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 بسِْمِ اللَّهِ الرَّحْمنِ الرَّحِيم

اللَّهُ نُورُ السَّمَاواَتِ واَلأرَْضِ مَثَ لُ نُورهِِ كَمِشْكَاةٍ فِيهَا  

مِصْبَ احٌ الْمِصْبَ احُ فِي زجَُاجَةٍ الزُّجَاجَةُ كَأنََّهَا كَوْكَبٌ  

وَلّ  دُرِّيٌّ يُوقدَُ مِن شَجَرةٍَ مُّبَ اركََةٍ زيَْتُونَةٍ لّا شَرْقِيَّةٍ  

غَرْبيَِّةٍ يَكَادُ زيَْتُهَا يُضِيءُ وَلَوْ لَمْ تَمْسَسْهُ نَ ارٌ نُّورٌ  

عَلَى نُورٍ يَهْدِي اللَّهُ لنُِورهِِ مَن يَشَاء وَيَضْربُِ اللَّهُ  

 ﴾٥۳﴿ الأمَْثَ الَ للِن َّاسِ واَللَّهُ بِكُلِّ شَيْءٍ عَليِمٌ 

 مالعظي  العليصدق الله                               
     

 



 

 إهداء

ونور  ة... الى نبي الرحم ة... ونصح الام ة... وادى الامان ةالى من بلغ الرسال

وعلى ابن عمه امير المؤمنين علي  العالمين سيدنا محمد صلى الله عليه واله وسلم

 ابن ابي طالب )ع( والتسعة المعصومين من ذرية الحسين )ع(

 وتعالى بهم هالى من  أوصى الله سبحان

 ُوَوَصَّينَْا الْإِنسَانَ بِوَالِديَْهِ إحِْسَانًا حَمَلَتْهُ أُمُّهُ كُرْهًا وَوَضَعَتهُْ كُرْهًا وحََملُْه

وَفِصَالُهُ ثَلَاثُونَ شَهْرًا حَتَّىٰ إِذَا بلََغَ أَشدَُّهُ وَبَلَغَ أَرْبَعِينَ سَنَةً قَالَ ربَِّ أَوْزِعْنِي أَنْ 

أَنْعمَْتَ علََيَّ وَعلََىٰ وَالِدَيَّ وأََنْ أَعمَْلَ صَالِحًا تَرْضَاهُ وأَصَلِْحْ لِي أَشْكُرَ نِعْمَتَكَ الَّتِي 

 (51)  فِي ذُرِّيَّتِي إِنِّي تُبْتُ إلَِيْكَ وَإِنِّي مِنَ الْمُسلِْمِينَ

 (51الاحقاف )

 الى من علمني وارشدني في حياتي وشجعني على تحقيق حلمي ابي العزيز

  ةوالى سر نجاحي وسعادتي امي الغالي ةوالتضحيالى معنى الحنان 
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ABSTRACT 

 

    The purpose of this thesis is to study the properties of best 

approximations set and to apply some fixed\ coincidence point 

theorems to obtain invariant best approximations in modular 

spaces. The idea of obtaining these results was included in four 

pivots. The first one is to reform some concepts in the setting of 

modular spaces, such as, strong\ weak convergence, 

compactness, duality of a modular space, …  and then prove 

some needed relative statements. The second is to prove some 

Brosowski-Minardus type theorems on an invariant best 

approximation. On the other hand, the third pivot is to apply a 

common fixed\ coincidence point theorems and using property 

of   convex structure to get other results. Finally, the forth is 

to prove the existence of such results with respect to mappings 

of single\ set-valued non-expansive mappings, 

      nonexpansive mappings and generalized      -non-

expansive mappings. 
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Introduction 
 

           The concept of modular spaces, as a generalization of 

metric spaces, was given by Nakano [31] in 1950. Musielak and 

Ortiz [30] in 1959 introduced a generalization of the classical 

function space    . Khamsi et al [23] proved the fixed point 

results in modular function space. There are literature on the 

fixed point theory in modular spaces, such as [1], [5], [8], [12], 

[14], [18], [23], [27], [29], [44] and the paper referenced there. 

Pata [7] proved banach ′s contraction principle in modular 

spaces. 

Paknazar  et al. [7] used pata idea to prove another fixed point 

theorem and prepared an application of their results to existence 

of solution of megral equations in some of these spaces. 

Recently, S.S. Abed [2] introduced the concept of best 

approximation In modular spaces 

The classical approximation problem is the best approximation 

to (a,b), along the straight line passing through the origin can be 

found by droping a perpendicular from (a,b) to the line. 

 Significant questions concerning y includes: 

- How may y be found? 

- Can be characterized? 

- Is it unique? 

- Does 𝐴 = 𝑀? 

        The early problems of best approximation theory like 

Kyfan's theorem and Prolla's theorem depend on convexity 
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properties which involve introducing a mapping with some 

hypothesis. This thesis deals with Brosowski-Meinardus type 

[38] which guarantees the existence of the invariant best 

approximation. 

        Fixed point theorems have been used at many places in 

approximation theory[15]. One of them is while existence of 

best approximation is proved. Later on, number of results were 

developed using fixed point theorem to prove the existence of 

best approximation. However, the result given by singh [36] was 

the fundamental result in this direction. An excellent reference 

can be seen in [39]. Another celebrated result was due to Jungch 

[20] also in fact extended the result of Hicks and Humpheries 

[17], Jungch and Sessa [21]. Latif [28], Khan [24], Singh [38] 

were some other authors who worked in this direction under 

different conditions following the line made by Singh [38]. 

        In [17], Singh relaxed the condition of linearity of mapping 

and convexity of set but later, he observed that only the non-

expansiveness is necessary to prove best approximation while 

applying fixed point theorem. Similary, Hicks and Humpheries 

said in their paper [17] that the element for the set of best 

approximation is not necessarily in the interior of the set. 

        In other papers, Jungch and Sessa [21] further weakend the 

hypothesis of carbon [10] and Singh [38] by replacing the 

condition of linearity by some properties to prove the existence 

of best approximation in a normed linear space. However, they 

used weak continuity of the mapping for such purpose in the 

second result. Recently, Latif [28] has removed the weak 

continuity from the hypothesis of Jungch and Sessa [21] and 

obtained the result in normed space. 

        Throughout this thesis, we seek about an invariant best 

approximation in the setting of normed spaces [35]. 
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The existence of invariant best approximation in the setting of 

modular spaces. This thesis contains five chapters. In chapter 

zero we present some basic definitions and facts about vector 

spaces and topological vector spaces. In chapter one, we recall 

the notion of modular spaces and some related definitions, facts 

and examples. In chapter two, we prove the existence of 

invariant best approximation of ky-fan type with respect to set 

valued mappings. Also, prove some other results for non-

expansive mappings in complete modular spaces. On the other 

hand, chapter three, is devoted to study common best 

approximation for non-commuting mappings depending on star-

shaped and affineness conditions and finally, chapter four is 

devoted to present conclusions and future work. 
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CHAPTER 5 

 

MODULAR SPACES 

 

1-0 Introduction 

 

          This chapter contains four sections. Section one is devoted to 

recall the definition of a modular function on a linear spaces and some 

known definitions and facts. 

            In Section two there are some concepts of convergence sequences 

(strong and weak), compactness, approximative compactness, … . Also, 

includes the proof of some important results, such as, uniqueness of limit 

for weak convergent sequences, relation between strong and weak 

convergence and other results.  Section three includes new considerations 

about the dual of modular spaces and linear functionals. In section four, 

there are some types of set-valued mappings and some related concepts.   
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1-1Basic Definitions and Examples of Modular 

Spaces  

We start with the following: 

 

Definition (1.1.1): [11] 

             Let 𝑀 be a linear space over 𝐹     . A function  :𝑀  [   ] 

is called Modular if: 

i.        ⟺       ∀    𝑀. 

ii.         =        for    𝐹 with | |  1, ∀   𝑀  

iii.                +     ⟺       , ∀ ,     𝑀. 

 

Definition (1.1.3): [11] 

         A modular   defines a corresponding modular space, i.e, the 

space 𝑀  given by 

𝑀  {  𝑀                     }  

Definition (1.1.2): [11] 

      If (iii) in definition modular space 𝑀   replaced by 

                +     , for      ,      , for all   , 

u  𝑀, then 𝑀 modular   is called con ex modular. 

 

Remark (1.1.1): [11] 

       By condition (iii) above, if u  0 then      = (
 

 
   )       , for 

all        𝐹        this shows that   is increasing function. 
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Remark (1.1.2): [2]  

i. A Modular space 𝑀  is a metric space with  

              𝐴 , for all ,    𝑀. 

ii. Any Modular space is a topological linear space, moreover, it is 

Hausdorff space. For the definition of topological linear space. 

 

Definition (1.1.4): [11] 

                The  -open ball,      centered at    𝑀 with radius     as  

         {   𝑀          }.  

 

  The class of all  -balls in a modular space 𝑀  generates a topology   

  which makes 𝑀  Hausdorff topological linear space. Every  -ball is  

   convex set, therefore every modular space locally convex Hausdorff  

   topological linear space [2]. 

 

Definition (1.1.5): [11] 

            ⊂  𝑀  is said to be  ــ bounded if            , where 

               Sup {             } is  the  ــ diameter of  . 

Example (1.1.1): 

    𝑀                    | |    | |  | |                         

Any pair         in 𝑀 , then 𝑀  is modular space since it satisfies the 

conditions: 

(i)          ⟺  | |  | |   ⟺             
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(ii)  (      )            |  |  |  | 

                                    | | | |  | |    …| |    

                                    | |   | | 

                                                                

(iii)  (             )                   

                                     |     |  |     |  

                                     | |  | |  | |  | | 

                                                  . 

Then 𝑀   𝑀 the modular space with respect to  . 

 

 

Example: [1.1.7]  

                    As a classical example we mention to the Orlicz’ modular 

defined for every measurable real function   by the formula 

 

  (( ) ) ( )  , f f t d t    
 

 

where μ denotes the Lebesgue' s  measure in ℝ and ϕ : ℝ → [0, ∞)  is 

continuous. We also assume that ϕ(u) = 0 if and only if  u = 0 and  

ϕ(t) → ∞ as t → ∞. 

Here, we omit the details about this space because it is not  within the 

thesis objectives. 
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1.2 Convergences in Modular Spaces 

 

In the following we recall some concept, facts of convergence in a 

modular space 𝑀      

Definition (1.2.1): [11] 

          A sequence     ⊂ 𝑀 is said to be  -convergent (or strongly    

convergent) to     𝑀  and write   

 
     if           as n  . 

Definition (1.2.2): [11] 

              A sequence      is called  ــ Cauchy whenever  (     )  0 

as,      . 

Definition (1.2.3): [11] 

          𝑀  is called  ــ complete if any  ــ Cauchy sequence in 𝑀  is  ــ convergent. 

Definition (1.2.4): [11] 

                 A subset   of 𝑀  is called  ــ closed if for any sequence      

subset of      convergent to      𝑀 , implies that      . 

 

Definition (1.2.5): [11] 

                 A  ــ closed subset   of 𝑀  is called  ــ compact if any sequence  

       a subset of   has a  ــ convergent subsequence. 

)1.2.6Definition ( 

is compact if    𝑀  𝑀  a modular space. Then a mapping 𝑀 be   Let 

𝐴                     𝑀  is compact whenever  𝐴 the closure of 
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Definition (1.2.7):  

Let 𝑀  be a modular  linear space, and 𝐴 a subset of 𝑀 . We say that 𝐴 is 

an approximatively compact if for every  𝑀 .  and every sequence      

in 𝐴 with                    𝐴 , there exists a subsequence (   
) 

converges to an element of 𝐴. 

Since a modular space is metric space then we have: 

 

Proposition (1.2.1):  

          Every convergent sequence in modular space has a unique limit. 

 

Proof: It is clear. 

 

1.3 Dual of a modular space 

Definition (1.3.1):   

        let   be a  linear functional with domain in a modular  space 𝑀   and 

range in the scalar field 𝐾  : (𝑀 )  𝐾   is  bounded linear functional  

such that for all         ,            . The set of all bounded linear 

functional on 𝑀 ,     
  is linear space with point-wise operations. In the 
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following, we reform some concepts about dual space in the setting of 

modular spaces, we being with following: 

 

Proposition (1.3.1): 

 Let       
 , define   :    

                 {           

 }      

i.                          | |    

ii.                       

iii.               .            

Proof:  

               sup {      }     {      }                                   

For (ii)             {          }  

                               {           }   

                                 {      }      {      } 

                                        

For(iii),  

               {            }                             .             
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A modular   defines a corresponding modular spac, i.e the 

space   
 given by 

   
  {  𝑀                     } 

 

Theorem (1.3.1): 

    
 is complete modular space. 

Proof:  

      We consider an arbitrary Cauchy sequence      in    
 and show that 

     converges to a       
 Since       is Cauchy, for every     there 

is an L such that  

                                                 ,             , 

For any     𝑀  and     , this implies that 

   |       |  |        |                           … (2.1)    

Now, for any fixed point   and given    we may choose      so that 

            . 
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 Then from (2.1), we have |       |     and       is Cauchy in 𝐾. 

By completeness of 𝐾,       converges, say,      . Clearly, the limit 

  𝐾 depends on the choice of     𝑀 . 

This defines a functional  : 𝑀  𝐾 where      .The functional   is 

linear since                                   

                     . We prove that   is bounded and     , 

that is             

Since (2.1) holds for every     and      , we may let    . 

