Republic of Iraq
Ministry of Higher Education and Scientific Research
University of Baghdad

College of Education for Pure Sciences / Ibn Al-Haitham

Department of Mathematics

A Study of Some Generalizations of Fibrewise

Bitopological Spaces

A Thesis
Submitted to the College of Education for Pure Sciences / Ibn Al-Haitham,
University of Baghdad as a Partial Fulfillment of the Requirements for the
Degree of Master of Science in Mathematics
By
LIWAA ALI HUSSAIN

B.Sc., University of Baghdad, 2010
Supervised By

Assist. Prof. Dr. YOUSIF YAQOUB YOUSIF

2018 AC 1439 AH



4

P P PR I PP e o -
S5 sd B R TGE ol @58 .08 o 5 AT ey 0,1 335

/’

G 6Lk el oGl sl @JMU«/J‘)&: M&*:;fﬁ‘

G5 sl il 5 @ﬁﬁwcsyz‘uﬂ;ﬂleﬂ u)..n.:u.au_ﬁ)‘db
el G LT U5 38 @ s a5 Gub el G| il

.M|u|.1.9‘.ll§:\:.éf_, uda...«JJL:};j Al -3

adinl) Ael) 4 i

(5-1) I



slaa)

daaa Udses Cppalladl g35 daa i) od ) L. AeY) maly ., ALY gl ., Adladl &y 0 )
alag 4l g e 4 La
b e £l Lo adl) adially Gloall cpalual) s Slan g Cpanll hagl g
Al ) g Jad) Cpalsa
ot g Adlaa &) puagl Ga

sl st e s e 5B L e ey (o
Aty A 6 = wiasl) B = el alls (RS L35 S s, 3

P .
e 7 7

(15) @Lis@

(15) —alaay!
(&) 4 ) () pala GaT o aadiy b (B (Aadlg e a
A el Al g Al g daudail) g Gliad) daa )
(N Aan ) e s o giSal) JELY) (5908 g agla s J9Y) (alna I
S8 S Al g i) A agia QuiiSl g lba A agale i) G )
Al (fa ) laal) claglaa (b A juae g 50 g gdiu )
s SsS U ALS e el L liadl Al danadll g ) (e g g sl )
2d BBs (A gedYL el alad b Bl Y agd (1S Craa ial g ABal giaa
S Cpeall As daaa M)
o loal 5 138 Las oSl sa)



————| [
> Acknowledgment <

Praise to Allah and peace and blessings be upon his prophets and messengers.

Blessing is also upon prophet Mohammed and his family and his extend.

I would like to thank who supervised on my thesis
Assist. Prof. Dr. YOUSIF YAQOUB YOUSIF
Doctor of pure mathematics - department of mathematics - college of edu-

cation for pure sciences / Ibn Al-Haitham- University of Baghdad.
I would like to thank the

All staff of the department of mathematics-college of education for pure

sciences / Ibn Al-Haitham- University of Baghdad .

Liwaa Ali



= =
Z Author's Publications S

[1] Y.Y. Yousifand L. A. Hussain, Fibrewise Bitopological Spaces, Inter-

national Journal of Science and Research (IJSR), Vol. 6, Issue 2, pp.
978-982, February (2017).

[2] Y. Y. Yousif and L. A. Hussain, Fibrewise Pairwise Bi-Separation Ax-
ioms, 1% Science International Conference College of Science / Al
Nahrain University (21-22) November 2017. (Accepted, waiting publi-
cation).

[3] Y. Y. Yousif and L. A. Hussain Fibrewise IJ-Perfect Bitopological
Spaces, Ibn AL-Haitham 1%. International Scientific Conference —

2017. (Accepted, waiting publication).



Abstract

In this research, we introduce and study the concept of fibrewise bitop-
ological spaces. We generalize some fundamental results from fibrewise to-
pology into fibrewise bitopological space. We also introduce the concepts of
fibrewise closed bitopological spaces,(resp., open, locally sliceable and local-
ly sectionable). We state and prove several propositions concerning with these
concepts. On the other hand, we extend separation axioms of ordinary bito-
pology into fibrewise setting. The separation axioms we extend are called fi-
brewise pairwise T, spaces, fibrewise pairwise T, spaces, fibrewise pairwise
R, spaces, fibrewise pairwise Hausdorff spaces, fibrewise pairwise function-
ally Hausdorff spaces, fibrewise pairwise regular spaces, fibrewise pairwise
completely regular spaces, fibrewise pairwise normal spaces, and fibrewise
pairwise functionally normal spaces. In addition, we offer some results con-
cerning these extended axioms. Finally, we introduce some concepts in fi-
brewise bitopological spaces which are fibrewise ij-bitopological spaces, fi-
brewise ij-closed bitopological spaces, fibrewise ij —compact bitopological
spaces, fibrewise ij-perfect bitopological spaces, fibrewise weakly ij-closed
bitopological space, fibrewise almost ij-perfect bitopological space, fibrewise
ij*-bitopological spaces. We study several theorems and characterizations

concerning these concepts.
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Abbreviation

<

topological space
bitopological space
intersection of set
union of set
belong of set
not belong of set
projection function p: M — B
p l(b):bEB

p~1(B*): B* S B

p~1(B*): B*CS B
empty set
fibrewise function
diagonal of function
identity function id,, : M - M
projection function of product
diagonal embedding
product of two bitopology
real numbers
open cover
graph function
continuous function A : My, — [0,1]
G is finer than F

product of function
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Introduction
Mathematics plays a vital and an important role in the development of
civilization which mankind has witnessed since the dawn of the history up to
nowadays. Mathematics has undoubtedly the big favor in accelerating the
wheel of progress for producing ideas and laws helped to organize and coor-
dinate the various natural sciences such as, Geometry, Physics, Chemistry,

Biology, Astronomy, Economics and Computers, etc.

The middle of 19™ century witnessed an important changes in mathe-
matics structure, especially in Geometry. For the first time, the term of (To-
pology) has been used in 1847 in Germany by the German scientist (Johann
Benedict Listing ). Topology is a Greek word, consisting of two syllables :
“topo” means a place, “logos” means study. At the beginnings of 20" century
as for 1925 up to 1975, this branch has clearly developed and formed an

integrated competence. So, the topology is a science that deals with Geometry

in a different way not as it used in Euclidean Geometry. This science distin-

guished by flexibility concerning the mathematical shapes. It could find the

suitable solutions and remove the ambiguity of many problems that scientists

couldn’t find the right solutions through the Euclidean Geometry.

Bitopological spaces are first introduced by Kelly [18] in (1963) fol-
lowed by many researchers who developed and generalized bitopological

space on different science.
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The concept of fibrewise set over a given set was introduced by James
in [9], [10], [11], [12], [13], [14] in 1989.
In order to begin the work in the category of fibrewise (briefly F.W.) sets over
a given set, called the base set, which is denoted by B. A F.W. set over B con-
sist of a set M with a function p: M — B, that is called the projection. The fi-
bre over b for every point b of B is the subset M, = p~1(b) of M. Perhaps,
fibre will be empty since we do not require p is surjectve, also, for every sub-
set B* of B we considered M- = p~1(B*) as a F.W. set over B* with the pro-
jection determined by p. The alternative notation M | B* is some time conven-
ient. We considered the Cartesian product B X T, for every set T, like a F.W.

set B by the first projection.

