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Abstract 

 

  In 2013, the authors Asgari and Haghany introduced the concept of t-

semisimple modules as a generalization of semisimple modules. Where an  -

module     is called t-semisimple if for each    , there exists a direct 

summand   of   such that   is t-essential in  . In fact the concept of t-

essential is introduced by Asgari and Haghany in 2011 they said that a 

submodule   of an  -module   is t-essential in  (written         if 

whenever               implies         where        is the 

second singular submodule of  . This dissertation is devoted for investigations 

the following: 

 Extending the notions of t-semisimple modules to strongly t-semisimple 

modules. 

 Generalizing the concepts t-semisimple modules, strongly t-semisimple 

modules in to FI-t-semisimple modules, purely t-semisimple modules, 

strongly FI-t-semisimple modules, strongly purely t-semisimple modules. 

 Introducing various classes of modules related to types of t-semisimple 

modules and strongly t-semisimple modules, such as module satisfy 

strongly    -condition, strongly    -type modules, modules satisfy FI-

   (strongly FI-    condition, FI-   (strongly FI-   )-type modules, 

modules satisfy purely-   (strongly purely -   )-condition and  purely- 

   (strongly purely -   -type) modules. 
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Introduction 

      It is known that a submodule   of an R-module M is said to be essential in   

(denoted by       ), if         for every non-zero submodule    of  . 

Equivalently         if whenever    =0, then    [23], [25], [26]. The 

concept of extending (also known as CS-module or module with   -condition) had 

been studied and generalized by several authors, (see [17],[34]).  A module   is 

called extending if for every submodule   of   there exists a direct 

summand       ) such that        [17]. Equivalently    is extending 

module if every closed submodule is a direct summand, where a submodule   of  

  is called closed if           implies that     [23]. In 2011, Asgari and 

Haghany [6] introduced the notion of (t-essential) where  A submodule   of   is 

said to be t-essential in    (written        if for every submodule   of    

,          implies that        [6] and          is the second singular 

(or Goldi torsion) defined by   
 

    
 ) =   

       

    
  where                  

for some essential ideal of  }. In fact                      } where 

                } [23].   is called singular (nonsingular) if      

         [23]. Note that                   for some t-essential ideal   

of  }.  is called   -torsion if         and a ring R is called right   -torsion if 

   (  ) =    [23]. 

      Asgari and Haghany in [6] used the concept of t-essential submodule, to give 

the following:   A submodule   of an  -module   is called t-closed (denoted by 

        if whenever           implies that     [6]. The concepts of 

extending module, t-essential submodule, and t-closed submodule, led Asgari and 

Haghany in [6] to say that  a module   is t-extending if every t-closed submodule 

is a direct summand. Equivalently,   is t-extending if every submodule of   is t-

essential in a direct summand [6]. It is known that a module is semisimple if every 

submodule is a direct summand [23].[25]. It is clear that every semisimple module 
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is extending. The following observation: (A module   is semisimple if every 

submodule   of   contains a direct summand   such that        . Motivated 

Asgari and Haghany in 2013[7] to introduced the notion of t-semisimple modules as 

a generalization of semisimple modules. They said thatA module    is t-

semisimple if for every submodule    of    there exists a direct summand   such 

that        A ring   is right t-semisimple when the module    is t-semisimple 

[7]. Notice that for module: 

Semisimple             t-semisimple               t-extending, but none of these 

implications is reversible (see [7, Examples 2.18]). 

 A comprehensive study of these modules and rings has been carried out by [7]. 

    Our aims in this dissertation are to extend the notion of t-semisimple modules. So 

we introduce and study the concept: strongly t-semisimple modules. Also, we 

introduce many generalizations of t-semisimple modules and strongly t-semisimple 

modules. FI-t-semisimple modules, strongly FI-t-semisimple modules, purely t-

semisimple modules and strongly purely t-semisimple modules. Beside these we 

investigate some types of modules which are related with above type of t-

semisimple modules.  

  This thesis consists of four chapters. Chapter one is divided into five sections. In 

section one, some known concepts, propositions, Theorems and Examples which 

are useful in our work are recalled. Also, some new results are added (see, Theorem 

1.1.51, Propositions 1.1.52, 1.1.53, 1.1.54, 1.1.55, 1.1.56, Corollaries 1.1.57, 1.1.58 

and Proposition 1.1.59). In section two, the concept of strongly t-semisimple 

modules is introduced. An R-module is called strongly t-semisimple if for each 

submodule   of    there exists a fully invariant direct summand     such 

that        . It is clear that the class of t-semisimple modules contains the class of 

strongly t-semisimple; that is we have the following implication for modules. 
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 Strongly t-semisimple                t-semisimple.  

The reverse implication is not true in general (see, Remarks and Examples 

1.2.2(8)). We investigate conditions which allow the converse to be hold (see, 

Proposition 1.2.5, Corollaries 1.2.13, 1.2.15 and Proposition 1.2.17). We provide 

several characterizations of strongly t-semisimple modules (see, Theorem 1.2.3 and 

Proposition 1.2.10). We show that the property of strongly t-semisimple is inherited 

by submodule (see, Proposition 1.2.7). However the direct sums do not inherit this 

property (see, Examples 1.2.4). But we explore condition which let a direct sum of 

strongly t-semisimple modules to be strongly t-semisimple (see, Theorem 1.2.9). 

Many other properties of strongly t-semisimple are presented. 

    In section three we focus on strongly t-extending module. In fact, as Asgari and 

Haghany in [7] proved that every t-semisimple module is t-extending.  

.  We verify analogous result   that  every strongly t-semisimple module is strongly 

t-extending and the converse is not true in general (see, Theorem 1.3.5). Where  

An  -module    is called strongly t-extending if every submodule is t-essential in a 

stable direct summand [20].  Some characterizations of strongly t-extending are 

given (see, Theorem 1.3.11). Beside these we have proved that every strongly 

extending is strongly t-extending, but not conversely (see, Proposition 1.3.7, 

Example 1.3.8), where  an  -module     is strongly extending if every submodule 

is essential in a stable direct summand [35]. The two concepts are equivalent under 

certain conditions (see, Propositions 1.3.9, 1.3.13). Also, under certain condition the 

direct sum of two strongly t-extending is strongly t-extending (see, Theorem 1.3.16) 

and we give a different proof of the property (strongly t-extending is inherited by a 

direct summand) which is given in [20] (see, Proposition 1.3.14). 

      Section four concerns with strongly t-semisimple rings. Several 

characterizations of commutative strongly t-semisimple ring are given. For 

examples (see, Propositions 1.4.8 and 1.4.9). 
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    Section five deals with strongly t-Baer. The following  implications for a 

modules hold: 

t-semisimple                  t-extending                       t-Baer [7]. This motivate us to 

look for connections between strongly t-semisimple modules, strongly t-extending 

modules and strongly t-Baer modules, where An  -module is called t-Baer if 

                   } is a direct summand of   for each left ideal   of 

       [6].  An  -module is called strongly t-Baer if       is a direct summand 

and fully invariant, for every left ideal   of  , where         [20]. :A module 

   is called Baer if          for every left ideal   of   where   

       .[33] and  A module   is called abelian Baer (or strongly Baer by some 

authors) if           and fully invariant for every left ideal   of   where, 

          [34]. Many connections between these types of Baer modules are 

given (see, Remarks 1.5.5) several characterizations of strongly t-Baer module are 

presented (see, Theorem 1.5.8). Theorem 1.5.10, express the connections between 

the concepts strongly t-semisimple, strongly t-extending and strongly t-Baer 

modules. Beside these relationships between strongly t-extending, strongly t-Baer 

modules and strongly extending are given by (Theorem 1.5.12, Corollary 1.5.13). 

Then we introduce the concept strongly  -t-extending ring,  where a ring    is 

called right strongly                  if every free   - module is strongly t-

extending. 

Many equivalent statements for this concept is given, (see Theorem 1.5.16), 

Corollaries 1.5.18, 1.5.19). Finally (Theorem 1.5.20 and Corollary 1.5.21) present 

characterizations for strongly t-extending rings. 

    Chapter two consists of three sections. In section one FI-semisimple modules is 

introduced where an  -module   is called FI-semisimple if for each fully invariant 

submodule   of  , there exists      such that       . Clearly every 

semisimple module is FI-semisimple, but not conversely (see, Remarks and 
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Examples 2.1.3(1)). However they are equivalent under the class of duo modules 

(or multiplication modules). The homomorphic image of FI-semisimple need not be 

FI-semisimple (see, Remarks and Examples 2.1.3(7)). However it is true under 

certain condition (see, Corollary 2.1.5). Moreover, we prove the direct sum of two 

FI-semisimple modules is a FI-semisimple and the converse hold if each summand 

is a fully invariant submodules of  .  

    In section two, we provide a generalization of t-semisimple module, namely FI-t-

semisimple, where An  -module    is called FI-t-semisimple if for each fully 

invariant submodule   of  , there exists      such that         We observe 

the following every t-semisimple module is FI-t-semisimple module, and every FI-

semisimple is FI-t-semisimple but the converses are not true in general  (see, 

Remarks and Examples 2.2.2,(1),(2),(3)). 

The property of FI-t-semisimple is inherited by fully invariant submodules (see, 

Proposition 2.2.3). We prove that every FI-t-semisimple is FI-t-extending if 

condition     hold, where   : for an  -module  , a complement of       is stable 

and an  -module   is called FI-t-extending module if every fully invariant t-

closed submodule of   is a direct summand of   [9].. Moreover, condition     

allows several statements to be equivalent with FI-t-semisimple module (see, 

Theorem 2.2.5(1 3 4), Proposition 2.2.10 and Theorem 2.2.12). Moreover other 

statements are equivalent to FI-t-semisimple module under certain condition are 

given (see, Proposition 2.2.11). 

   In section three, the notion of FI-t-semisimple module has been extended where 

an  -module    is called strongly FI-t-semisimple if for each fully invariant 

submodule   of  , there exists a fully invariant direct summand   such that 

      . We have the following implications for a module 

FI-semisimple             strongly FI-t-semisimple    and     strongly t-semisimple                                     
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strongly FI-t-semisimple  

The reverse of each implication is not hold in general (see, Remarks and Examples 

2.3.2). 

We explore condition: any complement of any submodule of a module is stable 

which make FI-t-semisimple modules coincide with strongly FI-t-semisimple 

modules (see, Proposition 2.3.3). The property of strongly FI-t-semisimple is 

inherited by fully invariant direct summand (or nonsingular fully invariant 

submodule) (see, Proposition 2.3.6, Corollary 2.3.7). Then a direct sum of any two 

strongly FI-t-semisimple modules is strongly FI-t-semisimple module (see, 

Proposition 2.3.11).   

   Chapter three is divided into five sections. In section one another generalization 

of semisimple modules, which we called it purely semisimple is introduced and 

studied, where an  -module   is purely semisimple if for every pure submodule   

of   there exists a direct summand   of   such that       . Equivalently an  -

module is purely semisimple if every pure submodule is a direct summand (see, 

Proposition 3.1.2). It is clear that every semisimple is purely semisimple, but the 

converse may be not true (see, Remarks and Examples 3.1.3(1)). Every pure simple 

module (or Noetherain projective or divisible module over a PID or prime injective) 

is purely semisimple module (see, Remarks and Examples 3.1.3(5), (6), (7), and 

(8)).If   is a pure submodule of purely semisimple module then   and 
 

 
 are purely 

semisimple module (see, Remarks and Examples 3.1.3(3) and Proposition 3.1.4). 

Under certain conditions, we have that the direct sum of two purely semisimple 

modules is purely semisimple modules (see, Propositions 3.1.7, 3.1.8). Then we 

introduce the concept (  is  -purely projective) where       be any two  -

modules (see, Definition 3.1.9). By using this concept, we get two equivalent 

statements for purely t-semisimple module (see, Theorem 3.1.10). 
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  In section two, the notion of purely t-semisimple modules, which is a 

generalization of t-semisimple modules is given where an  - module   is called 

purely t-semisimple, if for each pure submodule   of   there exists       such 

that       . We notice the following implications  

Purely semisimple     t-semisimple       purely t-semisimple. 

 However purely t-semisimple module need not t-semisimple (see, Remarks and 

Examples 3.2.2 (1), (2) and the concept purely semisimple modules and t-

semisimple modules are coincide in the class of nonsingular module (see Remarks 

and Examples 3.2.2(5)). Among many results in this section we have: The property 

of purely t-semisimple is inherited by pure submodule (see Proposition 3.2.3). We   

investigate conditions, under which the direct sum of two purely t-semisimple 

modules is purely t-semisimple (see, Propositions 3.2.5, 3.2.6). We get five 

equivalent statements for purely t-semisimple module if a complement of       is 

a direct summand stable and   has PIP (pure intersection property), (see, Theorem 

3.2.8). Another equivalent statement of purely t-semisimple module is given by 

Proposition 3.2.12.  

   In section three, as every t-semisimple is t-Baer, we hope to give an analogues 

statement for purely t-semisimple and so we investigate a concept (purely t-Baer 

module), where an  -module   is called purely t-Baer if for each ideal   of 

        ,       is a pure submodule of  . We study this type of modules; we 

have by (Theorem 3.3.4) a characterization of purely t-Baer module. We show that 

every purely t-extending module is purely t-Baer, (see, Proposition 3.3.5) and every 

purely t-semisimple module   with a complement of       is pure is purely t-

Baer. More properties related with purely t-Baer module are given by (Propositions 

3.3.8, 3.3.9 and Corollary 3.3.10).  

    In section four, the notion of strongly purely t-semisimple module is introduced. 

An  -module   is called strongly purely t-semisimple if for each pure submodule 



  Introduction   

 

8 
 

  of  , there exists a fully invariant direct summand   of   such that       . 

Examples are provided to illustrate that the concept of purely t-semisimple doesn’t 

imply strongly purely t-semisimple (see, Remark and Examples 3.4.2(1)). It is 

shown that every pure submodule of strongly purely t-semisimple module inherits 

the property. We obtain some characterizations of strongly purely t-semisimple 

module, under certain conditions (see, Theorem 3.4.6, Corollaries 3.4.7, 3.4.8). 

Then we focus on the direct sum of two strongly purely t-semisimple modules (see, 

Theorem 3.4.9 and Proposition 3.4.10). 

   In section five we introduce the notion of strongly purely t-Baer modules and 

looks for some connections between it and strongly purely t-semisimple modules. 

An  -module   is called strongly purely t-Baer if        is a fully invariant pure 

submodule of  , for each  left ideal   of  =    . We give a characterization of 

strongly purely t-Baer modules (see, Theorem 3.5.2). We put conditions on a 

module    to be strongly purely t-Baer (see, Propositions 3.5.3, 3.5.5). Next we 

prove that: For an  -module   such that a complement of        is a pure 

submodule in  . If   is strongly purely t-semisimple, then   is strongly t-Baer (see 

Theorem 3.5.6). 

  Chapter four is specified for introducing and studying certain types of modules 

which are related with the types of t-semisimple, t-extending modules, strongly 

extending, FI-t-extending modules. This chapter has six sections. In section one 

relevant concepts (modules satisfy    -condition and    -type modules) and results 

are recalled from [10], [38] where  An   -module   is said to be satisfy    -

condition if every submodule of   has a complement which is a direct summand 

An  -module   said to be    -type module (or   satisfy    -condition) if every t-

closed submodule has a complement which is a direct summand. A ring is said to be 

right    -type ring if    is a    -type module. Clearly every module satisfying 

   -condition and every t-extending module is    -type, but not conversely, see 
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[10]. Hence every t-semisimple modules is    -type module, but
 
the converse may 

be not true (see, Remarks and Examples 4.1.1(4)). In section two, we introduce the 

notions of modules that satisfy strongly    -condition and strongly    -type 

modules, where an  -module   is said to be satisfy strongly    -condition if every 

submodule has a complement which is a fully invariant direct summand. An  -

module is said to be strongly    (or strongly    -type module) if for each t-closed 

submodule, there exists a complement which is a fully invariant direct summand. 

We notice the following: module satisfies strongly-   -condition implies strongly 

   -type module which implies    -type, also module satisfies    -condition 

implies    -type module, but none of these implications is reversible, (see, Remarks 

4.2.6 (1),(2),(3)) . Characterizations of both concepts: modules satisfy strongly    -

condition and strongly    -type module are given (see, Proposition 4.2.4 and 

Theorem 4.2.9). Note that under the class nonsingular modules the two concepts are 

equivalent (see, Proposition 4.2.7). However, under the class of multiplication (or 

duo) modules, the    -type module equivalent to strongly    -type and module 

satisfies    -condition equivalent to module satisfies strongly    -condition. We 

prove that every strongly t-semisimple module is strongly    -type module (see, 

Proposition 4.2.11) and every strongly extending module is strongly    -type 

module (see, Theorem 4.2.12). Also, we have the property of strongly    -type 

module is inherited by a fully invariant direct summand.  

   In section three, the concepts of modules satisfy FI-   -condition and FI-   -type 

modules as generalizations of modules satisfy     -condition and    -type modules 

are presented where an  -module   is said to be satisfy FI-   -condition if every 

fully invariant submodule of   has a complement which is a direct summand. An 

 -module   is called FI-   -type module if every fully invariant t-closed 

submodule has a complement which is a direct summand. Module satisfies FI-   -

condition implies FI-   -type module, and the converse may be not true. Many 

characterizations of modules satisfy    -condition and    -type modules are 
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generalized for modules satisfy FI-   -condition and FI-   -type modules (see, 

Proposition 4.3.3 and Theorems 4.3.6, 4.3.10, 4.3.12). We prove that every FI-t-

extending is FI-   -type (see, Proposition 4.3.7) and every FI-t-semisimple with 

condition     imply FI-   -type (see, Corollary 4.3.9). 

    In section four, we extend the notions of modules satisfy FI-   -condition and 

FI-   -type modules. We say that an  -module   satisfies strongly FI-   -

condition module if for each fully invariant submodule   there exists a fully 

invariant direct summand   which is a complement of  . An  -module   is called 

strongly FI-   -type module if for each fully invariant t-closed submodule   of  , 

there is a complement of   which is fully invariant direct summand. We noticed 

that module satisfies strongly    -condition module imply module satisfies strongly 

FI-   -condition which implies module satisfies FI-   -condition but none of these 

implications is reversible (see Remarks 4.4.3(1), (2)). Also, we have module 

satisfies strongly FI-   -condition   implies strongly FI-   -type module which 

implies FI-   -type module and strongly    -type module implies strongly FI-   -

type and each of these implications is not reversible (see, Remarks 4.4.5 (1),(2),(3)). 

Some characterizations of modules satisfy strongly FI-   -condition and strongly 

FI-   -type are given (see, Theorems 4.4.5 and 4.4.6).The property of strongly FI-

   -type inherited by a fully invariant direct summand (see, Proposition 4.4.7). 

Also, we have if    is FI-t-extending module and every closed submodule is fully 

invariant, then   strongly FI-   -type module.                      

   Section five deals with modules satisfy purely    -condition and purely    -type 

where, an  -module   is said to be satisfy purely    -condition if every pure 

submodule of   has a complement which is a direct summand. An  -module   is 

called purely    -type if every pure t-closed submodule of   has a complement 

which is a direct summand. Clearly every module satisfies    -condition is a 

module satisfies purely    -condition, but not conversely (see, Remarks and 
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Example 4.5.2(4)). Every pure simple module satisfies    -condition and it is 

purely    -type module but not conversely, for example         as  -module 

is purely    -type module and satisfies purely    -condition, but it is not pure 

simple module. Characterizations of such modules are given (see, Proposition 

4.5.3). Under conditions we give some equivalent statements for purely    -type 

module (see, Theorem 4.4.12). Also, we prove that every purely t-semisimple and 

nonsingular module satisfies purely    -condition (see, Proposition 4.5.4). If   is a 

distributive module, the every pure submodule inherits the property of modules 

satisfy purely    -condition (see, Proposition 4.5.5). Every purely    -type module 

which is purely t-extending is    -type (see, Proposition 4.5.9).  

    Section six is devoted for modules satisfy strongly purely    -condition and 

strongly purely    -type module. An  -module   has strongly purely    -condition 

if every pure submodule has a complement which is a fully invariant direct 

summand. An  -module   is called strongly purely    -type module if every pure 

t-closed submodule has a complement which is a direct summand and fully 

invariant. Obviously, modules satisfy strongly purely    -condition implies 

modules satisfy purely    -condition and strongly purely    -type module implies 

purely    -type module. But each of these implications is not reversible. Many 

analogues properties of modules satisfy strongly    -condition and strongly    -

type modules are given. 

    Finally, all modules are right unitary modules. Note that   need not be 

commutative except in some special cases and it will be mentioned. Thy symbol □ 

stands for the end of the proof. 
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Introduction  

     Asgari and Haghany in [6] introduced the concept of t-semisimple as follows A 

module   is t-semisimple if for each     there exists      such 

that        . 

    This chapter consists of five sections. 

     In section one, we recall some basic definitions. And list some important 

theorems and propositions that are relevant to our work. Also, we add several new 

results concerned with t-semisimple modules.  

    In section two, the notion of strongly t-semisimple is presented, where an R-

module   is called strongly t-semisimple if for each submodule   of    there exists 

a fully invariant direct summand     such that        .It is clear that every 

strongly t-semisimple module is t-semisimple. An example is given to show that the 

converse is not hold in general. In fact a comprehensive study of this class of 

modules is investigated. 

    In section three, we look for connections between strongly t-semisimple, strongly 

t-extending, and strongly extending modules. We proved that every strongly t-

semisimple module is strongly t-extending, and every strongly extending module is 

strongly t-extending. Also, many characterizations and properties of strongly t-

extending modules are given. 

    In section four, some properties of strongly t-semisimple rings are given. 

    In section five, we give connections between strongly t-semisimple, strongly t-

Baer and strongly t-extending modules. Also, we investigate some new properties 

and characritzations of strongly t-Baer modules.  
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1.1 Preliminaries            

     In this section, we introduce some relevant concepts with some basic known 

results, which will be needed later; also we present some new results. 

Definition (1.1.1)[ 25]: A submodule   of an R-module   is said to be essential in 

  (denoted by       ), if         for every non-zero submodule    of 

 .Equivalently         if whenever      ,     then      

Definition (1.1.2) [  ]:       is the Goldie torsion (or second singular) of an  -

module     is defined by  
       

    
   

 

    
 )  [23],where                 

for some           

Definition (1.1.3) [17]: A module   is called   -torsion (or Goldie-Torsion) if 

   (      

Examples (1.1.4): 

(1) Consider   as  -module. one can easily show that        and hence 

       

    
=  (

 

    
)    

 

 
)=         Thus              

(2) For each,      the module    as  -module is   -torsion . We know that    

is singular as  -module. So 
        

     
=  (

  

     
)=  (

  

  
)=        Thus        

        . 

   as   – module  is   -torsion since 
      

     
 

      

     
 ,  

  

     
    

  

     
        

  . Hence          .[27] 

(1) Proposition (1.1.5) [27, Proposition 2.2.4]: Let   be an  -module and let   

be a submodule of  . Then  

(2)              

(3)              . 
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(4) Corollary (1.1.6)[ 27, Corollary 2.2.5]: Let    be an  -module and let   be 

an essential submodule of   such that                       

 Remark (1.1.7)[6]: Every singular  -module is Goldie torsion. 

Remarks (1.1.8): 

 (1) Let    be an  -module, then         if and only if   is nonsingular.[27, 

Remarks 2.2.7] 

(2)    (      ⁄ )    for every module   and this implies if     such that   

and   ⁄  are both   -torsion, then   is   -torsion.[6] 

Proposition (1.1.9)[ 27, Proposition 2.2.8]: Let   be an integral domain and let   

be a submodule of a nonsingular  -module  . If 
 

 
 is Goldie torsion, then 

      . 

 Proposition (1.1.10) [27, Proposition 2.2.9] : Let   and   be two  -modules and 

let       be an  -homomorphism, then  (     )       .  

Corollary (1.1.11) [27, Corollary 2.2.10]: Let   and   be two  -modules and let 

      be an  -epimorphism. If   is Goldie torsion, then   is Goldie torsion. 

Proposition (1.1.12)[21]: Let   be an  -module, then   is nonsingular if and only 

if Hom (            for every  -module  . 

Proposition (1.1.13) [6], [27, proposition 2.2.13]: Let           be an  -

module where    is a submodule of  , for all    . Then 

           =               



Chapter One                                    Strongly T-semisimple Modules and Strongly T-semisimple Rings 

16 
 

Definition (1.1.14)[8]: A submodule   of   is said to be t-essential in    (denoted 

by (      ) if for every submodule   of             implies that   

     . 

Remark (1.1.15)[6]:       {                  , where            

       .   

Example (1.1.16): Consider      as Z-module. It is clear that      is singular 

module.  Hence      is   -torsion, that is               

Let    ( ̅)     . Then for all        and (4)            =    then     

           . Hence ( ̅)       , but   ̅  is not essential of      

Proposition (1.1.17)[ 6, Proposition 2.2]: The following statements are equivalent   

for a submodule   of an  -module    

(1)   is t-essential in   ; 

(2) ( +             is essential in  /       

(3)  +      is essential in  ; 

(4)     is             

Corollary (1.1.18): If         , then         , but not conversely [6]. 

Proof: If        , then  +             and hence by Proposition (1.1.17), 

       . □ 

The converse is not true in general, see Example 1.1.16. 

Corollary (1.1.19): Let   be a nonsingular module,              (0) 

         if and only if        . 

Proof: As    is nonsingular,          then           if and only if   

      . □ 
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Proposition (1.1.20) [10,Corollary 1.2]: 

(1) Let   be an  -module           . Then         if and only if         

and          

(2)Let          be a homomorphism of modules, and           

then            . 

Corollary (1.1.21): Let   be an R-module and          if        

then       . 

Proof:  A       , if         then by Proposition (1.1.20) if         and 

        . Again,          so by Proposition (1.1.20),         and          □ 

(1) Proposition (1.1.22)[ 10,Corollary 1.3]: Let     be a submodule of    for each 

  in a set  . Then  

(2) If   is a finite set and          then                for all      . 

(3)              If and only if          for all     . 

  We prove the following 

 Proposition (1.1.23): Let   and   be    modules and let          be a 

monomorphism if        ,then                 

Proof: As       , then                 by (proposition 1.1.17(2)) .Since   is 

monomorphism,                     .  Hence    )                   , 

but                                                     )           

             )      .It follows that              )         , thus   

              by Proposition 1.1.17. □ 

    Recall that an  -module   is called multiplication if for each submodule   of 

 , there exists an ideal   of    such that     . Equivalently    is a multiplication 

 -module if for each submodule   of             , where (        

       . [19] 

   The following Lemma will be needed in the next Proposition. 
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Lemma (1.1.24): Let   be a finitely generated faithful multiplication module over 

commutative ring   and let     be ideals of  . Then  

(1) If       ,then          . 

(2)            , then       , provided that   is regular ring (in sense of Von 

Neumann). 

Proof: (1) Let      and         . It follows that     and since   is 

multiplication,      for some ideal   of  , and by[19, Theorem 3.1],    . 

Hence        ; and since   is faithful, we get             by [19, 

Theorem 1.6]. As   is faithful, we get          which implies       

because       . It follows that       and         . 

(2)Let   be an ideal of    with        .    is an ideal of     and   is an ideal of  

  implies   is an ideal of   since   is a regular ring. It follows that            

and by [19, Theorem 1.6]          . But   is an ideal of   , so    is a 

submodule of     and as         , we conclude that       . Hence       

since   is faithful. Thus       . □ 

Proposition (1.1.25): Let   be  finitely generated a faithful multiplication module 

over commutative ring  , and     be ideals of   . Then  

(1)              . 

 (2) If         ; then        . 

(3) If           , and      then          . 

(4) If       ,  then          , and the converse hold if   is regular. 

Proof: (1) First              hold for any module   as follows. For each 

        , then            . Now for any    ,               .This 

implies             ; that is          for each       and so 

             -----------(I) 

But                  since   is multiplication, which implies          

          . Let             , then               for all    . Since 
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  is finitely generated  -module,                 for some 

           . Now                ∑   
 
      ⋂       

 
     . But 

                for all         . So ⋂       
 
          .   Thus 

            ; . On  the other hand,                  (since   is a faithful 

multiplication  -module), thus             and          Therefore 

                and hence                     . But       

          , since    is a multiplication module. Therefore 

             --------------------------------------------------(II). 

Then               by (I) and (II). 

(2) Since          ,                by Proposition (1.1.17). As    is faithful 

multiplication, then                by [19, Theorem 2.13]. But        

      ,so                    .Hence                , Thus 

          by proposition (1.1.17). 

(3) Let        .  Since   is a multiplication  -module, then       for some 

ideal   of    To prove        .Assume            for some    .  As     is 

faithful multiplication,   ⋂  =       by [19, Theorem.1.5] so       

       . So that               But   is a faithful finitely generated 

multiplication module implies               by (1).  Thus  

                    and hence            , which implies           

by [19, Theorem 3.1]. Thus I         

(4) Since         ,then                by Proposition (1.1.17). Hence by Lemma 

1.1.24(1)                 . It follows that               . But we can 

show that                as follows:                . But       

       so that                 . But by [19, Theorem 1.6]        

                    .Thus              .Then  

                which implies          by Proposition 1.1.17. 

Now , if         , then                 by Proposition 1.1.17. But 

             . So that                ; that is                 . 
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Hence by Lemma 1.1.24(2),              and by Proposition 1.1.17, we have 

      . □ 

 

   Recall that a submodule   of an  -module   is called closed (      if 

whenever         , then     in case a submodule        and    is 

closed in  , the submodule   is closure of  . [24].In other word,     , if   

has no proper essential extension in   [25]. As a generalization of closed 

submodule,   the concept t-closed, was introduced by Asgari [6]. 