Using the continuity of the modular, then for every     and all    𝑀 .  

|      |  |       
   

   | 

                                                              
   

|       | 

                                                                                                   …(2.2) 

This shows that        with     is a bounded linear functional. Since 

   is bounded,             is bounded, that is,       
   

Furthermore, if in (2.2) we take the supremum over all   of modular 𝟣, 

we obtain  

                                                            .  

Hence              This completes proof. 
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Definition (1.3.2):  

A sequence      in a modular space 𝑀  is said to be weakly  

  convergent if there is an    𝑀     such that for every      
   

                                 This denoted by   

 
  . 

 

Proposition (1.3.2):  

In a modular space 𝑀 , every convergent sequence is weakly convergent. 

Proof:  

By definition,       means           and implies that for every 

P 𝑀  
    |          |  |       |                 This 

shows that    

 
  . 

          Note that, the converse of proposition (1.3.2) is not  

     necessary true. To showing this recall the usual case in a normed 

space.In the following some other needed properties of weak convergence 

are given: 
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Proposition (1.3.3):  

Let      be   weakly convergent sequence in a modular space 𝑀   say 

  

 
   Then: 

i. The weak limit   of       is unique. 

ii. Every subsequence of       converges weakly to  . 

 

 

Proof:  

       For (i), suppose that     
 
    as well as    

 
    . Then P           

as well as P          . Since (     ) is a sequence of numbers, its 

limit is unique. Hence            , that is, for every P     
 We have 

                      .This implies         and shows that 

the weak limit is unique. Part (ii) follows from the fact that (     ) is a 

convergent sequence of numbers. So that every subsequence of (     ) 

converges and has same limit as the sequence. 

 

Definition (1.3.3):  

𝐴 a subset of a modular space 𝑀  is said to be weakly compact if every sequence in 𝑀  has 

a weak convergent subsequence 
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1.4 SomeTypes of Mappings of Modular Spaces 

Let 𝑀  and    be two modular space, we state the following: 

Definition (1.4.1): 

         Let 𝑀  be a modular space and      is the class of all subset of 𝑀 . 

Then  : 𝑀       is called set-valued mapping if ∀     𝑀 ,    ⊂ 𝑀 . 

 

 

Definition (1.4.2):   

              A set-valued mapping    is upper semi continuous (shortly, 

      ) if and only if the set {  𝑀              } is closed for each 

closed subset   of   .    is a closed subset  𝑀    . 

 

Definition (1.4.3): 

     Let   be a set- valued mapping on 𝑀  and    𝑀 ,   is called a fixed 

point of   if      . 

(When   is single valued,   is fixed point of   if      , we denote to the 

of all fixed point of   by 𝐹   . 

)1.4.4Definition ( 

  invariant under the mapping is an  𝑀 spaceof the modular  𝐴 A subset 

  𝐴     𝐴  under the mapping when     𝑀  𝑀  
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Definition (1.4.5): [34] 

          Let   be a set-valued mapping on 𝑀 . A sequence      of points of 

𝑀  is said to be an iteration of   at   if            , for each  

           (when   is single valued the iterative sequence of   at   is 

          , for each              ).    

Definition (1.4.6): [26]         

        Let 𝑀  be a modular space and 𝐴 subset of 𝑀 ,  : 𝐴   𝐴,   is 

called contraction mapping if there is a fixed h          for all  ,   in 𝑀 

                      

And if h     then   is called a non–expansive mapping.  

Proved Banach’s contriction principle in modular metric space, here we 

reform it in modular spaces [25]. 

 

Theorem (1.4.1): [26] 

        Let 𝑀  be a complete modular space and  : 𝑀   𝑀  such that     

                   , for all  ,      𝑀 , where        . Suppose 

that        𝑀  and there is some   𝐴           . Then,   has 

unique fixed point z  𝑀  and the sequence(   

 ) converges to  . 
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CHAPTER 2 

BEST APPROXIMATIONS IN 

MODULAR SPACES 

 

2-0 Introduction 

 

      In this chapter there are three sections, in section one the concept of 

best approximation of  a point   by a non-empty subset A of a modular 

space 𝑀  is introduced . And study it’s existence. The existence of such 

element or not characterize three sets: proximinal, semi-Chebysev and 

Chebysev. Examples for these types and some conditions for existence of 

proximinal and Chebysev sets are given.  Section two includes a studying 

the relation between best approximation and fixed point theorems, and 

proving a version of using Himmelberg’s fixed point theorem of set-

valued mappings, and then use it to prove that  

Ky Fan’s theorem in best approximation for set-valued mappings, we 

present Schauder’s fixed point theorem for continuous mapping defined 

on a compact subset of a moduler space as a corollary.  We illustrate an 

example for utility of compactness in Ky Fan’s theorem. In section three, 

the definition of an approximatively compact is reformed in modular 

spaces and some it’s properties are given. This concept has an efficacious 

in many results about best approximation.   
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2.1 Properties of the Best Approximations Set of 

Modular Spaces  

      

Definition (2.1.1): [2] 

             Let 𝑀  be a modular space and   𝐴⊂ 𝑀 , an element   u 𝐴 is   

called the best approximation for   in 𝑀  if  

                                        𝐴          {          𝐴}  

We shall denote by  𝐴     or  𝐴 the set of all elements of best 

approximation of   by     , that is  𝐴      {  𝐴         

        𝐴    }.   

Proposition (2.1.1): 

         Let 𝑀  be a modular space and   𝐴 ⊂ 𝑀         𝑀   [   ],       

then,  𝐴    is closed and bounded set.  

Proof: 

            Suppose that u is an accumulation point of  𝐴    and    

(      )     

           (      )    (      )   

                    (      )        

                     inf {         𝐴}      

                       𝐴  
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Since     𝐴                          𝐴              , 

which means  A               

                                                                

                𝟣  

Proposition (2.1.2): 

                 Let 𝑀  be a modular space and   𝐴 ⊂ 𝑀 . If     𝑀  

[   ]  is convex Then 𝛲𝐴    is convex set. 

Proof: 

            Let           and  1,  2   𝛲𝐴    then  

 ( 1 –             , 𝐴 ) and  ( 2 –             𝐴  

   ( 1 –                 𝐴    

        ( 2                    𝐴  

  (  1 –                  𝐴  and   ((1    2 –                   

    𝐴  

  (  1 –           ((1  )  2 –                  𝐴  

But   (  1 –       (1  )  2 – (1  ))       (  1 –                 2 

         )       𝐴                                                                 …(2.1) 

Now, since  1,  2   𝛲𝐴    ⊂ 𝐴  then 1,  2   𝐴     𝐴 is convex set  

So   1         2   𝐴 therefore 

                                 1         2 –        …(2.2) 
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By (2.1), (2.2), we have       1         2 )        𝐴  

Hence    1         2   𝛲𝐴   . then 𝛲𝐴    is convex set.  

 

Definition (2.1.2): [2] 

               Let 𝑀  be a modular space and   𝐴 ⊂ 𝑀 .. 𝐴 is called 

proximinal if for all    𝑀 , there exist a u 𝐴 such that                               

                                                      𝐴 . 

Definition (2.1.3): [2] 

          Let 𝑀  be a modular space and   𝐴 ⊂ 𝑀 .. 𝐴 is called semi-

chebysev if there most one u 𝐴 satisfying  

                                          𝐴   ∀   𝑀  

Definition (2.1.4): [2] 

          Let 𝑀  be a modular space and   𝐴 ⊂ 𝑀 . 𝐴 is called Chebyse  

if ∀   𝑀 , there is an unique element  u 𝐴 such that 

                                                              𝐴            

Example (2.1.1): 

            Consider 𝑀    2 
, where    ( 1 ,  2 ). Setting  𝟣 𝟣 , and 

   𝟣   , we have  
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The value, will be the minimum if and only if    𝟏. Thus the unique 

best approximation of   by 𝐴: the closed linear subspace spanned by  . 

And is Chebysev set. 

 

Example (2.1.2): 

         Consider 𝑀     2
 with        max {⎸ 1 ⎸, ⎸ 2 ⎸} where    ( 1 , 

 2 ). Setting    𝟣 𝟣 , u   𝟣   , we have            𝟣    𝟣  

    {|𝟣    𝟣|}. 

There exists infinitely many best approximation of   by 𝐴: The closed 

linear subspace spanned by , that is       {        }. And 𝐴 is 

proximinal set. 

 

Proposition (2.1.2): [32] 

 

         A Hausdorff topological vector space is locally compact if and only 

if 𝐴 is finite dimensional. 

 

Proposition (2.1.3):  

        If 𝑀  is modular space and 𝐴 is a finite dimensional subspace of 𝑀   

then is 𝐴 proximinal subspace. 
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Proof: 

         Let 𝐴 be a finite dimensional subspace of a modular linear 

space 𝑀 , and   𝑀 . The space Q { }   𝐴 is finite dimensional. By 

proposition (2.1.2) Q is locally compact. 

Clearly,      𝐴      . If    𝐴 and              

⟾ |         |              

⟾ |         |       

⟾                      

⟾                 

⟾            

Hance, to find    𝐴 such that            𝐴 , let  

𝐾 {   𝑀             }. Since, by the previous observation, 𝐾 is 

compact set, then there exist    𝐾 such that, therefore 𝐴 is proximinal 

set. 

Definition (2.1.5): 

        Let 𝑀   be a modular space. 𝑀   is said to be strictly moduler space 

when                   ⟺  u         . 

Proposition (2.1.4): 

       If 𝑀   is a strictly moduler space and 𝐴 is a finite dimensional 

subspace of  𝑀 , then 𝐴 is Chebysev set. 
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Proof: 

      Since 𝑀   is modular space, and 𝐴 is finite dimensional subspace of 

𝑀, then by proposition (2.1.3) 𝐴 is proximinal set, so there is a linear m 

 𝐴 such that  

            𝐴  

If    𝐴⟾        𝐴           

                     ⟾           

                      ⟾     

                      ⟾  is unique and then 𝐴 is Chebyse . 

We consider if   ∉ 𝐴 

If { 1,…….,    } is a base for 𝐴, suppose that, and with        

        

Since 𝑀    is strictly moduler space, then for some      

Since   ∉𝐴 ⟾    𝟣  

Since  1,……,     are linearly independent, then         for   𝟣, ,……., , 

and thus     ⟾ 𝐴 is Chebysev. 

 

2.2 Ky Fan Type of Invariant Approximation  

Now we give the following concept in modular space: 
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Definition (2.2.1): 

          Let 𝑀  be a modular space and   𝐴 ⊂ 𝑀 .  𝐴    called almost 

convex if for any             and any finite set of points of 𝐴  𝟣, 

 2,……..,        𝐴                       𝑀  such that         

      for all  , and   {         } ⊂  𝐴. 

 

Theorem (2.2.1): 

         Let   𝐴  be a compact subset of modular space 𝑀  with modular 

function    and    𝐴      𝐴     be an           mapping (   𝐴 is the 

set of all non ـ ـ empty closed and bounded subsets of 𝐴) with ( ) is convex 

for all   in some dense almost convex   of 𝐴. Then   has a fixed point.  

Proof:  

            For each ϵ > 0, let 𝐹 = {   𝐴:   ( )+  ̅ (0) } 

To prove the existence fixed point of   it is sufficient to show  𝐹   . 

Since for any    ,𝐹  𝐹 , it is sufficient, by the compactness of 𝐴, to 

show that each 𝐹 , is closed and nonempty. So let    . Define the set-

valued mappings 

   : 𝐴  2 𝐴    ( )= (   ̅ (0) )   𝐴 

and   : 𝐴  2𝐴   ( ) = (   + ̅ (0))   𝐴, for   𝐴 

Then   =        ,    is a closed subset of 𝐴 𝐴 since  
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   = {      𝐴 𝐴  -     ̅ (0)} and since  ̅ (0) is closed subset of 

𝐴 𝐴 and 𝐴 is compact  is follows that both    and   are        ). Hence 

   is        ).and    is closed subset of 𝐴 𝐴. 

Let   be the diagonal in 𝐴 𝐴. Then   

𝐹  is the projection of the compact set       onto the domain of   . It 

follows that 𝐹  is closed. Now choose         𝐾 such that 𝐾 ⊂{ 

 ̅ (0): 1    }, and  =   {       }⊂𝐾. Define  ⊂    by  = 

         . For each     ,       is closed, convex (since  ⊂ 𝐴) and 

nonempty (since   +  ̅  contain some   ). Moreover,   is a closed subset 

of     (since    is closed). Thus    has a fixed point by         ′  

fixed point theorem [18], say,  . And   belongs to 𝐹 , which is not 

empty. 

Theorem (2.2.2): 

        Let   𝐴 convex subset of complete modular space 𝑀  with 

modular function. Let  :𝐴    (𝐴) an        ) such that  ( ) is convex 

for all   𝐴 and  (𝐴) is contained in some compact  subset   of 𝐴. Then 

  has fixed point. 

Proof: 

        Let       and 𝐾  ̅. Then 𝐾 is compact,  ⊂𝐴 and     ⊂  ⊂

    Let        . Then   is relatively closed subset of    . 

Consider  ̅ ⊂      with closure relative to  𝐾  𝐾.  is a set-valued 

mapping from 𝐾   𝐾, i.e.,  ̅   𝐾  𝐾       ̅   𝐾  closed and 

contains . Moreover  ̅(𝐾) ⊂   ⊂   and   ̅       ; so  ̅( ) =H( ) 

=  ( ) for all     . Thus by Theorem (2.2.1)  ̅ has fixed point say   in 

𝐾. But    ̅( ) ⊂ C ⊂ B. So    ( ). Hence   has fixed point. 
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Definition (2.2.2): 

Let 𝑀   be a modular space with modular function   and    𝐴 ⊂ 𝑀  

for      ( )  {  𝐴              𝐴 } is the set of all best 

approximation of   by 𝐴 and the set-valued mapping  : 𝑀  2𝐴 is said to 

the metric projection on 𝑀 . 