The functions are not only a fundamental but the most important con-
cepts in Mathematics for having a wide applications. Thus, the mathematical
scientists were interesting in inserting this vital concept within topology for
finding new visions and opening a wide horizons. For this reason, the general
topology idea for the continuous functions or the general fibrewise topology
which deals with the topological spaces as a mapping from this space onto a
one point space.

To put the foundation stone for fibrewise topological spaces, many at-
tempts appeared during the last two decades, most of the results, obtained so
far in this field can be found in the work of Dyckhoff [6] in (1972) and
Niefield [28] in (1984). Some hope of this is provided by the link between fi-
brewise topology and topos theory, referred to by Lever [21] and [22] in
(1983, 1984) and Johnstone [15] in (1981, 1984). Moreover, in Pasynkov [29]
in (1984) and James [9], [10], [11], [12], [13] and [14] in (1986, 1989), we
can find definitions of some fibrewise topological spaces. Also in Buhagiar
[5] in (1997), we can find definitions of some topological mappings which are

precisely the definitions of fibrewise topological spaces, where the codomain

IX



Is the base set. In (2003), Al-Zoubi and Hdeib [42] defined countably
paracompact mappings, which are the fibrewise topological analogue of
countably paracompact spaces finally Y.Y.Yousif and M. A. Hussain [35]
and [36] in (2017) defined the concept of fibrewise soft topological spaces
.Several characterizations of countably paracompact mappings are proved. As
well as, we built on some of the result in [1],[2], [8], [17],[19], [20], [23],
[31], [32], [33], [37], [38], [39], [40], [41].

The purpose of this thesis is to generalize fibrewise sets on the bitopo-
logical spaces, and to generalize some other mathematical concepts. The the-
sis will be entitled:

“A Study of Some Generalizations of Fibrewise Bitopological Spaces”
This thesis includes four chapters:
Chapter one: In this chapter we recall some of the fundamental definitions in
the general topological spaces, bitopological spaces, and some basic concepts
in the fibrewise spaces.
Chapter two: We introduce new definitions by mixing between the fibrewise
sets and bitopological spaces and called it “fibrewise bitopological spaces”.
We deal with many definitions and theorems which are generalized from gen-
eral topology.
Chapter three: We study a basic concept and very important in topology
which is called separation axioms in which we put new definitions of spaces,
Ty, Ty, T,, T3, regular, normal in the light of the fibrewise bitopological space.
Chapter four: The aim of this chapter is to study compact fibrewise bitopo-
logical spaces, closed fibrewise bitopological spaces, rigid fibrewise bitopo-
logical spaces and the relationship among them and we give some basic defi-
nitions on the concept of filter and the point which is related with director

filter and convergence of the filter.
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Chapter 1 Preliminary Concepts

Chapter 1

Preliminary Concepts

This chapter consists of two sections. Section one contains fundamen-
tal concepts of topological spaces, Bitopological spaces, compact spaces, the
concept of filters, and filter base and some examples about some of these
concepts. Section two gives an explains fibrewise sets theories and some of

their properties.

1.1. Fundamental Notions of Topological (bitopological) Spaces
Some basic concepts in topology which are useful for our study are

given in this section.

Definition 1.1.1. [7] Let X be a nonempty set and t be a collection of subsets
of X. The collection 7 is said to be a topology on X if t satisfies the following
three conditions:

@ gertand X €T,

(b) T is closed under finite intersection,

(c) T is closed under arbitrary union.

If T is a topology on X, then the pair (X, 7) is called a topological space or
simply X is a space. The subsets of X belonging to t are called open sets in the
space and the complement of the subsets of X which belongs to 7 are called

closed sets in the space.

Definition 1.1.2. [7] Let (X, t) be a topological space and A < X. The closure
(resp., interior) of A is denoted by CI(A) (resp., Int(A)) and is defined as:
clA)=N{F<cX; Fisclosed setand A € F}.
int(A) =U { O c X; Oisopensetand O € A}.

1
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Evidently, cl(A) (resp., int(A)) is the smallest closed (resp., largest open) sub-
set of X which contains (resp., contained in ) A. Note that A is closed (resp.,
open) if and only if A =cl(A) (resp., A = int(A)).

Definition 1.1.3. [7] Let (X, t) be a topological space and A € X. The bound-
ary of A is denoted by Bd(A) and is defined by:
bd(A) = cl(A) — int(A).

Definition 1.1.4. [4] Let (X, 1) be a topological space and A € X. The sub-
space topology on A is denoted by t, and is defined by:

s ={ANO0; 0 et}
The subspace topology is also called the relative topology or the induced to-

pology or the trace topology.

Definition 1.1.5. [7] A function f:X->Y is said to be con-
tinous if the inverse image of each open set in Y is open in X

Definition 1.1.6. [7] A function f:X-Y s said to be open
if the image of each open set in X isopenin'.

Definition 1.1.7. [7] A functionf:X —>Y is said to be closed
if the image of each closed set in X is closed in Y.

The bitopological space was first created by Kelly [18] in 1963 and af-
ter that a large number of researches have been completed to generalize the

topological ideas into bitopological setting.

Next Some basic concepts in bitopological spaces which are useful for

our study are given.
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Definition 1.1.8. [18] A triple (M, 7,,T,) Where M is a non-empty set and 7,

and t, are two topologies on M is called bitopological space.

Example 1.1.9. Let M = {1,2,3}, 7, = {M, 0,{1,2},{2}}, 7, = {M, 0,{1,3}}

.Then (M, 74, T,) is bitopological space.

In this work (M, T4, 1) and (N, o1, o) (briefly, M and N) always mean
bitopological spaces on which no separation axioms are supposed unless
clearly stated. By ti-open (resp., ti-closed), we shall mean the open (resp.,
closed) set with respect to t; in M, wherei = 1,2. A set A is open (resp.,
closed) in M if it is both ti-open (resp., t;-closed) and t,-open (resp., T,-

closed).
In what follows we consider i,j € {1,2};i # j.

Definition 1.1.10. [18] A function f : (M, 14, T,) = (N, 04, 0,) is said to be
T;-continuous (resp., ;-open, t;-closed), if the function f: (M, t;) - (N, g;)
Is continuous (resp., open, closed). f is called continuous (resp., open, closed)

if it is T;-continuous (resp., ;-open, t;-closed) for every i = 1,2.

Example 1.1.11. Let M = {1, 2, 3} and N = {a, b, c} be two sets. Let 7; and
T, (resp. a; and ;) be two topologies on M (res. N) such that t; ={M, @, {1,
2}y and 7, = {M, 0, {3}, {2, 3}}, 0, ={N, @, {a, b}}, 0, = {N, @, {c}, {a,
c}}. Define ¢ : M — N such that ¢(1) = b, 9(2) = a,9(3) =c. Then ¢ is
continuous (open and closed).
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Definition 1.1.12. [27] A bitopological space (M, 74, T,) is said to be paiwise
T, space if for every pair of points x and y such that x # y there exists a t;-
open set containing x but not containing y or a z;-open set containing y but not

containing x, where i,j = 1,2 ,i # j.

Definition 1.1.13. [16] A point x in (M, 74, T,) is called an ij-contact point of
a subset A< M iff for every t;-open neighborhood (nbd) U of X,
(tj—cl(U))n A+ @. The set of all ij-contact points of A is called the ij-
closure of A and is denoted by ij —cl(A). A c M is called ij-closed iff
A=ij—cl(A),wherei,j =1,2.

