(I'), hence d € ry(I").Thus Y(m,) =c+d € ty,(I) where
c €Z,(M),d €ry(I") and so Y(m) = Y(m,) + Y(m,) € ty, (1) . Therefore t,, (1)

is fully invariant in M.

(1)= (3) Let ¢ € S. Since ¢~ (Z,(M)) = t,(S @) and M is strongly t-Baer, so
o1 (ZZ(M)) <® M and fully invariant submodule of M. To prove M has a strongly
summand intersection property for direct summand which contain
Z,(M).Let N, <® M,N, 2 Z,(M), A €A, then for each 1 €A , N, = e;(M) where,

e, is an idempotent of S.

Let [ = 2c,S(1 — e;) where 1 is the identity mapping on M and let m € t,,(I).
Then Im = %, S(1-e; )m <Z,(M), hence (1 —e;)m € Z,(M), for all LeA and
hence ,m € (1 —e;)"1Z,(M). Hence ty(I) € (1 —¢y) " 1(Z,(M)) < e;M, for all
A € A. To show this, let m € (1 —¢;)"1(Z,(M)), then (1 —e;)(m) € Z,(M) and
so (m—ey(m) € Z,(M). This implies me€ Z,(M) +e;(M) = e (M) (since
ey (M) 2 Z,(M). Thus (1 —e;) 1Z,(M) S e;(M). So that ¢y, (1) SNy M =

Naen Ni.

Now assume that m & t, (1), then Im £ Z,(M). Thus there exists A, €A such that
(1—ey,)m & Z,(M); hencem & (1 —e; )" (Z,(M)), but (1 —e; )" (Z,(M)) =
ey, (M). To show this. Let x € e; (M). Then x = ¢; (y) for some y € M and so
x = eZ,—lO(y) = ey, (e,-to(yo)) =¢,,(x). Hence x—¢ (x)= (1 — elo)(x) =0€
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Z,(M) and this implies x € (1—e¢;) '(Z2(M)). Thus e, (M) s (1-
ex,) 1(Z2(M)).But (1 —e; )71 Z,(M) S ey, (M). Therefore (1 —e; )~ (Z,(M)) =
ey,(M). Thus m €nNzepexM and so NzepeaM =ty (1) But (by condition
(1)t (1) <® M and fully invariant). So N e e M is a fully invariant direct

summand.

(3) = (4) Since ¢~ (Z,(M)) <® M and a fully invariant submodule of M for each
@ € S by condition (3). Then N er @1 (Z,(M)) <® M and fully invariant.

(4)=(1) Let I be a left ideal of S. Cleary ty(I) =N,e @' (Z,(M)). By
condition(4), N,e; @1 (Z,(M)) is a direct summand and fully invariant of M.Thus

ty (1) is a direct summand and fully invariant of M. o

To prove the next Theorem, first the following Proposition is presented.

Proposition (1.5.9): Let M be a nonsingular strongly extending R-module .Then M

is strongly Baer.

Proof: To prove r, (1) <® M and fully invariant for each left ideal I of S. Since
every strongly extending module is extending. So M is nonsingular and extending,
which implies M is Baer by [33]. Thus ry,(I) <® M, hence ry(I)is closed
submodule and so 1, (1) is stable, since M is strongly extending. Thus M is strongly

Baer. o

Recall that "for a submodule N of M. Theset {op € S: 9o(N) < Z,(M)} is denoted
by ts(N)" [7]

The following Theorem explains connections between strongly t-semisimple

modules with strongly t-extending modules and strongly t-Baer modules.

Theorem (1.5.10): For an R-module M. Consider the following assertions
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(1) M is strongly t-semisimple;

(2) M is strongly t-extending and N = t,,ts(N) for every submodule N of M,
which contains Z,(M).

(3) M is strongly t-Baer and N = t,ts(N) for every submodule N of M which
contains Z,(M).

Then (1)-(2)—(3) and( (3)—(1) if a complement of Z, (M) is unique).

Proof: (1) = (2) By Theorem (1.3.5), M is strongly t-extending Also M is strongly
t-semisimple, implies M is t-semisimple. Hence by [7, Proposition 2.19], N =

tyts(N) for every submodule N of M which contains Z,(M).

(2) =(3) Since M is strongly t-extending, M = Z,(M)®M’', M’ is nonsingular
strongly extending by Theorem(1.3.7). It follows that M’ is strongly Baer by
Proposition (1.5.9).Hence by Theorem ((1.5.8) (2) =(1)), M is strongly t-Baer.

(3) =(1) Since M is strongly t-Baer, Z,(M) = ty(S) is a direct summand of M and
fully invariant submodule of M, say M = Z,(M)@M’', hence M’ is nonsingular.Let

N<Mand N2Z,(M).Then N=MnN = (Z,(M)®M')NN = Z,(M)SM' n
N). Since M is strongly t-Baer, t,,(ts(N)) is a fully invariant and direct summand of

M .But by condition (3), N = tyts(N), so N is fully invariant direct summand of M.

Thus every submodule which contains Z,(M) is stable direct summand. Hence Z IgM)
2
Is semisimple, but M’ = Z’:'M), so that M’ is semisimple. To prove M’ is a fully
2

stable, let N’ < M'. Since N’ <® M’, it is enough to show that N is fully invariant
submodule of M’. Assume ¢ € End(M'). Since M =Z,(M)® M’, ¢ can be

meM’

extended to g: M —M which is defined by g: (m) = {‘p(()m) if otherwise

Hence g(Z,(M)®N') < Z,(M)®N’, since N =Z,(M)®N' is a fully invariant
submodule of M. But g(Z,(M)®N') = g(Z,(M))Dg(N')=g(N") = ¢(N"). Thus
g(N") < Z,(M)® N’ and since o(N')< M’', then (N )< (Z,(M)®N')NM' =
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N', that is N' is a fully invariant submodule of M'. Thus M’ is fully stable, and so

M

Z is fully stable. To prove M’ is a fully invariant in M. Since M'is a complement
2(M)

of Z,(M) and by hypothesis, M’ is a unique complement of Z,(M) so M’ is stable in

M

M by [1, Theorem 4.8, P.30] and hence

=~ stable submodule. Therefore by
ZM)

Proposition 1.2.3(5—1), M is strongly t-semisimple. o

Asgari proved that "if M is t-Baer, then so is every direct summand” [7, Theorem
3.6]. However "every direct summand of strongly t-Baer is strongly t-Baer” [20,

Theorem 4.4]: we give a different a proof, for this fact.

Theorem (1.5.11): If M is strongly t-Baer module, then so is every direct summand
of M.

Proof: First, we show that if M = M,®M, and M, is Z,-torsion, then M, is
strongly t-Baer. Let I, be a left ideal of S, = End(M,). Since M is strongly t-Baer,
M is t-Baer. Hence by the same proof of the 1* paragraph of proof of Theorem 3.6 in
[6], tm, (12) <® M,. To prove tu, (I2) is a fully invariant submodule of M,.put A =
{1y, ®¢: ¢ € 1,} , and1 = SA. Since M is strongly t-Baer, t), (1) <® M and fully
invariant. But ¢y (I) = M;®ty,(I;). Assume f € End(M,). Define h: M— M by

h(x) = {f(x) if x E,MZ . Hence h(ty, () <ty (D), sothat h(M;) + h(ty, (1)) <
0 otherwise 2

(1), which implies A (ty, (1)) < ty (1) = My ®ty, (I,). Thus h(ty, (1)) <
[M;®ty, (I2)]1N My =ty, (I). Therefore t), (1) is fully invariant suomodule of M,

and so M, is strongly t-Baer.

Let N be a direct summand of M,say M = K@®N, hence Z,(M) = Z,(K)®Z,(N)
and as M is strongly t-Baer, Z,(M) <® M. It follows that. Z,(M)®W = M. Since
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K=MnK=(Z,(M)®W)NK = (Z,(K)®Z,(N)®W)NnK, so that K=
(Z,(K)®[Z,(N)BW) nK], let U= (Z,(N)®W) nK, hence Z,(K) <® K, and
K=Z,K)® USet L =2,(K)®N. As M = K®N, so M = (Z,(K)®U)DN ,
(Z,(K)®N)DU = LdU then L <® M. Also, L>7Z,(K),L =N = Z,(N).
So L > Z,(K)®Z,(N) = Z,(M).

But Z,(L) = Z5(Z,(K))®Z,(N)=Z,(K)®Z,(N) = Z,(M) By using Theorem 1.5.8,
we can show that L has strongly summand intersection property for submodules
which contains Z,(L) = Z,(M) .Now, let{y € End (L), @ = Yy, , where T, is
canonical projection onto L. ¢~ (Z,(M)) = 1,1 Y~1(Z,(M)). Since M is strongly
t-Baer, then , ¢ 1 (Z,(M)) <® M and fully invariant in M. Say ,M=
@t (Z,(M))®M', hence L= ¢! (Z,(M)Dm,(M).Thusy! (Z,(M)) <® L.
Also, since =1 (Z,(M)) is fully invariant in M, hence by Lemma(l.2.6)
Y1 (Z,(M)) is fully invariant in L. Thus L is strongly t-Baer and so (by first

paragraph), we have N is strongly t-Baer. o

Recall that “a module M is called t-cononsingular if every submodule N of M
with ts(N) = ts(M) implies N <,.,; M"[6].” M is strongly t-cononsingular if every
submodule N of M,ts(N) = tg(M) implies N <., M"[6]. Asgari establish a close
connection between t-extending modules and t-Baer modules; in fact, a module is t-

extending if and only if it is t-Baer and t-cononsingular.[6,Proposition 3.9]

In the following Theorem, we establish connection between the strongly t-extending
and strongly t-Baer modules. Also this Theorem is a generalization of Theorem 3.9
in [6]

Theorem (1.5.12): The following statements are equivalent for a module M.

(1) M is strongly t-extending;
(2) M is strongly t-Baer and t-cononsingular;

(3) M strongly t-Baer and C = t,,ts(C) for every t-closed submodule C.
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(4) M is strongly t-Baer and for any t-closed submodule C of M if t;(M) =
ts(C),then C = M.

Proof: (1)=(2) Since M is strongly t-extending, M = Z,(M)®M' where M’ is
strongly extending by Theorem1.3.11(4). But M’ is nonsingular and strongly
extending implies M’ is strongly Baer by Proposition (1.5.9). Thus by Theorem
(1.5.10), M is strongly t-Baer. Also M is t-cononsingular follows by the same proof
of [6, Theorem (3.9) (1—2))].

(1)=(3) By the same proof of (1)=(2) M is strongly t-Baer. As M is t-extending,
then C = t)ts(C) for every t-closed submodule C of M follows [6, Theorem (3.9)
(1-3)]

(2)=(4) For any t-closed submodule C of M if t4(C) = tg(M),then C <,.s M (by

definition of t-cononsingular). But C is t-closed, so C =M.
(3)=(4) Let C be a t-closed submodule of M , such that t5(C) = ts(M).
Hence tyts(C) = tyts(M), thus C = M.

(4)=(1) By Theorem 1.3.11 to prove M is strongly t-extending, it suffices to show
that any submodule which contains Z,(M) is essential in stable direct summand of
M.Let N be a such a submodule . Since M strongly t-Baer,t,, (ts(N)) <® M and
fully invariant in M, so t,(ts(N)) = eM for some idempotent e € S. But N <
tu(ts(N)) = eM <® M and t,(ts(N)) fully invariant in M. Moreover N <,s, eM
by the same proof of [6, Theorem (3.9) (4—1)] .Thus N is essential in stable direct

summand. o
Corollary (1.5.13): The following statements are equivalent for a module M:

(1) M is nonsingular strongly extending;
(2) M is strongly t-Baer and strongly t-cononsingular;

(3) M is strongly t-Baer and C = t,t5(C) for every closed submodule C of M;
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(4) M is strongly t-Baer and for any closed submodule C of M,ts(C) =
ts(M),then C = M.

Proof: (1) = (2) is obvious by Remark 1.3.7 and Theorem 1.5.12.

(1)= (3) Since condition (1) implies M is strongly t-extending. Then M is strongly t-
Baer and C =tyts(C) for every t-closed submodule C by (Theorem
(1.5.12)(1)—(3)). As M is nonsingular, every closed is t-closed. Hence the result is

obtained.

(2= (4) Let C be any closed submodule. If t5(C) = tg(M) then C <., M. Hence
C =M.

(3)= (4) It follows by the same proof (Theorem (1.5.12) (3)—(4)).

(4)= (1) By Theorem 1.5.8, M = Z,(M)®M' for some M' < M. As M' <® M, so
M’ is closed in M. But ts(M') = ts(M) since if ¢ € tg(M'"), then (M') < Z,(M)
, S0 (M) = p(Z;(M)®M") = ¢(Z,(M)) + p(M") < Z,(M). Hence ts(M') <
ts(M) . Now let ¢ € tg(M) , (M) < Z,(M) so that o(Z,(M)®OM") < Z,(M).
And this implies  @(Z,(M)) + o(M") < Z,(M). Thus @(M') < Z,(M), hence
@ Ets(M"). Then tg(M) <ts(M") and so ts(M') =ts(M) . It follows that
M = M',by condition (4) and, hence M is nonsingular which implies every closed
submodule is t-closed. Thus M is strongly t-Baer and for any t-closed submodule C
of, if ts(C) = tg(M), then € = M. Hence by (Theorem (1.5.12) (4)—(1)), M is

strongly t-extending. Thus it is strongly extending. o
Now we introduce the following

Definition (1.5.14): Aring R is called right strongly X' — t — extending if every

free R- module is strongly t-extending.

Example (1.5.15): Let R be a right Z,-torsion ring, that is Z,(Rgz) = R. For any
module M, Z,(M) = MZ,(Rg). Hence Z,(M) = M, that is M is Z,-torsion, hence
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by Remarks and Examples 1.2.2(2), M is strongly t-semisimple and by Theorem(
1.3.5), M is strongly t- extending and so every free R-module is strongly t-extending.

Thus R is a right strongly t-extending.
Theorem (1.5.16): The following statements are equivalent for a ring R.

(1) R is aright strongly 2 — t — extending ;

(2) Every nonsingular R-module is projective and strongly t-extending;

(3) For every R-module M, there exists a projective submodule M’ of M,
withM = Z,(M)®M’, M'is strongly t-extending.

(4) Every R-module is strongly t-Baer;

(5) Every R-module is strongly t-extending;

(6) Every projective R-module is strongly t-extending;

(7) Every nonsingular R-module is strongly t-Baer and Z,(Rp) <® R;

(8) Every nonsingular R-module is strongly extending and Z,(Rz) <® R.

Proof: (1) = (2) Let M be a nonsingular R-module.There exists a free R-module F
and K < F, such that M = g Hence g is nonsingular and so K is t-closed. Then by
(Theorem (1.3.11) (2)). K is a fully invariant direct summand of F. Hence F =
K@W. But F is projective, implies W is projective. AsW z%z M, so M is

projective and by Proposition (1.3.14), W is strongly t-extending. Thus M is strongly

t-extending.

(2) = (3) Let M be an R-module. Then MM) IS nonsingular, and hence by

2

hypothesis it is projective and strongly t-extending. Since % IS projective,
2

M = Z,(M)®M'and hence M' = % is projective . Also, M’ is  nonsingular
2

(since M" =~ % is nonsingular) . So M’ is strongly t-extending by hypothesis.
2
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(3) = (2) Let M be a nonsingular R-module. By condition (3), M = Z,(M)®M', M’
is projective and strongly t-extending. As M is nonsingular, Z,(M) = 0 and so

M = M' is projective, strongly t-extending.

(3) = (4) Let M be an R-module. ThenM = Z,(M)@®M', where M’ is strongly t-
extending and M’ is projective, so M’ is strongly extending (since
M’ is nonsingular). But M’ is nonsingular and strongly extending, implies M’ is

strongly Baer by Proposition (1.5.9).Thus M is strongly t-Baer by Theorem (1.5.8)
().

(4) = (5) Let M be an R-module, let K < M. Define ¢:M®%—> M@% by
p(m,m’' + K) = (0,m + K). Since Mea% is strongly t-Baer,p~1(Z, (Mea %)) is a
fully invariant direct summand in Mea% by Theorem 1.5.8(3). But Z, (Mea %) =
Z,(M)BZ; (%). Put Z; (32) = 2. We can show that ¢=*[(Z,(M)DZ, (%)]:Klea%
as follows: let (m,m;+K)€ ¢ H(Z,(M)D (%)] where m,m; € M
p(m,my+k)= (0,m + k) € Z,(M)®- and hence m € K;. Thus (m,m;+k)e

M

K@, thatis ¢~ [(Z, (M) D, (%)] < K@% e, (I)

Conversely, let (m, m,+k)€e Klea% where m € K, ,my; € M, ¢(m, m;+k)=(0,m +
K) €Z,(M) @2 =Z,(M)®Z, (%) Thus (m,my+K) € o 2 [(Z,(M)BZ ()]
Then K@% < @ [(Z,(M)®Zy (F)] covoovriaen () . By(,(I), we get
go‘l[(Zz(M)GBZZ (%)] = Klea%. It follows that Kl@% Is a fully invariant direct

summand of MEB%. So that (Kleag)@W:M@% for some W < MEB%,
hence K; <® M. To prove K, is fully invariant in M. Let f:M—>M. Define
hM@%aM@%byh(x)={f(x) ifxeEM

0 otherwise
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h(Klea%) QK&B% ,since KﬂB% is fully invariant in M@%. But h(Kl@%) =
f(Ky)< M. Thus f(K;)E€ K;, that is K; is a fully invariant submodule of M and
hence by Theorem(1.3.11)(2), M is strongly t-extending.

(5) = (6) Itis clear.

(7) = (8) Let K be a closed submodule of M where, M is nonsingular, so K is a t-

closed and % IS nonsingular. Since M,% are nonsingular, then MEB% Is nonsingular,
S0 by hypothesis, MEB% Is strongly t-Baer. Then by similar proof (4) — (5), M is

strongly t-extending.

(8) = (1) Let F be a free R-module. Then F = @;c\R; ,i €A, R; = R foreachi €A,
so that Z,(F) =Z,(®iepR; = ®iepZ2(R;) by  Proposition  1.1.13.

Since Z,(RR)<® R, so Z,(F)<® F. Hence F =Z,(F)®W, hence W is
F
Z(F)

strongly t-extending by Theorem 1.3.11(4—1)

nonsingular since W =~ By condition (8), W is strongly extending. Thus F is

(6) = (1) Let F be a free R-module. Then F is projective, hence by condition (6), F
Is strongly t-extending. Thus R is a right strongly X' — t — extending.

(4) = (7) By condition (4), every R-module is strongly t-Baer, hence every R-
module is t-Baer by Remarks and Examples 1.5.5(2). Then by [6, Theorem (3.12)
(4) — (7)], every nonsingular R-module is Baer and Z,(Rg) is a direct summand of
R. But by condition, every R-module is strongly t-Baer. Thus every R-module is

strongly t-Baer and Z,(Rg) is a direct summand of R. o
Corollary (1.5.17): The following statements are equivalent for a nonsingular ring R.

(1) R is aright strongly X-t-extending ring,

(2) Every nonsingular R-module is projective and strongly t-extending;
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(3)For every R-module M,there a projective submodule M'of M with M =
Z,(M)®M' and M’ is strongly t-extending;

(4) Every R-module is strongly t-Baer;

(5) Every R-module is strongly t-extending;

(6) Every projective -module is strongly t-extending;

(7) Every nonsingular R-module is strongly Baer;

(8) Every nonsingular R-module is strongly extending.
Corollary (1.5.18): Let R be a ring consider the following statements.

(1) R is right strongly Z-t-extending and all Z,-torsion modules are projective and
strongly t-extending
(2) R is semisimple;

(3) Every R-module is t-semisimple.
Then (1) = (2)=(3), and (3)=(2) if R is nonsingular.

Proof: (1)= (2) Let M be an R-module , if M is nonsingular , then M is projective
by Theorem 1.5.16(1—2). If M is Z,-torsion, then M is projective by hypothesis.

Now if M is neither nonsingular nor Z,-torsion, then

M = Z,(M)®M’', where M’ is projective and strongly t-extending by Theorem
1.5.16(1—>3). But Z,(M)=2,(Z,(M)), so Z,(M) is Z,-torsion, hence Z,(M) is
projective. Then M = Z,(M)@®M’' is projective. Thus all R-modules are projective,
and so R is semisimple by [25, Corollary 8.2.2(e), P.196].

(2)=(3) It follows by Proposition 1.4.4.
(3)=(2) It follows by Remarks 1.1.45(3). o

Proposition (1.5.19): The following statements are equivalent for aring R.
(1) Ry is strongly t-extending;

(2) Every nonsingular cyclic R-module is projective, strongly t-extending;
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(3) For every cyclic R-module, there is a projective strongly t-extending M’, with
M=Z,(M)® M’
(4) Every cyclic R-module is strongly t-extending;

(5) Every cyclic projective R-module is strongly t-extending.

R
anng(x)

Proof: (1) = (2) Let M = xR be a cyclic nonsingular R-module. Then =M

R
ann(x)

(is nonsingular). But Is nonsingular, implies anng(x) is t-closed. As Ry is

strongly t-extending, anngz(x) is a stable direct summand of R. HenceR =

anng(x)@J, so J is projective. Now M = =~ | hence M is projective. Also J is

anng(x)
a direct summand of strongly t-extending, so it is strongly t-extending. Thus M is

strongly t-extending.

M

(2)= (3) Let M be a cyclic R-module. Then, %00

Is a nonsingular cyclic module.

By condition (2), % IS projective and strongly t-extending, hence M =
2

Z,(MY® M’ , for some M' <M . Thus M’ is nonsingular projective. Also M’ is

strongly t-extending.

(3)=(2) Let M be a nonsingular cyclic, so M = Z,(M)®M’, M’ is nonsingular ,
projective, strongly t-extending by condition (3). Hence M = M'(since Z,(M)
=0).Thus M is projective, strongly t-extending.

(3) = (4) Let M be cyclic R-module. Then M = Z,(M)®M', M’ is projective, and
strongly t-extending. Since M’ is nonsingular, M’ is strongly extending. Hence M is

strongly t-extending by Theorem (1.3.11).
(4) = (5) = (1) are clear. o

Corollary (1.5.20): The following statements are equivalent for a nonsingular ring
R.