 

Theorem (2.2.3): 

             Let 𝐴 be a compact convex subset of a convex modular 𝑀  and 

 : 𝐴 𝑀  be a continuous function, then there exist a   𝐴 such that 

 (      )          𝐴                                                            (1.4)      

Proof: 

          Let  : 𝐴  + 
be defined       in f{         𝐴}. Since   is 

continuous on 𝐴 for each    𝐴, then there exist a   𝐴 such that 

      (      )(because𝐴 is compact). Define a set valued mapping     

 :𝐴 2𝐴 by:      {  𝐴       (      )}  𝐴    

(as  above ). We will prove that  

i.       is closed set; 

ii.      is convex set; 

iii.   is        ). 

For (i), suppose that   is an accumulation point of     , then there exists 

a sequence (         such that      . And we have 

 (      )   (             )         (       )      . 

 Thus         , and then      is closed set. 
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For (ii), suppose that       and  1,  2       ⊂𝐴. Since 𝐴 is convex, 

then                                    

   1       2 𝐴 and      𝐴   (  1       2  ) 

Now,  

                                         

      

                  

And this prove that       is convex set. 

 For (iii), let   be a closed subset of 𝐴, we will prove that        

{  𝐴          } is closed subset   of 𝑀   . Suppose that      

 𝐴 be an accumulation point       , then there exists a net      

         converge to    . This implies that there is a net             

 . That is,         and             so,  (        )         for 

each  . Since 𝐴 is compact and   is closed subset of, then   is compact, 

so there is a        and a subnet (    of(   . Hence,            

  (        )        for each    

  (        )       , which means that           . This 

implies that          .  Thus     is          set-valued mapping. 

Since 𝐴 is compact and   𝐴 ⊂ 𝐴, then   𝐴  is contained in compact set. 

Therefor by theorem (2.2.2) there is a    𝐴 such that        that is  

 (        )          𝐴 .  

To illustrate the utility of compactness condition in Theorem (2.2.3), we 

have the following: 
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Example (2.2.1):  

 

Consider the unit ball      in modular space    with convex modular 

function      √∑ |  |
  

 , where             and | |is absolute 

valued.       is closed and bounded but non-compact with topology 

induced by  .                                                          

      √  (    )
 
                 

Clearly,           

Suppose that   has a fixed point  , so,  (    )         this implies 

that                 . Which is a contradiction. 

 
 

2.3 Approximately Compactness and Best Approximation 

 

We begin with the following results: 

 

Proposition (2.3.1): 

      If 𝐴 is compact subset of a modular space 𝑀 , then 𝐴 is an 

approximately compact. 

Proof: 

        Let   𝑀  and      be a sequence in 𝐴 with  

    
   

             𝐴  
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Since 𝐴 is compact set, then by Definition (1.2.5) there is a subsequence 

(   
) of converging to      an element in 𝐴, which proved the 

proposition.   

The converse of the above proposition is not true. To explain this fact, we 

need the following definition and then show a general statement. 

 

Definition (2.3.5): 

           A modular space 𝑀  is called uniformly convex if for any  

> 0, there exists a () > 0, such that if  

     =      = 1 and       , then  (
 

 
     )     . 

Example (2.3.1)Consider the unit closed      𝐴  {   𝑀       

 }.in uniformly convex complete  modular space       with convex 

modular function      √∑ |  |
  

  , where             and | |is 

absolute valued on real numbers  . 𝐴is  not compact with topology 

induced by   butapproximativley compact 

Proposition (2.3.2): 

          A closed convex set 𝐴 in an uniformly convex modular space 𝑀   

is an approximativley compact. 

Proof: 

         Let  𝑀  and (    𝐴 such that          ( , 𝐴). Then  

sup      <. Since 𝐴 is closed and convex, then there exists a   𝐴 and 
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a sequence (     𝐴 such that     . Since                  

 , then          .So  

           
   

                𝐴          

that is        | =   ( , 𝐴). By definition of <  >, we get      

     𝐴         . Since 𝑀  is an uniformly convex modular space, 

then we get          , Then      𝐴, then 𝐴 is an 

approximately compact. 

Example (2.3.2): 

       Consider the unit closed      𝐴  {   𝑀        }. In uniformly 

convex complete convex modular space       with convex modular 

function      √∑ |  |
  

 , where             and | |is absolute 

valued on real numbers  . 𝐴 is  not compact with topology induced by   

but approximately compact. 

Theorem (2.3.1):  

          If 𝐴 is an approximatively compact subset of modular space 𝑀 , 

then 𝐴 is a proximal and closed. 

Proof: 

        Let    𝑀                of      𝐴   from the set of the numbers  

{            𝐴} 

       extract a sequence (         such that 

                   𝐴 , 
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Since 𝐴 is an approximatively compact, then we can extract from (    a 

subsequence converging to a point     𝐴  We then have by the 

continuity of   

         (     
   

   
)     

   
 (     

)       𝐴  

When         , which complete the proof of proximinality. Finally, let 

  is an accumulation point of 𝐴, then there exist a    𝐴 such that  

              𝐴      

So     𝐴     𝐴    closed set.⦁ 

 

        Conversely, if 𝐴 is proximal set, then it is not necessary that 𝐴 is an 

approximatively compact. To illustrate this we give the following 

example. 

Example (2.3.3):  

Consider 𝑀  as in Example (2.3.1) and let 𝐴 be the sequence defined by 

   = 0 and     (  
 

 
            ) 

𝐴 is a proximal set (since for every  𝑀 , the sequence of non-

negative numbers 〈       〉 is convergent, whence inf       = 

     𝐴 ), 

but it is not approximately compact (since for              𝑀 , 

we have 

                   𝐴 , 

But <  > has no convergent subsequence, by virtue of the 

relation       –        (for i   
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Theorem (2.3.2):  

         Let  𝐴 be approximatively compact subset modular linear space 

𝑀 . If                  . Then    maps 𝑀   into    𝐴    is         

 

Proof:  

          By virtue of Theorem (2.3.1), 𝐴 is proximal set, hence       is non 

 empty for each   in 𝑀 . By [proposition 2.1.1],       is closed and ــ

bounded thus        maps 𝑀 into    𝐴 . 

Now, let 𝐾 be an arbitrary closed subset of 𝐴. We show that the set 

  {  𝑀           𝐾   } 

Is closed set, which will complete the proof ;  

Let (    be a sequence in  , converging to an element   𝑀 .  

Since 〈  〉   , then there exists a sequence       𝐴 such that    

       𝐾,            

By          ,           , we have  

      𝐴             
   

      𝐴     
   

         

      𝐴                
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                𝐴  

Thus                       𝐴 .Consequently, being an 

approximatively compact, then there exists a subsequence (   
  of (    

converging to an element   𝐴, which implies that there exists a 

subsequence (   
  of(   . 

Now, since   𝐴, then 

  ( , 𝐴)         

   (     
    

   )      

  (     
)   (   

   )     

  (     
    

    
)    (   

   )   

  (     
)   (   

    
)   (   

   )   

   (     
)    (   

 𝐴)   (   
   ) 

                             ( , 𝐴)            

For  ,         =  ( , 𝐴), that is       . On the other hand, 

since 𝐾 is a closed and 〈   
〉 M,          

    we have 

         𝐾, whence x B, which complete the proof.   

 

Theorem (2.3.3): 

          Let   𝐴                    compact subset of a modular space 

𝑀 , and    : 𝑀      be the metric projection of 𝑀  onto 𝐴. Then 

         {            } is compact for any compact subset   of 𝑀.  
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Proof:  

         Let 〈  〉 be a sequence in      . Then there is a sequenes 〈  〉  

   such that for each   

          , that is                 𝐴 . 

Since   is compact, then we may assume that there is a     with     . 

Now,        𝐴      {           𝐴} 

    {          𝐴}       𝐴  

thus     𝐴        𝐴 , and  

      𝐴                         

                   

                𝐴  

therefore     𝐴                          𝐴  

        𝐴 
   

    
   

           
   

           
   

      𝐴  

     𝐴      
   

                𝐴  

     𝐴      
   

        

Since 〈  〉          𝐴 and 𝐴 is an approximatively compact set, then 

the above relation implies the existence of    𝐴 and subsequence〈   
〉 of 

〈  〉 with    
  . This prove that       is compact subset of  𝑀    

 

 

 



 
35 

CHAPTER 3 

FIXED POINTS, COMMON  

FIXED POINTS AND  

BEST APPROXIMATIONS 

 
 

3-0 Introduction 
 

    The purpose of this chapter is to study the existence of an invariant 

best approximation in the setting of a modular space for single valued or 

set-valued mappings by weakening the hypothesis in some known results 

or form new cases which guarantee the existence of an invariant best 

approximation. These results hold by applying some fixed point theorems 

and common point theorems. This chapter contains three sections where 

in section one, there is a generalization of fixed point theorem for non-

expansive mappings and the use it to extend and unified the above results 

[43], [14] and [2]. In section two, two common fixed point theorems for 

 -non-expansive mapping defined on a star-shaped weakly compact 

subset are proved,  Here the conditions of affineness and demi-closedness 

and Opial's property play an active role in the proving our results will be 

general case for the other results. The object of section three is to prove 

the existence of best approximations by applying a common fixed point 

theorem without any one of star-shapedness, affineness and commuting 

conditions by using property of non-convexity which is given by Dotson 

[13], say ( )-convex structure. Therefore the results of this section will 

be the extension of Nashine's results [33] 
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3.1 An Extension of                      

Theorem in Modular Spaces 

  

        Mongkolkeha, Sintunavarat and Kumam [26] showed that existence 

of    𝑀    with          is necessary to guarantee fixed point. The 

result in Proposition (2.1.1) also hold, if we replace this condition by 

boundeness of modular function  .  

Definition (3.1.1): 

        Let 𝑀  be a modular space and   𝐴 ⊂ 𝑀 .   : 𝐴   𝐴,   is called 

Banach operator of modular space if  

                      

for all     𝐴 where h is constant with 0      1. 

Proposition (3.1.1):  

            Let 𝑀  be a modular space and   𝐴 ⊂ 𝑀 .  : 𝐴  𝐴 a 

continuous Banach operator.    𝐴          . Then   has fixed 

point in 𝐴   

 

Proof:  

        Since                        , by adding          to both 

sides, we get 

                                                              

which can be rewritten as  



 
37 

                                                           

                    [     ]                           

                       [   ]
  [                      ]  

Now define the function  : 𝑀       by setting  

                         ,   𝑀   

Thus,                    . Therefore if    𝑀   and,      with 

      

                  ∑  (          )                  
     

In particular, by taking     and letting     we conclude that  

∑  (           )          
       

This implies that {   }  is Cauchy sequence, since   𝐴 ̅̅ ̅̅ ̅̅ is complete there 

exist    𝑀   such that               and since   is continuous  

      
   

       
   

          

Thus    is fixed point of     

             The above theorem Remains true when 𝐴 is closed subset of 

modular space 𝑀  and    𝐴 ̅̅ ̅̅ ̅̅ is compact this fact with Proposition (3.1.1) 

we get the following  extending of Dotson's theorem ([13], Theorem 2) 

for non-expansive mappings in modular spaces. 
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Theorem (3.1.1):  

        Let 𝑀  be a modular space and   𝐴 ⊂ 𝑀  and 𝐴 a closed and star 

-shaped is non ــ expansive mapping with   𝐴 ̅̅ ̅̅ ̅̅  is compact and exist 

   𝑀              , then   has a fixed point in 𝐴. 

Proof:  

            Let   be a star –center of 𝐴, for each     define     by  

                                    𝐴   

when {  } is a sequences of real numbers with 0     and 

          . Clearly,    : 𝐴   𝐴, for each    

Now, since  is non-expansive, for any     and    𝐴, we get 

           
         

  [(               )                      ] 

                    [(               )  

                                       ] 

     (                   ) 

                     

            

Since   is continuous mapping then   is continuous, since   𝐴 ̅̅ ̅̅ ̅̅  is compact 

then (1 – hn)   + hn    is compact. Therefore,    Proposition (3.1.1) there 

exist     𝐴 such that            . By compactness of   𝐴 ̅̅ ̅̅ ̅̅ , {   }has 

a convergent subsequence {    
    } with           

    in 𝐴. Since  

   
    

   
 (     

)     
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and          
  , we have    

  . Consequently           
  ■ 

In the following example, we say that theorem(3.1.1) need not true if 

either 𝐴 is not closed, star-shaped or   𝐴 ̅̅ ̅̅ ̅̅  is not compact. Consider  

𝑀      and        | |  | |, for all  ,      . 

Example (3.1.1):  

         Let A = {(   )  𝑀 : 0 <   < 1, 0 <   < 1} and  : A  A 

defined by  (   ) = (  / 3    / 4), (   )  A. 

It is clear that A is not closed and   is non-expansive mapping and has no 

fixed point. 