Definition 1.1.14. [4] A filter F on a set M is a nonempty collection of
nonempty subsets of M with the properties:

@ IfF,F, e F,thenF, NnF, € F.

()IfFe FandF C F* < M, then F* € F.

Definition 1.1.15. [4] A filter base F on a set M is a nonempty collection of
nonempty subsets of M such that if F;, F, € F then F; c F,NF, for some F;
e F.

Definition 1.1.16. [4] If F and G are filter bases on M, we say that G is finer
than F (written as F < G) if foreach F € F, thereisG € GsuchthatG < F
andthat F meetsGif FNG # @ forevery F € Fand G € G.

Definition 1.1.17. [4] A filter base F on M is said to be ij-converges to a sub-

set A of M (written as F e, A) iff for every t;-open cover U of A,

there is a finite subfamily U, of U and a member F of F such that F c U
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ij—con

{t; — cl(U):U € Up}. Also if x € M, we say F ———— x iff F ————
x} or equivalently, t;-closure of every ;-open nbd of x contains some mem-
{x} oreq Y Tj Yy 7;-0p

bers of F.

Definition 1.1.18. [3] A function f: (M,t4,7,) = (N,0y,0,) is called ij-
continuous iff for any x € M, there exist o;-open nbd V of f (x), there exists a
7;-open nbd U of x such that f (z;-cl(U)) € gj-cl(V), where i,j =1,2.

Definition 1.1.19. [3] A point x in a bitopological space (M, t,, 1) is called
an ij-adherent point of a filter base F on M iff it is an ij-contact point of every
number of F. The set of all ij-adherent points of F is called the ij-adherence

of F and is denoted by ij-ad F, where i,j =1, 2.

Definition 1.1.20. [24] A subset A in bitopological space (M, 74, 7,) is called
1j-H-set in M iff for each 7;-open cover A of A4, there is a finite subcollection
B of A such that A cu{t;—cl(U): U € B},i,j=12. A is called a
pairwise-H-set iff it is a 12- and 21-H-set. If A is an ij-H-set (pairwise-H-set)
and A = M, then the space is called an ij-QHC (resp., pairwise QHC) space,

wherei,j =1,2.

Lemma 1.1.21. [25] A subset A of a bitopological space (M, T4, 7,) is an ij-H-
set iff for each filter base F on A, (ij —ad F) N A # @, wherei,j =1,2.
Proof: (=) Clear.

(<) Let A be a 7;-open cover of A such that the union of z;-closure of any
finite sub collection of A is not cover A. Then F ={A\ Uz 7;-cl (B) : B is fi-
nite sub collection of A}is a filter base on A and (ij-ad F) N A = ¢@. Thisis a

contradiction. Thus, 4 is ij-H-set.
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Definition 1.1.22 [25] A topological space (M,7) is called Urysohn space iff

for each x # y can be seperated by closed nbd.

Definition 1.1.23. [25] A bitopological space (M, 4, T,) is said to be pairwise
Urysohn space if for x,y € M withx # y, there are t;-open nbd U of x and

t;-open nbd V of y such that ; — cl(U) n7; — cl(V) = ¢, where i,j = 1,2.

Lemma 1.1.24. [25] In a pairwise Urysohn bitopological space (M, 7,,7,) an

Ij-H-set is ij-closed, where i,j =1, 2.

Lemma 1.1.25. [16] In a bitopological space (M,ty,7,). If U € 7;, then
ij —cl(U) =15 —cl(U) ,where i,j =1,2.

Lemma 1.1.26. [30] The bitopological space (M, 74, T,) is pairwise Hausdorff
iff {m} = ij — cl{m}, foreachm € M.

1.2. Fundamental Notions of Fibrewise Topology

In order to begin the category in the classification of fibrewise (briefly,
F.W.) sets over a given set, called the base set, which say B. A F.W. set over
B consists of a set M with a function p: M — B, that is called the projection.
The fibre over b for every point b in B is the subset M, = p~1(b) of M. Per-
haps, fibre will be empty since we do not require p is surjectve, also, for eve-
ry subset B* of B, we consider Mg« = p~1(B*) as a F.W. set over B* with the
projection determined by p. The alternative notation of Mg+ is sometime re-
ferred to as M | B*. We consider the Cartesian product B X T, for every set T,

as a F.W. set over B by the first projection.
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Definition 1.2.1. [9] If M and N are F.W. sets over B, with projections p,,
and py, respectively. A function ¢: M — N is said to be F.W. function if
Py O @ = py, OF @(M,) < N, for every point b of B, where py: N - B and
pu:M — B.

Example 1.2.2. Let M ={1,2,3} , N={2,4,6} B={a,b,c}, let py;: M - B
where : py, (1) = a,py(2) = b,py(3) = c. Let py: N — B where: py(2) =
a,py(4) =c,py(6) = b. Let o: M - N where: ¢(1) = 2,9(2) = 6,9(3) =

4. Then ¢ is a fibrewise function.

Note that a F.W. function ¢: M — N over B is determines, by a re-

striction, a F.W. function @g+: Mg+ — Ng- over B* for every subset B* of B.

Definition 1.2.3. [9] Let (B, A) be a topological space. The F.W. topology on
a F.W. set M over B means any topology on M for which the projection p is

continuous.

Definition 1.2.4. [9] The F.W. topological space (M, t) over (B, A) is called
F.W. closed (resp., F.W. open) if the projection p is closed (resp., open).

Example 1.2.5. Let B = {1,2,3}, A = {B, ¢, {1}, {1, 2}}. Let M be fibrewise
set over B where M = {a, b} and let p: M — B such that p(a) = 1,p(b) = 2.
Let T ={M, ¢, {a}} be any topology on M. Then p is continuous and (M, t)
is F.W. topology on (B, A).

Definition 1.2.6. [9] The F.W. function ¢: M — N, where M and N are F.W.

topological spaces over B is called
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(a) continuous if for every point m € M,; b € B, the inverse image of every
open set of @(m) is an open set of m.
(b) open if for every point m € M, ; b € B, the image of every open set of m

Is an open set of @ (m).

Example 1.2.7. Let M = {1,2,3}, t = {M, ,{3},{1,3}}, and let N ={2, 3,
5}, o ={N,0,{2,5},{2}}. Let B ={a,b,c}, and A = {B,®,{a},{a, c}}. As-
sume that ¢ : M — N be function where ¢(1) = 2,9(3) = 5,¢(2) = 3. Let
py: M — B such that py, (1) = ¢,py(2) = b,py(3) = a. Let py: N = B such
that py (2) = a,py(3) = ¢, py(5) = a. So p is continuous and open.

Example 1.2.8. Let M = {1,2,3}, T = {M,®,{1},{2,3}}. Let B ={a, b, c},
A ={B,0,{b}, {a c}}. Letp: M — B where p(1) = b,p(2) = c,p(3) = a.
Let ¢ ={M, ¢,{1},{2,3}}, A° = {B,®,{b},{a,c}}. Then p is closed (resp.,

open).

