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ABSTRACT

The purpose of this thesis is to study the properties of best
approximations set and to apply some fixed\ coincidence point
theorems to obtain invariant best approximations in modular
spaces. The idea of obtaining these results was included in four
pivots. The first one is to reform some concepts in the setting of
modular spaces, such as, strong\ weak convergence,
compactness, duality of a modular space, ... and then prove
some needed relative statements. The second is to prove some
Brosowski-Minardus type theorems on an invariant best
approximation. On the other hand, the third pivot is to apply a
common fixed\ coincidence point theorems and using property
of w —convex structure to get other results. Finally, the forth is
to prove the existence of such results with respect to mappings
of single\ set-valued non-expansive mappings,
(P, Q) —nonexpansive mappings and generalized (P, @)-non-

expansive mappings.
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Introduction

The concept of modular spaces, as a generalization of
metric spaces, was given by Nakano [31] in 1950. Musielak and
Ortiz [30] in 1959 introduced a generalization of the classical
function space L . Khamsi et al [23] proved the fixed point
results in modular function space. There are literature on the
fixed point theory in modular spaces, such as [1], [5], [8], [12],
[14], [18], [23], [27], [29], [44] and the paper referenced there.
Pata [7] proved banach ‘s contraction principle in modular
spaces.

Paknazar et al. [7] used pata idea to prove another fixed point
theorem and prepared an application of their results to existence
of solution of megral equations in some of these spaces.
Recently, S.S. Abed [2] introduced the concept of best
approximation In modular spaces

The classical approximation problem is the best approximation
to (a,b), along the straight line passing through the origin can be
found by droping a perpendicular from (a,b) to the line.

Significant questions concerning y includes:
- How may y be found?

- Can be characterized?

- Isitunique?

- Does A = M?

The early problems of best approximation theory like
Kyfan's theorem and Prolla's theorem depend on convexity




properties which involve introducing a mapping with some
hypothesis. This thesis deals with Brosowski-Meinardus type
[38] which guarantees the existence of the invariant best
approximation.

Fixed point theorems have been used at many places in
approximation theory[15]. One of them is while existence of
best approximation is proved. Later on, number of results were
developed using fixed point theorem to prove the existence of
best approximation. However, the result given by singh [36] was
the fundamental result in this direction. An excellent reference
can be seen in [39]. Another celebrated result was due to Jungch
[20] also in fact extended the result of Hicks and Humpheries
[17], Jungch and Sessa [21]. Latif [28], Khan [24], Singh [38]
were some other authors who worked in this direction under
different conditions following the line made by Singh [38].

In [17], Singh relaxed the condition of linearity of mapping
and convexity of set but later, he observed that only the non-
expansiveness is necessary to prove best approximation while
applying fixed point theorem. Similary, Hicks and Humpheries
said in their paper [17] that the element for the set of best
approximation is not necessarily in the interior of the set.

In other papers, Jungch and Sessa [21] further weakend the
hypothesis of carbon [10] and Singh [38] by replacing the
condition of linearity by some properties to prove the existence
of best approximation in a normed linear space. However, they
used weak continuity of the mapping for such purpose in the
second result. Recently, Latif [28] has removed the weak
continuity from the hypothesis of Jungch and Sessa [21] and
obtained the result in normed space.

Throughout this thesis, we seek about an invariant best
approximation in the setting of normed spaces [35].




The existence of invariant best approximation in the setting of
modular spaces. This thesis contains five chapters. In chapter
zero we present some basic definitions and facts about vector
spaces and topological vector spaces. In chapter one, we recall
the notion of modular spaces and some related definitions, facts
and examples. In chapter two, we prove the existence of
invariant best approximation of ky-fan type with respect to set
valued mappings. Also, prove some other results for non-
expansive mappings in complete modular spaces. On the other
hand, chapter three, is devoted to study common best
approximation for non-commuting mappings depending on star-
shaped and affineness conditions and finally, chapter four is
devoted to present conclusions and future work.




CHAPTER

MODULAR SPACES

1-0 Introduction

This chapter contains four sections. Section one is devoted to
recall the definition of a modular function on a linear spaces and some
known definitions and facts.

In Section two there are some concepts of convergence sequences
(strong and weak), compactness, approximative compactness, ... . Also,
includes the proof of some important results, such as, uniqueness of limit
for weak convergent sequences, relation between strong and weak
convergence and other results. Section three includes new considerations
about the dual of modular spaces and linear functionals. In section four,

there are some types of set-valued mappings and some related concepts.

——
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1-1Basic Definitions and Examples of Modular

Spaces

We start with the following:
Definition (1.1.1): [11]

Let M be a linear space over F(= R ). A function y:M — [0, o]

is called Modular if:

. y(v) =0=v=0;VvE M.
Ii. y(av) = ay(v) for a €F with |a| =1,V v € M;
iii.  ylav+ pu) <y@w)+yu) < a,Bf =0,Vv,u € M.

Definition (1.1.3): [11]
A modular y defines a corresponding modular space, i.e, the

space M, given by

M, = {v € M:y(av) - 0 whenever a - 0}.

Definition (1.1.2): [11]

If (iii) in definition modular space M,, replaced by
y(av + Bu) < ay(w)+By(u), fora,f =0, a + g =1, forall v,

u €M, then M modular y is called convex modular.

Remark (1.1.1): [11]
By condition (iii) above, if u= 0 then y(av)=y (% Bv) < y(Bv), for

all a,in F, 0 < a < B.this shows that y is increasing function.




Remark (1.1.2): [2]

i. A Modular space M, is a metric space with

y(v—u) = D,(v,A),forall, €M.

Ii. Any Modular space is a topological linear space, moreover, it is

Hausdorff space. For the definition of topological linear space.
Definition (1.1.4): [11]
The y-open ball, B, (u)centered at u € M, with radius r > 0 as
B.(u) = {v EM,;y(v—u)< r}.
The class of all y-balls in a modular space M, generates a topology

which makes M, Hausdorff topological linear space. Every y-ball is

convex set, therefore every modular space locally convex Hausdorff
topological linear space [2].
Definition (1.1.5): [11]

B c M, is said to be y- bounded if daim,(B) < o, where

daim,(B) = Sup {y(v —u); v,u € B}is the y- diameter of B.
Example (1.1.1):

LetM, = R?> withy(v,u) = |v| + |u|l (| |is absolute value ), for

Any pair (v — u) in M,, then M,, is modular space since it satisfies the

conditions:

(i) ywv—u)=0& |v|+|lul=0=v=0,u =0

——
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(i)  y(ew-w)=y@v- aw) = lav| + |aul
= la|(lv] + [u]) ...|Ja| =1
= |v| + [u]

=y(v—-uw

(iii) y(aw—w)+ B —e)) =y(av + b — au — fe)
= |lav + Bb| + |au + Be|
< |v| + |ul + [b] + [e|

=y(w—-uw) +yb—e).
Then M,, = M the modular space with respect to y.

Example: [1.1.7]

As a classical example we mention to the Orlicz’ modular
defined for every measurable real function f by the formula

y(F)=[o ¢ (If (t)]) d ),

where z¢ denotes the Lebesgue's measure in R and ¢ : R — [0, ) is

continuous. We also assume that ¢(u) =0 if and only if u=0and
() >0 ast — oo,

Here, we omit the details about this space because it is not within the

thesis objectives.

——
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1.2 Convergences in Modular Spaces

In the following we recall some concept, facts of convergence in a

modular space M, :
Definition (1.2.1): [11]

A sequence (v,) © M, is said to be y-convergent (or strongly y —

convergent) to v € M, and write v, 5 v ify(v, —v) = 0asn- oo.
Definition (1.2.2): [11]

A sequence (v,,) is called y- Cauchy whenever y(v,, — v,,)— 0

as, m,n — oo
Definition (1.2.3): [11]

M, is called y- complete if any y— Cauchy sequence in M,, is y- convergent.
Definition (1.2.4): [11]

A subset B of M, is called y- closed if for any sequence (v,)

subset of B y —convergentto v € M,,, implies that € B.

Definition (1.2.5): [11]

A y- closed subset B of M, is called y— compact if any sequence

(v,,) asubset of B has a y- convergent subsequence.

Definition (1.2.6)

Let be M, a modular space. Then a mapping S: M,, - M,, is compact if
the closure of A is compact whenever A is bunded subset of M,,

——
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Definition (1.2.7):

Let M, be a modular linear space, and A a subset of M,,. We say that 4 is
an approximatively compact if for every ve M,,. and every sequence (v,,)
in A with lim,,,, y(v — v,) = D, (v, 4), there exists a subsequence (vy,)

converges to an element of A.

Since a modular space is metric space then we have:

Proposition (1.2.1):

Every convergent sequence in modular space has a unique limit.

Proof: Itis clear.

1.3 Dual of a modular space

Definition (1.3.1):

let P be a linear functional with domain in a modular space M, and

range in the scalar field K P:D(M, ) —» K, P is bounded linear functional
such that for all v € D(P), y(Pv) < cy(v). The set of all bounded linear

functional on M,,, M;, Is linear space with point-wise operations. In the

——
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following, we reform some concepts about dual space in the setting of

modular spaces, we being with following:

Proposition (1.3.1):

Let P € M,, define y:M, - R* 3 y(P) =sup{y(Pv):y(v) =

1} then
I. y(aP) = y(P),for a« € Kwith |a]| =1
ii.  y(aP+pQ) <y(/P)+vyQ)
iii. y(P)=0iffP =0.

Proof:

For (i) y(aP) = sup {y(aPv)} = sup{y(Pv)} = y(P).

For (ii) y(aP + BQ) = sup{y(aPv + BQv)}

< sup{y(Pv) + y(Qv)}
= sup{y(Pv)} + sup{ y(Qv)}
=y(P) +v(Q)
For(iii),

y(P) = 0iff sup {y(Pv) : y(v) = 1} iff y(Pv) = 0 for allv iff P = 0.

10
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A modular 7y defines a corresponding modular spac, i.e the

spaceM,, given by

M;, = {v € M:y(aP) - 0 whenever a - 0}

Theorem (1.3.1):
M;, Is complete modular space.
Proof:

We consider an arbitrary Cauchy sequence (S,,) in M;, and show that

(S,,) converges to a Se M;, Since (S,,) is Cauchy, for every € > 0 there

is an L such that
yY(S, — Sw) <€, (n> L),
For any v € M,, and n> L , this implies that
1S, v — Spvl = 1S — Svl < v (S, — Spy(v) <ey(w). ... (2.1)

Now, for any fixed point v and given €’ we may choose €=¢€,, so that

€, y(v) < €.

11
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Then from (2.1), we have |S,v — S,,v| <€’ and (S,,v) is Cauchy in K.
By completeness of K, (S,,v) converges, say, S,,v — r. Clearly, the limit

r € K depends on the choice of v € M,,.

This defines a functional S: M, - K where r = Sv .The functional S is
linear since lim,_,e Sy (av + Bz) = lim,_,,(aS,v + £S,,z) =
alim,_,q S,v + Blim, . S,z. We prove that S is bounded and S,, -5,

thatis y(S,, —S) — 0.

Since (2.1) holds for every m> L and S,,v —» S, we may let m— oo,

Using the continuity of the modular, then for every n> L and all v € M,,.
|S,,v —Sv| = |S,v— lim S,,v
m—0oo
= lim |S,,v — S, V|
m—oo

< ey(v) ...(2.2)

This shows that (S,, — S) with n> L is a bounded linear functional. Since
S, is bounded, S=S5,—(S,—S) is bounded, that is, Se M,.
Furthermore, if in (2.2) we take the supremum over all v of modular 1,

we obtain
v(S, —S) <€ n>L.

Hence y(S,, —S) — 0. This completes proof.

12
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Definition (1.3.2):

A sequence (v,) in a modular space M, is said to be weakly

convergent if there isan v € M,,  such that for every P eM]',

lim,, o y(Pv, — Pv) =0 This denoted by v, 5.

Proposition (1.3.2):
In a modular space M,,, every convergent sequence is weakly convergent.

Proof:

By definition, v, » v means y(v,, — v) — 0 and implies that for every

PE My, |P(v,) — P(v)| =|P(v, —v)| <y@P)y(v, —v) - 0. This
w
shows that v, = v.

Note that, the converse of proposition (1.3.2) is not
necessary true. To showing this recall the usual case in a normed
space.In the following some other needed properties of weak convergence

are given:

13
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Proposition (1.3.3):

Let (v,) be weakly convergent sequence in a modular space M,, say

w
v, = v Then:

i. The weak limit v of (v,,) is unique.

ii. Every subsequence of (v,) converges weakly to v.

Proof:

For (i), suppose that v, % v aswell as Uy % w Then P(v,) » P(v)
as well as P(v,,) — P(u). Since (P(vn)) is a sequence of numbers, its
limit is unique. Hence P(v) = P(u), that is, for every Pe M',,_We have
P(v) — P(u) = P(v—u) = 0.This implies v—u = 0 and shows that
the weak limit is unique. Part (ii) follows from the fact that (P(v,)) is a
convergent sequence of numbers. So that every subsequence of (P(vn))

converges and has same limit as the sequence.

Definition (1.3.3):
A a subset of a modular space M, is said to be weakly compact if every sequence in M,, has

a weak convergent subsequence

14

——
| S—



1.4 SomeTypes of Mappings of Modular Spaces
Let M, and N, be two modular space, we state the following:
Definition (1.4.1):
Let M, be a modular space and 2" is the class of all subset of M,

Then S: M, » 2Mr is called set-valued mapping if v v e M,, Svc M,.