Let ( ,  ), (z,  )  A 

( ( , ) S( , )) (( , ) ( , ))
3 4 3 4

v u z y
S v u z y      

                                 
1

(( ),( ))
2

v z u y      

                                 
1

(( , ) ( , ))
2

v u z y    

                                 (( , ) ( , ))h v u z y   

and (0,0) is fixed point of  . But (0,0)  A. ■ 

Example (3.1.2):  

        Let A = 𝐸  𝐹, where 𝐸 = {(   )  𝑀 : 0     1, 0     6} and            

𝐹 = {(   )  𝑀 : 3     4, 0     6}, and   : A  A defined by  
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(2, ) if ( , )
S( )

(1, ) if ( , )

u v u E
v u

u v u F


  


 

It is clear that   is non-expansive mapping and has no fixed point. 

A has no star-shaped since    A, ( , )  A, then hn  (   )+(1 – 

hn)  A, where hn  (0,1) and lim
n 

hn = 1. 

Example (3.1.3):  

        Let A = {(   )  𝑀 : 0     , 0     1} and   : A  A 

defined by  (   ) = (  + 1, ), (   )   . Then S( )A  = {(   )  𝑀 : 1 

   < ,   0     1}. 

It is clear that   is non-expansive mapping, has no fixed point, and S( )A  

is not compact. 

Theorem (3.1.2):  

           Let 𝑀  be a modular space and   𝐴 ⊂ 𝑀  and   : 𝑀    𝑀  a 

non ــ expansive mapping with a fixed point    𝑀               

𝑀                      . If 𝐴 is closed  ـ invariant of 𝑀   and  the 

restriction  |𝐴 is compact , then the set          

Proof:  

         Let        𝐴 . Then there exists sequence 〈  〉in 𝐴 such that 

                . Which implies that 〈  〉 is bounded sequence. By 

hypothesis, {   
̅̅ ̅̅ ̅̅ } is a compact subset of 𝐴and so {   } has a convergent 

subsequence {    
    } with             

  , say, in 𝐴. 

Therefore,  
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  (       
)     

   
  (     

)     
   

           

Hence           and then          This complete the proof⦁ 

  

Using Theorem (3.1.1) and Theorem  (3.1.2) to prove the following: 

Theorem (3.1.3):  

           Let 𝑀  be a modular space and   𝐴 ⊂ 𝑀          𝑀  𝑀 , 𝐴 

is non – expansive mapping with a fixed point    𝑀               

𝑀                          𝐴  is a closed  with  |𝐴 compact,   𝐴   𝐴  

and        is star-shaped, then there exist an element in       which also 

a fixed point of  . 

Proof:  

              Let 𝑍       , by proposition (3.1.2) then 𝑍  , let    𝑍.  

    Set            𝐴 . Then 

                       𝐴  

  since     𝑍 then     𝐴 and   𝐴    𝐴 therefore      𝐴.  

Now, since                                                              … (3.1)                                                                     

 and                         , also                    

                                                                            … (3.2) 

Therefore by (3.1) and (3.2), we have  
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hence,                     

Thus                          𝐴 , therefore      𝑍  

If 𝑍 is singleton, i.e., 𝑍  { } and      𝑍 then     .  

Now, by definition  |𝐴 then   𝐴 ̅̅ ̅̅ ̅̅  is compact. Since 𝐴 is closed and have 

all conditions in theorem (3.1.1) then exist     𝑍 such that  𝑍    .         

                                

3.2 Common Fixed Point for Commuting Mappings  

 

Definition (3.2.1): 

       Let 𝑀  be a modular space and  ,  : 𝑀   𝑀  be a mappings then   

is said to be   ــ contraction if there exists h       such that  

                    ∀  ,   in 𝑀   If h   in  then   is called  ــ 

non– expansive  mapping. 

Definition (3.2.2): 

      A two mappings   and   on 𝑀    are said to be commute if      

     ∀     𝑀   

Proposition (3.2.1): 

        Let   be a continuous self-mapping of Banach operator of 𝑀   , if  : 

𝑀  𝑀 is  - contraction mapping which commutes with   and 

 (𝑀   )    (𝑀   )  and      𝑀              (    )    then  

𝐹    𝐹     singleton. 
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Proof: 

      Suppose P        for some    𝑀 , define  : 𝑀   𝑀  by 

          ∀     𝑀  then  (    )      and  (    )        for all   

  𝑀  so  (    )     (    ) ∀     𝑀  and   commutes with   

moreover               ∀     𝑀  so that  

 (𝑀   )    (𝑀   ) finally for any           we have ∀  ,  in 𝑀 : 

 (         )               (         )  Thus holds this 

proof. 

 

The following lemma is needed. 

Lemma (3.2.1): 

     Let 𝑀 be a modular space,  : 𝑀    𝑀  be mapping, and    𝑀   . If 

                          ∀  𝑀              , then   

is a fixed point. 

Definition (3.2.4): 

        Let 𝑀  be a modular space and   𝐴 ⊂ 𝑀  and  : 𝐴 𝑀    be a 

mapping,   is called demi-closed of     𝐴, if for every sequence        in 

𝐴 such that   

 
     and         𝑀  then      and   is demi-closed 

on 𝐴 if it is demi-closed of each   in 𝐴.  

Theorem (3.2.1):  

      Let   𝐴 weakly compact subset of Banach operator . Let   be a 

continuous and affine mapping on 𝑀  with p 𝐴  𝐴,  : 𝐴  𝐴 be an  - 

non – expansive mapping commutes with  . If 𝐴 is star-shaped with 
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respect to  ,and there is some    𝐴  (    )    and       is demi-

closed on 𝑀 , then 𝐹    𝐹     . 

Proof:  

       Since 𝐴 is star-shaped with respect to   𝐴,  then  : 𝐴   𝐴, we  

define    on 𝐴 for any   in 𝐴 by,                    and there is 

   𝐴, and the sequence        as     ,         such that 

              𝐴 ∀  ,     𝐴. It is clear that    𝐴  𝐴.  

Note that   𝐴  𝐴 and    𝐴    𝐴 . Since   commutes with   and   

is affine mapping, for each     𝐴. 

                     

                           

             (           ) 

                 

    commutes with  . Further, we observe that for each     ,                                 

  is   - non-expansive mapping, 

                                         

                                       

                                       

∀  ,    𝐴 hence   is  - contraction. Thus by proposition (3.2.1), 

there is a unique    𝐴 such that           for all       . 

 Since 𝐴 is weakly compact, there is a subsequence (   
) of sequence 

     which converges weakly to some    𝐴.  
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Since   is a continuous affine mapping then   is weakly continuous and 

so, since S    
                   

   
  and         . 

Now,                    

              (
                

   
)  

         
                      

   
 

         
                    

   
 

         
              

   
  

       
       

   
         

         (
 

   
  )         

Therefore          (
 

   
  )         

Thus          |
 

   
  |          |

 

   
  | [           ].  

Since 𝐴 is bounded,      𝐴 implies (      ) is bounded and so by the 

fact that      , 

We have              

Now, since     is demi-closed then           and thus     

       . Hence, 𝐹    𝐹     . 

 

Another common fixed point theorem will be given for opial space. 
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Definition (3.2.5):  

           A modular space 𝑀  is said to be Opial of modular space if for 

every sequence      in 𝑀   weakly convergent to    𝑀   the inequality 

                                   Holds for all    . 

Theorem (3.2.2): 

          Let  𝐴 weakly compact subset of Banach operator  . Let   be a 

continuous and affine mapping on 𝑀  with   𝐴  𝐴,  : 𝐴   𝐴 be  - 

non-expansive mapping commutes with  .    𝐴    (    )    and 

the modular space 𝑀  is Opial.  If 𝐴 is star-shaped with respect to  , then 

𝐹    𝐹     . 

Proof: 

        Since 𝐴 has star-shaped then  :𝐴  𝐴 and there is     𝐴 and the 

sequence     , as    ,                         𝐴 for 

all   𝐴. Now, define   on 𝐴 for any   in 𝐴 by,            

        and there is   𝐴, it is clear that    𝐴  𝐴. Note that 

  𝐴  𝐴  and    𝐴    𝐴 . Since   commutes with   and   is affine 

mapping, for each    𝐴.  

                    

                            

                             

                  

Thus each    commute with  . Further observe that for each     1,   is   

– non-expansive mapping. 
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∀    𝐴, hence     is  - contraction. 

Thus by proposition (3.2.1), there is a unique    𝐴 such that      

          for all     1. Since 𝐴 is weakly compact, there is a 

subsequence       of sequence       which converges weakly to some 

   𝐴. Since   is a continuous affine mapping then   is weakly 

continuous and so we have : 

                       

Since       
                

   
 and         , we have:  

                    

                            (
               

   
) 

                       
                       

   
    

                    

   
  

                        
              

   
  

                        
       

   
         

          (
 

   
  )          

Therefore           (
 

   
  )        . 

Thus             |
 

   
  |          |

 

   
  | [           ]. 



 
48 

Since 𝐴 is bounded by 𝐴 is weakly compact,       𝐴 implies (      ) is 

bounded and so by the fact that        , we have  

             

Now, since 𝑀  is Opial space and suppose that,        we have: 

                                        

                                                                            

                                                  , since 

                   

And thus  

                                         

But on the other hand we have  

                     

                                         

Which is a contradiction. Hence    𝐹    𝐹    𝐹     𝐹     . 

Lemma (3.2.2): 

        Let 𝐴 be a subset of modular space 𝑀 . Then for any   𝑀 ,       

 𝐴. 

Proof: 

Let        , then every neighborhood of   contains a point strictly 

between   and   on       .Since   is best approximation to   then is 

closer to   than  , so, it cannot be in 𝐴. Thus   is not interior of 𝐴. Then 

   𝐴. 
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Corollary: 

       Let 𝑀  complete opial space, let   and  : 𝑀  𝑀  and 𝐴 𝑀  

     𝐴 and   𝐹    𝐹             weakly compact, is star-shaped 

to   and 𝑞  𝐹    and let   be a  -non-expansive mapping on        { }, 

    𝐴    (    )     where   is affine, continuous on      , 

 (     )        and commute with   on       then       𝐹    

𝐹     . 

 

3.3 A Best Approximations  for (w) Convex Set  

 

Definition (3.3.1):  

          A family of maps {  }   𝑀  is said to be (w)-convex structure 

on modular space  𝑀 , if it satisfies the following conditions: 

i.   : [0, 1]    𝑀 ,  i.e.     is map from  [0, 1]  into 𝑀  for each  

  𝑀 , 

ii.    (1) =   for each    𝑀 , 

iii.    ( ) is a jointly continuous in (    , i.e.,     ( )      (     for  

      in 𝑀  and      in [0, 1], 

iv. If   is a map from 𝑀  into itself, then for any     𝑀 ,     ( )      ∀      

  [0, 1], 

v.       ( )-    (         [ϕ (  ]    α – β         ϕ is function from [0, 1] 

into itself. 

Now, we recall the following definition. 
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Definition (3.3.2): 

 

          Let {  } be a sequence of ( ) – convex structure on a modular space 

𝑀 . A self-mapping   of 𝑀  is said to satisfy the property (I), if for any   

  [    ]   ∀     𝑀       ∀    we have    (   ( ))  =     ( ).         

Remark (3.3.1):  

 

         It is clear that the commute pair (S,  ) is Banach operator but the 

converse is not true.For convers, one can see the following simple example:  

Example (3.3.1):  

 

        Consider  ,   in modular space 𝑀      [0, 1] as  

  ( ) = 1 –   and  

 

                                           1 –            0       
 

 
 

                            ( ) = 

                                            1 – 
 

 
          

 

 
 <     1 

 

It is clear that   and   are not commute and   (F( ))  =  F( )  =     
 

 
   . 

 

In the next work, we quote the condition of Banach operator of modular 

space  and incorporate it with ( )- convexity condition to give two results in 

invariant best approximation. 
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Theorem (3.3.1):[40]  

       Suppose   and   are two self-mapping of a closed subset A of the metric 

space 𝑀 such that ( ,  ) is Banach operator pair on A and   is  -contraction 

on A,  if 𝐹      and   𝐴 ̅̅ ̅̅ ̅̅  is complete, then 𝐹    𝐹     singleton  

 

Theorem (3.3.2): 

 

             Let 𝑀  be a modular space with ( )-convex structure. Let  ,   

  𝑀    𝑀  be Banach operator and A   𝑀  such that  (∂A)   A. let      

F ( )   F ( ). Suppose that   is  -non-expansive mapping on  

  (  ) {  },with  (𝐹   )⊂ 𝐹       is continuous and    (F (  ))     

𝐹(  )  on    (  ),  (  (  ))  is compact. If      (  )  , closed,   𝐴   

 (    )    and    (  (  ))       (  )  then    (  )     F  ( )   F (  )   

 . 

Proof:  

         Let D =   (  ). First, we show that  :   . Let     D then     ∂ A 

by Lemma (3.2.2). Also, since   (∂A)   A then      A. 

 

Now, since      D by    (D)   D and since     =    and  ,   non-

expansive mapping, we have 

 

                              (   –   )  = γ(   - S              -     ) 

As      =    we therefore have  

 

                             (   –   )            -   )  =    (   ,  A) 

Thus    is also closest to   , so      D. 
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By ( ) – convexity property (I) there is a family {  }     D satisfies 

condition of definition (3.3.1), choose      (0,1) such that <  >   1, and 

define    as    ( ) =     (   ), for all     D. 

It is clear that    is well-defined map from D into D for each  , 

Now, we have   ,  ,  : D   D and   (F(  ))   F(  ) on D ∀  ,     D, 

For each  , we have  

      -             (   ) -     (   )) 

                            [ϕ (  )]  (   –   ) 

                         [ϕ (  )]       –    ) 

i.e., 

                -       [ϕ (  )]         –    ) for all  ,       

Hence    is   -contraction on D. 