(1) Ry is strongly extending (R is strongly t-extending);
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(2) Every nonsingular cyclic R-module is projective strongly extending;

(3) For every cyclic R-module M, there is a projective strongly extending M’ with
M= Z,(M)®M';

(4) Every cyclic R-module is strongly t- extending;

(5) Every cyclic projective R-module is strongly t- extending.
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Introduction

In this chapter we introduce the notions of Fl-semisimple and FI-t-semisimple
modules as generalizations of semisimple modules; also we extend the notion of FI-

t-semisimple in to strongly FI-t-semisimple. This chapter have three sections.

In section one, properties of Fl-semisimple module are studied, we investigate
connection between Fl-semisimple and Fl-extending modules. We also show that

the direct sum of two Fl-semisimple modules is a Fl-semisimple module.

Section two is devoted for studying FI-t-semisimple modules. We obtain
characterizations of Fl-t-semisimple when a module satisfies condition(x), where
(*) means: For an R-module M, a complement of Z,(M) is stable. We also, provide
a connection between FI-t-semisimple M and FI-t-Baer modules, when M satisfies
condition(*). We generalize the property every t-semisimple module is t-extending.

We get every FI-t-semisimple module is FI-t-extending.

In section three we introduce the notion of strongly Fl-t-semisimple. The two
concepts Fl-t-semisimple and strongly FI-t-semisimple modules are coincide when
condition (*) hold. It is shown that every fully invariant submodule of strongly Fl-t-
semisimple inherits the property. A direct sum of two strongly Fl-t-semisimple R-

modules M; and M, is strongly Fl-t-semisimple, if annM; + annM, = R.
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2.1 Fl-semisimple modules

In this section, we present the concept namely Fl-semisimple modules as a
generalization of semisimple modules. Many properties about this concept, and

connections between it and other related concepts are introduced.

Definition (2.1.1): An R-module M is called Fl-semisimple if for each fully

invariant submodule N of M, there exists K <® M such that K <, N.
The following is a characterization of FI-semisimple modules.

Proposition (2.1.2): An R-module M is Fl-semisimple if and only if every fully

invariant submodule of M is a direct summand.

Proof: = Let N be a fully invariant suomodule of M, so there exists K <® M such
that K <., N. But K <® M implies K is closed in M, so it has no proper essential

extension in M. Thus K = N andso N <® M.

& Let N be a fully invariant submodule of M. By hypothesis N <® M. But

N <, Nand N <® M. Thus M is Fl-semisimple. o
Remarks and Examples (2.1.3):

(1) Itis clear that every semisimple module is FI-semisimple, but the converse is
not true in general, for example: The Z-module Q has only two fully invariant
submodules which are (0), Q. Hence Q is FlI-semisimple, but it is not semisimple.
(2) t-semisimple module does not imply Fl-semisimple in general for example
Zy, as Z-module is t-semisimple but it is not Fl-semisimple. Also Fl-semisimple
module does not imply t-semisimple, for example Q as Z-module is FI-semisimple
and it is not t-semisimple.

(3) If M is aduo module (hence if M is a multiplication module), then M is a

semisimple module if and only if M is Fl-semisimple. In particular the Z-
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modules Z, Z,, Z,, are not Fl-semisimple. Also, every commutative ring R is
semisimple if and only if R is Fl-semisimple.

(4) A fully invariant submodule of FI-semisimple module is FI-semisimple.

Proof: Let N be a fully invariant submodule of M and M is a FI-semisimple module.
Let U be a fully invariant submodule of N, hence U is a fully invariant in M by
Proposition (1.1.38). It follows that U <® M. Thus U®U’' = M for some U’ < M
and so N =(U®U’) NN = U®(U'NN) by modular law. ThenU <® N. Thus N is
Fl-semisimple by Proposition (2.1.2). o

(5) Every Fl-semisimple module M is Fl-extending. Where” an R-module M is
called Fl-extending if every fully invariant submodule is essential in a direct

summand "[9].

Proof: Let N be a fully invariant submodule ofM. As M is FI-
semisimple, N <® M. But N <., N. So that M is Fl-extending. o

(6) If M and N are isomorphic R-modules, then M is Fl-semisimple if and only if
N is Fl-semisimple.
(7) If f:M—M" be an epimorophism and M’is Fl-semisimple, then it is not

necessary that M is Fl-semisimple. For example T[:Z—)%EZ@ Zgis Fl-

semisimple, but Z is not.

Proposition (2.1.4): Let M be a Fl-semisimple and N is fully invariant in M then %

is a FI-semisimple.

Proof: Let % be a fully invariant submodule of % Since N is a fully invariant

submodule of M. Then W is a fully invariant submodule of M by Lemma (1.1.40).
But M is Fl-semisimple, soW <® M. Then W®K = M for some K < M. This

K+N

. . w M w M M . .
implies —@® —— = —. Thus — <® = and — is Fl-semisimple. o
N N N N N N
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Corollary (2.1.5): Let f:M—>M' be an R- epimorphism and Kerf is a fully
invariant submodule of M. If M is a Fl-semisimple R-module, then M’ is a Fl-

semisimple.

Proof: Since f: M—>M' epimorphism, 2~ M. But—=isa Fl-semisimple by
Kerf Kerf

proposition (2.1.4), hence M’ is a Fl-semisimple by Remarks and Examples 2.1.3(6).

O

M
Z> (M)

and M = Z,(M)@®M' where M’ is a nonsingular Fl-semisimple.

Corollary (2.1.6): Let M be a FlI-semisimple R-module. Then Is Fl-semisimple

Proof: As Z,(M) is a fully invariant submodule of M , then is FlI-semisimple

M
Z(M)
module by Proposition (2.1.4). Also, Z,(M) is a fully invariant in M
implies Z,(M) <® M, by Proposition (2.1.2). Thus M = Z,(M)®M' for some

M <M. ButM' =~

, S0 M' is nonsingular Fl-semisimple. o
Z(M)

Next the following proposition concerned with the direct sum of Fl-semisimple

modules

Proposition (2.1.7): Let M = M, &M, , where M;,M, < M. If M; and M, are FI-
semisimple, then M is Fl-semisimple and the converse hold if M, and M, are fully

invariant submodules of M.

Proof: = Let N be a fully invariant submodule ofM. Then
N=(Nn M)®NNM,) and, (NNM; ) ,(NNM,) are fully invariant
submodules of M; and M, respectively by Proposition 1.1.39(ii). Put N;=N n M;,
N, = NNM,. Hence N; <® M;, N, <® M,, since M; and M, are Fl-semisimple.

It follows that N = N;@®N, <® M and so M is Fl-semisimple.
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< Since M; is a fully invariant submodule of M, Mﬁ IS Fl-semisimple by

1

Proposition (2.1.4). But Mﬂ ~ M,, hence M, is Fl-semisimple. Similarly, M, is FI-
1

semisimple. o

2.2 Fl-t-semisimple Modules

In this section a generalization of t-semisimple modules namely, FI-t-semisimple
which is also a generalization of semisimple modules is introduced and studied.

Several properties concerned with this concept are given.

Definition (2.2.1): An R-module M is called Fl-t-semisimple if for each fully

invariant suomodule N of M, there exists K <® M such that K <. N.
Remarks and Examples (2.2.2):

(1) Itis clear that every t-semisimple module is Fl-t-semisimple, but the converse
IS not true, for example Q as Z-module is not t-semisimple and clearly it is FI-t-
semisimple.

(2) Itis clear that every Fl-semisimple module is FI-t-semisimple, hence each of
the Z-module Q,Q0®Z,,Z,®Z, is Fl-t-semisimple, since each of them is FlI-
semisimple module.

(3)  The converse of part (2) is not true in general, for example, Z,, as a Z-
module is a FI-t-semisimple (since it is t-semisimple) but it is not FI-semisimple.

(4) Let M be a nonsingular R-module. Then M is Fl-semisimple if and only if M is
Fl-t-semisimple. In particular, Z as Z-module is not Fl-t-semisimple, also if R =

Z[x], then Ry is not Fl-t-semisimple.
Proof: = It is clear by part (2)

< Let M be a Fl-t-semisimple module and N be a fully invariant submodule of M,

there exists K <® M and K <,,; N. But M is nonsingular implies N is nonsingular
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and hence K <,,s N. But K <® M implies K is a closed submodule of M and so
that K = N. It follows that M is Fl-semisimple by Proposition (2.1.2). o

Thus Remarks 2.2.2 can be illustrated by the following diagrams.

t-Semisimple module => Fl-t-semisimple module

=

% Fl-semisimple module

Proposition (2.2.3): Every fully invariant submodule of FI-t-semisimple module is

Fl-t-semisimple.

Proof: Let N be a fully invariant submodule of a Fl-t-semisimple R-module M. To
prove N is Fl-t-semisimple, let W be a fully invariant submodule of N. Hence W is a
fully invariant submodule of M by Proposition 1.1.38. It follows that there exists
K<® M and K <, W, since M is Fl-t-semisimple. Hence M = K@®C for some
C < M and so that N = K®(CNN), thus K <® N and so that N is FI-t-semisimple.

O

Proposition (2.2.4): Let M = M, &M, where M; < M,M, < M. If M; and M, are
Fl-t-semisimple, then M is a Fl-t-semisimple. The converses hold if ann(M,) +
ann(M,) = R.

Proof:= Let N be a fully invariant submodule of M. Then N = N;®N,, where N;
is fully invariant in M; and N, is fully invariant in M, by Lemma (1.1.39)(ii). Hence,
there exists K; <® M; and K, <® M, such that K; <,.; Ny, K, <,es N,. Hence
K=K ®K,<®M and K=K ®K, <;sN®N,=N by Proposition
1.1.22(2).
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= Since M = M,®M, and ann(M,) + ann(M,) = R, then
M, = Myann(M,),M, = M,ann(M,) and so for each f € End(M), f(M,) =
f(M; ann(My)) = f(Mp)ann(M,) < (M;®M,)ann(M,) that is  f(My) <
Miann(M,) = M,. Similarly f(M,) < M,. Thus M, and M, are fully invariant, and
hence by Proposition (2.2.3), M; and M, are Fl-t-semisimple. o

Let (x) means the following: For an R-module M, a complement of Z,(M) is
stable in M.

Theorem (2.2.5): For an R-module M consider the following statements

(1) M is an Fl-t-semisimple module;
M
(@) Zaom

(3) M=_Z,(M)®M’', where M'is nonsingular, Fl-semisimple, M’ is stable in M;

is a FI-semisimple module;

(4) Every nonsingular fully invariant submodule of M is a direct summand.
(5) Every fully invariant submodule of M which contains Z,(M) is direct

summand.

Then (3) = (5) = (2) and (3) = (1) = (4). (4)= (3) if condition (%) hold and so that
(3)=(1)=(4) (if condition (x) hold).

Proof: (3) = (5) Let N be a fully invariant submodule of M, N 2 Z,(M). Since
M = Z,(M)®M' where M' is FlI-semisimple nonsingular and stable in M. Then N =
NN (Z,(M)®M") =Z,(M)®(NNM"). As N and M’ are fully invariant in M, so
(N nM") is fully invariant in M. Since (NN M') <M’ <® M and N n M’ is fully
invariant in M, then N n M’ is a fully invariant in M’ by Lemma 1.1.40(2).But M’ is
Fl-semisimple, so N n M’ <® M'. It follows that M’ = (N n M")@W, for some
W < M'andsothat M = Z,(M)®[(N N MN®W = [Z,(M)®(N n M)W

=N@®W Therefore N <® M.
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(5)=(2) Let be a fully invariant submodule of . Since Z,(M) is fully

invariant in M, then N is fully invariant in M by Lemma 1.1.40(1).Also N 2
Z,(M), so by condition (5), N <® M. Thus N®K = M for some K < M. it follows

M N K+Z,(M) N
= So that <® and so
Zo(M)  Z(M) & Z,(M) Zy(M) — z(M) z(M)

that Is Fl-semisimple.

(3) = (1) By hypothesis, M = Z,(M)®M', where M’ is nonsingular Fl-semisimple
and M’ is stable in M. Let N be a fully invariant submodule of M, so NN M’ is a
fully invariant submodule in M. Hence by Lemma 1.1.40(2) Nn M’ is a fully

invariant submodule in M’ and so (NnM'") <® M’. It follows that (N N

N (M)

M") <® M. On the other hand, - -
(NnM') — M

<= WhICh Is Z,-torsion, hence,

o) Is Z,-torsion and so that (N N M") <;.s N by Proposition (1.1.17). Thus

(NNM") <® Mand (NN M') <. N which implies that M is Fl-t-semisimple.
(1) = (4) Let N be a nonsingular fully invariant submodule of M. By condition (1)
there exists K <® M such that K <,,; N. As N is nonsingular, K <., N . But
K <® M, implies K is closed in M, hence K = N. Thus N <® M.

(4) = (3) Let M’ be a complement of ZZ(M) Hence Z,(M)®M' <., M, implies

M' <;.c M (by proposition 1.1.17). Hence — is Z,-torsion. This implies M’ i

nonsingular by the same argument of proof of Theorem 1.2.3(4)—(3). By condition
(%), M' is stable, hence M’ <® M by condition (4). Thus M = M'®L, for some

L<Mand so Z,(M)= Z,(M')+ Z,(L). But Z,(M') =0 and L = Mﬂ is Z,-

torsion, so Z,(L) = L. Hence Z,(M) = L. Thus M = M'&®Z,(M) such that M’ is
nonsingular and stable.

To prove M’ is Fl-semisimple, let N be a fully invariant submodule of M'. As M’ is
fully invariant in M, so N is fully invariant in M by Proposition 1.1.38. Also, M’ is
nonsingular, implies N is nonsingular. Thus N is nonsingular fully invariant in M.
Hence by condition (4), N <® M, and so N®W = M, for some W < M. Then
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M = (NOW)NM' = NO(WSM') (sinceN < M', and so N <® M'. Thus M’ is
a Fl-semisimple module. o

By applying Theorem 2.2.5(1=4). If M is a duo (or multiplication) module, then
M is a Fl-t-semisimple implies every nonsingular submodule is a direct summand,
and hence by Theorem 1.1.46, M is t-semisimple. Thus the concepts t-semisimple
and FI-t-semisimple under the class of duo(or multiplication) modules are
equivalent.

Recall that "an R-module M is called Fl-t-extending if every fully invariant t-
closed submodule of M is a direct summand "[9] "an R-module M is called FI-t-
Baer if t),(I) is a direct summand of M for any two-sided ideal I of End(M)
"[9].By Theorem 3.9 in [9] every Fl-t-extending module is FI-t-Baer. we have the
following:

Proposition (2.2.6): Let M be an R-module which satisfies condition (%) .If M is
Fl-t-semisimple, then M is Fl-t-extending.

Proof: By Theorem (2.2.5) (1—5) for each fully invariant submodule N with N 2
Z,(M), N <® M. As every t-closed submodule contains Z,(M),so for each fully
invariant t-closed submodule N of M is a direct summand. Thus M is FI-t-
extending.o

Theorem (2.2.7): Let M be an R-module such that a complement of fully invariant
submodule is fully invariant. If M is an Fl-t-semisimple implies % Is an FI-t-

semisimple, for each fully invariant t-closed submodule C of M.
Proof: By Proposition (2.2.6), M is Fl-t-extending. Hence, any fully invariant t-
closed submodule C is a direct summand. Thus C®C’ = M for some C' < M. C' is

a complement of C and by hypothesis C' is a fully invariant submodule of M. Hence

C' is a FI-t-semisimple by Proposition (2.2.3). But C' = % Is a FI-t-semisimple. o

Proposition (2.2.8): Let M be an R-module such that condition(*) hold. If M is a

Fl-t-semisimple, then N+Z,(M) is closed, for each fully invariant submodule N of
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M. The converse holds if a complement of a fully invariant submodule is fully
invariant.

Proof: = For each fully invariant submodule N of M, N + Z,(M) 2 Z,(M) and it
is fully invariant submodule of M by Lemma 1.1.39(i), so that N + Z,(M) is a
direct summand by Theorem 2.2.5(1=5) and hence N+ Z,(M) is a closed
submodule of M.

< To prove M is a Fl-t-semisimple. Let K be a nonsingular fully invariant
submodule of M. Assume L is a complement of K, then by hypothesis, L is a fully
invariant submodule of M. Thus KL <., M , and K@L is a fully invariant
submodule of M. It follows that (K@L)+Z,(M) <,,c M. But (K®L) + Z,(M) is
a fully invariant submodule containing Z,(M), so that (K®L) + Z,(M) is a direct
summand, so it is closed. Hence (K@®L)+Z,(M =M. But KNnL=0 and
KnZ,(M)=2Z,(K) = (0), since K is nonsingular. Moreover, we can show that
Kn(L+Z,(M)) =0 . Suppose there exists0+x € Kn(L+ Z,(M)), then
x=1l+y, leLyeZ,(M) . Since K is nonsingular Z,(K) =0 and hence,
ann(x) £.es R. But x — 1 =y,50 ann(x — 1) = ann(y) <;.s R.But it is known
that ann(x — 1) = ann(x) Nnann(l). It follows that ann(x) N ann(l) <;.s R,
which implies ann(x) <;s R which is a controduction. Thus (K@ (L + Z,(M)) =
M ,thatis K <® M. Then M is a FI-t-semisimple by Theorem (2.2.5)4—1. o
Proposition (2.2.9): Let M be an R-module such that condition (%) hold. Then M is
Fl-t-semisimple if and only if M has no proper nonzero fully invariant submodule N
containing Z,(M) and N <,,; M.

Proof: = By Theorem 2.2.5(1—5) M is Fl-t-semisimple, implies that for each fully
invariant suomodule N of M containing Z,(M), N <® M. Hence for each proper
nonzero fully invariant suomodule N 2 Z,(M), N %£,.4; M.

< Let M’ be a complement of Z,(M), so that M'®Z,(M) <,,c M. But by
hypothesis, M'is a fully invariant submodule of M and so M'@Z,(M) is a fully

invariant submodule of M .ThusM'@®Z,(M) = M. Hence, M’zZIEIM) is
2
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nonsingular and stable. Let N be a fully invariant submodule of M'. Since M’ is a
fully invariant in M, then N is a fully invariant submodule in M by Lemma 1.1.38.
Hence N + Z,(M) is fully invariant in M . Let K be a complement of N + Z,(M).
Hence (N + Z,(M))®K <., M. But by hypothesis (N + Z,(M))®K = M. We
can show that N®(Z,(M) + K) = M, as follows. Let x € N n (Z,(M) + K). Then
x=a+b forsomeaeZ,(M),beK. Thenx—a=be(N+Z,(M))NK =0,
hence x —a=b =0, and so that x =a € NN Z,(M)=Z,(N) =0. Thus x =0
and Nn (Z,(M)+ K) =0,hence Nd(Z,(M) + K) = M, that is

N<® M. Now M =[N®(Z,(M)+K)]NM' = N®[(Z,(M) + K)NM']. That
isSN <® M'. Hence M’ is Fl-semisimple. Thus by Theorem 2.2.5(3—1), M is FI-t-
semisimple. o

Recall that ” if N and K are submodules in an R-module M. K is called a weak
supplementof N if M = K + Nand K NN « M (the notation « denotes a small
submodule). "[13], where a submodule W of M is called a small submodule of M if
whenever M = W 4+ U , U is a submodule of M implies U = M.
Proposition (2.2.10): Let M be an R-module such that condition (%) hold. If
Rad(M) is Z,-torsion and every nonsingular fully invariant submodule of M has a
weak supplement, then M is Fl-t-semisimple
Proof: Let N be a nonsingular fully invariant submodule of M. As M has weak
supplement there exists a submodule K of M suchthat M = K+ N and K N N <
M. Cleary M = (K + Rad(M)) + N. Now we will show that (K + Rad(M)) n
N = 0.Assume that x € (K + Rad(M)) N N. Then x =y + z where y € K and
z € Rad(M). Since Rad(M) is Z,-torsion, there exists a t-essential right ideal I of
R such that (x —y)I=0. Thus xI =yl S KNN < Rad(M) < Z,(M) since
KNN K M impliesK NN € RadM, also RadM = Z,(RadM) since RadM is Z,-

M

torsion hence RadM € Z,(M). So x + Z,(M) € Z, (3
2

) = 0. It follows that

x€Z,(M)YnN =Z,(N) =0 and this implies that N is a direct summand of M.
Hence by Theorem 2.2.5(4) M is Fl-t-semisimple. o
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Proposition (2.2.11): The following assertions are equivalent for a module M, such

that for any B < M, a complement of Z,(B) is stable in B.

(1) M is Fl-t-semisimple

(2) For each fully invariant submodule N of M, there exists a decomposition
M = K®Lsuchthat K < Nand Lisstablein Mand N N L < Z,(L).

(3) For each fully invariant submodule N of M, N = K@K' such that K is a direct

summand stable and K' is Z,-torsion.

Proof: (1) = (2) Let N be a fully invariant submodule of M. Let K be a complement
of Z,(N) in N. Then K@Z,(N) <.,s N and K is a fully invariant of N by hypothesis .
By proposition (2.2.3) and proposition (2.2.9), K@Z,(N) =N. Let C be a
complement of KPZ,(M), so C is a stable submodule of M and
(K®Z,(M))BC <.cc M. But M is FI-t-semisimple, hence by proposition
(2.2.9), (K®Z,(M))BC =M. PutZ,(M)®C=1L, hence L is a stable inM.

Moreover, N = (K@GL)NN = K@(NNL). But K&Z,(N) = N implies %z Z,(N)
which is Z,-torsion. On other hand, %z N N L,sothat NnLis Z,-torsion. Then

NNL=Z,(NNnL)<Z,(L). Thus M = K@®L is a desired decompodition.

(2) = (3) Let N be a fully invariant submodule of M. By condition (2) , M = K&®L
where K < N and L is stable in M and NN L < Z,(L). Hence N = (K@®L)NN =

K®(LNN).Put K' =NnNL,sothat N = K®K’, and % ~ K' = N n L which is Z,-

torsion. Also K stable in M, since K is a complement of L in M.

(3) = (1) Let N be a fully invariant submodule of M. By condition (3), N = K&K,

where K is stable direct summand in M and K'is Z,-torsion. Now K < Nand

% ~ K' which is Z,-torsion. Hence K <;.s N and so that M is FI-t-semisimple. o
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Proposition (2.2.12): Let M be an R-module such that condition (*) hold. Then the

following statements are equivalent.