Definition (1.4.2):

A set-valued mapping S is upper semi continuous (shortly,

u.s.c.) ifand only if the set {v € M,: S(v) N B # @} is closed for each

closed subset B of N,.Sv is a closed subset M, X N,.

Definition (1.4.3):

Let S be a set- valued mapping on M, and v € M,,, v is called a fixed

pointof S if v € Sv.

(When S is single valued, v is fixed point of S if v = Sv, we denote to the
of all fixed point of S by F(S).

Definition (1.4.4)

A subset A of the modular spaceM,, is an invariant under the mapping
S:M, — M,, under the mapping whenu € A = Su € A.

15
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Definition (1.4.5): [34]

Let S be a set-valued mapping on M, . A sequence (vy,) of points of

M, is said to be an iteration of S at v if v, € Sv,,_4, for each

n=1,2.... (when S is single valued the iterative sequence of S at v is

v, =Sv,_,,foreachn=1,2......).

Definition (1.4.6): [26]

Let M, be a modular space and A subset of M,,, S: A — A, Sis
called contraction mapping if there is a fixedh € (0,1) forall v, uin M

ySv — Su) < h(v — u)
And if h = 1 then S is called a non—expansive mapping.

Proved Banach’s contriction principle in modular metric space, here we

reform it in modular spaces [25].

Theorem (1.4.1): [26]

Let M, be a complete modular space and S: M, — M, such that
y(Sv—5Su) < h(v — u), forall v, u € M, where h € (0,1). Suppose
that 3 v € M, and there is some v€ A3 y(Sv.) < o. Then, S has

unique fixed point z € M,, and the sequence(S;f,) converges to z.

16
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CHAPTER

BEST APPROXIMATIONS IN
MODULAR SPACES

2-0 Introduction

In this chapter there are three sections, in section one the concept of
best approximation of a point v by a non-empty subset A of a modular
space M, is introduced . And study it’s existence. The existence of such
element or not characterize three sets: proximinal, semi-Chebysev and
Chebysev. Examples for these types and some conditions for existence of
proximinal and Chebysev sets are given. Section two includes a studying
the relation between best approximation and fixed point theorems, and
proving a version of using Himmelberg’s fixed point theorem of set-
valued mappings, and then use it to prove that
Ky Fan’s theorem in best approximation for set-valued mappings, we
present Schauder’s fixed point theorem for continuous mapping defined
on a compact subset of a moduler space as a corollary. We illustrate an
example for utility of compactness in Ky Fan’s theorem. In section three,
the definition of an approximatively compact is reformed in modular
spaces and some it’s properties are given. This concept has an efficacious

in many results about best approximation.

17
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2.1 Properties of the Best Approximations Set of

Modular Spaces

Definition (2.1.1): [2]

Let M, be a modular space and @ # Ac M,,, an element Uu€ A is

called the best approximation for v in M, if
yw—u) = D,((w,4)) = inf {y(v—-w:u € A}

We shall denote by Pa(v) or Pa the set of all elements of best
approximation of v by P(v), that is P4 (v) ={u€A:y(v—u) =
D)/( (U,A))}

Proposition (2.1.1):

Let M, be a modular space and @ # Ac M, andy: M — [0,00],

then, P4(v) is closed and bounded set.

Proof:

Suppose that u is an accumulation point of P4(v) and D,

(u,P(¥))=0

y(v —uw) <D, (v,P(v)) +D,(u, P(v))
=D,(v,P(v))
= inf{y(v — 2): zeA}

=D,(v,A4)

18
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SinceD,(v,A) <y(v —u),thus y(w —u)=D,(v,A) andu € P,(v),

which means Pa(v) is closed.

P, (v) is bounded since Py (v) < o and, P,(v) containing in B,.(u),
wherer = d(v,r) + 1.

Proposition (2.1.2):

Let M, be a modular space and @ # A c M,. If y: M -

[0, 0] is convex Then Pa(v) is convex set.
Proof:

Let0 < A < 1anduy, u; € Pa(v) then
y(u-v)=D,(v,A)andy(u,- v) =D, (v,A)
Ay(ui-v) = 1 D,(v,A)

A-Dyu—v) = A-1D, (v,A)

Yy (A - Av) = 21D, w,A) andy (1-Du -1 -Dv = 1-1) D,
(v,A4)

Yy Q- v) + y (- u-1—-Dv)= D,(v,A)

Buty (Aus- Av +(1-2) w, - (1-12)) <y(Au- )+ vy (1 —HDu,
-1-MDv)=D,(v,4) ...(2.1)

Now, since u; u, € Pa(v) < A, thenuy, u, € A and A is convex set

So Au; + (1 — Duy, € A therefore

D,wA<y(Qu+1-Du-v) ...(2.2)

19
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By (2.1), (2.2), we have y (Au; + (1 — Duz ) = D, (v, A)

Hence Au 1+ (1 — Du, € Pa(v). then Pa(v) is convex set.

Definition (2.1.2): [2]

Let M, be a modular space and @ # A c M,... A is called

proximinal if for all v € M,,, there exist a u€ A such that
y(v —u) =D, (v, A).
Definition (2.1.3): [2]

Let M, be a modular space and @ # A c M,.. A is called semi-

chebysev if there most one ue A satisfying
yow—uw)=D,(v,A),VVvEM,
Definition (2.1.4): [2]

Let M, be a modular space and @ # A < M,,. A is called Chebysev

if v v € M, there is an unique element u€ A such that
y (v - u) = D'y(le)
Example (2.1.1):

Consider M, = R?, where v= (v1 , v, ). Setting= (1,1), and

u = (1,0), we have

yw—au)=D,(1—-a,1)

20
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The value, will be the minimum if and only if « = 1. Thus the unique
best approximation of v by A: the closed linear subspace spanned by w.

And is Chebysev set.

Example (2.1.2):

Consider M, = R’ with y(v) = max {| v,

.| v2| } where v= (v,
vy ). Setting v=(1,1),u= (1,0), we have y(v —au) = D, (1 — a,1) =
max {|1 — a,1|}.

There exists infinitely many best approximation of v by A: The closed
linear subspace spanned by , thatis P(v) = {fau =0 < a <2}. And A is

proximinal set.

Proposition (2.1.2): [32]

A Hausdorff topological vector space is locally compact if and only

if A is finite dimensional.

Proposition (2.1.3):

If M, is modular space and A is a finite dimensional subspace of M,,

then is A proximinal subspace.

21
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Proof:

Let A be a finite dimensional subspace of a modular linear
space M,, and € M,. The space Q= {v} U A is finite dimensional. By

proposition (2.1.2) Q is locally compact.

Clearly, D, (v,A) <y(v).Ife€ Aandy(v —e) < y(v)

=y -yl sylw-e) <y

= ly(w) -yl <yw)

= -y <y() —y(e) <y()

= —y() <y(w) —y(e)

= y(e) <2y(v)

Hance, to find e € A such that (v — e) = D, (v, A), let

K={ue€e M: y(u) < 2y(v)}. Since, by the previous observation, K is
compact set, then there exist e€ K such that, therefore A is proximinal

set.
Definition (2.1.5):

Let M, be a modular space. M, is said to be strictly moduler space

wheny(v+u) =yw) +y(u) & u=av (a = 0).
Proposition (2.1.4):

If M, is a strictly moduler space and A is a finite dimensional

subspace of M, then A is Chebysev set.
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Proof:

Since M, is modular space, and A is finite dimensional subspace of
M, then by proposition (2.1.3) A is proximinal set, so there is a linear m
€ A such that

y(v—m) =D, (v,A4)
Ifve A= 0=D,(v,A) =y(v —m)
= 0=y(w—m)
BPrv=m
F=m is unique and then A is Chebysev.
We consider if v & A

If {vs,....... , Un } is a base for A, suppose that, and with y(v —m)

Since M,, is strictly moduler space, then for some v= 0
SincevgdA=> v =1

Since v,

........

and thus m= z = A is Chebysev.

2.2 Ky Fan Type of Invariant Approximation

Now we give the following concept in modular space:
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Definition (2.2.1):

Let M, be a modular space and @ # A c M,.. Ais called almost
convex if for any € > 0, B<(0) and any finite set of points of A us,
Upyerrnn.n. ,U, € Athere existvy,v; ... v, M, such that wvi—we€

B<(0)for all i, and co{v,, v, ... v,} € A.

Theorem (2.2.1):

Let @ # A be a compact subset of modular space M, with modular
function yand S: A - CB(A) bean (u.s.c.) mapping (CB(A)is the
set of all non —empty closed and bounded subsets of A) with (v) is convex

for all v in some dense almost convex of A. Then S has a fixed point.
Proof:

For each € >0, let Fe={v € A: € S(v)+ B.(0) }

To prove the existence fixed point of S it is sufficient to show N F¢ # @.
Since for anye > § ,Fc O Fj, it is sufficient, by the compactness of A, to
show that each F¢, is closed and nonempty. So let € > 0. Define the set-

valued mappings
Se 1 A-> 24, S, (v)=(S+B.(0))nA
and R.: A- 24, R.(v) = (v +B.(0)) n A, for ve A

Then S.= R, oS, Re is a closed subset of AXA since
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R, = {(v,u) EAX A |u-v € B.(0)} and since B.(0) is closed subset of
Ax A and A is compact is follows that both Re and S are (u.s.c.). Hence

Seis (u.s.c.).and S, is closed subset of AX A.
Let A be the diagonal in Ax A. Then

F¢ is the projection of the compact set A N Se onto the domain of S,. It
follows that F¢ is closed. Now choose zj, ..., z,, € K such that K c{
B.(0): 1<i<m}, and C= co{zy,..,zy,}cK. DefineH.cCx C byH_=
S, N(CxC).Foreachve C, H.(v) is closed, convex (since Cc A) and
nonempty (since S.+ Be contain some z;). Moreover, H.is a closed subset
of Cx C (since S, is closed). Thus H, has a fixed point by Kakutani's
fixed point theorem [18], say, u. And u belongs to Fc, which is not

empty.
Theorem (2.2.2):

Let @ # A convex subset of complete modular space M, with
modular function. Let S:A — CB(A) an (u.s.c.) such that S(v) is convex
for all ve A and S(A) is contained in some compact subset C of A. Then

S has fixed point.
Proof:

Let B =coC and K= B. Then K is compact, BcA and S(B) c C c
B. Let H=SNB X B. Then H is relatively closed subset of B X B.
Consider H c K x K with closure relative to K x K. His a set-valued
mapping from KtoK, i.e., H 1(K) =K sinceH"*(K) closed and
containsB. Moreover H(K) c C c B and = H n (B X B); so H(v) =H(v)
= S(v) for all ve B. Thus by Theorem (2.2.1) H has fixed point say v in
K.Butv € H(v) c C c B.So v € S(v). Hence S has fixed point.
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Definition (2.2.2):

Let M, be a modular space with modular function y and @ # A c M,
for P, (v)= {u€d:y(v—u) =D,(v,A)} is the set of all best
approximation of v by A and the set-valued mapping P: M, —24 is said to
the metric projection on M,,.

Theorem (2.2.3):

Let A be a compact convex subset of a convex modular M,, and

P:A- M, be a continuous function, then there exist a u€ A such that

y(u — P(u)) =D, (P(u),A) (1.4)
Proof:

Let i: A—R" be defined i(v) = in f{y(u — v),u € A}. Since P is
continuous on A for each v € A, then there exist a u € A such that

i(v) = y(u — P(v))(because4 is compact). Define a set valued mapping

S:A-24by: S(v) = {u € A:i(v) = y(u — P(v))} CA+0
(as above ). We will prove that

I.  S(v) isclosed set;
i.  S(v) is convex set;
. Sis (u.s.c.).
For (i), suppose that z is an accumulation point of S(v), then there exists

a sequence (z,)< S(v)such that z, — z. And we have

y(z=P®) = y(limpe 2y = P(v)) = limy e (2, = P(V)) = i(v).

Thus € S(v), and then S(v) is closed set.
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For (ii), suppose that 0< A < 1 and uy, u, € S(v)cA. Since A is convex,
then

Aug+(1 — Dw€ Aand D, (v, 4) < y(ust+(1 — Dux—v)
Now,
yQu; + A —=Du, —v) <Ay(uyy —v) + (1 = Dy(u, —v)
=i(v)
=y(Au; + (1 — Du, —v)
And this prove that S(v) is convex set.

For (iii), let C be a closed subset of A, we will prove that S™1(C) =
{u€eA:S(w) n C # @} is closed subset C of M, . Suppose that v, €

Abe an accumulation pointS~! (C), then there exists a net (v,) €
S~1(C) converge to v,. This implies that there is a net u, € S(v,) N
C. Thatis, u, € C and ug €S(W,) s0, ¥(uq — P(vy)) = i(v,) for
each a. Since A is compact and C is closed subset of, then C is compact,

so there isauy € C and a subnet (ug) of(u,). Hence, ug € S(v,)

=Y (ug - P(va)) = i(v), for each B.

=y(uo — P(vy)) = i(vy), Which means that uy € Svy N C. This
implies that vy € S71(C). Thus S is (u.s.c.) set-valued mapping.
Since A is compact and S(A4) c A, then S(A) is contained in compact set.