Definition 1.2.9. [7] Assume that we are given a topological space M, a fami-
ly {¢s}ses OF continuous functions, and a family { N, } ;s of topological
spaces where the function ¢, : M — N that transfers x € M to the point {¢,
(%)} € I1ses N is continuous, it is called the diagonal of the functions {@,}ses

and is denoted by Agcsps Or 1A @, A A ifS = {1,2,...,k}.

Definition 1.2.10. [34] For every topological space M* and any subspace M
of M*, the function iy, : M — M* define by i),(x) = x is called embedding
of the subspace M in the space M*. Observe that i), is continuous, since
ir(U) = Mn U, where U is open set in M*. The embedding i,, is closed

(resp., open) iff the subspace M is closed (resp., open).
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Definition 1.2.11. [34] if X is topological space and XxeX a
nieghberhood of x is a set U which contain an open set V con-
tainig x. If A is open set and contains x we called A is open

neighborhood for a point x.

Definition 1.2.12.[4] A topological space (M, 7) is called compact iff each

open cover of M has a finite subcover for M.

Definition 1.2.13. [26] Let(M,7)and (N, o) betopological spaces.
Afunction f:M - N is a local homeomorphismif for every
point x in M there exists an open set U containing X, such that the image is

open in N and the restriction is a homeomorphism.

Definition 1.2.14. [18] A Dbitopological space (M, t4,7,) IS
said to be pairwise Hausdorff , if for each distinct points

x,y €M there exist disjoint sets t;-open set U of x and 7;-

opensetVofy, fori,j = 1,2,i # j.


https://en.wikipedia.org/wiki/Topological_space
https://en.wikipedia.org/wiki/Function_(mathematics)
https://en.wikipedia.org/wiki/Open_set
https://en.wikipedia.org/wiki/Image_(mathematics)
https://en.wikipedia.org/wiki/Restriction_(mathematics)
https://en.wikipedia.org/wiki/Homeomorphism
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Chapter 2

Fibrewise Bitopological Spaces

The aim of this chapter is to introduce a new bitopological structure
which is called Fibrewise Bitopological space. We define the concept of
bitopological space based on a fibrewise set. Some examples and theories re-
lated to this new structure are introduced. In section one, we defined the con-
cept of fibrewise bitopological spaces and the notion of induced fibrewise
bitopological spaces. In section two we studied the notions of fibrewise open
and fibrewise closed bitopological spaces. The purpose of section three is to
show the notions of Fibrewise locally sliceable and fibrewise locally

sectionable bitopological spaces.

2.1. Fibrewise Bitopological Spaces
In this section we establish F.W. bitopological spaces. Several topolog-

ical properties on this space are obtained and studied.

Definition 2.1.1. Let (B, A;, A,) be a bitopological space. The F.W. bito-
pology on a F.W. set M over B means any bitopology on M for which the pro-

jection p is continuous.

Example 2.1.2. Let B = {a, b, c}, 4, ={B, 0,{a}}, 4, = {B,9?,{a,c}}. Let M
be a fibrewise set over B where M = {1,2,3}.Let 7, ={M, ¢, {1}},7, =
{M,@}. Letp: M — B wherep(1) =a,p(2) =c=p(3). Then (M, t4,7,) IS
a fibrewise bitopology on (B, 44, 4,).

For another example, we consider (B, A,, A,) as a F.W. bitopological spac-
es over itself with the identity as a projection. Also, if we consider the bitopo-

logical product B x T, for every bitopological space T, can be regarded as a

10
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F.W. bitopological space over B, by the first projection. The latter situation

can be applied for every subspace of B X T.

Remarks 2.1.3.

(@) In F.W. bitopology, we work over bitopological base space (B, A;, A,).
If B is a point—space, the theory changes to that of ordinary bitopology.

(b) A F.W. bitopological spaces over B is just a bitopological space (M,
T4, T, ) With a continuous projectionp : (M, t4,7,) — (B, 44, A,).

(c) The coarsest such bitopology is obtained by p, in which the t; —open set
of (M, 7,,7,) is exactly the inverse image of the A; —open set of
(B, Ay, A,); called, the F.W. indiscrete bitopology, where i =1, 2.

(d) The F.W. bitopological space over (B, A;, A,) is defined to be a F.W. set
over B with F.W. bitopology.

(e) We consider the bitopological product B x T, for every bitopological

space T, as a F.W. bitopological spaces over B by the first projection.

Definition 2.1.4. The F.W. function ¢ : M - N where (M,7,,7,) and

(N ,a,,0,) are F.W. bitopological spaces over (B, A,, A,) are said to be:

(@) i —continuous if for every point m € M, ; b € B, the inverse image of
every g; —open set of ¢(m) is T; —open set contain m. ¢ is called con-
tinuous if it is i —continuous for every i = 1,2.

(b) i —open if for every point m € M,, ; b € B, the image of every 7; —open
set of m is g; —open set of @(m). ¢ is called open if it is i —open for
everyi = 1,2.

(c) i—closed if for every point m € M, ; b € B, the image of every
T; —closed set of m is g; —closed set of @(m). ¢ is called closed if it is

i —closed for every i = 1,2.

11
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Example 2.15. Let M=1{1,23}, 7, ={M,0,{1},{23}}, andz, =
{M,0,{3}}. Let N ={4,5,6}, o, = {N, 0,{5},{4,6}}, and o, = {N, ®,{4}}.
LetB={a, b, c}, 4, = {B, @, {a}, {b,c}, {b}, {a,c}, {c}, {a,b}}, A, = {B,
@, {b}, {a}, {a,b}}. Define py : M - B such that py,(1) =a,py(2) =
c,py(3) = b. Define py : N — B such that py(4) = a, py(5) = b,py(6) =
c. Let ¢ : M — N such that ¢(3) = 4,9(1) =5,¢(2) = 6. Then ¢ is con-

tinuous, open, closed.

If ¢ : M — N isaF.W. function where M isa F.W. setand (N , 0, ,0,)
is a F.W. bitopoligical space over (B, A, A,). We can give M the induced
bitopology, in the ordinary sense and this is necessarily a F.W. bitopology.
We may refer to it, therefore, like the induced F.W. bitopology and note the

next characterizations.

Proposition 2.1.6. Let ¢ : M — N be a F.W. function, where (N, g, ,0,) is
a F.W. bitopoligical space over (B, A,,/A,) and M has an induced F.W. bito-
pology. Then for every F.W. bitopoligical space (Q,,,9,) a F.W. function
Y:(Q,6,,6,) » (M,t,,T,) is continuous iff the composition ¢ o Y: Q -» N
IS continuous.

Proof. (= ) Suppose that y is continuous. Let g € Q, ; b € B and let V be o;-
open set of (¢ 0yY)(q) =n € N, in N. Since ¢ is continuous, then ¢~1(V)
is T; —open set containing ¥(q) = m € M, in M. Since ¥ is continuous, then
Y1 (o1 (V)) is a §; —open set containing g € Q, in Q and Y~ (p~1(V)) =
(@ 0 Y)~1(V) is a §; —open set containing g € Q,, in Q, where i = 1,2.

(<) Suppose that @ oy is continuous. Let g€ Q, ; b€ B and U be
at; —open set of Y(q) =m € My, in M. Since ¢ is open then, ¢(U) is a
o; —open set containing ¢(m) = <p(l/)(q)) =n €N, in N. Since @oy is

12
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continuous, then (¢ o Y) 1(pU)) =y~ 1(U)is a §; —open set containing
q € Q,inQ,wherei =1,2.