(1) M is Fl-t-semisimple.

(2) M is Fl-t-extending and N = tyts(N) for every fully invariant submodule N
of M contain Z,(M).

(3) M is FI-t-Baer and N = t),ts(N) for every fully invariant suomodule N of M
contain Z,(M).

Proof: (1) = (2) M is Fl-t-semisimple implies M is Fl-t-extending by Proposition
(2.2.6). Now, let N be a fully invariant submodule of M and N 2 Z,(M). Hence
N <® M by Proposition 2.2.5(1=>5). This implies, M = N@®N' for some N' < M.
It is obvious, that N < t,,ts(N). Let ' be the canonical projection on N’, that is
"M —>N <NBN',sonr' €S, n'(N)=0<2Z,(M),sont" € tg(N).Ifme
tyts(N), then nw'(m) € Z,(M) < N. Hence n'(m) =0 and so m € N. Thus
N = tyts(N)

(2) = (3) It is obvious, since every Fl-t-extending is Fl-t- Baer, see [9, Theorem
3.9].

(3) =(1) Since M is FI-t-Baer, Z,(M) = t,,(S) is a direct summand and then
M =Z,(M)®M’', where M’ is nonsingular [9, Theorem 3.2]. Hence M’ is a
complement of Z,(M), so it is stable. Now, let N’ be a fully invariant submodule of
M’, so that N’ is a fully invariant submodule of M. Put N = Z,(M)@®N'. Then N is
a fully invariant submodule of M containing Z,(M). S0 N = t,ts(N) by hypothesis.
On the other hand, M is FI-t-Baer and ts(N) is a two sided ideal of S, hence
tyts(N) <® M. Thus N <® M. It follows that M = N@®W for some W < M. Then
M =Z,(M)®N'@W. By hypothesis complement of Z,(M) is stable so by [1,
Theorem 4.8, p31], N'@®@W = M’ and hence N’ <® M’, and this implies M’ is FI-

semisimple. Therefore M is Fl-t-t-semisimple by Proposition (2.2.5). o
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2.3 Strongly FI-t-semisimple Modules

In this section, we extend the notion of FI-t-semisimple into strongly FI-t-
semisimple. Many properties about this concept, and many connections between it

and other related concepts are presented.

Definition (2.3.1): An R-module M is called strongly Fl-t-semisimple if for each
fully invariant submodule N of M, there exists a fully invariant direct summand K
such that K <;.s N.

Remarks and Examples (2.3.2):

(1) Every strongly Fl-t-semisimple is FlI-t-semisimple. We claim that the converse
IS not true but we have no example to ensure this.
(2) Every strongly t-semisimple is strongly Fl-t-semisimple but the converses is
not true in general as following example shows:
Q as Z-module is strongly Fl-t-semisimple, since Q has only two fully invariant
submodules (0), Q. But Q is not strongly t-semisimple.
(3) Every Fl-semisimple module is strongly Fl-t-semisimple.
Proof: Let N be a fully invariant submodule of N. Then N <® M, since M is a
Fl-semisimple . But N <,.s N, hence M is strongly Fl-t-semisimple. o

(4) Every Z,-torsion M is strongly Fl-t-semisimple.

Proof: Let N be a Fl-submodule of M, (0) <® M, ((0)<s N since (0) + Z,(N) =
N <55 N).

(5) Let M be a duo (or multiplication) module then M is Fl-t-semisimple if and

only if M is strongly FI-t-semisimple

Proposition (2.3.3): Let M be an R-module with the property, a complement of any

submodule of M is fully invariant. The following statements are equivalent.

(1) M is strongly Fl-t-semisimple;
(2) M is Fl-t-semisimple;

89



Chapter Two FIl-semisimple Modules, FI-t-semisimple Modules and Strongly FI-t-semisimple Modules

Proof: (1) = (2) Itis clear.

(2= (1) Let N be a fully invariant submodule of M. Since M is FI-t-semisimple,
there exists K <® M and K <,,; N. Hence M = K@®W for some W < M. One can
check easily that K is a complement of W. But by hypothesis K is fully invariant.

Thus M is strongly Fl-t-semisimple. o

The following result follows by combining Proposition (2.3.3) and Proposition
(2.2.9).

Proposition (2.3.4): Let M be an R-module such that a complement of any

submodule is fully invariant. Then the following are equivalent:

(1) M is strongly Fl-t-semisimple;

(2) M is Fl-t-semisimple;

(3) M has no proper nonzero fully invariant submodule N containg Z,(M) and
N <. M.

Proposition (2.3.5): A fully invariant direct summand N of a strongly FI-t-

semisimple is strongly FlI-t-semisimple.

Proof: Let W be a fully invariant submodule of N. Then Wis a fully invariant
submodule of M by Proposition (1.1.38). Since M is strongly Fl-t-semisimple, there
exists K <® M, K is a fully invariant submodule of M and K <,, W < N. But
K <® M implies M = K@®A for some A < M and this implies N = K@®(A N N);
that is K <® N. Beside this by Lemma (1.2.6), K is a fully invariant submodule of
N. Thus N is strongly Fl-t-semisimple.

Remark (2.3.6): Q as Z-module is strongly Fl-t-semisimple, Z < Q. But Z is not
strongly Fl-t-semisimple. However and Z «® Q and Z is not fully invariant

submodule of Q.

The following three results follow by Proposition 2.3.5.
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Corollary (2.3.7): Every nonsingular fully invariant submodule of strongly FI-t-

semisimple is strongly FI-t-semisimple.

Proof: Let N be a nonsingular fully invariant submodule of M, where M is strongly
Fl-t-semisimple. Hence M is Fl-t-semisimple by Remarks and Examples 2.3.2(1)
and then by Theorem 2.2.5(1—4) N is a direct summand of M. Thus N is strongly
Fl-t-semisimple by Proposition (2.3.5). o

Corollary (2.3.8): For an R-module M which satisfies (%), if M is strongly FI-t-
semisimple then every fully invariant submodule N of M such that N 2 Z,(M), is

strongly FI-t-semisimple,.

Proof. Since M is strongly FI-t-semisimple, M is a FI-t-semisimple. Hence by
Proposition 2.2.5(1=5), N is a direct summand and then by Proposition (2.3.5), N is

strongly FI-t-semisimple. o

Corollary (2.3.9): For any strongly FI-t-semisimple module M which satisfies

condition(x), Z,(M) is strongly Fl-t-semisimple.
Proof: It follows directly by Theorem 2.2.5(1—5) and Proposition (2.3.5). o

Proposition (2.3.10): Let M be an R-module which satisfies (x). If M is strongly

Fl-t-semisimple, then Z?M) Is Fl-semisimple, and hence it is strongly FI-t-
2
semisimple.
Proof: Let — be a fully invariant submodule of u . Then L is a fully invariant
Z(M) Z(M)

submodule in M by Lemma 1.1.40.As M is strongly Fl-t-semisimple, M is FI-t-

semisimple and hence by Theorem 2.2.5(1—-2), % Is Fl-semisimple. o
2
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Theorem (2.3.11): Let M = M, @M, where M, and M, are submodules of M such
that annM, @annM, = R. Then M is strongly Fl-t-semisimple if and only if M; and

M, are strongly FI-t-semisimple.

Proof: = Let N be a fully invariant submodule of M. Then N = (NN
M;)®(NNM,) and N n My, N n M, are fully invariant in M;, M, respectively by
Lemma 1.1.39(iii) Put Ny = N nM;, N, = N n M,. Hence there exist K,, K, are
fully invariant direct summands in M;and M, respectively and K; <;.s N; ,
K, <(es Nysince M;and M, are strongly FI-t-semisimple. It follows easily
that K, ®K, <® M and by Corollary 1.1.22(2) K;®K, <;.s Ny®N, = N. To show
that K, ®K, IS a fully invariant in M. Let

B EndM, Hom(M,, M,
QEEndM_(Hom(Ml,MZ) EndM, ) But by Lemma (1.2.8),
Hom (M{,M,) = 0 , Hom(M,,M,) = 0. It follows that 8 = (061 0?) for some
2

a, € EndM; and a, € EndM,. Thus 6(K,®K,)= a;(K;)®a,(K,). But a;(K;) <
K;, a,(K,) < K, since K; and K, are fully invariant in M; and M, respectively.

Thus K;®K, is fully invariant in M and so M is strongly Fl-t-semisimple.

< Since M = M;®M, and ann(M,)@ann(M,) = R, then M; = M,ann(M,) and
M, = Myann(M,). Hence for any f € End(M), f(M,) < M, f(M,) < M,, that is
M; and M, are fully invariant in M. Then by Proposition 2.3.5, M, and M, are

strongly Fl-t-semisimple. o
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Chapter Three Purely semisimple Modules, purely t-semisimple Modules and Strongly Purely t-semisimple Modules

Introduction

Our goals in this chapter are generalizing semisimple modules into purely
semisimple, purely t-semisimple modules and extending the concept t-semisimple

modules into strongly purely t-semisimple.

In section one many basic properties and examples of purely semisimple modules

are introduced.

In section two purely t-semisimple modules is presented. It is clear that t-
semisimple module implies purely t-semisimple but not conversely. We generalize
many properties of t-semisimple modules into purely t-semisimple modules. Also,
we have every purely t-semisimple module is purely t-extending if M satisfies that a

complement of Z, (M) is a pure submodule.

In section three, the property which is mentioned in chapter one: Every t-
semisimple module is t-Baer, led us to introduce the concept of purely t-Baer
module. So we study this class of modules and we prove that every purely t-
extending is purely t-Baer. Also, every purely t-semisimple module M such that a

complement Z, (M) is pure is purely t-Baer.

In section four, we present and study the concept of strongly purely t-semisimple
modules as an extension of purely t-semisimple and as a generalization of strongly t-

semisimple modules.

In section five, the result in chapter one every strongly t-semisimple is strongly t-
Baer, led us to define and study the concept of strongly purely t-Baer modules. We
prove that: For an R-module M such that a complement of Z,(M) is pure

submodule. If M is strongly purely t-semisimple, then M is strongly purely t-Baer.
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3.1purely semisimple modules

In this section we define and study purely semisimple as a generalization of

semisimple modules. As well as, we study many properties related with this concept.

Definition (3.1.1): An R-module M is called purely semisimple if for each pure

submodule N of M, there exists K <® M suchthat K <, N.

Proposition (3.1.2): An R-module M is purely semisimple if and only if every pure

submodule is a direct summand.

Proof:= Let N be a pure submodule of M, so there exists K <® M such that

K <, N.But K <® M implies K is closed in M. Hence K = N and so K is a direct

summand.

< Let N be a pure submodule. Since N <® M and N <., N, then M is purely

semisimple. o
Remarks and Examples (3.1.3):

(1) It is clear that every semisimple module is purely semisimple, but the
converse is not hold in general for example : The Z-module M = Zg®Z, is not
semisimple, however it is purely semisimple since the only pure submodules of M
are N, = Zg®0, N,=(0®Z,, N;=<(1, 1)>, N,=<(41)> N;=<
(0, 0)>, Ny = Zg®Z, and each of them is a direct summand of M , since N;®N, =
M,N;®N, =M, N,HN, =M, N:DM = M and Ny® < (0, 0)>= M.

Also, each of Z-modulesZ,Q,Zp~ are purely semisimple but they aren’t
semisimple.

(2) Let M be a regular module (every submodule of M is pure). Then M is purely
semisimple if and only if M is semisimple.

(3) A pure submodule of purely semisimple module M is purely semisimple.
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Proof: Let N be a pure submodule of M. Let K be a pure submodule of N, hence K
is pure in M . Since M is purely semisimple K <® M so that K@K’ = M for some
K' <M, and hence N = K&(K' nN) . Thus K <® N and N is purely semisimple.

O
(4) Let M be a purely semisimple. Then M is purely extending if and only if M is

Extending, where”an R-module is called purely extending if for each N < M, there
exists pure submodule K of M such that N <., K" [14]. Equivalently "M is purely

extending if every closed is pure”.
Proof: <= It is clear

= Let N < M. As M is purely extending, there exists a pure submodule K in M such
that N <, K. But M is purely semisimple, K <® M. Then N <, K <® M and

S0 M is extending. o

(5) Every pure simple module is purely semisimple, where ” an R-module is pure
simple if it has only two pure submodules (0), M "[2].

(6) Every Noetherain projective R-module is purely semisimple.

Proof: By [2, Proposition 2.11, p.63], every pure submodule is a direct summand, of

M. Hence M is purely semisimple. o

In particular M = Z&Z as Z-module is Notherain projective, so M is purely

semisimple.
(7) If M is divisible over a PID, then M is purely semisimple.

Proof: By [2, Proposition 2.7, P.61], every pure submodule of M is a direct

summand that is M is purely semisimple. o

As examples Q and % as Z-module are divisible module over a PID Z, so that both

of them are purely semisimple.
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(8) If M is prime injective, then M is purely semisimple.
Proof: It follows by applying [2, Proposition 2.7, p.61].

(9) Let M and M’ be two isomorphic R-modules.Then M is purely semisimple if

and only if M is purely semisimple.

Proof: = Since M =~ M’, there exists f: M ~— M’ such that f is an isomorphism.
Let W be a pure submodule of M’. Then W = f(N) for some N < M. It follows that
N isapure in M and hence N <® M, that is N@®N,; = M for some N; < M. Then
f(N®N,) = f(M) = M'. This implies W®f(N,) = M’', W <® M’ and M’ is

purely semisimple.
< The converse is similar.o

Proposition (3.1.4): Let N be a pure submodule of a purely semisimple module M.

Then % Is purely semisimple.

Proof: Let % be a pure submodule of % As N ispurein M, L is pure in M. Hence

W+N

L <® M .Thatis LW = M for some W < M. It follows that %@ N

= ﬂ. Thus
N

M . . -
~ s purely semisimple. o

Corollary (3.1.5): Let f: M—M' be an epiomorphism and Ker(f) is pure in M. If
M is purely semisimple, then M’ is purely semisimple.

M M
Ker(f) Ker(f)

by Proposition (3.1.4). Hence M'is purely semisimple by Remarks and Examples
3.1.3(9). o

~ M’ by the 1% fundamental theorem. But

Proof:

is purely semisimple

Proposition (3.1.6): If every pure submodule of M which contains Z,(M) is a direct
M

summand, and Z, (M) is pure then X

IS purely semisimple.
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N M
be a pure submodule of
zon ° 4P (1)

with N 2 Z,(M). By hypothesis, N is a direct summand of M, and so NGW=M for

some W < M. It follows that — Wiz _ _M that is —— <® Y and
- Zz(M)Ga Z(M) Z,(M) Zo,(M) T Zy(M)

Proof: Let . Hence N is a pure submodule in M

M . ..
——is purely semisimple. o
700 purely P

Proposition (3.1.7): LetM = M;®M,, where M;,M, <M and annM; +
annM, = R. Then M is purely semisimple if and only if M; and M, are purely

semisimple.

Proof: < let N be a pure submodule of M. Then N = N;®N,, N; < M;, N, <
M,[1,Proposition 4.2,P.28]. Hence N; is pure in M;, N, is pure in M,. Which
implies N; <® M;, N, <® M,. Thus N = N,®N, <® M.

=Since M; <® M and M, <® M, then M, and M, are pure in M. Hence M; and M,

are purely semisimple by Remarks and Examples 3.1.3(3). o

Proposition (3.1.8): Let M = @;¢;M; where M; < M for each i € I. If every pure
submodule of M is fully invariant. Then M is purely semisimple if and only if M; is

purely semisimple, for all i € I.
Proof:= It follows by Remarks and Examples 3.1.3(3).

< Let N be a pure submodule of M, by hypothesis N is a fully invariant submodule
of M. Then N = @,¢;N; where N; = N n M; for each i € I by Lemma 1.1.39(ii).
Hence N; is pure in M; for each i € I .As M; is purely semisimple, N; <® M; for
each i €1. It follows that N = @;N; <® @®;;M; = M. Thus M is purely

semisimple. o
Now we introduce the following

Definition (3.1.9): Let M and N be R-modules. M is called N-purely projective if

every homomorphism f: M— % where K is a pure submodule of N,there exists
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g € Hom(M, N) such that = o g = f, where m is the natural epiomorphism from N

in to % , that is the digram is commutative.

NﬁN/K

M is called purely projective if M is N-purely projective for each R-module. M is

called self purely projective if M is M-purely projective.

Theorem (3.1.10): The following statements are equivalent for an R-module M.
(1) M is purely semisimple.

(2) Every R-module is M-purely projective.

M . . .
(3) For each pure submodule K of M , — s M-purely projective.

Proof: (1) = (2) Let M’ be an R-module, let N be a pure submodule of M, and let
f € Hom(M’,%) and let n:M—»% be the natural epiomorphism . By condition (1)
M is purely semisimple, so N <® M; that is N@W = M for some W < M. Hence
M

=W which implies that there exists an isomorphism w:%aw. Set 9 = jyf

where j: W—>M be the inclusion mapping. Then o9 = f since for eachm' € M’,
let fm)y=n+w+N then m9(m') = njl/)(f(m’)) =mjy(n+w+
N)=njy(w+ N) =nj(w) =nr(w) =w+N =n+w+ N = f(m').

(2) = (3) It is obvious

(3)= (1) Consider the following diagram
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M/K

Since % Is M-purely projective, then (identity mapping) I on % can be lifted to g:%
— M with mg = I. Hence m has a right inverse. Therefore the short exact sequence

(in the bottom) splits and so K <® M. Thus M is purely semisimple. o

The following Corollary is a direct consequence of Theorem 3.1.10(1=2).
Corollary (3.1.11): Every purely semisimple is self purely projective.
3.2 Purely t-semisimple modules

A generalization of t-semisimple module namely purely t-semisimple module is

introduced and studied in this section.

Definition (3.2.1): An R- module M is called purely t-semisimple, if for each pure

submodule N of M there exists K <® M such that K <,,; N.
Remarks and examples (3.2.2):

(1) It is clear that every t-semisimple is purely t-semisimple, but not conversely,(see
part (2)).

(2) Every pure simple module M, is purely t-semisimple, since (0) and M are the
only pure submodules in M, but they are direct summands in M and (0) <;., (0),
M <ges M.
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In particular, each of the Z-module Z, Q and Zp~ (where P is a prime number) is
pure simple, so each of them is purely t-semisimple. However, Z,Q and Z,« are not

t-semisimple.

(3) Let M be a regular R- module (that is every submodule is pure). Then M is purely
t-semisimple if and only if M is t-semisimple.

(4) It follows easily that every purely semismple is purely t-semisimple. In particular
each of the Z-modules Zg®Z,, Z,DZ, is purely semisimple, so they are purely t-
semisimple. Also, they aren’t pure simple.

(5) Let M be a nonsingular R-module. Then M is purely semisimple if and only if M

Is purely t-semisimple.
Proof: = It follows by (4).

& Let Nbe a pure submodule, there exists K <® M, K <,,s N. Since M is
nonsingular, N is nonsingular so that K <,.s N, implies K <., N . But K <® M,
implies K is closed in M. Hence K <., N implies K = N. Thus N <® M, and

therefore M is purely semisimple. o

(6) Let R be a regular ring. Then the following statements are equivalent:
(i) M is purely t-semisimple;
(i) M is t-semisimple;

(il) M is semisimple.

Proof: Since R is a regular, M is a regular module. Hence (ii)<>(iii) by Proposition

1.1.59. Also since M is regular, it is clear that (i)<(ii) by part (3). o

Proposition (3.2.3): A pure submodule N of purely t-semisimple R-module M is

purely t-semisimple.

Proof: Let N be a pure submodule of M, and assume that W is a pure submodule of

N. Hence W is a pure submodule of M and so there exists K <® M such that
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K <;.s W. It follows that M = K@L for some L < M and hence N = (K®L)NN =
K®(L n N) by modular law. Thus K <® N and so N is purely t-semisimple. o

Since every direct summand is pure, we get the following result directly.

Corollary (3.2.4): A direct summand of purely t-semisimple module is purely t-

semisimple.

Proposition (3.2.5): Let M = @;;M; where M; < M for all i € I, and every pure
submodule of M is fully invariant submodule. Then M is purely t-semisimple if and

only if M; is purely t-semisimple for each i € I.
Proof: = It is clear by Proposition 3.2.3.

< Let N be a pure submodule of M. By hypothesis N is a fully invariant submodule
of M and hence N = ®,¢;( NNM;) by Lemma 1.1.39(ii). Then NN M; is pure in N,

but N is pure in M, so NNM; is pure in M. Since NNM; < M; < M,then NNM; is
pure in M;. But M; is purely t-semisimple, there exists K; <® M; such that
K; <;o.s NNM;. It follows that @;c;K; <® M and @;¢;K; <;os ®ie; (NNM;) = N
by Corollary 1.1.22(ii). o

Proposition (3.2.6):Let M,, M, be R-module,M = M, ®M, with annM;@annM, =

R. Then M is purely t-semisimple if and only if M; and M, are purely t-semisimple.

Proof: Let N be a pure submodule of M. Then by the proof of [1, Proposition 4.2],
N = N,®N, for some N, <M, and N, < M,. Then by the same argument of
Proposition (3.2.5) the result holds. o

Proposition (3.2.7): Let M = M;®M, with M; <M and M, <M and M is a
distributive module. Then M is purely t-semisimple if and only if M; and M, are
purely t-semisimple.
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Proof: Let N be a pure submodule of M. As M is distributive, N = (NN
M,)®(NNM,). Hence by the same procedure of Proposition 3.2.6 the result

follows. o

Recall that "an R-module M has PIP property if the intersection of two pure

submodules is pure” [2].
Theorem (3.2.8): For an R- module M. Consider the following assertions.

(1) M is purely t-semisimple;
()=

Z(M)
()M = Z,(M)®M' where M’ is a nonsingular purely semisimple;

Is purely semisimple;

(4) Every nonsingular pure submodule of M is a direct summand,;

(5) Every pure submodule of M which contains Z, (M) is a direct summand.

Then (1)=(4), (3)=(5) and (3)=(2), [(4)=(3), if complement of Z,(M) is pure]
and [(2)=(3), if a complement of Z,(M) is direct summand], (3)=(1) if M has PIP,
[(5)=(3) if complement of Z,(M) is a direct summand stable in M]. Thus all
statements (1) through (5) are equivalent if a complement of Z,(M) is direct
summand stable and M has PIP and ((1)<(4)<(3) if complement of Z,(M) is pure
and M has PIP).