Therefor by theorem (2.2.2) there is a uy € A such that uy € Su, that is

¥(uo — P(ug)) = d(P(up), 4).

To illustrate the utility of compactness condition in Theorem (2.2.3), we

have the following:
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Example (2.2.1):

Consider the unit ball B;(0)in modular space [? with convex modular

function y(x) = X 7Ix;|?, where x = (xq,%,,...) and | [is absolute
valued. B,.(0)is closed and bounded but non-compact with topology

induced by y. For each x in B,.(0), define the continuous function f by

FG) = (1= () x50,

Clearly, y(f(x)) =1

Suppose that f has a fixed point z, so, y(f(2)) = y(z) = 1 this implies
that z = 0,i.e.,y(z) = 0. Which is a contradiction.

2.3 Approximately Compactness and Best Approximation

We begin with the following results:

Proposition (2.3.1):

If A is compact subset of a modular space M,, then A is an

approximately compact.
Proof:

Letv eM,, and (v,) be a sequence in A with

limy(v —v,) = D,(v,A)
n—->0o
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Since A is compact set, then by Definition (1.2.5) there is a subsequence
(vy,) of converging to (v,) an element in A, which proved the

proposition.

The converse of the above proposition is not true. To explain this fact, we

need the following definition and then show a general statement.

Definition (2.3.5):
A modular space M, is called uniformly convex if for any
e> 0, there exists a d(e) > 0, such that if

y(w)=y()=1and y(v — u)=g, theny (% (v+ u)) <1-95.

Example (2.3.1)Consider the unit closed ball A = {v € M,;y(v) <

r}.in uniformly convex complete modular space I?(R) with convex

modular function y(x) = /X7 [x;|? , where x = (x1,x,,...) and | [is
absolute valued on real numbers R. Ais not compact with topology

induced by y butapproximativley compact
Proposition (2.3.2):

A closed convex set A in an uniformly convex modular space M,

IS an approximativley compact.
Proof:

Let ueM, and (u,) <A such that y(u, —u)—>D,(u, A). Then

sup y(u,,)<oo. Since A is closed and convex, then there exists a u, €A and
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a sequence (u,) < A4 such that u,—u,. Since lim,_ . y(u, —u) = u, —

u, then uy, —u - u, — u.So

YU, —u) < lim infy(u, —u) = D, (u,4) < y(u, —u)
1—>o00
that is y(u, — u)| = D) (u, A). By definition of <u,>, we get u, —u -
D, (u,A) = y(u, — u). Since M, is an uniformly convex modular space,

then we get up,—u—->u,—u, Then u, - u€Ad, then A is an

approximately compact.
Example (2.3.2):

Consider the unit closed ball A = {v EM,;y(v) < r}. In uniformly

convex complete convex modular space [?(R) with convex modular

function y(x) = X9 |x;1%, where x = (x1,x,,..) and | |is absolute
valued on real numbers R. A is not compact with topology induced by y

but approximately compact.
Theorem (2.3.1):

If A is an approximatively compact subset of modular space M,,,

then A is a proximal and closed.
Proof:
Let v€ M,.By definition of D, (v, A), from the set of the numbers

r(v—u): ued}

we can extract a sequence (y (v — u,,)) such that

lirnn—mo )’(77 - un) = Dy(v:A);
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Since A is an approximatively compact, then we can extract from (u,,) a
subsequence converging to a point u, € A. We then have by the

continuity of y
yw—w) =y (v-limu,) =limy(v - u,) = D, (v,4)

When u, € P,(v), which complete the proof of proximinality. Finally, let

v is an accumulation point of A, then there exist a ue A such that
)/(17 _u) = Dy(v:A) = O;

Sov € A4,and A is closed set.e

Conversely, if A is proximal set, then it is not necessary that A is an
approximatively compact. To illustrate this we give the following

example.
Example (2.3.3):

Consider M, as in Example (2.3.1) and let A be the sequence defined by
uw; =0and u, =(1,5,0,..,0,10, ...

A is a proximal set (since for every veM,, the sequence of non-
negative numbers (y(v — u,)) is convergent, whence infy(v — u,)=

D, (v, A4)),

but it is not approximately compact (since for v = (1,0,0,...) eM,,

we have
lim, 0 y(v —uy,) = D, (v,4),

But <u,> has no convergent subsequence, by virtue of the

relation y (u; —w;) # 0 (fori=Lj).
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Theorem (2.3.2):

Let® +A be approximatively compact subset modular linear space

M,,. 1f y(u) < oo, for each u. Then P, maps M, into CB(A), is u.s.c.

Proof:

By virtue of Theorem (2.3.1), A is proximal set, hence P,(v) is non
- empty for each v in M,. By [proposition 2.1.1], P4(v) is closed and
bounded thus P,(v) maps M into CB(A).

Now, let K be an arbitrary closed subset of A. We show that the set
B={veM,.: P,(v)NK * 0}

Is closed set, which will complete the proof ;

Let (v,,) be a sequence in B, converging to an element ve M,,.

Since (v,)<S B, then there exists a sequence (u,) € A such that u, €
P,(v,) NK,(n=1,2,....)

By u, € P,(v,), (n = 1,2, ....), we have
Dy (0, Ay (O = ) 1 1im Dy (v, A) = lim y (v = )
PD, (v, A) = limy,_,, y(v — uy,)
= Jim y(v v + v, — )
<lim,,, vy —v,) +lim,_ .y, —u,)

=0+ lim y(v —u,)
n—oo
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= D,(v,A)

Thus  lim,,,y(v —u,) = D,(v,A).Consequently, being  an
approximatively compact, then there exists a subsequence (u,,) of (u,)
converging to an element u,€A, which implies that there exists a

subsequence (vy,, ) of(vy,).
Now, since u, €4, then
D,(v, A) <y(v — u,)
<y(v— U, + iy, — )
<y(v—up,) +v(un, —u.)
<y(v—vn, + v, —Un, )+ ¥(un, —u.)
<y(v—vn,) +v(Vn, —un,) +v(un, — u.)
= y(v—vn,) + Dy(vn,, A) + v (uy, —u.)
= D, (v, ) <y (v — )

For h—w, y(v —u.,) =D, (v, A), that isu,eP,(v). On the other hand,
since K is a closed and (u,,)c M, lim,_,u,, =u, we have

u,€P,(v) N K, whence x B, which complete the proof.

Theorem (2.3.3):

Let @ +#A be approximatively compact subset of a modular space

M,, and P, : M, - 24 be the metric projection of M, onto A. Then

P,(C)=U {P,(v) : v € C}iscompact for any compact subset C of M.
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Proof:

Let (u,,) be a sequence in P,(C). Then there is a sequenes (v,) S

C such that for each n
Uy € Py(vy), thatis y(v, —uy) = D, (v, , 4).

Since C is compact, then we may assume that there is a ve C with v,, - v.
Now, D, (v, ,A) = in f{y(v, —u): u € A}

=inflylv—u):u€Ad}=D,(v,A4)
thus(v, ,A) - D, (v, A), and
D,(w,A) < y(v—u,) =y —v, + v, —uy)
S v —v) +y(wn —up)
=y —vy) + Dy (v, A)
thereforeD, (v, 4) < y(v —u,) < y(v —vy) + D, (v, A)

limD, (v,A) < 711_1)1010 y(v—u,) < 1lll_r)£10 y(v—uv,) < rlll_r)glo D, (v, A)

n—oo
D,(v,A) < 711_1}1010 Yy —u,) <0+ D,(v,A)
D,(v,4) = Tlll_r)glo y(v—u,)

Since (u,) € P,(C) € A and A is an approximatively compact set, then

the above relation implies the existence of u € A and subsequence(u,,,) of

(up) with u, — u. This prove that P,(C) is compact subset of M,,. L
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CHAPTER 3

FIXED POINTS, COMMON
FIXED POINTS AND
BEST APPROXIMATIONS

3-0 Introduction

The purpose of this chapter is to study the existence of an invariant
best approximation in the setting of a modular space for single valued or
set-valued mappings by weakening the hypothesis in some known results
or form new cases which guarantee the existence of an invariant best
approximation. These results hold by applying some fixed point theorems
and common point theorems. This chapter contains three sections where
in section one, there is a generalization of fixed point theorem for non-
expansive mappings and the use it to extend and unified the above results
[43], [14] and [2]. In section two, two common fixed point theorems for
P-non-expansive mapping defined on a star-shaped weakly compact
subset are proved, Here the conditions of affineness and demi-closedness
and Opial's property play an active role in the proving our results will be
general case for the other results. The object of section three is to prove
the existence of best approximations by applying a common fixed point
theorem without any one of star-shapedness, affineness and commuting
conditions by using property of non-convexity which is given by Dotson
[13], say (w)-convex structure. Therefore the results of this section will
be the extension of Nashine's results [33]
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3.1 An Extension of Brosowski — Meinaraus

Theorem in Modular Spaces

Mongkolkeha, Sintunavarat and Kumam [26] showed that existence
of ve M, with y(Sv) < o is necessary to guarantee fixed point. The
result in Proposition (2.1.1) also hold, if we replace this condition by

boundeness of modular function y.
Definition (3.1.1):

Let M, be a modular spaceand @ # A c M,.. S:A— A, Sis called

Banach operator of modular space if

y(Sv —S?v) < hy(v — Sv)
for all v € A where h is constant with0 < h <1.
Proposition (3.1.1):

Let M, be a modular space and @ # A c M,. S: A—> A a

continuous Banach operator. 3v € A3 (Sv) < o. Then S has fixed

point in A.

Proof:

Since (Sv —S?v) < hy(v — Sv), by adding y(v — Sv) to both

sides, we get
y(Sv — S?v) + y(v — Sv) < hy(v — Sv) + y(v — Sv)

which can be rewritten as
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yw—=Sv) —hy(v — Sv) < y(v — Sv) — y(Sv— S?v)
yw—Sv)[1 - hl < y(v — Sv) — y(Sv— S?v)
y(w = Sv) < [L=A"" Iy = Sv) = y(Sv — S?)]
Now define the function Q: M,, — R™by setting
QW)= 10 - 'ylw -Sv),veM,

Thus, y(v — Sv) < Q(v) — Q(Sv). Therefore if v € M,, and, n € N with

n< m
y (S™ly — SMHy) < Y y(Stv — STy) < Q(S™) — Q(S™ )
In particular, by taking n= 1 and letting m— oo we conclude that

2. 7(Stv — SHv) < Q(Sv) <

This implies that {S™v} is Cauchy sequence, since S(A)is complete there

exist vy € M, such that lim,_,., S™v = v, and since S is continuous

vy = lim $™v = lim S"*lv = S,

n—-oo n—-oo
Thus v is fixed point of S.

The above theorem Remains true when A is closed subset of
modular space M, and S(A)is compact this fact with Proposition (3.1.1)

we get the following extending of Dotson's theorem ([13], Theorem 2)

for non-expansive mappings in modular spaces.
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Theorem (3.1.1):

Let M, be a modular space and @ + A < M,, and A a closed and star

-shaped is non - expansive mapping with S(A4) is compact and exist

vEM, 3 y(Sv) < oo, then § has a fixed point in A.

Proof:

Let u be a star —center of A, for each n> 1 define S,, by
S,w)= 1—-hy)u + h,Sw)forallv € A4,

when {h,} is a sequences of real numbers with 0< h, < land

lim,,_,, h,, = 1. Clearly, S,, : A — A, for each n.
Now, since Sis non-expansive, for any n> 1 and v € A, we get

V(Sn v — 57% v)
=y[((1 = hDu + hy, Sv) — Su((1 — hyu + hy SV)]

= y[((1 = h)u + h, Sv)
- (hns(hn Sv + (1 - hn)u) - (1 - hn)u )]

= hny(Sv —SCh,Sv + (1 — hn)u))
< h,y(v—h,Sv+ (1 —h,u)
= hyy(v — Spv)

Since S is continuous mapping then S,is continuous, since S(A) is compact
then (1 — h,) u + h,Svis compact. Therefore, by Proposition (3.1.1) there
exist v, € A such thatS,,v, = v, ,n = 1. By compactness of S(4), {Sv, }has

a convergent subsequence {Svy :i = 1} with lim;_,,, Sv,, = v in A. Since

Un, = Sp,Un, = (1 — hy)u + hy, Svp,
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and lim;_, o, h,, = 1, we have v,,, - v. Consequently lim;_,, Sv,, = vm

In the following example, we say that theorem(3.1.1) need not true if

either A is not closed, star-shaped or S(A) is not compact. Consider

M, =R*andy(v —u) = |v| + |ul, for all v,u € R?.
Example (3.1.1):

Let A={(v—u) e M,:0<v<1l0<u<l}and S:A—> A
defined by S(v—u) = (v/3,ul4), (v—u) € A.

It is clear that A is not closed and S is non-expansive mapping and has no
fixed point.

Let (v,u), (z,u) € A

_ (L2 Y
VS V) =SE.y))=v(5. )= (5. )

IA
I

v -2),u-y))

=sy(v.u)=(z.y))

<h(.u)-(@z.y))
and (0,0) is fixed point of S. But (0,0) ¢ A. m
Example (3.1.2):

Let A=E U F,where E={(v—u) e M,: 0<v<1,0<u<6}and
F={(v—u) e M,:3<v<4,0<u<6} andS: A——> Adefined by

39

——
| S—



(2,u) if(v,u)eE

SU _“):{(1,u) it u)eF

It is clear that S is non-expansive mapping and has no fixed point.