Definition (1.1.26)[6]: A submodule   of   is t-closed in   (written         if 

         whenever      implies     . In other words,       , if    has no 

proper t-essential extension in  . 

Lemma (1.1.27)[ 6, Lemma 2.5]: Let   be an  - module. Then   

(1) If       , then          

(2)       If and only if   is nonsingular. 

(3) If      then        if and only if 
 

 
   

 

 
  

Proposition (1.1.28)[6, Proposition 2.6]: Let   be a submodule of an  - module  . 

The following statements are equivalent: 

(1) There exists a submodule   such that   is maximal with respect to the property 

that     is   -torsion, 

(2)   is t-closed in  ; 

(3)   contains       and 
 

     
 is closed submodule of 

 

     
; 

(4)   contains       and   is a closed submodule of    

(5)   is complement to a nonsingular submodule of    

(6) 
 

 
 is nonsingular. 

By proposition 1.1.28(4), it follows directly that every t-closed submodule is closed. 

However the convers is not true in general. For example in any singular module  , 

we have (0) is a closed submodule and it is not t-closed. 
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  Goodearl in [23], gave the following a submodule        is called Y-closed if  
 

 
 

is nonsingular. Hence by Proposition 1.1.28(6) the two concepts t-closed and Y-

closed are coincide. 

Corollary (1.1.29)[ 6, Corollary 2.7]: Let   be a module .Then  

(1)       is t-closed in  ; 

(2) If   is an endomorphism of   and   is t-closed submodule of   then 

         is t-closed in    

Corollary (1.1.30)[6, Corollary 2.8]: Let   be a submodule of a module   

(1) If        then         iff   is   -torsion and  there exists a t-essential 

submodule   of   for which            

(2) Let        If      , then        

(3) If       and        then      .  

Proposition (1.1.31)[6, Proposition 2.9]: Let   be an  -mmodule. Then 

(1)                then           

(2)        ,          then         . 

Proposition (1.1.32)[6]: Let   be a nonsingular module and let   be a   submodule 

of    Then   is t-closed if and only if   is closed.   

Proposition (1.1.33)[6]: Let   be a singular  -module. Then   is the only t-closed 

submodule of  . 

Examples (1.1.34): 

(1)  0,  are the only t-closed submodules of the  -module  . 

(2)  In the Z-module  , the submodule    is not t-closed in  . 

   Next, we present the following  

Definition (1.1.35): A submodule   of  -module   is fully invariant if        

for each  -endomorphism   of  . [41]. A submodule   of  an  -module    is 

called stable, if        for each  -homomorphism       . [1]. It is clear 
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every stable submodule is fully invariant but not conversely. For instance    in  -

module   is fully invariant and it isn’t stable. 

 Remark (1.1.36): Let        such that   is a stable submodule in  , then   

is stable in  . 

Proof: Let      . Then        , where         is inclusion 

mapping, so            (since   is stable in  ). But              . Thus 

       and   is stable in  . 

Definition (1.1.37): An  -module    is fully stable if every submodule of    is 

stable[1] and    is called duo if every submodule of   is fully invariant.[31] 

Proposition (1.1.38)[32]: Let   be a ring and let     be submodules of an R-     

module   such that   is a fully invariant submodule of   and   is a fully invariant 

submodule of  . Then   is a fully invariant submodule of  . 

Lemma (1.1.39): Let   be a module.Then 

(i) Any sum or intersection of fully invariant submodules of   is again a fully 

invariant submodule of  .   

 (ii) If          and   is a fully invariant submodule of   , then 

                     where    is the      projection homomorphism of   

and      is fully invariant in   , for all    .[11] 

(iii) Let   be an  -module and let        ,       .Then   is a fully 

invariant submodule of   if and only if Hom        [32,Lemma 2.6]. 

Lemma (1.1.40): (1) Let   be an  -module,let      . If 
 

 
 is a fully invariant 

submodule of 
 

 
  and   is a fully invariant submodule of  , then   is a fully 

invariant in  .[9, Proposition 1.3] 
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(2)Let   be an   - module. If     is a fully invariant submodule of   and 

    , then   is a fully invariant in  [20] . However, we give a different proof. 

Proof: Let         . Define       by      {
                    
                        

. 

As   is a fully invariant submodule of  ,       . But           since 

   , hence        and   is a fully invariant submodule of  . □ 

  Recall that a module     is called SS-module if every direct summand is stable 

[35]. However Özcan et al in [31], gave the following. An  -module    is called 

weak duo if every direct summand of   is fully invariant. But every direct summand 

and fully invariant is stable [35, Lemma 2.1.6] hence the two concepts SS-module 

and weak duo are coincide. 

Lemma (1.1.41): Let   and   be  -modules, and let            be an 

epimorphism. Then  

(1) If       is a fully invariant in   and   is a fully invariant submodule of   then 

       is a fully invariant submodule of  . 

(2) If   is self-projective (quasi –projective) and   is a fully invariant 

submodule of  , then      is a fully invariant submodule of  .[24] 

 In fact for  -modules   and  .   is said to be  - projective,  if every submodule   

of  , any homomorphism     
 

 
  can be lifted to a homorphism,        that 

is if     
 

 
, be the-natural epiomorphism, then there exists a homorphism 

      such that      .  

  is called projective if   is  -projective for every  -module  . If   is  -

projective,   is called self-projective. [28] For examples: 

  𝜓 

A A/X 

N 

 
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(1)   as  -module is projective. 

(2)     as  -module is self-projective. 

(3)     as  - module is  -projective. 

Corollary (1.1.42): If   is self-projective and duo  -module and    , then 
 

 
  is 

duo  -module. 

Proof: Let       
 

 
, where   is the natural epimorphism. For any 

 

 
 

 

 
 , 

 

 
       Hence  

 

 
 is fully invariant submodule of  

 

 
 by Lemma 1.1.41(2). □ 

 Recall that an R-module   is semisimple if every submodule is a direct summand 

of   [23]. Equivalently an R-module is semisimple if for each submodule   of  , 

there exists a direct summand   of   such that       [7]. For more properties of 

semisimple modules see [23],[25].  

Corollary (1.1.43): If    is self-projective and duo,     such that  
 

 
 is 

semisimple. Then  
 

 
 is fully stable. 

     Proof: By Corollary (1.1.42), 
 

 
 is duo. Hence every submodule of  

 

 
 is fully 

invariant. But  
 

 
 is semisimple, so every submodule is fully invariant and direct 

summand. Thus every  submodule of 
 

 
 is stable. □ 

   In fact the above equivalent statement of semisimple module led Asgari and 

Haghany in [6], to introduce and study t-semisimple modules.  

Definition (1.1.44)[7]: A module   is t-semisimple if for every submodule   of   

there exists a direct summand   of   such that        . 

 Remarks (1.1.45):  

(1) It is clear that every semisimple (hence every simple) module is t-semisimple 

but not conversely, see part (2).  



Chapter One                                    Strongly T-semisimple Modules and Strongly T-semisimple Rings 

25 
 

(2)    as Z-module is t-semisimple ,but not semisimple, where          

Proof:          . For each                       so that  

( ̅)+             , hence by Proposition 1.1.17(3) ( ̅)       and ( ̅)    . 

Thus    is t-semisimple. □ 

(3)  Let   be a non-singular  -module. Then    is t-semisimple if and only if   

is semisimple. 

Proof: Let    , so there exists      such that       . But   is non-

singular (so   is non-singular), hence       , (by Lemma (1.1.19)), then   is 

semisimple. 

 It is clear. □ 

  In particular the  -module   is nonsingular and it is not semisimple. So that it is not 

t-semisimple . Also  as  -module is nonsingular,   is not semisimple so   is not t-

semisimple.  

   The following Theorem gave characterizations of t-semisimple modules. 

Theorem (1.1.46)[7]: The following statements are equivalent for a module  : 

(1)     is t-semisimple; 

(2) 
 

       
  is semisimple; 

(3)    =    (M)    where   is a non-singular semisimple module;  

(4) Every nonsingular submodule of    is a direct summand; 

(5) Every submodule of    which contains    (  ) is a direct summand. 

By applying Theorem 1.1.46 we can give the following examples 

(1) Consider the  -module       ,         . Hence 
 

     
 

    

  
   

which is not semisimple. Hence   is not t-semisimple. 
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(2) Consider the  -module        .        . Hence 
 

 
     is 

semisimple. Thus   is t-semisimple.  

(3) Let        as  -module where     , 
 

     
   which is not 

semisimple. Hence   is not t-semisimple by Theorem (1.1.46). 

(4) Let       as  -module. 
 

     
     is not semisimple, so   is not t-

semisimple. 

Corollary (1.1.47)[7, Corollary 2.4]: Let   be a t-semisimple module. 

(1) Every submodule of   is t-semisimple. 

(2) Every homomorphic image of   is t-semisimple. 

Corollary (1.1.48)[7, Corollary 2.5]: Every direct sum of t-semisimple modules is 

t-semisimple. 

Corollary (1.1.49)[7, Corollary 2.7]: A module   is t-semisimple if and only if   

has no proper t-essential submodule which contains   (  ). 

Corollary (1.1.50)[7, Corollary 2.8]: A module   is t-semisimple if and only if   

+       is closed in  , for every submodule   of  .  

We add the following results 

Theorem (1.1.51): The following statements are equivalent: 

(1) Every R-module   is t-semisimple and        is projective. 

(2)    is semisimple. 

Proof: (1)      Let   be an  -module. Then   is t-semisimple by hypothesis. 

Hence             , where    is a nonsingular semisimple by Theorem 1.1.46. 

It follows that    is projective, but by hypothesis        is projective. Thus   is 
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projective, that is every  -module is projective and so by [25, Corollary 8.2.2(e)]   

is semisimple. 

(2) (1) Since   is semisimple, every  -module is semisimple. Hence every  -

module is t-semisimple. Also    is semisimple, then every  -module is projective 

[25, Corollary 8.2.2(e)]. Thus        is projective. □ 

Proposition (1.1.52): If   is an indecomposable t-semisimple, then   either 

semisimple or   -torsion. 

Proof: Since   is t-semisimple, then by Proposition 1.1.46(3),           , 

where    is nonsingular semisimple. But   is indecomposable, so either         

or   = (0). If            then     , but    is semisimple, so that   is 

semisimple. If         then         and hence   is   -torsion. □ 

    Recall that  if   is an ideal of a ring  , then the ring   is called  -semiperfect if 
 

 
 

is semisimple and   is strongly lifting (or that is  idempotent lift strongly module   ( 

that is whenever           , there exists         such that     

   [30]. Note that “every nil right ideal is strongly lifting. [30] 

     By using in [30, Theorem 49] and Theorem (1.1.46). We get the following. 

Proposition (1.1.53): The following assertions are equivalent: 

(1)    is      -semiperfect ring. 

(2)    is t-semisimple. 

(3)  Any module   ,   is t-semisimple. 

(4)  Every nonsingular right  -module is injective. 

Proof: (1)  (3) For any module   , 
 

     
 is semisimple by [30, Theorem 49(6)] 

that is   is t-semisimple by Theorem (1.1.46).  Hence (1)  (3) 
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(3)  (4)  By Theorem 1.1.46, 
 

     
 is semisimple. Hence the result follows by [30, 

Theorem 49]. 

(1) (2) It follows by Theorem (1.1.46). □ 

 

   By combining Lemma (48) in [30] and Theorem (1.1.46), we get another 

characterization, for t-semisimple modules.  

Proposition (1.1.54): Let   be an  -module. Then   is a t-semisimple if and only 

if for each    ,      for some      and          

Proof:   is t-semisimple if and only if             where   is semisimple by 

Theorem (1.1.46). Hence the result follows by [30, Lemma 48 (1)(2)]. □ 

    Burcu, et al in [12] introduced the following Let   be a fully invariant 

submodule of a module  . Then   is called  -inverse split if        is a direct 

summand of   for every            [12]. Obviously, every module   is  -

inverse split and every semisimple module   is  -inverse split, and so every module 

  over semisimple ring is  -inverse split. Recall that an  -module   is Rickart if 

     is a direct summand of   [22]” For a module  , since ker            is 

Rickart if and only if it is (0)-inverse split [12]. It is clear that every semisimple 

module is Rickart. 

  We prove the following 

Proposition (1.1.55): Every t-semisimple module   is      -inverse split. 

Proof: Since   is t-semisimple,           , where     is nonsingular, 

semisimple. But    is semisimple implies,    is a Rickart module. Hence by [12, 

Theorem 2.3]   is      -inverse split. □ 
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  The converse of proposition (1.1.55) is not true in general, for example: Consider 

the  -module  ,   is not t-semisimple. However           and for each   

      ,           , which is a direct summand, that is   is          -inverse 

split. 

Proposition (1.1.56): If   is      -inverse split and   is an Artinian over 

commutative ring, then   is t-semisimple.  

Proof: Since   is      -inverese split, then           , where    is a 

Rickart module by [12, Theorem 2.3]. Since    
 

      
,    is nonsingular. But   

is Artinain implies    is an Artinian module. Hence by [22, Proposition 2.25]    is 

semisimple. Hence by Theorem (1.1.46),   is t-semisimple. □ 

Corollary (1.1.57): Let   be a Rickart Artinian commutative ring. Then   is t-

semisimple. 

Proof: Since   is a Rickart ring,   is nonsingular [22, Proposition 2.12], hence 

           It follows that                . Hence by [12, Theorem 2.3] 

  is      -inverse. Then by proposition (1.1.56),   is t-semisimple. □ 

Corollary (1.1.58): Let   be an Artinain module over commutative ring. If    is 

Rickart and nonsingular, then   is t-semisimple. 

Proof: Since   is nonsingular,            Hence                  , 

and since   is Rickart, so that   is      -inverse split by [12,Theorem 2.3]. Hence 

by Proposition (1.1.56),   is t-semisimple. □ 

   Recall that an  -module   is called F-regular (simply regular) if every 

submodule is pure, where a submodule   of   is pure if for every ideal   of   

  ⋂    .[4] 

Next we have the following  
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Proposition (1.1.59): Let   be a  -regular  -module where   is a commutative 

ring. Then   is t-semisimple if and only if   is semisimple. 

Proof: Since   is t-semisimple, then           , where   is nonsingular 

semisimple submodule of  . As   is  -regular, 
 

      
 is regular ring for all     

[37, Theorem 1.10].  Let       . Then             and hence 
 

      
  is 

singular. That is  (
 

      
)  

 

      
. But 

 

      
 is a regular ring 

implies  (
 

      
)     .Thus  

 

      
.=0 and so         , which implies     

and so       . It follows that           and     . Therefor   is 

semisimple. 

 It is clear. □ 

Proposition (1.1.60): Let   be a finitely generated faithful multiplication over a 

commutative regular ring (in sense of Von Neumann). If    is t-semisimple, then   

is t-semisimple. 

Proof: Let   be an ideal of  . Then      is a submodule of  . As   is t-

semisimple, there exists a submodule   of    such that      and        

  . As   is a multiplication module      for some    . Hence         . 

Hence by Proposition 1.1.25(4),       . Also, since        , then     . 

Thus   is t-semisimple. □ 

   Note that we see by Proposition 1.1.53 if    is t-semisimple module, then every 

 -module is t-semisimple. 
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1.2 Strongly t-semisimple Modules 

    We introduce the concept of strongly t-semisimple modules and give many 

characterizations and properties of this class of modules. 

Definition (1.2.1): An  -module   is called strongly t-semisimple if for each 

submodule   of   there exists a fully invariant direct summand    such that 

      . 

Remarks and Examples (1.2.2): 

(1) It is clear that every strongly t-semisimple module is t-semisimple, but the 

convers is not true. 

(2) t-semisimple module need not be strongly t-semisimple, for example. 

 Let        where   is a non-singular semisimple  -module,   ≠ (0). 

Hence   is semisimple, and so T is  t-semisimple. Let  =      , so there exists  

       such that         . 

Hence   =       for some      . If   = (0), then   =< (0, 0)> and         

 (0). 

So < (0, 0)>+    (              (0)   (by Proposition 1.1.17(3) ) 

Thus           . But            , hence (0)        and so   = (0), which is 

a contradiction. It follows that            so          .But in this case   is not 

fully invariant submodule of    

To see this: Let  :     defined by               for all (x,y) T, Then 

                          . Thus  =       is not fully invariant 

submodule of T, such that K      .Therefore T is not strongly t-semisimple. □ 

    In particular,   as  –module is simple non-singular   -module, so     as   -

module is semisimple and so it is t-semisimple .But     is not strongly t-

semisimple: To see this  

     Let  =      . As < (0, 0)> is the only direct summand fully invariant of 

   , such that <(0,0)> N=      .But <(0,0)>     N because if we assume 
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that <(0,0)>      N then <(0,0)> +  (N)        so that <(0,0)> +<(0,0)>= <(0,0)> 

    N which is a contradiction. 

(3)  If   is   -torsion, then   is strongly t-semisimple. 

 Proof: Since   is   -torsion,    ( ) = . So that   for all    ,  

    (A) =    ( )             , then (0) +    (          . 

 Thus (0)        for all      by Proposition (1.1.17(3)).But (0) is a direct 

summand of  , and (0) is fully invariant. Hence    is strongly t-semisimple. □ 

(4) Every singular module is strongly t-semisimple. 

Proof: Let   be a singular R-module. Then           it follows              

          Thus   is    –torsion, hence   is strongly t-semisimple by part (2). □ 

 Thus, in particular     as Z-module is strongly t-semisimple for all n     , n   . 

(5) The converse of (4) is not true in general, for example 

    as    -module is not singular, but it is   -torsion, so it is strongly t-semisimple. 

(6) If   is t-semisimple module and weak duo (SS-module). Then    is strongly t-

semisimple. 

Proof: Let    . Since    is t-semisimple, there exists K     such 

that       . But    is   -module so   is stable; hence   is fully invariant direct 

summand. Thus    is strongly t-semisimple. □ 

(7) If   is a t-semisimple module and duo (or fully stable) then   is strongly t-

semisimple. Hence every t-semisimple multiplication  -module is strongly t-

semisimple.   

(8) If   is cyclic t-semisimple module over commutative ring   then   is 

strongly t-semisimple. 

Proof: Since    is cyclic module over commutative ring, then   is multiplication 

module. Thus   is duo. Therefore the result follows by part (7). 

    By the following Theorem we shall give several characterizations of strongly t-

semisimple module.  

Theorem (1.2.3):  The following statements are equivalent for an   -module    
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(1)   is strongly t-semisimple, 

(2) 
 

      
 is a fully stable semisimple and isomorphic to a stable submodule of  , 

(3)   =    ( )    where   is a nonsingular semisimple fully stable module 

and    is stable in  , 

(4) Every nonsingular submodule is stable direct summand, 

(5) Every submodule of   which contains    ( ) is a direct summand of   and 

 

       
 is fully stable and isomorphic to a stable submodule of  . 

Proof: (1) (4) Let   be a nonsingular submodule of  . Since   is strongly t-

semisimple, there exists a fully invariant direct summand   of   such that 

       .  Assume that   =     for some     .Hence  =         and 

so  =         by modular law. Thus      and  
 

 
        . But 

        implies 
 

 
 is     -torsion, that is   (

 

 
)  

 

 
 (by Proposition (1.1.17)). On 

the other hand       )   and   is nonsingular, so       ) is nonsingular 

submodule, and hence  
 

 
 is nonsingular, which implies that    (

 

 
)   .Thus 

 

 
   

and hence    . Therefore   is a fully invarent direct summand, and hence   is a 

stable direct summand. 

(4)(3) Let    be a complement of        .Hence                 

And so         by Proposition (1.1.17(3)).Thus 
 

  
 is     -torsion, by proposition 

(1.1.17. (4)).We claim that   is nonsingular. To explain our assertion, suppose 

x      , so        and ann(x)     .Hence ann(x)     R and this implies 

    (M). Thus     ( )   =(0), thus x=0 and    is a nonsingular. So that by 

hypothesis,    is a stable direct summand of   and so that   =     for some 

   .Thus L 
 

  
 which is    torsion, hence   is   -torsion .On other hand, 

         (   +      =0+   . 
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It follows that   =         and    is a nonsingular hence    is stable in   by 

condition (4). Now let     , so   is a nonsingular and hence   is stable direct 

summand in   by hypothesis. It follows that   =    for some      and 

hence             and so              by modular law. Thus 

       and hence    is semisimple . On the other hand every submodule   of 

  is fully invariant, by Lemma 1.1.40(2) but     , so that   is stable in    and 

hence    is fully stable.  

(3)(1) Let             , where   is a nonsingular semisimple fully stable 

module,     is stable in  . Let    , then     )   , so     )     

(since     is semisimple). It follows that              for some     and 

hence                   . Hence          . On other hand,
 

    
 

    

  
 

 

  
      . But       is    torisio   Hence,

 

    
 is    torision and 

then by (Proposition 1.1.17(4))            . But        is stable in 

  (since    is fully stable) and since    is stable in    then by Lemma (1.1.38)   

   is fully invariant in M. But     is direct summand of  . Thus      

                   , hence   is strongly t-semisimple. 

(3)(5) Let           ( ). Since   =           , where    is a 

nonsingualr semisimple fully stable,    is stable in  . Then                  

             ⋂    by modular law. But   ⋂       and   is semisimple 

implies          . It follows that (           for some      

Hence   =                =   . 

Thus      , also 
 

       
    and    is a fully stable module and    is stable 

in  , so that 
 

       
 is fully stable semisimple and isomorphic to stable submodule of 

 . 
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(2)(3) Since    ( ) is t-closed,
 

      
 is nonsingular. By condition (2), 

 

      
 is 

semisimple, hence 
 

      
 is projective by [23, Corollary 1.25, P.35]. Now let 

    
 

      
 be the natural epiomorphism and as  

 

      
 is projective, we get 

                 direct summand of  . Hence           .Thus    

 

      
 which is a nonsingular semisimple fully stable module. Then    is nonsingular 

semisimple fully stable .Also   is stable submodule of   by condition (2). 

(3)(2) By condition (3),           , where   , is a nonsingular semisimple 

fully stable module and   is stable in  . It follows that 
 

      
   . Thus 

 

      
 is 

semisimple fully stable and isomorphic to stable submodule        . 

(2)(5) It follows directly (since (2)(3)(5) then( 2)(5)). 

(5)(2) Let 
 

      
 

 

      
 . Then         , so by condition (5),   is stable direct 

summand of  , so that       for some    .Thus 
 

      
 

        

      
 

 

      
. But we can show that

 

      
 

        

      
  , as follows. 

Let  ̅  
 

      
 

        

      
  Then                   for some       

 , and so            . It follow that        for some      and 

hence              . Thus     

     

and so 
 

      
 

       

     
 

 

     
. 

This implies 
 

     
 is semisimple. By condition (5),  

 

     
fully stable and isomorphic 

to stable submodule of  . But 
 

     
 is nonsingular, so 

 

     
 is projective and 

hence           . Thus   is nonsingular semisimple (since    
 

     
 . It 

follows that    is a fully stable module and   is stable in    □ 
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Examples (1.2.4): 

 (1) Let        as  -module.         , 
 

     
 

 

  
   is not semisimple. 

Hence   is not t-semisimple, so it is not strongly t-semisimple. 

(2) Let           as   -module.   is t-semisimple since  
 

     
 

 

   
   is 

semisimple. But 
 

     
   is not fully stable, hence by Theorem (1.2.3)   is not 

strongly t-semisimple.  

    Recall that an  -module   is called quasi-Dedekind if Hom (
 

 
      for all 

nonzero submodule   of  . Equivantally,   is quasi-Dadekind if for each   

          , then        .[29] 

  Proposition (1.2.5): If    is a quasi-Dedekind, then   is t-semisimple if and only 

if   is strongly t-semisimple. 

Proof: since   is quasi-Dedekind, then for each                  , then   is 

monomorphism, and hence           which is stable and then by [36, Proposition 

1.16],   is SS-module and so that   is strongly t-semisimple by Remarks and 

Examples 1.2.2(5). 

 It is clear. □ 

To prove the next result, we state and prove the following Lemma. 

Lemma (1.2.6): Let       such that    is a fully invariant direct summand of 

 . Then   is a fully invariant submodule in    

Proof: To prove   is a fully invariant submodule of  . Let  :      be an  -

homomorphism, to show   ( )  .  

Consider the sequence  
 
  

 
  

 
  

 
  . Where   is the natural projection and 

    are the inclusion mappings. Then (                , and since   is a fully 
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invariant in  ,so                 . But                     Thus   is a 

fully invariant submodule of   . □ 

Proposition (1.2.7): Every submodule of strongly t-semisimple module is strongly t-

semisimple. 

Proof: Let    be a strongly t-semisimple  -module and      . Assume     , 

so    . Since    is strongly t-semisimple, there exists fully invariant direct 

summand   of   such that            . Hence by Lemma (1.2.6)   is fully 

invariant -submodule of  . As       ,   =       for some       then,   

=   (      =        . So that      . Therefore,   is fully invariant 

direct summand of   such that          .Thus    is a strongly t-semisimple 

module. □ 

 

   Now we consider the direct sum of strongly t-semisimple. First we notice that 

direct sum of strongly t-semisimple modules need not be strongly t-semisimple for 

example: 

   Consider    as   -module.    is strongly t-semisimple. But  =      is not 

strongly t-semisimple by Remarks and Examples 1.2.2(8). However, the direct sum 

of strongly t-semisimple is strongly t-semisimple under certain conditions. Before 

giving our next result, we present the following lemma. 

Lemma (1.2.8): Let            be  -modules such that             

 .Then Hom (     ) =0 and Hom         . 

Proof: Since          +      , then                       . 

Put         ,      =  , therefore   =                , then for  

each             ),                     ,hence         .Thus 

Hom          .Similarly,             0. □ 
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Theorem (1.2.9): Let         such that            = . Then   ,    

are strongly t-semisimple if and only if         is strongly t-semisimple. 

Proof:  It follows by Proposition (1.2.7). 

 Let    . Since            =           for some              

submodules of    and    respectively by [1, Theorem 4.2]. As           are 

strongly t-semisimple, then there exist        and       such that     is a  fully 

invariant direct summand of   , and    is t-essential in   ,    is a fully invariant 

direct summand of    , and    is t-essential in   .But        and        

imply               and          ,           imply     

             by Proposition 1.1.22 and   

       (
                

               
)=(

      
      

) by Lemma 

1.2.8. 

Let  =(
   
   

) for some          ,           . Then            

           (            since    is fully invariant in    and    is fully 

invariant in   . Hence   is strongly t-semisimple. □ 

   Now we shall give other characterizations of strongly t-semisimple module. 

Proposition (1.2.10): The following statements are equivalent for a module    such 

that any direct summand has a unique complement: 

(1)   is strongly t-semisimple, 

(2)  For each submodule   of  , there exists a decomposition        such 

that     and   is stable in   and             

(3)  For each submodule   of    ,         such that   is a direct summand 

stable in   and    is   -torsion. 
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Proof: (1)  (2) Let     and let   be a complement of       in  . Then  

             and let   be a complement of           in  .So 

                 and hence                   . But   is strongly t-

semisimple  implies   is t-semisimple, hence              ( by 

Corollary(1.1.49) .Put            Then       and hence   

        =         (by modular law ). But              implies 
 

 
 is 

  -torsion (by Proposition (1.1.17)). On the other hand, 
 

 
     , so that     is 

  -torsion. Thus                      Now,   is a complement of    

      which is a direct summand of   , so   by hypothesis ,  is the unique 

complement and hence by[1,Theorem 4.8, p.31]   is stable in    and hence 

          is a stable submodule in    Thus        is the desired 

decomposition. 

(2)(3) By condition (2)        such that    ,   is stable in   and 

           Hence        ⋂      ⋂    ut       , so      

  , 
 

 
         is   -torsion ,    is stable in   (since   is complement of    

which is direct summand of  ). 

(3)(1) By condition (3),        ,        and   is stable in    and    is 

  -torsion. Then       ,     and 
 

 
    is   -torsion. Hence        and 

so that   is strongly t-semisimple. □ 

Definition (1.2.11)[5]: An  -module   is called comultiplication if      

        for every submodule   of  . 

   To prove the next result. We need the following Lemma. 

Lemma (1.2.12): Every multiplication module is fully stable. 
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Proof: Let   be a comultiplication  -module. Then              for all 

   .Hence                   for all cyclic submodule    in  .Thus   is 

fully stable by   [1, Corollary 3.5, p.22]. □ 

 Proposition (1.2.13): Let   be a comultiplication   module.  Then   is t-

semisimple if and only if   is strongly t-semisimple. 

  Proof:  It is clear  

  It follows directly by Lemma 1.2.12 and Remarks and Examples 1.2.2(6). □ 

  Recall that” an  -module   is called a principally injective if for any    , any   

-homomorphism          extends to an R-homomorphism from    to 

 Equivalently    is principally injective if and only if                 [26]. 

 Corollary (1.2.14): Let   be a principally injective. Then   is t-semisimple if and 

only if       strongly t-semisimple. 

 Proof:  It is clear. 

   is principally injective implies   is fully stable by [1,Corollary 3.5,P.22] and 

so by  Remark and Examples1.2.2(6),   is strongly t-semisimple. □ 

Recall the following: 

For  -modules   and  .   is called  -injective if for each monomorphism 

      where   is any submodule of   and any homomorphism      , 

there is a homomorphism       such that      .[28].[17].   is called 

injective module if   is  -injective, for any  -module  .   is called self-injective 

(quasi-injective) if   is  -injective [28] ,[17].  

Corollary (1.2.15): Let    be an injective  - module. Then    is t-semisimple    

module if and only if    is strongly t-semisimple. 

Recall the following definition. 
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Definition (1.2.16)[26]: An  -module   is called scalar if for all          , 

there exists     such that         for all      where   is a commutative 

ring. 