Proof: (1)=>(4) Let N be a nonsingular pure submodule of M. There exists K <® M

such that K <;.; N. Assume that M = K@K’ for some K' < M. By modular law,
N =K®(NNK"). Thus (NNK") = % which is Z,-torsion by Proposition 1.1.17(4).
But N n K' is nonsingular, hence% = (0),thatisN = Kandso N <® M.

(3)=(5) Let N be a pure submodule of M and N 2 Z,(M). Since M = Z,(M)M’,
where M’ is a nonsingular purely semisimple. Then by modular law, N =

Z,(M)®M)NN = Z,(M)®(NNM"). Hence NNM' <® N, so NNM' is pure in
N, but N is pure in M, so that (NNM") is pure in M. On other hand NNM' <
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M’ hence NNM' is pure in M’. As M’ is purely semisimple, N n M’ <® M'. Thus
M =(NNnMHY®W  for some W <M', and this implies that
M=Z,(M)®NNM") +W = N®OW. Thus N <® M.

(3)=(2) By condition (3), M = Z,(M)®M', where M’ is a nonsingular purely

M ~ M’ so Lis urely semisimple
ZyMm) T Zy(m) purety pie.

semisimple. As

(4)=(3) Assume a complement of Z,(M) is pure in M. Let M’ be a complement of
Z,(M). Then Z,(M)®M' <,,c M and, hence M' <,,. M by Proposition 1.1.17(3).

Thus % is Z,-torsion. But M'is nonsingular, thus M’ <® M by condition (4) and so

that M = LM’ for some L <M. Thus L zMﬂ which is Z,-torsion. Beside

this Z,(M) = Z,(L)®Z,(M") = L®(0) =L. Thus M =Z,(M)®M'. Now
M' <® M and M is purely t-semisimple. Then M’ is purely t-semisimple, by
proposition (3.2.5). On other hand M’ is nonsingular, so that M’ is purely

semisimple.

(2)=(3) Assume a complement of Z,(M) is a direct summand. Let M’ be a

complement of Z,(M). So that, M’ <® M . Also, M’ is nonsingular. It follows by

the same of proof of part (4)—>(3), M = Z,(M) @M'. Then by condition (2),% IS

purely semisimple and so that M’ is purely semisimple.

(3)=(1) Let N be a pure submodule of M. As M’ <® M, M’ is a pure in M. Since M
has PIP, N n M’ is a pure submodule of M. But NN M’ <M',soN nM'is pure in
M’, and as M’ is purely semisimple, then Nn M’ <® M’. It follows that M’ =
(NnMH@®W for some W <M'. HenceM = Z,(M)®(N nM")@®W, that is

N N+M'
<

(N nM") <® M. On the other hand, we have -~ — < ﬁ, ~ 7Z,(M). Hence
NNM M M

ﬁ IS Z,-torsion; that is (N N M") <.;,s N. Thus M is purely t-semisimple.

104



Chapter Three Purely semisimple Modules, purely t-semisimple Modules and Strongly Purely t-semisimple Modules

(5)=(3) (If a complement of Z,(M) is direct summand stable). By the same way of
proof ((4)=(3)), M = Z,(M)®M' where M’ is a nonsingular. To prove M’ is purely
semisimple. Let N be a pure submodule of M’'. Then Z,(M)@®N is pure in
Z,(M)Y®M' =M. But Z,(M)®N 2Z,(M), so that by condition (5),
Z,(M)®N <® M. Thus (Z,(M)®N)®L =M for some L<M and so M=
Z,(M)®(NDBL). But M = Z,(M)®M’, this implies N®L = M’ by [1, Lemma 4.8].

O

By [2, Proposition 2.3, P.33], every multiplication module satisfies PIP. Hence by

using this fact and Theorem 3.2.8, the following result is obtained.

Corollary (3.2.9): For multiplication R-module M with a complement of Z,(M) is

a pure submodule of M. The following statements are equivalent:

(1) M is purely t-semisimple.
(2) Every nonsingular pure submodule of M is a direct summand.

()M = Z,(M)®M' Where M'is a nonsingular module and purely semisimple.
Also by applying Theorem 3.2.8, we get the following

Corollary (3.2.10): If M is purely t-semisimple module and a complement of Z, (M)
is pure. Then every pure submodule N of M, N 2 Z,(M) is closed.

Proposition (3.2.11): For an R-module M such that a complement of Z,(M) is pure
and M satisfies PIP. If Rad(M) s Z,-torsion and every nonsingular pure

submodule of M has a weak supplement. Then M is purely t-semisimple.

Proof: Let N be a nonsingular pure submodule of M. By hypothesis N has a weak
supplement submodule K of M suchthat M = K+ Nand KN N « M. Cleary M =

(K + Rad(M)) + N. Now we claim that (K + Rad(M)) n N = 0. To prove our
assertion, assume thatx € (K + Rad(M)) n N. Then x =y + z where y € K and
z € Rad(M) and, since Rad(M) is Z,-torsion there exist a t-essential right ideal I

of R such that (x —y)I =0. Thus xI =yl < KNN < Rad(M) < Z,(M) and so
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M

x+ Zy,(M)E Z, (ZZ(M)

)=0. Hence x € Z,(M). Thus x € Z,(M)NN =

Z,(N) = 0 and this implies that N is direct summand of M. Hence by Theorem
3.2.8[(4)=(3) and (3)=(1)] M is purely-t-semisimple. o

The following Proposition is a characterization of purely t-semisimple module.

Proposition (3.2.12): An R-module M is purely t-semisimple if and only if for each
pure submodule N of M, there is a decomposition N = K@K’ such that K is a direct

summand of M and K' is Z,-torsion.

Proof: = If M is purely t-semisimple. Let N be a pure submodule of M. Then there
exists K <® M and K <, N. As K <® M, M = KW for some W < M. Then by
modular law,N = K&(WnNN). Put WNN=K' soN=K®K'. Also,

since K <;.s N, then % = K' is Z,-torsion by Proposition 1.1.17(4).

< Let N be a pure submodule of M. By hypothesis, N = K®K' and K <® M, K' is
Z,-torsion so % = K' is Z,-torsion, hence K <;.; N by Proposition 1.1.17(4). Thus
M is purely t-semisimple. o

Proposition (3.2.14): For an R- module M which satisfies the condition, a

complement of Z, (M) is pure. If M is purely t-semisimple, then M has no proper t-

essential pure submodule which contains Z, (M).

Proof: Assume L is a proper t-essential pure submodule of M with L 2 Z,(M). By

L M

Proposition 1.1.17(2) LoD <ess ZaD : But by Theorem
M . . - . L . .
2.8((1)=(4 2)),——— I I
3.2.8((1)=14)=03)=( )),ZZ(M) is purely semisimple, and since Z) IS pure in
that —— <® ——  Thus —— = ——— , hence L = M which i
Zy (M)’ S0 tha Zo(M) T Zy(M) us Z>(M) Z;(M) ence which 15 a

contradiction. Therefore M has no proper t-essential pure submodule of M

containing Z,(M). o
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Theorem (3.2.15): Let M be a finitely generated faithful multiplication R-module.

Then M is purely t-semisimple, if R is purely t-semisimple.

Proof: Let N be a pure in M. Then N = MI for some ideal I of R. We claim that I is
pure in R. Assume J be any ideal of R. M(I nJ) = MI n M] by [19, Corollary 1.7].
As Ml ispurein M, M]n MI = MIJ. Thus M(InJ)=M(l]) andso I nJ = I] by
[19, Theorem 3.1] since M is finitely generated faithful multiplication. Thus I is pure
iIn R, and hence there exists a direct summand L of R, such that L <;.; I. As
L <®R, so ML <® M. Also, L <, I implies that ML <,,; MI = N by Lemma
1.1.24(2). Thus M is purely t-semisimple. o

Note (3.2.16): If M is a finitely generated faithful multiplication module over
regular commutative ring. Then M is purely t-semisimple (t-semisimple) implies R

is semisimple.

Proof: Since R is a regular ring, M is regular. Cleary M is purely t-semisimple
equivalently to M is t-semisimple. Then by Proposition 1.1.59, M is semisimple and

this implies R is semisimple. o

Remark (3.2.17): A purely t-semisimple module need not be purely extending
module, for example: The Z-module Zg®Z, is purely t-semisimple but it is not
purely extending since, it is easy to see that, N =< (2,1) > is closed and it is not
pure.

We introduce the following
Definition (3.2.18): Let M be an R-module. M is called purely t-extending if for

each submodule N of M, N is t-essential in pure submodule of M.

Lemma (3.2.19): An R—module M is purely t-extending if and only if every t-closed

submodule of M is pure in M.

Proof: =Let N < M, N is t-closed. Then N <,.; K and K is pure. Hence N = K

since every t-closed has no proper t-essential extension. Thus N is pure.
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< Let N < M. By [10, Lemma 2.3], there exists a t-closed submodule H of M such
that N <;.. H. As H is t-closed, hence by hypothesis H is pure. Thus M is purely t-

extending. o

Al-Bahraany in [3] said that ” an R-module M is purely Y-extending if every Y-
closed submodule of M is pure in M ". But as we mention in chapter one, Y-closed

and t-closed are coincide hence purely t-extending and purely Y-extending are

coincide.

We know that t-semisimple module implies t-extending module but we cannot

generalize this for purely t-semisimple. However, we have

A purely t-semisimple module implies purely t-extending, however we have the
following result.
Proposition (3.2.20): Let M be an R-module such thatM = Z,(M)@M' , M' is
purely t-extending. Then M is purely t-extending.

Proof: Let N be a t-closed in M. Then N 2 Z,(M), so by modular law, N =
Z,(M)®( M'nN). As N is t-closed in M, then (M' n N) is t-closed in M' by
Proposition 1.1.31(i). But M’ is purely t-extending implies that M’ N N is pure in M'.
Hence Z,(M)®(M'n N) is pure in Z,(M)® M’ = M, that is N is pure in M and so
M is purely t-extending. o

Proposition (3.2.21): For a ring R. The following statements are equivalent:

(1) ®,R is purely t-semisimple.

(2) Every projective R-module is purely t-semisimple.

Proof: (1) = (2) Assume that M is a projective R-module. Then there exist a free R-
module F and an epiomorphism f: F +— M. Since F is free, then by [24, Lemma

441, p.88] F = @&;R for some index . Consider the following short exact

sequence:0 — Kerf 5 @;R — M — 0 where i is the inclusion mapping. Since M
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IS projective, the sequence is split. Thus @;R = kerf@M. Then M is purely t-
semisimple, by Corollary 3.2.4.

(2)=(1) Itisclear. o
3.3 Purely t-semisimple and purely t-Baer modules

It known that every t-semisimple is t-Baer [7]. In this section we introduce purely
t-Baer and prove that every purely t-semisimple modules with certain conditions is

purely t- Baer. Moreover we prove that every purely t-extending is purely t-Baer.

Definition (3.3.1): An R-module M is called purely t-Baer if for each left ideal Iof
End(M) = S, ty,(I) is a pure submodule of M.

As we mention in chapter one Remarks and Examples 1.5.5(3), for a nonsingular
R-module M, t,(I) = ry(I) for left ideal I of S. Hence we get the following

remark.

Remark (3.3.2): Let M be a nonsingular R-module. Then M is purely t-Baer if and
only if M is purely Baer.

The following Theorem is a characterization of purely t-Baer module. Before

giving this Theorem we need the following Lemma.

Lemma (3.3.3): LetA < B < M, where M is an R-module. If A <., B, then for

each b € B, there exists an essential ideal ] of R such that b] < A.

Proof. Let b € B. As A <., B, there exists r € R such that 0 #+ br € A. Put
J={reR:breA}. Jis a right ideal of R. We claim that ] <., R and b] < A.
Suppose Jn C = (0) for some ideal C of R,C # 0. Hence for eachc e C,c ¢ ]. It
follows bc € A. As b € B, bc € B, hence there exists r; € R such that 0 # (bc)r, €
A. Thus 0 # b(cr;) € A and so 0 # cr; € ]. On the other hand cr; € C, and hence
0 # cr; € ] n C and this is a contradiction. Thus ] <.¢s R. Also it is clear that b] <
A.oO
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Theorem (3.3.4): An R-module M is purely t-Baer if and only if for each left ideal I
of End(M), t,, (1) is t-essential in pure submodule of M.

Proof: = Since M is purely t-Baer, t,, (1) is pure in M. But ty, (1) <tes tp (D) .

& ty(I) <(es K for some pure submodule K of M. As Z,(K) < Z,(M) < t,,(I),
then t),(I) + Z,(K) <.ssc K by Proposition 1.1.17 and so ty(I) <.sc K. Now for
each k € K, there exists an essential ideal / of R such that kJ < t,,(I) by Lemma

(3.3.3). Hence for each f € I.f(k.J) = f(k)] < Z,(M). Thus (f (k) + Z,(M))] =

M

Z,(M) =0 m .But J <, R, hence (f(k) + Z,(M) € Z (Z o

Z2(M)

) = 0. This implies

f(k) € Z,(M) and hence k € ty(I). Thus K = t,,(I) and so t,,(I) is pure and M is

purely t-Baer. o
Proposition (3.3.5): Every purely t-extending is purely t-Baer.

Proof: Let M be a purely t-extending. As t,(I) < M, then by Definition 3.2.18
ty(I) <tes K and K is pure. Thus M is purely t-Baer by Theorem (3.3.4). o

To give the next result, we need the following Lemma.

Lemma (3.3.6): Let M be an R-module such that M = Z,(M)®M’, M’ is stable in M.
Then ty (DNM' = 1y (1) for each left ideal I of S=End(M).

Proof: Let m€ ry(I) . Then me M’ and Im=0 <Z,(M).Hence mE€
tm(DNM'.Now if m € ty,(DNM’, then m € M’" and Im < Z,(M). So that for any
fel,f(m)eZ,(M).But M" is stable in M implies f(m) € M" and so f(m) €
Z,(M)NM' = (0) ; thatis Im = 0 and so m € ryy(I). Thus ty(DNM’ = 1y (D). O

Proposition (3.3.7): Let M be an abelian Baer (strongly Baer) module such that a
complement of Z,(M) is pure stable in M and M satisfies PIP. If M is purely t-

semisimple, then M is purely t-Baer.
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Proof: By Theorem 3.2.8(1—4) and (4—3 if a complement of Z,(M) is pure).
Hence M = Z,(M)®M'where M’ is nonsingular purely semisimple. Then for each
[ < End(M), Z,(M) < ty (1), so ty() =Z,(M)®(ty,(I) " M"). Thus t,(I) =
Z,(M)®r,,(I) by Lemma 3.3.6.As M is an abelian Baer (strongly Baer module),
ry () is fully invariant direct summand, hence it is pure in M. But it is clear that
ry' (1) =ry(I) N M' and since M has PIP, r,(I) is pure in M'. It follows that
ty(I)=Z,(M)®r,, (1) is pure in Z,(M)®M' = M. Thus t,,(I) is pure in M and M

Is purely t-Baer. o

Proposition (3.3.8): If M = Z,(M)@®M' for some M’ < M such that t,,(I) n M’ is
pure in M', then M is purely t-Baer.

Proof: Since Z,(M) < t,,(I),for each I < End(M) then
ty() = Z,(M)®(t),,(I)NM") by modular law. But Z,(M) is pure in Z,(M) and
(ty(DNM') is pure in M'by hypothesis, the Z,(M)®(t),,(I)NM") is pure in
Z,(M)®M' = M. Thus t,,(I) is pure in M and M is purely t-Baer. o

Corollary (3.3.9): If M = Z,(M)®M' for some M' < M. If M has PIP and M is
purely t-Baer then (t,,(1)NM") is pure in M'.

Proof: By the same proof of Proposition (3.3.8) t,,(I) = Z,(M)®(t,,(I)NM") for
each I < End(M). But ty, (1) is pure in M and M’ is pure in M. So that t,,(I)NM" is
pure in M by PIP. Hence (t,,(I)NM") is pure in M’ since t,,(I)NM' < M'. o

3.4 Strongly purely t-semisimple Modules

In this section we extend the notion of purely t-semisimple module into strongly
purely t-semisimple module. Also this concept is a generalization of strongly t-
semisimple modules. A comprehensive study of this concept and its connections

with some related modules are introduced.
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Definition (3.4.1): An R-module M is called strongly purely t-semisimple if for each
pure submodule N of M, there exists a fully invariant direct summand K of M such
that K <, N.

Remarks and Examples (3.4.2):

(1) Every strongly purely t-semisimple is purely t-semisimple. But the converse is

not true as the following example, shows.

Let M = RAR as R-module, let N = R@(0), N is a pure submodule of M. But
K =< (0,0) > is the only fully invariant direct summand such that K < N. However
K %£;.s N, see (Remarks and Example 1.2.2(8)). Thus M is not strongly purely t-

semisimple. On other hand M is purely t-semisimple since it is semisimple.

(2) Every singular module is strongly purely t-semisimple, for example M =

Zg®Z, as Z-module is strongly purely t-semisimple.

Proof: Let N be a pure submodule of M, there exists (0) <® M, and (0) + Z(N) =

N <.4 N, hence (0) <;.s N and (0) is fully invariant. o

(3) Every pure simple is strongly purely t-semisimple, for example Z as Z-module

is strongly purely t-semisimple, but it is not t-semisimple (hence it is not strongly t-

semisimple).

(4) Purely t-semisimple and strongly purely t-semisimple are coinciding in the class
of multiplication modules.

(5) A pure submodule of strongly purely t-semisimple is strongly purely t-

semisimple.

Proof: Let N be a pure submodule of M and M is strongly purely t-semisimple, let
W be a pure submodule of N. Hence W is a pure submodule of M and so there exists
K <® M and K is fully invariant in M, K <., W . By Lemma (1.2.6), K is fully
invariant in N. But K <® M, then K®K' = M, for some K’ < M and by modular
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law N = K@®(NN K'), so K <® N. Hence K is a fully invariant direct summand of

N and K <;.; W. Thus N is strongly purely t-semisimple. o

(6) A direct summand of strongly purely t-semisimple is strongly purely t-

semisimple.
Proof: Since every direct summand is pure , the result follows directly by part(5). o
We introduce the following and will be used in our work.

Definition (3.4.3): An R-module M is called purely fully stable if every pure

submodule of M is stable.
Remark (3.4.4): Every fully stable module is purely fully stable .

Example (3.4.5): Consider the Z-module Q. Q is purely fully stable. But Q is not
fully stable since Z < Q and f: Z—Q defined by f(n) = % impliesthat f(Z2) < Z.

Theorem (3.4.6): For an R-module M. Consider the following conditions.

(1) M is strongly purely t-semisimple.

(2) M=2Z,(M)®M', where M’ is a nonsingular fully invariant submodule of M
and purely fully stable, purely semisimple.

(3) For each nonsingular pure submodule N of M, N is fully invariant direct

summand .

4) % is purely semisimple and isomorphic to purely fully stable submodule of

M.
(5) For each pure submodule N in M with N 2 Z,(M) , N is fully invariant direct

summand of M.

Then (1) = (3), (2) = (4) and (2) =(5). ((3)= (2) if (a complement of Z,(M) is
pure). (2) = (1) if (M satisfies PIP). (5) = (2) (if complement of Z,(M) is direct
summand stable).Thus (1)<(3)<(2) (if a complement of Z,(M) is pure and M has
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PIP). (1)<=(3)=(2)<=(5) if (a complement of Z,(M) is a stable direct summand and
M has PIP).

Proof: (1) =(3) Assume N is a pure nonsingular submodule of M. By condition (1),
there exists a fully invariant direct summand K of M with K <,.; N. So % IS Z,-
torsion. But K is a direct summand of M implies M = K@K’ for some K’ < M and

hence by modular law, N = K&(NNK") and so N N K’ z% which is Z,-trosion.

On other hand N n K’ is a nonsingular submodule of N, so that %=(O), thatis N = K

and so N is a fully invariant direct summand .

(2)=(4) By condition (2), M = Z,(M)®M', M' is a nonsingular purely fully stable

M . M
~ M’ that is
Z(M) Z>(M)

, M" is fully invariant in M, and purely semisimple . Hence

Is purely semisimple and isomorphic to a purely fully stable submodule.

(2)=>(5) Let N be a pure submodule of M and N 2Z,(M).
SinceM = Z,(M)®M', N = Z,(M)®(NNM"). Hence (NNM") is pure in M’, so
(NNM") <® M’ and stable since M’ is purely semisimple and purely fully stable.
So that M’ = (N n M)W for some w<M. Hence,
M =Z,(M)®NNM")DOW = N®W. Thus N <® M. To prove N is a fully invariant
submodule in M. Since N = Z,(M)®(NNM") and (NNM") is fully invariant in M’
and M’ is fully invariant in M, so (NNM") is fully invariant in M, hence N =
Z,(MY®(NNM") is fully invariant in M.

(3)=(2) (If a complement of Z,(M) is pure) . Suppose M’ be a complement of
Z,(M). Then M'®Z,(M) <, M, hence M’ <;,; M and % IS Z,-torsion. But M’ is
nonsingular, to show our assertion, suppose X€ Z(M'), so xe M' <M and
ann(X)<.ss R.Hence ann(x) <R and this implies x € Z,(M). Thus x € Z,(M)N

M’=(0), thus x=0 and M’ is a nonsingular. Thus M’ is pure nonsingular, so that

M’ <® M and M’ is fully invariant submodule of M. Thus M = LM’ for some
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L <M. It follows that %z L and hence L is a Z,-torsion. Hence Z,(M) =

Z,(LYDZ,(M)=LD(0) and so M =Z,(M)®M'. Let N be a pure submodule of
M’, then N is pure in M since M’ is pure in M. Also, N is a nonsingular submodule
of M.Then by condition (3), N is a fully invariant direct summand of M and so
M = N®W for some W < M which implies that M' = N@(W n M"). Thus
N <® M’ and M’ is purely semisimple. On other hand, N is fully invariant
submodule of M and N <M imply N is a fully invariant submodule of M'by
Lemma (1.2.6) and so N is a stable submodule of M’ since N <® M’. Thus M’ is

purely fully stable.