A has no star-shaped since V ue A, (v,u) € A, then h, S(v—u)+(1 —
ho)ug A, where h, € (0,1) and limh, =1.

n—ow

Example (3.1.3):

Let A={(v—u) e M,:0<v<oo,0<u<l}andS:A—A
defined by S(v—u) = (v + L,u), (v—u) € S. Then S(A) = {(v—u) e M,: 1

<v<ow, 0<u<l1}.

It is clear that S is non-expansive mapping, has no fixed point, and S(A)

IS not compact.
Theorem (3.1.2):

Let M, be a modular space and @ # A < M, and S: M, » M, a
non - expansive mapping with a fixed point v € M, and existv €
M, suchthaty(Sv) < oo. If A is closed S- invariant of M, and the

restriction S|A is compact , then the set P,(v) # 0.
Proof:

Let § = D, (v,A). Then there exists sequence (u,)in A such that
lim,, o D, (v, u,) = 8. Which implies that (u, ) is bounded sequence. By

hypothesis, {Su,} is a compact subset of Aand so {Su,,} has a convergent

subsequence {Su,:i = 1} with lim;_¢, Su,, = u, say, in A.

Therefore,
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5 <D,(v,u)

= lim Dy(Sv, Suni) < lim Dy(v, uni) = lim D,(v,u,) =6
n—oo

>0 i—> oo

Hence D, (v,u) = 6 and then u € P, (v). This complete the proofe

Using Theorem (3.1.1) and Theorem (3.1.2) to prove the following:
Theorem (3.1.3):

Let M, be a modular spaceand ® # A ¢ M,,andS: M, > M, A
is non — expansive mapping with a fixed point v€ M, and existv €
MV

and P,(v) is star-shaped, then there exist an element in P,(v) which also

such that y(Sv) < oo.If A is a closed with S|4 compact, S(A) = A

a fixed point of S.
Proof:
Let Z= P,(v), by proposition (3.1.2) then Z+= @, let € Z.
Sets = D,(v,A). Then

D, (u,v) = D, (v,A)

sinceu € Zthenue Aand S(4A) = A therefore Su € A.
Now, since D, (v,S5u) = 6 ... (3.1
and D, (v,Su) = D, (Sv,Su), also
D,(Sv,Su) < D,(v,u) ...(3.2)
Therefore by (3.1) and (3.2), we have

§<D,(v,5u) = D,(Sv, Su) < D, (v,u) =4
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hence,§ < D, (v,Su) < &
Thus D, (v,Su) = ér = D, (v, A), therefore Su € Z
If Z is singleton, i.e., Z = {u} and Su € Z then Su = u.

Now, by definition S|A then S(A) is compact. Since A is closed and have

all conditions in theorem (3.1.1) then exist v € Z suchthat Z = v.

3.2 Common Fixed Point for Commuting Mappings

Definition (3.2.1):

Let M, be a modular space and P, S: M,, -» M, be a mappings then S

is said to be P — contraction if there exists he (0, 1) such that

y(Sv—Su) <hy(Pv—Pu)Vv,uinM, Ifh=1in then S is called P-

non— expansive mapping.
Definition (3.2.2):

A two mappings S and P on M, are said to be commute if SPv =

PSvvve M,
Proposition (3.2.1):

Let P be a continuous self-mapping of Banach operator of M., , if S:
M, — M,is P- contraction mapping which commutes with P and

S(My ) c P(My ) and 3 v € M, such that y(P(v)) < oo then

F(P) n F(S) = singleton.
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Proof:

Suppose P(a) = afor some a € M,, define S: M, - M, by
S(v) = a VvE M, then S(P(v)) = a and P(S(v)) = P(a) for all v
e M, so S(P(wv)) = P(Sw))V v € M, and S commutes with P

moreover S(v) = a = P(a) Vv € M, so that
S(M, ) c P(M, )finally forany a € (0,1) we have V v,u in M,

y(S(v) — S(u)) =y(a—a)=0 < ay(P(v) — P(u)). Thus holds this

proof.

The following lemma is needed.
Lemma (3.2.1):

Let M, be a modular space, S: M,, - M, be mapping, and u € M, . If
Sthu + (1 —h)v) = hSu+(1—h)v, Vv € M, and h € (0,1) , then u
is a fixed point.

Definition (3.2.4):

Let M, be a modular space and @ # A < M,, and S: A—»> M, be a

mapping, S is called demi-closed of v € A, if for every sequence (v,,) in

A such that v, 5v and v, > u € M, then u= Svand § is demi-closed

on A if it is demi-closed of each v in A.

Theorem (3.2.1):

Let @ #A weakly compact subset of Banach operator . Let P be a
continuous and affine mapping on M,, with p(4) = 4, S: A -A be an P-

non — expansive mapping commutes with P. If A is star-shaped with
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respect to S,and there is some v € 4 y(S(v)) < o and (P — S) is demi-
closed on M,,, then F(S) n F(P) # @.

Proof:

Since A is star-shaped with respect to ue A, then S: A — A, we
define S,, on A forany vin A by, S,,(v) = h,,Sv + (1 — h,)u and there is
u € A, and the sequence h, —» 1 as n— o, 0< h, <1 such that
1-hpu+h,SveAVvu € A ltisclearthat S, : A - A.

Note that S(4) € A4 and S,,(4) € P(A). Since S commutes with P and P

Is affine mapping, for each v € A.
SpPv = h,Spv+ (1 — h,)Pu
= h,PSv + (1 — h,)Pu
= P(h,Sv+ (1 — hy))
= PS,v

3 S,commutes with P. Further, we observe that for each n> 1,

S is P- non-expansive mapping,
y(S,v—S,u) =y(h,Sv+ 1 —-h)u—h,Su—(1—h,)u)
= h,y(Sv — Su)
< h,,y(Pv — Pu)
VY v, u € A hence S,is P- contraction. Thus by proposition (3.2.1),

there is a unique v,, € A such that v,, = S,, = Py, foralln > 1.

Since A is weakly compact, there is a subsequence (vni) of sequence

(v,,) which converges weakly to some v, € A.
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Since P is a continuous affine mapping then P is weakly continuous and

Snivni +(1-hpu
hni

so, since Sv,; = and Pv,; = vy,;.

Now, (P — S)v,,; = Pv,; — Svy;

_ _ Snivni —(1=hp)u
= VUni i

_ hpivpi=Spivpi+(1-hy)u
hni

_ —Vpi(1—hp)+(1-hy)u

hni

_ (A=hu)(u-vy;)
B hni

(1_hni)
= o (u_vni)

= (= —1) - vy)

hpi

Therefore (P — S)v,,; = (him — 1) (U — vy)

Thus (P = $)vw = 7= = 1|yt = va) < 5= = 1| Iy () + v @)

Since A is bounded, v,; € A implies (y(vy;)) is bounded and so by the
fact that h,,; — 1,

We have y(P — S)v,; » 0

Now, since P—S is demi-closed then (P — S)vy = 0 and thus Pv, =
vy = Svy. Hence, F(S) N F(P) # @.

Another common fixed point theorem will be given for opial space.
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Definition (3.2.5):

A modular space M, is said to be Opial of modular space if for

every sequence (vy,) in M, weakly convergentto v € M,, the inequality
lim,,_, ., infy(v, — v) <lim,_, infy(v, —u) Holds for all u= v.
Theorem (3.2.2):

Let® +# A weakly compact subset of Banach operator . Let P be a

continuous and affine mapping on M, with P(4) = A, S: A — A be P-
non-expansive mapping commutes with P.3v € A 3 y(S(v)) < oo and
the modular space M, is Opial. If A is star-shaped with respect to S, then

F(S) N F(P) # 0.
Proof:

Since A has star-shaped then S:A— A and there is u € A and the
sequence h, » 1,asn— o, (0 < h, <1)3 (1 —h,)u+ h,Sv € A for
all ve A. Now, define S,on A for any v in A by, S,(v) = h,Sv+
(1 —h,)u and there is u€ A, it is clear that S,: A —» A. Note that
S(A) € A and S,,(4) € P(A). Since S commutes with P and P is affine

mapping, for each v € A.
SpPv = h,SPv+ (1 — h,))Pu
= h,PSv + (1 — h,)Pu
= P(h,Sv+ (1 —hy)u)
= PS,v
Thus each h,, commute with P. Further observe that for eachn > 1, Sis P

— non-expansive mapping.
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y(S,v—S,u) =y(h,Sv+ A —-h)u—h,Su—(1—h,)u)
= h,y(Sv — Su)
< h,y(Pv — Pu)

VY u€ A, hence S, is P- contraction.

Thus by proposition (3.2.1), there is a unique v, € A4 such that v, =
Sp v, = Pv, for all n >1. Since A is weakly compact, there is a
subsequence (v,;) of sequence (v,) which converges weakly to some
vo € A. Since P is a continuous affine mapping then P is weakly

continuous and so we have :
PUO = lim Pvm- = lim Vni = Vg

Snivpi+(1—hy)u
hni

Since Sv,; = and Pv,; = v,;, we have:

(P - S)vni = PUp; — Svp;

— _ SniVnit(1—hy)u
= Uni h
nit

__ hpivpi —vpi+(1-hp)u _ —Vpi(1=hp)+(1-hp)u

hni hni

_ (1=hp) (U—vy;)
B hni

_ (1-hy,) (

i u-— vni)

(P-S)v,; = (hi — 1) (U — vyy)

ni

Therefore (P — S)v,,; = (him — 1) (U — v,y;).

Thus y(P — S)v,; =

1
r 1|V(U—Vm') <

= 1| [y () + 7 @],
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Since A is bounded by A is weakly compact, v,,; € A implies (y(vy;)) is

bounded and so by the fact that h,;; = 1, we have
y(P = S)vy - 0
Now, since M, is Opial space and suppose that, Sv, # v, we have:
lim;_, e infy (v — V) < lim;_, o infy (v, — Svp)
= lim; o, infy(Sv,; + (P — S)v,,; — Svyp)
< lim;_,o infy(Sv,; — Svg) + lim;_,o infy (P — S)v,;, since
Uni = (P — S)vp; + Svy
And thus
lim;_, e infy(vp; — vg) < lim;_, infy(Sv,; — Svy)
But on the other hand we have

lim;,, infy(Sv,; — Svy) <

1imi—>oo inf)/(Pvni - PUO) = lirni—)oo infy(vni - Uo)
Which is a contradiction. Hence vy € F(S) N F(P) = F(S) n F(P) # 0.

Lemma (3.2.2):

Let A be a subset of modular space M,,. Then for any ve M,,, P,(v)c

dA.
Proof:

Let ue P,(v), then every neighborhood of u contains a point strictly
between u and v on y(v — w).Since u is best approximation to v then is
closer to v than u, so, it cannot be in A. Thus u is not interior of A. Then
ue 0A.
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Corollary:

Let M, complete opial space, let S and P:M, -» M, and A cM, 3
S(0A)cA and ve F(S) N F(P).® # P,(v) weakly compact, is star-shaped
to S and g € F(P) and let S be a P-non-expansive mapping on P,(v) U {v},
v € A3 y(S(v)) <o, where P is affine, continuous on P,(v),
P(Py(v)) = P4(v) and commute with S on P,(v) then P,(v) N F(S) N
F(P) # Q.

3.3 A Best Approximations for (w) Convex Set

Definition (3.3.1):

A family of maps {F,} a € M, is said to be (w)-convex structure

on modular space M,, if it satisfies the following conditions:

i P:[0,1] - M, ie P, is map from [0, 1] into M, for each
a € My,

ii. P, (1)=aforeach a € M,

iii. P, (t) is a jointly continuous in (a,t), i.e.,, P,(t) = Pay(ty) for
a— ayinM,andt — t, in [0, 1],

iv. If P is a map from M,, into itself, then forany ve M,,, P, (t) € SvV t
€ [0, 1],

V. Y(Pu(t)- Pp(t)) = [&b ()] Yy (a-B), where ¢ Is function from [0, 1]
into itself.

Now, we recall the following definition.
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Definition (3.3.2):

Let {P,} be a sequence of (w) — convex structure on a modular space
M, . A self-mapping S of M,, is said to satisfy the property (I), if for any ¢
€[0,1], VvEM, andV Pvwe have S (Pv(t)) = Py (t).
Remark (3.3.1):

It is clear that the commute pair (S, P) is Banach operator but the

converse is not true.For convers, one can see the following simple example:

Example (3.3.1):

Consider P, S in modular space M,, = [0, 1] as
P(w)=1-vand

1-v OSUS%
S() = -
1-2 lev<a
2 2

It is clear that P and S are not commute and (F(P)) = F(P) = { %} :

In the next work, we quote the condition of Banach operator of modular

space and incorporate it with (w)- convexity condition to give two results in
invariant best approximation.
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Theorem (3.3.1):[40]

Suppose S and P are two self-mapping of a closed subset A of the metric
space M such that (S, P) is Banach operator pair on A and S is Q-contraction

onA, if F(P) = @ and S(A) is complete, then F(S) n F(P) = singleton

Theorem (3.3.2):

Let M, be a modular space with (w)-convex structure. Let S,
P:M, — M, be Banach operator and A € M,, such that S(dA) € A. let v, €
F (S) n F (P). Suppose that S is h-non-expansive mapping on
Py (vo)u{vo},with S(F(P))c F(P) P is continuous and S(F (P)) <
F(P) on Pa(vy), (Pa(vg)) is compact. If P, (vy)+ @, closed,3v € A 3
y(S(@)) <o and h (Py(vy)) S Pa(vp) then Pa(vy) N F (S)NF(P) #
@.
Proof:

Let D = P4(v,). First, we show that S:D - D. Letu e Dthenu € d A
by Lemma (3.2.2). Also, since S (0A) € A then Su € A.