Now, we have to show that   (F (  ))   F(  ) , if     F(  ) then      F(  )  

by   F(  )   F(  ), and    ( ) =     (   ) then    (          and      

F(  ), implies   ( )   F(  ). Hence (  ,   ) is Banach operator on D. 

Since       is compact, each       is compact, hence       is complete. 

By theorem (3.3.1), there exists      D and       =      =    for all    . 

Since       is compact, there is a subsequence (     
) of a sequence (   ) 

which converges to        

                                             
 =      

 =       =     
(    

) 

By the continuity of  , {    
} converges to   . But     

 tends to   by the 

assumption,  

                      
    

 =      
 (    

        (1) =   , as        
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Thus,    =  . Also from the continuity of  , we have  

    =    (lim    
) = lim       

 = lim    
 =  , as      , i.e.     =  . 

H                      )   ϕ. This complete the proof. ∎ 

 

Also, we have another result on an invariant best approximation. 

Theorem (3.3.3): 

          Let 𝑀  be a modular space with (w)-convex structure. Let  ,  : 

𝑀  𝑀  and A   𝑀  such that   (∂A)  𝐴 

Let      F ( )   F (  ). Suppose that   is   -non-expansive mapping on  

           {  } ,    is weakly continuous. If   (  )  ,  (    )     

weakly compact. If   (   (  ))      (  ) and   (F (  ))   F ( ) on    (  ), 

then          (  )   F ( )   F (  )     provided (  –  ) is demi-closed. 

Proof: 

         Let D =    (  ). First, we show that   is a self-mapping on D. let     

D then     ∂A Lemma (3.2.2). Also, since   (∂A)   A then      A.  

Now, since       D by   (D)   D and     
 =    and   is   -non-expansive 

Mapping, we have  

                        (   –  ) =   (   –S  )          -      )  

As       =       note we therefore have  

                        (   –  )         -    ) = (  , A) 
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Thus    is also closet to   , so      D. By ( )-convexity property(I)  there 

is a family {  }     D satisfies condition of definition (3.3.1), choose      (0, 

1) such that <   >   1, and define      as    ( ) =     (   ), ∀     D. It is 

clear that   : D   is well defind ∀ . ∀  ,     D, for each  , we have 

                       –               (   ) -     (   )) 

                                        [ϕ (  )]  (   –   ) 

                       -        [ϕ (  )]       –    ) 

i.e., 

                       -    )   [ϕ (  )]       –    ) ∀  ,        

Hence      -construction on D. 

Now, we have to show that (F(  ))   F( ), if     F( ) then       (F(  )) 

By (F(  ))   F(  ),    ( ) =     (   ) then     (    )      and      F(  ), 

Implies    ( )   F(  ), therefore    (F(  ))   F(  ). 

Now, we have   ,  ,   : D D and hence (  ,   ) is Banach operator on D. 

Since (D)   D   𝑀  then          𝑀  and 𝑀  is a complete then        is 

complete. By theorem (3.3.1), we conclude that, there exists      D and      

=      =    for all     . Since D weakly compact, there is a subsequence 

(    
) of sequence      which converges to     A.  

                              
=        

 =    
   

 =      
 (    

) 

From the weakly continuity of   , we have  

    =    (lim    
) = lim       

 =    
 =  , as      , i.e.     =  . 
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Now we have to show that lim (   –  )    
 = 0 

(   –  )    
 =       

 -     
 =    

 -     
 =      

(    
) -     

, thus  

      (   –   )   
= lim      

 (   
) – lim     

                                                                                    

                                 =   (1) –    

      (   –   )   
 =    –    = 0.Now, (   -  ) is demi-closed at 0 and sequence 

converges weakly to  . 

(   –   )   = 0 implies that   =     

Hence   is fixed point of         H                             
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CHAPTER 4 

INVARIANT BEST 

APPROXIMATION FOR  NON-

EXPANSIVE MAPPINGS 

 
 

4-0 Introduction 
 

Throughout this chapter, the definitions of a       contraction 

mappings and a generalized      -contraction in the setting of modular  

spaces are presented and common fixed points and coincidence theorems 

for these mappings are applied to have many results on invariant best 

approximation. Here, the condition of   and   are commuting is replaced 

with weakly compatible (in special case to   -subcommuting,  -

subcommuting or  -subweakly commuting). In section one, theorems 

about common fixed point and coincidence point for      -nonexpansive 

mapping and proved which are general cases for the results in [41], [36], 

[37] and [6] these theorems are employed to get invariant 

approximations. In section two, with the same above hypotheses, some 

results of previous section are extended for a generalized 

     nonexpansive mapping. This results will be a general case for 

results in [41], [42] and other special case. Finally, in section three the 

conditions of a fineness' is also omitted in addition to non-commute non-

convexity and replaced by the ( )-convexity property to have more 

general results in invariant best approximation for       nonexpansive 

mappings. 
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4.1 Coincidence Points for       Non-expansive 

Mappings and Best Approximations 

      

:)4.1.1Definition (  

is called a coincidence point of the                      𝑀  An element 

         if    𝑀  𝑀 and      𝑀  𝑀 pair of mappings 

Definition (4.1.1):  

           Let be 𝑀   a modular space and A  𝑀  and  ,  : A  𝑀  be 

mappings, then  

i.   and   are called compatible if    n,   n  A ∀ n and                       

lim
n 

γ(   n   n) = 0, for a sequence         lim
n 

  n = lim
n 

   n = t. t  

A. 

ii.   and   are called weakly compatible if  ,   commute at thier 

coincidence points (i.e.)      =      whenever    =   . 

Remark (4.1.1):  

1. If 𝑀  is compact and  ,   are continuous mappings then   and   are 

compatible if   and   are weakly compatible. 

2. ∀ compatible is weakly compatible, but the converse is not true. 

     To see this consider the following example. 

Example (4.1.1):  

           Let 𝑀  = [0,2], ( )v v  (| | is the absolute value on  ) ∀  ,   in 

𝑀 , define   and   as follows 
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1 if [0,1)

2 if 1

3
if (1,2]

5

v

Sv v

v
v





  


 


     

  

2 if [0,1]

if (1,2]
2




 


v

v v
v

p  

The coincidence points of  ,   are {1, 2}, we have: 

   (1) =   (1) and    (2) =   (2) = 2. 

Therefore ( ,  ) is weakly compatible. 

To show that ( ,  ) not compatible 

Taking  n = 2 
1

2n
 , for all n then   ( n)  1 and  ( n)  1. Hence 

lim limP 
 

n n
n n

v Sv  but lim     n  lim     n. 

Had been mentioned to some relation between some generalization of 

commuting mappings [3]. 

Definition (4.1.2):  

           Let (𝑀 ,γ) be a modular space and  ,  ,  :𝑀  𝑀    is said to 

be      -contraction if there is 0 < h < 1,   

                γ(     )  h γ(     ), ∀  ,   in 𝑀  …(3.1.1) 

If h = 1 the   is      -non-expansive mapping. 

If   =   = I (I is the identity mapping) then   is contraction                         

(or non-expansive). 
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        In [16], [37] define the concepts of R-subcomuting, R-subweakly 

commuting and mappings in the case of normed spaces, here we reform 

these definitions in modular spaces: 

 

Definition (4.1.3):  

         Let   𝐴⊂𝑀  and  ,  :𝐴 𝐴 with    F(  ,  ). A pair ( ,) is 

called: 

i. R-subcommuting on 𝐴 if ∀    A,   R > 0    

R
( ) ( S , )PSv S v v v u    P P 

h
 

where   ,  = {(1 – h) + h  : 0 < h  1},    A. 

ii. R-subweakly commuting on 𝐴 if ∀    A,   R > 0    

( ) R ( S , )Sv S v v v u    P P P  

iii.    commuting if     =      ∀      ( , ) =  { (  , h): 0h 1} 

and  h  = (1 – h) + h  . 

  

Remarks (4.1.2):  

i.    commuting mappings are weakly compatible but the converse is not 

true. 

ii.  -subcommuting mappings and  -subweakly commuting mappings 

are    commuting but the converse is not true. 

For more details see the same reference. 
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Theorem (4.1.1):  

       Let   A ⊂ 𝑀   𝑀  complete modular space and 𝐴 is star-shaped, 

and  ,  ,   be three mappings on A and   be a      -contraction which 

satisfies ( )S A  (𝐴)  (𝐴). If either ( )S A  or (A) or (A) is complete, 

and there is some   𝐴         then 

i.   z,  , v  𝐴      =  u = z =  v =  v, that is u  ( ,  ) and v    ( , 

 ); 

If, in addition, ( ,  ) and ( ,  ) are weakly compatible, and then 

ii. F( )  F(  )  F( ) is singleton. 

 

 Proof:  

       Take  0   𝐴. As   𝐴  ⊂ (𝐴) ⋂ (𝐴),  choose a sequence {  } in 𝐴   

     =        and        ∀            

                                                             

 Similarly, we also have that 

                                                          

Therefore, ∀     0, 

                                 
              

Thus, 

 (          )                                      

Hence, {   } is a Cauchy sequence. By the definition of {   }, 

    sequence {      } and {      } are also Cauchy sequence. 
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    Since either   𝐴  or (𝐴) or (𝐴) is complete, if (𝐴) is complete. 

Then            𝐴, and by the definition of {   }, we obtain that. 

                         𝐴 ⊂    𝐴  ⋂   𝐴   

Hence    ,     𝐴      =   =   . Then as      

                                            

Thus              Similarly, also   =   =   . (i) 

    Finally we prove (ii). As ( ,  ) and ( ,  ) are weakly compatible and 

   =    =   =    =   , then  

                          

We claim that   is common fixed point of  ,  ,  . Since  

                                       , 

Then   =   , i.e.,     ( ) ⋂ ( ) ⋂ ( ).       𝐴     =    =    =   , then  

                 𝐴         𝐴         

Hence   =  . The proof is complete 

 

        For modular space we prove the following: 

Theorem (4.1.2):  

        Let   𝐴 ⊂ 𝑀   𝑀  complete modular space and 𝐴 is star-shaped   

at   𝐴,  ,  : A  A be affine mappings, and  : 𝑀   𝑀  be 

     –non-expansive mapping. If ( )S A     (A)  (A) and    𝐴   

         Assume that either  ( )S A  or   (A) or (A) is compact, then 
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i.   z,  ,    A    u =    = z =    =   , that is u     ( ,  ) and  

v   ( ,  ), 

If, in addition, ( ,  ) and ( ,  ) are weakly compatible, and     =    ∀          

    ( ,  ), then: 

ii. F( )  F(  )  F( )  . 

 

Proof:  

        Since A is star-shaped   a sequence       (0 < hn < 1) converging to 1 

  (1 – hn)   + hn    A, ∀   in A. define the mapping  n: A  A as the 

following:  n  = (1 – hn)   + hn   

Since ( )S A     (A)  (A) we can prove that ( )nS A     (A)  (A) as 

follows: 

( ) {(1 ) } (1 ) { : }n n n n nAS h u h Sv h u Ah Sv v        

Since ( ) =   and ( ) =   then: 

  ((1 – hn)   + hn  ) = (1 – hn)    + hn    = (1 – hn)   + hn    

Also ((1 – hn)   + hn  ) = (1 – hn)    + hn    = (1 – hn)   + hn    

∀    A. Thus ( )nS A   (A)  (A).∀  ,    A 

( ) ((1 ) (1 ) )n n n n n nS v S u h u h Sv h u h Su          

                       ( )nh Sv Su    

                       ( )P Q   nh v u  

So  n is      -contraction mappings  hn  (0.1). 
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Since either ( )S A  or   (A) or (A) is compact, then ( )S A  or (A) or (A) is 

complete. Also, if ( )S A  is compact then ( )nS A  is compact  ( )S A  is 

complete. By Theorem (4.1.1) that ∀ n,   m(n),  t(n),  n A   

  m(n) =  n  m(n) =  n =  n  t(n) =    t(n). 

by compactness of either ( )nS A  or  (A) or   (A)   < 
inu >  <  n > and 

z  A  
( ) ( )P Q  

i in m n t nu v v  z , ( i  ), 

( ) ( )

(1 )
( )i i

i i

i

n n

m n t n

n

u h u
z ASv Sv S

h

 
    . 

and  z   (A)   (A) by ( )S A    (A)   (A). 

hence,   u, v  A   z =  u =  v, as i  . 

( ) ( ) ( )) ( ) ( ) 0P Q Q         
i i it n t n t nSu Sv u v z v , therefore 

( )it nSv Su z   i.e., z =  u =  u. 

Also, 
( ) ( ) ( )( ) ( ) ( ) 0P Q P         

i i im n m n m nSv Sv v v v z , therefore  

( )im nSv Sv z   i.e., z =  v =  v.  

(i) is proved. 

        To prove (ii) by (i)  z, u, v     u =  u = z =  v =  v. Since ( ,  ) 

and ( ,  ) are weakly compatible and     =   ∀    ( ,  ), then 

 z =   u =   u =  z =   v =   v =  z and  z =   u =  u = z 

Thus z =  z =  z =  z,   is fixed point for  , ,   ■ 
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Theorem (4.1.3):  

          Let 𝑀  be a complete modular space and   : 𝑀   𝑀  ,   A⊂ 

𝑀  and    ,   : A  A be two affine mappings, and there is some 

v 𝐴          and A is stars-shaped at    A. Assume that   is 

     -non-expansive mapping  and ( )S A     (A)   (A). If: 

i)   is strongly continuous and A is weakly compact, or 

ii)   or   is strongly continuous and A is weakly compact, or 

iii) ( )S A  is weakly compact and 𝑀  is opial's space. 