(2)= (1) (If M has PIP). Let N be a pure submodule of M. As M’ <® M, M’ is pure
submodule of M and by PIP, Nn M"ispurein M. BN nM' < M', hence N n M’
is pure in M'. It follows that (N n M") <® M’ since M’ is purely semisimple. Thus
M = (NnM")BW for some W <M’ and so M = Z,(M)(NNM")BW, that is

(NNM") is a direct summand of M. On other hand , N - o N“f’
NNM M

M

N

Hence
NNM

- 1S Z,-torsion; that is (N N M") <,.s N. Beside this (N n M") is fully

invariant in M', since M’ is fully stable. But M’ is fully invariant in M, so (N N M")
is fully invariant in M. Therefor (N n M") is fully invariant direct summand of M

and NN M' <,.s N and so M is strongly purely t-semisimple.

(5)=(2) (If a complement Z,(M) is direct summand stable). Assume M’ is a
complement of Z,(M) is pure, then by a similar proof of part (3)=(2) M = Z,(M)
@ M', where M’ is a nonsingular. To prove M’ is purely semisimple, let N be a pure
submodule of M'. Hence Z,(M)®N is pure in Z,(M)®M'=M and as
Z,(M)®N 2 Z,(M), so Z,(M)®N is fully invariant direct summand of M by
condition (5). Thus (Z,(M)®BN)DL =M for some L < M.
ThusM = Z,(M)®(N@L). But M = Z,(M)®M'. So that N®L = M'[1, Theorem
4.8, p.30]. Therefore M’ is purely semisimple. Now to prove M’ is purely fully
stable. Let W be a pure submodule of M’. Then Z,(M)@W is pure in Z,(M)®M' =

115



Chapter Three Purely semisimple Modules, purely t-semisimple Modules and Strongly Purely t-semisimple Modules

M and so Z,(M)®W is fully invariant direct summand in M = Z,(M)®M'. But
W= (Z,(M)®W)NnM' to see thiss W <M'" and W < Z,(M)®W implies W <
(Z,(MY®W) N M'. Let x € (Z,(M)®W)NM"), then x =a+ b € M’ such that
a€Z,M),beW <M, a=x—beZ,(M)ynM =0, impliess a=0, then
x=beW. Hence W = (Z,(M)®W)nM' .Also Z,(M)®W is fully invariant
submodule of M and M’ is a fully invariant in M , so that W is a fully invariant in
M. Beside this (Z,(M)®W) <® M implies W <® M it follows that Wis a fully
invariant in M’ by Lemma 1.2.6. Also, we have W <® M'(since M'is purely
semisimple), so W is fully invariant direct summand of M’ . Thus W is pure stable

submodule of M’ and hence M’ is purely fully stable. o
As every multiplication satisfies PIP [2] we get the following

Corollary (3.4.7): For a multiplication R-module M with the condition complement

of Z,(M) is pure. The following assertions are equivalent:

(1) M is strongly purely t-semisimple.
QM =Z,(M) @&M’', M" is a nonsingular fully invariant submodule of M, M’ is
purely fully stable and purely semisimple.

(3) Every nonsingular pure submodule of M is fully invariant direct summand.

Corollary (3.4.8): Let M be an R-module such that complement of Z,(M) is direct
summand stable and M is a multiplication module. The following statements are

equivalent.

(1) M is strongly purely t-semisimple.

(2) M =Z,(M)®M’' , where M’ is a nonsingular fully invariant submodule of M
and purely fully stable, purely semisimple.

(3) For each nonsingular pure submodule N of M, N is fully invariant direct
summand.

(4) Foreachpurein M, N 2 Z,(M), N is fully invariant direct summand of M.
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Now we will consider the direct sum of strongly purely t-semisimple. First we

have

Theorem (3.4.9): Let M = M,®M, , where M; and M, are R-module and every
pure submodule of M is fully invariant. Then M is strongly purely t-semisimple if

and only if M; and M, are strongly purely t-semisimple.
Proof:= It is clear by Remarks and Examples 3.4.2(6).

< Let N be a pure submodule of M. Then N is fully invariant in M and soN =
N;®N,, N; is fully invariant in M,, N, is fully invariant in M, where N, = N N
M;,N, = N n M, by Lemma 1.1.39(ii). Also, N is pure in M implies N; is pure in
M; and N, is pure in M,. Since M; and M, are strongly purely t-semisimple there
exist fully invariant direct summands K,, K, of M; , M, respectively where
K; <tes N; and K, <;.; N,. It follows K,®K, is a direct summand of M and
Ki®K, <;.c Ny®N, = N by Proposition 1.1.22(2). To show that K; @K, is fully

End(M,) Hom(M,, M;)
Hom(M,, M,) End(M,)

pure in M, so they are fully invariant by hypothesis. Hence Hom(M, M,) =
0,Hom(M,,M; ) =0 by Lemma 1.1.39(iii). Thus for any f € End(M),f =

invariant in M. End(M) z( ) But M; and M, are

(0 f)where € End(M,) ., € End(My). So F(K@K:) = (K@ (Ky) <

K, ®K,. Thus K;®K, is fully invariant in M. Therefor M is a strongly purely t-

semisimple. o

Note that R as R-module is strongly purely t-semisimple, but M = R®R as R-
module is not strongly purely t-semisimple by Remarks and Examples 3.4.2(1). Also

R&(0) is pure submodule of M but it is not fully invariant.

Proposition (3.4.10): Let M = M,®M, , where M; and M, are R-modules.
annM; + annM, = R. Then M is strongly purely t-semisimple if and only if M; and

M, are strongly purely t-semisimple.
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Proof: = It is clear by Remarks and Examples 3.4.2(6).

< Let N be a pure submodule of M. Since annM; + annM, = R, then N =
N,®N, for some N; < M;, N, < M, by[1,Proposition 4.2]. Since N is pure in M,
we get N, is pure in M; and N, is pure in M,. As M; and M, are strongly purely t-
semisimple there exist fully invariant direct summands K;, K,of M; , M,
respectively and K; <;.s N; and K, <;.s N,. It follows K; @K, is a direct summand

of M and K,;®K, <;.s Ny®N, = N.But annM; + annM, = R , implies Hom(M, ,

M, )=0, Hom(M,, M;) by Lemma(1.2.8). Thus for any f € End(M) f = (g ]9)
2

where f; € End(M;) and f, € End(M,) and hence f(K;®K,) < f; (K,)®f,(K;) <

K,®K, , thatis K;®K, is a fully invariant submodule of M. Therefore M is

strongly purely t-semisimple. o

3.5 Strongly purely t-semisimple and strongly purely t-Baer Modules

In this section we define and study strongly purely t-Baer modules. We present
characterization of strongly purely t-Baer module; we have a necessary condition for
a module to be strongly purely t-Baer. Also, we give a connection between strongly

purely t-semisimple and strongly purely t-Baer.

Definition (3.5.1): An R-module M is called strongly purely t-Baer if ty(I) is fully

invariant pure submodule of M, for each left ideal I of S=End(M).
The following Theorem is a characterization of strongly t-Baer modules

Theorem (3.5.2): An R-module M is strongly purely t-Baer if and only if for each

left ideal | of S=End (M), t, () is t-essential in fully invariant pure submodule.
Proof: = itis clear (since ty (1) <tes tm(D)

< It follows by a similar proof of Theorem (3.3.4). o
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Proposition (3.5.3): Let M be an R-module such that M = Z,(M)@M'. If t,,(I) N
M'is pure and fully invariant in M".Then M is strongly purely t-Baer.

Proof: As Z,(M < ty(D),ty(D) = Z,(M)®(t (1) N M"), by modular law. Since
Z,(M) ispurein Z,(M),ty(I) N M") is pure in M".Then ty (1) is pure in M.To prove
ty (D) is fully invariant in M.

End (Z,(M)) Hom(M',Z,(M)
Hom(Z,(M),M") End(M")
invariant in M implies Hom(Z,(M),M"') =0 by Lemma 1.1.39(iii). Let f €
End(M) then

End(M) = ( ).Note that as Z,(M) is a fully

f= (% %),where f1 € End(Z,(M)), f, € Hom(M',Z,(M) and f; € End(M")
3

_(h [ Z,(M) \ _ ([(Z,(M)) + £, (tm(D) N M')
ACHOR <0 fi) (tM(I) N M’) B ( 2 f3(tM(I)2 nhfv[’) ) =

( Z,(M)
ty(D N M’

purely t-Baer. o

) =ty (I). Thus ty (D) is fully invariant in M and hence M is strongly

To prove the next result, we state and prove the following Lemma.
Lemma (3.5.4): Let M = M; ®M,. Then

(1) If Myis a fully invariant submodule in M and B is a fully invariant in M,,then

M;®B is fully invariant in M.

(2)If A is a fully invariant submodule of M; and M, is a fully invariant in M, then
A®M, is a fully invariant submodule of M.

End(M,) Hom(M,, M,)

Proof: (1) End(M) = (Hom(Ml,Mz) End(M,)

) BUt Hom(Ml, Mz) =0 by

Lemma 1.1.39(iiii).Let f € End(M) then f = (];1 ;2> Where f; € End(M,), f, €

Hom(M,, M,), f; € End(M,).  Hence f(M;®B) = (g ]{2) (1\]/;1) =
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(fl(M})('g)fz(B)) But f(M;) <M,;,,(B)<M; and f;(B)<B , so that

f(M;®B) < M;®B, that is M; @B is fully invariant.
The proof of (2) is similarly. o

Proposition (3.5.5): Let M = Z,(M)®M’, where M’ is a fully invariant submodule
of M, If M’ is strongly purely Baer module. Then M is strongly purely t-Baer.

Proof:Since M = Z,(M)®M'.Then t,,(I) = Z,(M)®(t,()NM") =

Z,(M)® ryy () by Lemma 3.3.6. On the other hand, letl’ = {f|M,:f € I}. Note
f | s M'—>M, but M’ is fully invariant in M (hence stable) so fl v’ € End(M"). We
claim thatl’ is an ideal of End(M"). To show this. Let g,,g, € I', then g, =

filynga=faly where fi,f €150 gi—go=(fi—f)lw€el' Let he

End(M"). Then there exists hi;:M — M defined by
h(x) if xeM'
h =
1 (%) { 0 otherwise

hog=(hiofi)lyysince  (hog)(m) = h(gi(m)) = h(fi(m) € M’ = (hy o
fi)(m") .Also hyof, €1 since f; €I and [ left ideal of S. We claim that
ry (") =7y () .Let m" € ryy (1) , Then Im’ = 0,50 f(m") = 0, for each fe 1 <
End(M). Then f | w(m’) =0, but f | v €I, thenm’ € ryy(1'), hence 7y (1) <
rayr (1.

Conversely Let m' € rp/(I"), then I'm’ =0 .So for each g € I’, g(m') = 0, but
g € I'so there exists f €1 and f | o = &theng(m’) = f(m') = 0. hence m’ €
ry’ (D) and we get ry (1) < ry(D). Thus 7y, (I") =1y (I) and hence ty, (1) =
Z,(M)®r,, (1"). But Z,(M) is pure in Z,(M), ry,s(1") is pure in M’ so that t,,(I) is
pure in M. Since M' is strongly purely Baer module implies r,,,(I") is fully invariant
in M'. Hence by Lemma 3.5.4(1) ¢, (1) is fully invariant in M and so t,,(I) is fully

invariant pure in M. Hence M is strongly purely t-Baer . o
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Next we have the following Theorem

Theorem (3.5.6): Let M be an R-module such that a complement of Z,(M) is a pure
submodule in M. If M is strongly purely t-semisimple, then M is strongly purely t-

Baer.

Proof: By Theorem 3.4.6(1>3—2), M = Z,(M)®M’, where M’ is nonsingular,
fully invariant submodule, M’ is purely fully stable and purely semisimple. By the
proof of Proposition (3.5.5), M = Z,(M)®r(I"),I’ < End(M"). So ryy(1") is pure
in M. But ry(I") < M’, sory (1) is pure in M'. But M’ is purely fully stable, hence
ry (1) is fully invariant in M’, and so M’ is strongly purely Baer. Then by

Proposition (3.5.5) M is a strongly purely t-Baer module. o
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Chapter Four Certain types of Modules Related with types of T-semisimple Modules

Introduction

In this chapter, we investigate certain types of module which have a close
connection with the types of t-semisimple modules which are introduced in previous

chapters. This chapter consists of six sections.

In section one we give a review about modules that satisfy C;,-condition and T, ;-

type modules.

In section two we introduce modules that satisfy strongly C;;-condition and
strongly T;,-type modules. We notice that every module satisfies strongly C;;-
condition module is strongly T;,-type module and strongly T,,-type implies T;,-
type. Examples to show that the converses may be not hold are given. Also, every
strongly t-semisimple module is strongly T,,-type module. Many other properties

for these classes of modules are presented.

In section three, modules that satisfy FI-C;,-condition and FI-T,-type modules as
generalizations of modules that satisfy C;,-condition and T,,-type modules are
introduced. A module satisfies FI-C;,-condition is FI-T;;-type module, but the
converse may be not true. Beside other results in this section, we have if M is Fl-t-
semisimple modules such that M satisfies condition (*) then M is FI-T;,-type

module.

In section four, the concepts modules satisfy strongly FI-C;-condition and strongly
FI-T;,-type modules are investigated. Many properties related with these concepts
and many connections between these concepts and other related concepts such as
modules satisfy FI-C;;-condition, FI-T;,-type modules and strongly T,,-type
modules. Also, we have if M is a Fl-extending and every closed submodule is fully

invariant, then M is strongly FI-T;-type module.
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In section five we introduce modules that satisfy purely C,;,-conditions and purely
T;1-type modules. We study these concepts and their connections with purely t-

semisimple modules.

Section six is devoted for presenting and studying the concepts modules satisfy
strongly purely C;,-condition and strongly purely T;,-type modules. Also, we study

their connections with strongly purely t-semisimple modules.
4.1 Modules satisfy C,4-condition and T;-type Modules

Recall that: " An R-module M is said to be satisfy C;;-condition if every
submodule of M has a complement which is a direct summand” [38]. Asgari [10],
restricted C,,- condition to t-closed condition of M. She defined the following.
"An R-module M said to be T, ,-type module (or M satisfy T, ,-type) if every t-closed
submodule has a complement which is a direct summand. A ring is said to be right

T;,-type ring if Ry is a T, -type module.”[10]

Proposition (4.1.1)[38, Proposition 2.3]:" The following statements are equivalent

for a module M.

(1) M has C;4-condition

(2) For any complement submodule L in M, there exists a direct summand K of M
such that K is a complement of L in M.

(3) For any submodule N of M, there exists a direct summand K of M such that
N N K = 0 and N@K is an essential submodule of M.

(4) For any complement submodule L in M, there exists a direct summand K of M
suchthat L N K = 0 and L@ K is an essential submodule of M".

Theorem (4.1.2)[38]: "Any direct sum of modules with C;,-condition satisfies C, ;-

condition.”

124



Chapter Four Certain types of Modules Related with types of T-semisimple Modules

Remarks and Examples (4.1.3):

(1) It is clear that "every module satisfying C;; is T,;-type-module”, but the
convers is not true [10].For example. The Z-module [1;2,Z; does not satisfy
C;, by [38, Proposition 3.6]. But it is T;,-type module, since it is Z,-torsion.

(2) "Every t-extending module (hence every extending module) is a T;;-type
module "[10].But the convers is not true. For example LetR = Z[X], Ry IS
uniform, nonsingular. By [36, Theorem 2.4] R®R satisfies C;,-condition.
Hence R®R is T;,-type module. But R®R is not t-semisimple ,because if it is
so, then R@R is t-extending, which is a contradiction since by [15,Example
2.4] RDR is not extending, hence not t-extending, since R®R is nonsingular.

(3) "Every Z,-torsion is T;,-type module and every finitely generated Abelian
group is a T -type module” [10].

(4) The Z-module Z and Q are not t-semisimple. But Z and Q are indecomposable

and nonsingular uniform, so Z and Q are T;,-type module by[10, Corollary 2.8].

(5) Any direct sum of uniform modules has C;;-condition module by [38,
Corollary 2.6], so is Ty;-type module. In particular each of Q®Z, Z,DZg
, Zg®Z, is T;;-type module . Also notice that Q@Z is not t-semisimple.

Proposition (4.1.4): Every t-semisimple module is T;,-type module.

Proof: By [7, Proposition 2.16], every t-semisimple is t-extending, hence by

Remarks and Examples 4.1.3(2), it is T;,-type module. o

Theorem (4.1.5)[ 10,Theorem 2.4]: " The following statements are equivalent for a
module M:

(1) M is Ty;-type;

(2 M = Z,(M)®M' where M’ satisfies C,;-condition;

(3) For every submodule A of M, there exists a direct summand D of M such that
ABD <po5 M ;
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(4) For every t-closed submodule C of M, there exists a direct summand D of M
such that C®D <. M;

(5) For every t-closed submodule C of M, there exists a direct summand D of M such
that C®D <,z M".

Corollary (4.1.6)[10, Corollary 2.5]: " Let M be a nonsingular module. Then M is
T;,-type if and only if M satisfies C;; condition”.

Corollary (4.1.7)[10, Corollary 2.6]:" A module M satisfies C;, condition if and
only if M is T,,-type and Z, (M) satisfies C;, condition”.

Corollary (4.1.8)[10, Corollary 2.7]:" Every direct sum of T,,-type modules
satisfies T, condition”.

Corollary (4.1.9)[10, Corollary 2.8]:" An indecomposable module M is T, -type if
and only if M is either a nonsingular uniform module or a Z,-torsion module ".

Corollary (4.1.10)[10, Corollary 2.10]: "If M is a T,,-type module and L is a fully
invariant submodule of M, then L and % are T,,-type modules.”

Proposition (4.1.11)[10, Proposition 2.11]:" Every T,;-type module M is FI-t-

extending.”

4.2 Modules satisfy strongly €,4-condition and strongly T,-type modules.

In this section, we extend the notions of modules satisfy C;,-condition and T, -type
modules into modules satisfy strongly C;,-conditions and strongly T;,-type
modules. We study these concepts and their connections with strongly t-semisimple

modules

Definition (4.2.1): An R-module M said to be satisfy strongly C,,-condition if every

submodule has a complement which is a fully invariant direct summand.

The following Lemmas are needed in the next Proposition.
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Lemma (4.2.2)[38, Lemma 2.2]: " Let N < M, let K be a direct summand of M .
K is a complement of N if and only if KNN = 0 and K&N <,,; M".

The following Lemma is clear.

Lemma (4.2.3): If N < M and K is a fully invariant direct summand of M then K is

a fully invariant complement of N if and only if KNN = 0 and K®&N <., M.

The following Proposition gives characterizations for modules which have strongly

C;,-condition.
Proposition (4.2.4): The following statements are equivalent for a module M

(1) M satisfies strongly C;,-condition;

(2)  For any complement submodule L in M, there exists a fully invariant direct
summand K of M such that K is a complement of L in M;

(3) For any submodule N of M, there exists a fully invariant direct summand K of
M such that NNK = 0 and N®K is an essential submodule of M;

(4) For any complement submodule L in M, there exists a fully invariant direct
summand K of M such that LNK = 0 and LK <,,, M.

Proof: (1) = (2) For any complement submodule L in M. By strongly C;-condition,

L has a complement in M which is a fully invariant direct summand K of M.
(3) = (4) and (2)=(4) are obvious.
(1) = (3) Itis clear by Lemma (4.2.3).

(4) = (1) Let A be any submodule of M. Then there exists a complement so (closed
submodule B in M) such that A <, B by[23, Exercise 13,P.20 ]. By hypothesis,
there exists a fully invariant direct summand K of M such that BNK =0
and B®&K <,,c M. Hence by Lemma (4.2.2) K is a complement of B in M.
Now BNK = 0, which impliesKNA = 0. Suppose that K'<M andK' > K.
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Therefore K'NB # 0 and hence (K'NB)NA # 0 (since A <.4 B), so that K'NA #

0. Thus K is a complement of Ain M. o

As we have seen t-semisimple is T;,-type module. We claim that strongly t-
semisimple modules imply modules which are strongly than T, -type module. Hence

this leads us to define the following:

Definition (4.2.5): An R-module is said to be strongly T,,(or strongly T;,-type
module) if for each t-closed submodule, there exists a complement which is a fully

invariant direct summand.
Remarks (4.2.6):

(1) Itis clear that every module, which satisfies strongly C,,-condition, is a strongly
T;,-type module, but the converse is not true in general, as the following example

shows:

Let M = Zg®Z, as Z-module. M is strongly T;,-type module, since M is the only t-
closed submodule in M and (0) is a complement of M, which is a fully invariant
direct summand. To show that M has not strongly C;;-condition. Let N =<
(2,0) >. The only submodules of M which have zero intersections with N are:
W=(0)®Z, and K =<(4,1) >={(4,1),0,0)},K; =< (0,0)>, W <® M and
NOW = 2)®Z, <. M, also K<®Mm and NOK=
31),(0,0),6,1),(2,0),0,1),(%0,(21),(60)} <es M, K; <® M

But N®K, = N £,sc M. As W <® M and K <® M, then by Lemma 4.2.2, W
and K are complement of N. But W is not a fully invariant in M (not stable in M)
since there existsf: W +— M defined by:f(0,1) = (4,1), f£(0,0) = (0,0). Hence
f(W) £ W. Also K is not a fully invariant in M (not stable in M) since there exists
g: K — M defined by g(0,0) = (0,0), g(4,1) = (0,1). Hence g(K) < K. Thus M

does not satisfy strongly C;;-condition.
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(2) It is clear that every strongly T,,-type module is T,;-type module. But the

converse may be not hold for example: Let M = Z&@Z as Z-module. Then M is T, -

VASYA
Z®(0)

type module by Corollary 4.1.8. Let N = Z&(0). Then % = =~ (0)Z which

Is nonsingular. Hence N is t-closed, but any fully invariant submodule W of M has
theformW =W NZ2)®(W N Z),so thatif WNZ +0,thenW NN # 0and W is
not a complement of N. If WnNnZ =20, then W =0and WGN =N %, M and
hence W is not a complement of N. Thus N has no fully invariant complement

which is a direct summand and hence M is not strongly T, -type module.

(3) The same example in part (2) M satisfies C;,-condition by Remarks and

Examples 4.1.3(5), but M does not satisfy strongly C;,-condition.

We can summarize these relations by the following diagram

Module has => =>
Strongly Ty 1- Ty1-

Strongly
C,,-condition <ﬁf= type module <ﬁ7= type module

Cy1-condition

Proposition (4.2.7): Let M be a nonsingular R-module. Then M satisfies strongly

C;1-condition module if and only if M is strongly T;,-type module.
Proof:= Itis clear.