Now, since Pu € D by P (D) € D and since Sv, = v, and S, P non-

expansive mapping, we have

y(Sv-vu) =y(Su-Svy) < y(Pu-P )

As P v, = v, we therefore have

y(Sv-vu) < y(P u-vy) = D,(vg, A)

Thus Su is also closest to v, so Su € D.
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By (w) — convexity property (1) there is a family {P,} v € D satisfies
condition of definition (3.3.1), choose h,, € (0,1) such that <h,> — 1, and
define S,, as S,, (v) = Ps,, (P ,,), forall v € D.
It is clear that S,, is well-defined map from D into D for each n,
Now, we have S, S,P:D—-Dand S (F(P)) S F(P)onDV v,u€eD,
For each n, we have
Y(SnV -Sput) =Y(Psy, (P 3) - Psy (P 3))
< [ (h)] v(Sv-vu)
<[¢ (h)]Y(Pv-P )

l.e.,
Y (Spv-Spu) < [d (hy)] Yy (P v—Pu)forall v, ueD
Hence S,, is P -contraction on D.

Now, we have to show that S,,(F (P)) € F(P ), ifv e F(P )then Sv e F(P )
by S F(P) € F(P ), and S,, (v) = Ps,, (P ,,) then Sv (P ,) € Sv and Sv €
F(P ), implies S,,(w) € F(P ). Hence (S,,, P ) is Banach operator on D.

Since S (D) is compact, each S,,(D) is compact, hence S,,(D) is complete.

By theorem (3.3.1), there exists v, e D and S,, v, = P v,, = v, for all n €.
Since S, (D) is compact, there is a subsequence (Sv,, ) of a sequence (Svy,)

which converges to u € A.

Up, =P vp, =5, vy = Svni(P ni)

By the continuity of S, { vy, } converges to Su. But Sv,, tends to u by the

assumption,

Sn; Un; = PSvni (P n,) = Psy (1) =Su,asi—>
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Thus, Su = u. Also from the continuity of h, we have
Pu=P (limv,)=limP v, =limv, =u,asi—- o,ie. Pu=u

Hence DN F (S) N F (P ) # ¢. This complete the proof. m

Also, we have another result on an invariant best approximation.
Theorem (3.3.3):

Let M, be a modular space with (w)-convex structure. Let S, P:

M,—M, and A € M, such that S (04) €A
Let vy € F (S) N F (P). Suppose that S is P -non-expansive mapping on

Pa( (vo) U {v}), P is weakly continuous. If Py(vg)# @, y(S(v)) < o
weakly compact. If P (Py (vy)) € Pa (vg) and S (F (P)) € F (P) on Py (vy),
then Pr (vg) NF(S) N F (P) # @ provided (P — S) is demi-closed.

Proof:

Let D = P, (vy). First, we show that S is a self-mapping on D. let u €
D then u € 04 Lemma (3.2.2). Also, since S (0A) €A then Su € A.

Now, since Pu€ Dby P (D) € Dand S, =, and S is P -non-expansive
Mapping, we have

Y(Su-v,) =y (Su-Sv,) <y (Pu-P v)
As P vy,= v, = note we therefore have

Y(Su-v,) S y(Pu- vp) = (v,, 4)
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Thus Su is also closet to v,, so Su € D. By (w)-convexity property(l) there
is a family {P.} v € p satisfies condition of definition (3.3.1), choose h, € (0,
1) such that < h,> — 1, and define S» as S(v) = Psy (P ), Vv € D. Itis

clear that S»: D— D is well defind Vn. ¥V v, u € D, for each n, we have

Y(Snv = S aut) = Y(Psv (P n) - Psu(P 7))

< [¢ (hn)] Y(Sv - Su)

Y(Snv - Snu) < [ (ha)] Y(P v—P u)
.e.,

Y(Snv - Snu) < [¢p (h)] Y(PVv—-Pu)V v,u€D.
Hence S» P -construction on D.
Now, we have to show that (F(P)) € F(h), if s € F(h) then S, € S(F(P))
By (F(P)) S F(P), Sn (v) = fsv(P ») then fs»(P ») € Svand Sy € F(P),
Implies S» (v) € F(P ), therefore S» (F(P)) € F(P).

Now, we have S, S, P : D—D and hence (S», P ) is Banach operator on D.
Since (D) € D € M, then S,(D) € M, and M,, is a complete then S, (D) is
complete. By theorem (3.3.1), we conclude that, there exists v, € D and Snvn

= P v, = vy for all n eN. Since D weakly compact, there is a subsequence

(vni) of sequence (v,,) which converges to u € A.
vni: P vni = Snivni = PSVnL- (P Tli)

From the weakly continuity of P, we have

Pu=P (limy,)=lim Pv, =v, =u,asi— o, ie. Pu=u.
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Now we have to show that lim (P - S) v, =0

(P —8)vp, =P vy, -Svy, =0y -Svy, = PSvn.(P n;) = SUp,, thus
limi_wo(P - S)vnl; lim Ps, (hp,) —lim Sv,,

=S,(1) - Su

lim; e, (P - S)vp, = Su - Su = 0.Now, (P -S) is demi-closed at 0 and sequence

converges weakly to u.
(P - S) u = 0 implies that u = Su

Hence u is fixed point of S in D. Hence DN F (S) N F (P ) # @.
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CHAPTER I

INVARIANT BEST
APPROXIMATION FOR NON-
EXPANSIVE MAPPINGS

4-0 Introduction

Throughout this chapter, the definitions of a (P, Q) —contraction
mappings and a generalized (P, Q)-contraction in the setting of modular
spaces are presented and common fixed points and coincidence theorems
for these mappings are applied to have many results on invariant best
approximation. Here, the condition of P and Q are commuting is replaced
with weakly compatible (in special case to C,-subcommuting, R-
subcommuting or R-subweakly commuting). In section one, theorems
about common fixed point and coincidence point for (P, Q)-nonexpansive
mapping and proved which are general cases for the results in [41], [36],
[37] and [6] these theorems are employed to get invariant
approximations. In section two, with the same above hypotheses, some
results of previous section are extended for a generalized
(P, @)nonexpansive mapping. This results will be a general case for
results in [41], [42] and other special case. Finally, in section three the
conditions of a fineness' is also omitted in addition to non-commute non-
convexity and replaced by the (w)-convexity property to have more
general results in invariant best approximation for (P, Q) —nonexpansive
mappings.
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4.1 Coincidence Points for (P, Q) —Non-expansive

Mappings and Best Approximations

Definition (4.1.1):

An element u of a modular space M, is called a coincidence point of the
pair of mappings S: M,, - M,, and P: M, —» M, if SPu = PSu.

Definition (4.1.1):

Let be M,, a modular space and Ac M, and P, S: A——> M, be

mappings, then

i. P and S are called compatible if P v, Sv, € A V n and
limy(P v,—Sv,) =0, for a sequence (v, ) 3 limSvy, =limpv,=t. te
n—ooo n—o n—oo
A.

ii. P and S are called weakly compatible if P, S commute at thier

coincidence points (i.e.) SP v = P Sv whenever Pv = Sv.

Remark (4.1.1):

1. If M, is compact and P, S are continuous mappings then P and S are

compatible if P and S are weakly compatible.
2. V compatible is weakly compatible, but the converse is not true.

To see this consider the following example.

Example (4.1.1):

Let M, =[0,2], y@w)=|v|(| [is the absolute value on R) V¥ v, u in

M, define S and P as follows
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1 if v e[0,1)

Sv =42 ifv =1
vV+3 .
—— ifve@?2
5 (2]
2 ifv e[0]]
V:
P % ifv e (L2]

The coincidence points of S, P are {1, 2}, we have:
SP(1)=P(1)and SP (2) =P (2) = 2.
Therefore (S, P) is weakly compatible.

To show that (S, P) not compatible

1
Taking v, =2 "o for all n then P (v,) — 1 and S(v,) — 1. Hence

limPv  =IlimSv_ butlim P Sv, = lim S Pv,.

nN—o0 n—oo

Had been mentioned to some relation between some generalization of

commuting mappings [3].
Definition (4.1.2):

Let (M,,y) be a modular space and S, P, Q:M,, - M, S is said to

be (P, Q)-contraction if thereisO<h<1,3
Y(Sv—Su) <hy(Pv—Qu), VY v, uin M, ...(3.1.1)
If h=1the S is (P, Q)-non-expansive mapping.

If P = Q =1 (I is the identity mapping) then S is contraction

(or non-expansive).
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In [16], [37] define the concepts of R-subcomuting, R-subweakly
commuting and mappings in the case of normed spaces, here we reform

these definitions in modular spaces:

Definition (4.1.3):

Let @ # AcM, and P, S:A— A with u € F( P,S ). A pair (P,) is
called:

I. R-subcommutingonAifvve A 3IR>03

y(PSv —=SPv) < % y(Pv —[Sv,ul)

where | Sv,ul = {(1 - h)ut+ hSv: 0<h <1}, u € A.

Il. R-subweakly commutingonAifvve A, 3R>03
Y(PSV —SPV) <R y(Pv —|Sv,ul)

li. ¢, —commuting if PSv = SPv vV v € C(P,S) = u {( P,5): 0<h <1}
and Syv = (1 — h)u+ hSv.

Remarks (4.1.2):

I. C, —commuting mappings are weakly compatible but the converse is not
true.

1. R-subcommuting mappings and R-subweakly commuting mappings
are C,, —commuting but the converse is not true.

For more details see the same reference.
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Theorem (4.1.1):

Let @ #A c M, > M,, complete modular space and A is star-shaped,
and S, P, Q be three mappings on A and S be a (P, Q)-contraction which
satisfies S (A)c (4) n (A). If either S (A) or (A) or (A) is complete,

and there is some ve A 3 S(v) < oo then

. 3z,u,ve A3 Pu=Su=z=Sv=Qv,thatisueC (S,P)andv e C (S,
P);
If, in addition, (S, P) and (S, Q) are weakly compatible, and then

i. F(S) nF(P)nF(Q) is singleton.

Proof:

Take vo € 4. As S(A) < (A) N (4), choose a sequence {v,} in A 3

Svyn = Pvypyq and Svy, 4 Vn = 0. By

Y(SVzns1 — SVan) S hy(Pvanys — Quan) = hy(Svan — Svan_q).
Similarly, we also have that

Y(SVan_1 — SV2n) < hy(Pvzp_y — QUan) = hy(Svzn_q — SV2p_1).
Therefore, V n > 0,
Y(SVans1 — SVan) S hy(Svp_1 — Svy) Ry (Svy — Svy).

Thus,

Y(SVnip = Sn) < ¥(SVnsi = SVpsis1) S Ky (Svy — Swp).

Hence, {Sv, } is a Cauchy sequence. By the definition of {Sv,},

3 a sequence {Pv,,41} and {Qv,, 4.} are also Cauchy sequence.
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Since either S(A4) or (4) or (4) is complete, if (4) is complete.
Then Pv,, 1 — z € A, and by the definition of {Sv, }, we obtain that.
QUan, PV2ns1, Svn = 2z € S(A) © P(A) N Q(A).
Henced d,e € A3 Pd =z = Qe. Then as n—oo,
Y(Svan415€) < hy(Pvaneq — Qe) = hy(Pvapyq —2) - 0.
Thus Sv,, = Se = z = Qe. Similarly, also =z = Pd. (i)

Finally we prove (ii). As (S, P) and (S, Q) are weakly compatible and
Qe =Se=z=S5d = Pd, then

Qz = QSe = SQe = Sz = SPd = PSd = Pz.
We claim that z is common fixed point of S, P, d. Since
y(z— Sz) = y(Sd — Sz) < hy(Pd — Qz) = hy(z — Sz),
Thenz=5z,ie,ze(S)N(P)N(Q).Ie€ A3 e=Se=_Qe=Pe,then
y(z—e)=y(Sz— Sv) < Ay(Pz — Qe) = Ay(z — e).

Hence z = v. The proof is complete

For modular space we prove the following:
Theorem (4.1.2):

Let @ +A c M,, 3 M,, complete modular space and A is star-shaped
at u€ A, P, Q: A —— A be affine mappings, and S: M, — M, be
(P, @)—non-expansive mapping. IfS(A) < P (A) n (A) and Jv €A 3

y(Sv) < oo. Assume that either S (A) or (A) or (A) is compact, then
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I. 3z,u,ve A3 Pu=Su=z=Sv=Qv,thatisue C(S, P)and

ve (S, P),
If, in addition, (S,P ) and (S, P) are weakly compatible, and PPv = Pv V
ve (S, P),then:

ii. F(S)nF(P) N F(Q)% 0.