Proposition (1.2.17): Let   be a scalar  -module, where   is commutative.  

 Then   is t-semisimple if and only if   is strongly t-semisimple 

Proof:  It is clear. 

 Let     and, let            Since   is scalar, there exists     such that 

        , for all    . Hence           and so that    is fully invariant 

submodule. Thus   is duo. But   is duo and t-semisimple implies   is strongly t-

semisimple by Remarks and Examples 1.2.2(6). □ 

Proposition (1.2.18): If   is semisimple then every duo  -module is strongly t-

semisimple. 

Proof:  Since   is semisimple, then every  -module is semisimple and so every  -

module is t-semisimple. Then by Remarks and Examples 1.2.2(6), every duo  -

module is strongly t-semisimple.□ 

  Now we introduce the following: 

Definition (1.2.19): An R-module    is called t-uniform if every submodule of    is 

t-essential. 

Remark (1.2.20): A uniform modules and t-uniform are independent concepts. The 

following two examples show that. 

(1) Z as Z –module is uniform, but         Z (since (0) +            Z). 

(2) Let       as Z-module,         =  ,  ̅       since ( ̅) +       

      .   =< ̅         since < ̅        =        , and similarly 

  =< ̅                      Thus    is t-uniform, but    is not uniform. 
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Proposition (1.2.21): If    is a t-uniform module, then 
 

 
 is strongly t-semisimple 

for all     . 

Proof: For each    ,        . Then 
 

 
 is   -torsion (by proposition 1.1.17(4) 

).Hence 
 

 
is strongly t-semisimple by Remarks and Examples 1.2.2(2).  □  

1.3 Strongly t-extending and strongly t-semisimple modules 

    Recall that an R-module   is called t-extending if every submodule is t-essential 

in a direct summand [6]. Equivalently   is t-extending if every t-closed is direct 

summand [6]. 

   Some authors said that    is CLS-extending if every Y-closed submodule is a 

direct summand [40]. Thus the concepts t-extending modules  and CLS-extending 

modules are coincide. 

   Recall that,     is called strongly extending if every submodule of   is essential 

in a stable direct summand. Equivalently    is strongly extending if and only if 

every closed submodule is stable direct summand [35]. Also, this concept is studied 

in [18]. 

    Asgari in [7] proved that every t-semisimple module is t-extending. We shall see 

later that strongly t-semisimple module implies strongly t-extending module which 

is introduced in [20]: 

Definition (1.3.1)[20]: An  -module    is called strongly t-extending if every 

submodule is t-essential in a stable direct summand. 

    We study this class of modules, so many characterizations and properties of this 

class of modules are given. Also some connections between strongly t-extending and 

other classes of modules such as strongly extending, strongly t-semisimple are 

introduced.  
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The following Proposition gives a characterization of strongly t-extending which is 

appeared in [20]. However we present a different proof.  

Proposition (1.3.2): An  -module    is strongly t-extending if and only if     every 

t-closed submodule is stable direct summand. 

Proof:  Let   be a t-closed submodule of  .Since   is strongly t- extending, 

         for some      ,   is stable direct summand .As   is t-closed,   =  , 

so    is stable direct summand. 

 Let      . By [20, Lemma 2.3] there exists a t-closed submodule   of   such 

that          , . By hypothesis,   is a stable direct summand, .Thus   is strongly t-

extending. □ 

Remarks (1.3.3): 

(1) Every singular R-module is a strongly t-extending. 

Proof: Let   be a singular R-module, then   is the only t-closed submodule of   

by Proposition (1.1.33) and   is stable direct summand; hence   is strongly t-

extending by Proposition 1.3.2. □ 

(2)Every strongly t-extending module is t-extending, but the convers doesn’t hold 

in general as the following  example shows: Let F be a field,   (
  
  

) and   

be an arbitrary  -module. Then         is a t-extending module which is not 

strongly t-extending since    is not strongly extending.[20, Example 3.4] 

 (3) If    is a t-extending  -module and duo module then    is strongly t-extending. 

Proof: Let        . Since    is t-extending, then   is a direct summand. But   is 

duo, so   is fully invariant submodule of  . Hence   is a stable by [35, Lemma 

2.1.6, P.21].Thus    is strongly t-extending. □ 

 (4) If   is a multiplication t-extending module, then   is strongly t-extending. 
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Proof: As   is a multiplication module, then    is a duo module, hence the result 

follows by part (3). □ 

(5) If   is cyclic module over commutative ring and   is t-extending, then   is 

strongly t-extending. 

Proof: As   is cyclic module over commutative ring,   is a multiplication module 

.Hence the result follows by part (4). □ 

 (6) Let   be a commutative self-injective ring that is   as  -module is injective, 

then   is strongly t-extending. 

Proof:   is self-injective implies R is extending, so R is t-extending but   is cyclic, 

hence R is strongly t-extending by part (5). □ 

 (7) If   is a multiplication t-semisimple, then   is strongly t-extending. 

Proof: Since   is t-semisimple,   is t-extending [7, Proposition 2.16].But    is 

multiplication t-extending   hence   is strongly t-extending by part (4). □ 

(8) Every SS -t-extending -module is strongly t-extending. 

Proof: It is easy. □ 

Examples (1.3.4):  

(1) For all n  , n       is t-semisimple multiplication  -module. So    is 

strongly t-extending by Remarks1.3.3 (7). 

(2)    as Z-module is strongly t-extending, since (0),     are the only t-closed 

which are stable direct summands. 

Theorem (1.3.5): If   is a strongly t-semisimple module, then it is strongly t-

extending, hence every multiplication t-semisimple is strongly t-extending. 
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Proof: Let   be a t-closed submodule of    .As   is strongly t-semisimple, then   

is t-semisimple and hence   is t-extending thus      .To prove   is fully 

invariant in    Since   is strongly t-semisimple, there exists a fully invariant direct 

summand    of    such that        and hence                . Also   is 

strongly t-semisimple implies   is strongly t-semisimple, and so   is t-semisimple 

.Then by Corollary 1.1.49,   has no proper t-essential submodule containing 

   (N).But      (N)       , hence      ( )  . As   is t-closed,         

and so                    .Thus                  . Since 

         ( ) are fully invariant submodules of  , then   is a fully invariant by 

Lemma 1.1.39(1).Hence   is strongly t-extending. □ 

  The converse of Theorem 1.3.5 is not true in general. Consider Q as Z-module. (0) 

and Q are the only t-closed submodules of the  -module Q and they are stable direct 

summands, hence Q is strongly t-extending .But Q is not strongly t-semisimple by 

Remarks and Examples 1.2.2(7). 

    The following Theorem is a consequence of Theorem 1.3.5 and Proposition 1.3.2 

Theorem (1.3.6): If   is a strongly t-semisimple module, then          is t-

closed stable direct summand for every submodule   of     

Proof: As   is strongly t-semisimple, implies   is t-semisimple, hence         

is a closed submodule of   for every submodul   of   by Corollary 1.1.50. But 

        is closed and                imply         is t-closed, by 

proposition 1.1.28 (4 2). On the other hand,   is strongly t-semisimple implies    

is strongly t-extending by Theorem (1.3.5) and hence by Proposition (1.3.2)    

      is stable direct summand. □ 

  The following observation mention in [20]. 

Remark (1.3.7): If   is strongly extending then   is strongly t-extending. 
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Proof: Let   be a submodule of  . Since   is strongly extending, then   is 

essential in a stable direct summand   of  . Hence   is t-essential in    and   is 

stable direct summand .Thus   is strongly t-extending. □ 

 Example (1.3.8): Consider        as a  -module where   is a positive integer. 

We shall see by Theorem 1.3.11(4),   is strongly t-extending. However   is not 

strongly extending, of  . 

    The following Theorem was given in [20]. A different proof is introduced  

Proposition (1.3.9): Let   be a nonsingular module. Then   is strongly extending 

if and only if   is strongly t-extending. 

Proof:  It follows by Remark (1.3.7). 

 Let    . Since   is strongly t-extending,      , for some stable direct 

summand   of     But   is nonsingular, then   is nonsingular hence          . 

Thus   is strongly extending. □ 

Proposition (1.3.10): Let   be a multiplication t-semisimple  -module.Then 
 

 
 is 

semisimple fully stable for every t-closed submodule   of  , and the converse hold . 

Proof: Let   be a t-closed submodule of  . Then 
 

 
 is nonsingular by Proposition 

1.1.28(6) and semisimple by [7, Corollary 2.17]. But   is a multiplication  -module 

implies 
 

 
 is multiplication t-semisimple module so 

 

 
 is duo and hence 

 

 
 is strongly 

t-semisimple. Then by Theorem 1.3.5, 
 

 
 is strongly t-extending. As 

 

 
 is 

nonsingular, we conclude that 
 

 
 is strongly extending by Proposition 1.3.9. It 

follows that 
 

 
 is fully stable by [35, Remarks and Examples 2.2.2(11)].  

    The converse holds by Theorem 1.2.3. □ 

   The following Theorem gives characterizations of strongly t-extending is appeared 

in [20]. However we present a different proof.  
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Theorem (1.3.11):  The following statements are equivalent for an  -module  . 

(1)   is strongly t-extending; 

(2)  Each t-closed submodule of   is a fully invariant direct summand. 

(3)   is t-extending and each direct summand of   which contains       is 

fully invariant. 

(4)            Where    is a strongly extending module. 

(5) Every submodule of   which contains       is essential in a fully invariant 

direct summand. 

(6) Every submodule of   which contains       is t-essential in a fully invariant 

direct summand.  

(7) For every submodule A of  ,   is a fully invariant direct summand of  , 

where     and  
 

 
 =   (

 

 
). 

(8)  For each submodule  , of  , there exists a decomposition 
 

 
 

 

 
 

  

 
 such 

that   is fully invariant direct summand of   and        ,    . 

 Proof:  (1)(7) 
 

 
 =

 
 ⁄

 
 ⁄

 
 

 ⁄

   
  

       ⁄
 is nonsingular. Hence   is t-closed in   so   

is stable direct summand. 

(7) (4) 
 

      
 is nonsingular (since        is t-closed) so    (

 

      
)      

      

      
 .By condition (7),        is a fully invariant direct summand, so it is stable. 

Thus   =         , hence    
 

      
 is nonsingular. Let   be a closed 

submodule in   . Since    is nonsingular, C is t-closed, hence 
  

 
 is nonsingular. 

This implies 
 

        
 is nonsingular, thus          is t-closed in   by Proposition 

(1.1.28). Therefore         +   is stable direct summand in   by condition (7). To 

prove   is a stable direct summand in   . Since           is stable direct 

summand of  , then                 But   is a submodule of   . 
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Hence    ([            ]         [             ] by modular 

law, so      . To prove   is stable in   , it is enough to prove C is fully 

invariant in   . Let          . Consider the sequnces  
 

   
 
   

 
   where 

  is the natural projection and   is the inclusion mapping.  Hence         End 

(  .Therefore                          .But                  

                              Thus                so for any   

 ,          for some         and    . But         , so        , 

hence                    ,so           =0 , then y=0 and        

  . Thus   is a fully invariant in       but      .Hence C is a stable direct 

summand   . 

(4)(5) Let   be a submodule of   which contains      . Since           , 

where    is nonsingular strongly extending. Hence                

              by modular law. Hence          , and   is strongly 

extending, so (                for some stable direct summand 

   of    .Therefore                             , by [25, Corollary 5.1.7, 

P.110] , hence                . But we can prove that          is stable direct 

summand of  . Since L     ,so       , for some     , but   

          .Hence               , thus              .To prove 

         is fully invariant in    . Let f:    so (                     

               . 

Consider the sequence   
 
  

 
  

 
    where   is the natural  projection , and   is 

the inclusion mapping therefore                    (    )  But L is a 

fully invariant in     so               

Hence  (    )      .Now for any      f(       so that  

         for some              . On the other hand,  (    )  

        , and hence    . This implies                   that 
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is             . Now             (     )              

                    . Hence                     . Thus         

is a fully invariant direct summand of  , so it is stable direct summand. Thus   is 

strongly t-extending. 

 (5)(1) Let    . Then               so by condition (5), there exists a 

stable direct summand   of   such that A+            L. But         

       , so        , also                    . So that   

           .  Hence         and   is stable direct summand. Thus condition (1) 

hold. 

(1) (8) Let     . By condition (1) there exists a stable direct summand   of    

such that       . Since     ,       for some     . Hence 
 

 
 

 

 
 

   

 
, but 

 

   
 

 
 ⁄

     
 ⁄
 

 

 
 .Which is   -torsion by Proposition (1.1.17).Thus 

 

   
 is   -torsion, hence we conclude that          by Proposition (1.1.17). 

(8)(1) Let   be a t-closed submodule of  , then 
 

 
 is nonsingular, that is   

 

 
)=0. 

By condition (8), there exists a decomposition 
 

 
 

 

 
  

  

 
 where   is stable direct 

summand and          But 
 

 
 is nonsingular then 

 

 
 is nonsingular, thus   is t-

closed in  . Also we have        , hence 
 

  
 is   -torsion and so 

    

  
 

 

 
 is   -

torsion, hence         but C is t-closed in  , so    . Thus   is stable direct 

summand of  . 

(5) (6) It is clear. 

(6) (5) Let     and        . Since       , where   is fully invariant 

direct summand, then               by Proposition (1.1.17).But         

         , so           and       . 
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(1)  (2) It follows by Proposition (1.3.2) and Definition 1.3.1. 

(3)  (2) Let   be a t-closed of  . Since   is t-extending,   is a direct summand 

of  . But   is a t-closed, so        . Thus by hypothesis    is a fully invariant, 

and so   is a fully invariant direct summand. 

(1)  (3) since   is strongly t-extending, and then   is t-extending. Let      

and         . Since        is closed. Hence    is t-closed by Proposition 

(1.1.28). Then by Proposition (1.3.2)   is a stable direct summand, so   is fully 

invariant. □ 

    Now we give the following  result which   is  another characterization of strongly 

t-extending 

Theorem (1.3.12): Let   be an R –module. Then   is strongly t-extending if and 

only if  for each submodule   of   there exists direct decomposition   =       

,such that       where    is stable submodule of   and   +       . 

Proof: Suppose   is strongly t-extending. Let A  , then there exists a stable 

direct summand    of   such that         Since      ,      =    for 

some     , and as         and           then                 =   

by Proposition 1.1.22(2). 

Let      By hypothesis   =       with     ,    is a stable direct 

summand of   and           .Let A      (     B       Since    

        , then A+                 by Proposition. 1.1.17. Hence  +  + 

(   (      (             So that  +  (              (since   (    

      Thus     (                 which 

implies  +  (         ,hence A       by Proposition 1.1.17(3). Thus M is 

strongly t-extending by Definition 1.3.1. □  
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Proposition (1.3.13): Let    be an  - module such that for every submodule   

of  , there exists a t-closed submodule   with        .Then   is strongly t-

extending if and only if    is strongly extending. 

Proof:  Let      . By our assumption there exists t-closed submodule   of   

such that       . Since    is strongly t-extending, then   is stable direct 

summand of   by Theorem 1.3.11(2) and hence   strongly extending. 

 It is clear by Remark (1.3.7). □ 

  The following Proposition was given in [20]. A different proof is introduced  

Proposition (1.3.14): Any direct summand of a strongly t-extending module is 

strongly t-extending module. 

Proof: If     .Let       be a strongly t-extending module, let   be a t-

closed submodule of A, we have 
 

   
 

    

    
 

 

 
 .  which is nonsingular since   is 

a t-closed submodule of  .Thus     is a t-closed of  , but   is strongly t-

extending module, therefore     is a stable direct summand in   and  so   

        for some submodule   of  . Hence   [       ]⋂  

  [     ⋂ ]. So that     . Also     is stable in      , which implies 

that   is stable in  . Let       be any  -homorphism. Define       by 

     {
               
                

, hence             (since         )). 

Moreover                             . But           ( 

since     is stable in  ). So that           ⋂   . Thus   is a fully 

invariant submodule of  , so it is stable..Therefore   is strongly t-extending. □ 

Corollary (1.3.15): Every t-closed submodule of a strongly t-extending is a strongly 

t-extending. 

Proof: It follows directly by Proposition 1.3.2 and Proposition 1.3.14. □ 
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Theorem (1.3.16): Let         where    and    are  -modules with 

             . Then   is strongly t-extending module if and only if    and 

   are strongly t-extending modules. 

Proof: It is clear by Proposition (1.3.14). 

 Let      . Since              , then         for some      , 

      by [1,Proposition 4.2,P.28]. As       ,    is a t-closed in    and    is 

a t-closed in    by[27,Proposition 2.1.20,P.29]. But    and    are strongly t-

extending.    is a fully invariant direct summand of    and    is a fully invariant 

direct summand of    by Theorem 1.3.11. Since        and        imply 

        , so it is enough to verify that       is a fully invariant in   

       (
                 

                
) . But             , 

             by Lemma 1.2.8. Hence        (
        

        
) and 

so for each            (
   
   

) where           ,           . 

Hence                             . Thus       is fully invariant 

submodule of  . □ 

Proposition (1.3.17): Let   and   be submodules of a module     If   is a strongly 

t-extending module and       , then     is a stable direct summand of  . 

Proof: As         and    , then         by Proposition 1.1.31(1). But    

is strongly t-extending, so that     is a stable direct summand in  . □ 

 Proposition (1.3.18): Let    be a semisimple module. Consider the following: 

(1    is strongly t-extending; 

(2)   is SS-module (weak duo); 

(3)    is duo; 
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(4)   is fully stable; 

(5)   is strongly extending. Then (1)(2)(3)(4)(5). 

Proof: (2)(3)(4)(5). [35, Remarks and Examples 2.2.2(11)p.40] 

(2) (1) Let   be a t-closed submodule of  . Since    is semisimple,      . 

But    is SS-module, so that every direct summand is stable. Thus   is stable direct 

summand. Therefor   is strongly t-extending by Proposition (1.3.2) 

 (1)  (4) Let      Since   is semisimple,       for some submodule   of 

   On the other hand,   is strongly t-extending, hence by Theorem (1.3.11) there 

exists a decomposition         such that        and    is stable in   and 

         . It follows that             and hence       

    , and since    is a stable submodule of  ,       by [1, Theorem 4.8,p.30]. 

Thus   is a stable submodule of    Thus every submodule   of   is stable that is , 

  is fully stable. □ 

  Recall that an   module   satisfies SIP if the intersection of two summands of 

  is a summand in    [42]. 

Proposition (1.3.19): If   is a nonsingular strongly t-extending module then   has 

SIP. 

Proof: Since   is strongly t-extending and nonsingular, then,   is strongly 

extending. Thus   has SIP by [35, Corollary 2.2.8]. □ 

Remark (1.3.20): If   is t-uniform, then 
 

 
 is strongly t-extending for each    . 

Proof: It follows by Proposition 1.2.21 and Theorem 1.3.5. □ 

Proposition (1.3.21): If    is strongly t-extending and indecomposable then 

       for each       
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Proof: Let          . Since   is strongly t-extending, there exists a stable 

direct summand submodule   of   such that        .But    is indecomposable, 

so    . Thus        . □ 

1.4 Strongly t-semisimple rings 

  This section concerns with strongly t-semisimple rings. Several characterizations of 

commutative strongly t-semisimple rings are introduced. Also some 

characterizations of nonsingular strongly t-semisimple ring, are given. 

Proposition (1.4.1): Every commutative t-semisimple ring   is strongly t-

semisimple ring  . 

Proof: Since   is commutative ring, then   is duo  -module. This implies   is 

strongly t-semisimple, by Examples and Remarks 1.2.2(6). □ 

Proposition (1.4.2): Let   be a commutative Artinian ring with           .  

Then   is strongly t-semisimple. In particular every commutative local Artinain ring 

is strongly t-semisimple. 

Proof: By [7, Proposition 3.1],   is t-semisimple ring. Hence by Proposition (1.4.1), 

  is strongly t-semisimple. □ 

Examples (1.4.3): 

(1)   The ring      is Artnian and                    . Thus     is t-

semisimple. Hence by Proposition (1.4.2),     is strongly t-semisimple. 

(2)  Let   be the ring     ,   is an Artnian local ring , so by(Proposition(1.4.2))   

is strongly t-semisimple 

Proposition (1.4.4): The following statements are equivalent for a commutative ring 

(1)    is strongly t-semisimple; 

(2)    is t-semisimple; 

(3) Every  -module is t-semisimple; 
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(4) Every nonsingular   module is semisimple; 

(5)  Every nonsingular   module is injective; 

(6)  Fore every    module   there is an injective submodule    such that 

          ; 

(7)   
 

     
  is a semisimple ring. 

(8) Every maximal ideal which contains       is a direct summand; 

(9)   is a direct product of two ring, one is     torsion and the other is 

semisimple ring. 

Proof: (1)(2) it is clear 

(2)  (1)  It is follows by (Proposition 1.4.1). 

(2)  (3)  (4)  (5)  (6)  (7) (see [7, Theorem (3.2)]). 

(2)  (8) (9) It follows by [7, Theorem 3.8]. □ 

Corollary (1.4.5):Let   be a t-semisimple ring(and hence if   is strongly t-

semisimple). 

 (1) A maximal right ideal   of   is a direct summand if and only if it 

contains      . 

(2) A minimal right ideal   of   is a direct summand if and only if it is nonsingular 

[7,Corollary 3.9]. 

    Recall that a ring    is called quasi-Frobenius if   is self-injective and 

Noetherain. Equivalently   is quasi-Frobenius if   is self-injective and 

Artinian.[21] 

Corollary (1.4.6)[7, Corollary 4.6]: Let   be a right nonsingular. Then   is quasi-

Frobenius if and only if    is semisimple. 
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Proposition (1.4.7): Let   be a nonsingular commutative ring. Then the following 

statements are equivalent: 

(1)     is quasi-Frobenius; 

(2)    is semisimple ; 

(3)     is t-semisimple (   is strongly t-semisimple); 

(4)   Every   module is t-semisimple; 

(5)  Every nonsingular   module is semisimple; 

(6)  Every nonsingular   module is injective; 

(7)  For every    module   , there exists an injective submodule    such that 

           ; 

(8)  
 

     
   is a semisimple ring. 

Proof:   (3)  (4)  (5)  (6)  (7)  (8) by Proposition (1.4.4). 

(1) (2) It follows by Corollary (1.4.6) 

(2) (3) It follows by [7,Theorem 3.2] and Proposition (1.4.4). □ 

Proposition (1.4.8): The following statements are equivalent for a commutative ring 

  

(1)        -semisimple (  is strongly t-semisimple ); 

(2) Every weak duo module (SS-module) is strongly t-semisimple; 

(3)  Every   module is t-semisimple. 

Proof: (1)  (3) by Proposition (1.4.4) 

 (3)(2) It  follows by Remarks Examples  1.2.2(5). 

 (2)  (1) R is duo (because   is commutative ring with unity), so   is strongly t-

semisimple. □ 
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Proposition (1.4.9): The following statements are equivalent for a commutative 

ring  : 

(1)    is t-semisimple(  is strongly t-semisimple); 

(2)  Every nonsingular  -module is strongly t-semisimple; 

(3)  For every  -module    there exists a strongly t-semisimple  -module    

such that            . 

Proof: (1)  (2) Let   be a nonsingular  -module. Hence   is semisimple by 

Proposition (1.4.7)(35) and so   is t-semisimple. Also   is injective by 

(Proposition(1.4.7) ((3)  (6)). It follows that   is strongly t-semisimple by 

(Corollary (1.2.15)) 

 (2)(1) By condition (2) every nonsingular module   is strongly t-semisimple, 

hence every nonsingular module   is t-semisimple. Thus every nonsingular is 

semisimple by (Remarks 1.1.45(3)). It follows that   is t-semisimple by (Proposition 

(1.4.4) (4)(2)). 

(1)  (3) By (Proposition (1.4.4) (2) (6)),     (      for some injective  -

module   . But    
 

     
 which is nonsingular module. Hence    is semisimple 

by (proposition (1.4.4) (2)(4)). Thus    is t-semisimple and injective, so    is 

strongly t-semisimple by Corollary (1.2.15). 

(3) (1)             where    is strongly t-semisimple. Hence    is t-

semisimple. But    
 

     
 which is nonsingular, so   is nonsingular t-semisimple. 

Thus   is semisimple by Remarks 1.1.45(3). So that   is injective. Thus   is t-

semisimple by (Proposition (1.4.4) (6) (2)). □ 
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1.5 Strongly t-Baer modules and strongly t- semisimple modules 

   For a left ideal    of  End    , set the right annihilator in   of   by        

           and                      [33]. Recall that a module 

  is (quasi)-Baer if the right annihilator in   of any left (two sided) ideal   of 

             is a direct summand of    [33]. A close connection was established 

between (quasi-)Baer modules and FI-extending modules which is introduced in 

[33]. As a generalization of t-extending, hence extending module and of a 

nonsingular Baer, the notion of t-Baer is introduced in [6]. Connections between t-

extending and t-Baer were established; see [6, Theorem 3.9]. 

   In this section we introduce the notions of strongly Baer module and strongly t-

Baer module. Many connections between these concepts and other related concepts 

such as Baer module, t-Baer, strongly t-semisimple modules, strongly extending 

strongly t-extending and noncosingular modules are presented. 

Definition (1.5.1):A module    is called Baer if          for every left ideal   

of   where          .[33]. 

 Definition (1.5.2): A module   is called abelian Baer (or strongly Baer by some 

authors) if           and fully invariant for every left ideal   of   where, 

          [34]. 

Definition (1.5.3):A module    is called t-Baer if          for every left ideal 

  of   where          .[6] 

Definition (1.5.4): A module   is called strongly t-Baer if          and fully 

invariant, for every left ideal   of   where           [20]. 

Remarks and Examples (1.5.5): 

(1)  It is clear every strongly Baer module is Baer module, and every strongly t-Baer 

module is t-Baer module. 
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(2) Every   -torsion module is strongly t-Baer. 

Proof: Let   be a   -torsion module, so           For any left ideal    of   

       ,        {   :              .But      and it is fully 

invariant .Thus   is a strongly t-Baer. □ 

(3) If   is a nonsingular module, then             for every left ideal   of  .  

Proof: Since   is nonsingular,          Hence                   

                        □ 

(4) Let   be a nonsingular   module. Then   is strongly Baer if and only if   

strongly t-Baer.  

Proof: It follows directly by (3). □ 

(5) Let   be a nonsingular  -module. Then   is Baer if and only if   is t-Baer. 

(6) The  -module      is t-Baer which is neither Baer nor   -torsion [6, 

Example 3.4(1)] 

(7) The  -module   is strongly t-Baer, since End        and so for any ideal   

of End    ,    .Thus                                 

       is a fully invariant  direct summand of   . 

(8) Let       as  -module, End   (
              
              

)  (
  
  

) and 

              

Let   {(
   
   

)                              } ,then for any (
  
  

)  

       

(
  
  

) (
  
  

)  (
      
      

). Thus   is a left ideal of       .      

{(
 
 )      (

  
  

) (
 
 )  (

 
 
)}  {(

 
 )  (

  
  )  (

 
 
)},hence       

        , but       is not fully invariant. 
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For           which is defined by               for all           . 

Then,        =        for all     and                       Thus   is not 

strongly t-Baer.  

Lemma (1.5.6): Let           , let   be a left ideal of         , let 

       be the natural epimorphism, and 

           :    , let        , where         . Then        

         (   . 

Proof: Let             so                Then          

     , hence for any                      , that is      +        

     , so             .Now             (     )   .Thus    

   (   ,so                 (   .Let                (   , so    

      and       . Hence                      . This implies        

      and so                +            . Thus            , 

hence          (          .Thus                 (   . □ 

Lemma (1.5.7): Let           , let    be an ideal of            let 

                   and     . Then                 (   . 

Proof: Let              so                for any     , then 

               , so                        , hence     

            . As         , so that             .  Hence       

         =0, so        (   . Thus                 (  ).  Conversely, 

let                  (  ). Then           and       (  ). So    

      and        , 

                                                   

         ,then            .Thus          (  )       . Hence  

                (   . □ 
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   The following result gives some characterizations of strongly t-Baer module which 

are analogous generalization of Theorem 3.2 in [6].  

Theorem (1.5.8): The following statements are equivalent for a module  :   

(1)   is strongly t-Baer; 

(2)            where    is a (nonsingular) strongly Baer module;[20] 

(3)    has strongly summand intersection property for direct summands which 

contain         and                 and fully invariant for all     

      ; 

(4)                   and fully invariant , for every,             

   Note that (1)(2) is given in[20, Theorem 4.2]. But our proof is different.
 

Proof: (1)      Since   is strongly t-Baer,                where 

         Hence            for some     ;    is nonsingular. To 

prove    is strongly Baer.  Let    be a left ideal of            , let      

      } and       Then                      by Lemma (1.5.7). Since   

is strongly t-Baer,         and fully invariant, so             for some 

   ; that is                   .But   =                    

  =         [                ] by modular law. Hence            . 

Let          ,then           .Hence                   since       is 

fully invariant in   so      (     )                                

     . Thus                  , which implies          is fully invariant in   . 

Thus    is strongly Baer. 

(2)  (1) Assume              , where    is strongly Baer. Let    

       , let   be a left ideal of   . Let    , hence        . Consider the 

sequence   
 
  

  

   ,where    the natural projection. Put               

   ,      , put        . Then                      by Lemma (1.5.6). Since 

   is strongly Baer,             and fully invariant in    . Hence            
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   for some    , thus                               =       . 