< Let A < M. By [23, Exercise 13, P.20], there exists a closed submodule W of M
such that A <., W. Since M is nonsingular, W is a t-closed of M. Hence there
exists a fully invariant direct summand D of W in M such that WD <,,; M since

M is strongly T;;-type module. It follows that A®D <., W®D <., M. Thus
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A®D <., M such that D is a fully invariant. Thus D is a complement of A by

Lemma 4.2.2. So that M satisfies strongly C,;-condition. o

Proposition (4.2.8): Let M be a multiplication (hence if M is duo or fully stable).
Then

(1) M is T;,-type module if and only if M is strongly T;,-type module.
(2) M satisfies C;,-condition if and only if M satisfies strongly C;-condition

module.
We will give some properties of strongly T, -type modules.
Theorem (4.2.9): Consider the following statements for a module M

(1) M isstrongly T;,-type module;
(2) M=Z,(M)®M', where M’ is a fully invariant submodule in M and satisfies
strongly C,,-condition;

(3) For every submodule A of M , there exists a fully invariant direct summand D
of M such that A@D <;.; M.

(4) For every t-closed submodule C of M , there exists a fully invariant direct
summand D of M such that C®D <;.; M.

(5) For every t-closed submodule C of M, there exists a fully invariant direct
summand D of M such that C®D <., M.

Then (1),(3),(4) and (5) are equivalent, (2)=(5) and [(1) =(2) if ﬁ is fully

M

invariant of for each fully invariant submodule L of M containg Z,(M),.

Zr (M)
Proof: (1)=(5) Let C be a t-closed submodule of M. By condition (1) there exists a
complement D to C such that D <® M, D is fully invariant. Thus C®D <, M.

(3)= (1) Let C be a t-closed submodule of M. By hypothesis there exists a fully
invariant direct summand D of M such that C®D <., M. Let E be a complement of
C, then CNE =0 and COE <,,c M. We claim that C®D <,,, COE. Let
(CdD)NX = (0), where X < CHE. (CHAD)NX = (0) < Z,(M). Thus implies
X <Z,(M) since C®D <;,; M. But Z,(M) < C (since C is t-closed) hence X < C.
It follows that (C®D)NX =X = (0). Thus (C®D) <., CAE. It follows that
D <, E. However,D <® M so D is closed in M, which implies D = E that is E a
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complement of C, which is a fully invariant direct summand. Thus M is a strongly
T;,-type module.

(5) =(4) The implication is clear since every essential submodule is t-essential
submodule.

(4) = (3) Let A < M. By [10, Lemma 2.3], there exists a t-closed C of A such that
A <;.s C. By hypothesis, there exists a fully invariant direct summand D such that
C®D <;.,c M.But A <, C, we conclude that A®D <., C®D and hence

A®D <;.s M.

(2) =(5) Let C be a t-closed submodule of M. Hence by Lemma (1.1.27), Z,(M) <
Cand so C = Z,(M)®(CNM"). Moreover, CNM'is a t-closed submodule of M'by
Proposition 1.1.31(1). Since M’ satisfies strongly C;, condition, there exists a fully
invariant direct summand D of M’ such that ( NM") &D <., M’ by Proposition
424(3). But D<®M and M <®M, then D<®M and
CO®D = [Z,(M)B(CNM)]®D = Z,(M)B[(CNM"))DD] <55 Z,(M)YOM' = M.
Hence C®D <..; M, but D is fully invariant in M" and M’ is fully invariant in M.
Hence D is fully invariant in M.

(1) =(2) Since M is strongly T;,-type module and Z,(M) is a t-closed submodule
of M, there exists a complement M'to Z, (M) which is a fully invariant direct
summand, say M = L@M’. Since M’ is nonsingular, we have Z,(M) = Z,(L). But

Z,(MY®M' <., M since M'is complement to Z, (M), so by Proposition (1.1.17) %
IS Z,-torsion, thus L is Z,-torsion (since L = %). SoL =Z,(L) =Z,(M) and hence

L =Z,(M). Therefore, M = Z,(M)@®M’'. Now to show that M’ ~

ZM)

be a closed submodule of M so C is t-

C
Z(M)
closed in M and hence C is t-closed submodule of M by Lemma 1.1.27(3).But M is
a strongly T;,-type, so there exists a complement D of C in M which is a fully

invariant direct summand of M. Say M = D@D’ for some D' < M. Since Z,(M) =
/ = M p&D’ _ D D' Ao

{2 (Dieazz (D )_We_QEt M (M) Z(D)®Z,(D))  Z,(D) D zon — DOD". Cleary

DnD'=0and C®D <., M. But D, Z,(M) are fully invariant in M and by

+Z (M)

. D — . . . . —
hypothesis Zon D is fully invariant in M. o

satisfies strongly C;, condition. Let C=
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Remark (4.2.10): If an R-module M is fully stable and semisimple, then M satisfies

strongly C,;-condition module.

Proof: Let N < M, then N <® M, and so there exists W < M such that NQW =
M, hence W is a complement of N. But M is fully stable, so W is a fully invariant,

moreover W <® M. Thus M is strongly C;,-condition module. o
In Particular, Z, as Z-module satisfies strongly C;,-condition.

Proposition (4.2.11): If an R-module M is strongly t-semisimple, then M is a
strongly T, -type module.

Proof: By Theorem 1.2.3,M = Z,(M)®M’', where M’ is nonsingular semisimple
fully stable and M’ is stable in M'. But M’ is fully stable semisimple then M’is
strongly C;;-condition module by Remark 4.2.10. Hence M satisfies condition (2)
which implies condition(1) of Theorem 4.2.9. Thus M is a strongly T, -type module.

O
Theorem (4.2.12: Every strongly extending module is strongly T, ; -type module.

Proof: Let N be a t-closed submodule of M. Hence N is a closed submodule. As M
Is strongly extending, N is a fully invariant direct summand. Then M = N @W for
some W < M and so W is a complement of N. To see thislet W' <M and W' >
W and NONW' = (0), then M = NOW < NOW', so M =NAW' = NpW.
Assume x e W' then x =n+yneN,yeW <W' thenx—y=ne NNW' =
0, hence x —y = 0 impliesx =y € W. Hence W' = W, moreover W <® M, so W
is closed submodule and hence W is a fully invariant direct summand. Thus M is

strongly T;,-type module. o
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Proposition (4.2.13): If M is a strongly t-extending R-module, then M is strongly
T;,-type module and every complement to a nonsingular direct summand is fully

invariant direct summand.

Proof: Since M is strongly t-extending, then M = Z,(M)®M', M’ is strongly
extending module by Theorem 1.3.11. Hence, M’ is strongly T;;-type module by
Proposition (4.2.12). But M’ is nonsingular, so M’ satisfies strongly C;,-condition
module by Proposition (4.2.7). Thus M satisfies condition (2) of Theorem 4.2.9
which implies M is a strongly T,,-type module. Now let C be a complement of a
nonsingular submodule of M, so by Proposition 1.1.28(5<2) C is a t-closed
submodule of M. Hence C is a fully invariant direct summand of M by definition of

strongly t-extending. o

Note that if every complement of nonsingular submodule of an R-module M is
fully invariant direct summand then M is strongly t-extending, since by Proposition
1.1.28(5<>2) every t-closed is a complement of nonsingular submodule and so that
every t-closed submodule is fully invariant direct summand. Thus M is strongly t-

extending.

Proposition (4.2.14): LetM = M,®M,, M, is a fully invariant submodule in M.

The following conditions are equivalent:

(1) M, isastrongly T,,-type module;

(2) For every submodule A of M,, there exists a fully invariant direct summand D
of M such that M, < D and A@D <;.; M.

(3) For every t-closed submodule C of M,, there exists a fully invariant direct
summand D of M such that M, < D and C®D <;.; M;

(4) For every t-closed submodule C of M;, there exists a fully invariant direct
summand D of M such that M, < D and C®D <., M.
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Proof: (1) = (2) Since M, is strongly T;,-type module, then by condition (3) of
Theorem 4.2.9 for each A < M,, there exists a fully invariant direct summand D, of
M, such that A®D; <, M;.But D; <® M, implies that D = D;®M, <® M. Also,
D = D;®M, is fully invariant in M by Lemma 3.5.4(2). Moreover, A®D; <;.s M,
implies that (A®D,)®M, <,.c M\;®M, = M.Thus A®(D,BM,) <,.s M;that is
A®D <. M.

(2) =(3) It is obvious.

(3) =(4) For every t-closed submodule C of M,, there exists a fully invariant direct
summand D of M such that M, <D and C®D <;,c M. Then
COD +Z,(M) <,5s M by Proposition 1.1.17. But Z,(M) = Z,(M,)®Z,(M,). As
C is t-closed in M;, C 2 Z,(M;) by Lemma 1.1.27(1). Also as M, < D,then
Z,(M,) <Z,(D) <D. It follows that
COD + Z,(M) = CAD + Z,(M)DZ,(M,) = CO®D <, M.

(4) =(1) Let C be t-closed of M,. By condition (4) there exists a fully invariant
direct summand D of M such that M, < D and C®D <,,; M. But D is a fully a
invariant submodule in M implies, D = (D n M;)®(D N M,), such that D n M; is
fully invariant in M; by Lemma 1.1.39(ii) and D n M, = M, since M, < D, hence
D =(DnNM)®M,andD nM; <® M,.Now CAD = CH[(D N M))®M,] <,c M

= M;@®M, Hence [CA[(D N M;)]<.ss M;. Thus M, satisfies condition (5) of
Theorem (4.2.9), which implies M, is a strongly type -T;; module.o

Proposition (4.2.15): If L is a fully invariant direct summand of strongly T, ;-type
module, then

(1) L isastrongly T;;-type module.

(2) % Is strongly T, ,-type if M is self-projective.
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Proof: (1) To prove L is strongly T;;-type module. Let A be a submodule of L,
hence A is a submodule of M, and so by condition (3) of Theorem 4.2.9, there exists
a fully invariant direct summand D of M, such that A@D <;.; M. Hence (A®D) N
L <;.s L and so A®(D NL) <;,s L. On the other hand, D <® M implies M =
D@D’ for some D' < M. As L is a fully invariant submodule in M, L = (D n
L)®D' nL), where DnL is fully invariant in D,D'NL is fully invariant
submodule in D’ by Lemma 1.1.39(ii). Now DNL <® L and L <® M, imply
DNL <® M. But DNL is fully invariant in M since D and L are fully invariant in M.
Hence by Lemma 1.2.6, DNL is fully invariant in L. Thus L is strongly T;,-type.

(2)Let% be a t-closed submodule in % Then C is a t-closed in M. As M is strongly

T;,-type module there exists a fully invariant direct summand D of M such that
CHAD <.4; M by Theorem 4.2.9. Let M = D@D’ for some D' < M and since L is
fully invariant in M, L = ( DNL)®(D'NL) such that DL is fully invariant in D,

D@D’ D D' _ D+L D'+L

S 5

D'NL L L -

, . . . . , M _ -
D'NL is fully invariant in D'. Then . = onpeonD - bni

But it is easy to see that %@% <ess % .AsL <® M, L is closed and this implies

that CQ%D <ess % by [23, Proposition 1.4, P.18]. Thus %@# <ess % . On the other
hand, since D is a fully invariant submodule in M and, L is fully invariant in M, then
D@L is fully invariant in M. Hence % is fully invariant in % , by Lemma

1.1.41(2). Thus % is a fully invariant direct summand of % and%éB % <ess %

Therefore % Is strongly T;;-type module by Theorem 4.2.9(1<3). o

Corollary (4.2.16): If R is a commutative strongly T;,-type module and L <® R,

then g Is a strongly T, -type module.

Corollary (4.2.17): Let M be a multiplication strongly T;,-type module

and L <® M. Then % is strongly T, -type module, provided M is self-projective.
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4.3. Modules satisfy FI-C;4-condition and FI-T;-type Modules

In this section we generalize the concepts of modules satisfy C;,-condition and T, ;-
type modules by restricted the C;,-condition on fully invariant submodule and the
condition of T;;-type modules to fully invariant t-closed. We give some properties
of these concepts. Also we study their relationships between them and with FI-t-

semisimple modules.

Definition (4.3.1): An R-module M is said to be satisfies FI-C,,-condition if every

fully invariant submodule of M has a complement which is a direct summand.
Remarks and Examples (4.3.2):

(1) It is clear that every module satisfies C,;-condition also satisfies FI-C;;-
condition, but the converse is not true in general, for example. Let M = [[*Z as Z-
module, M is not C,;-condition [38,Lemma 3.4]. But M has only two fully invariant

submodules namely, M and (0). So that M satisfies FI-C,,-condition.

(2) Let M be a multiplication (or duo) module. Then M satisfies C,,-condition if
and only if M satisfies FI-C,,-condition.

In particular Every submodule of Z,, as Z-module is fully invariant and every
submodule of Z,, has a complement which is a direct summand. Thus Z,, satisfies
C,, condition and so satisfies FI-C,-condition.

(3) Every uniform module satisfies FI-C,;-condition. In particular, each of the Z-
module Q, Z,Z p satisfies FI-C;-condition.

(4) M =ZgPZ, satisfies C;;-condition so it satisfies FI-C,;-condition.
Proposition (4.3.3): Consider the following statements for an R-module M.

(1) M has FI-C;, -condition

(2)  For any fully invariant complement submodule L in M, there exist a direct
summand K of M such that K is a complement of L in M.

(3)  For any fully invariant submodule N of M, there exists a direct summand K of
M suchthat NN K = (0) and N®K <., M.
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(4) For any fully invariant complement submodule L in M, there exists a direct
summand K of M such that LN K = (0) and LK <., M.
Then (1)=(2)<=(4), (1)=(3)=(4), (4)=(1) if every fully invariant submodule has a

fully invariant closure.
Proof: (1) =(2) , (3)=(4) are obvious.
(1)<=(3) ,(2)<=(4) clear by Lemma 4.2.2.
(4)=(2) (if every fully invariant submodule has a fully invariant closure).

Let A be a fully invariant submodule of M. Then there exists a fully invariant closed
submodule B in M such that A <., B. By hypothesis, there exists a direct summand
K of M such that BN K = (0) and B&K <,,;c M.Hence by Lemma 4.2.2 K is a
complement of B in M. We claim that K is a complement of A. Assume U is a
submodule of M containK. Then UNnB+#0 and so UNBNA+#0, since
A <, B,thatisUN A # 0. Thus K is complement A. o

Definition (4.3.4): An R-module M is called a FI-T;;-type module if every fully

invariant t-closed submodule has a complement which is a direct summand.
Remark (4.3.5):

(1) Itisclear every module satisfies FI-C; ;-condition implies FI-T;,-type module,

but the converse is not true for examples.

(1) If R = Q[u, v] with the relation u? = v? = uv = 0. Then Ry, is T;,-type and
Ry does not satisfy C,;-condition [10, Example 2.2] and hence it is FI-T;-
type. As R is duo, so Ry does not satisfy FI-C;,-condition.

(i) Let M = M;®M, be a singular R-module. If M, is a fully invariant in M and
M, doesn’t satisfy FI-C;,-condition, then M doesn’t satisfy FI-C;-condition.
Proof: As M is singular, M is FI-T,,-type. Since M; doesn’t satisfy FI-C;;-
condition, there exists a fully invariant submodule N, of M, such that N; has no
complement which is a direct summand of M;. Assume M has FI-C;,-condition
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let N = N;@®M, then N is a fully invariant in M by Lemma 3.5.4(2), hence N
has a complement W which is a direct summand. Thus W n (N;®M,) = 0 and
so WNN;, =0, WnM,=(0), hence W<M,. It follows W <® M.
Moreover W& (N, ®M,) <.,.c M implies (W®N,)dM, <,.c M and so
W®N,; <.,5s M;. Thus W is a complement of N;, by Lemma(4.2.2) and hence
M; has FI-C;4-condition which is a contradiction.
(2)  Every singular module is T, -type, so it is FI-T;, type.
Recall that C is a t-closure, let M be a module. Then every submodule N of

M is contained in a t-closed submodule C of M, where N <;,, C ,wecall C isa
t-closure[10].

Theorem (4.3.6): Consider the following statements for an R-module M.

(1) M isFI-Ty;-type.

2 M=_Z,(M)®M' where M’ satisfies FI-C,,-condition.

(3) For every fully invariant submodule C of M there exists a direct summand D
of M such that C@®D <;.; M.

(4)  For every fully invariant t-closed submodule C of M, there exists D <® M
such that C®D <;.; M.

(5)  For every fully invariant t-closed submodule C of M , there exists D <® M
such that C®D <., M.

Then (3) =(1) <(2) < (5) <(4).[ (4) =(3) (if every fully invariant submodule has
fully invariant t-closure)]. Thus (1),(2),(3),(4) and (5) are equivalent if every fully

invariant submodule has a fully invariant t-closure.

Proof: (1) =(2) As Z,(M) is fully invariant t-closed, there exists M a complement
of Z,(M) which is a direct summand of M, say M = M'@L. Since M’ is
nonsingular, Z,(M) = Z,(L) < L. But M'® Z,(M) <,.c M, so M' <,.,c M by
Proposition (1.1.17). Thus % =~ [ is Z,-torsion and so Z, (L) = L, hence Z,(M) = L.
Thus M = Z,(M)®M'. Now to show that M ~ M' satisfies FI-C;-condition where
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M
Z(M)

M is nonsingular, C is t-closed, hence C is t-closed in M by Lemma 1.1.27(3). But

(o
Z>(M)

invariant in M by Lemma 1.1.40. Thus C is fully invariant t-closed submodule of M.

C
Z>(M)

M = and as

. Let C be a fully invariant closed submodule of M . Let C =

is fully invariant in M and Z,(M) is fully invariant in M, hence C is fully

But M is FI-T;,-type module, there exists a complement D to C in M, which is a
direct summand of M, say M = D@D’'. Since Z,(M) = Z,(D)®Z,(D"), we

M D D' = = . B A
PATIREAT @ZZ(D,) =D @D’ . It is clear that D n C = (0).

Also C®D <, M implies that C®D <,,c M and so by Proposition
1.1.17 C®D <, M. Thus M satisfies FI-C;; —condition by Proposition 4.3.3(4).

conclude that M =

(2)=(5) Let C be a fully invariant t-closed submodule of M. Hence Z,(M) < C and
soC =Z,(M)®eM')NC =Z,(M)B(CNM"). Hence CnM' is a t-closed
submodule of € and by Corollary 1.1.30(2) C n M’ is closed submodule of M'. But
C n M’ is fully invariant in M’, to see this. Let f: M’ +— M’, define g: M — M by

glx) = {f(x) x € M Now for all aeCnNnM',a€eCanda € M', hence
0 otherwise

g(a) = f(a) but g(a) € C since C is fully invariant in M, then f(a) € C. Also,
a € M' then f(a) € M'. Thus f(a) € CNM'. By Proposition 4.3.3(4), there exists a
direct summand D of M’ such that (C n M"Y®D <., M'. Hence D is a direct
summand of M, and C@®D = Z,(M)B(CNM")DBD <, Z,(M)BM' = M.

(5 =(4) It follows directly since every essential submodule is t-essential

submodule.

(4)=(3) Let A be a fully invariant submodule of M. By hypothesis, A has a fully
invariant t-closure say B. Hence by condition (4), there exists a direct summand D
of M such that B&D <., M. Since A <;.s B, then A@D <., B@®D by Proposition
1.1.22(2). Hence A®D <., M by Proposition 1.1.20(1).
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(3) =(1) Let C be a fully invariant t-closed submodule of M. By hypothesis there
exists D<®M such thatC®D <,, M. Since C®D <, M then
CODDZ,(M) <,c M. But Z,(M) <C, so CHD <, c M. As D<® M and

C®D <., M. Thus D is a complement of C which is a direct summand. o

Recall that t-extending module implies T;,-type module, we claim that M is FI-t-

extending implies M is FI-T;-type module. So we have.
Proposition (4.3.7): If M is a Fl-t-extending, then M is a FI-T,; -type module.

Proof: Let N be a fully invariant t-closed submodule of M. Since M is a FI-t-
extending, N is a direct summand of M; that is N@W = M for some W < M. Hence
W is a complement of N and W <® M. Thus M is FI-T;;-type module. o

Z Z
0 7

R®Z,(M) is Fl-t-extending R-module which is not t-extending [9, Example
2.10].Hence R®Z,(M) is FI- T;,-type module.

Example (4.3.8): Let R=( ) and M be an arbitrary R-module. Then

Proposition (4.3.9): Let M be a multiplication (hence if M is cyclic) over a
commutative ring R-module. Then M is FI-T;,-type module if and only if M is t-

extending module.

Proof: Since M is a multiplication (or M is a cyclic) R -module, M is duo. Hence M
Is FI-T;,-type if and only if M is T,,-type module. Then the result follows by [10,
Proposition 2.14]. o

Recall that every t-semisimple module implies is t-extending which implies T} -
type module. However every Fl-t-semisimple module is Fl-t-extending if condition
(*) hold by Proposition 2.2.6, where condition (*) : For an R-module, a

complement of Z,(M) is stable in M. The following is an analogous result.

Corollary (4.3.10): If M is Fl-t-semismple module and satisfies condition(*), then

M is FI-T;,-type module.
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Proof: by Proposition 2.2.6 M is Fl-t-extending. Hence the result follows directly
by Proposition (4.3.7). o

Theorem (4.3.11): Let M; and M, be two R-modules that satisfy FI-C;;-condition.
Then M = M; ®M, satisfies FI-C;,-condition.

Proof: Let N be a fully invariant submodule of M. Then N = N, &N, where N; and
N, are fully invariant in M;, M, respectively by Lemma 1.1.39(ii). As M; and M,
satisfy FI-C,,-condition, there exist W; < M;, W, < M, such that W; a complement
of N, and it is a direct summand of M,, W, is a complement of N, and it is a direct
summand of M,. As W, <® M, W, <® M,.Then W,®W, <® M. Moreover
(Wi@W,) N (N;@®N;) = (0) and (W @W,)B(N1®BN,) = (W ®N,)D(W,DN,),
but W, ®N,; <.,c M; and W,@®N, <,.; M, ,s0 that (W, @W,)B(N,;BN,) <.cc M.
Then by Lemma 4.2.2 ,W,;®W, is a complement of N;®N,. Thus M satisfies FI-

C;1-condition. o

Theorem (4.3.12): Let M; and M, be FI-T;,-type modules. Then M = M, ®M, is
FI-T, ,-type module.