Then (i)  ( ,  ,  )   ; 

If, in addition, ( ,  ) and ( ,  ) are weakly compatible and     =    ∀  

   ( ,  ), then 

(ii) F( )  F(   )  F( )  . 

Proof:  

        Since A is star-shaped then there is a sequence      (0 < hn < 1) 

converging to 1   (1 – hn)   + hn     A, ∀   in A. 

 define the mapping  n: A  A  by 

 n  = (1 – hn)   + hn   

Since ( )S A   𝑀  and 𝑀  is a complete then ( )S A  is a complete. by 

similar  of Theorem (4.1.2) that ( )nS A     (A)   (A) ∀ n and  n is 

     -contraction mapping with hn  (0,1) , ( )nS A  is complete,    m(n), 

 t(n),  n A     m(n) =  n  m(n) =  n =  n  t(n) =   t(n). 
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If (i) holds. Since <  m(n) >  A together with the weak compactness of A, 

     A and < 
( )im nv >  <  m(n) >   

( )i

w

m nv y  ( i  ).By strong 

continuity of   that 
( )im nSv      ( )S A      (A)   (A). 

  u, v      =  u =  v, and    hn  1, 

( ) ( ) ( ) ( ) (1 )P Q       
i i i i i i i im n t n n n m n n m n nv v u S v h Sv h u Su  

We claim that  u =  u. Since as i   

( ) ( )( ) ( )P Q     
i it n t nSu Sv u v     , since   is      -non-expansive 

                        
( )( ) 0Q    

it nSu v , 

then 
( )it nSv Su . 

Since lim
i 

( ) ( )lim(1 ) lim lim
i i i i in t n n n t n

i i i
S v h u h Sv Su

  
      

Hence lim 
( ) .

it nSv Su  Thus 
( )it nSv Su Su  . Also, we claim that  v 

=  v =    

Now, 
( ) ( )( ) ( )P Q     

i im n m nSv Sv v v .  Since   is      -non-expansive 

                                 
( )( ) 0P    

im nv Su  as i   

then 
( ) .

im nSv Sv Su   Therefore  u =    =  v =  v. (i) Is proved. 

If (ii) holds. Assume that   is strongly continuous, then 

( ) ( ) .Q P P  
i it n m nv v u  Since as i   

( ) ( )( ) ( )P Q     
i it n t nSu Sv u v , since   is      -nonexpansive 

                        
( )( ) 0

im nPu Pv    , 
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Then 
( )it nSv Su  ( )S A   (A)  (A).   u, v      =    =  v, and  hn 

 1, 

( ) ( ) ( )(1 )Q     
i i i it n n t n n n t nv S v h u h Sv Su , then 

( )Q P  
it nv Su u . 

By (i) that we also reach our objective. 

If (iii) holds. By the weak compactness of ( )S A ,      A and  

( 
( )im nSv )  (  m(n) )   

( )i

w

m nSv y (i). 

Therefore by hn  1, we have 

( ) ( ) ( ) ( ) ( ) (1 )P Q        
i i i i i i i i i

w

n m n n t n m n t n n m n nS v S v v v h Sv h u u  

Since weak closeness subset 𝑀  implies closeness in complete space 𝑀 , 

then    ( )S A    (A)   (A). 

Thus  u, v  A     =    =  v. As (  n ) is bounded by the weak 

compactness of ( )S A , then 

( ) ( ) ( ) ( )( ) ( (1 ) )P       m n m n n m n n m nv Sv h Sv h u Sv  

                            
( )1 ( ) 0 ( )n m nh Sv u n       . 

Also, 
( ) ( ) ( ) ( )( ) ( (1 ) )Q       

it n t n n t n n t nv Sv h Sv h u Sv  

( ) ( )( )Q  
it n t nv Sv  

( )1 ( ) 0 ( )n t nh Sv u n       . 

We claim that  v = y. If not, by 𝑀  satisfying Opial's space, we get 

lim
i 

( ) ( )inf ( ) liminf ( )
i im n m n

i
Sv u Sv Sv


      

                             ( )liminf ( )P Q 


  
im n

i
v v   ,since   is      -non-expansive 
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                                 ( ) ( ) ( )liminf ( )P Q 


    
i i im n m n m n

i
v Sv Sv v  

                                 

( ) ( ) ( )liminf ( ) liminf ( )P Q 
 

     
i i im n m n m n

i i
v Sv Sv v  

                                 ( )liminf ( )
im n

i
Sv u


   . 

Which is a contraction. Hence   =    =   .Similarly, we also can show 

that   =  u =   . (i) Is proved. By similar of Theorem (4.1.2-ii) that  

 z =  z =  z = z and z  F( )  F(  )  F( ). 

Hence F( )  F( )  F( )   . ■ 

        

 For commuting mappings, we have: 

Theorem (4.1.4):  

      Let 𝑀  complete modular space,    A ⊂ 𝑀 and  : 𝑀   𝑀  be a 

mapping, and A is star-shaped and  ,  : A  A be two affine 

mappings, and there is some   𝐴            and   is a      -non-

expansive mapping and ( )S A   (A)  (A). If ( ,  ) and ( ,  ) are    -

commuting, and     are affine, and ∀  ,  ,   is continuous. If  either 

( )S A  or  (A) or  (A) is compact, then F( )  F(   )  F( )   . 

 

Proof:  

          Since 𝐴 is star-shaped   a sequence < hn > (0 < hn < 1) converging 

to 1  (1 – hn)   + hn     A, ∀   in A. 
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 define  n: A  A as, n  = (1 – hn)   + hn    

By Theorem (4.1.2) that ( )nS A     (A)  (A) ∀ n and  n is      -

contraction mapping, if (A) is compact, then ( )nS A  is compact. Since  

( ,  ) and ( ,) are   -commuting, and  ,   are affine, then    F( )  

F( ), and further, ∀  n   =    =   , we have 

 n    = (1 – hn) +hn   f  = (1 – hn)    + hn     =   ((1 – hn) + hn   )=   n   

also, 

 n    = (1 – hn)  +hn     = (1 – hn)   + hn    =  ((1 – hn)  + hn   )=    n  

namely, ( n,  ) and ( n, ) are weakly compatible. 

By Theorem (4.1.1-ii) ∀ n,   unique  n  A   

  n =   n =   n =  n  n = (1 – hn)   + hn   . 

 As Theorem (4.1.2-i) we get,   z,  ,   A and (   
)         u = fu = 

z=  v =  v and P Q   
i i in n nv v v z  and 

inSv z  as i .As 

   commuting of ( ,  ) and ( ,  ) implies that weakly compatible, then 

 z =   u =   u =  z =   v =    v =  z. 

By continuity of either   or   or   that either 
inSv Sz  or P Q

inv z  

or Q P
inv z . 

Hence z =  z =  z =  z and F( )  F(  )  F( )   . 

This complete the proof. ■ 
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Corollary (4.1.1):  

Let   A be star-shaped subset 𝑀  and  : A  A a non-expansive 

mapping, and there is some  𝐴          , and ( )S A   A. If 

( )S A  is compact subset 𝑀 , then F( )   . 

Theorem (4.1.5):  

          Let 𝑀  be a complete modular space and  : 𝑀   𝑀 . Let   A 

⊂ 𝑀  and   ,   : A  A be two affine mappings,   𝐴         

 , and A is star-shaped  to   and    A. Assume that   is a      -non-

expansive mapping and ( )S A    (A)   (A). If ( ,  ) and ( ,  ) are 

  -commuting, and   is strongly continuous, and either A or ( )S A  or  

(A) or  (A) is weakly compact. Then F( )  F(  )  F( )  . 

Proof:  

         Since A is star-shaped at   then   a sequence      (0 < hn < 1) 

converging to 1  (1 – hn)   + hn     A, ∀   in A. define  n: A  A as, 

 n  = (1 – hn)   + hn  . Since either A or ( )S A  or   (A) or (A) is 

complete and it by similar proof of Theorem (4.1.4) ∀ n,   a unique  n  

A    n=   n =   n = hn  n + (1 – hn)   

By similar proof of Theorem (4.1.3-i) we have,  z,  ,    A and (   
) ⊂

        u=  =z=  = v and P Q   
i i i

w

n n nv v v z  and 
i

w

nSv z  

as i . Since   -commuting of ( ,  ) and ( ,) implies weakly 

compatible, then 

 z =   u =   u =  z =   v =   v =  z 
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As   is strongly continuous together with 
i

w

nv z , then 
inSv Sz . 

By 
i

w

nSv z , we have z =  z =  z =  z. 

Therefore F( )  F(   )  F( ) . ■ 

Corollary (4.1.2):  

        Let   A ⊂ 𝑀 , u  𝑀  and   : 𝑀   𝑀  be a mapping,  ,   : A 

A be two affine mappings,   𝐴          , and PA(u) is star-

shaped and   and    PA( ) and 
A( ( ))S u    (PA(u))   (PA(u)) = 

PA(u). Assume that   is a      -non-expansive mapping on PA(u), If

A( ( ))S u  or (PA(u)) or  (PA(u)) is compact, then 

i)   z, w, v  A    w = w= z=  v =  v; if ( ,  ) and ( , ) are weakly 

compactible and     =    ∀      ( ,  ), then 

ii) PA(u)  F( )  F(  )  F( )  . 

 

Proof:  

By Theorem (4.1.2), when PA(u) = A. ■ 

Corollary (4.1.3):  

        Let 𝑀  be a complete modular space, u  𝑀 ,   : 𝑀   𝑀  ,  ,   

: A  A be two affine mappings,   𝐴            and PA(u) is 

star-shaped to   and    PA(u) and 
A( ( ))S u    (PA( ))   (PA( )) = 

PA( ). Assume that   is a      -nonexpansive mappings on PA(u), if:  

a) S is strongly continuous and PA( ) is weakly compact;  

b)   or   is strongly continuous and PA(u) is weakly compact; 

c) 
A( ( ))S u  is weakly compact and 𝑀  opial's space. 
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Then (i)   ( ,  )    

If, in addition, ( ,  ) and ( ,  ) are weakly compatible and     =    ∀          

     ( ,  ), then 

(ii) PA(u)  F( )  F(  )  F( )   . 

 

Proof:  

     By Theorem (4.1.3), when PA(u) = A. ■ 

 

Corollary (4.1.4):  

        Let 𝑀  be a complete modular space ,    𝑀 ,   : 𝑀   𝑀   and 

 ,   : A  A be two affine mappings,    𝐴          , and PA(u) 

is star-shaped  to   and    PA( ) and 
A( ( ))S u     (PA( ))   (PA( )) 

= PA( ). Assume that   is a      -non-expansive mapping on PA( ),and  

( ,), ( ,) are   -commuting If   is strongly continuous on PA( ) and 

PA( ) or 
A( ( ))S u  or   (PA( )) or  (PA( )) is weakly compact. Then 

PA( )  F( )  F(   )  F( )   . 

Proof:  

 

By Theorem (4.1.5), when PA( ) = A. ■ 
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4.2 Common Fixed Point and Invariant Best Approximation for  

       Generalized       -Non-expansive Mappings 

In this section, we prove that there is a fixed point of  ,  ,   if   is 

generalized      -non-expansive mapping [22], and both ( ,  ), ( ,) are 

weakly compatible. We also apply these results to derive some invariant 

best approximations. 

 

Definition (4.2.1):  

       Let 𝑀  be a modular space and  ,  ,   be three mappings on 𝑀 , we 

say that   is a generalized      -contraction ∀  ,   in 𝑀  and 0 < h < 1,  

                                                      γ (      ), γ(      ), γ(      ) 

                  γ (      ) ≤ h max  

                                                               
 

 
 [γ(      )+ γ(      )] 

 

when h = 1 then   is called a generalized      -nonexpansive. 

 

        It is obvious that the generalized      -contraction contains the 

     -contraction. Furthermore the contraction is its main subclass also 

(when     =   = I in      -contraction). 

        Note that, in the setting of modular space the generalized      -

contraction will be: 

                                                      γ(      ), γ(      ), γ(      ) 

                  γ(      ) ≤ h max  

                                                           
 

 
 [γ(      )+ γ(      )] 
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        We need the following remark in modular space: 

Remark (4.2.1):  

                 Let 𝑀  complete modular space If A ⊂ 𝑀  and star-shaped   

        ,  ,  : A  A three  mappings and ∀  ,    A, 

 

                                                γ(      ), γ(    |  ,  |), γ(    |  ,  |) 

               γ(      ) ≤ max  

                                                         
 

 
 [γ(   |  , |)+ γ(    |  ,  |)] 

 

Then   is called       non-expansive mapping. 

 

Theorem (4.2.1):[41]  

           Let   𝐴 subset on metric space 𝑀and  ,  ,   : A  A or 𝑀 be 

three affine mappings with   𝐴    (A)   (A) is      -contraction  r  

[0,1) or r  (0,1). Then neither ( ,  ) nor  ( ,  ) is empty. Moreover, if 

both ( ,  ) and ( ,  ) are weakly compatible, then F ( )  F(   )  F( ) 

   is singleton. 