Hence           

To prove       is fully invariant in  , let      .  Since             

        , then for all         ,     +    such that            ,       

       .                  . Assume             such that      

            . Now        
                   , where    the natural projection, 

then         
                )        , hence                     that is 

                 , hence           .Thus                 where 

                   and so                         . Therefore       

is fully invariant in    

(1) (3) Let      Since     (     )          and   is strongly t-Baer, so 

    (     )     and fully invariant submodule of    To prove   has a strongly 

summand intersection property for  direct summand which contain 

     .Let       ,        ,    , then for each     ,          where, 

   is an idempotent of    

Let               where 1 is the identity mapping on    and let            

Then         S(1-   )m ≤     , hence                for all λ   and 

hence          
                            

             , for all 

     To show this, let         
         , then                 and 

so               . This implies                     (since 

           . Thus       
             . So that                

      .  

Now assume that          then         . Thus there exists       such that 

(     
)         hence         

          , but       
           

   
   . To show this. Let      

   . Then      
    for some     and so 

    
  

       
(   

    )     
   . Hence      

    (     
)      
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      and this implies         
          . Thus    

       

   
          .But       

            
   . Therefore       

           

   
   . Thus           and so                But (by condition 

(1)          and fully invariant). So          is a fully invariant direct 

summand. 

(3)  (4) Since                 and a fully invariant submodule of    for each 

    by condition (3). Then                     and fully invariant. 

(4)(1) Let   be a left ideal of    Cleary                      . By 

condition(4),                 is a direct summand and fully invariant of  .Thus 

      is a direct summand and fully invariant of  . □ 

 

   To prove the next Theorem, first the following Proposition is presented. 

Proposition (1.5.9): Let   be a nonsingular strongly extending  -module .Then   

is strongly Baer. 

Proof: To prove          and fully invariant for each left ideal   of  . Since 

every strongly extending module is extending. So   is nonsingular and extending, 

which implies   is Baer by [33]. Thus           hence      is closed 

submodule and so        is stable, since   is strongly extending. Thus   is strongly 

Baer.  □ 

   Recall that for a submodule   of   . The set {                 is denoted 

by        [7] 

    The following Theorem explains connections between strongly t-semisimple 

modules with strongly t-extending modules and strongly t-Baer modules. 

Theorem (1.5.10): For an  -module  . Consider the following assertions 
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(1)   is strongly t-semisimple; 

(2)   is strongly t-extending and           for every submodule   of  , 

which contains      . 

(3)   is strongly t-Baer and           for every submodule   of   which 

contains         

Then (1) (2) (3) and( (3) (1) if a complement of       is unique).  

  Proof: (1)  (2) By Theorem (1.3.5),   is strongly t-extending Also   is strongly 

t-semisimple, implies   is t-semisimple. Hence by [7, Proposition 2.19],   

        for every submodule   of   which contains        

(2) (3) Since   is strongly t-extending,           ,    is nonsingular 

strongly extending  by Theorem(1.3.7). It follows that    is strongly Baer by 

Proposition (1.5.9).Hence by Theorem ((1.5.8) (2) (1)),   is strongly t-Baer. 

 (3) (1) Since   is strongly t-Baer,             is a direct summand of   and 

fully invariant submodule of  , say           , hence    is nonsingular.Let 

     and        .Then                              

  . Since   is strongly t-Baer,         ) is a fully invariant and direct summand of 

 .But by condition (3),          , so   is fully invariant direct summand of  . 

Thus every submodule which contains        is stable direct summand. Hence 
 

     
 

is semisimple, but    
 

     
, so that    is semisimple. To prove    is a fully 

stable, let       . Since         , it is enough to show that    is fully invariant 

submodule of   . Assume           . Since            ,   can be 

extended to       which is defined by       {
                               

                               
  

Hence                       since            is a fully invariant 

submodule of  . But                           =             Thus 

                and since     )    , then     )                
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  , that is    is  a fully invariant submodule of     Thus    is fully stable, and so 

 

     
 is fully stable. To prove    is a fully invariant in  . Since   is a complement 

of       and by hypothesis,    is a unique complement of       so    is stable in 

   by [1, Theorem 4.8, P.30] and hence 
 

     
  stable submodule. Therefore by 

Proposition 1.2.3(5 1),   is strongly t-semisimple. □ 

   Asgari proved that if    is t-Baer, then so is every direct summand [7, Theorem 

3.6]. However every direct summand of strongly t-Baer is strongly t-Baer” [20, 

Theorem 4.4]: we give a different a proof, for this fact. 

 

 

Theorem (1.5.11): If   is strongly t-Baer module, then so is every direct summand 

of     

 Proof  First, we show that if         and    is   -torsion, then    is    

strongly t-Baer. Let    be a left ideal of           . Since   is strongly t-Baer, 

  is t-Baer. Hence by the same proof of the 1
st
 paragraph of proof of Theorem 3.6 in 

[6],    
         . To prove    

     is a fully invariant submodule of   .put   

{   
       } , and     . Since   is strongly t-Baer,           and fully 

invariant. But              
    . Assume          . Define        by  

     {
             

               
 . Hence                , so that         (   

      

      , which implies  (   
    )               

    . Thus      
      

[      
    ]    =   

    . Therefore    
     is fully invariant submodule of     

and so    is strongly t-Baer.  

 Let   be a direct summand of  ,say      , hence                   

and as   is strongly t-Baer,         . It follows that.             Since 
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                                      so that   

       [          ], let              , hence           and 

          .Set          . As      , so               , 

               ,then        Also,                (    

So                    . 

But         (     )      =                   By using Theorem 1.5.8, 

we can show that   has strongly summand intersection property for submodules 

which contains              .Now, let          ,        , where    is 

canonical projection onto           (      
             . Since   is strongly 

t-Baer, then             (       and fully invariant in     Say     

       ( )    , hence  L         (        
  .Thus        (       L. 

Also, since         (    is fully invariant in  , hence by Lemma(1.2.6) 

        (     is fully invariant in  . Thus   is strongly t-Baer and so (by first 

paragraph), we have   is strongly t-Baer. □ 

    Recall that “a module   is called t-cononsingular if every submodule   of   

with             implies        [ ].”   is strongly t-cononsingular if every 

submodule   of  ,            implies        [6]. Asgari establish a close 

connection between t-extending modules and t-Baer modules; in fact, a module is t-

extending if and only if it is t-Baer and t-cononsingular.[6,Proposition 3.9] 

 In the following Theorem, we establish connection between the strongly t-extending 

and strongly t-Baer modules. Also this Theorem is a generalization of Theorem 3.9 

in [6]  

Theorem (1.5.12): The following statements are equivalent for a module    

(1)   is strongly t-extending; 

(2)   is strongly t-Baer and t-cononsingular; 

(3)   strongly t-Baer and           for every t-closed submodule    
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(4)   is strongly t-Baer and for any t-closed submodule   of   if       

     , then      

 Proof: (1)(2) Since   is strongly t-extending,            where    is 

strongly extending by Theorem1.3.11(4). But    is nonsingular and strongly 

extending implies    is strongly Baer by Proposition (1.5.9). Thus by Theorem 

(1.5.10),   is strongly t-Baer. Also   is t-cononsingular follows by the same proof 

of [6, Theorem (3.9) (1 2))]. 

(1)(3) By the same proof of (1)(2)   is strongly t-Baer. As   is t-extending, 

then            for every t-closed submodule   of   follows [6, Theorem (3.9) 

(1 3)] 

(2)(4) For any t-closed submodule   of   if            ,then        (by 

definition of t-cononsingular). But   is t-closed, so   = . 

(3)(4) Let   be a t-closed submodule  of   , such that               

Hence                , thus      

(4)(1) By Theorem 1.3.11 to prove   is strongly t-extending, it suffices to show  

that any submodule which contains       is essential in stable direct summand of 

 .Let   be a such a submodule . Since   strongly t-Baer,             and 

fully invariant in  , so   (     )     for some idempotent      But   

  (     )        and   (     ) fully invariant in  . Moreover         

by the same proof of [6, Theorem (3.9) (4 1)]  Thus   is essential in stable direct 

summand. □ 

Corollary (1.5.13): The following statements are equivalent for a module  : 

(1)   is nonsingular strongly extending; 

(2)   is strongly t-Baer and strongly t-cononsingular; 

(3)   is strongly t-Baer and           for every closed submodule   of  ; 
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(4)   is strongly t-Baer and for any closed submodule   of  ,      

       then      

Proof:  (1)  (2) is obvious by Remark 1.3.7 and Theorem 1.5.12. 

(1) (3) Since condition (1) implies   is strongly t-extending. Then   is strongly t-

Baer and           for every t-closed submodule   by (Theorem 

(1.5.12)(1) (3)). As   is nonsingular, every closed is t-closed. Hence the result is 

obtained. 

(2) (4) Let   be any closed submodule.  If             then       . Hence 

   . 

(3) (4) It follows by the same proof (Theorem (1.5.12) (3) (4)). 

(4) (1) By Theorem 1.5.8,            for some     . As      , so 

   is closed in  . But     
          since if        

  , then             

, so                   (     )             . Hence     
   

        . Now let          ,            so that                   . 

And this implies    (     )                Thus              , hence 

      
  . Then           

   and so      
         . It follows that   

     by condition (4) and, hence    is nonsingular which implies every closed 

submodule is t-closed. Thus   is strongly t-Baer and for any t-closed submodule   

of, if            , then    . Hence by (Theorem (1.5.12) (4) (1)),   is 

strongly t-extending. Thus it is strongly extending. □ 

      Now we introduce the following 

Definition (1.5.14): A ring    is called right strongly                  if every 

free   - module is strongly t-extending. 

Example (1.5.15): Let   be a right   -torsion ring, that is           For any    

module  ,              . Hence        , that is    is   -torsion, hence 
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by Remarks and Examples 1.2.2(2),   is strongly t-semisimple and by Theorem( 

1.3.5),   is strongly t- extending and so every free  -module is strongly t-extending. 

Thus   is a right strongly t-extending. 

Theorem (1.5.16): The following statements are equivalent for a ring  . 

(1)   is a right strongly               ; 

(2) Every nonsingular    -module is projective and strongly t-extending; 

(3) For every  -module  , there exists a projective submodule    of        

with           ,   is strongly t-extending. 

(4) Every  -module is strongly t-Baer; 

(5) Every  -module is strongly t-extending; 

(6) Every projective  -module  is strongly t-extending; 

(7) Every nonsingular  -module is strongly t-Baer and          ; 

(8) Every nonsingular  -module is strongly extending and            

Proof: (1)  (2) Let   be a nonsingular  -module.There exists a free  -module    

and    , such that   
 

 
. Hence 

 

 
 is nonsingular and so   is t-closed. Then by 

(Theorem (1.3.11) (2)).   is a fully invariant direct summand of  .  Hence   

   . But   is projective, implies   is projective. As   
 

 
  , so   is 

projective and by Proposition (1.3.14),   is strongly t-extending. Thus   is strongly 

t-extending. 

 (2)  (3) Let   be an  -module. Then  
 

     
 is nonsingular, and hence by 

hypothesis it is projective and strongly t-extending. Since 
 

     
 is projective, 

           and hence    
 

     
, is  projective . Also,     is     nonsingular 

(since    
 

     
  is nonsingular) . So    is strongly t-extending by hypothesis. 
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(3)  (2) Let   be a nonsingular  -module. By condition (3),           ,    

is projective and strongly t-extending. As   is nonsingular,         and so 

     is projective, strongly t-extending. 

(3)  (4) Let   be   an  -module. Then           , where    is strongly t-

extending and    is projective, so    is strongly extending (since 

      nonsingular). But    is nonsingular and strongly extending, implies    is 

strongly Baer by Proposition (1.5.9).Thus   is strongly t-Baer by Theorem (1.5.8) 

(2). 

(4)  (5) Let   be an  -module, let    . Define     
 

 
    

 

 
 by 

                   Since   
 

 
 is strongly t-Baer,      (  

 

 
)  is a 

fully invariant direct summand in   
 

 
 by Theorem 1.5.8(3). But    (  

 

 
)  

        (
 

 
). Put   (

 

 
)  

  

 
. We can show that    [         (

 

 
)]=   

 

 
  

,as follows: let              [       (
  

 
)], where        

       +k)                
  

 
 and hence       Thus (    +k) 

   
 

 
 , that is    [         (

 

 
)]      

 

 
 …………….(I) 

Conversely, let       +k)     
 

 
 where      ,     ,       +k)=(    

           
  

 
         (

 

 
). Thus      +k)     [         (

 

 
)] 

.Then    
 

 
    [         (

 

 
)] ………….(II) . By(I),(II), we get 

   [(        (
 

 
)]     

 

 
. It follows that    

 

 
 is a fully invariant direct 

summand of   
 

 
  So that (   

 

 
)     

 

 
 for some      

 

 
, 

hence      . To prove    is fully invariant in  . Let        Define 

    
 

 
    

 

 
 by      {
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 (   
 

 
     

 

 
 ,since    

 

 
 is fully invariant in   

 

 
. But  (   

 

 
  

    )  . Thus     )    , that is    is a fully invariant submodule of    and 

hence  by Theorem(1.3.11)(2),   is strongly t-extending. 

(5)  (6) It is clear. 

(7)  (8) Let   be a closed submodule of   where,   is nonsingular, so   is a t-

closed and 
 

 
 is nonsingular. Since   

 

 
 are nonsingular, then   

 

 
 is nonsingular, 

so by hypothesis,   
 

 
 is strongly t-Baer. Then by similar proof (4)   (5),   is 

strongly t-extending. 

(8)  (1) Let   be a free  -module. Then F         ,         for each     , 

so that                            by Proposition 1.1.13. 

Since      )   , so           Hence            hence    is 

nonsingular since   
 

     
. By condition (8),   is strongly extending. Thus   is 

strongly t-extending by Theorem 1.3.11(4 1) 

(6)  (1) Let   be a free  -module. Then   is projective, hence by condition (6),   

is strongly t-extending. Thus     is a right strongly                

(4)  (7) By condition (4), every  -module is strongly t-Baer, hence every  -

module is t-Baer by Remarks and Examples 1.5.5(2). Then by [6, Theorem (3.12) 

(4)   (7)], every nonsingular  -module is Baer and      ) is a direct summand of 

 . But by condition, every  -module is strongly t-Baer. Thus every  -module is 

strongly t-Baer and          is a direct summand of  . □ 

Corollary (1.5.17): The following statements are equivalent for a nonsingular ring    

(1)   is a right strongly  -t-extending ring, 

(2) Every nonsingular  -module is projective and strongly t-extending; 
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(3) For every  -module  ,there a projective submodule   of   with   

         and    is strongly t-extending; 

(4) Every  -module is strongly t-Baer; 

(5) Every  -module is strongly t-extending;  

(6) Every projective -module is strongly t-extending; 

(7) Every nonsingular  -module is strongly Baer; 

(8) Every nonsingular  -module is strongly extending. 

Corollary (1.5.18): Let   be a ring consider the following statements. 

(1)    is right strongly  -t-extending and all   -torsion modules are projective and 

strongly t-extending 

(2)   is semisimple; 

(3)  Every  -module is t-semisimple. 

Then (1)  (2)(3), and (3)(2) if   is nonsingular. 

Proof:  (1) (2)  Let   be an  -module , if   is nonsingular , then   is projective 

by Theorem 1.5.16(1 2). If   is   -torsion, then   is projective by hypothesis. 

Now if   is neither nonsingular nor   -torsion, then 

            , where    is projective and strongly t-extending by Theorem 

1.5.16(1 3). But      =          , so       is   -torsion, hence       is 

projective. Then            is projective. Thus all  -modules are projective, 

and so   is semisimple by [25, Corollary 8.2.2(e), P.196]. 

(2)(3) It follows by Proposition 1.4.4. 

(3)(2) It follows by Remarks 1.1.45(3). □ 

Proposition (1.5.19):  The following statements are equivalent for a ring   . 

(1)    is strongly t-extending; 

(2) Every nonsingular cyclic  -module is projective, strongly t-extending; 
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(3) For every cyclic  -module, there is a projective strongly t-extending   , with 

           ; 

(4) Every cyclic  -module is strongly t-extending; 

(5) Every cyclic projective  -module is strongly t-extending. 

Proof: (1)  (2) Let      be a cyclic nonsingular  -module. Then 
 

       
    

(is nonsingular). But 
 

      
 is nonsingular, implies         is t-closed. As    is 

strongly t-extending,         is a stable direct summand of  . Hence   

         , so   is projective. Now   
 

       
   hence   is projective. Also   is 

a direct summand of strongly t-extending, so it is strongly t-extending. Thus   is 

strongly t-extending. 

    (3) Let    be a cyclic  -module. Then, 
 

     
 is a nonsingular cyclic module. 

By condition (2), 
 

     
 is projective and strongly t-extending, hence   

          , for some      . Thus    is nonsingular projective. Also    is 

strongly t-extending. 

(3)(2) Let   be a nonsingular cyclic, so           ,    is nonsingular , 

projective, strongly t-extending by condition (3). Hence     (since       

=0).Thus   is projective, strongly t-extending. 

(3)  (4) Let   be cyclic  -module. Then           ,    is  projective, and 

strongly t-extending. Since    is nonsingular,    is strongly extending. Hence   is 

strongly t-extending by Theorem (1.3.11). 

(4)  (5)  (1) are clear. □ 

Corollary (1.5.20): The following statements are equivalent for a nonsingular ring 

   

(1)    is strongly extending (  is strongly t-extending); 
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(2) Every nonsingular cyclic  -module is projective strongly extending; 

(3) For every cyclic  -module  , there is a projective strongly extending    with 

          ; 

(4) Every cyclic  -module is strongly t- extending; 

(5) Every cyclic projective  -module is strongly t- extending. 
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Introduction 

   In this chapter we introduce the notions of FI-semisimple and FI-t-semisimple 

modules as generalizations of semisimple modules; also we extend the notion of FI-

t-semisimple in to strongly FI-t-semisimple. This chapter have three sections. 

    In section one, properties of FI-semisimple module are studied, we investigate 

connection between FI-semisimple and FI-extending modules. We also show that 

the direct sum of two FI-semisimple modules is a FI-semisimple module.  

   Section two is devoted for studying FI-t-semisimple modules. We obtain 

characterizations of FI-t-semisimple when a module satisfies condition   , where 

    means: For an  -module  , a complement of       is stable. We also, provide 

a connection between FI-t-semisimple   and FI-t-Baer modules, when   satisfies 

condition   . We generalize the property every t-semisimple module is t-extending. 

We get every FI-t-semisimple module is FI-t-extending. 

    In section three we introduce the notion of strongly FI-t-semisimple. The two 

concepts FI-t-semisimple and strongly FI-t-semisimple modules are coincide when 

condition     hold. It is shown that every fully invariant submodule of strongly FI-t-

semisimple inherits the property. A direct sum of two strongly FI-t-semisimple  -

modules    and    is strongly FI-t-semisimple, if              . 
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2.1 FI-semisimple modules 

   In this section, we present the concept namely FI-semisimple modules as a 

generalization of semisimple modules. Many properties about this concept, and 

connections between it and other related concepts are introduced. 

Definition (2.1.1): An  -module   is called FI-semisimple if for each fully 

invariant submodule   of  , there exists      such that       . 

     The following is a characterization of FI-semisimple modules. 

Proposition (2.1.2): An  -module   is FI-semisimple if and only if every fully 

invariant submodule of   is a direct summand. 

Proof:  Let   be a fully invariant submodule of  , so there exists       such 

that        . But        implies   is closed in  , so it has no proper essential 

extension in  . Thus     and so     . 

 Let   be a fully invariant submodule of  . By hypothesis        But 

       and     . Thus   is FI-semisimple. □ 

Remarks and Examples (2.1.3):  

(1) It is clear that every semisimple module is FI-semisimple, but the converse is   

not true in general, for example: The    -module    has only two fully invariant 

submodules which are   (0),    Hence   is FI-semisimple, but it is not semisimple. 

(2) t-semisimple module does not imply FI-semisimple in general for example 

         -module is t-semisimple but it is not FI-semisimple. Also FI-semisimple 

module does not imply t-semisimple, for example   as  -module is FI-semisimple 

and it is not t-semisimple. 

(3)  If    is a duo module (hence if    is a multiplication module), then   is a 

semisimple module if and only if   is FI-semisimple. In particular the  -
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modules  ,   ,     are not FI-semisimple. Also, every commutative ring   is 

semisimple if and only if   is FI-semisimple. 

(4)  A fully invariant submodule of FI-semisimple module is FI-semisimple.   

Proof: Let   be a fully invariant submodule of   and   is a FI-semisimple module. 

Let   be a fully invariant submodule of  , hence   is a fully invariant in   by 

Proposition (1.1.38). It follows that       Thus         for some      

and so   (                 by modular law. Then     . Thus    is 

FI-semisimple by Proposition (2.1.2). □ 

(5) Every FI-semisimple module   is FI-extending. Where an  -module   is 

called FI-extending if every fully invariant submodule is essential in a direct 

summand [9]. 

Proof: Let   be a fully invariant submodule of  . As    is FI-

semisimple,      . But       . So that   is FI-extending. □ 

(6) If   and   are isomorphic  -modules, then   is FI-semisimple if and only if 

  is FI-semisimple. 

(7) If        be an epimorophism and    is FI-semisimple, then it is not 

necessary that   is FI-semisimple. For example      
 

   
   ,    is FI-

semisimple, but   is not. 

Proposition (2.1.4): Let   be a FI-semisimple and   is fully invariant in   then 
 

 
 

is a FI-semisimple. 

Proof: Let 
 

 
 be a fully invariant submodule of  

 

 
. Since   is a fully invariant 

submodule of  . Then   is a fully invariant submodule of   by Lemma (1.1.40). 

But   is FI-semisimple, so     . Then       for some    . This 

implies  
 

 
 

   

 
 

 

 
. Thus 

 

 
   

 
 and 

 

 
 is FI-semisimple. □ 
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Corollary (2.1.5): Let        be an  - epimorphism and      is a fully 

invariant submodule of   . If   is a FI-semisimple  -module, then     is a FI-

semisimple. 

Proof:  Since        epimorphism,  
 

    
      But 

 

    
 is a FI-semisimple by 

proposition (2.1.4), hence    is a FI-semisimple by Remarks and Examples 2.1.3(6). 

□ 

Corollary (2.1.6): Let   be a FI-semisimple  -module. Then 
 

     
 is FI-semisimple 

and             where    is a nonsingular FI-semisimple. 

Proof: As       is a fully invariant submodule of    , then  
 

     
  is FI-semisimple 

module by Proposition (2.1.4). Also,       is a fully invariant in   

implies         , by Proposition (2.1.2). Thus               for some 

    . But    
 

     
, so    is nonsingular FI-semisimple. □ 

   Next the following proposition concerned with the direct sum of FI-semisimple 

modules 

Proposition (2.1.7): Let          , where        . If     and    are FI-

semisimple, then    is FI-semisimple and the converse hold if     and    are fully 

invariant submodules of  . 

Proof:  Let   be a fully invariant submodule of  . Then 

                  and,          ,(       are fully invariant 

submodules of    and    respectively by Proposition 1.1.39(ii). Put   =    , 

       . Hence                     , since    and    are FI-semisimple. 

It follows that            and so   is FI-semisimple. 



 Chapter Two      FI-semisimple Modules, FI-t-semisimple Modules and Strongly FI-t-semisimple Modules  

80 
 

 Since    is a fully invariant submodule of  , 
 

  
  is FI-semisimple by 

Proposition (2.1.4). But 
 

  
   , hence    is FI-semisimple. Similarly,    is FI-

semisimple. □ 

 

2.2 FI-t-semisimple Modules   

    In this section a generalization of t-semisimple modules namely, FI-t-semisimple 

which is also a generalization of semisimple modules is introduced and studied. 

Several properties concerned with this concept are given. 

Definition (2.2.1): An  -module    is called FI-t-semisimple if for each fully 

invariant submodule   of  , there exists      such that         

Remarks and Examples (2.2.2):  

(1) It is clear that every t-semisimple module is FI-t-semisimple, but the converse 

is not true, for example   as  -module is not t-semisimple and clearly it is FI-t-

semisimple. 

(2) It is clear that every FI-semisimple module is FI-t-semisimple, hence each of 

the  -module              is FI-t-semisimple, since each of them is FI-

semisimple module. 

(3)  The converse of part (2) is not true in general, for example,      as a  -

module is a FI-t-semisimple (since it is t-semisimple) but it is not FI-semisimple. 

(4) Let   be a nonsingular  -module. Then   is FI-semisimple if and only if   is 

FI-t-semisimple. In particular,   as  -module is not FI-t-semisimple, also if   

    , then    is not FI-t-semisimple. 

Proof:  It is clear by part (2) 

 Let   be a FI-t-semisimple module and   be a fully invariant submodule of  , 

there exists      and       . But   is nonsingular implies   is nonsingular 
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and hence       . But      implies   is a closed submodule of   and so 

that    . It follows that   is FI-semisimple by Proposition (2.1.2). □ 

     Thus Remarks 2.2.2 can be illustrated by the  following diagrams.  

  

 

  

 

 

 

 Proposition (2.2.3): Every fully invariant submodule of FI-t-semisimple module is 

FI-t-semisimple. 

Proof: Let   be a fully invariant submodule of a FI-t-semisimple  -module  . To 

prove   is FI-t-semisimple, let   be a fully invariant submodule of  . Hence   is a 

fully invariant submodule of   by Proposition 1.1.38. It follows that there exists 

     and       , since   is FI-t-semisimple. Hence       for some 

    and so that          , thus       and so that   is FI-t-semisimple. 

□ 

Proposition (2.2.4): Let         where          . If    and    are 

FI-t-semisimple, then   is a FI-t-semisimple. The converses hold if         

         . 

Proof: Let   be a fully invariant submodule of  . Then         , where    

is fully invariant in    and    is fully invariant in    by Lemma (1.1.39)(ii). Hence, 

there exists         and        such that         ,         . Hence 

           and                         by Proposition 

1.1.22(2). 

t-Semisimple module 

FI-semisimple module 

FI-t-semisimple module 
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  Since         and                  , then 

                          and so for each         ,       

 (          )                              that is       

            . Similarly         . Thus    and    are fully invariant, and 

hence by Proposition (2.2.3),    and    are FI-t-semisimple. □ 

 

Let ( ) means the following: For an  -module  , a complement of       is 

stable in  . 

Theorem (2.2.5): For an  -module   consider the following statements  

(1)   is an FI-t-semisimple module; 

(2) 
 

     
 is a FI-semisimple module; 

(3)           , where   is nonsingular, FI-semisimple,    is stable in  ; 

(4) Every nonsingular fully invariant submodule of   is a direct summand. 

(5) Every fully invariant submodule of   which contains       is direct 

summand. 

Then (3)  (5)  (2) and (3)  (1)  (4). (4) (3)  if condition (   hold and so that 

(3)(1)(4) (if condition (   hold). 

Proof: (3)  (5) Let   be a fully invariant submodule of  ,        . Since 

           where    is FI-semisimple nonsingular and stable in  . Then   

                         . As   and     are fully invariant in  , so 

       is fully invariant in  . Since              and      is fully 

invariant in  , then      is a fully invariant in    by Lemma 1.1.40(2).But    is 

FI-semisimple, so         . It follows that            , for some 

     and so that                                        

=   .Therefore        
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(5)(2) Let 
 

     
 be a fully invariant  submodule of 

 

     
. Since       is fully 

invariant  in  , then    is  fully invariant in   by Lemma 1.1.40(1).Also    

     , so by condition (5),       Thus       for some       it follows 

that 
 

     
 =

 

     
  

       

     
 So that 

 

     
   

     
 and so 

 

     
 is  FI-semisimple. 

(3)  (1) By hypothesis,           , where    is nonsingular FI-semisimple 

and    is stable in  . Let   be a fully invariant submodule of  , so      is a 

fully invariant submodule in  . Hence by Lemma 1.1.40(2)      is a fully 

invariant submodule in    and so (          . It follows that (  

       . On the other hand, 
 

       
 

       

  
 

 

  
 which is   -torsion, hence, 

 

       
 is   -torsion and so that             by Proposition (1.1.17). Thus 

           and             which implies that   is FI-t-semisimple. 

(1)  (4) Let   be a nonsingular fully invariant submodule of  . By condition (1) 

there exists      such that       .  As    is nonsingular,        . But   

    , implies   is closed in  , hence    . Thus       

 (4)  (3) Let    be a complement of       . Hence              , implies 

        (by proposition 1.1.17). Hence 
 

  
 is   -torsion. This implies    is 

nonsingular by the same argument of proof of Theorem 1.2.3(4) (3). By condition 

(  ,    is stable, hence       by condition (4). Thus       , for some 

    and   so             
        . But      

     and   
 

  
  is   -

torsion, so        . Hence         . Thus            such that    is 

nonsingular and stable. 

To prove    is FI-semisimple, let   be a fully invariant submodule of   . As    is 

fully invariant in  , so   is  fully invariant in   by Proposition 1.1.38. Also,     is 

nonsingular, implies   is nonsingular. Thus   is nonsingular fully invariant in  . 

Hence by condition (4),     , and so      , for some     . Then 
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                     (          , and so       . Thus    is 

a FI-semisimple module. □ 

    By applying Theorem 2.2.5(14). If    is a duo (or multiplication) module, then 

  is a FI-t-semisimple implies every nonsingular submodule is a direct summand, 

and hence by Theorem 1.1.46,   is t-semisimple. Thus the concepts t-semisimple 

and FI-t-semisimple under the class of duo(or multiplication) modules are 

equivalent. 

    Recall that an  -module   is called FI-t-extending if every fully invariant t-

closed submodule of   is a direct summand [9] an  -module   is called FI-t-

Baer if         is a direct summand of   for any two-sided ideal   of        

[9].By Theorem 3.9 in [9] every FI-t-extending module is FI-t-Baer. we have the 

following: 

Proposition (2.2.6): Let   be an  -module which satisfies condition     .If    is 

FI-t-semisimple, then   is FI-t-extending. 