Proof: Let N be a fully invariant t-closed submodule of M. As N is a fully invariant
in M.Then N = N;@®N, where N; is a fully invariant in M; and N, is a fully
invariant in M, by Lemma 1.1.39. As N is t-closed in M, then N, is t-closed in M,
and N, is t-closed in M,. But M; and M, are FI-T;,-type modules, so there exist
w, <® M, W, <® M, with W, is a complement of N; and W, is a complement of
N,. But W, <® M, and W, <® M, imply W <® M. Also, W, nN; = (0) , W, N
N, = (0) imply W n N = (0) and since W, ®N; <.,c M; and W,®N, <., M,, we
conclude that (W, ®@W,)®(N,®N,) = (W,®N,) ®W,DN, <., M. Thus W is a
complement of N by Lemma 4.2.2 which is a direct summand. Thus M is a FI-T,;-

type module. o
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4.4 Modules satisfy strongly FI-C44 condition and strongly FI-T4-type Modules

In this section, we extend the concept of module that satisfy FI- C;,-condition and
FI-T;,-type modules into modules with strongly FI-C;,; conditions and strongly Fl-
T;1-type modules. We establish many properties related with these concepts. Also, a

relationship between strongly FI-T; ;-type modules and Fl-extending is given.

Definition (4.4.1): An R-module M has (or satisfies) strongly FI-C,,-condition
module if for each fully invariant submodule N there exists a fully invariant direct

summand W which is a complement of N.
Theorem (4.4.2): Consider the following statements for a module M:

(1) M satisfies strongly FI-C;,-condition module;

(2) For any fully invariant complement submodule L of M, there exists a fully
invariant direct summand K of M such that K is a complement of L in M;

(3) For any fully invariant submodule N of M, there exists a fully invariant
direct summand K of M suchthat NN K = (0) and N®K <.4, M,

(4) For any fully invariant complement submodule L in M, there exists a fully
invariant direct summand K of M such that L N K = (0) and LK <, M.

Then (1)< (3)=(4), (1)=(2) =(4).((4)=(2) if every fully invariant submodule has

a fully invariant closure).
Proof: (1)=(2) and (3) =(4) are clear .
(1) <(3) and (2) =(4) are clear by Lemma 4.2.2.

(4)=(1) Let A be a fully invariant submodule , there exists B fully invariant closed
submodule such that A <., B. By condition (4) there exists a fully invariant direct
summand C such that B@C <.,;, M. But A <, B, then A®C <.,;, BOC.
Thus ABC <, M and by Lemma 4.2.3, C is a fully invariant complement.

Therefore M has strongly FI-C;-condition. o
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Remarks (4.4.3):

(1) Every module satisfies strongly FI-C;,-condition is a module satisfying FI-

C;,-condition. But not conversely as shown by the following example.

Let M = M;®M, be a singular R-module where M; and M, satisfy FI- C,;-
condition. If M, is a fully invariant submodule of M, then M doesn’t satisfy strongly

FI-C,,-condition.

Proof: M satisfies FI-C;,-condition by Theorem 4.3.11. Let N be a fully invariant
submodule of M, then N = (N n M;)®(N n M;), where N n M, is a fully invariant
in M; and N nM, is a fully invariant in M,. Set K = (N n M,)®M,. Then by
Lemma 3.5.4, K is a fully invariant submodule of M. Assume that K has a
complement K’ such that K’ is a fully invariant direct summand. Hence K' = (K n
M;)®(K N M,) where K nM; is fully invariant in M; and K n M, is a fully
invariant in M, by Lemma 1.1.39 : Since
KnK'=[(NnM,)n((KnM)]B[(M,n(KNnM,)]=(0). Hence KnM,=

End(M,) 0 )

(0), so K' = (K n M;)®(0). Beside this End(M) = (Hom(Ml,Mz) End(M,)

Let fe€End(M), then f = (? ]9) f, € End(M,), f, € Hom(M,,M,), f; €

] N (K 0 M,y
End(M) f(K') = f (K %Ml) = (]]:2 g) (K T)M ) - (fZ(Kfn(M?) + })fg(O)> =

KnM)\ _ (KnM, . .
(Mz + 0) = ( M, ) < K', which is a contradiction. Thus K has no complement
which is a fully invariant direct summand and so M doesn’t satisfies strongly FI-

C,.-condition.

(2)Every module satisfies strongly C;;-condition implies module satisfies

strongly FI-C;-condition. But not conversely for example:

Let M = ZgBZ, as Zmodule. The only fully invariant submodules of M are
N; = (2)@22 Ny = (‘_L)@Zz , N3 =< ((_)» 6)’ Ny =M, Ns= ZSEB(G)’ Ne =
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(0)®Z,, N, = (2)®(0), Ng = (40(0). But, N;,N,, and N, are essential in M, so
that < (0,0) is a complement of each N;, N, and N, and so it is fully invariant direct
summand. Also, N, is a complement of N;. But N; is a complement of Ny and Ny is
a complement of N5 and each of them are fully invariant direct summand. Ny is a
complement of N, which is a fully invariant direct summand also N, Is a
complement of Ng which is a fully invariant direct summand. Thus M satisfies
strongly FI-C;,-condition. But it doesn’t satisfy strongly C;,-condition by Remarks
4.2.6(1).

By restricting the definition of modules have strongly FI-C;,-condition to fully

invariant t-closed submodule, we introduce the following.

Definition (4.4.4): An R-module M is to be strongly FI-T;;-type module if for each
fully invariant t-closed submodule N of M, there is a complement of N which is

fully invariant direct summand.
Remarks (4.4.5):

(1) Every module that satisfies strongly FI-C,;- condition implies strongly FI-T;,-

type module. But the converse is not true for example:

Let M = M, @M, be a singular R-module such that M; does not satisfies strongly
FI- C,;- condition and M, is a fully invariant submodule of M is strongly FI-T;-

type and does not satisfy strongly FI-C;,-condition.

Proof:M is strongly FI-T;;-type since it is singular. As M; does not satisfy strongly
FI-C;,-condition, there exists a fully invariant submodule N; of M, such that N; has
no complemented which is a fully invariant direct summand. Assume M satisfy
strongly FI-C,;-condition. Let N = N;@®M, . Then by Lemma 3.5.4, N is a fully
invariant submodule of M and hence N has a complement W such that W/ is a fully
invariant direct summand of M. As W is a fully invariant submodule of M, W =
W, ®W, , where W; is a fully invariant in M; and W, is a fully invariant in M, by
Lemma 1.1.39(ii). It follow that W n (N;@®M,) = (0) and so W; nN; =0 and
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WZ N Mz == 0 == WzAS W@(N]_@Mz) SESS M, then Wl@Nl Sess Ml' AISO, as
W =W, ®(0) <® M, then W, <® M,. Thus W, is a complement of N; by Lemma
4.2.3 which is a fully invariant direct summand of M,. But this is a contradiction

since M, hasn’t strongly FI-C;,-condition.

(2) Every strongly FI-T;;-type module is FI-T;;-type. But not conversely for

example:

Let M = MM, where M, and M, are FI-T;,-type modules and M, is a fully

invariant submodule of M. Then M, is not strongly FI-T;,-type module.

Proof: Since M; and M, are FI-T,,-type module, M is a FI-T;,-type module by
Theorem 4.3.12. Let N be a fully invariant t-closed submodule of M. As N is fully
invariant in M, then N = (N n M,)®(N n M;) where N n M, is fully invariant in
M; , N n M, is fully invariant in M, by Lemma 1.1.39(ii). Also, since N is t-closed
in M, N n M, is t-closed in M; and NN M, is t-closed in M, . Set K=(Nn

_ _ . M M®M,
M;)®M,. Then by Lemma 3.5.4, K is a fully invariant in M and AT A

My
NNM,

which is a nonsingular so by Proposition 1.1.28, K is a t-closed in M. Assume

K has a complement say W in M such that W is a fully invariant direct summand of
M. 1t follows that W = (W n M;)®(W n M,). Since K nW = (0) we conclude

that wWnM, =0 and SO W =W nM,) &(0). But
d 1 1

End(M) = (Hfﬁ(zﬁmz) End(zMz)) Let f € EndM, then = (;2 }93) fi €

End(M,), f, € Hom(My, M,), f3 € End(My).f (W) = f (W %Ml) =

(awam) = ("

contradiction. Thus K has no complement which is a fully invariant direct summand

) < W, hence W is not fully invariant in M. Which, is a

and so M doesn’t satisfies strongly FI- T, ;-type.
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(3) Clearly every strongly T;,-type is strongly FI-T;;-type. But not conversely
for example: Let M = Z&®Z as a Z-module. M is not strongly T,,-type module by
Remarks 4.2.6(2). If N is a fully invariant t-closed of M. As N is a fully invariant in
M,N=(NnZ)®(NnZ) by Lemma 1.1.39(ii). Also, since N is t-closed then
N n Z isat-closed in Z, but Z has only t-closed namely Z, 0. Thus either N n Z=0 or
NnZ=Zandso N=(0)or N=M.If N=(0), then M is a complement of N
which is a fully invariant direct summand. If N = M, then (0) is a complement of N

which is a fully invariant direct summand. Thus M is strongly FI-T,;-type module.

We can summarize these remarks by the following diagram

Module has
Strongly
Cy1-condition

Strongly T;1-
type module

=>

I

Module has
Strongly Fi- C;1-
condition

t

<—=

Strongly FI-
T;1-type module

=>

—+

Module has FI-
Cy1-condition

=>

FI —Tj;-
type module

===

Theorem (4.4.6): Consider the following statements for an R-module M.

1)
(2)

C;1-condition;

(3)

M is a strongly FI-T,,-type module;

direct summand D of M such that A®D <;.; M,

(4)

invariant direct summand D of M such that C®D <;.; M;

()

invariant direct summand D of M such that C®D <., M.

146

M = Z,(M)®M', where M is a fully invariant in M and satisfies strongly FI-

For every fully invariant submodule A of M, there exists a fully invariant

For every fully invariant t-closed submodule C of M, there exists a fully

For every fully invariant t-closed submodule C of M, there exists a fully




Chapter Four Certain types of Modules Related with types of T-semisimple Modules

Then (2) =(5B) =@), ) =Q)=(5) and [(4) =(3) if every fully invariant
submodule has a fully invariant t-closure] that is (1),(3),(4) and (5) are equivalent if

every fully invariant submodule has a fully invariant t-closure.

L)=(2) if #M) is fully invariant submodule in M for each fully invariant

submodule L of M, L 2 Z,(M) and every fully invariant submodule has a fully

invariant t-closure.

Proof: (1)=(2) Since Z,(M) is a fully invariant t-closed, there exists a fully
invariant direct summand M’ of M such that M’ is a complement of Z, (M) in M, say
M = L@M' for some L < M. Since M’ is nonsingular, so Z,(M) =Z,(L) < L.

M

But Z,(M)®M' <,.; M, hence M’ <;,. M and so v Is Z,-torsion. Thus L is a Z,-

torsion which implies that Z,(L) = L and Z,(M) = L. Thus M = Z,(M)®M'. Now

C
Z> (M)

to prove M’ =~ satisfies strongly FI-C;;-condition. Let C = be a fully

Z>(M)
c

invariant t-closed and so C is a t-closed in M and as Z00)
2

is fully invariant and

Z,(M) is fully invariant, we have C is a fully invariant t-closed in M. But M is
strongly FI-T,-type, there exists a fully invariant direct summand D of M, which is

a complement of C say M=D@D' for some D'<M. since

M D@D’ _ D @ '
Z,(M)  Z,(D)®Z,(D')  Zy(D) ~ Z,(D")

Z,(M) =Z,(D)®Z,(D'), we get M=

D®D'. It is clear that DN D’ =0 and CHD’ <,,c M. But D, Z,(M) are fully

D+Z,(M)
Zo(M)

1
S

invariant in N, so D + Z,(M) is fully invariant in M and by hypothesis

is fully invariant in M. Thus M is strongly FI-C;;condition by Theorem
4.2.2((4)=(1)).

(2)=(5) Let C be a fully invariant t-closed submodule of M. Hence Z,(M) < C . As
M=Z,(M)®M', then C=Z,(MB(CNM") and CnM' is a fully invariant
submodule of M, since C and M’ are fully invariantin M. ButC nM' < M’ <® M,

hence by Lemma 1.1.40(2), € n M’ is a fully invariant in M'. As M’ has strongly
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C;,-condition, there exists a fully invariant direct summand D of M’ such that
(CNMH®D <, M'. On other hand, as D <® M’ and M’ <® M, we get D is
adirect summand of M and C®D = [Z,(M)®(C NnM")]|®D =Z,(M)D[(C N
M"®D] <.sx Z,(M)®M' = M; thus C®D <., M. But D is a fully invariant
submodule of M" and M’ is a fully invariant in M, hence D is fully invariant in M by

Proposition 1.1.38.
(5)=(4) It is clear(since every essential is t-essential).

(4)=(3) Let A be a fully invariant submodule of M. Then there exists a fully
invariant t-closed C of M such that A <;. C by [20, Lemma 2.3].

By condition (4) there exists a fully invariant direct summand D such that
CO®D <;.c M. But A <;,; C, so we concluded that A®D <., C®D and hence
A®D <,,s M.

(3)=(1) Let C be a fully invariant t-closed. By condition (3) there exists a fully
invariant direct summand D such that C®D <;,;, M. We claim that D is a
complement of C. Assume E is a complement of C, so CNnE =(0) and
COE <,s M. Let X <CHEand (CAD)NX = (0) < Z,(M).Hence X < Z,(M)
(sinceCHD <;.,c M).But Z,(M) < C,so X < C. It follows that (C®D) n X = (0).
Thus C®D <., COE which impliesD <., E. As D is a closed in M since
D <® M. It follows that D = E. Thus D is a complement of C which is a fully

invariant. Hence M is strongly FI-T;-type module.

(1)=(5) Let C be a fully invariant t-closed submodule of M. By condition (1) there
exists a fully invariant direct summand D of M such that D is a complement of C.
Hence C®D <., M so CAD <;. M and D is a fully invariant direct summand of
M.

(5)=(1) Itisclear by Lemma 4.2.2. o
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Proposition (4.4.7): Let M = M, @®M,, M, is fully invariant submodule in M and
every fully invariant submodule of M; has a fully invariant t-closure. Then the

following assertions are equivalent.

(1) M, isastrongly FI-T,,-type module;

(2) For every fully invariant submodule A of M,, there exists a fully invariant
direct summand D of M such that M, < D and A®D <;.; M;

(3)  For every fully invariant t-closed submodule C of M; there exists a fully
invariant direct summand D of M such that M, < D and C®D <., M,

(4)  For every fully invariant t-closed C of M, there exists a fully invariant direct
summand D of M such that M, < D and C®D <., M .

Proof: (1)=(2) Since M, is strongly FI-T;,-type, then by condition (3) of Theorem
4.4.6 for each fully invariant submodule A of M,, there exists a fully invariant direct
summand D; of M; such that A®D; <,.; M;. As D; <® M,, then D, ®M, <® M.
Also, D = D;®M, is fully invariant in M by Lemma 3.5.4(2).But A®D; <;.c M,
implies (A®D,)®M, <;.c M\;BM, = M. Thus A®D <;.;, M

(2)=(3) ltisclear.

(3)=(4) For every fully invariant t-closed submodule C of M,, there exists a fully
invariant direct summand D of M such that M, <D and C®D <;.,, M . Then
CHD +Z,(M) <,5s M by Proposition (1.1.17). But Z,(M) = Z,(M,)®Z,(M,) and
as C is t-closed in M;,C 2 Z,(M,). Also as M, < D, then Z,(M,) < Z,(D) < D.It
follows that C®D + Z,(M) = C®D + Z,(M,)®Z,(M,) = COD <,;x M.

(4)=(1) Let C be a fully invariant t-closed of M;. By condition (4) there exists a
fully invariant direct summand D of M such that M, < D and C®D <,,; M. But D
is a fully invariant submodule in M implies, D = (DNM;)®(DNM,), such that
DM, is fully invariant in M; and DN M, is fully invariant in M,. But DNM, = M,
since M, <D. Hence D= (DNM)®M, and DNM,; <® M;.Now CHD =
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CO[(DNM)BM,] <,os M = M;DM,. Hence,[CA[(DNM;)] <.ssc M;. Thus M,
satisfies condition (5) of Theorem (4.4.6), which implies that M, is strongly type-T;,

module. o

Proposition (4.4.8): If M is strongly FI-T;,-type and L is a fully invariant direct

summand of . Then

(1) L is strongly FI-T,,-type; provided every fully invariant submodule has a fully

invariant t-closure.

(2) % is strongly FI-T,,-type (provided M is self-projective).

Proof: (1) To prove L is strongly FI-T;,-type module. Let A be a fully invariant
submodule of L. As L is fully invariant in M, then A is a fully invariant submodule
of M. Hence by Theorem 4.4.6(3) there exists fully invariant direct summand D of
M such that A@D <;.,; M. Hence (A®D)NL <;,c L and so AB(D N L) <;ps L.
Let M = D@D’ for some D' < M.L=(DnL)®D'" nL), where DN L is fully
invariant in D, D'NL is fully invariant submodule in D' . But D nL is fully
invariant in D and D is fully invariant in M, so D n L is fully invariant in M. But
L<® M,and DN L <LsoDnLisfully invariant in L by Lemma 1.1.40(2). Thus
D n L is fully invariant direct summand in L and A®((D N L) <;es L. Thus L is
strongly FI-T;,-type by Theorem 4.4.6(3).

(2)Let% be a fully invariant t-closed submodule in % Then C is a fully invariant t-

closed in M. As M is strongly FI-T,;-type module there exists a fully invariant direct
summand D of M such that C®D <., M by Theorem 4.4.6(5). Let M = D@D’ for
some D' < M and since L is fully invariant in M, L = ( DNL)®(D'NL) such that

. . o , . . ey M _ D@D’ -
DNL is fully invariant in D, D'NL is fully invariant in D’. Then L = onnewnn

D D' D+L . D'+L . C . D+L M
~ —h—< . — <®
o =T O/ But it is easy to see that O <ess - ASL<UM, L

Is closed and this implies that CQ%DSQSS% by [23,Proposition1.4,P.18]. Thus
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%EB% <ess % . On the other hand, since D is a fully invariant submodule in M

and, L is fully invariant in M, then D@L is fully invariant in M. Hence % is fully
invariant in % (since M is self-projective) by Lemma 1.1.41(2). Thus % is a fully

. . . M C D+L M M .
invariant direct summand of T andzea — Sess T Therefore T IS strongly FI-T;;-

type module by Theorem 4.4.6(1<5). o

Proposition (4.4.9): Let M be a Fl-extending such that every closed submodule is

fully invariant. Then M is strongly FI-T;, -type.

Proof: Let N be a fully invariant t-closed. Then N is a fully invariant closed
submodule. Hence N <® M since M is Fl-extending. Say N®W = M, hence W is a
complement of N.Then by hypothesis, W is a fully invariant. Thus M is strongly FI-
T;1-type. O

4.5 Modules satisfy purely C;4-condition and purely T;,-type modules

In this section, we generalize modules that satisfy C;;-condition and T;,-type
modules into modules satisfy purely C,;,-conditions and purely T,;-type modules.

We study these concepts and their connections with purely t-semisimple modules

Definition (4.5.1): An R-module M is said to be satisfies purely C,,-condition if

every pure submodule of M has a complement which is a direct summand.
Remarks and Examples (4.5.2):

(1) Every module satisfies C;,-condition has purely C;,-condition, but the
converse is not true see (4)

(2) Every purely semisimple module (every pure is a direct summand) satisfies
purely C,;-condition. In particular every Noetherain projective module (or every
divisible module over principle ideal domain) is purely semisimple by Remarks and

Examples 3.1.3(6, 7) hence satisfies purely C,;-condition. In particular it is clear that
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M =7Z;BZ; as Zs,-module is Noetherain and it is projective by[25,Corollary
8.2.8(c)] so M satisfies purely C;,-condition. Not that M is not pure simple.

(3) Every pure simple module satisfies purely C;;-condition but not conversely.
(4) Every pure simple module and not uniform satisfies purely C,,-condition and
doesn’t satisfies C,;-condition.

Proof: Since M is a pure simple, then M is an indecomposable. Hence M is an
indecomposable and not uniform and M doesn’t satisfy C;;-condition by [38,
Proposition 2.3 (iii)]. However M satisfies purely C;;-condition since M is pure
simple. o

Proposition (4.5.3): Consider the following statements on M.

(1) M satisfies purely C;,-condition;

(2)  For any pure submodule L of M, there exists K <® M such that K is a
complement of L;

(3)  For any pure submodule N, there exists D <® M such that N n D = (0) and
NOK <. M;

(4)  For any pure complement L < M, there exists K <® M such that K NL =
(0), KOL <eq5 M.

Then (1)<=(2)<=(3) ,(2)=(4) and (4)=(2) if every pure submodule has pure closure.

Proof: (1) <(3), (1) <(2) and (2) =(4) are clear.

(4)=(1) (If pure submodule has pure closure). Let N be a pure submodule, there
exists W (closed pure) such that N <., W. By condition (4), there exists K <® M
such that KNnW = (0), KW <., M, then KGN <., KEW <., M. Hence
K <® M and K®N <, M so K is a complement of N. By Lemma 4.2.2. 0

Proposition (4.5.4): If M is purely t-semisimple and nonsingular module. Then M

satisfies purely C;;-condition.

Proof: Let N be a pure submodule of M. Since M is nonsingular, N is nonsingular
submodule of M. Hence by Theorem 3.2.8(1=4), N <® M, so that M = N®K for
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some K < M. It follows that K is a complement direct summand of N. Thus M is

purely C;,-condition. O

Proposition (4.5.5): Let M be a distributive module which satisfies purely C;;-

condition. Then a pure submodule N of M satisfies purely C;;-condition.

Proof: Let W be a pure submodule of N. As N is pure in M, so W is pure in M. But
M satisfies purely C,;;-condition, implies there exists K <® M such that K is a
complement of W. ThenK@®W <, M, (K®&W)NN<, ., MNN=N, so
W®(KNN) <, N, toprove KNN <® N. Since KOK' = M for some K' < M ,
then N = (K®K')NnN = (KN N)®B(K' nN) because M is a distributive module

hence K N N <® N. Thus N has purely C;;-condition. o

Corollary (4.5.6): Let M be a distributive module and satisfies purely C;,-condition

.Then a direct summand of M is purely C,,-condition.
Now we introduce the following.