 

        An applying of the above theorem we obtain the following in          

modular space 𝑀 : 

Theorem (4.2.2):  

            Let   A⊂𝑀 , and  ,  : A  A or 𝑀  be two affine 

continuous mappings and  : 𝑀   𝑀  be a continuous mapping, and A 
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is star-shaped to   and    A. If both ( ,  ) and ( ,  ) are   -commuting,  

  𝐴  is a compact ⊂ (A)  (A) and   satisfy ∀  ,   A  

                                                γ (      ), γ(    |  ,  |), γ(    |  ,  |) 

               γ (      ) ≤ max  

                                                  
 

 
 [γ(   |  , |)+ γ(    |  ,  |)] 

 

Then F( )  F(  )  F( )   . 

Proof:  

Since A has star-shaped then there is a sequence      (0 <  n < 1) 

converging to 1  (1 –  n)   + hn     A ∀   in A.  define the mapping  

 n: A  A as ∀ n,  n  = (1 –   n)   +  n  ∀   in A. Since   𝐴    (A)  

(A) to proof  

   𝐴     (A)  (A) as follows; 

                   𝐴  = {               } = (1-   )  +    {      𝐴} 

Since ( ) =   and ( ) =   then: 

  ((1 –  n)   +  n   ) = (1 –  n)    +  n    = (1 –  n)   +  n   ,  

also,  ((1 –  n)   +  n  ) = (1 – hn)    + hn    = (1 – hn)   + hn   , 

∀    A. Thus    𝐴   (A)  (A). ∀  ,    A, and by condition (4.2.2), 

we have: 

γ(    –    ) = γ(     + (1 -   )  -       – (1 – h ) ) 

                      = |  | γ(   –   ) 
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≤ γ|  | max {

               |    |       |    | 

 

 
 [      |    |      |    | ]                  

 

Therefore 

γ(    –    ) = γ|  | max {

                             

 

 
 [                    ]                  

 

Thus  n is generalized      -contraction with coefficient r =  n (0,1). 

note that ( ,  ) and ( ,  ) are   -commuting, and   and   are affine, 

then        F ( )  F( ). If  n  =    =   , we have 

 n    = (1 –  n)   + hn    = (1 –  n)    +  n     =   ((1 –  n) +  n  ) =   n . 

Also  n    = (1 –  n)   +  n    = (1–  n)    +  n      =  ((1–  n) + 

 n  ) =    n  

namely, ( n,  ), ( n,  ) are weakly compatible. As   𝐴   is compact, then 

  𝐴   is complete. By theorem (4.2.1) that ∀ n,   a unique  n  A   

 n=   n =   n =  n  n + (1 –  n)  . 

By  the compactness of   𝐴     (   
 )       and    A   

   
=    

=𝑞   
=   

     
 + (1 -    

) →   (i). The continuity of   

and   and 𝑞 imply     
    and     

    and 𝑞   
 𝑞 . 

Hence   =    =    =   . Therefore F( )  F(   )  F( )  . This 

finishes the proof. ■ 
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Corollary (4.2.1):  

           Let   A star-shaped subset 𝑀  and  : A  A a non-expansive 

mapping,    𝐴            and   𝐴    A. If   𝐴   is compact 

subset A, then F ( )   . 

 

        To illustrate Theorem (4.2.3), we give the following example: 

Example (4.2.1):  

          Let 𝑀  =  and A = [0, 1] with γ ( ) =    for   . Let  ,  : 

A A as ( ) = ( ) = 
 

 
  ∀    A and  : A A by    = 

 

 
   for all   

A. Then   is a generalized ( ,)-non-expansive mapping since 

γ(  -  ) = 
 

 
 γ( 2

 –  2
) = 

 

 
  

 

 
 γ( 2 

–  2
) = 

 

 
 γ(   –   ) 

On the other hand, A (  , ) = F( , ) = {0} so, F(  )  F( )  F( ) = {0}. 

Theorem (4.2.3):  

          Let 𝑀  be a complete modular space, and  : 𝑀   𝑀  be a 

weakly continuous mapping. Let    A ⊂ 𝑀  and A is star-shaped to   

and    A,  ,  : A  A be two weakly continuous affine mappings. 

Assume that   𝐴   is weakly compact subset   (A)  (A). If both ( ,  ) 

and ( ,) are   -commuting, and   satisfy condition (4.2.2) then F( )  F( 

 )  F( )   . 

Proof:  

         Since A is star-shaped   a sequence      < (0 <  n < 1) converging 

to 1  (1 –  n)   +  n     A, ∀   in A. 
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 define the mapping  n: A  A as follows: 

∀n,  n  = (1 –  n)   +  n  ∀   in A. 

By the proof of Theorem (4.2.2) there is a common approximate fixed 

sequence         𝐴   of  ,  ,  . Since  ,  ,   are weakly continuous 

and   𝐴   is weakly compact, then the weak cluster   of      is a 

common fixed point of  ,  ,  . The proof is completed. ■ 

 

       As an application to the above common fixed points, we have the 

following results in best approximation: 

 

Corollary (4.2.2):  

           Let 𝑀  be complete modular space,   𝐴 ⊂ 𝑀  ,    𝑀 , and  

 : 𝑀   𝑀  be a continuous mapping and  ,  : A  A be two 

continuous  mappings.          is star-shaped to   and     PA( ) and  

         is compact subset  of PA( ),  (PA( ))   (PA( )) = PA( ),   

and   are affine on PA( ). If ( ,  ), ( ,  ) are   -commuting and ∀    

PA( )  { }, 

γ(     ) ≤{

                                                                                        

                  |    |       |    |                             
 

 
 [     |    |         |    | ]                                    

 

Then PA( )  F( )  F(   )  F( )  . 
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Proof:  

Since           PA( ) =  (PA( ))   (PA( )) = PA( ) is compact , the 

results follows from Theorem (4.2.2), when PA( ) = A. ■ 

 

Corollary (4.2.3):  

                  Let   A⊂ 𝑀  with  (A)  A and    F( )  F(  )  F( ), 

  ,  ,  : A  A are three weakly continuous mappings.    PA( ) is 

star-shaped, and weakly compact,  (PA( ))   (PA( )) = PA( ),   and   

are affine. If ( ,  ), ( ,) are   -commuting on PA( ) satisfy condition 

(4.2.3)  

∀    PA( )  { }, then PA( )  F( )  F(   )  F( )  . 

 

Corollary (4.2.3):  

        Let   A ⊂ 𝑀  with  (A  A)  A and    F( )  F(  )  F( ) 

and  ,  ,  : A  A be two continuous mappings.    PA( ) is star-

shaped and compact,    (PA( ))   (PA( )) = PA( ),   and   are affine on 

PA( ). If ( ,  ), ( ,) are   -commuting on PA( ) and   satisfy condition 

(4.2.3) ∀    PA( )  { }. Then PA( )  F( )  F(  )   F( )   . 
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4.3 Invariant Best Approximation for      -Non-expansive  

       Mappings with (w)-Convexity 

        In this section, some existence results on best approximation are 

proved without star-shaped and affine mapping. 

 

Theorem (4.3.1):  

              Let 𝑀  be a modular space  with (w)-convex structure. Let  , h,  

: 𝑀   𝑀  and A  𝑀     (A)  A. Let  0 F( )  F( ). If   is  

(h, )-non-expansive mapping on PA( 0)  { 0}.   𝐴          

Assume that ( ,h) and ( , ) are weakly compatible on PA( 0) and 

h(PA( 0))  PA( 0),  (PA( 0))  PA( 0) and            h(PA( 0))  

 (PA( 0)). If          or h(PA( 0)) or  (PA( 0)) is compact and hh  = hv 

where  v  ( ,h) then PA(v0)  F( )  F( h )  F( )  . 

Proof:  

       Let PA( 0) = D. : D  D, let    D then h   D h(D)  D. Since 

D   A by Lemma (3.2.1), therefore     A and   (A)  A then     

A.Now, since   0 =  0 =   0 and   is a (h,)-non-expansive mapping, we 

have 

0 0

0

0

( ) ( )

( )

= ( ) 

Q 

    

  

 

Su v Su Sv

hu v

hu v

 

Thus 
0 0 0( ) ( ) = ( ,A)Su v hu v v      .Implies    is also closest to  0, 

so     D. Choose hn  (0,1)   < hn >  1. Then define  n as 
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 n( ) =    (hn) ∀    D and by Definition (3.3.1) condition (iv) then  n is 

a well-defined map from D into D, ∀ n. Thus  n, h,  :D  D and ∀  , 

   D, 

 

 

( ) ( ( ) ( ))

( ) ( )

( ) ( )

P P

Q 

    

   

   

n n Sv n Su n

n

n

S v S u h h

h Sv Su

h hv u

 

Therefore  ( ) ( ) ( )Q      n n nS v S u h hv u  

Hence  n is (h,)-contraction. Since   { ( )} { }P n Sv nS v h Sv  ∀    D, 

and (D)S   h(D)   (D) then (D)nS   h(D)   (D). Since  (D)S  is 

compact and by definition (3.3.1-iv) then (D)nS  is compact, therefore 

(D)nS  is complete. Now, By Theorem (4.1.1-i), ∀  m(n),  t(n),  n  D   

h m(n) =  n m(n) =  n =  n  t(n) =   t(n) 

Since either (D)S  or h(D) or  (D) is compact   
inu    <  n > and   

 D   h 
( )im nv = 

( )i in m nS v  = 
( )i in t nS v =  

( )it nv = 
inu u  as (i  ). 

Thus 
( ) ( )

( ) ( )P P 
m n i t n ii i

S v n S v nh h u as (i  ) and  

( ) ( )( ) ( )( ) , ( )
m n i i t n i ii i

Sv n m n Sv n t np h Sv p h Sv   

Also, ( ) ( ), (D)
i it n m nSv Sv S .Hence    (D)S   h(D)   (D). 

  v, w  D   y = hw =  v. As i  , 

( ) ( ) ( )( ) ( ) ( ) 0,Q Q         
i i it n t n t nSw Sv hw v u v therefore

 ( )it nSv Sw . 
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Now, 
( )

lim ( ) (1)P P


 
t n ii

S v n S w
i

h Sw , but 
( )

( )P 
t n ii

S v nh u , hence  w =  , 

also 
( ) ( )( ) ( ) ( ) 0Q Q         

i im n m nSv Sv hv v u v .  

Thus 
( )

lim ( ) (1)P P


 
m n ii

S v n S v
i

h Sv , but 
( )

( )P 
m n ii

S v nh u . Hence   =  v. 

Now, ( ,h) and ( , ) are weakly compatible and hh  = h  for all                   

   A ( ,h), then h  = h w =  hw =    =   v =   v =   , and                           

h  = hhw = hw =  . Thus   = h  =    =   . 

Hence PA( 0)  F( )  F( h )  F( )   . ■ 

Theorem (4.3.2):  

       Let 𝑀  a complete modular space with (w)-convex structure,   𝑀 , 

and  , h,  : 𝑀   𝑀  three mappings,   𝐴          , and A  

𝑀 .    PA(u)  and           PA(u) and h(PA(u))   (PA(u)) = PA(u). 

If   is (h,)-non-expansive mapping on PA(u)  {u} and either          or  

  (PA(u)) or h (PA(u)) is compact then 

i.    , w, v  PA(u)   hw =  w =   =    =   . 

If in addition, ( ,h) and ( , ) are weakly compatible and hh  = h  ∀   

   ( ,h), then 

ii. PA(u)  F( )  F( h )  F( )   . 

 

Proof:  

         Let PA( 0) = D, since h(D)   (D) = D and (D)S   D then  



 
82 

 , h,  :DD, choose  n  (0,1)         1, define  n as  n( ) = 

    ( n) ∀    D, and by Definition (3.3.1-iv) then  n is a well-defined 

map by D   D ∀ n.Thus  n,  ,   : D  D and ∀  ,    D 

 

 

( ) ( ( ) ( ))

( ) ( )

( ) ( )

P P

Q 

    

   

   

n n Sv n Su n

n

n

S v S u h h

h Sv Su

h hv u

 

Therefore  ( ) ( ) ( )Q      n n nS v S u h hv u  

Hence  n is (h,)-contraction. Since  (D)S  is compact and by definition 

(3.3.1-iv) then (D)nS  is compact, therefore (D)nS  is complete. 

Now, by Theorem (4.1.1-i),    m(n),  t(n),  n  D   

  m(n) =  n  m(n) =  n =  n  t(n) =   t(n) 

since either (D)nS  or h(D) or  (D) is compact   
inu    <  n > and   

 D   

h
( )im nv = 

( )i in m nS v  = 
( )i in t nS v =  

( )it nv = 
inu u  as (i  ). 

Thus 
( ) ( )

( ) ( )P P 
m n i t n ii i

S v n S v nh h u as (i  ) and  

( ) ( )( ) ( )( ) , ( )P P 
m n i i t n i ii i

S v n m n S v n t nh Sv h Sv  

Also, ( ) ( ), (D)
i it n m nSv Sv S .Hence    (D)S   h(D)   (D). 

  w, v  A     = hw =  v. As i  , 

( ) ( ) ( )( ) ( ) ( ) 0,Q Q         
i i it n t n t nSw Sv hw v u u therefore 

( )it nSv Sw . 
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Now, 
( )

lim ( ) (1)P P


 
t n ii

S v n S w
i

h Sw , but 
( )

( )P 
t n ii

S v nh u , hence  w =  , 

also 
( ) ( )( ) ( ) ( ) 0Q Q         

i im n m nSv Sv hv v u v .  

Thus 
( )

lim ( ) (1)
m n ii

S v n S v
i

P h P Sv


  , but 
( )

( ) 
m n ii

S v nP h u . Hence   =  v. 

Therefore  w = hw =   =  v =  v. (i) Proved. 