Proof: By Theorem (2.2.5) (1 5) for each fully invariant submodule   with   

     ,     . As every t-closed submodule contains      ,so for each fully 

invariant t-closed submodule    of   is a direct summand. Thus   is FI-t-

extending.□ 

Theorem (2.2.7):  Let   be an  -module such that a complement of fully invariant 

submodule is fully invariant. If   is an FI-t-semisimple implies   
 

 
 is an FI-t-

semisimple, for each fully invariant t-closed submodule   of  . 

Proof: By Proposition (2.2.6),   is FI-t-extending. Hence, any fully invariant t-

closed submodule    is a direct summand. Thus        for some     .    is 

a complement of   and by hypothesis    is a fully invariant submodule of  . Hence 

   is a FI-t-semisimple by Proposition (2.2.3). But    
 

 
 is a FI-t-semisimple. □ 

 

Proposition (2.2.8): Let   be an  -module such that condition    hold. If   is a 

FI-t-semisimple, then          is closed, for each fully invariant submodule   of 
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 . The converse holds if a complement of a fully invariant submodule is fully 

invariant. 

Proof:  For each fully invariant submodule   of  ,                and it 

is fully invariant submodule of   by Lemma 1.1.39(i), so that         is a 

direct summand by Theorem 2.2.5(15) and hence         is a closed 

submodule of    

  To prove   is a FI-t-semisimple. Let   be a nonsingular fully invariant 

submodule of  .  Assume   is a complement of  , then by hypothesis,   is a fully 

invariant submodule of  . Thus          , and     is a fully invariant 

submodule of  .  It follows that                  . But             is 

a fully invariant submodule containing        so that             is a direct 

summand, so it is closed. Hence              . But       and 

                 , since   is nonsingular. Moreover, we can show that  

              . Suppose there exists                , then 

     ,               Since   is nonsingular         and hence, 

             But       so                     .But it is known 

that                       . It follows that                   , 

which implies             which is a controduction. Thus  (          )  

  , that is     . Then    is a FI-t-semisimple by Theorem (2.2.5)4 1. □ 

Proposition (2.2.9): Let   be an  -module such that condition (   hold. Then   is 

FI-t-semisimple if and only if   has no proper nonzero fully invariant submodule   

containing          and       . 

Proof:  By Theorem 2.2.5(1 5)   is FI-t-semisimple, implies that for each fully 

invariant submodule   of   containing             . Hence for each proper 

nonzero fully invariant submodule           ,       . 

 Let    be a complement of      , so that              . But by 

hypothesis,   is a fully invariant submodule of    and so          is a fully 

invariant submodule of   .Thus           . Hence,    
 

     
 is 
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nonsingular and stable. Let   be a fully invariant submodule of   . Since    is a 

fully invariant in  , then   is a fully invariant submodule  in   by Lemma 1.1.38. 

Hence         is fully invariant in    . Let   be a complement of         . 

Hence                  . But by hypothesis              . We 

can show that              , as follows. Let                Then 

      for some              Then                      

hence        , and so that            =        . Thus     

and              , hence              , that is  

     . Now                                     . That 

is      . Hence    is FI-semisimple. Thus by Theorem 2.2.5(3 1),   is FI-t-

semisimple. □ 

  Recall that  if    and    are submodules in an  -module  .   is called a weak  

supplement of    if           and          (the notation   denotes a small 

submodule). [13], where a submodule   of   is called a small submodule of   if 

whenever           ,   is a submodule of     implies    . 

Proposition (2.2.10): Let   be an  -module such that condition (   hold. If 

        is   -torsion and every nonsingular fully invariant submodule of   has a 

weak supplement, then    is FI-t-semisimple 

Proof: Let    be a nonsingular fully invariant submodule of  . As     has weak 

supplement there exists a submodule   of   such that       and     

   Cleary   (        )   . Now we will show that   (        )  

   .Assume that     (        )   . Then       where     and 

          Since         is   -torsion, there exists a t-essential right ideal   of 

  such that           Thus                        since 

      implies         , also               since      is   -

torsion hence            . So            (
 

      
)     It follows that 

                  and this implies that   is a direct summand of  . 

Hence by Theorem 2.2.5(4)   is FI-t-semisimple. □ 
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Proposition (2.2.11): The following assertions are equivalent for a module  , such 

that for any    , a complement of       is stable in   . 

(1)   is FI-t-semisimple 

(2)  For each fully invariant submodule   of  , there exists a decomposition 

      such that     and   is stable in   and          . 

(3)  For each fully invariant submodule   of  ,        such that   is a direct 

summand stable and    is   -torsion. 

Proof: (1)  (2) Let   be a fully invariant submodule of  . Let   be a complement 

of       in  . Then              and   is a fully invariant of   by hypothesis . 

By proposition (2.2.3) and proposition (2.2.9),          . Let   be a 

complement of        , so   is a stable submodule of   and 

                . But   is FI-t-semisimple, hence by proposition 

(2.2.9),              . Put          , hence   is a stable in  . 

Moreover,                  . But           implies 
 

 
       

which is   -torsion. On other hand,  
 

 
    , so that     is   -torsion. Then 

                 . Thus       is a desired decompodition. 

(2)  (3) Let   be a fully invariant submodule of  .  By condition (2) ,       

where     and   is stable in   and            Hence            

       . Put       , so that       , and 
 

 
        which is   -

torsion. Also   stable in    since   is a complement of   in  . 

(3)  (1) Let   be a fully invariant submodule of  . By condition (3),       , 

where   is stable direct summand in   and   is    -torsion. Now    and 

 

 
    which is    -torsion.  Hence        and so that   is FI-t-semisimple. □ 
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Proposition (2.2.12): Let   be an  -module such that condition     hold. Then the 

following statements are equivalent. 

(1)   is FI-t-semisimple. 

(2)     is FI-t-extending and           for every fully invariant submodule   

of   contain        

(3)   is FI-t-Baer and           for every fully invariant submodule   of   

contain        

Proof: (1)  (2)    is FI-t-semisimple implies   is FI-t-extending by Proposition 

(2.2.6). Now, let   be a fully invariant submodule of   and          . Hence 

      by Proposition 2.2.5(15). This implies,        for some     . 

It is obvious, that          . Let    be the canonical projection on    , that is 

            , so     ,              , so            . If   

       , then              . Hence         and so       Thus 

          

(2)  (3) It is obvious, since every FI-t-extending is FI-t- Baer, see [9, Theorem 

3.9]. 

(3) (1) Since   is FI-t-Baer,             is a direct summand and then 

          , where    is nonsingular [9, Theorem 3.2]. Hence    is a 

complement of       , so it is stable. Now, let    be a fully invariant submodule of 

  , so that    is a fully invariant submodule of  . Put            . Then   is 

a fully invariant submodule of   containing      . So           by hypothesis.  

On the other hand,   is FI-t-Baer and       is a two sided ideal of  , hence 

          . Thus     . It follows that       for some    . Then 

             . By hypothesis complement of       is stable so by [1, 

Theorem 4.8, p31],         and hence       , and this implies    is FI-

semisimple. Therefore   is FI-t-t-semisimple by Proposition (2.2.5). □ 
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2.3 Strongly FI-t-semisimple Modules 

    In this section, we extend the notion of FI-t-semisimple into strongly FI-t-

semisimple. Many properties about this concept, and many connections between it 

and other related concepts are presented.   

Definition (2.3.1): An  -module   is called strongly FI-t-semisimple if for each 

fully invariant submodule   of  , there exists a fully invariant direct summand   

such that       . 

Remarks and Examples (2.3.2): 

(1) Every strongly FI-t-semisimple is FI-t-semisimple. We claim that the converse 

is not true but we have no example to ensure this.  

(2) Every strongly t-semisimple is strongly FI-t-semisimple but the converses is 

not true in general as following example shows: 

  as  -module is strongly FI-t-semisimple, since   has only two fully invariant 

submodules    ,  . But   is not strongly t-semisimple. 

(3) Every FI-semisimple module is strongly FI-t-semisimple. 

Proof: Let    be a fully invariant submodule of  . Then     , since   is a 

FI-semisimple . But       , hence   is strongly FI-t-semisimple. □ 

(4) Every   -torsion    is strongly FI-t-semisimple. 

Proof: Let   be a FI-submodule of  ,       , ((0)      since           

       . 

(5) Let   be a duo (or multiplication) module then   is FI-t-semisimple if and 

only if   is strongly FI-t-semisimple 

Proposition (2.3.3): Let   be an  -module with the property, a complement of any 

submodule of   is fully invariant. The following statements are equivalent. 

(1)   is strongly FI-t-semisimple; 

(2)   is FI-t-semisimple; 
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Proof: (1)  (2) It is clear. 

(2) (1) Let   be a fully invariant submodule of  . Since   is FI-t-semisimple, 

there exists       and       . Hence       for some    . One can 

check easily that   is a complement of  . But by hypothesis   is fully invariant. 

Thus   is strongly FI-t-semisimple. □ 

  The following result follows by combining Proposition (2.3.3) and Proposition 

(2.2.9). 

Proposition (2.3.4): Let   be an  -module such that a complement of any 

submodule is fully invariant. Then the following are equivalent: 

(1)   is strongly FI-t-semisimple; 

(2)   is FI-t-semisimple; 

(3)   has no proper nonzero fully invariant submodule   containg       and 

      . 

Proposition (2.3.5): A fully invariant direct summand   of a strongly FI-t-

semisimple is strongly FI-t-semisimple. 

Proof: Let   be a fully invariant submodule of  . Then  is a fully invariant 

submodule of   by Proposition (1.1.38). Since   is strongly FI-t-semisimple, there 

exists         is a fully invariant submodule of   and         . But 

     implies       for some     and this implies          ; 

that is     . Beside this by Lemma (1.2.6),   is a fully invariant submodule of 

   Thus   is strongly FI-t-semisimple. 

Remark (2.3.6):   as  -module is strongly FI-t-semisimple,    . But   is not 

strongly FI-t-semisimple. However and      and   is not fully invariant 

submodule of  . 

 The following three results follow by Proposition 2.3.5. 
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Corollary (2.3.7): Every nonsingular fully invariant submodule of strongly FI-t-

semisimple is strongly FI-t-semisimple. 

Proof: Let   be a nonsingular fully invariant submodule of  , where   is strongly 

FI-t-semisimple. Hence   is FI-t-semisimple by Remarks and Examples 2.3.2(1) 

and then by Theorem 2.2.5(1 4)   is a direct summand of  . Thus   is strongly 

FI-t-semisimple by Proposition (2.3.5). □ 

Corollary (2.3.8): For an  -module   which satisfies    , if   is strongly FI-t-

semisimple then every fully invariant submodule   of   such that        , is 

strongly FI-t-semisimple,. 

Proof:  Since   is strongly FI-t-semisimple,   is a FI-t-semisimple. Hence by 

Proposition 2.2.5(15),   is a direct summand and then by Proposition (2.3.5),   is 

strongly FI-t-semisimple. □  

Corollary (2.3.9): For any strongly FI-t-semisimple module   which satisfies 

condition   ,       is strongly FI-t-semisimple. 

Proof: It follows directly by Theorem 2.2.5(1 5) and Proposition (2.3.5). □ 

Proposition (2.3.10): Let   be an   -module which satisfies (  . If   is strongly 

FI-t-semisimple, then 
 

     
 is FI-semisimple, and hence it is strongly FI-t-

semisimple. 

Proof: Let   
 

     
 be a fully invariant submodule of 

 

     
. Then   is a fully invariant 

submodule in    by Lemma 1.1.40.As    is strongly FI-t-semisimple,   is FI-t-

semisimple and hence by Theorem 2.2.5(1 2), 
 

     
 is FI-semisimple. □ 
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Theorem (2.3.11): Let          where    and    are submodules of   such 

that              . Then   is strongly FI-t-semisimple if and only if    and 

   are strongly FI-t-semisimple. 

Proof:  Let   be a fully invariant submodule of  . Then       

           and     ,      are fully invariant in   ,    respectively by 

Lemma 1.1.39(iii) Put         ,        . Hence there exist   ,    are 

fully invariant  direct summands in    and     respectively and          , 

        since   and     are strongly FI-t-semisimple. It follows easily 

that          and by Corollary 1.1.22(2)                 . To show 

that        is a fully invariant in  . Let 

      =(
              

               
). But by Lemma (1.2.8),  

              ,             . It follows that   (
   
   

) for some 

         and         . Thus         =                But        

  ,           since    and    are fully invariant in    and    respectively. 

Thus        is fully invariant in   and so   is strongly FI-t-semisimple. 

 Since         and                  , then              and 

            . Hence for any         ,                  , that is 

   and    are fully invariant in  . Then by Proposition 2.3.5,    and    are 

strongly FI-t-semisimple.  □ 
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Introduction  

  Our goals in this chapter are generalizing semisimple modules into purely 

semisimple, purely t-semisimple modules and extending the concept t-semisimple 

modules into strongly purely t-semisimple.  

   In section one many basic properties and examples of purely semisimple modules 

are introduced.  

  In section two purely t-semisimple modules is presented. It is clear that t-

semisimple module implies purely t-semisimple but not conversely. We generalize 

many properties of t-semisimple modules into purely t-semisimple modules. Also, 

we have every purely t-semisimple module is purely t-extending if   satisfies that a 

complement of       is a pure submodule.  

    In section three, the property which is mentioned in chapter one: Every t-

semisimple module is t-Baer, led us to introduce the concept of purely t-Baer 

module. So we study this class of modules and we prove that every purely t-

extending is purely t-Baer. Also, every purely t-semisimple module   such that a 

complement       is pure is purely t-Baer.  

    In section four, we present and study the concept of strongly purely t-semisimple 

modules as an extension of purely t-semisimple and as a generalization of strongly t-

semisimple modules.  

   In section five, the result in chapter one every strongly t-semisimple is strongly t-

Baer, led us to define and study the concept of strongly purely t-Baer modules. We 

prove that: For an  -module   such that a complement of       is pure 

submodule. If   is strongly purely t-semisimple, then   is strongly purely t-Baer. 
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3.1 purely semisimple modules 

   In this section we define and study purely semisimple as a generalization of 

semisimple modules. As well as, we study many properties related with this concept. 

Definition (3.1.1): An  -module   is called purely semisimple if for each pure 

submodule   of  , there exists      such that       . 

Proposition (3.1.2): An  -module   is purely semisimple if and only if every pure 

submodule is a direct summand. 

Proof: Let   be a pure submodule of  , so there exists      such that 

      . But      implies   is closed in  . Hence      and so   is a direct 

summand. 

 Let   be a pure submodule. Since       and       , then    is purely 

semisimple. □ 

Remarks and Examples (3.1.3): 

(1) It is clear that every semisimple module is purely semisimple, but the 

converse is not hold in general for example : The  -module         is not 

semisimple, however it is purely semisimple since the only pure submodules of   

are        ,            ,        ̅  ̅) ,       ̅, ̅) ,     

   ̅  ̅) ,          and each of them is a direct summand of   , since       

 ,                    ,        and        ̅  ̅)   . 

 Also, each of   -modules  , ,    are purely semisimple but they aren’t  

semisimple. 

(2) Let   be a regular module (every submodule of   is pure). Then   is purely 

semisimple if and only if   is semisimple. 

(3)  A pure submodule of purely semisimple module   is purely semisimple.  
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Proof: Let   be a pure submodule of  . Let   be a pure submodule of  , hence   

is pure in   . Since   is purely semisimple      so that        for some 

    , and hence            . Thus      and   is purely semisimple. 

□ 

(4) Let   be a purely semisimple. Then   is purely extending if and only if   is  

Extending, wherean   -module is called purely extending if for each    , there 

exists pure submodule   of   such that        [14]. Equivalently   is purely 

extending if every closed is pure. 

Proof:  It is clear  

 Let    . As   is purely extending, there exists a pure submodule   in   such 

that          But    is purely semisimple,     . Then           and 

so   is extending. □ 

(5) Every pure simple module is purely semisimple, where  an  -module is pure 

simple if it has only two pure submodules       [2]. 

(6) Every Noetherain projective  -module is purely semisimple. 

Proof: By [2, Proposition 2.11, p.63], every pure submodule is a direct summand, of  

 . Hence   is purely semisimple. □ 

    In particular       as  -module is Notherain projective, so   is purely 

semisimple.  

(7)  If   is divisible over a PID, then   is purely semisimple. 

Proof:  By [2, Proposition 2.7, P.61], every pure submodule of   is a direct 

summand that is    is purely semisimple. □ 

    As examples   and 
 

 
 as  -module are divisible module over a PID  , so that both 

of them are  purely semisimple. 
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(8) If   is prime injective, then   is purely semisimple. 

Proof: It follows by applying [2, Proposition 2.7, p.61]. 

(9) Let   and    be two isomorphic  -modules.Then   is purely semisimple if
 
 

and only if    is purely semisimple. 

Proof:  Since     , there exists        such that   is an isomorphism. 

Let   be a pure submodule of   . Then        for some    . It follows that 

  is a pure in   and hence     , that is        for some      . Then 

               . This implies           ,       and    is 

purely semisimple. 

 The converse is similar.□ 

Proposition (3.1.4): Let   be a pure submodule of a purely semisimple module  . 

Then  
 

 
 is purely semisimple. 

Proof: Let 
 

 
 be a pure submodule of  

 

 
. As   is pure in   ,   is pure in  . Hence 

     .That is       for some    . It follows that  
 

 
 

   

 
  

 

 
. Thus 

 

 
 is purely semisimple. □ 

 Corollary (3.1.5):  Let        be an epiomorphism and        is pure in  . If 

  is purely semisimple, then       is purely semisimple. 

Proof: 
 

      
    by the 1

st
 fundamental theorem. But  

 

      
 is purely semisimple 

by Proposition (3.1.4). Hence   is purely semisimple by Remarks and Examples 

3.1.3(9). □ 

Proposition (3.1.6): If every pure submodule of   which contains       is a direct 

summand, and       is pure then  
 

     
 is purely semisimple. 
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Proof: Let 
 

     
 be a pure submodule of 

 

     
 . Hence   is a pure submodule in   

with        . By hypothesis,   is a direct summand of  , and so    =  for 

some    . It follows that  
 

     
 

       

     
 

 

     
 , that is 

 

     
   

     
 and 

 

     
 is purely semisimple. □  

Proposition (3.1.7):  Let        , where   ,      and       

       . Then   is purely semisimple if and only if    and    are purely 

semisimple. 

Proof:  let   be a pure submodule of  . Then        ,      ,    

  [1,Proposition 4.2,P.28]. Hence    is pure in   ,    is pure in   . Which 

implies       ,       . Thus           . 

Since       and      , then    and    are pure in  . Hence    and    

are purely semisimple by Remarks and Examples 3.1.3(3). □ 

Proposition (3.1.8): Let          where      for each    . If every pure 

submodule of   is fully invariant. Then   is purely semisimple if and only if    is 

purely semisimple, for all    . 

Proof:It follows by Remarks and Examples 3.1.3(3). 

 Let   be a pure submodule of  , by hypothesis   is a fully invariant submodule 

of  . Then          where         for each     by Lemma 1.1.39(ii). 

Hence    is pure in    for each     .As    is purely semisimple,        for 

each    . It follows that                     Thus   is purely 

semisimple. □ 

    Now we introduce the following 

Definition (3.1.9): Let    and   be  -modules.   is called  -purely projective if 

every homomorphism     
 

 
, where   is a pure submodule of  ,there exists  
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           such that      , where   is the natural epiomorphism from   

in to 
 

 
 , that is the digram is commutative. 

                                                                                         

   is called purely projective if   is  -purely projective for each  -module.   is 

called self purely projective if   is  -purely projective. 

Theorem (3.1.10): The following statements are equivalent for an  -module  . 

(1)   is purely semisimple. 

(2) Every  -module is  -purely projective. 

(3)  For each pure submodule   of    , 
 

 
 is  -purely projective. 

Proof: (1)  (2) Let    be an  -module, let   be a pure submodule of  , and let 

         
 

 
   and let     

 

 
 be the natural epiomorphism . By condition (1) 

  is purely semisimple, so     ; that is       for some    . Hence 

 

 
   which implies that there exists an isomorphism   

 

 
  . Set       

where       be the inclusion mapping. Then       since for each      , 

let             then           (     )          

 )=                                    . 

(2)  (3) It is obvious 

(3) (1)  Consider the following diagram 

 

 

f g 

N N/K 

M 

 
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  Since 
 

 
 is  -purely projective, then  (identity mapping)   on 

 

 
 can be lifted to   

 

 
 

    with     . Hence   has a right inverse. Therefore the short exact sequence 

(in the bottom) splits and so     . Thus   is purely semisimple. □ 

   The following Corollary is a direct consequence of Theorem 3.1.10(12). 

Corollary (3.1.11): Every purely semisimple is self purely projective. 

   3.2 Purely t-semisimple modules 

        A generalization of t-semisimple module namely purely t-semisimple module is 

introduced and studied in this section.  

Definition (3.2.1): An  - module   is called purely t-semisimple, if for each pure 

submodule   of   there exists       such that       . 

Remarks and examples (3.2.2): 

(1) It is clear that every t-semisimple is purely t-semisimple, but not conversely,(see 

part (2)). 

(2)  Every pure simple module  , is  purely t-semisimple, since (0) and   are the 

only pure submodules in  , but they  are direct summands in   and (0)        , 

       .  

 

I 

M/K 
 

g 

K 
M/K 

M 

𝑖 

 

𝜋 
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   In particular, each of the  -module  ,    and     (where   is a prime number) is 

pure simple, so each of them is purely t-semisimple. However,      and     are not 

t-semisimple. 

(3) Let   be a regular  - module (that is every submodule is pure). Then   is purely 

t-semisimple if and only if   is t-semisimple. 

(4) It follows easily that every purely semismple is purely t-semisimple. In particular 

each of the  -modules      ,       is purely semisimple, so they are purely t-

semisimple. Also, they aren’t pure simple. 

(5) Let   be a nonsingular  -module. Then   is purely semisimple if and only if   

is purely t-semisimple. 

Proof:  It follows by (4). 

 Let   be a pure submodule, there exists     ,       . Since   is 

nonsingular,   is nonsingular so that       , implies         . But     , 

implies    is closed in  . Hence         implies    . Thus     , and 

therefore   is purely semisimple. □ 

(6) Let   be a regular ring. Then the following statements are equivalent: 

(i)   is purely t-semisimple; 

(ii)   is t-semisimple; 

(iii)   is semisimple. 

Proof: Since   is a regular,   is a regular module. Hence (ii)(iii) by Proposition 

1.1.59. Also since   is regular, it is clear that (i)(ii) by part (3). □ 

 Proposition (3.2.3): A pure submodule   of purely t-semisimple  -module   is 

purely t-semisimple.  

Proof:  Let   be a pure submodule of  , and assume that   is a pure submodule of 

 . Hence   is a pure submodule of   and so there exists       such that 
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      . It follows that       for some     and hence           

        by modular law. Thus      and so   is purely t-semisimple. □ 

  Since every direct summand is pure, we get the following result directly. 

Corollary (3.2.4): A direct summand of purely t-semisimple module is purely t-

semisimple.  

 Proposition (3.2.5): Let           where      for all     , and every pure 

submodule of   is fully invariant submodule. Then   is purely t-semisimple if and 

only if    is purely t-semisimple for each    .  

 Proof:  It is clear by Proposition 3.2.3. 

 Let   be a pure submodule of  . By hypothesis   is a fully invariant submodule 

of   and hence               by Lemma 1.1.39(ii). Then      is pure in  ,  

but   is pure in  , so      is pure in  . Since          ,then       is 

pure in   . But     is purely t-semisimple, there exists        such that 

          . It follows that           and                         

by Corollary 1.1.22(ii). □ 

Proposition (3.2.6):Let   ,    be  -module,        with             

 . Then   is purely t-semisimple if and only if    and    are purely t-semisimple. 

Proof: Let   be a pure submodule of  . Then by the proof of [1, Proposition 4.2], 

        for some       and      . Then by the same argument of 

Proposition (3.2.5) the result holds. □ 

Proposition (3.2.7): Let         with      and      and    is a 

distributive module. Then   is purely t-semisimple if and only if    and    are 

purely t-semisimple. 
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Proof: Let   be a pure submodule of  . As   is distributive,      

          . Hence by the same procedure of Proposition 3.2.6 the result 

follows. □ 

  Recall that an  -module   has PIP property if the intersection of two pure 

submodules is pure  [2]. 

Theorem (3.2.8): For an  - module  . Consider the following assertions. 

(1)   is purely t-semisimple;  

(2) 
 

     
 is purely semisimple; 

(3)            where    is a nonsingular purely semisimple; 

(4)   Every nonsingular pure submodule of   is a direct summand; 

(5) Every pure submodule of   which contains       is a direct summand. 

Then (1)(4), (3)(5) and (3)(2), [(4)(3), if complement of       is pure] 

and [(2)(3),  if a complement of       is direct summand], (3)(1) if   has PIP,  

[(5)(3) if complement of        is a direct summand stable  in  ]. Thus all 

statements (1) through (5) are equivalent if a complement of        is direct 

summand stable and   has PIP and ((1)(4)(3) if complement of       is pure 

and   has PIP). 

Proof: (1)(4) Let   be a nonsingular pure submodule of  . There exists       

such that       . Assume that        for some     . By modular law, 

          . Thus (      
 

 
  which is   -torsion by Proposition 1.1.17(4). 

But      is nonsingular, hence 
 

 
    , that is     and so      . 

(3)(5)  Let   be a pure submodule of   and        . Since           , 

where    is a nonsingular purely semisimple. Then by modular law,   

                            Hence        , so      is pure in 

 , but   is pure in  ,  so that (      is pure in  .  On other hand       
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  ,hence      is pure in   . As    is purely semisimple,         . Thus 

            for some     , and this implies that 

                    . Thus     . 

(3)(2) By condition (3),           , where    is a nonsingular purely 

semisimple. As 
 

     
   , so  

 

     
 is purely semisimple. 

(4)(3) Assume a complement of       is pure in  .  Let    be a complement of 

     . Then               and, hence           by Proposition 1.1.17(3). 

Thus 
 

  
  is   -torsion. But   is nonsingular, thus       by condition (4) and so 

that        for some    . Thus   
 

  
  which is   -torsion. Beside 

this                 
          . Thus            . Now   

      and   is purely t-semisimple. Then      is purely t-semisimple, by 

proposition (3.2.5). On other hand    is nonsingular, so that    is purely 

semisimple. 

(2)(3) Assume  a complement of       is a direct summand. Let    be a 

complement of      . So that,       . Also,    is nonsingular. It follows by 

the same of proof of part (4) (3),            . Then by condition (2),
 

     
 is 

purely semisimple and so that     is purely semisimple.  

(3)(1) Let   be a pure submodule of  . As      ,    is a pure in  . Since   

has PIP,      is a pure submodule of  . But           , so      is pure in 

  , and  as    is purely semisimple, then          . It follows that    

         for some     . Hence                 , that is 

          . On the other hand, we have  
 

    
 

    

  
  

 

  
      . Hence  

 

    
 is   -torsion; that is            . Thus   is purely t-semisimple. 
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(5)(3) (If a complement of       is direct summand stable). By the same way of  

proof ((4)(3)),            where    is a nonsingular. To prove    is purely 

semisimple. Let   be a pure submodule of   . Then         is pure in 

          . But              , so that by condition (5), 

          . Thus (             for some     and so   

           . But           , this implies         by [1, Lemma 4.8]. 

□ 

    By [2, Proposition 2.3, P.33], every multiplication module satisfies PIP. Hence by 

using this fact and Theorem 3.2.8, the following result is obtained. 

Corollary (3.2.9): For multiplication  -module   with a complement of        is 

a pure submodule of  . The following statements are equivalent: 

(1)   is purely t-semisimple. 

(2) Every nonsingular pure submodule of   is a direct summand. 

(3)            Where   is a nonsingular module and purely semisimple. 

   Also by applying Theorem 3.2.8, we get the following  

Corollary (3.2.10): If   is purely t-semisimple module and a complement of       

is pure. Then every pure submodule   of  ,         is  closed. 

 Proposition (3.2.11): For an  -module   such that a complement of       is pure 

and   satisfies PIP. If          is   -torsion and every nonsingular pure 

submodule of   has a weak supplement. Then   is purely t-semisimple. 

Proof: Let    be a nonsingular pure submodule of  . By hypothesis    has a weak 

supplement submodule   of   such that       and        Cleary   

(        )   . Now we claim that   (        )     . To prove our 

assertion, assume that     (        )   . Then       where     and 

         and, since         is   -torsion there exist a t-essential right ideal   

of   such that            Thus                        and so 
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             (
 

      
)     Hence        . Thus            

        and this implies that   is direct summand of  . Hence by Theorem 

3.2.8[(4)    and           is purely-t-semisimple. □ 

   The following Proposition is a characterization of purely t-semisimple module. 

Proposition (3.2.12): An  -module   is purely t-semisimple if and only if for each 

pure submodule   of   , there is a decomposition        such that   is a direct 

summand of   and    is   -torsion. 

Proof:  If   is purely t-semisimple. Let   be a pure submodule of  . Then there 

exists      and       . As     ,       for some    . Then by 

modular law,     (W   . Put W      so       . Also, 

since       , then 
 

 
    is   -torsion by Proposition 1.1.17(4). 

 Let   be a pure submodule of  . By hypothesis,        and      ,    is 

  -torsion so 
 

 
    is   -torsion, hence        by Proposition 1.1.17(4). Thus 

  is purely t-semisimple. □ 

Proposition (3.2.14):  For an  - module   which satisfies the condition, a 

complement of       is pure. If   is purely t-semisimple, then   has no proper t-

essential pure submodule which contains      . 