Definition (4.5.7): An R-module M is called purely T,,-type if every pure t-closed

submodule of M has a complement which is a direct summand.
Remarks (4.5.8):

(1) Every modules satisfies purely C;,-condition is purely T, ;-type module.

(2) Every T,,-type module is purely T;,-type module.

(3) Every pure simple is purely T;;-type module, but not conversely for
example: Zg®Z, as Z-module is purely T;;-type module but it isn’t pure

simple.

Proposition (4.5.9): If M is a purely T;;-type module and M is purely t-extending,
then M is T;;-type.
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Proof: Let N be a t-closed submodule. Since M is purely t-extending, N is pure
.Hence N is pure t-closed, but M is purely T;,-type, so N has a complement W

which is a direct summand. Thus M is T, -type. O

Proposition (4.5.10): Let M be a purely t-semisimple such that complement of

Z,(M) is pure. Then M is purely T, -type.

Proof: Let N be a pure t-closed submodule of M. Hence N 2 Z,(M) and so by
Theorem 3.2.8(5),N <® M, say N®OW =M for some W <M. Thus W is a

complement of N, which is a direct summand and M is purely T, -type module. 0

Corollary (4.5.11): Let M be a purely t-semisimple such that complement of Z, (M)

Is direct summand. Then M is purely T, ,-type.
Theorem (4.5.12): Consider the following assertions for an R-module M.

(1) M ispurely T;,-type;

2 M=Z,(M)®M' where M’ is nonsingular, satisfies purely C,,-condition;

(3)  For each pure submodule A of M, there exists a direct summand D of M such
that A®D <;.s M;

(4)  For any pure t-closed submodule C of M, there exists a direct summand D
such that C®D <;.; M;

(5)  For any pure t-closed submodule C of M, there exists D <® M such that
CAD <, M.

Then (2)=(5)=4) , Q)=1)=(5), (1)=(2) if Z,(M) is pure and every t-closure
of pure is pure, (1)=(3) if every t-closure of pure is pure, and (1)=(4) if M is

nonsingular.

Proof: (2)=(5) Let C be a pure t-closed submodule M , so that C 2 Z,(M). As
M =Z,(M)®M' |, then C =Z,(M)®(C nM"). Hence (C n M") is pure in C and
hence (C N M") is pure in M (since C is pure in M) and as (C N M") < M’ then
(CnM")is pure in M'. Moreover, by Proposition 1.1.31(1) (C n M") is t-closed in
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M’'. But M’ is purely C;;-condition, so there exists D <® M’ such that (C n
MY®D <, M'. Then
COD = [Z,(M)B(C NM'|®D = Z,(M)B[(C BNM"YPD] <55 Z,(MOM' = M.

Beside this D <® M’, then D <® M. Thus condition (5) hold.

(5)=(4) Itis clear.

(3)=(1) Let C be a pure t-closed submodule of M. By hypothesis, there exists
D <® M such that C®D <,,; M. We claim that D is a complement of C. Assume
that, there exists E 2 D and E is a complement of C. Let X < C®E and (CHD) N
X=(0)<Z,(M).Hence X <Z,(M) (since CHD <;,x M). But Z,(M) <C, so
X <C and hence (C®AD)NX =X =0, thus CHD <., CHE and so D <, E.
But D <® M, sothat D = E. Thus D is a complement of C.

(1)<=(5) It follows directly.

(1)=(2) As Z,(M) is pure t-closed, there exists M’ <® M, M’ is a complement of
Z,(M), then M = L@M’'. Since M’ is nonsingular, Z,(M) = Z,(L) < L. But

Z,(MYBM' <, M implies Mﬂz L is Z,-torsion, hence Z,(L) =L. Thus M =

!

Z,(M)eM' ,M' ~ p 'Zw) = M. To prove M’ satisfies purely C;;-condition. Let
2
C = ¢ be a pure closed (t-closed) in M . Hence C is pure t-closed in M. Since
Z, (M) Zy(M)

M is purely T,,-type, there exists a complement D of C, D <® M, say M = D@®D’.
As Z,(M) = Z,(D)®Z,(D"). We get M = D@®D’. It is C n D = (0). Beside these
COHD <,,; M implies CAD <,,; M and so CHD <,,, M. Thus M satisfies purely
C;1-condition by Theorem 4.5.3((4)=(1)).

(1)=(3) Let A be a pure submodule. Then there exists a t-closure B of A(A <;.s B
and B is t-closed by [10, Lemma 2.3]. Also, B is pure by hypothesis. Thus B is pure
t-closed. Since M is purely T,;;-type, there exists D <® M such that D@®B <,,; M.
Hence D®B <;.; M and so D®A <. D®B (since A <;.s B). Thus DPA <;.; M.
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(4)=(1) Itis easy. O

Theorem (4.5.13): Let M be a finitely generated faithful multiplication over
commutative ring R which is purely T, ,-type. Then M is purely T, -type.

Proof: Let N = MI be a pure t-closed of M. Then I isa purein R. To prove I is at-
closed inR. Let] <;.s J, then MI <;.; M] by Proposition 1.1.25(4). Hence MI =
M], but M is finitely generated faithful multiplication so by [19, Theorem 3.1]

I =] .But I is a pure t-closed in R and R is purely T,,-type ring imply that there
exists a direct summand, J of R such that I®] <., R. Then by [19, Theorem 2.13]
MI®)) <.ss M, 50 MI®M] <, M and as ] <® R implies M] <® M, hence M] is

a complement of N = M1 which is a direct summand. Thus M is purely T;-type. O

Proposition (4.5.14): Let M be a finitely generated faithful multiplication over a
regular ring R. If M is T,,-type (purely T,,-type) then R is T,,-type (purely T;;-
type).

Proof: Let I be a t-closed ideal of R. Let N = MI, then MI <,. M, since if
MI <;.s M], then I <,.s ] by Lemma 1.1.25(4), so I =] and MI = MJ. Thus
MI <, M. As M is T,,-type, there exists W = M] <® M and N®W <., M. But
W =MJ] <® M, implies ] <® R and N@W = MI®M] = M(I®]) <..s M implies
1] <.ss R by[19,Theorem 2.13]. Thus R is Ty -type.

The second case is similarly. o
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4.6 Modules satisfy Strongly purely C;4-condition and strongly purely T,,-type Modules

In this section, we generalize modules satisfy C;,-condition and T;,-type modules
into modules satisfy strongly purely C;,- conditions and strongly purely T,;-type

modules. We study these concepts and many properties related with these concepts.

Definition (4.6.1): An R-module M has strongly purely C;,-condition if every pure

submodule has a complement which is a fully invariant direct summand.
Remarks and Examples (4.6.2):

(1) Every module satisfies strongly purely C;,-condition implies module satisfies
purely C;,-condition, but the converse may be not hold, as the following example
shows.

Let M = Zg®Z, as Z-module. M is a direct sum of uniform modules, so M has
C;;-condition by Remarks and Examples 4.1.3(5) and hence M has purely Cy4-

condition.

Let N =< (1,1) >= {(1,1),(2,0),(3,1),(4,0),(5,1),(6,0),(7,1),(0,0)}. N is a
pure submodule of M. However there are only W, =< 4,1 >= {(4,1),(0,0)} and
W, = (0)®Z, = {(0,0),(0,D},W; = {(0,0)}suchthat NnW; =NNW, =Nn
W5 = 0.ButNew,; =
{@,1,)(5,0),(2,0),(6,1),3,1),(7,0),(40),(0,1),(5,1),
,(1,0),(6,0),(2,1),(7,1),3,0), (& 1), (0,0)}=M. Hence W,

is a complement direct summand of N, however W, is not fully invariant
submodule of M, since if we define f:W, — M by f(4,1) = (0,1), f(0,0) =
(0,0), f is a Z-homomorphism and f(W;) < W;.

Now,
N@WZ -
{(1,1),(2,0),(3,1),(4,0),(51),(6,0), (7,1),(0,0), (1,0), (2, 1),(3,0), (4, 1),
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(5,0), (6,1),(7,0), (0,1)} =M <, M. Hence W, is a complement direct
summand in M of N but W,is not fully invariant submodule of M since if we
define f: W, — M by £ (0,1) = (4,1), £(0,0)=(0,0), then f is a Z-homorphism.
But f(W,) £ W, hence W, is not fully invariant. Also, N®W, = N <® M, but
N £,.s M,s0 W5 is not a complement of N. Thus N has no complement which is
fully invariant direct summand of M. Therefore M does not satisfy strongly purely

C;1-condition.

(2) M=2Z,®Z, as Z-module is purely C;;-condition but doesn’t satisfy strongly
purely C;,-condition.

(3) If M is purely fully stable. M is purely C;,-condition if and only if M has
strongly purely C,-condition.

(4) If M is weak duo( hence if M is multiplication or duo). M has purely Cy;-
condition if and only if M has strongly purely C;;-condition.

(5) If M is an R-modules (every pure submodule is fully invariant) then M has

purely C;,-condition if and only if M has strongly purely C;,-confition.

Theorem (4.6.3): Let M be a finitely generated faithful multiplication over

commutative ring R. Then the following statements are equivalent:

(1) M is purely C;,-condition;

(2) R ispurely C,,-condition;

(3) R isstrongly purely C,;-condition.
(4) M isstrongly purely C,,-condition.

Proof: (1)=(2) Let I be a pure ideal of R. Then MI is a pure submodule of M. Since
M has purely C;,-condition, there exists W <® M such that W is a complement of
MI, W = M] for some ideal J of R, since M is a multiplication module. Thus
W®K = M forsome K < M, let K = MT for some ideal T of R. Hence MJ®MT =
M, which implies J@®T = R; thatis ] <® R. Beside this W = M] is a complement of
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MI, implies MJ@MT <., M and by [19,Theorem 2.13], J®T <., R. Thus I has a

complement J which is a direct summand.

(2) =(1) Let N be a pure submodule of M. As M finitely generated faithful
multiplication N = M1 for some pure ideal I of R. But R has purely C;,-condition,
there exists J (a complement of I) and J <® R. Hence J®I <., R. Hence by [19,
Theorem 2.13] MJ®MI <,,c M. As ] <® R, then J@®T = R for some T <R and
M(®T) =M, so MJ®OMT = M that is M] <® M. Thus MJ is a complement of
MI = N and MJ <® M. Thus M is purely C,,-condition.

(2) =(3) and (1) < (4) are clear by Remarks and Examples 4.6.2(4). o
Next we have
Proposition (4.6.4): Consider the following statements for an R-module M:

(1) M satisfies strongly purely C,,-condition;

(2) For any pure complement submodule L in M, there exists a fully invariant
direct summand K of M such that K is a complement of L in M;

(3) For any pure submodule A of M, there exists a fully invariant direct summand
B of M suchthat An B = (0) and A®B <., M,

(4)  For any pure complement submodule L of M, there exists a fully invariant
direct summand K of M such that L N K = (0) and LK <., M.

Then (1) < (3) ,(2)=(4), (1)=(2), (4)=(1) if every closure of pure submodule is

pure .
Proof: (1) < (3) and (2) <(4) are clear.

(1)=(2) Let N be a pure complement submodule. By condition (1) N has a fully

invariant complement W which is direct summand in M.

(4)=(1) Let A be a pure submodule of M, so there exists a closed pure submodule

such that A <., B by hypothesis. As B is pure complement, there exists K <® M
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and K is fully invariant such that BN K = (0),B ®K <., M. Hence K is a
complement fully invariant of B. As A<B,ANK<BnK=(0). But
ABK <,.c BOK <, M, so A®K <, M and K <® M. Hence K is a fully

invariant complement of A. o

By restricting the condition of modules satisfy strongly pure-C;;-condition in to

pure t-closed submodules, we give the following:

Definition (4.6.5): An R-module M is called strongly purely T;,-type module if
every pure t-closed submodule has a complement which is a direct summand and

fully invariant.
Remarks and Examples (4.6.6):

(1) M =_Zg®Z, as Z-module. M is the only pure t-closed submodule of M, there
exists (0,0) <® M such that {(0,0)} is fully invariant submodule and {(0,0)} is a
complement of M . Thus M is strongly purely T;,-type.
(2) Itis clear that every module satisfies strongly purely C;,-condition is strongly
purely T, ,-type but converses is not true for examples:
() M =_Zg®Z, as Z-module is strongly purely T, by part (1), and it does not
satisfy strongly purely C,,-condition by Remarks and Examples 4.6.2(1).
(y M=12Z,8Z, as Z-module. M is singular, so M is the only pure t-closed.
Thus M is strongly purely T;;-type. But N =Z7Z,8(0), N has a
complement W = (0©Z,) <® M. But W is not fully invariant. Thus M is
not strongly purely C;,-condition. Hence strongly purely T, -type need not
be strongly purely C;;-cnodition. O
(3) Let M be a multiplication (hence if M is duo or fully stable) M is purely T;;-
type if and only if M is strongly purely T; ;-type.
(4) M is pure simple then M is strongly purely T, -type.
(5) M isstrongly T, ,-type implies strongly purely T;,-type.

We can summarize these relations by the following diagram
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Module has <=
Module has => Strongly purely
purely Cy1-
" Strongly purely Ty1-
condition o
Cy1-condition i tvoe module

t

Module has
Strongly C;4-
Condition

1

Module has Strongly,
T;1-type module

Proposition (4.6.7): Let M be a nonsingular. If M is strongly purely t-semisimple,

then M is strongly purely C,;(hence strongly purely T, -type).

Proof: Let N be a pure submodule of M. Since M is nonsingular, so N is

nonsingular. Hence by Theorem 3.4.6(1—3), N is a fully invariant direct summand,

say M = N@W for some W < M. As W <® M, W is a pure submodule. Also, W is

nonsingular and so again by Theorem 3.4.6( 1—3), W is a fully invariant direct

summand. On the other hand, W is a complement of N. Thus M is purely C;;-

condition. o

Remarks (4.6.8):

(1) Let M be a purely fully stable. Then M is purely T,;-type if and only if M is

strongly purely T, ,-type.

Proof: It is clear. o

(2) Let M be a regular R-module (every submodule is pure). Then

(I) M is Ty, -type if and only if Mis purely T;,-type.

(I1) M is strongly T, -type if and only if M is strongly purely T, -type.

(111) M is strongly C,;-condition if and only if M is strongly purely C,;-condition.

Theorem (4.6.9): Consider the following statements for an R-module M:

(1) M isstrongly purely T;,-type;
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(2) M=Z,(M)®M’', where M’ is nonsingular strongly purely C;;, M’ is fully
invariant submodule of M,

(3) For every pure submodule A of M, there exists a fully invariant direct
summand B of M such that A®B <;.; M;

(4) For every pure t-closed submodule C of M, there exists a fully invariant direct
summand D of M such that C®D <., M;

(5) For every pure t-closed submodule C of M, there exists a fully invariant direct
summand D of M such that C®D <., M.

Then (1) < (5) = (4), (2) = (1). (4) = (3) (if t-closure of pure is pure).

Thus (1), (3), (4), (5) are equivalent if (t-closure of pure is pure) and (1) < (2) if
Z,(M) is pure.

Proof: (1)=(5) =(4) It is clear.

(2) =(1) Let C be a pure t-closed of M. Then C 2 Z,(M), hence C = Z,(M)®(C N
M"). Since C <;. M, then by Proposition 1.1.31(1) C n M’ is a t-closed in M’,
Moreover, C N M’ <® C implies C n M’ is pure in C, but C is pure in M, so C N
M'is pure in M'. Since M'is strongly purely C,,-condition, there exists a fully
invariant direct summand D of M’ such that (C N M") @D <,,, M'. But D <® M’
implies D <® M. Also D is a fully invariant in M’ and M’ is fully invariant in M
implies D is fully invariant in M. Now Z,(M)®[C N M'®D] = [Z,(M)®(C n
M")]®D = CH®D <,z Z,(M) &M’ = M. Thus (1) hold.

(3)=(1) Let A be a pure t-closed submodule of M, there exists a fully invariant
direct summand B of M such that A®B <;.; M, then (A®B) + Z,(M) <.,sc M by
Proposition 1.1.17. But Z,(M) < A since A is t-closed. So (A®B) + Z,(M) =

A®B <., M, and B is a fully invariant direct summand. Thus condition (1) hold.

(4)=(3) Let A be a pure submodule of M By[10, Lemma 2.3], there exists B (t-
closed of M) such that A <;.; B and by hypothesis B is pure. Thus B is pure t-
closed in M, hence by condition (4) there exists a fully invariant direct summand D
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of M such that B&®&D <., M ,s0 B&D <;,.,; M.But A <,.; B, s0 A®D <;., B®D .
Thus A@D <;.; M by Proposition 1.1.20(1).

(D)=(2) If Z,(M) is pure , then Z,(M) is pure t-closed then by the same proof of
(Theorem 4.2.9(1—2)), condition (2) hold. o

Proposition (4.6.10): Let M be a strongly purely t-semisimple such that complement

of Z,(M) is pure. Then M is strongly purely T, -type.
Proof: Since complement Z, (M) is pure, then by Theorem 3.4.6(1—3—2),

M =Z,(M)®M' , where M’ is nonsingular fully invariant submodule of M and
purely fully stable, purely semisimple. It is enough to show that M’ is strongly
purely C;;-condition. Let A be a pure submodule of M’. Since M’ is purely
semisimple, A <® M’ and hence M’ = A®B. So that Bis a complement of A in M’.
But M' is fully stable, so B is stable in M’ , hence it is fully invariant. Thus A has a
complement B in M’ such that B is a fully invariant direct summand. Therefore M’
is strongly purely C;,-condition and so by Theorem 4.6.9(2—1), M is strongly
purely T;,-type. O

Theorem (4.6.11): Let M = M, ®M,, where M, M, < M and M, is fully invariant

in M. The following statements are equivalent.

(1) M, isstrongly purely T, -type module;
(2) For every pure submodule A of M,, there exists a fully invariant direct
summand D of M such that M, < D and A®D <,.; M,
(3) For every pure t-closed submodule C of M, there exists a fully invariant direct
summand D of M such that M, < D and C®D <;.; M,
(4) For every pure t-closed submodule C of M, there exists a fully invariant
direct summand of M such that M, < D and C@®D <., M.
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Proof: (1)=(2) Let C be a pure submodule of M,. By Theorem 4.6.9(1—4), there
exists a fully invariant direct summand D, of M, such that C@D, <., M;. Hence
CHD, <;.c M; which implies (C®D,)®M, <. M;®M, = M,

CO(D,®M,) <,.s M, but D; <® M, impliesD = D;®M, <® M and M, < D.
Also D = D;®M, is fully invariant in M by Lemma 3.5.4(2). Hence D is a fully

invariant direct summand in M. Thus condition (2) hold.
(2) =(3) It is obvious.

(3)=(4) Let C be a pure t-closed submodule of M,. Then by condition (3), there
exists a fully invariant direct summand of M such that M, < D and C®D <;.; M.
Hence by Proposition 1.1.17 CO®D+Z,(M) <,5s M. But
Z,(M)=27,(M)®Z,(M,). As C is t-closed in M;, C 2 Z,(M,) and as M, <
D,Z,(M,) < D.Thus C®D + Z,(M) = CO®D <, M.

(4)=(1) Let C be a pure t-closed submodule of M;. By condition (4), there exists a
fully invariant direct summand D of M such that M, < D and C®D <,,;c M. As D is
a fully invariant submodule of M, D = (D n M;)®(D n M,), where D n M, is fully
invariant in M;, DnNM, =M, which is fully invariant in M. Thus D =
(DNM)®M,. As D<®M, hence DnM, <®M, , CH®D=C®[Dn
M)®BM,] <, M = M;®M, so that CHDNM,) <., M; by Theorem
4.6.9(4—1) M, is strongly purely T, -type module. O

Theorem (4.6.12): Let M be a strongly purely T,;-type, L is a fully invariant
submodule direct summand of M. Then (1) L is strongly purely T;,-type (provided

that every t-closure of pure submodule is pure) and
(2)% is strongly purely T, (provided M is self-projective).

Proof: (1) Let W be a pure submodule of L. Since L is pure in M(because L <® M),
then W is pure in M, so there exists W'(t-closure of M); W <;.. W' and W' is t-
closed by [20, Lemma 2.3]. By hypothesis W' is pure in M. Thus W' is pure t-
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closed. Since M is strongly purely T;,-type, there exists a fully invariant direct
summand K of M such that KW' <,.c M, SO KQW' <;os M. AS W <;.c W',
then KQW <,.. KOW'.Hence KOW <;.;s M and (K®W) N L <, L. It follows
that W®(K NL) <,.; L. Beside this K <® M implies K®&K' =M for some
K’ <M and since L is fully invariant submodule of M,L = (K N L)®(K' N L)
where K N L is fully invariant in K, K’ n L is fully invariant in K',and K N L <® L.
Now K N L is fully invariant in K and K is fully invariant in M. So K n L is fully
invariant in M. K n L is a direct summand of L and L <® M so K n L <® M and so

by Lemma 1.2.6(K n L) is a fully invariant submodule in L.

(2)To prove % is strongly purely T,,-type. Let % be a pure t-closed of % As % IS t-
closed, then C is t-closed in M and as% IS pure in % and L is pure in M,we have C is

pure in M. Since M is strongly purely T;,-type, there exists a fully invariant direct
summand D of M such that C®D <,,, M. Let M = D@D’ for some D' < M, and

since L is fully invariant in M, L=(DNL)®D'NnL) wher DnNL is fully

invariant in D, D' N L is fully invariant in D’ and DNL <® L. Now %z

D®D’ D D’ D+L . D'+L D+L _g M
~ ~ — <Y
PRGN — O = —0—, then —<Y— As D and L are fully

invariant in M, then D + L is fully invariant in M and so % is fully invariant in %

. . . . Cc D+L M .
(since M is self-projective). Moreover, we can show that @ — <¢55 T Since

COD <., M and L is closed in M (becauseL <® M). Hence CQ%D Sess% by [23,

+L

Proposition 1.4, P.18]. It follows that %GBDT <ess % Thus % Is a strongly purely

T;,-type module by Theorem 4.6.9(5—1). o
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