Proposition 2.1.7. Let ¢@: M — N be a F.W. function where, (N ,0,,0,) a
F.W. bitopoligical space over (B, A1, A,) and M has an induced F.W. bitopol-
ogy. Then for every F.W. bitopoligical space (Q, d,,,), the surjectve F.W.
function ¢:(Q,8,,6,) - (M,t,,t,) Iis open iff the composition
poy: (Q,61,6,) = (N ,o0,,0,) is open.

Proof. (=) Suppose that i is open. Let g € Q, ; b € B and let U be a §;-
open set of g in Q. Since ¥ is open, then Y (U) is 1; open set containing
Y(q) = m € M, in M where i = 1,2. Since ¢ is open, then (¥ (U)) is o
open set containing @(m) =n €N, in N. And ¢(p(U)) = oy (V).
wherei = 1, 2.

(<) Suppose that @ oy is open. Let g € Q, ; b € B. Let U be a §; — open
set of g in Q. Since @ o Y is open, then ¢ o Y(U) is g;-0pen set containing
@ 0Y(q) =n € N,. Since ¢ is continuous, then ¢ =1 (¢ o Y (V)) is t;-open
setof Y (q) =m € My, in M. But ™2 (¢ 0 p(U)) = ¢(U), wherei = 1,2.

Let us consider general cases of Propositions (2.1.6) and (2.1.7) as fol-
lows:
Corollary 2.1.8.
In the case of families {¢,} of F.W. functions, where ¢,: M — N, with
(N, 0,1, 0,,) F.W. bitopological space over B for every r. Specially, given a
family {(M,, 7,1, 7,»)} of F.W. bitopological space over B, the F.W. bitopo-
logical product []zM, is defined to be the F.W. product with the F.W. bito-
pology generated by the family of projections r,.: [[zM,. = M,.. Then for eve-
ry F.W. bitopological space(Q, 6;,5,) over B, a F.W. function 8: Q — [[z M,

IS continuous (resp., open). For example when M, = M for every index r we

13
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see that the diagonal A: M — [[gM is continuous (resp., open) iff the compo-

sition ,.0A= id,, is continuous (resp., open).

2.2. Fibrewise Closed and Fibrewise Open Bitopological Spaces

In this section we introduce the F.W. closed and F.W. open bitopologi-
cal spaces over B. Several topological properties on these concepts are stud-
ied.

Definition 2.2.1. The F.W. bitopoligical space (M ,t,,t,) over (B,A,A,) is

called F.W. closed if the projection p is closed.

Example 2.2.2. Let M= {1,2,3}, 7, = {M, @,{1},{2,3}}, 7, = {M, 0, {2},
{1, 23}, B ={a,b,c}, A, ={B, 0,{b}, {a,c}}, 4, ={B, ®, {c}, {b,c}}.
Letp: M — B such that p(1) = b, p(2) = ¢,p(3) = a. Then p is closed and
(M ,7,,7,) is F.W. closed space.

For another example is to consider trivial F.W. bitopological space with com-

pact fibre is F.W. closed.

Proposition 2.2.3. Let ¢ : M - Nbe a closed F.W. function where
(M,t,,7,) and (N, o0, ,0,) are F.W. bitopological spaces over (B, A4, A,).
Then M is a F.W. closed if N is a F.W. closed.

Proof. Assume that ¢: M — N is a closed F.W. function and N is F.W. closed
I.e. the projection py: N — B is closed. To prove that M is F.W. closed i.e.
pu:M — Bisclosed. Now, let m € My; b € B, and F be 7; —closed set of m
where i = 1,2. Since ¢ is closed, then @(F) is a; — closed set of @(m)

=mn € Ny in N. Since py is closed, hence py(@(F)) is A; — closed set in B.

14
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But, py 0 (F) = py (F) is g; —closed set of F. Thus, p,, is closed and M is a
F.W. closed wherei =1, 2.

Proposition 2.2.4. If (M,t,,7,) is a F.W. bitopological space over
(B, Ay, A;). Assume that M; is a F.W. closed for every member M; of a finite
covering of M. Then M is a F.W. closed.

Proof. Assume that M is a F.W. bitopological space over B, then the projec-
tionpy : M — B exist. To prove that p is closed. Since M; is F.W. closed,

then the projection pu;* Mj = B is closed for every member M; of a finite

covering of M. Let F be t;-closed subset of M . Then p(F) = Upj(M]- N

F) which is a finite union of closed sets and so p is closed. Thus M is F.W.

closed where i = 1, 2.

Proposition 2.25. Let (M,t;,7,) be a F.W. bitopoligical space
over (B,A,A,). Then (M,tq,7,) is a F.W. closed iff for every fibre
M,, b € B of M and every t; — open set U of M, in M, there is a A; —open
set O of bwhere M, c U, i =1, 2.

Proof. (=) Assume that M is closed. i.e., p: M — B is closed. Now, letb € B
and U be t; —open set of M, where i =1,2. Thus we have M —U is
7; —closed set and p(M — U) is A; —closed set. Let 0 =B —p(M —U) is
A; —open set of b. Hence, M, = p~1(B — p(M — U)) is a subset of U.

(&) Suppose that the other direction is hold, to show that M is closed. Let F
be 7; —closed set in M where i=1, 2. Let b € B — p(F) and every t;_open set
U of M, in M. By assumption there is A; —open set O of b such that M, c U.
It’s easy to show that 0 € B — p(F). Hence, B — p(F) is A; —open set in B.
Hence, p(F) is a A; —closed in B, p is closed, and M is F.W. closed bitopo-

logical, where i=1, 2.
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Definition 2.2.6. The F.W. bitopoligical space (M ,t;,t,) over (B,A;,A,) is

called F.W. open if the projection p is open.

Example 2.2.7. Let M = {x,y,z}, 1, = {M, 0, {x},{y,z} }, t, = {M, 0, {y},
{x, y}}. Let B={a,b,c}, 4, ={B, 0,{b}, {a,c}}, 4, ={B, @, {c}, {b,c}}.
Let p: M - Bsuch that p(x) = b, p(y) = ¢, p(2) = a. Then p is

openand (M ,t,,t,) is F.W. open space.
For another example, trivial F.W. bitopological spaces are always F.W. open.

Proposition 2.2.8. Let ¢: M — N be an open F.W. function where (M, 1,
7,) and (N, o1, 0,) are F.W. bitopological spaces over (B, A;,4,). If N is
F.W. open, then M is F.W. open.

Proof. Since N is F.W. open, we have py : N — B is open. To prove that py
isopen. i.e,py: M — Bisopen. Letm € My; b € B, and let U be t; -
open set of m where i = 1,2, since ¢ is open then @(U) is g; — open set of
@(m) =n € N, in N. Also, since N is F.W. open then py (@(U)) is A; —
open set in B. Since py o @(U) = py(U), then p,, is open and M is F.W.

open, where i = 1,2.

Proposition 2.2.9. Let ¢: M — N be a F.W. function where (M, 7., 7,)and
(N, 0,,0,) are F.W. bitopological spaces over (B, A;,A,). Assume that the
product: idy X @: (M Xg M, 7y X T,,T; XT;) — (M X5 N, 74 X 0y ,T, X 07)
isopen and M is F.W. open . Then ¢ itself is open.