Proof:  Assume   is a proper t-essential pure submodule of   with        . By 

Proposition 1.1.17(2) ,
 

      
    

 

      
 . But by Theorem 

3.2.8((1)(4)(3)(2)),
 

      
 is purely semisimple, and since 

 

      
 is pure in 

 

      
, so that 

 

      
   

      
 . Thus 

 

      
 

 

      
 , hence     which is a 

contradiction. Therefore   has no proper t-essential pure submodule of   

containing      . □ 
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Theorem (3.2.15): Let   be a finitely generated faithful multiplication  -module. 

Then   is purely t-semisimple, if   is purely t-semisimple.  

Proof: Let   be a pure in  . Then      for some ideal   of  . We claim that   is 

pure in  . Assume   be any ideal of  .              by [19, Corollary 1.7]. 

As    is pure in  ,          . Thus              and so        by 

[19, Theorem 3.1] since   is finitely generated faithful multiplication. Thus   is pure 

in  , and hence there exists a direct summand   of  , such that       . As 

    , so       . Also,        implies that            by Lemma 

1.1.24(2). Thus   is purely t-semisimple. □ 

Note (3.2.16): If   is a finitely generated faithful multiplication module over 

regular commutative ring. Then   is purely t-semisimple (t-semisimple) implies   

is semisimple. 

Proof: Since   is a regular ring,   is regular. Cleary   is purely t-semisimple 

equivalently to   is t-semisimple. Then by Proposition 1.1.59,   is semisimple and 

this implies   is semisimple. □ 

Remark (3.2.17): A purely t-semisimple module need not be purely extending 

module, for example: The  -module       is purely t-semisimple but it is not 

purely extending since, it is easy to see that,      ̅  ̅   is closed and it is not 

pure. 

   We introduce the following 

Definition (3.2.18): Let   be an  -module.   is called purely t-extending if for 

each  submodule   of   ,   is t-essential in pure submodule of  . 

Lemma (3.2.19): An   –module   is purely t-extending if and only if every t-closed 

submodule of   is pure in  . 

Proof: Let    ,   is t-closed. Then        and   is pure. Hence     

since every t-closed has no proper t-essential extension. Thus   is pure. 



 

Chapter Three          Purely semisimple Modules, purely t-semisimple Modules and Strongly Purely t-semisimple Modules 

 

108 
 

 Let    . By [10, Lemma 2.3], there exists a t-closed submodule   of   such 

that       . As   is t-closed, hence by hypothesis   is pure. Thus   is purely t-

extending. □ 

     Al-Bahraany in [3] said that  an  -module   is purely Y-extending if every Y-

closed submodule of    is pure in    . But as we mention in chapter one, Y-closed 

and t-closed are coincide hence purely t-extending and purely Y-extending are 

coincide. 

   We know that t-semisimple module implies t-extending module but we cannot 

generalize this for purely t-semisimple. However, we have 

  A purely t-semisimple module implies purely t-extending, however we have the 

following result. 

Proposition (3.2.20): Let   be an  -module such that             ,     is 

purely t-extending. Then   is purely t-extending. 

Proof: Let   be a t-closed in  . Then        , so by modular law,    

             . As   is t-closed in  , then (       is t-closed in    by 

Proposition 1.1.31(i). But    is purely t-extending implies that      is pure in   . 

Hence               is pure in            , that is   is pure in   and so 

  is purely t-extending. □   

  Proposition (3.2.21): For a ring  . The following statements are equivalent: 

(1)     is purely t-semisimple. 

(2) Every projective  -module is purely t-semisimple. 

Proof: (1)  (2) Assume that   is a projective  -module. Then there exist a free  -

module   and an epiomorphism      . Since   is free, then by [24, Lemma 

4.4.1, p.88]       for some index  . Consider the following short exact 

sequence:      
 
→         where   is the inclusion mapping. Since   
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is projective, the sequence is split. Thus           . Then   is purely t-

semisimple, by Corollary 3.2.4. 

(2)(1) It is clear. □ 

3.3 Purely t-semisimple and purely t-Baer modules  

   It known that every t-semisimple is t-Baer [7]. In this section we introduce purely 

t-Baer and prove that every purely t-semisimple modules with certain conditions is 

purely t- Baer. Moreover we prove that every purely t-extending is purely t-Baer. 

Definition (3.3.1): An  -module   is called purely t-Baer if for each left ideal  of 

        ,       is a pure submodule of  .  

   As we mention in chapter one Remarks and Examples 1.5.5(3), for a nonsingular 

 -module  ,             for left ideal   of  . Hence we get the following 

remark. 

Remark (3.3.2): Let   be a nonsingular  -module. Then   is purely t-Baer if and 

only if   is purely Baer. 

   The following Theorem is a characterization of purely t-Baer module. Before 

giving this Theorem we need the following Lemma.  

Lemma (3.3.3): Let      , where   is an  -module. If       , then for 

each    , there exists an essential ideal   of   such that     . 

Proof: Let    . As       , there exists      such that       . Put 

  {        }  J is a right ideal of  . We claim that        and     . 

Suppose         for some ideal   of  ,   . Hence for each    ,   . It 

follows     . As    ,     , hence there exists      such that          

 . Thus             and so        . On the other hand      , and hence 

          and this is a contradiction. Thus       . Also it is clear that    

 . □ 
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Theorem (3.3.4): An  -module   is purely t-Baer if and only if for each left ideal   

of       ,       is t-essential in pure submodule of  .  

Proof:  Since   is purely t-Baer,       is pure in  . But                 . 

             for some pure submodule   of  . As                  , 

then                   by Proposition 1.1.17 and so              Now for 

each    , there exists an essential ideal   of   such that          by Lemma 

(3.3.3). Hence for each    ,                   . Thus (          )  

        

     

  But        , hence              (
 

     
)   . This implies 

           and hence        . Thus         and so       is pure and   is 

purely t-Baer. □ 

Proposition (3.3.5): Every purely t-extending is purely t-Baer. 

Proof: Let   be a purely t-extending. As        , then by Definition 3.2.18 

            and   is pure. Thus   is purely t-Baer by Theorem (3.3.4). □ 

    To give the next result, we need the following Lemma. 

Lemma (3.3.6): Let   be an  -module such that           ,    is stable in  . 

Then                 for each left ideal   of S=End   . 

Proof: Let           . Then      and              Hence    

        .Now if           , then       and           . So that for any  

                 . But     is stable in   implies         and  so      

             ; that is      and so          . Thus                . □ 

Proposition (3.3.7): Let   be an abelian Baer (strongly Baer) module such that a 

complement of       is pure stable in   and   satisfies PIP. If   is purely t-

semisimple, then   is purely t-Baer.  
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Proof: By Theorem 3.2.8(1 4) and (4 3 if a complement of        is pure). 

Hence           where    is nonsingular purely semisimple. Then for each 

        ,             , so                        . Thus       

             by Lemma 3.3.6.As   is an abelian Baer (strongly Baer module), 

      is  fully invariant direct summand, hence it is pure in  . But it is clear that   

                and since   has PIP,        is pure in   . It follows that 

      =             is pure in           . Thus       is pure in   and   

is purely t-Baer. □ 

Proposition (3.3.8): If            for some      such that          is 

pure in   , then   is purely t-Baer. 

Proof: Since            ,for each           then 

                       by modular law. But         is pure in       and 

         ) is pure in   by hypothesis, the                  is pure in  

          . Thus       is pure in   and   is purely t-Baer. □ 

Corollary (3.3.9): If            for some     . If    has PIP and   is 

purely t-Baer then            is pure in   . 

Proof: By the same proof of Proposition (3.3.8)                        for 

each         . But       is pure in   and    is pure in  . So that          is 

pure in   by PIP. Hence            is pure in    since            . □ 

3.4 Strongly purely t-semisimple Modules 

  In this section we extend the notion of purely t-semisimple module into strongly 

purely t-semisimple module. Also this concept is a generalization of strongly t-

semisimple modules. A comprehensive study of this concept and its connections 

with some related modules are introduced. 
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Definition (3.4.1): An  -module   is called strongly purely t-semisimple if for each 

pure submodule   of  , there exists a fully invariant direct summand   of   such 

that       . 

Remarks and Examples (3.4.2): 

(1) Every strongly purely t-semisimple is purely t-semisimple. But the converse is 

not true as the following example, shows. 

Let       as  -module, let        ,   is a pure submodule of  . But 

          is the only fully invariant direct summand such that    . However 

      , see (Remarks and Example 1.2.2(8)). Thus   is not strongly purely t-

semisimple. On other hand   is purely t-semisimple since it is semisimple. 

(2) Every singular module is strongly purely t-semisimple, for example   

      as  -module is strongly purely t-semisimple. 

Proof: Let   be a pure submodule of  , there exists        , and          

      , hence (0)       and     is fully invariant. □ 

(3) Every pure simple is strongly purely t-semisimple, for example   as  -module 

is strongly purely t-semisimple, but it is not t-semisimple (hence it is not strongly t-

semisimple). 

(4)  Purely t-semisimple and strongly purely t-semisimple are coinciding in the class 

of multiplication modules. 

(5)  A pure submodule of strongly purely t-semisimple is strongly purely t-

semisimple. 

Proof: Let   be a pure submodule of   and   is strongly purely t-semisimple, let 

  be a pure submodule of  . Hence   is a pure submodule of   and so there exists 

     and   is fully invariant in  ,        . By Lemma (1.2.6),   is fully 

invariant in  . But     , then       , for some      and by modular 
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law            , so     . Hence   is a fully invariant direct summand of 

  and       . Thus   is strongly purely t-semisimple. □ 

(6) A direct summand of strongly purely t-semisimple is strongly purely t-

semisimple. 

Proof: Since every direct summand is pure , the result follows directly by part(5). □ 

We introduce the following and will be used in our work. 

Definition (3.4.3): An  -module   is called purely fully stable if every pure 

submodule of   is stable. 

Remark (3.4.4): Every fully stable module is  purely fully stable . 

Example (3.4.5): Consider the  -module  .   is purely fully stable. But   is not 

fully stable since     and       defined by      
 

 
, implies that       .  

Theorem (3.4.6): For an  -module  . Consider the following conditions. 

(1)     is strongly purely t-semisimple. 

(2)            , where    is a nonsingular fully invariant submodule of   

and purely fully stable, purely semisimple. 

(3)  For each nonsingular pure submodule   of  ,   is fully invariant direct 

summand . 

(4) 
 

     
 is purely semisimple and isomorphic to purely fully stable submodule of 

 . 

(5)  For each pure submodule   in   with         ,   is fully invariant direct 

summand of    

Then (1)  (3), (2)  (4) and (2) (5). ((3) (2) if (a complement of       is 

pure). (2)  (1) if     satisfies PIP).  (5)  (2) (if complement of       is direct 

summand stable).Thus (1)(3)(2) (if a complement of       is pure and   has 
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PIP). (1)(3)(2)(5) if (a complement of       is a stable direct summand and 

  has PIP). 

Proof: (1) (3) Assume   is a pure nonsingular submodule of  . By condition (1), 

there exists a fully invariant direct summand     of   with       . So 
 

 
 is   -

torsion. But   is a direct summand of   implies        for some      and 

hence by modular law,            and so      
 

 
  which is   -trosion. 

On other hand      is a nonsingular submodule of  , so that 
 

 
=(0), that is     

and so   is a fully invariant direct summand . 

(2)(4) By condition (2),           ,    is a nonsingular purely fully stable 

,    is fully invariant in  , and purely semisimple . Hence 
 

     
   , that is  

 

     
 

is purely semisimple and isomorphic to a purely fully stable submodule. 

(2)(5) Let   be a pure submodule of   and        . 

Since           ,               . Hence (      is pure in   , so 

           and stable since    is purely semisimple and purely  fully stable. 

So that             for some     . Hence, 

                    . Thus     . To prove   is a fully invariant 

submodule in  . Since                and        is fully invariant in    

and    is fully invariant in  , so        is fully invariant in  , hence   

             is fully invariant in  . 

(3)(2)  (If a complement of       is pure) . Suppose    be a complement of 

     . Then              , hence         and 
 

  
 is   -torsion. But    is 

nonsingular, to show our assertion, suppose x      , so        and 

ann(x)     .Hence ann(x)     R and this implies     (M). Thus     ( ) 

  =(0), thus x=0 and    is a nonsingular. Thus    is pure nonsingular, so that 

      and    is fully invariant submodule of  . Thus        for some 
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   . It follows that 
 

  
   and hence   is a   -torsion. Hence       

          
 )=      and so            . Let    be a pure submodule of 

  , then   is pure in   since    is pure in  . Also,   is a nonsingular submodule 

of  .Then by condition (3),   is a fully invariant direct summand of   and so 

      for some     which implies that            . Thus 

      and    is purely semisimple. On other hand,   is fully invariant 

submodule of   and      imply   is a fully invariant submodule of   by 

Lemma (1.2.6) and so   is a stable submodule of    since      . Thus    is 

purely fully stable. 

(2) (1) (If   has PIP). Let   be a pure submodule of  . As      ,    is pure 

submodule of   and by PIP,      is pure in  . But        , hence      

is pure in   . It follows that (           since    is purely semisimple. Thus 

            for some      and so                 , that is 

(      is a direct summand of  . On other hand ,
 

    
 

    

  
 

 

  
      . 

Hence 
 

    
 is   -torsion; that is (          . Beside this (      is fully 

invariant in   , since    is fully  stable. But    is fully invariant in  , so (      

is fully invariant in  . Therefor (      is fully invariant direct summand of   

and           and so   is strongly purely t-semisimple. 

 (5)(2) (If a complement       is direct summand stable). Assume    is a 

complement of       is pure, then by a similar proof of part (3)(2)         

    , where    is a nonsingular. To prove    is purely semisimple, let   be a pure 

submodule of   . Hence         is pure in            and as 

             , so         is fully invariant direct summand of   by 

condition (5). Thus (             for some    . 

Thus             ). But           . So that       [1, Theorem 

4.8, p.30]. Therefore    is purely semisimple. Now to prove    is purely fully 

stable. Let   be a pure submodule of   . Then         is pure in          
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  and so         is fully invariant direct summand in           .  But 

               to see this:      and           implies   

            . Let                , then          such that 

              ,                 , implies    , then 

     . Hence                 .Also         is fully invariant 

submodule of   and    is a fully invariant in    , so that   is a fully invariant in 

 .  Beside this              implies      it follows that  is a fully 

invariant in    by Lemma 1.2.6. Also, we have      (since    is purely 

semisimple), so   is fully invariant direct summand of    . Thus   is pure stable 

submodule of     and hence    is purely fully stable. □ 

  As every multiplication satisfies PIP [2] we get the following 

Corollary (3.4.7): For a multiplication  -module   with the condition complement 

of       is pure. The following assertions are equivalent: 

(1)   is strongly purely t-semisimple. 

(2)            ,    is a nonsingular fully invariant submodule of  ,    is 

purely fully stable and purely semisimple. 

(3)  Every nonsingular pure submodule of   is fully invariant direct summand. 

Corollary (3.4.8): Let   be an  -module such that complement of       is direct 

summand stable and   is a multiplication module. The following statements are 

equivalent. 

(1)   is strongly purely t-semisimple. 

(2)            , where    is a nonsingular fully invariant submodule of   

and purely fully stable, purely semisimple. 

(3)   For each nonsingular pure submodule   of  ,   is fully invariant direct 

summand. 

(4) For each pure in  ,         ,   is fully invariant direct summand of    
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Now we will consider the direct sum of strongly purely t-semisimple. First we 

have  

Theorem (3.4.9): Let          , where    and     are  -module and every 

pure submodule of   is fully invariant. Then   is strongly purely t-semisimple if 

and only if    and    are strongly purely t-semisimple.  

Proof: It is clear by Remarks and Examples 3.4.2(6). 

 Let   be a pure submodule of  . Then   is fully invariant in   and so   

     ,    is fully invariant in   ,    is fully invariant in    where      

            by Lemma 1.1.39(ii). Also,   is pure in   implies    is pure in 

   and    is pure in     Since    and    are strongly purely t-semisimple there 

exist  fully invariant direct summands   ,    of    ,    respectively where 

         and         . It follows       is a direct summand of   and  

                 by Proposition 1.1.22(2).  To show that       is fully 

invariant in  .        (
                 

                 
). But    and    are 

pure in  , so they are fully invariant by hypothesis. Hence            

                by Lemma 1.1.39(iii).  Thus for any            

(
   
   

) where            ,          .  So                        

     . Thus       is fully invariant in  . Therefor   is a strongly purely t-

semisimple. □ 

    Note that   as  -module is strongly purely t-semisimple, but       as  -

module is not strongly purely t-semisimple by Remarks and Examples 3.4.2(1). Also 

      is pure submodule of   but it is not fully invariant. 

Proposition (3.4.10): Let          , where    and     are  -modules. 

             . Then   is strongly purely t-semisimple if and only if    and 

   are strongly purely t-semisimple. 
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Proof:  It is clear by Remarks and Examples 3.4.2(6). 

 Let   be a pure submodule of  . Since              , then   

       for some      ,       by[1,Proposition 4.2]. Since   is pure in  , 

we get    is pure in    and    is pure in   . As    and    are strongly purely t-

semisimple there exist fully invariant direct summands   ,    of    ,    

respectively and          and         . It follows       is a direct summand 

of   and                  .But               , implies Hom(   , 

   )=0, Hom(  ,   ) by Lemma(1.2.8). Thus for any            (
   
   

) 

where            and            and hence                        

       , that is        is a fully invariant submodule of   . Therefore   is 

strongly purely t-semisimple. □ 

 

3.5 Strongly purely t-semisimple and strongly purely t-Baer Modules 

  In this section we define and study strongly purely t-Baer modules. We present 

characterization of strongly purely t-Baer module; we have a necessary condition for 

a module to be strongly purely t-Baer. Also, we give a connection between strongly 

purely t-semisimple and strongly purely t-Baer. 

Definition (3.5.1): An  -module   is called strongly purely t-Baer if        is fully 

invariant pure submodule of  , for each  left ideal   of  =      . 

   The following Theorem is a characterization of strongly t-Baer modules 

Theorem (3.5.2): An  -module   is strongly purely t-Baer if and only if for each 

left ideal I of  =      ,       is t-essential in fully invariant pure submodule.  

Proof:  it is clear (since                

  It follows by a similar proof of Theorem (3.3.4). □ 
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Proposition (3.5.3): Let   be an  -module such that            . If       

  is pure and fully invariant in   .Then   is strongly purely t-Baer.  

Proof:  As                                  , by modular law. Since 

      is pure in                 is pure in   .Then       is pure in  .To prove  

      is fully invariant in   . 

        (
                       

                    
).Note that as       is a fully 

invariant in   implies                 by Lemma 1.1.39(iii). Let   

        then 

  (
    
   

),where                               and            

,        (
    
   

) (
     

        )  (
                      

            
)  

(
     

        )       . Thus       is fully invariant in   and hence   is strongly 

purely t-Baer. □ 

  To prove the next result, we state and prove the following Lemma. 

Lemma (3.5.4): Let        . Then  

 (1) If   is a fully invariant submodule in   and   is a fully invariant in   ,then  

     is fully invariant in  . 

(2)If     is a fully invariant submodule of    and    is a fully invariant in  , then 

     is a fully invariant submodule of  . 

Proof: (1)         (
                 

                 
) But              by 

Lemma 1.1.39(iiii).Let          then   (
    
   

). Where               

                     . Hence           (
    
   

) (
  

 
)  
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(
            

     
).                        and         ,  so that 

            , that is      is fully invariant. 

The proof of (2) is similarly. □ 

 Proposition (3.5.5): Let            , where    is a fully invariant submodule 

of   , If    is strongly purely Baer module.  Then    is strongly purely t-Baer. 

Proof:Since                                        

              by Lemma 3.3.6. On the other hand, let    {        }. Note  

         , but    is fully invariant in   (hence stable)  so              . We 

claim that    is an ideal of        . To show this. Let         , then    

               where        ,so                     Let   

       . Then there exists         defined by   

      {  
                     

                          
  

              since   (       
         

          
          

     
   .Also         since      and    left ideal of   . We claim that  

               .Let           , Then        so        , for each     

        Then           , but        , then            , hence         

       .  

Conversely Let           , then          .So for each     ,        , but 

    so there exists     and        ,then              . hence    

       and we get              . Thus                and  hence       

             . But       is pure in      ,         is pure in    so that        is 

pure in  . Since    is strongly purely Baer module implies         is fully invariant 

in   . Hence by Lemma 3.5.4(1)       is fully invariant in   and so       is fully 

invariant pure in  . Hence   is strongly purely t-Baer . □ 
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Next we have the following Theorem 

Theorem (3.5.6): Let   be an  -module such that a complement of        is a pure 

submodule in  . If   is strongly purely t-semisimple, then   is strongly purely t-

Baer. 

Proof: By Theorem 3.4.6(1 3 2),           , where    is nonsingular, 

fully invariant submodule,    is purely fully stable and purely semisimple. By the 

proof of Proposition (3.5.5),                ,          . So         is pure 

in  . But            , so         is pure in   . But    is purely fully stable, hence 

        is fully invariant in   , and so    is strongly purely Baer. Then by 

Proposition (3.5.5)   is a strongly purely t-Baer module. □ 
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Introduction 

  In this chapter, we investigate certain types of module which have a close 

connection with the types of t-semisimple modules which are introduced in previous 

chapters. This chapter consists of six sections.  

  In section one we give a review about modules that satisfy    -condition and    -

type modules.  

  In section two we introduce modules that satisfy strongly    -condition and 

strongly    -type modules. We notice that every module satisfies strongly    -

condition module is strongly    -type module and strongly    -type implies    -

type. Examples to show that the converses may be not hold are given. Also, every 

strongly t-semisimple module is strongly    -type module. Many other properties 

for these classes of modules are presented.  

  In section three, modules that satisfy FI-   -condition and FI-   -type modules as 

generalizations of modules that satisfy    -condition and    -type modules are 

introduced.  A module satisfies FI-   -condition is FI-   -type module, but the 

converse may be not true. Beside other results in this section, we have if   is FI-t-

semisimple modules such that   satisfies condition     then   is FI-   -type 

module.  

  In section four, the concepts modules satisfy strongly FI-   -condition and strongly 

FI-   -type modules are investigated. Many properties related with these concepts 

and many connections between these concepts and other related concepts such as 

modules satisfy FI-   -condition, FI-   -type modules and strongly    -type 

modules. Also, we have if   is a FI-extending and every closed submodule is fully 

invariant, then   is strongly FI-   -type module.  
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  In section five we introduce modules that satisfy purely    -conditions and purely 

   -type modules. We study these concepts and their connections with purely t-

semisimple modules.  

  Section six is devoted for presenting and studying the concepts modules satisfy 

strongly purely    -condition and strongly purely    -type modules. Also, we study 

their connections with strongly purely t-semisimple modules. 

4.1 Modules satisfy    -condition and      -type Modules  

    Recall that:  An   -module   is said to be satisfy    -condition if every 

submodule of   has a complement which is a direct summand [38]. Asgari [10], 

restricted    - condition to t-closed condition of  . She defined the following. 

An  -module   said to be    -type module (or   satisfy    -type) if every t-closed 

submodule has a complement which is a direct summand. A ring is said to be right 

   -type ring if    is a    -type module.[10] 

Proposition (4.1.1)[38, Proposition 2.3]: The following statements are equivalent 

for a module   . 

(1)   has    -condition 

(2)  For any complement submodule   in  , there exists a direct summand   of   

such that   is a complement of    in  . 

(3)  For any submodule   of  , there exists a direct summand   of    such that 

      and     is an essential submodule of  . 

(4)   For any complement submodule   in  , there exists a direct summand   of M 

such that         and      is an essential submodule of  . 

Theorem (4.1.2)[38]: Any direct sum of modules with    -condition satisfies    -

condition. 
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Remarks and Examples (4.1.3): 

(1) It is clear that every module satisfying     is    -type-module, but the 

convers is not true [10].For example. The  -module     
    does not satisfy 

    by [38, Proposition 3.6]. But it is    -type module, since it is   -torsion. 

(2) Every t-extending module (hence every extending module) is a    -type 

module [10].But the convers is not true. For example Let       ,    is 

uniform, nonsingular. By [36, Theorem 2.4]     satisfies    -condition. 

Hence      is    -type module. But     is not t-semisimple ,because if it is 

so, then      is t-extending, which is a contradiction since by [15,Example 

2.4]     is not extending, hence not t-extending, since     is nonsingular. 

(3)  Every   -torsion is    -type module and every finitely generated Abelian 

group is a    -type module [10]. 

(4)  The  -module   and   are not t-semisimple. But   and Q are indecomposable 

and nonsingular uniform, so   and    are     -type module by[10, Corollary 2.8]. 

(5) Any direct sum of uniform modules has    -condition module by [38, 

Corollary 2.6], so is    -type module. In particular each of     ,       

,       is    -type module . Also notice that     is not t-semisimple. 

Proposition (4.1.4): Every t-semisimple module is    -type module. 

Proof: By [7, Proposition 2.16], every t-semisimple is t-extending, hence by 

Remarks and Examples 4.1.3(2), it is    -type module. □ 

Theorem (4.1.5)[ 10,Theorem 2.4]:  The following statements are equivalent for a 

module  : 

(1)   is    -type; 

(2)           ,where    satisfies    -condition; 

(3) For every submodule   of  , there exists a direct summand   of   such that 

         ; 
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 (4) For every t-closed submodule   of  , there exists a direct summand   of   

such that         ; 

(5) For every t-closed submodule   of  , there exists a direct summand   of   such 

that         . 

Corollary (4.1.6)[10, Corollary 2.5]:  Let   be a nonsingular module. Then   is 

   -type if and only if   satisfies     condition. 

Corollary (4.1.7)[10, Corollary 2.6]: A module   satisfies     condition if and 

only if   is    -type and       satisfies     condition.  

Corollary (4.1.8)[10, Corollary 2.7]: Every direct sum of     -type modules 

satisfies     condition. 

Corollary (4.1.9)[10, Corollary 2.8]: An indecomposable module   is    -type if 

and only if   is either a nonsingular uniform module or a   -torsion module . 

Corollary (4.1.10)[10, Corollary 2.10]: If   is a     -type module and   is a fully 

invariant submodule of  , then   and 
 

 
 are     -type modules.  

Proposition (4.1.11)[10, Proposition 2.11]: Every     -type module   is FI-t-

extending. 

 

4.2 Modules satisfy strongly    -condition and strongly    -type modules. 

  In this section, we extend the notions of modules satisfy    -condition and    -type 

modules into modules satisfy strongly    -conditions and strongly    -type 

modules. We study these concepts and their connections with strongly t-semisimple 

modules    

Definition (4.2.1): An  -module   said to be satisfy strongly    -condition if every 

submodule has a complement which is a fully invariant direct summand. 

   The following Lemmas are needed in the next Proposition. 
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Lemma (4.2.2)[38, Lemma 2.2]:  Let    , let   be a direct summand of   . 

  is a complement of   if and only if       and         . 

The following Lemma is clear. 

Lemma (4.2.3): If     and   is a fully invariant direct summand of   then   is 

a fully invariant complement of   if and only if       and         . 

The following Proposition gives characterizations for modules which have strongly 

   -condition. 

Proposition (4.2.4): The following statements are equivalent for a module   

(1)    satisfies strongly    -condition; 

(2)  For any complement submodule   in  , there exists a fully invariant direct 

summand   of   such that   is a complement of   in  ; 

(3) For any submodule   of  , there exists a fully invariant direct summand   of 

  such that       and     is an essential submodule of  ; 

(4) For any complement submodule   in  , there exists a fully invariant direct 

summand   of   such that        and         . 

Proof: (1)  (2) For any complement submodule   in  . By strongly    -condition, 

  has a complement in   which is a fully invariant direct summand   of  . 

(3)  (4) and (2)(4) are obvious. 

(1)  (3) It is clear by Lemma (4.2.3). 

(4)  (1) Let   be any submodule of  . Then there exists a complement so (closed 

submodule   in  ) such that         by[23, Exercise 13,P.20 ]. By hypothesis, 

there exists a fully invariant direct summand   of   such that       

and         . Hence by Lemma (4.2.2)   is a complement of   in  . 

Now      , which implies      . Suppose that      and     . 
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Therefore        and hence            (since        , so that      

   Thus   is a complement of   in  . □ 

   As we have seen t-semisimple is    -type module. We claim that strongly t-

semisimple modules imply modules which are strongly than    -type module. Hence 

this leads us to define the following: 

Definition (4.2.5): An  -module is said to be strongly    (or strongly    -type 

module) if for each t-closed submodule, there exists a complement which is a fully 

invariant direct summand. 

Remarks (4.2.6): 

 (1) It is clear that every module, which satisfies strongly    -condition, is a strongly 

   -type module, but the converse is not true in general, as the following example 

shows: 

Let         as  -module.   is strongly    -type module, since   is the only t-

closed submodule  in   and (0) is a complement of  , which is a fully invariant 

direct summand. To show that     has not strongly    -condition. Let    

  ̅  ̅  . The only submodules of   which have zero intersections with   are: 

    ̅     and    ( ̅  ̅    ( ̅  ̅   ̅  ̅)},      ̅  ̅)>,      and 

      ̅)        , also      and    = 

  ̅  ̅    ̅  ̅    ̅  ̅    ̅  ̅    ̅  ̅    ̅  ̅),(  ̅  ̅    ̅  ̅        ,       

But            . As      and     , then by Lemma 4.2.2,   

and   are complement of  . But   is not a fully invariant in   (not stable in  ) 

since there exists      defined by:   ̅  ̅    ̅  ̅     ̅  ̅    ̅  ̅ . Hence 

      . Also   is not a fully invariant in   (not stable in    since there exists 

      defined by    ̅  ̅    ̅  ̅ ,    ̅  ̅    ̅  ̅ . Hence       . Thus   

does not satisfy strongly     -condition. 
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 (2) It is clear that every strongly    -type module is    -type module. But the 

converse may be not hold for example: Let       as  -module. Then   is    -

type module by Corollary 4.1.8. Let        . Then 
 

 
 

   

     
       which 

is nonsingular. Hence   is t-closed, but any fully invariant submodule   of   has 

the form              , so  that if      , then       and   is 

not a complement of  . If       , then     and            and 

hence   is not a complement of  . Thus   has no fully invariant complement 

which is a direct summand and hence   is not strongly    -type module. 