Subsequently, we show (ii). Since ( ,h) and ( , ) are weakly compatible 

and hh  = h  ∀    A ( ,h), then h  = h  w =  hw =    =   v =   v = 

  , and h  = hhw = hw =  . Thus   = h  =    =   . 

Hence PA(u)  F( )  F( h )  F( )   . ■ 

 

Theorem (4.3.3):  

        Let 𝑀  be a complete modular space 𝑀  with (w)-convex structure, 

u 𝑀 ,   𝐴          , and  ,  ,   : 𝑀   𝑀 , A  𝑀 .    

PA(u)  and           PA(u) and     h(PA(u))   (PA(u)) = PA( ).    is a 

(h,)-non-expansive mapping on PA( )  { }. If: 

a)   is strongly continuous and PA( ) is weakly compact 

b) h or   is strongly continuous and PA( ) is weakly compact 

c)          is weakly compact and 𝑀   Opial's space. Then 

i.   ( ,h, )    

     If in addition, ( ,h) and ( , ) are weakly compatible and hh  = h   

     ∀     ( ,h), then 

ii. PA(u)  F( )  F( h )  F( )   . 
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Proof:  

            Let PA( 0) = D, since h(D)   (D) = D and (D)S   D then  , h, 

  :DD, Since (D)S  is complete, let < hn > and  n defined as in 

theorem (4.3.2). Then a similar proof    m(n),  t(n),  n  D   

h m(n) =  n  m(n) =  n =  n  t(n) =    t(n) 

if the condition (a) holds. Since <  m(n) >  D together with weak 

compactness of D      D and 
( )im nv    <  m(n) >   ( )i

w

m nv u  (i 

 ). By  strong continuity of   that  
( )im nv       (D)S   

h(D)   (D). 

  w, v  D      = hw =  v , and noticing hn  1, and 

( )i in m nS v  = 
( )

( ) (1)P P 
m n ii

S v n Suh Su  as (i  ). 

Hence, h
( )im nv  = 

( )i in m nS v  = 
inu =

( )i in t nS v  = 
( )Q 

it nv    as (i). 

We claim that  w =    = hw. Indeed, since as i   

( ) ( ) ( )( ) ( ) ) 0,Q Q         
i i it n t n t nSw Sv hw v Su v  

then 
( )it nSv Sw . 

Now, as i   
( )i in t nS v  = 

( )
( ) (1)P P 

t n ii
S v n Swh Sw . Then  w =   . 

also, we claim that  v =    =  v. Indeed, since as i   

( ) ( ) ( )( ) ( ) ( ) 0,Q        
i i im n m n m nSv Sv hv v hv Su  

then 
( )im nSv Sv Su  . (i) is proved. 
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     If condition (b) holds. Assuming that h is strongly continuous, then  

( )it nv =h
( )im nv h . Since i, 

( ) ( )( ) ( ) 0Q      
i it n t nSu Sv hu v ,

( )it nSv Su   (D)S   h(D) 

𝑞h𝑞(D).  w, v  D such that    = hw =  v. 

Now,  
( )it nv  = 

( )i in t nS v  = 
( )

( ) (1)P P 
t n ii

S v n Suh Su  as (i  ), then  

( )it nv      = h , we claim that  w =    = hw. Indeed, since as i  

 

( ) ( ) ( )( ) ( ) ( ) 0,Q Q         
i i it n t n t nSw Sv hw v Su v then

( )it nSv Sw  

Since as i    n ( )it nv  = 
( )

( ) (1)P P 
t n ii

S v n Swh Sw . Then  w =   . 

Also, we claim that  v =    =  v. Indeed, since as i   

( ) ( ) ( )( ) ( ) ( ) 0,Q         
i i im n m n m nSv Sv hv v hv Su  

then 
( )im nSv Sv Su   and 

( )i in m nS v =
( )

( ) (1)P P 
m n ii

S v n Svh Sv  as i, then  v =  . (i) is proved 

        If condition (c) holds. By the weak compactness of (D)S ,      D 

and 
( )im nSv    <   m(n) >   ( )i

w

m nSv u    (i  ).  

Therefore by 
inh   1, we have 

( )i in m nS v = 
( )i in t nS v = h

( )im nv  =  
( )it nv  = 

( )
( )P 

t n ii

w

S v nh u , (i  ). 
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Since weak closeness subset 𝑀  implies closeness in complete modular 

space 𝑀 , then    (D)S   h(D)   (D). Thus  w, v  D     = h w = 

 v. As (i  ), 

( ) ( )( )
i im n m nhv Sv  = 

( ) ( )( ( ) ) 0P  
t n i ii

w

S v n m nh Sv  

We claim that  v =  . If not, by 𝑀  satisfying Opial's space, we get 

( ) ( )

( )

( )

( ) ( ) ( )

( ) ( ) ( )

( )

liminf ( ) liminf ( )

liminf ( )

liminf ( )

liminf ( )

liminf ( ) liminf ( )

liminf ( )

Q 

 







 



    

  

  

    

     

  

i i

i

i

i i i

i i i

i

m n m n
i i

m n
i

m n
i

m n m n m n
i

m n m n m n
i i

m n
i

Sv u Sv Sv

hv v

hv u

hv Sv Sv u

hv Sv Sv u

Sv u

  

Thus ( ) ( )liminf ( ) lim inf ( )
i im n m n

i i
Sv u Sv u

 
      which is a contradiction. 

Hence   =  v, also we claim that  w =  . Since the weak compactness of 

(D)S ,  u 
  D and 

( )it nSv    <   t(n) >   ( )i

w

t nSv u  , (i  

), therefore by 
inh  1, we have 

( )i in t nS v = 
( )

( ) (1)P P 

 
t n ii

w

S v n u
h u , but 

( )i in t nS v    then   =   . 

Now, as i  ,
( ) ( ) ( ) ( )( ) ( ) 0Q      

i i i i

w

t n t n n t n t nv Sv S v Sv . 

Similarly,   =  w = hw. (i) Proved. 

By similar proof of Theorem (4.3.2-ii) that                    = h  =    =  . 

Hence PA( )  F( )  F( h )  F( )   .  
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Theorem (4.3.4):  

          Let 𝑀  be a complete modular  space with (w)-convex structure,   

 𝑀 , A  𝑀 , and  , h,   : 𝑀   𝑀 , three mappings.   𝐴  

            PA( ) and           PA(u) and h(PA(u))   (PA(u)) = 

PA(u) and   is (h, ) – non-expansive on PA(u)  { } and   or h or   is 

continuous, and if ( ,h) and ( , ) are   -commuting on PA(u). If either 

         or h(PA(u)) or  (PA(u)) is compact, and h and   have star-

shaped then PA(u)  F( )  F( h )  F( )   . 

Proof:  

      Let PA(u) = D and let < hn >  (0,1)   lim 1n
n

h


 . ∀ n, define  n  by  

 n( ) =    (hn)      D. By similar proof of Theorem (4.3.2) that 

(D)nS   h(D)   (D) ∀ n and  n is (h, )-contraction mapping. Since 

( ,h) and ( , ) are   -commuting, and h and   have star-shaped, and 

furthermore, ∀  n  = h  =   , we have 

 nh  = (h )(hn) =  h(  )(hn) = h( n( )) = h n . Thus  nh  = h n , also 

 n   = (  )(hn) =   (  )(hn) =  ( n( )) =   n . Thus  n   =   n . Namely, 

( n,h) and ( n, ) are weakly compatible. 

By  Theorem (4.1. 1-ii) ∀  n, ∀ a unique  n  D    n = h n =   n =  n n 

= ( )P
nSv nh . 

By similar as Theorem (4.3.2-i) implies  w,  , v  D and 
inv     

<  n >    w = hw =   =  v =  v, and Q   
i i in n nv hv v u . 

Now, as i   ( ) ( ) ( ) 0Q         
i i in n nSv Sw Sw Sv hw v . 
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Hence, 
inSv   w =   as (i  ). As   -commuting of ( ,h) and 

( , ) implies weakly compatible, then h = h w = hw =   =  v =  v = 

  . 

by continuity of either   or h or   that either 
inSv     or 

inhv  

h  or Q 
inv    . Hence   =    = h  =   . 

Therefore PA(u)  F( )  F( h )  F( )   . This completes the proof. ■ 

Theorem (4.3.5):  

           Let 𝑀  be a complete modular space 𝑀  with (w)-convex 

structure, u  𝑀 , and A  𝑀 , and  , h,   : 𝑀   𝑀 ,are three 

mappings.   𝐴             PA(u) and           PA(u) and 

h(PA(u))   (PA(u)) = PA(u) and   is a (h, )-non-expansive mapping on 

PA(u)  {u} and ( ,h) and ( , ) are   -commuting on PA(u) and   is 

strongly continuous, and PA(u) or          or h(PA(u)) or 𝑞(PA(u)) is 

weakly compact. If h and   have star-shaped then PA(u)  F( )  F( h ) 

 F( )   . 

Proof:  

        Let PA( 0) = D, let < hn > and  n be defined as in Theorem (4.3.4). 

Then a similar proof shows that ∀ n,   unique  n  D    n = h n =   n = 

 n n = ( )
nSv nP h .By the similar as Theorem (4.3.3-i) implies   w, v,   D 

and 
inv    <  n >   

 w = hw =   =  v =  v, and Q    
i i i i i

w

n n n n nv hv v S v u  and 

( ) ( ) 0Q      
i in nSw Sv hw v  and 

i

w

nSv Sw u   as (i  ). 
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Since   -commuting of ( ,h) and ( , ) implies weakly compatible, then 

h  = h w =  hw =    =   v =   v =  y. 

as   is strongly continuous together with 
i

w

nv u , then 
inSv    . 

By 
i

w

nSv u , we have   =    = h  =   . Thus PA(u)  F( )  F( h 

)  F( )   . This completes the proof■ 
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CHAPTER 1 
 

CONCLUSIONS AND FUTURE 

WORK 

 

5-1 Conclusions: 

 

We'll list our work as follows: 

1- we have been reform many concepts in the setting of modular spaces, 

such as, weak convergence, dual of modular space, uniformly convex 

modular space, demi-closeness, proximinal set, … . 

2- we have been prove that  

-the relation between convergence and weak convergence, 

-the completeness of dual space,  

-the set of best approximations is non-empty, closed and bounded,  

-the existences of best approximation for usc set-valued mapping, ..  

-the existences of fixed points and its application in best 

approximation in some modular spaces, 

-the existences of fixed points, common fixed points and coincidences 

points for non-expansive mappings, p- non-expansive mappings and 

(p,q)- non-expansive mappings for commuting and non-commuting 

mappings  complete modular spaces, 
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-also, we have been employing these results to have best 

approximations. 

3- this work requires the employment of  convexity property, here,  we      

use  some of its generalizations, like, star-shapness property, affinenss 

property and   convex structure.  

4-  Some of our results are a generalization of what is proved in the 

references. 

 

5-2 Future Work: 

   

      Consider 𝑀                       𝐴  𝑀. A mapping : 𝐴   
is 

called  𝐾𝐾𝑀       if co{x0, x1, …, xn}  
n

0i
   xi for each finite subset  

{x0, x1, …, xn} of 𝐴 [19]  

 

We suggest a study about best approximations in modular spaces via 

 𝐾𝐾𝑀       and give a version of Proll's theorem some other results.   
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 مستخلص

 

لقد كرس هذا البحث لدراسة خواص مجموعة التقريبات الافضل         

وتطبيق بعض مبرهنات النقطة الصامدة او مبرهنات نقطة التطابق 

 Modular)للحصول على التقريب الافضل الثابت في فضاءات الوحدات 

spaces) النتائج في اربعة محاور فكرة الحصول على هذه لقد ضمنت .

صياغة بعض المفاهيم في حالة فضاء الوحدات, المحور الاول هو لأعادة 

على سبيل المثال, التقارب القوي والتقارب الضعيف وثنائي فضاء 

الوحدات وغيرها ثم البرهنت بعض العبارات الضرورية والمتعلقة بالعمل. 

 -المحور الثاني يتضمن اعطاء مبرهنات من نمط مبرهنة بريزاسكي

التقريب الافضل الثابت. من جهة (حول  Brosowski-Minardusمناردس )

اخرى, وخصص المحور الثالث لتطبيق مبرهنات النقطة الصامدة 

-wالمحدبة ) المشتركة ومبرهنات نقطة التطابق وبأستخدم خاصية 

convex للحصول على نتائج اخرى. أخير في المحور الرابع تم البرهنة )

ت اللامتمددة  المنفردة على وجود مثل هذه التقريبات بالاعتماد على التطبيقا

(non-expansive-mapping او ذات القيم المتعددة والتطبيقات )

-non-expansive-( , )اللامتمددة والتطبيقات اللامتمددة المعممة )

mapping and generalized.) 

 

 

 



 

 

                  

 جمهورية العراق

 العالي والبحث العلميوزارة التعليم 

 كلية التربية للعلوم الصرفة/ ابن الهيثم

 قسم الرياضيات

 

 

التقريب الافضل الثابت في فضاءات 

 الوحدات
  

رساله مقدمة إلى مجلس كلية التربية للعلوم الصرفة /ابن 

الهيثم جامعة بغداد كجزء من متطلبات نيل درجة الماجستير 

 في علوم الرياضيات 

 

 

 من قبل 

 كرار عماد عبد الساده اللهيبي 
  

 بإشراف

 ا.م.د.سلوى سلمان عبد
 

 م 2118                        هـ                                                      1439



 

 