Proof. Consider the following figure:
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M xg M »M x5 N
T[{ lnﬁ
%

M > N

Figure 2.2.1. Diagram of Proposition 2.2.9.

The projection on the left is surjective while the projection on the right is
open because M is F.W. open bitopological space. Thus, m,o(idy X @) =

@or, is open and thus, ¢ is open.

Our next three results apply equally to F.W. closed and F.W. open

bitopological spaces, respectively.

Proposition 2.2.10. Let ¢: M — N be a surjection F.W. continuous where
(M,tq,t,) and (N,ay,0,) are F.W. bitopological spaces over (B,A;,A,).
Then N is F.W. closed (resp., open) if M is F.W. closed (resp., open).

Proof. Suppose that M is a F.W. closed (resp., open). Then py: M — B is
closed (resp., open). To prove that N is a F.W. closed (resp., open) bitopolog-
ical space over B. i.e., the projection py : (N,04,0,) — (B, A4, A, ) is closed
(resp., open). Suppose that € N, ; b € B. Let V be g; — closed (resp., open)
set of n where i = 1,2. Since ¢ is continuous, then ¢~1(V) is 7; —closed
(resp., 7;-open) set of @~ 1(n) =m € M, in M where i = 1,2. Since p,, is
closed (resp., open) then p,, (@ ~1(V)) is closed (resp., open) set in B. But,
pu(9~1(V)) = py(V). Thus py is closed (resp., open), and N is F.W. closed

(resp., open).

Proposition 2.2.11. If (M,t;,7,) is a F.W. bitopological space
over (B, A4, A,). Assume that M is F.W. closed (resp., open) over B. Then

Mg+ is a F.W. closed (resp., open ) over B* for every subspace B* of B.
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Proof. Assume that M is F.W. closed (resp., open) so that the projection
p:M — Bis closed (resp., open). To prove that Mg- is closed (resp., open).
I.e., the projection pg-:Mg- — B™ is closed (resp., open). Letm e M | B*, G
be t;_ closed (resp., t;-open) set of m, where i =1,2. G N Mg is
7,5+ —closed (resp., T;g~ —open ) set of Mg«. pg+«(G N Mg+) = p(G N Mp+) =
p(G) N p(Mg-) = p(G) N B* which is A;g- —closed (resp., 4;5+-0pen ) set in
B*. pg- is closed (resp., open ). Thus, Mg- is F.W. closed (resp., open), where
i =1,2.

Proposition 2.2.12. Let (M,t,,7,) be a F.W. bitopological space over
(B, A4, Ay). Assume that (MBj,TlBj,TZBj) is a F.W. closed (resp., open)
bitopoligical spaces over (B, A5, 4,5,) for every member of a A;z -open
covering of B. Then M is a F.W. closed (resp., open) bitopoligical space over
B, wherei =1,2.

Proof. Assume that M is F.W. bitopological space over B then, the projection
p:M — B exist .To prove that p is closed (resp., open). Since Mg; is closed
(resp., open) over B; for every member A; —open covered of B wherei =
1,2, then the projection pg; : Mp; — B; is closed (resp., open). Now, let F be
7;-Closed (resp., 7;-open) set of My, ; b € B, p(F) =U Pg;(F N Mg;) which is
a finite union of A; —closed (resp., open) sets of B. Thus, p is closed (resp.,
open) and M is closed (resp., open) F.W. bitopological space over B, where
[ =1,2.

Actually, the proceeding proposition is true in locally finite closed cov-
ering see Theorem (1.1.11) and Corollary (1.1.12) in [7].

There are several subclasses of the class of F.W. open bitopological
spaces which induced many important examples and have interesting proper-

ties.
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2.3.  Fibrewise Locally Sliceable and Fibrewise Locally Sectionable
Bitopological Spaces

In this section, we generalize F.W. locally sliceable and F.W. locally
sectionable bitopological spaces over (B, A4, A,). some topological properties

related to these concepts are studied.

Definition 2.3.1. The F.W. bitopological space (M, t,,t,) over (B, A4, A,)
is called locally sliceable if for every point m € M, ; b € B, there exist
a/A; —open set W of b and a section s:W — My, such that s(b) = m, for

i =1or?2.

Example 2.3.2. Let M = {1, 2}, 7; = {M,0,{1}},7, = {M,0,{2}}. Let B =
{a, b}, A, ={B,0,{a}}, A, ={B,0,{b}}. Let p: M - Bwherep (1) =
a,p(2) = b. We have M, = {1}, M, = {2} . Let s;:{a} - {1} where
s;(a) =1,s,: {b} - {2} where s,(b) = 2 .Then M is a F.W. locally slicea-

ble bitopological space.

The condition leads to p is open for if U is a t; —open set of m in M,
then s~*(My, N U) c p(U) is a A; —open set of b in W, and hence, in B,
where i = 1,2. The class of locally sliceable bitopological space is finitely

multiplicative.

Proposition 2.3.3. Let{(M,,t,1,7,,)} X_, be a finite family of locally
sliceable bitopological space over (B, 44, A,). The F.W. bitopological product
M = []gM, is locally sliceable.

Proof. Let m = (m,.) be a point of M, ; b € B, so that m,. = m,.(m) for every
index r. Since M, is a locally sliceable bitopological space, there is a

A; —open set W, of b and a section s,: W, - M, | W, where s,.(b) = m,.

19



Chapter 2 Fibrewise Bitopological Spaces

Then the intersection W = W, n ...n W,, is a A; —open set of b and a section
s:W — My, is given by (m, 0s) (w) =s,.(w) for every index r and every

pointw € W, wherei =1, 2.

Proposition 2.3.4. Let ¢:M — N be a continuous F.W. surjection, where
(M, t4,1,) and (N, 01,0,) are F.W. bitopological spaces over (B, A;,A,) . If
M is locally sliceable, then N is so.

Proof. Letn € Ny, ; b € B. Then n = @(m), for some m € M. If M is local-
ly sliceable then, there is a A; —open set W of b and a section s: W —
My, where s(b) = m. Then ¢@os:W — Ny, is a section such that s(b) =

n, where i = 1, 2, as required.

Definition 2.3.5. The F.W. bitopological space (M ,t;,t,) over (B,Ay,4,)

is called F.W. discrete if the projection p is a local homeomorphism.

Example 2.36. Let M= {1,2}, 7, = {M,0,{1}}, 7, = {M,0,{2}}. Let
B={a b}, A, ={B,0,{a}}, A, = {B,®,{b}}. Let p : M— B where: p(1)=a,
p(2) = b. We have M, = {1}, M, = {2} . Let s;: {a} » {1} such that
s;(@) =1, s,: {b} > {2} such that s,(b)=2. Then, p is local

homeomorphism, and thus M is F.W. discrete.
Remark 2.3.7. It is not difficult to show examples of different F.W. discrete

bitopologies on the same F.W. set which are equivalent, as F.W. bitopologies.

For this reason, we must be careful not to say the F.W. discrete bitopology.
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This means, we recall, that for every point b of B and every point m of
M, there is a t; —open setV of m in M and a A; —open set W of b in B
where p maps V homeomorphically onto . In that case we say that W is
evenly covered by VV, where i = 1, 2. It is clear that F.W. discrete bitopologi-

cal spaces are locally sliceable therefor is F.W. open.

The class of F.W. discrete bitopological spaces are finitely multiplica-

tive.