(3) The same example in part (2)   satisfies    -condition by Remarks and 

Examples 4.1.3(5), but   does not satisfy strongly    -condition. 

We can summarize these relations by the following diagram 

 

 

Proposition (4.2.7): Let   be a nonsingular  -module. Then   satisfies strongly 

   -condition module if and only if   is strongly    -type module. 

Proof: It is clear. 

  Let    . By [23, Exercise 13, P.20], there exists a closed submodule   of   

such that       . Since   is nonsingular,   is a t-closed of  . Hence there 

exists a fully invariant direct summand   of   in    such that          since 

  is strongly    -type module. It follows that                . Thus 

Module has 
Strongly 

  𝐶  -condition 

Module has 
  𝐶  -condition 

 

Strongly 𝑇  - 
type module 

𝑇  - 
type module 
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         such that   is a fully invariant. Thus   is a complement of   by 

Lemma 4.2.2. So that   satisfies strongly    -condition. □ 

Proposition (4.2.8): Let   be a multiplication (hence if   is duo or fully stable). 

Then  

(1)   is    -type module if and only if   is strongly    -type module. 

(2)   satisfies    -condition if and only if   satisfies strongly    -condition 

module. 

We will give some properties of strongly    -type modules. 

Theorem (4.2.9): Consider the following statements for a module   

(1)   is strongly    -type module; 

(2)           , where    is a fully invariant submodule in   and satisfies 

strongly    -condition; 

(3) For every submodule   of    , there exists a fully invariant direct summand   

of   such that         . 

(4) For every t-closed submodule   of     , there exists a fully invariant direct 

summand   of   such that         . 

(5) For every t-closed submodule   of  , there exists a fully invariant direct 

summand   of   such that         . 

Then (1),(3),(4) and (5) are equivalent, (2)(5) and [(1) (2) if 
 

     
 is fully 

invariant of  
 

     
 for each fully invariant submodule   of   containg      ,. 

Proof: (1)(5) Let   be a t-closed submodule  of  . By condition (1) there exists a 

complement   to   such that     ,   is fully invariant. Thus          . 

(3) (1) Let   be a t-closed submodule of  . By hypothesis there exists a fully 

invariant direct summand   of   such that         . Let   be a complement of 

 , then       and         . We claim that           . Let 

           , where      .                  . Thus implies 

        since         . But         (since   is t-closed) hence    . 

It follows that              . Thus             . It follows that  

      . However,     so   is closed in  , which implies    ,that is   a 
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complement of  , which is a fully invariant direct summand. Thus   is a strongly 

   -type module. 

(5) (4) The implication is clear since every essential submodule is t-essential 

submodule. 

(4)  (3) Let    . By [10, Lemma 2.3], there exists a t-closed    of   such that 

       .  By hypothesis, there exists a fully invariant direct summand   such that 

        . But       , we conclude that             and hence 

        . 

 (2) (5) Let   be a t-closed submodule of  . Hence by Lemma (1.1.27),       

  and so               . Moreover,     is a t-closed submodule of   by  

Proposition 1.1.31(1). Since    satisfies strongly     condition, there exists a fully 

invariant direct summand   of    such that (               by Proposition 

4.2.4(3). But       and      , then      and 

                                     ]               . 

Hence         , but   is fully invariant in    and    is fully invariant in  . 

Hence   is fully invariant in  . 

 (1) (2) Since   is strongly    -type module and         is a t-closed submodule 

of  , there exists a complement   to       which is a fully invariant direct 

summand, say       . Since    is nonsingular, we have            . But 

              since   is complement to      , so by Proposition (1.1.17) 
 

  
 

is   -torsion, thus   is   -torsion (since   
 

  
 . So               and hence 

       . Therefore             . Now to show that    
 

     
  ̅ 

satisfies strongly     condition. Let  ̅=
 

     
 be a closed submodule of   ̅ so  ̅ is t-

closed in  ̅  and hence   is t-closed submodule of   by Lemma 1.1.27(3).But    is 

a strongly    -type, so there exists a complement   of   in   which is a fully 

invariant direct summand of  . Say        for some     . Since       

          
   we get  ̅  

 

     
 

    

            
 

 

     
 

  

      
  ̅   ̅̅ ̅. Cleary 

 ̅    ̅̅ ̅=0 and  ̅  ̅      ̅. But         are fully invariant in   and by 

hypothesis 
       

     
  ̅  is fully invariant in  ̅. □ 
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Remark (4.2.10):  If an  -module   is fully stable and semisimple, then   satisfies 

strongly    -condition module. 

Proof: Let    , then     , and so there exists     such that     

 , hence   is a complement of  . But   is fully stable, so   is a fully invariant, 

moreover     . Thus   is strongly    -condition module. □ 

In Particular,    as  -module satisfies strongly    -condition. 

Proposition (4.2.11): If an  -module   is strongly t-semisimple, then   is a 

strongly    -type module. 

Proof: By Theorem 1.2.3,           , where    is nonsingular semisimple 

fully stable and    is stable in   . But    is fully stable semisimple then   is 

strongly    -condition module by Remark 4.2.10. Hence   satisfies condition (2) 

which implies condition(1) of Theorem 4.2.9. Thus   is a strongly    -type module. 

□ 

Theorem (4.2.12: Every strongly extending module is strongly    -type module. 

Proof: Let   be a t-closed submodule of  . Hence   is a closed submodule. As    

is strongly extending,   is a fully invariant direct summand. Then        for 

some     and so   is a complement of  . To see this let      and     

  and         , then             so           . 

Assume      then                 , then            

 , hence       implies      .  Hence     , moreover     , so   

is closed submodule and hence   is a fully invariant direct summand. Thus   is 

strongly    -type module. □ 
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Proposition (4.2.13): If   is a strongly t-extending  -module, then   is strongly 

   -type module and every complement to a nonsingular direct summand is fully 

invariant direct summand. 

.Proof: Since   is strongly t-extending, then           ,    is strongly 

extending module by Theorem 1.3.11. Hence,    is strongly    -type module by 

Proposition (4.2.12). But     is nonsingular, so    satisfies strongly    -condition 

module by Proposition (4.2.7). Thus   satisfies condition (2) of Theorem 4.2.9 

which implies   is a strongly    -type module. Now let   be a complement of a 

nonsingular submodule of  , so by Proposition 1.1.28(52)   is a t-closed 

submodule of  . Hence   is a fully invariant direct summand of   by definition of 

strongly t-extending. □ 

    Note that if every complement of nonsingular submodule of an  -module   is 

fully invariant direct summand then   is strongly t-extending, since by Proposition 

1.1.28(52) every t-closed is a complement of nonsingular submodule and so that 

every t-closed submodule is fully invariant direct summand. Thus   is strongly t-

extending.  

Proposition (4.2.14): Let        ,    is a fully invariant submodule in  . 

The following conditions are equivalent: 

(1)    is a strongly    -type module; 

(2) For every submodule   of   , there exists a fully invariant direct summand   

of   such that      and         . 

(3) For every t-closed submodule   of   , there exists a fully invariant direct 

summand   of   such that      and         ; 

(4) For every t-closed submodule   of   , there exists a fully invariant direct 

summand   of   such that      and         . 
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Proof: (1)  (2) Since    is strongly    -type module, then by condition (3) of 

Theorem 4.2.9 for each     , there exists a fully invariant direct summand    of 

   such that             But        implies that           . Also, 

        is fully invariant in   by Lemma 3.5.4(2). Moreover,            

implies that                     .Thus                ;that is 

        . 

(2) (3) It is obvious. 

(3) (4) For every t-closed submodule   of   , there exists a fully invariant direct 

summand   of   such that      and         . Then 

               by Proposition 1.1.17. But                     . As 

  is t-closed in   ,          by Lemma 1.1.27(1). Also as     ,then 

              . It follows that 

                                    . 

(4) (1) Let   be t-closed of   . By condition (4) there exists a fully invariant 

direct summand   of   such that      and         . But   is a fully a 

invariant submodule in   implies,               ), such that       is 

fully invariant in    by Lemma 1.1.39(ii)  and         since     , hence 

            and         .Now                         

       Hence [         ]      . Thus    satisfies condition (5) of 

Theorem (4.2.9), which implies    is a strongly type -    module.□ 

Proposition (4.2.15): If   is a fully invariant direct summand of strongly    -type 

module, then 

 (1)     is a strongly    -type module. 

(2) 
 

 
 is strongly    -type if   is self-projective. 
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Proof: (1) To prove   is strongly    -type module. Let   be a submodule of  , 

hence   is a submodule of  , and so by condition (3) of Theorem 4.2.9, there exists 

a fully invariant  direct summand   of  , such that          . Hence       

       and so             . On the other hand,      implies   

     for some     . As    is a fully invariant submodule in  ,      

          , where     is fully invariant in  ,      is fully invariant 

submodule  in    by Lemma 1.1.39(ii). Now         and     , imply  

      . But     is fully invariant in   since   and   are fully invariant in  . 

Hence by Lemma 1.2.6,      is fully invariant in  . Thus   is strongly    -type. 

(2)Let 
 

 
  be a t-closed submodule in 

 

 
. Then   is a t-closed in  . As   is strongly 

   -type module there exists a fully invariant direct summand   of   such that 

         by Theorem 4.2.9. Let         for some      and since   is 

fully invariant in  ,                 such that     is fully invariant in  , 

     is fully invariant in   . Then 
 

 
 

    

            
 

 

   
 

  

    
 

   

 
 

    

 
. 

But it is easy to see that 
 

 
 

   

 
    

 

 
 . As     ,   is closed and this implies 

that 
   

 
    

 

 
 by [23, Proposition 1.4, P.18]. Thus 

 

 
 

   

 
    

 

 
  . On the other 

hand, since   is a fully invariant submodule in    and,   is fully invariant in  , then 

    is fully invariant in  .  Hence 
   

 
 is fully invariant in 

 

 
 , by Lemma 

1.1.41(2). Thus 
   

 
 is a fully invariant direct summand of 

 

 
 and

 

 
  

   

 
    

 

 
. 

Therefore 
 

 
  is strongly    -type module by Theorem 4.2.9(13). □ 

Corollary (4.2.16): If   is a commutative strongly    -type module and      , 

then 
 

 
 is a strongly    -type module. 

Corollary (4.2.17): Let   be a multiplication strongly    -type module 

and     . Then 
 

 
 is strongly    -type module, provided   is self-projective. 
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4.3. Modules satisfy FI-   -condition and FI-   -type Modules 

  In this section we generalize the concepts of modules satisfy    -condition and    -

type modules by restricted the    -condition on fully invariant submodule and the 

condition of    -type modules to fully invariant t-closed. We give some properties 

of these concepts. Also we study their relationships between them and with FI-t-

semisimple modules. 

Definition (4.3.1): An  -module   is said to be satisfies FI-   -condition if every 

fully invariant submodule of   has a complement which is a direct summand. 

Remarks and Examples (4.3.2): 

(1)  It is clear that every module satisfies    -condition also satisfies FI-   -

condition, but the converse is not true in general, for example. Let       as  -

module,   is not    -condition [38,Lemma 3.4]. But   has only two fully invariant 

submodules namely,   and    . So that   satisfies FI-   -condition. 

(2) Let   be a multiplication (or duo) module. Then   satisfies    -condition if 

and only if   satisfies FI-   -condition. 

     In particular Every submodule of     as  -module is fully invariant and every 

submodule of      has a complement which is a direct summand. Thus     satisfies 

    condition and so satisfies FI-   -condition. 

(3) Every uniform module satisfies FI-   -condition. In particular, each of the  -

module  ,  ,    satisfies FI-   -condition. 

(4)          satisfies    -condition so it satisfies FI-   -condition. 

Proposition (4.3.3): Consider the following statements for an  -module  . 

(1)   has FI-    -condition 

(2) For any fully invariant complement submodule   in  , there exist a direct 

summand   of   such that   is a complement of   in  . 

(3) For any fully invariant submodule   of  , there exists a direct summand   of 

  such that         and         . 
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(4)  For any fully invariant complement submodule   in  , there exists a direct 

summand   of   such that          and         . 

 Then (1)(2)(4), (1)(3)(4), (4)(1) if every fully invariant submodule has a 

fully invariant closure. 

Proof: (1) (2) , (3)(4) are obvious. 

(1)(3) ,(2)(4) clear by Lemma 4.2.2. 

(4)(1) ( if every fully invariant submodule has a fully invariant closure). 

Let   be a fully invariant submodule of  . Then there exists a fully invariant closed 

submodule   in   such that       . By hypothesis, there exists a direct summand 

  of   such that         and         .Hence by Lemma 4.2.2   is a 

complement of   in     We claim that   is a complement of  . Assume   is a 

submodule of   contain  . Then       and so           since 

      , that is      . Thus   is complement  .   □ 

Definition (4.3.4):  An  -module   is called a FI-   -type module if every fully 

invariant t-closed submodule has a complement which is a direct summand. 

Remark (4.3.5):  

(1) It is clear every module satisfies FI-   -condition implies FI-   -type module, 

but the converse is not true for examples.  

(i)  If          with the relation           . Then    is    -type and 

   does not satisfy    -condition [10, Example 2.2] and hence it is FI-   -

type. As   is duo, so    does not satisfy FI-   -condition. 

(ii)  Let         be a singular  -module. If    is a fully invariant in   and 

   doesn’t satisfy FI-   -condition, then   doesn’t satisfy FI-   -condition. 

Proof: As   is singular,   is FI-   -type. Since    doesn’t satisfy FI-   -

condition, there exists a fully invariant submodule    of    such that    has no 

complement which is a direct summand of   . Assume   has FI-   -condition 
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let         then   is a fully invariant in   by Lemma 3.5.4(2), hence   

has a complement   which is a direct summand. Thus             and 

so       ,         , hence     . It follows      . 

Moreover                implies                and so 

          . Thus   is a complement of   , by Lemma(4.2.2) and hence 

   has FI-   -condition which is a contradiction. 

(2) Every singular module is    -type, so it is FI-   type. 

    Recall that   is a t-closure, let    be a module. Then every submodule   of 

  is contained in a t-closed submodule   of  , where        , we call   is a 

t-closure[10]. 

 

Theorem (4.3.6):  Consider the following statements for an  -module  . 

(1)   is FI-   -type. 

(2)            where    satisfies FI-   -condition. 

(3) For every fully invariant submodule   of   there exists a direct summand   

of   such that         . 

(4) For every fully invariant t-closed submodule   of  , there exists      

such that         . 

(5) For every fully invariant t-closed submodule   of    , there exists      

such that         .  

Then (3) (1) (2)  (5) (4).[ (4) (3) (if every fully invariant submodule has 

fully invariant t-closure)]. Thus (1),(2),(3),(4) and (5) are equivalent if every fully 

invariant submodule has  a fully invariant t-closure. 

Proof: (1) (2) As       is fully invariant t-closed, there exists    a complement 

of       which is a direct summand of  , say       . Since    is 

nonsingular,              . But                , so         by 

Proposition (1.1.17). Thus 
 

  
   is   -torsion and so        , hence        . 

Thus            . Now to show that  ̅     satisfies FI-   -condition where 
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 ̅  
 

     
. Let  ̅ be a fully invariant closed submodule of  ̅ . Let  ̅  

 

     
  and as 

 ̅ is nonsingular,  ̅ is t-closed, hence   is t-closed in   by Lemma 1.1.27(3). But 

 

     
 is fully invariant in  ̅ and       is fully invariant in  , hence   is fully 

invariant in   by Lemma 1.1.40. Thus   is fully invariant t-closed submodule of   . 

But   is FI-   -type module, there exists a complement   to   in  , which is a 

direct summand of   , say       . Since                 
  , we 

conclude that  ̅  
 

     
 

 

     
 

  

      
   ̅   ̅̅ ̅ . It is clear that  ̅   ̅     . 

Also          implies that          and so by Proposition 

1.1.17  ̅  ̅      . Thus  ̅ satisfies FI-    –condition by Proposition 4.3.3(4). 

(2)(5) Let   be a fully invariant t-closed submodule  of   . Hence         and 

so                            . Hence      is a t-closed 

submodule of   and by Corollary 1.1.30(2)      is closed submodule  of   . But 

     is fully invariant in   , to see this. Let        , define       by 

     {
                  

                   
 .Now for all                     , hence 

          but        since    is fully invariant in  , then       . Also, 

      then        . Thus          . By Proposition 4.3.3(4), there exists a 

direct summand   of    such that      )        . Hence   is a direct 

summand of  , and                                  . 

(5)(4)  It follows directly since every  essential submodule is t-essential 

submodule. 

(4)(3) Let   be a fully invariant submodule of  . By hypothesis,   has a fully 

invariant  t-closure say  . Hence by condition (4), there exists a direct summand   

of   such that         . Since       , then            by Proposition 

1.1.22(2). Hence          by Proposition 1.1.20(1). 
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(3) (1) Let   be a fully invariant t-closed submodule of  . By hypothesis there 

exists      such that         . Since          then 

              . But        , so            As      and 

        . Thus   is a complement of   which is a direct summand. □ 

    Recall that t-extending module implies    -type module, we claim that   is FI-t-   

extending implies   is FI-   -type module. So we have. 

Proposition (4.3.7): If   is a FI-t-extending, then   is a FI-   -type module. 

Proof: Let   be a fully invariant t-closed submodule of  . Since   is a FI-t-

extending,   is a direct summand of  ; that is       for some    . Hence 

  is a complement of   and     . Thus   is FI-   -type module. □ 

Example (4.3.8): Let   (
  
  

) and   be an arbitrary  -module. Then 

        is FI-t-extending  -module which is not t-extending [9, Example 

2.10].Hence          is   -    -type module. 

Proposition (4.3.9): Let   be a multiplication (hence if    is cyclic) over a 

commutative ring  -module. Then   is FI-   -type module if and only if   is t-

extending module. 

Proof: Since   is a multiplication (or   is a cyclic)   -module,   is duo. Hence   

is FI-   -type if and only if   is    -type module. Then the result follows by [10, 

Proposition 2.14]. □ 

    Recall that every t-semisimple module implies is t-extending which implies    -

type module. However every FI-t-semisimple module is FI-t-extending if condition 

    hold by Proposition 2.2.6, where condition      : For an  -module, a 

complement of        is stable in  . The following is an analogous result. 

Corollary (4.3.10): If   is FI-t-semismple module and satisfies condition   , then 

  is FI-   -type module. 
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Proof:  by Proposition 2.2.6   is FI-t-extending. Hence the result follows directly 

by Proposition (4.3.7). □ 

Theorem (4.3.11): Let    and    be two  -modules that satisfy FI-   -condition. 

Then         satisfies FI-   -condition. 

Proof: Let   be a fully invariant submodule of  . Then         where    and 

   are fully invariant in   ,    respectively by Lemma 1.1.39(ii). As    and    

satisfy FI-   -condition, there exist             such that    a complement 

of    and it is a direct summand of   ,    is a complement of    and it is a direct 

summand of   . As              .Then         . Moreover 

                    and                                , 

but             and             ,so that                     . 

Then by Lemma 4.2.2 ,      is a complement of      . Thus   satisfies FI-

   -condition. □ 

Theorem (4.3.12): Let    and    be FI-   -type modules. Then         is 

FI-   -type module. 

Proof: Let   be a fully invariant t-closed submodule of  . As   is a fully invariant 

in  .Then         where    is a fully invariant in    and    is a fully 

invariant in    by Lemma 1.1.39. As   is t-closed in  , then    is t-closed in    

and    is t-closed in   . But    and    are FI-   -type modules, so there exist 

              with    is a complement of    and    is a complement of 

  . But        and        imply     . Also,           ,    

       imply         and since             and            , we 

conclude that                                     . Thus   is a 

complement of   by Lemma 4.2.2 which is a direct summand. Thus   is a FI-   -

type module. □ 
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4.4 Modules satisfy strongly FI-    condition and strongly FI-   -type Modules 

  In this section, we extend the concept of module that satisfy FI-    -condition and 

FI-   -type modules into modules with strongly FI-    conditions and strongly FI- 

   -type modules. We establish many properties related with these concepts. Also, a 

relationship between strongly FI-   -type modules and FI-extending is given. 

Definition (4.4.1): An  -module   has (or satisfies) strongly FI-   -condition 

module if for each fully invariant submodule   there exists a fully invariant direct 

summand   which is a complement of  . 

Theorem (4.4.2): Consider the following statements for a module  : 

(1)   satisfies strongly FI-   -condition module; 

(2) For any fully invariant complement submodule   of  , there exists a fully 

invariant direct summand   of   such that   is a complement of   in  ; 

(3) For any fully invariant submodule    of   , there exists a fully invariant 

direct summand   of   such that         and         ; 

(4) For any fully invariant complement submodule   in  , there exists  a fully 

invariant direct summand   of   such that         and         . 

Then (1)(3)(4), (1)(2) (4).((4)(1) if every fully invariant submodule has 

a fully invariant closure). 

Proof: (1)(2) and (3) (4) are clear . 

(1) (3) and (2) (4) are clear by Lemma 4.2.2. 

(4)(1) Let   be a fully invariant submodule , there exists   fully invariant closed 

submodule  such that       . By condition (4) there exists a fully invariant direct 

summand   such that         . But         , then            . 

Thus           and by Lemma 4.2.3,   is a fully invariant complement. 

Therefore   has strongly FI-   -condition.  □ 
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Remarks (4.4.3):  

(1) Every module satisfies strongly FI-   -condition is a module satisfying FI-

   -condition. But not conversely as shown by the following example. 

    Let         be a singular  -module where    and    satisfy FI-    - 

condition. If    is a fully invariant submodule of  , then   doesn’t satisfy strongly 

FI-   -condition. 

Proof:   satisfies FI-   -condition by Theorem 4.3.11. Let   be a fully invariant 

submodule of  , then                , where      is a fully invariant 

in     and      is a fully invariant in   . Set            . Then by 

Lemma 3.5.4,   is a fully invariant submodule of  . Assume that   has a 

complement    such that    is a fully invariant direct summand. Hence       

           where      is fully invariant in    and      is a fully 

invariant in    by Lemma 1.1.39 . Since 

                                     . Hence      

   , so              . Beside this        (
        

                 
). 

Let         , then   (
   
    

)                              

                (
    

 
)  (

   
    

) (
    

 
)  (

        

              
)  

(
    

    
)  (

    

  
)    , which is a contradiction. Thus   has no complement 

which is a fully invariant direct summand and so   doesn’t satisfies strongly FI- 

   -condition. 

(2)Every module satisfies strongly    -condition implies module satisfies                           

strongly FI-   -condition. But not conversely for example: 

    Let         as  module. The only fully invariant submodules of   are 

     ̅     ,      ̅     ,       ̅  ̅ ,     ,         ̅ ,    
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  ̅    ,       ̅    ̅ ,      ̅   ̅ . But,      , and    are essential in  , so 

that    ̅  ̅  is a complement of each       and    and so it is fully invariant direct 

summand. Also,    is a complement of   . But    is a complement of    and    is 

a complement of    and each of them are fully invariant direct summand.    is a 

complement of    which is a fully invariant direct summand also    is a 

complement of    which is a fully invariant direct summand. Thus   satisfies 

strongly FI-   -condition. But it doesn’t satisfy strongly    -condition by Remarks 

4.2.6(1). 

  By restricting the definition of modules have strongly FI-   -condition to fully 

invariant t-closed submodule, we introduce the following. 

Definition (4.4.4): An  -module   is to be strongly FI-   -type module if for each 

fully invariant t-closed submodule   of  , there is a complement of   which is 

fully invariant direct summand. 

Remarks (4.4.5):  

 (1) Every module that satisfies strongly FI-   - condition implies strongly FI-   - 

type module.  But the converse is not true for example: 

   Let         be a singular  -module such that    does not satisfies strongly 

FI-    - condition and    is a fully invariant submodule of   is strongly FI-   -

type and does not satisfy strongly FI-   -condition. 

Proof:  is strongly FI-   -type since it is singular. As    does not satisfy strongly 

FI-   -condition, there exists a fully invariant submodule    of    such that    has 

no complemented which is a fully invariant direct summand. Assume   satisfy 

strongly FI-   -condition. Let          . Then by Lemma 3.5.4,   is a fully 

invariant submodule of   and hence   has a complement   such that   is a fully 

invariant direct summand of  . As    is a fully invariant submodule of  ,   

      , where    is a fully invariant in    and    is a fully invariant in    by 

Lemma 1.1.39(ii). It follow that               and so         and 
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          .As               , then            . Also, as 

             then       . Thus    is a complement of    by Lemma 

4.2.3 which is a fully invariant direct summand of   . But this is a contradiction 

since    hasn’t strongly FI-   -condition. 

(2) Every strongly FI-   -type module is FI-   -type. But not conversely for 

example: 

   Let         where    and    are FI-   -type modules and    is a fully 

invariant submodule of  . Then    is not strongly FI-   -type module. 

Proof: Since    and    are FI-   -type module,   is a FI-   -type module by 

Theorem 4.3.12. Let   be a fully invariant t-closed submodule of  . As   is fully 

invariant in  , then                 where      is fully invariant in 

   ,      is fully invariant in    by Lemma 1.1.39(ii). Also, since   is t-closed 

in  ,      is t-closed in    and      is t-closed in     . Set      

      . Then by Lemma 3.5.4,   is a fully invariant in    and 
 

  
 

     

         
 

  

    
 which is a nonsingular so by Proposition 1.1.28,   is a t-closed in  . Assume 

  has a complement say   in   such that   is a fully invariant direct summand of 

 . It follows that                . Since          we conclude 

that        and so              . But 

       (
        

                 
). Let       , then  (

   
    

)     

                                .      (
    

 
)  

(
        
        

)  (
    

  
)   , hence   is not fully invariant in  . Which, is a 

contradiction. Thus   has no complement which is a fully invariant direct summand 

and so   doesn’t satisfies strongly FI-    -type. 
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(3)   Clearly every strongly    -type is strongly FI-   -type. But not conversely 

for example: Let       as a   -module.    is not strongly    -type module by 

Remarks 4.2.6(2). If   is a fully invariant t-closed of  . As   is a fully invariant in 

 ,               by Lemma 1.1.39(ii). Also, since   is t-closed then 

    is a t-closed in  , but   has only t-closed namely    . Thus either    =0 or 

      and so       or    . If      , then   is a complement of   

which is a fully invariant direct summand. If    , then (0) is a complement of   

which is a fully invariant direct summand. Thus   is strongly FI-   -type module. 

We can summarize these remarks by the following diagram 

 

Theorem (4.4.6): Consider the following statements for an  -module    

(1)   is a strongly FI-   -type module; 

(2)           , where    is a fully invariant in    and satisfies strongly FI- 

   -condition; 

(3) For every fully invariant submodule   of  , there exists a fully invariant 

direct summand   of   such that         ; 

(4) For every fully invariant t-closed submodule   of  , there exists a fully 

invariant direct summand   of    such that         ; 

(5) For every fully invariant t-closed submodule   of  , there exists a fully 

invariant direct summand   of    such that         .  

Strongly 𝑇  - 
type module 

Module has 
Strongly 

  𝐶  -condition 

Strongly FI-  
  𝑇  -type module 

 

Module has 
Strongly Fi- 𝐶  - 

condition 

Module has FI-
𝐶  -condition 

𝐹𝐼  𝑇  - 
type module 
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Then (2) (5) (4), (3) (1)(5) and [(4) (3) if every fully invariant 

submodule has a fully invariant t-closure] that is (1),(3),(4) and (5) are equivalent if 

every fully invariant submodule has a fully invariant t-closure.  

(1)(2)  if 
 

     
 is fully invariant submodule  in   for each fully invariant 

submodule    of   ,         and every fully invariant submodule has a fully 

invariant t-closure. 

Proof: (1)(2) Since       is a fully invariant t-closed, there exists a fully 

invariant direct summand    of   such that    is a complement of       in  , say 

        for some    . Since     is nonsingular, so               . 

But              , hence         and so 
 

  
  is   -torsion. Thus   is a   -

torsion which implies that         and        . Thus           . Now 

to prove    
 

     
 satisfies strongly FI-   -condition. Let  ̅  

 

     
 be a fully 

invariant t-closed and so   is a t-closed in   and as 
 

     
  is fully invariant and 

      is fully invariant, we have   is a fully invariant t-closed in  . But   is 

strongly FI-   -type, there exists a fully invariant direct summand   of  , which is 

a complement of   say        for some     . since 

                
  , we get  ̅  

 

     
 

    

            
 

 

     
 

  

      
 

 ̅   ̅̅ ̅. It is clear that  ̅    ̅̅ ̅   ̅ and  ̅   ̅̅ ̅      ̅. But   ,       are fully 

invariant in  , so         is fully invariant in   and by hypothesis 
       

     
  ̅ 

is fully invariant in  ̅. Thus   ̅ is strongly FI-   condition by Theorem 

4.2.2((4)(1)). 