Proof:

Since A is star-shaped 3 a sequence (h,) (0 < h, <1) converging to 1
31 —-hy)u+hSveA VwvinA. define the mapping S,: A—— A as the
following: S;v=(1 - hy) u + h,Sv

Since S (A) < P (A) n (A) we can prove that S_(A) < P (A) n (A) as

follows:

S . (A)={@—h ) u+hSv}=(@1—h)u+h{Sv:veA}
Since (u) = u and (u) = u then:
P(A-hy)u+hyv)=@-hy) Pu+h,Pv=(1-h,)u+h,Pv
Also (L —h) u+h,v) =1 —hy) Qu+h, Qu=(1—hy) u+h, Qu
VveA Thus S_(A) c(A)n(A).Vv,ueA
ySv-Su)=y(@-h)u+hSv—-1-h )u—h=Su)

=|h,| y(Sv —Su)

<|h,|v(Pv —Qu)

So S, is (P, Q)-contraction mappings h, € (0.1).
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Since either S (A) or P (A) or (A) is compact, then S (A) or (A) or (A) is
complete. Also, if S (A) is compactthen S _(A) iscompact = S (A) is

complete. By Theorem (4.1.1) that V n, 3vm), Vi), Un€ A 3
PVmny = Sn Um(n) = Un = Sh Viny = Q V).

by compactness of either s (A) or P(A)or Q (A) 3 <u, > <u,>and

zeA3u, =Pv =QV,y—>2, (I—> x),

m(n;)

u, —(-h, Ju —
! " L >zeS(A).

n;

Sv =SV () =

m(n;)

and z € P(A) N Q(A) by S (A) < P(A) n Q(A).

hence,3u,ve A3z=Pu=Qv,asi—> .

Y(SU =SV, ) ) <Y(Pu—QV,,,)=v(Z —QV,,,) =0, therefore

SV @, >Su=z i.e,z=5u=Pu.

Also, y(SV .y —SV) <Y(PV oy —QV) =¥(PV (., —2) — 0, therefore

SV oy SV =2 l.e.,z=Sv=Pv.

m(n;
(i) is proved.

To prove (ii) by (i) 3z, u,v3 P u=Su=z= Qv = Sv. Since (S, P)
and (S, Q) are weakly compatible and PPv =Pv V v € (S, P), then

Pz=PSu=SPu=S5z=SQv=QSv=Qzand Pz=PPu=Pu=12

Thus z = Pz = Qz = Sz, z is fixed point for P,Q, S m
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Theorem (4.1.3):

Let M, be a complete modular space and S : M, —> M,, , @ #AC
M, and P, Q : A—— A be two affine mappings, and there is some
ve Ay(Sv) < oo and A is stars-shaped at u € A. Assume that S is

(P, Q)-non-expansive mapping and S (A) < P (A) N Q(A). If:
1) S is strongly continuous and A is weakly compact, or

i) P or Q is strongly continuous and A is weakly compact, or
iii) S (A) is weakly compact and M,, is opial's space.

Then (i) (S, P, Q) + ©;

If, in addition, (S, P) and (S, Q) are weakly compatible and PPv = Pv Vv
e C (S, P), then

(i) FS) " F(P) N F(Q) = D.
Proof:

Since A is star-shaped then there is a sequence (h,,) (0 < h, < 1)

convergingto1a3(1-h)u+h,Sv e A, VvinA.
define the mapping S,: A—— A by
Ssv=(@-hy) u+hSv

Since S(A) < M, and M, is a complete then S (A) is a complete. by
similar of Theorem (4.1.2) that S_(A) < P (A) N Q(A) V n and S, is
(P, Q)-contraction mapping with h, € (0,1), S_(A) is complete, 3 vy,

VUt(n)y Un€E A>3 Py = Sn Um(n) = Un = Sh Vi) = Q).
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If (i) holds. Since < vy > < A together with the weak compactness of A,

JueAand<v_ . >C<VUnpm>3V,, ——>Y (I—> ©).By strong

m(n;

continuity of Sthat sv,  ,—— Su e S(A) < P (A) N Q(A).

(
du,vdSu=Pu=Qv,and h,—> 1,

Pv =QV,() =U, =S,V =h, SV, +@—h, Ju —>Su

m(n;) m(n;) m (n;
We claim that Su = Pu. Since as | —— «©
y(Su—-Sv,,,)<y(Pu—Qv,,,) sinceSis (P, Q)-non-expansive
= ’Y(SU _Qvt(ni )) — 0,

then Sv,,, —>Su.

Since limS v, =lim—h, Ju+limh -limSv  =3u

i -0 i —o0 i T oo

Hence lim Sv,, , =Su. Thus Sv, —Su =Su. Also, we claim that Sv

=Qv=3Su

NOW, y(SV ., —SV) <v(PV,,—QV). Since Sis (P, Q)-non-expansive
=y(PV ¢, —SU) >0 as | ——>

then Sv .., —Sv =Su. Therefore Su = Pu = Sv = Qv. (i) Is proved.

m(n;

If (i1) holds. Assume that P is strongly continuous, then

QVy(ny =PV ) — Pu. SiNCe as i—> o

Y(Su =SV, ,) <v(Pu—Qv,,), since S is (P, @)-nonexpansive

t(n;)

=y(Pu—Pv,,) >0,
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Then Sv,,,—»>Sue S(A) € (A)n(A).3u,v>3Su=Pu=Qv,and h,

— 1,
QViy =SuVimy=@=h)u+hSv, 5 —Su, then QV (@, >Su=Pu.
By (i) that we also reach our objective.

If (iii) holds. By the weak compactness of S (A), 3 u € Aand

( Svm(ni)) - (Svm(n)) = SVm(ni)L)y (—>).

Therefore by h,—— 1, we have

S,V =3,V

nY mn;) =PV :Qvt(ni) = hniSVm(ni) ‘|‘(:|.—hni )U —~ U

t(n;)

m(n;)

Since weak closeness subset M, implies closeness in complete space M,,,

thenu € S (A) < P(A) N Q(A).

Thus 3 u, ve A>3 u=Pu=Qv. As (Sv, ) is bounded by the weak

compactness of S (A), then

’Y(PV _Svm(n)) :’Y(hnsvm(n) +(1_ hn)u _Svm(n))

m(n)

=[1—h,[Y(SV 1 (ny —U) =0 (N — ).

m(n)

Also, y(Qv SVim) =v(",Sv,,, +@—=h)u—=Sv )

t(n)
V(Qvt(ni) _Svt(n)) :|1_ hn|V(SVt(n) —u) —>0(n — o).
We claim that Sv = . If not, by M, satisfying Opial's space, we get

liminfy(Sv ., ,—u) <liminfy(Sv . ,-Sv)

<liminf y(Pv —Qv) ,since S is (P, Q)-non-expansive

m(n;)
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= liminf y(Pv

i —>0

=SV (o) TSVim(n) —QV)

m(n;)

=liminf y(Pv

i >0

_Svm(ni)) + !E[]Omf Y(Svm(ni) _QV)

m(n;)

= liminf y(SV ,, , ~U).

Which is a contraction. Hence u = Sv = Qu.Similarly, we also can show
that u = Su = Pu. (i) Is proved. By similar of Theorem (4.1.2-ii) that

Pz=Sz=Qz=zand z € F(S) n F( P) n F(Q).

Hence F(S) " F(Q) " F(P) +# 0. m

For commuting mappings, we have:
Theorem (4.1.4):

Let M, complete modular space, @ # A ¢ M, and S: M,, —> M,, be a
mapping, and A is star-shaped and P, Q: A —— A be two affine
mappings, and there is some ve A 3 y(Sv) < o and S is a (P, Q)-non-
expansive mapping and S (A) < (A) n (A). If (S, P) and (S, Q) are C,,-
commuting, and P Q are affine, and V S, P, Q is continuous. If either

S (A) or P(A) or Q(A) is compact, then F(S) " F( P ) n F(Q) # @.

Proof:

Since A is star-shaped 3 a sequence < h, > (0 < h, < 1) converging

tol3(1-h)u+h,SveA VvinA.
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define A—> Aas,Ssv=(1—-hy)u+h,Sv

By Theorem (4.1.2) that S_(A) < P (A) n (A) V nand S, is (P, Q)-

contraction mapping, if (A) is compact, then S_(A) is compact. Since

(S, P) and (S,) are C,-commuting, and P, Q are affine, then u € F(S) N
F(Q), and further, vV S, v = Pv = Qv, we have

Sy Pv=(1-hy) +h, Sfv=(1-h,) Pu+h, PSv=P ((1-h,) +h, Sv)=PSv
also,

ShQu=(1-hy)u+h,SQu=(1-h,)Qu+ h, QSv=Q((1 - hy))u + h, Sv)=Q S,v
namely, (S, P) and (S,,Q) are weakly compatible.

By Theorem (4.1.1-ii) V n, 3 unique v, € A3

Vn=Pvp,=Qu,=S,v,=(1—-hy) u+h,Sv.

As Theorem (4.1.2-i) we get, 3 z, u, ve A and (v,,) < (v,) 3Su = fu =
z=Sv=Qvandv, =Pv, =Qv, —»z and Sv —z as i —>0.As

C,, —commuting of (S, P) and (S, Q) implies that weakly compatible, then
Pz=PSu=SPu=Sz=SQv=Q Sv =20z
By continuity of either S or P or Q that either Sv  —Sz or Pv, —Qz

or Qv, —Pz.

Hence z = Sz =Pz = Qzand F(S) n F( P) n F(Q) # @.

This complete the proof. m
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Corollary (4.1.1):

Let @ #A be star-shaped subset M, and S: A —— A a non-expansive
mapping, and there is someve A3 y(Sv) < oo, and S(A) < A. If

S (A) is compact subset M,,, then F(S) # @.

Theorem (4.1.5):

Let M, be a complete modular space and S: M, —> M,,. Let @ #A
c M, and P, Q : A—— A be two affine mappings,3v € A 3 y(Sv) <
oo, and A is star-shaped to S and u € A. Assume that S is a (P, Q)-non-
expansive mapping and S (A) < P(A) n Q(A). If (S, P) and (S, Q) are
C,-commuting, and S is strongly continuous, and either A or S (A) or

(A) or Q(A) is weakly compact. Then F(S) » F( P) n F(Q)+ .
Proof:

Since A is star-shaped at u then 3 a sequence (h,) (0 < h, < 1)
convergingto 1 3(1 —hy) u +h,Sv € A,V vinA. define S;: A——> Aas,
Ssww = (1 - hy) u + hSv. Since either A or S(A) or P (A) or (A) is
complete and it by similar proof of Theorem (4.1.4) V n, 3 a unique v, €
A3 v,=Pv,=Qu,=hSv,+(1-h)u
By similar proof of Theorem (4.1.3-i) we have,3 z, v, v € A and (v,,) C
(vp) 3 Su=Pu=z=Sv=Qvandv,k =Pv, =Qv, ——>Zz and Sv, ——7
as i —o. Since C,-commuting of (S, P) and (S,) implies weakly

compatible, then

Pz=PSu=SPu=S8z=SQv=QSv=0Qz
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As S is strongly continuous together with v, ——z , then Sv, —Sz.

By Sv, —Y¥ 57 ,wehavez=_Sz=Pz=0QL1.
Therefore F(S) " F(P ) N F(Q) #J. m
Corollary (4.1.2):

Let® #A c M,,u € M, and S: M, —> M, be a mapping, P, Q : A
—A be two affine mappings,3v € A 3 y(Sv) < oo, and Pa(u) is star-
shaped and S and u € Pa(u) and S(P,(u)) < P(Pa(u)) N Q(Pa(u)) =
Pa(u). Assume that S is a (P, Q)-non-expansive mapping on Pa(u), If

S (P, (u)) or (Pa(u)) or Q(Pa(u)) is compact, then

1) 3z, w,veA3dPw=Sw=2z=Sv=_Qv;if (S, P) and (S,Q) are weakly
compactible and PPv =Pv VY v € C (S, P), then
i) Pa(u) " F(S) nF(P) nF(P) = .

Proof:
By Theorem (4.1.2), when PA(u) =A. =

Corollary (4.1.3):

Let M, be a complete modular space, u € M,,, S : M, —> M, , P, Q
: A—— A be two affine mappings,3v € A 3 y(Sv) < o and Pa(u) is
star-shaped to S and u € Pa(u) and S (P, (u)) < P(Pa(u)) N Q(Pa(u)) =
Pa(u). Assume that S is a (P, Q)-nonexpansive mappings on Pa(u), if:
a) Sis strongly continuous and Pa(uw) is weakly compact;

b) P or Q is strongly continuous and Pa(u) is weakly compact;

C) S(P,(u)) is weakly compact and M, opial's space.

70

——
| S—



Then (i) (S,P)+ @

If, in addition, (S, P) and (S, Q) are weakly compatible and PPv = Pv V
v e C (S, P), then

(i) Pa(u) " F(S) nF(P) nF(Q) # 0.

Proof:

By Theorem (4.1.3), when PA(u) =A. =

Corollary (4.1.4):

Let M, be a complete modular space , u € M,,, S : M, —> M, and
P, Q : A—— A be two affine mappings, 3v € A 3 y(Sv) < oo, and Pa(u)
Is star-shaped to S and u € Pa(u) and S (P, (u)) < P (Pa(u)) N Q(Pa(w))

= Pa(u). Assume that S is a (P, Q)-non-expansive mapping on Pa(u),and

(S,), (S,) are Cy,-commuting If S is strongly continuous on Pa(u) and
Pa(u) or S(P,(u)) or P (Pa(uw) or Q(Pa(u)) is weakly compact. Then
Pa(u) "nF(S) "F(P) N F(Q) # 0.