Proposition 2.3.8. Let {(M,, 7,1, T,»)} ¥_,be a finite family of F.W. discrete
bitopological spaces over (B, A4,4,). Then the F.W. bitopological product
(M = T]gM,,t4,7,) is F.W. discrete.

Proof. Given a point m € My; b € B, then there is for every index r a 7; —
open set U, of m,.(m) in M,, where the projection p, = p o m; - maps U,
homeomorphically onto the A; —open p,.(U,.)) = W,. of b. Then, the t; — open
[1zU, of m is mapped homeomorphically onto the intersection W =n W,

which is a A; —open of b, where i = 1, 2.

An attractive characterization of F.W. discrete bitopological spaces are

given by the following proposition.

Proposition 2.3.9. If (M, t,,7,) is F.W. bitopological space over (B, A4, A,).
Then, M is F.W. discrete iff:

(a) M is F.W. open

(b) The diagonal embedding A: M — M Xz M is open

Proof. (<) Suppose that (a) and (b) are satisfied. Let m € M;, ; b € B, then
A(m) = (m,m) admits a t; X T; —open set in M Xz M which is entirely con-

tained in A (M). Without real lacking in general, we may suppose the
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T; X T; —open set is of the form U Xz U, where U is a t; — open set of m in
M. Then p|U is a homeomorphism. Therefore, M is F.W. discrete where
i=1,2.

(=) Assume that M is F.W. discrete. We have already seen that M is a F.W.
open. To prove that A is open, it is sufficient to show that A(M) is t; X
T;_0penin M Xz M. So, letm € M, ; b € B, and let U be a t; — open set of
m in M, where W = p(U) is aA; —open set of b in B and p maps U homeo-
morphically onto W. Then, U Xz U is contained in A(M) since if not, then
there exist distinct &, ¢* € My, where w € W and &, &* € U, which is ab-

surd.

Open subset of F.W. discrete bitopological spaces are also F.W. dis-

crete. Actually, we have the following results.

Proposition 2.3.10. Assume that ¢: M — N is a continuous F.W. injection,
where (M,t,,7,) and (N, o,,0,) are F.W. open bitopological spaces over
(B, A4, Ay). If N is F.W. discrete then M is so.

Proof. Consider the diagram shown below.

y A > M Xz M

¢l wa
A

N > N X N

Figure 2.3.1. Diagram of Proposition 2.3.10.

Since ¢ is continuous so is @ X ¢@. Now A(N) is g; X g; —openin N Xz N, by
Proposition (2.3.8.). Since N is a F.W. discrete, then A(M)=A (((p_l(N))) =
(o x @)™ (A(N)) is a 7; X T; —open in M xz M. Thus, the conclusion fol-

lows from Proposition (2.3.9.) wherei = 1, 2.
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Proposition 2.3.11. Assume that ¢: M — N be an open F.W. surjection,
where (M,t,,7,) and (N, a,,0,) are F.W. open bitopological spaces over
(B, A4, Ay) . If M isaF.W. discrete, then N is so.

Proof. From figure 2.3.1, with the assumption on ¢, if M is a F.W. discrete

then A(M) is an t; X t; —open in M Xz M, by Proposition (2.3.9.). Hence
A(N) = A (((p(M))) = (¢ x 9)(A(M)) is an o; X g; —open in N Xz N. Thus

the conclusion follows again from Proposition (2.3.9.), where i = 1, 2.

Proposition 2.3.12. If ¢,y: M — N is a continuous F.W. functions, where
(M, tq,7,) isaF.W. bitopological and (N, g;,0,) is a F.W. discrete bitopolog-
ical space over (B, A4, A,). Then the coincidence set K(¢,y) of ¢ and ¢ is
openin M.

Proof. The coincidence set is precisely A~ (¢ x ¥)~*(A(N)), where:

A X
M—PMXBM(p—l'D»NxRN‘LN

Figure 2.3.2. Diagram of Proposition 2.3.12.

Hence the required result follows at once from Proposition (2.3.9.). In particu-
lar, take = N, ¢ = id,,;, and iy = sop where s is a section. We conclude that

s is an open embedding when M is a F.W. discrete.

Proposition 2.3.13. If ¢ : M - N is a continuous F.W. functions, where
(M,tq,7,) is a FW. open and (N, ad,,0,) is a F.W. discrete bitopological
space over (B,A;,A,). Then, the FW. graph I':M — M Xz Nof ¢ is an
open embedding.
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Proof. The F.W. graph is defined in the same way as the ordinary graph, but
with values in the F.W. bitopological product. Therefore, the diagram shown

below is commutative.

r
M M X N
‘pl f X idy
N 4 >N Xz N

Figure 2.3.3. Diagram of Proposition 2.3.13.

Since A(N) is an g; X g; —open in N Xz N, by Proposition (2.3.9.), '(M) =
(p x idy) 1 (A(N)) is an 7; X o; —open in M Xz N, where i = 1,2,as as-

serted.

Remark 2.3.14. If (M,t,,7,) is a F.W. discrete bitopological space over
(B, A4, A,) then for every point m € My, ; b € B, there is a A; —open set W of
b and a unique section s: W — M,,, exist satisfying s(b) = m. We may refer

to s as the section through m.

Definition 2.3.15. The F.W. bitopological space (M, t,,t,) over (B,A;,A,)
is called locally sectionable if every point b € B, admits an A; —open set W

and a section s: W — My, where i = 1 or 2.

Example 2.3.16. Let M = {1, 2}, 7, = {M, 0,{1}},7, = {M,0,{2 »}}. Let B
= {a, b}, A, ={B,0,{a}}, 4, = {B,0,{b}}. Let p : M> B where p(1) = a,
p(2) = b. We have M, = {1}, M, = {2} . Let s, : {a} - {1} where s;(a) =
1,s, : {b} - {2} where s,(b) = 2. Thus (M, t,, T,) is locally sectionable.
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Remark 2.3.17. The F.W. non-empty locally sliceable bitopological spaces
are locally sectionable, but the converse is false. In fact, locally sectionable
bitopological spaces are not necessarily F.W. open. For example, take
M=(-11] cR with (M,7{,7,): T, = 1T,, the natural projection onto
B=RI|Z; (B,A,Ay): Ay = A,.

The class of locally sectionable bitopological spaces is finitely multiplicative

as we show next.

Proposition 2.3.18. If {(M,., t,1,T,»)} is a finite family of locally sectionable
bitopological spaces over (B,A,,A,). Then the F.W. bitopological product
M = []gM, is locally sectionable.

Proof. Given a point b of B, there exist an A; —open set W, of b and a section
s W, = M, | W, for every index r. Since there are finite number of indices,
the intersection W of the A; —open sets I, is also a A; —open set of b, and a
section s: W = ([[gM,)w is given by m,. 0 s(w) = s,.(w), for w € W, where
[ =1,2.

Our last two results apply equally well to every of the above three

propositions.

Proposition 2.3.19. If (M,t,,7,) is a F.W. bitopological space over
(B, A4, A,) . Suppose that (M ,7,,t,) is locally sliceable, F.W. discrete or
locally sectionable over (B,A;,A,).Then so is Mg+ over B* for every

A; —open set B* of B, where i = 1, 2.