(2)(5) Let   be a fully invariant t-closed submodule of  . Hence         . As 

          , then                and      is  a fully invariant 

submodule of  , since   and      are fully invariant in  . But           , 

hence by Lemma 1.1.40(2),      is a fully invariant in   . As    has strongly 
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   -condition, there exists a fully invariant direct summand   of     such that 

              . On other hand, as        and      , we get    is 

adirect summand of   and                                

                    ; thus         . But   is a fully invariant 

submodule of     and    is a fully invariant in  , hence   is fully invariant in   by 

Proposition 1.1.38. 

(5)(4) It is clear(since every essential is t-essential). 

(4)(3) Let   be a fully invariant submodule of  . Then there exists a fully 

invariant t-closed   of   such that        by [20, Lemma 2.3]. 

By condition (4) there exists a fully invariant direct summand   such that  

        . But       , so we concluded that            and hence 

        .    

(3)(1) Let   be a fully invariant t-closed. By condition (3) there exists a fully 

invariant direct summand   such that         . We claim that   is a 

complement of  . Assume   is a complement of  , so         and 

        . Let       and                  .Hence         

(since         . But        , so     . It follows that            . 

Thus            which implies       . As   is a closed in   since 

    . It follows that    . Thus   is a complement of   which is a fully 

invariant. Hence   is strongly FI-   -type module. 

(1)(5) Let   be a fully invariant t-closed submodule of  . By condition (1) there 

exists a fully invariant direct summand   of    such that   is a complement of  . 

Hence          so          and   is a fully invariant direct summand of 

 . 

(5)(1)  It is clear by Lemma 4.2.2. □ 
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Proposition (4.4.7): Let        ,    is fully invariant submodule in   and 

every fully invariant submodule of    has a fully invariant t-closure. Then the 

following assertions are equivalent. 

(1)    is a strongly FI-   -type module; 

(2) For every fully invariant submodule   of   , there exists a fully invariant 

direct summand   of    such that      and         ; 

(3)  For every fully invariant t-closed submodule   of     there exists a fully 

invariant direct summand   of   such that      and         ; 

(4)  For every fully invariant t-closed   of  , there exists a fully invariant direct 

summand   of   such that      and          . 

Proof: (1)(2) Since    is strongly FI-   -type, then by condition (3) of Theorem 

4.4.6 for each fully invariant submodule   of    , there exists a fully invariant direct 

summand    of    such that             . As       , then         . 

Also,         is fully invariant in   by Lemma 3.5.4(2).But            

implies                     . Thus          

 (2)(3)  It is clear. 

(3)(4) For every fully invariant  t-closed submodule   of   , there  exists a fully 

invariant direct summand   of   such that      and             . Then 

               by Proposition (1.1.17). But                     and 

as   is t-closed in   ,        . Also as      , then               .It 

follows that                                      . 

(4)(1) Let   be a fully invariant  t-closed of   . By condition (4) there exists a 

fully invariant direct summand   of   such that      and          . But   

is a fully invariant submodule in   implies,                , such that 

     is fully invariant in    and      is fully invariant in   . But         

since     . Hence              and         .Now     
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                        . Hence,                 . Thus    

satisfies condition (5) of Theorem (4.4.6), which implies that    is strongly type-    

module. □ 

Proposition (4.4.8): If   is strongly FI-   -type and   is a fully invariant direct 

summand of  . Then  

(1)   is strongly FI-   -type; provided every fully invariant submodule has a fully 

invariant t-closure. 

(2)   
 

 
 is strongly FI-   -type (provided   is self-projective). 

Proof: (1) To prove   is strongly FI-   -type module. Let   be a fully invariant 

submodule of  . As    is fully invariant in  , then   is a fully invariant  submodule 

of  . Hence by Theorem 4.4.6(3) there exists fully invariant direct summand   of 

  such that         . Hence              and so             . 

Let        for some     .                , where     is fully 

invariant in  ,      is fully invariant submodule  in    . But     is fully 

invariant in   and   is fully invariant in  , so     is fully invariant in  . But  

    , and       so     is fully invariant in   by Lemma 1.1.40(2). Thus 

    is fully invariant direct summand in   and              . Thus   is 

strongly FI-   -type by Theorem 4.4.6(3). 

(2)Let 
 

 
  be a fully invariant t-closed submodule in 

 

 
. Then   is a fully invariant t-

closed in  . As   is strongly FI-   -type module there exists a fully invariant direct 

summand   of   such that          by Theorem 4.4.6(5). Let         for 

some      and since   is fully invariant in  ,                 such that 

    is fully invariant in  ,      is fully invariant in   . Then 
 

 
 

    

            
 

 

   
 

  

    
 

   

 
 

    

 
. But it is easy to see that 

 

 
 

   

 
    

 

 
 . As     ,   

is closed and this implies that 
   

 
    

 

 
 by [23,Proposition1.4,P.18]. Thus 
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  . On the other hand, since   is a fully invariant submodule in    

and,   is fully invariant in  , then     is fully invariant in  .  Hence 
   

 
 is fully 

invariant in 
 

 
 (since   is self-projective) by Lemma 1.1.41(2). Thus 

   

 
 is a fully 

invariant direct summand of 
 

 
 and

 

 
  

   

 
    

 

 
. Therefore 

 

 
  is strongly FI-   -

type module by Theorem 4.4.6(15). □ 

Proposition (4.4.9): Let   be a FI-extending such that every closed submodule is 

fully invariant. Then    is strongly FI-   -type. 

Proof: Let   be a fully invariant t-closed. Then   is a fully invariant closed 

submodule. Hence      since   is FI-extending. Say      , hence   is a 

complement of  .Then by hypothesis,    is a fully invariant. Thus   is strongly FI-

   -type. □ 

4.5 Modules satisfy purely    -condition and purely    -type modules 

  In this section, we generalize modules that satisfy    -condition and    -type 

modules into modules satisfy purely    -conditions and purely    -type modules. 

We study these concepts and their connections with purely t-semisimple modules    

Definition (4.5.1): An  -module   is said to be satisfies purely    -condition if 

every pure submodule of   has a complement which is a direct summand. 

Remarks and Examples (4.5.2): 

(1) Every module satisfies    -condition has purely    -condition, but the 

converse is not true see (4) 

(2) Every purely semisimple module (every pure is a direct summand) satisfies 

purely    -condition. In particular every Noetherain projective module (or every 

divisible module over principle ideal domain) is purely semisimple by Remarks and 

Examples 3.1.3(6, 7) hence satisfies purely    -condition. In particular it is clear that 
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        as   -module is Noetherain and it is projective by[25,Corollary 

8.2.8(c)] so   satisfies purely    -condition. Not that    is not pure simple. 

(3) Every pure simple module satisfies purely     -condition but not conversely. 

(4) Every pure simple module and not uniform satisfies purely    -condition and 

doesn’t satisfies    -condition. 

Proof: Since   is a pure simple, then   is an indecomposable. Hence   is an 

indecomposable and not uniform and   doesn’t satisfy    -condition by [38, 

Proposition 2.3 (iii)]. However   satisfies purely    -condition since   is pure 

simple. □ 

 Proposition (4.5.3):   Consider the following statements on  . 

(1)    satisfies purely    -condition; 

(2)  For any pure submodule   of  , there exists      such that   is a 

complement of  ; 

(3) For any pure submodule  , there exists      such that         and 

        ; 

(4)  For any pure complement    , there exists      such that      

   ,         . 

Then (1)(2)(3) ,(2)(4) and (4)(1) if every pure submodule has pure closure. 

Proof: (1) (3), (1) (2) and (2) (4) are clear. 

 (4)(1) (If pure submodule has pure closure). Let   be a pure submodule, there 

exists   (closed pure) such that       . By condition (4), there exists      

such that                 , then                . Hence 

     and          so   is a complement of    By Lemma 4.2.2. □ 

Proposition (4.5.4): If   is purely t-semisimple and nonsingular module. Then   

satisfies purely    -condition. 

Proof: Let   be a pure submodule of   . Since   is nonsingular,   is nonsingular 

submodule of  . Hence by Theorem 3.2.8(14),     , so that       for 
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some    . It follows that   is a complement direct summand of   . Thus   is 

purely    -condition. □ 

Proposition (4.5.5): Let   be a distributive module which satisfies purely    -

condition. Then a pure submodule   of   satisfies purely    -condition. 

Proof: Let   be a pure submodule of  . As   is pure in  , so   is pure in  . But 

  satisfies purely    -condition, implies there exists      such that   is a 

complement of  . Then         ,                 , so 

            , to prove       . Since        for some      , 

then                         because   is a distributive module 

hence       . Thus   has purely    -condition. □ 

Corollary (4.5.6): Let   be a distributive module and satisfies purely    -condition 

.Then a direct summand of   is purely    -condition. 

 Now we introduce the following. 

Definition (4.5.7): An  -module   is called purely    -type if every pure t-closed 

submodule of   has a complement which is a direct summand. 

Remarks (4.5.8): 

(1) Every modules satisfies purely    -condition is purely    -type module. 

(2) Every    -type module is purely    -type module. 

(3) Every pure simple is purely    -type module, but not conversely for 

example:       as  -module is purely    -type module but it isn’t pure 

simple.  

Proposition (4.5.9): If   is a purely    -type module and   is purely t-extending, 

then   is    -type. 
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Proof: Let   be a t-closed submodule. Since   is purely t-extending,   is pure 

.Hence   is pure t-closed, but   is purely    -type, so   has a complement   

which is a direct summand. Thus   is    -type. □ 

Proposition (4.5.10): Let   be a purely t-semisimple such that complement of 

      is pure. Then   is purely    -type. 

Proof: Let   be a pure t-closed submodule of  . Hence          and so by 

Theorem 3.2.8(5),    , say       for some    . Thus   is a 

complement of  , which is a direct summand and   is purely    -type module. □  

Corollary (4.5.11): Let   be a purely t-semisimple such that complement of       

is direct summand. Then   is purely    -type. 

Theorem (4.5.12): Consider the following assertions for an  -module  . 

(1)   is purely    -type; 

(2)            , where    is nonsingular, satisfies purely    -condition; 

(3)  For each pure submodule   of  , there exists a direct summand   of   such 

that         ; 

(4)  For any pure t-closed submodule   of  , there exists a direct summand   

such that         ; 

(5)  For any pure t-closed submodule   of  , there exists      such that 

        . 

 Then (2)(5)(4) , (3)(1)(5), (1)(2) if        is pure and every t-closure 

of pure is pure, (1)(3) if every t-closure of pure is pure, and (1)(4)  if   is 

nonsingular. 

Proof: (2)(5)  Let   be a pure t-closed submodule   , so that        . As 

            , then               . Hence        is pure in   and 

hence        is pure in   (since   is pure in  ) and as           then 

       is pure in   . Moreover, by Proposition 1.1.31(1)        is t-closed in 
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  . But    is purely    -condition, so there exists       such that    

           . Then 

                                                  . 

Beside this      , then     . Thus condition (5) hold. 

(5)(4) It is clear. 

(3)(1) Let   be a pure t-closed submodule of  . By hypothesis, there exists 

     such that         . We claim that   is a complement of  . Assume 

that, there exists     and   is a complement of  . Let       and       

            . Hence         (since            . But         , so 

    and hence             , thus            and so       . 

But     , so that    . Thus   is a complement of  . 

(1)(5) It follows directly. 

(1)(2) As       is pure t-closed, there exists       ,    is a complement of  

     , then       . Since    is nonsingular,              . But 

              implies 
 

  
   is   -torsion, hence        . Thus   

            
 

     
  ̅. To prove    satisfies purely    -condition. Let 

 ̅  
 

     
 be a pure closed (t-closed) in 

 

     
. Hence   is pure t-closed in  . Since 

  is purely    -type, there exists a complement   of  ,     , say       . 

As                 
  . We get  ̅   ̅   ̅̅ ̅. It is  ̅   ̅     . Beside these 

         implies          and so  ̅  ̅      ̅. Thus  ̅ satisfies purely 

   -condition by Theorem 4.5.3((4)(1)). 

(1)(3) Let   be a pure submodule. Then there exists a t-closure   of  (       

and   is t-closed by [10, Lemma 2.3]. Also,   is pure by hypothesis. Thus   is pure 

t-closed. Since   is purely    -type, there exists      such that         . 

Hence          and so            (since       ). Thus         . 
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(4)(1) It is easy. □ 

Theorem (4.5.13): Let    be a finitely generated faithful multiplication over 

commutative ring    which is purely    -type. Then   is purely    -type. 

Proof:  Let      be a pure t-closed of  . Then   is a pure in  . To prove   is a t-

closed in  . Let       , then          by Proposition 1.1.25(4). Hence    

  , but   is finitely generated faithful multiplication so by [19, Theorem 3.1] 

     .But   is a pure t-closed in   and   is purely    -type ring imply that there 

exists a  direct summand,   of   such that         . Then by [19, Theorem 2.13] 

           , so            and as      implies      , hence    is 

a complement of      which is a direct summand.  Thus   is purely    -type. □ 

Proposition (4.5.14): Let    be a finitely generated faithful multiplication over a 

regular ring  . If    is    -type (purely    -type) then   is    -type (purely    -

type). 

Proof: Let   be a t-closed ideal of  . Let     , then       , since if 

        , then        by Lemma 1.1.25(4), so     and      . Thus 

      . As   is    -type, there exists         and         . But 

       , implies      and                        implies 

         by[19,Theorem 2.13]. Thus   is    -type. 

The second case is similarly. □ 
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4.6 Modules satisfy Strongly purely    -condition and strongly purely    -type Modules 

  In this section, we generalize modules satisfy    -condition and    -type modules 

into modules satisfy strongly purely    - conditions and strongly purely    -type 

modules. We study these concepts and many properties related with these concepts. 

Definition (4.6.1): An  -module   has strongly purely    -condition if every pure 

submodule has a complement which is a fully invariant direct summand. 

Remarks and Examples (4.6.2): 

(1) Every module satisfies strongly purely    -condition implies module satisfies 

purely    -condition, but the converse may be not hold, as the following example 

shows. 

  Let         as  -module.   is a direct sum of uniform modules, so   has 

   -condition  by Remarks and Examples 4.1.3(5) and hence   has purely    -

condition. 

Let      ̅  ̅      ̅  ̅    ̅  ̅    ̅  ̅),(  ̅  ̅    ̅  ̅),(  ̅  ̅    ̅  ̅    ̅  ̅  .   is a 

pure submodule of  . However there are only      ̅  ̅      ̅  ̅    ̅  ̅   and 

     ̅        ̅  ̅    ̅  ̅         ̅  ̅   such that             

    .But       

   ̅  ̅   ( ̅  ̅)   ̅  ̅    ̅  ̅    ̅  ̅    ̅  ̅    ̅  ̅    ̅  ̅    ̅  ̅),

    ̅  ̅    ̅  ̅    ̅  ̅    ̅  ̅    ̅  ̅    ̅  ̅    ̅  ̅)}= . Hence     

is a complement direct summand of  , however    is not fully invariant 

submodule of  , since  if we define         by    ̅  ̅    ̅  ̅     ̅  ̅  

  ̅  ̅ ,   is a  -homomorphism and         . 

Now, 

     

   ̅  ̅    ̅  ̅    ̅  ̅    ̅  ̅  ( ̅  ̅) (  ̅  ̅ ,   ̅  ̅    ̅  ̅ ,   ̅  ̅    ̅  ̅    ̅  ̅    ̅  ̅ ,



      Chapter Four                       Certain types of Modules Related with types of T-semisimple Modules 

158 
 

 ( ̅  ̅),   ̅  ̅    ̅  ̅ ,   ̅  ̅          . Hence    is a complement direct 

summand in   of   but    is not fully invariant submodule of   since  if we 

define        by     ̅  ̅    ̅  ̅     ̅  ̅ =  ̅  ̅ , then    is a  -homorphism. 

But          hence    is not fully invariant. Also,          , but 

      ,so    is not a complement of  . Thus   has no complement which is 

fully invariant direct summand of  . Therefore   does not satisfy strongly purely 

   -condition. 

(2)         as  -module is purely    -condition but doesn’t satisfy strongly 

purely    -condition. 

(3) If   is purely fully stable.   is purely    -condition if and only if   has 

strongly purely    -condition. 

(4)  If   is weak duo( hence if   is multiplication or duo).   has purely    -

condition if and only if   has strongly purely    -condition. 

(5) If   is an  -modules (every pure submodule is fully invariant) then    has 

purely    -condition if and only if   has strongly purely    -confition. 

Theorem (4.6.3): Let   be a finitely generated faithful multiplication over 

commutative ring  . Then   the following statements are equivalent: 

(1)    is purely    -condition; 

(2)   is purely    -condition; 

(3)   is strongly purely    -condition. 

(4)   is strongly purely    -condition. 

Proof: (1)(2) Let   be a pure ideal of  . Then    is a pure submodule of  . Since 

  has purely    -condition, there exists      such that   is a complement of 

  ,      for some ideal   of  , since   is a multiplication module. Thus 

      for some    , let      for some ideal   of  . Hence       

 , which implies      ; that is     . Beside this      is a complement of  
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  , implies            and by [19,Theorem 2.13],         . Thus   has a 

complement   which is a direct summand. 

(2) (1) Let   be a pure submodule of  . As   finitely generated faithful 

multiplication      for some pure ideal   of  . But   has purely    -condition, 

there exists   (a complement of  ) and     . Hence         . Hence by [19, 

Theorem 2.13]           . As     , then       for some     and 

        , so         that is      . Thus    is a complement of  

     and      . Thus   is purely    -condition. 

(2) (3) and (1)  (4) are clear by Remarks and Examples 4.6.2(4). □ 

Next we have 

Proposition (4.6.4): Consider the following statements for an  -module  : 

(1)   satisfies strongly purely    -condition; 

(2) For any pure complement submodule    in  , there exists a fully invariant 

direct summand   of   such that   is a complement of   in  ; 

(3) For any pure submodule   of  , there exists a fully invariant direct summand 

  of   such that         and         ; 

(4)  For any pure complement submodule   of  , there exists a fully invariant 

direct summand   of   such that         and         .  

Then (1)  (3) ,(2)(4), (1)(2), (4)(1) if every closure of pure submodule is 

pure . 

Proof: (1)  (3) and (2) (4) are clear. 

 (1)(2) Let   be a pure complement submodule. By condition (1)   has a fully 

invariant complement   which is direct summand in  . 

(4)(1) Let   be a pure submodule of  , so there exists a closed pure submodule 

such that        by hypothesis. As   is pure complement, there exists      
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and   is fully invariant such that                  . Hence   is a 

complement fully invariant of  . As                 . But 

               , so          and     . Hence   is a fully 

invariant complement of  . □ 

  By restricting the condition of modules satisfy strongly pure-   -condition in to 

pure t-closed submodules, we give the following: 

Definition (4.6.5): An  -module   is called strongly purely    -type module if 

every pure t-closed submodule has a complement which is a direct summand and 

fully invariant. 

Remarks and Examples (4.6.6): 

(1)         as  -module.    is the only pure t-closed submodule of  , there 

exists   ̅  ̅     such that {  ̅  ̅ } is fully invariant submodule and {  ̅  ̅ } is a 

complement of   . Thus   is strongly purely    -type. 

(2) It is clear that every module satisfies strongly purely    -condition is strongly 

purely    -type but converses is not true for examples: 

(I)         as  -module is strongly purely     by part (1), and it does not 

satisfy strongly purely    -condition by Remarks and Examples 4.6.2(1). 

(II)           as  -module.   is singular, so   is the only pure t-closed. 

Thus   is strongly purely    -type. But         ,   has a 

complement     ̅       . But   is not fully invariant. Thus   is 

not strongly purely    -condition. Hence strongly purely    -type need not 

be strongly purely    -cnodition. □ 

(3)  Let   be a multiplication (hence if   is duo or fully stable)   is purely    -

type if and only if   is strongly purely    -type. 

(4)    is pure simple then   is strongly  purely    -type. 

(5)    is strongly    -type implies strongly purely    -type. 

     We can summarize these relations by the following diagram 
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Proposition (4.6.7): Let   be a nonsingular. If   is strongly purely t-semisimple, 

then   is strongly purely    (hence strongly purely    -type). 

Proof: Let   be a pure submodule of  . Since   is nonsingular, so   is 

nonsingular. Hence by Theorem 3.4.6(13),   is a fully invariant direct summand, 

say       for some    . As     ,   is a pure submodule. Also,   is 

nonsingular and so again by Theorem 3.4.6( 13),   is a fully invariant direct 

summand. On the other hand,   is a complement of  . Thus   is purely    -

condition. □  

 Remarks (4.6.8): 

 (1) Let   be a purely fully stable. Then   is purely    -type if and only if   is 

strongly purely    -type. 

Proof: It is clear. □ 

(2) Let   be a regular  -module (every submodule is pure). Then 

(I)   is    -type if and only if  is purely    -type. 

(II)   is strongly    -type if and only if   is strongly purely    -type. 

(III)   is strongly    -condition if and only if   is strongly purely    -condition. 

Theorem (4.6.9): Consider the following statements for an  -module  : 

(1)   is strongly purely    -type; 

Module has 
Strongly 𝐶  - 

Condition  

Module has  
 purely 𝐶  -
condition 
condition 

Module has 
Strongly purely  
𝐶  -condition 

Strongly purely 
𝑇  - 

type module 

Module has Strongly 
𝑇  -type module  
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(2)           , where    is nonsingular strongly purely    ,    is fully 

invariant submodule of  ; 

(3) For every pure submodule   of  , there exists a fully invariant direct 

summand   of   such that         ; 

(4) For every pure t-closed submodule   of  , there exists a fully invariant direct 

summand   of   such that         ; 

(5) For every pure t-closed submodule   of  , there exists a fully invariant direct 

summand   of   such that         . 

Then (1)  (5)  (4), (2)  (1). (4)  (3) (if t-closure of pure is pure). 

 Thus (1), (3), (4), (5) are equivalent if (t-closure of pure is pure) and (1)  (2) if 

      is pure. 

Proof: (1)(5) (4) It is clear. 

(2) (1) Let   be a pure t-closed of  . Then        , hence             

   . Since      , then by Proposition 1.1.31(1)      is a t-closed in    . 

Moreover,          implies      is pure in  , but   is pure in  , so   

  is pure in   . Since   is strongly purely    -condition, there exists a fully 

invariant direct summand   of    such that (              . But       

implies     . Also   is a fully invariant in    and    is fully invariant in   

implies   is fully invariant in  . Now                          

                          . Thus (1) hold. 

(3)(1) Let   be a pure t-closed submodule of  , there exists a fully invariant 

direct summand   of   such that         , then                  by 

Proposition 1.1.17. But          since   is t-closed. So             

        , and   is a fully invariant direct summand. Thus condition (1) hold. 

 (4)(3) Let   be a pure submodule of   By[10, Lemma 2.3], there exists   (t-

closed of    such that        and by hypothesis   is pure. Thus   is pure t-

closed in  , hence by condition (4) there exists a fully invariant direct summand    



      Chapter Four                       Certain types of Modules Related with types of T-semisimple Modules 

163 
 

of   such that          , so         . But       , so            . 

Thus          by Proposition 1.1.20(1). 

(1)(2) If        is pure , then       is pure t-closed then by the same proof  of 

(Theorem 4.2.9(12)), condition (2) hold. □ 

Proposition (4.6.10): Let   be a strongly purely t-semisimple such that complement 

of       is pure. Then   is strongly purely    -type. 

Proof: Since complement       is pure, then by Theorem 3.4.6(132),  

            , where    is nonsingular fully invariant submodule of    and 

purely fully stable, purely semisimple. It is enough to show that    is strongly 

purely    -condition. Let   be a pure submodule of   . Since    is purely 

semisimple,       and hence       . So that  is a complement of   in   . 

But    is fully stable, so   is stable in    , hence it is fully invariant. Thus   has a 

complement   in    such that   is a fully invariant direct summand. Therefore    

is strongly purely    -condition and so by Theorem 4.6.9(21),   is strongly 

purely    -type. □ 

Theorem (4.6.11): Let        , where         and    is fully invariant 

in  . The following statements are equivalent. 

(1)    is strongly purely    -type module; 

(2) For every pure submodule   of   , there exists a fully invariant direct 

summand    of   such that      and         ; 

(3) For every pure t-closed submodule   of   , there exists a fully invariant direct 

summand   of   such that      and          ; 

(4) For every pure t-closed submodule   of   , there exists a fully invariant 

direct summand of   such that      and         . 
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Proof: (1)(2) Let   be a pure submodule of   . By Theorem 4.6.9(14), there 

exists a fully invariant direct summand    of    such that           . Hence 

           which implies                      , 

              ,  but        implies            and     . 

Also         is fully invariant in   by Lemma 3.5.4(2). Hence   is a fully 

invariant direct summand in  . Thus condition (2)  hold. 

(2) (3) It is obvious. 

(3)(4) Let   be a pure t-closed submodule of    . Then by condition (3), there 

exists a fully invariant direct summand of   such that      and         . 

Hence by Proposition 1.1.17               . But  

                   . As   is t-closed in   ,          and as    

 ,        . Thus                   . 

(4)(1) Let   be a pure t-closed submodule of   . By condition (4), there exists a 

fully invariant direct summand   of   such that      and         . As   is 

a fully invariant submodule of  ,                , where      is fully 

invariant in   ,         which is fully invariant in  . Thus   

         . As     , hence          ,           

                   so that                by Theorem 

4.6.9(41)    is strongly purely    -type module. □ 

Theorem (4.6.12): Let   be a strongly purely    -type,   is a fully invariant 

submodule direct summand of   . Then (1)   is strongly purely    -type (provided 

that every t-closure of pure submodule is pure) and  

(2)
 

 
 is strongly purely    (provided   is self-projective). 

Proof: (1) Let   be a pure submodule of  . Since   is pure in  (because     ), 

then   is pure in  , so there exists   (t-closure of  );         and    is t-

closed by [20, Lemma 2.3]. By hypothesis    is pure in  . Thus    is pure t-
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closed. Since   is strongly purely    -type, there exists a fully invariant direct 

summand    of   such that          , so          . As        , 

then            .Hence          and             . It follows 

that              . Beside this      implies        for some 

     and since   is fully invariant submodule of  ,               

where     is fully invariant in  ,      is fully invariant  in   , and       . 

Now     is fully invariant in   and   is fully invariant in  . So     is fully 

invariant in  .     is a direct summand of   and      so        and so 

by Lemma 1.2.6(     is a fully invariant  submodule in  . 

(2)To prove 
 

 
 is strongly purely    -type. Let 

 

 
  be a pure t-closed of  

 

 
. As 

 

 
 is t-

closed, then   is t-closed in   and as 
 

 
 is pure in 

 

 
 and   is pure in  ,we have   is 

pure in  . Since   is strongly purely    -type, there exists a fully invariant direct 

summand   of   such that         . Let        for some     , and 

since    is fully invariant in  ,                wher      is fully 

invariant in  ,      is fully invariant in    and       . Now  
 

 
 

    

            
 

 

   
 

  

    
 

   

 
 

    

 
, then 

   

 
   

 
. As         are fully 

invariant in  , then     is fully invariant in   and so 
   

 
 is fully invariant in 

 

 
 

(since   is self-projective). Moreover, we can show that 
 

 
 

   

 
    

 

 
. Since 

         and   is closed in   (because     . Hence 
   

 
    

 

 
 by [23, 

Proposition 1.4, P.18]. It follows that 
 

 
 

   

 
    

 

 
. Thus 

 

 
 is a strongly purely 

   -type module by Theorem 4.6.9(51). □ 
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صالمستخل

كتعمٌم  t-, الباحثان اشكاري وهاكاري قدما مفهوم المقاسات شبه البسٌطة من النمط 3102فً سنة  

 A≤Mاذا كان لكل  t-شبه بسٌط من النمط Rعلى   Mلمفهوم المقاسات شبه البسٌطة , حٌث ٌقال لمودٌول 

. فً الحقٌقة ان المفهوم ) واسع من  B( فً  t-)واسع من النمط Aبحٌث ان  Mفً  Bٌوجد مركبة مباشرة 

 Rعلى  Mمن مقاس  A, وقد اطلقا على مقاس جزئً  3100( قدُم من قبل اشكاري وهاكاري سنة t-النمط

,  C≤Z2(M)ٌؤدي الى  C≤M  ,A C≤Z2(M)( اذا كان لكل A≤tesM) وتكتب  Mفً  t-واسعا من النمط

 . Mهو المقاس الجزئً المنفرد الثانً فً  Z2(M)حٌث 

 هذه الاطروحة مخصصة لتقدٌم ماٌلً:

 توسٌع مفهوم المقاسات شبه البسٌطة من النمط-t الى المقاسات شبه البسٌطة من النمط-t . القوٌة 

  البسٌطة من النمطتعمٌم المفهومان المقاسات شبه-t والمقاسات شبه البسٌطة من النمط ,-t  القوٌة

النقٌة , المقاسات  t-, المقاسات شبه البسٌطة من النمط FI-t-الى المقاسات شبه البسٌطة من النمط

 النقٌة القوٌة . t-شبه البسٌطة من النمط

 البسٌطة من لنمط تقدٌم اصناف مختلفة من المقاسات ذات علاقة مع انواع من المقاسات شبه-t , فمثلا

 التً تحققالقوٌة , المقاسات  T11القوي , المقاسات من النوع  C11 التً تحقق الشرط المقاسات

القوي FI-T11  (FI-T11  , )القوي( , المقاسات من النوع  FI-C11الشرط  التً تحقق)  FI-C11الشرط 

النقً القوي ( والمقاسات من النوع  C11الشرط  التً تحققالنقً ) C11الشرط  التً تحققالمقاسات 

T11  ( ًالنقT11 . ) النقً القوي 
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جاهعـة بغداد وهي جزء هن  -/ ابن الهيثنللعلىم الصرفةهقدهة إلــى كلية التربية 
 فــي علىم الرياضيــــات فلسفة  هتطلبات نيـل درجة الدكتىراه
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