Proof:

By Theorem (4.1.5), when Pa(u) =A. =
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4.2 Common Fixed Point and Invariant Best Approximation for

Generalized (P, Q)-Non-expansive Mappings

In this section, we prove that there is a fixed point of S, P, Q if S is
generalized (P, Q)-non-expansive mapping [22], and both (S, P), (S,) are
weakly compatible. We also apply these results to derive some invariant

best approximations.

Definition (4.2.1):

Let M, be a modular space and S, P, Q be three mappings on M,,, we

say that S is a generalized (P, Q)-contraction V v, uin M,, and 0 <h <1,
Y (Pv—Qu), v(Sv— Pv), y(Su— Qu)
v (Sv— Su) <h max
~ [y(Pv— Swy+ y(Sv— Qu)]

when h =1 then S is called a generalized (P, Q)-nonexpansive.

It is obvious that the generalized (P, Q)-contraction contains the
(P, Q)-contraction. Furthermore the contraction is its main subclass also
(when P =Q =1in (P, Q)-contraction).

Note that, in the setting of modular space the generalized (P, Q)-

contraction will be:

V(Pv— Qu), y(Sv— Pv), y(Su— Qu)
v(Sv— Su) < h max

3 (Pv= Suy+ y(Sv— Qu)]
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We need the following remark in modular space:
Remark (4.2.1):

Let M,, complete modular space If A c M, and star-shaped
S, P, Q: A—— Athree mappingsand V v, u € A,

Y(Pv— Qu), y(Pv— |Sv, ul), y(Qu— [Su, ul)

vY(Sv— Su) < max

~ [y(Pv—|Suul)+ ¥(Qu— |Sv, ul)]
Then S is called (P, Q) non-expansive mapping.

Theorem (4.2.1):[41]

Let @ + A subset on metric space Mand S, P, Q : A——> Aor M be
three affine mappings with m < P(A) m Q(A) is (P, Q)-contraction r €
[0,1) or r € (0,1). Then neither (S, P) nor (S, Q) is empty. Moreover, if
both (S, P) and (S, Q) are weakly compatible, then F (S) N F( P ) n F(Q)

# @ is singleton.

An applying of the above theorem we obtain the following in

modular space M,

Theorem (4.2.2):

Let @ #AcM,,, and P, Q: A —— A or M, be two affine

continuous mappings and S: M,, —> M,, be a continuous mapping, and A
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Is star-shaped to S and u € A. If both (S, P) and (S, Q) are C,-commuting,

S(A) is acompact c (A) n (A) and S satisfy V v, ue A

Y (Pv—Qu), y(Pv— |Sv, ul), v(Qu— |Su, ul)

v (Sv— Su) < max

> [V(Pv—|Suul+ ¥(Qu— ISv, u)]

Then F(S) N F( P) N F(Q) # @.
Proof:

Since A has star-shaped then there is a sequence (h,) (0 < h, < 1)

convergingto 1 3(1 - hy) u +h,Sv € AV vin A. define the mapping

SmA—> Aasvn Sv=(Q-hy)u+h, VvinA. Since S(A) < (A)n
(A) to proof

Sp(A) < P (A) n (A) as follows;

S,(A)={(1 - h)u+ h,Sv}=Q1-h,)u+h,{Sv:v € A}
Since (u) = u and (u) = u then:
P((L—hy)u+hySv)=(1—hy) Pu+hyPv=(1—hy)u+ hy Pv,
also, Q((1 — hy) u + haQv) = (L —h,) Qu + h, Qv =(1—h,) u + h, O,

Vv e A Thus S,,(4) < (A) n(A). Vv, u e A, and by condition (4.2.2),

we have:
v(Spv —S,u)=vy(h,Sv+ (1- h,)u-h, Su-(1-hn)u)

= |hn| Y(Sv - Su)
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y(Pv — Qu),y(Pv — [Sv,ul),y(Qu — |Su, ul)
<vl|h,| max

N | =

ly (Pv — [Su,ul,y(Qu — |Sv,ul)]
Therefore

]/(PU - Qu)l ]/(P'U - Snv): V(Qu - Snu)
V(SnV — Spu) = ylhy| max 1
L [y (Py - Sy, 7(Qu — )]

Thus S, is generalized (P, Q)-contraction with coefficient r = h,e (0,1).
note that (S, P) and (S, Q) are C,-commuting, and P and Q are affine,
then u e F (P)nF(Q). IfSyv=Pv=_Qv, we have

SsPv=(QA-hy)u+h,SPv=(1-h,) Pu+t h, PSv=P ((1 — h,) + hy,Sv) = PS\v.

Also S, Qv =(1—hy) u + hySQv = (1- hy) Qu + hy Q Sv =Q ((1- hy) +
h.Sv) =Q Syv

namely, (S,, P), (Sn, Q) are weakly compatible. As S(A) is compact, then

S(A) is complete. By theorem (4.2.1) that v n, 3 a unique v, € A3
vn= Pv, = Qup = hpySv, + (1 - hy) u.
By the compactness of S(4) 3 (v,, ) = (vy) andu e A3

U, =PVn,=qVUn,=Vp, Svp, + (1 - hy) — u (i——>0). The continuity of §
and p and q imply Sv, — Su and pv,, — pu and qv,, — qu.

Hence u = Su = Pu = Qu. Therefore F(S) " F( P ) n F(Q) # &. This

finishes the proof. m
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Corollary (4.2.1):

Let @ +A star-shaped subset M,, and S: A——> A a non-expansive

mapping, 3v € A3 y(Sv) < o, and S(4) < A. If S(A) is compact
subset A, then F (S) = 0.

To illustrate Theorem (4.2.3), we give the following example:

Example (4.2.1):

Let M, = U and A= [0, 1] withy (v) = |v | for e U. Let P, Q:
A——> Aas (v):(v):ivzviy e Aand S: A——>A bysz%v2 for all v

€A. Then S is a generalized (P,)-non-expansive mapping since

Y(Sv-Su) =2 y(S* =) =5 (ST - ) = S v(Pv - Qu)

On the other hand, A ( P,S) = F(Q,S) = {0} so, F( P) n F(Q) n F(S) = {0}.
Theorem (4.2.3):

Let M, be a complete modular space, and S: M, —> M, be a
weakly continuous mapping. Let @ # A c M,, and A is star-shaped to S
and u € A, P, Q: A—— A be two weakly continuous affine mappings.
Assume that S(A) is weakly compact subset P (A) ~ (A). If both (S, P)
and (S,) are C,,-commuting, and S satisfy condition (4.2.2) then F(S) m F(
P) nF(Q) # 0.

Proof:

Since A is star-shaped 3 a sequence (h,,) < (0 < h, < 1) converging

tol3(1-h,)u+h,SveAVuvinA.

76

——
| S—



define the mapping S,: A—— A as follows:
vn,Ssv=(1—-hy)u+h, VvinA,

By the proof of Theorem (4.2.2) there is a common approximate fixed
sequence (v,) € S(A) of S, P, Q. Since P, Q, S are weakly continuous

and S(A) is weakly compact, then the weak cluster u of (v,) is a

common fixed point of S, P, Q. The proof is completed. =

As an application to the above common fixed points, we have the

following results in best approximation:

Corollary (4.2.2):

Let M, be complete modular space, ® # A c M, ,u € M,,, and

S: M, — M, be a continuous mapping and P, Q: A —— A be two
continuous mappings. @ # P,(u) is star-shaped to S and u € Pa(u) and
S(PA(w)) is compact subset of Pa(w), P(Pa(w)) N Q(Pa(w)) = Pa(u), P
and u are affine on Pa(w). If (S, P), (S, Q) are C,-commuting and V v €
Pa(u) v {u},

y(Pv— Qu) if u=u
y(Sv—Su) <{ maxy(Pv — Qu),y(Pv — [Sv,ul),y (Qu — |Su, ul)
~ [y(Pv — ISw,ul) + y(Qu — |Sv,ul)] if u € Py(w)

Then Pa(w) A F(S) A F(P) N F(Q) = .
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Proof:

Since S(Py(u)) < Pa(u) = P(Pa(u)) N Q(Pa(u)) = Pa(u) is compact , the

results follows from Theorem (4.2.2), when Pa(u) = A. m

Corollary (4.2.3):
Let @ =Ac M, with S(OA) c A and u e F(S) N F( P) N F(Q),

S, P, : A—— A are three weakly continuous mappings. @ # Pa(u) is
star-shaped, and weakly compact, P(Pa(u)) N Q(Pa(w)) = Pa(u), P and Q
are affine. If (S, P), (S,) are C,-commuting on P,(u) satisfy condition
(4.2.3)

V v e Pa(w) U {u}, then Paw) N F(S) N F(P) N F(Q) = &.

Corollary (4.2.3):

Letd # A c M, with S(A N A) c Aand u € F(S) n F( P) N F(Q)
and S, P, Q: A—— A be two continuous mappings. @ # Pa(u) is star-
shaped and compact, P (Pa(u)) N Q(Pa(u)) = Pa(u), P and Q are affine on
Pa(w). If (S, P), (S,) are C,-commuting on Pa(u) and S satisfy condition
(4.2.3) V v € Pa(u) U {u}. Then Pa(u) N F(S) nF(P) n F(Q) + 0.
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4.3 Invariant Best Approximation for (P, Q)-Non-expansive
Mappings with (w)-Convexity

In this section, some existence results on best approximation are

proved without star-shaped and affine mapping.

Theorem (4.3.1):

Let M, be a modular space with (w)-convex structure. Let S, h,
: M, —> M, and A c M, 3 S(0A) c A. Let vy eF(S) N F(Q). If S is
(h,Q)-non-expansive mapping on Pa(vy) U {ve}.I3v € A3 y(Sv) <
Assume that (S,h) and (S,Q) are weakly compatible on Pa(vy) and
h(Pa(ve) < Pa(vo), QPa(vo) < Pa(vo) and S(Pa(v)) = h(Pa(vo))
Q(Pa(vo)). If S(P4(w)) or h(Pa(vo)) or Q(Pa(1y)) is compact and hhv = hv
where v € (S,h) then Pa(vo) N F(S) " F(h) N F(Q) = @.

Proof:

Let Pa(vo) = D.S: D—— D, let u € D then hu € D h(D) < D. Since
D < 0 A by Lemma (3.2.1), therefore u € 6 Aand (0A) < A then Su €
A.Now, since Svy = vg = Qv and S is a (h,)-non-expansive mapping, we

have

y(Su -v,)=y(Su -Sv,)
<y(hu—Qv,)
=y(hu —v,)

Thus y(Su —v,) <y(hu —v,) =y{,,A).Implies Su is also closest to vy,

so Su € D. Choose h, € (0,1) 3 <h,>—— 1. Then define S, as
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Sn(v) = Psv(hy) V v € D and by Definition (3.3.1) condition (iv) then S, is
a well-defined map from D into D, vV n. Thus S, h, Q:D—— D and V v,

u < D,

vV =S.u)=v(F, (h)) - F, (D))
<[¢(h,)]v(Sv —Su)
<[¢(h,)]v(hv —Qu)

Therefore y(S,v =S, u)<[d¢(h,)] v(hv —Qu)

Hence S, is (h,)-contraction. Since {Snv}:{PSV (h )}c{Sv} Vv v € D,

and S (D) < h(D) n Q(D) then s_(D) < h(D) n Q(D). Since S (D) is
compact and by definition (3.3.1-iv) then S_(D) is compact, therefore

S (D) is complete. Now, By Theorem (4.1.1-i), V Yinn), Vi), Un € D 3
hUm(n) = SnUmn) = Un = Sn Viny = QVx(n)
Since either s (D) or h(D) or Q(D) is compact 3 <u, > c<uy>andu

eD3hv TS Vium = SaVimy= @Vim,= U, —u as(i—> ).

Thus Fy, (h, )= R (h, ) >Uas (i—> ) and
pSVm(ni ) (hni ) = Svm(ni)’ pSVt(ni ) (h”i ) CSvt(”i)
Also, SV, 1,8V, ) ©S(D).Henceu e S (D) < h(D) N Q(D).

Jv,weD3y=hw=Qv. Asi—> o,

Y(SW =SV, )<y(hw —Qv, ) =7l —Qv,,) —0,therefore Sv = —Sw .
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Now, limF, (h,)=F, Q)=Sw, but K, (h,)—>u, hence Sw =u,

also V(Svm(ni) _SV)SY(th(ni) —Qv)=y(u—-Qv)—0.
Thus limp,  (h,)=FR, (@) =Sv, but PSvmm)(hni ) —U. Hence u = Sv.

Now, (S,h) and (S,Q) are weakly compatible and hhv = hv for all
v € A (S,h), then hu = hSw = Shw = Su = SQv = QSv = Qu, and

hu = hhw = hw = u. Thus u = hu = Qu = Su.
Hence Pa(v) "F(S) "F(h)NF(Q) # 0. m

Theorem (4.3.2):

Let M, a complete modular space with (w)-convex structure, ue M,,,

and S, h, Q: M, — M,, three mappings,3v € A 3 y(Sv) < oo, and A ¢
M,. @ # Pa(u) and S(Py(u)) < Pa(u) and h(Pa(u)) N Q(Pa(u)) = Pa(u).

If S is (h,)-non-expansive mapping on Pa(u) U {u} and either S(P, (w)) or
Q (Pa(u)) or h (Pa(u)) is compact then

. Ju,w,vePa(Udhw=Sw=u=Qv=>5Sv.
If in addition, (S,h) and (S,Q) are weakly compatible and hhv =hv vV v
e C (5,h), then

ii. Pa(u) N F(S) N F(h)NFQ)# 0.

Proof:

Let Pa(vo) = D, since h(D) n Q(D) =D and S (D) < D then
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S, h, Q:D——D, choose h, € (0,1) 3 (h,,) —> 1, define S, as Sy(v) =
Psy (hy) V v € D, and by Definition (3.3.1-iv) then S, is a well-defined
mapby D ->DVnThusS,, h,Q:D——>DandVv,ueD

YSVv =S u)=v(F, (h,)-F,(h,))
<[¢(h,)] v(Sv —Su)
<[#(h,)] v(hv —Qu)

Therefore y(S,v —S,u)<[¢(h,)] v(hv —Qu)

Hence S, is (h,)-contraction. Since S (D) is compact and by definition

(3.3.1-iv) then S _(D) is compact, therefore S (D) is complete.
Now, by Theorem (4.1.1-1), 3 vy, Vi), un € D 3
hvm(n) = Sh Ummy = Un = Sh Vi) = Q)

since either s (D) or h(D) or Q(D) is compact 3 <u, > c<uy,>andu

eD>

hv =S v =S,V

m(n) n; " m(n;)

t(n;) Qvt(n)_ Uni —Uu as (l—)oo)
Thus PSVm(n- ) (hni ) = PSVt(n-)(hni ) —>uas (I SN OO) and

mnl)(h )CSVm(n)’ (h )CSV

t(n;)
Also, SV, 1,8V 0y ©S S(D).Henceu € 5 (D) < h(D) ~ Q(D).

Aw,ve ADu=hw=Qv. Asi—> oo,

Y(SW —Sv,, )<v(hw —Qv ) =7l —Qu,,) —0,therefore Sv, , —Sw .
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Now, limF, (h,)=F, Q)=Sw, but K, (h,)—>u, hence Sw =u,

also YV ey —SV)=<v(hv @, —QV)=ylU-Qv)—>0.
Thus lim Pst(n,)(hni )=P, @ =Sv, but PSVm(n.)(hni ) —>U . Hence u = Sv.

Therefore Sw = hw = u = Sv = Qv. (i) Proved.

Subsequently, we show (ii). Since (S,h) and (S,Q) are weakly compatible
and hhv =hv vV v € A (S,h), then hu = h Sw = Shw = Su = SQv = QSv =

Qu, and hu = hhw = hw = u. Thus u = hu = Qu = Su.

Hence PA(U) " F(S) "F(h)NF(Q) # 0. m

Theorem (4.3.3):

Let M, be a complete modular space M, with (w)-convex structure,
ue M,,3v € A3 y(Sv) <, and S, h, Q - M, —> M,, AC M,. @ #
Pa(u) and S(Py(w)) < Pa(u) and  h(Pa(u)) N Q(Pa(u)) = Pa(u). Sisa

(h,)-non-expansive mapping on Pa(u) w {u}. If:

a) S is strongly continuous and P(u) is weakly compact
b) h or Q is strongly continuous and Pa(w) is weakly compact
C) m is weakly compact and M, Opial's space. Then
i. C(ShQ)+0
If in addition, (S,h) and (S,Q) are weakly compatible and hhv = hv
VY v e C(S,h), then

ii. Pa(U) N F(S)F(h)NF(Q) % @.
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Proof:

Let Pa(vo) = D, since h(D) n Q(D) =D and s (D) < D then S, h,
Q :D——D, Since s (D) is complete, let < h, > and S, defined as in

theorem (4.3.2). Then a similar proof 3 vy, Vi), Un € D 3

WV = Sn Unm) = Un = Sn Vi) = Q Vi)

if the condition (a) holds. Since < vy, > < D together with weak
compactness of D 3 u e Dand <v ) > € < Unm >3 V0 y— U (i
——> Su e S(D)

—> o0). By strong continuity of S that Sv

h(D) ~ Q(D).

m(n;)

3w,veD>3Su=hw=Qv, and noticing h,— 1, and

S,V (h, )= P, () =SU as (i—> o).

nYmn) Vin(n;)

Hence, hv =S.v = Uy TS Vi) = QVyq,——>Suas ().

m(n) N~ m(n;)

We claim that Sw = Su = hw. Indeed, since as | — o
v(Sw —Svt(ni))g v(hw —Qvt(ni)) =vy(Su —QVt(m) — 0,
then Sv, ., —>Sw .

Now, asi—> 'S v, , = Svt(n)(h )—> PR, ) =Sw . Then Sw = Su.

also, we claim that Sv = Su = Qv. Indeed, since as i —— o

Y(Sv _SV)SY(th(ni)_Q/):Y(hvm(ni)_su)_)oi

m(n;)

then Sv ., —Sv =Su . (i) is proved.
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If condition (b) holds. Assuming that h is strongly continuous, then Q

=hv ——hu. Since ——> o,

m(n;)

t(n)

y(Su—-Sv,,,)<y(hu-Qv,,,)—>0,Sv,,,—»Su € S(D) < h(D)n

ghg(D).3 w, v € D such that Su = hw = Qv.

NOW’ Qvt(”i) - Snivt(ni) = Psvt(ni)(hni ) _)PSU (1) :Su as (I — OO)’ then Q
Vi, —> Su = hu, we claim that Sw = Su = hw. Indeed, since as i —>
o0

v(Sw _Svt(ni))SY(hW _Qvt(ni)) =vy(Su _Qvt(ni)) — 0, then

SVi(n) —>SW

Since asi—> o S, v (h, )—> w D =SW . Then Sw = Su.

() SVt( )

Also, we claim that Sv = Su = Qv. Indeed, since as i —> o

Y(SV —SV)S'Y(th(ni)—QV):'Y(th(ni)_SU)—)O,

m(n; )

then sv ., —Sv =Su and

SuV iy =Fsvo, (h )R, (1)=Sv asi—>w, then Sv =Su. (i) is proved
If condition (c) holds. By the weak compactness of S(D),3u e D
and <Sv, . > C < SVpm >3 Svm(ni)%u (i—> o).

Therefore by h, —— 1, we have

:hv

SoVmm,= SaV ) :Qvt(ni) = %Vt(ni)(hni) ~u, (i > ).

t(n;)
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Since weak closeness subset M, implies closeness in complete modular
space M,,, then u € S(D) < h(D) n Q(D). Thus3w,ve D3u=hw=

Qv. As (i—> ),
Y(hvm(ni) _Svm(ni)): Y(F)Svt(ni)(hni ) _Svm(nl))L)o

We claim that Sv = u. If not, by M,, satisfying Opial's space, we get

liminf y(Sv —Sv)

i —>o0

() —u)< iImlnf Y(Svm(ni)

s!minf YOV ) —QV)
:!ilpoinf y(hv oy =)

S!Lrpoinf v(hv
S!Lrpoinf v(hv

<liminfy(Sv ., —Uu)

Svmm)+Svmm)—u)

m(ni)_

Svm(ni))+liminf Y(Svm(ni) —u)

m(ni)_ i—o0

Thus liminf y(Sv —u) which is a contradiction.

lim m(ni)—u)<ilm infy(SV )

Hence u = Sv, also we claim that Sw = u. Since the weak compactness of

SM,3u eDand <Sv., .>c<Svm>3 SV, . —2>u', (i—>
(n) t(n;)

t(n;)

o), therefore by h, —— 1, we have

SoViey= Ry, (N )——P )=u’,but s v, -—>uthenu=u".

Now, as i —— o0, Y(QV,(,) =SV () =Y (S Vi) —Svt(ni))L)O.

Similarly, u = Sw = hw. (i) Proved.

By similar proof of Theorem (4.3.2-ii) that Su=hu=Qu=u.
Hence Pa(u) N F(S) nF(h) nF(Q) # @.
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Theorem (4.3.4):

Let M, be a complete modular space with (w)-convex structure, u
e M,, Ac M,, and S, h, Q : M, —> M,,, three mappings.3v € A 3
y(Sv) < 00,0 # Pa(u) and S(Pa(w)) < Pa(u) and h(Pa(u)) N Q(Pa(W)) =
Pa(u) and S is (h,Q) — non-expansive on Pa(u) u {u} and Sorhor Q is
continuous, and if (S,h) and (S,Q) are C,-commuting on Pa(u). If either
m or h(Pa(u)) or Q(Pa(u)) is compact, and h and Q have star-
shaped then PA(u) N F(S) N F(h) n F(Q) # 9.

Proof:

Let Pa(u)=D and let < h, > < (0,1) 3 limh, =1. v n, define S, by

nN—o0

Sn(v) = Psu(hy) V v e D. By similar proof of Theorem (4.3.2) that
S. (D) < h(D) n Q(D) V n and S, is (h,Q)-contraction mapping. Since
(S,h) and (S5,Q) are C,-commuting, and h and Q have star-shaped, and

furthermore, V S,v = hv = Qu, we have
Sahv = () (hn) = Prsvy(hn) = h(Sa(v)) = hSyv. Thus Sp,hv = hS,v, also

SaQV = @vy(n) = Posvy(hn) = P(Sn(v)) = QSyv. Thus S,Qv = QS v. Namely,
(Sn,h) and (S,,Q) are weakly compatible.

By Theorem (4.1. 1-ii) V n, ¥V a unique v, € D 3 v, = hv, = Qv, = Syv;,
= PSVn (hn)

By similar as Theorem (4.3.2-i) implies3 w, u,v e Dand <v, > c
<vp>3Sw=hw=u=Sv=Qv,andv =hv =Qv, —u.

Now, as i—> o y(Sv, —Sw)=y(Sw —Sv ) <y(hw —Qv,)—0.
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Hence, sv, —> Sw =u as (i — ). As (,-commuting of (S,h) and
(S,Q) implies weakly compatible, then hu= hSw =Shw =Su =SQv =QSv =
Qu.

by continuity of either S or h or Q that either sv — Suor hv —>

hu or Qv, —> Qu. Hence u = Su = hu = Qu.
Therefore Pa(u) N F(S) N F(h) n F(Q) # @. This completes the proof. m

Theorem (4.3.5):

Let M, be a complete modular space M, with (w)-convex

structure, u € M, and A c M, and S, h, Q : M, — M, are three

mappings.3v € 4 3 y(Sv) < o, ® % Pa(U) and S(Py(u)) < Pa(u) and
h(Pa(u)) N Q(Pa(u)) = Pa(u) and S is a (h,Q)-non-expansive mapping on
Pa(u) U {u} and (S,h) and (S,Q) are C,-commuting on Pa(u) and S is
strongly continuous, and Pa(u) or m or h(Pa(u)) or g(Pa(u)) is
weakly compact. If h and Q have star-shaped then PA(u) n F(S) n F(h)
N F(Q) # 0.

Proof:

Let Pa(vg) = D, let < h, > and S, be defined as in Theorem (4.3.4).
Then a similar proof shows that Vv n, 3 unique v, € D 3 v, = hv, = Qu, =

Snvn = Py, (h,).By the similar as Theorem (4.3.3-i) implies 3 w, v, ue D

and <v, >c<v,>3

Sw=hw=u=S8v="Py,adv, =hv, =Qv, =S Vv ——U and

y(Sw —Sv, )<y(hw —Qv, ) —0 and SV, ——>SW =U as (i—> o).
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Since C,,-commuting of (S,h) and (S,Q) implies weakly compatible, then

hu = hSw = Shw = Su = SQv = QSv = Qy.

as S is strongly continuous together with v — U, then Sv, —> Su.

By Sv, ——U, we have u = Su = hu = Qu. Thus Pa(u) N F(S) N F(h

) N F(Q) # @. This completes the proofm
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CHAPTER 5

CONCLUSIONS AND FUTURE
WORK

5-1 Conclusions:

We'll list our work as follows:

1- we have been reform many concepts in the setting of modular spaces,
such as, weak convergence, dual of modular space, uniformly convex
modular space, demi-closeness, proximinal set, ... .

2- we have been prove that
-the relation between convergence and weak convergence,

-the completeness of dual space,

-the set of best approximations is non-empty, closed and bounded,
-the existences of best approximation for usc set-valued mapping, ..
-the existences of fixed points and its application in best
approximation in some modular spaces,

-the existences of fixed points, common fixed points and coincidences
points for non-expansive mappings, p- non-expansive mappings and
(p,q)- non-expansive mappings for commuting and non-commuting

mappings complete modular spaces,
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-also, we have been employing these results to have best
approximations.

3- this work requires the employment of convexity property, here, we
use some of its generalizations, like, star-shapness property, affinenss
property and w —convex structure.

4- Some of our results are a generalization of what is proved in the

references.

5-2 Future Work:

Consider M be a linear spaceand A € M. A mappingS: A—2M is

n
called (KKM — map) if co{Xo, X1, ..., Xn} < Uo Tx; for each finite subset
1=

{Xo, X1y onus Xn} of A [19]

We suggest a study about best approximations in modular spaces via

(KKM — map) and give a version of Proll's theorem some other results.
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