Proposition 2.3.20. Let (M,t,,7,) be a F.W. bitopological space over
(B, Ay, ;). Assume that Mg, is a locally sliceable F.W. discrete or locally
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sectionable over B; for every member B; of an A; —open covering of B. So is

M over B, such that, i = 1, 2.
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Chapter 3

Fibrewise Pairwise Separation Axioms

In this chapter, we define fibrewise bitopological space in the more
important concept in topology which is the separation axioms. In Section one,
we define and study the concepts of fibrewise pairwise T, spaces, fibrewise
pairwise T, spaces, fibrewise pairwise R, spaces, fibrewise pairwise
Hausdorff spaces, fibrewise pairwise functionally Hausdorff spaces. Some
basic properties of these spaces are investigated. In Section two, we introduce
the concepts of fibrewise pairwise regular spaces, fibrewise pairwise com-
pletely regular spaces, fibrewise pairwise normal spaces and fibrewise pair-
wise functionally normal spaces. Also, we give several results concerning
them. Some of results in this chapter stated for the case of fibrewise topologi-
cal space (see [1], [23]).

3.1. Fibrewise Pairwise T,, Pairwise T4, Pairwise R, and Pairwise
Hausdorff Spaces.
The concepts of open sets have an important role in F.W. separation ax-
ioms. By using these concepts, we can construct many F.W. separation axi-
oms. Now, we introduce the versions of F.W. pairwise T,, F.W. pairwise T;,

F.W. pairwise R,, and F.W. pairwise Hausdorff spaces as follows.

Definition 3.1.1. Let (M,t,,7,) be a F.W. bitopological space over
(B,A4,A,). Then M is called a F.W. pairwise T, if whenever x,y € M;
b € B and x # y, either there exists a t;-open set U of x which does not con-

tains y in M or z;-open set V of y which does not contains x in M, where

L,j=1,2 ,i#].
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Example 3.1.2. Let M = {1,2,3}, 7,={M,0,{1},{3},{1,3}}, 7, ={M, 9, {2},
{2,1},{2,3}}. Let B = {a,b}, A, = {B, 0, {a}}, 4, ={B, 0, {b}}. Let
p: M — B where p(1) = a, p(2) = b, p(3) = a.Then M is a F.W. pair-

wise T, space.

Remark 3.1.3.
(@ (M, t,,1,) isaF.W. pairwise T, space iff each fiber M, is a pairwise
T, space.
Proof: Let x,y € My, ,b € B such that x # y, so x,y € M. Since M is T,
;there exist 7; -open set U contain x and y & U or 7; -open set V contain y and
x €V.Hence UNM, Ety, and VN M, € 7, and (UNM,) N (VN M) =
UnvV)yYnM,=¢nM, =¢.So M, is pairwise T, space.

(b) Subspaces of F.W. pairwise T, spaces are F.W. pairwise T, spaces.

Proof: Let N be a subset of F.W. pairwise T, spaces, Let x,y € N, ,b € B
such that x # y, then x,y € M, ,b € B and since M is T,, then ether there
exist ; -open set U contain x, y € U or 7; -open set V contain y and x € V.
SinceUNNety,VNnNetyandxeUnNN,yegUNNoryeVnNN,x ¢
V' N N, there for N is F.W. pairwise T, spaces.

(c) The F.W. bitopological products of F.W. pairwise T, spaces with the
family of F.W. pairwise projections are F.W. pairwise T, spaces.

Proof: Let {(M,, 14, T,,-)} be a finite family of F.W. topological spaces, let

X,y € My, ,b € B such that x # y, then m,.(x) = x,. and m,.(y) = y, for some

index r. Since M, is F.W. pairwise T, for all r, then ether there exist ;. -open

set U, contain x,., y, & U, or 7;, -open set V. contain y, and x, & V.. Since

7, 1S continuous, then the inverse images of U, and V. are open in M and

xeU,y&UoryeV,x &V.Hence Mis F.W. pairwise T, space.
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In a similar way, we can introduced the definition of F.W. pairwise T; space.
Let (M,1,,7,) be a F.W. bitopological space over (B,A;,4,). Then, M is
called a F.W. pairwise T, if whenever x, y € M,; b € B and x # y, there ex-
ista7; -open sets U, and a 7; -open set V in M such thatx € U, y € U and x &
V,y € V,ij=1,2,i #j. Butitturns out that there is no real use for this in
what we are going to do. In its place, we formulate some use of a new axiom.
The axiom is that “every 7;- open set contains the z;-closure of each of its
points”, and use the word pairwise R, space. This is correct for pairwise T;
spaces and for pairwise regular spaces. Thinking of it like a weak structure of
pairwise regularity. For example, indiscrete spaces are pairwise R, Spaces.

The F.W. version of the pairwise R, axiom is defined as the following.

Definition 3.1.4. A F.W. bitopological space (M, t,,7,) over (B,A;,A,) is
called F.W. pairwise R, space if for every x € M,; b € B, and every t;-open
set V of x in M, there exists a A; —nbd W of b in B such that V is contains
the ;- closure of {x} in My, (i.e., My, Nt;- CHx} c V) where i,j = 1,2,
i #j.

Example 3.1.5. Let M = {1,2,3}, 1, ={M,0,{1},{3},{1,3}}, 7, = {M, 9,
2}, {2, 1}, {2,3}}. Let B = {a,b}, A, ={B, 0, {a}}, 4, ={B,0,{b}}.
Let p: M - B where p(1) = a,p(2) = b,p(3) = a.Then, M is FW.

pairwise R.

For another example, (B, Ay, A,) X5 (T, 14, 7,) IS @ F.W. pairwise R, space

for all pairwise R, spaces T.

Remark 3.1.6.
(@) The nbds of x are given by a F.W. basis it is enough if the condition in
Definition (3.1.4.) is satisfied for every F.W. basic nbds.
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(b) If (M, tq,7,) is a F.W. pairwise R, space over (B, A4, A,), then for each
subspace (B*, A3, A3) of (B,Ay,Ay), (Mg, 71,t5) is a F.W. pairwise R,

Space over B*.

Proposition 3.1.7. Let ¢ :M - M* be F.W. embedding function, where
(M, tq,1,) and (M*,77,75) are F.W. bitopological spaces over (B, A, A,). If
M* is F.W. pairwise R, then so is M.

Proof. Let V be a t;-open set of x in M where x € M; b€ B. Then V
=@~ 1(V*), where V* is a t;-open set of x* = ¢@(x) in M*. Because M* is a
F.W. pairwise R, then we have a nbd W of b in B, where My, N 7;-Cl{x"}
V*. Hence, My, N 7;-Cl{x}c ¢~ *(My, N 7/-Cl{x"}) € ¢~ (V") =V, and

hence M is a F.W. pairwise R, where i,j = 1,2, ,i # j.

The class of F.W. pairwise R, spaces is finitely multiplicative as we
show in the following.
Proposition 3.1.8. If {(M,,1,,,75,)} is a finite family of F.W. pairwise
R, spaces over B. Then the F.W. bitopological product M = [[gM,. is a F.W.
pairwise R,,.
Proof. Let x € My; b € B. Consider a 7;-open set V = []gV, of x in M, where
V. is a T;,-open set of ,.(x) = x,. in M,. for each index r. Since M, is a F.W.
pairwise R,, then we have a nbd W, of b in B where (M,. | W,.) N 7;,.-Cl{x,.}
c V... Then, we regard W as a nbd of b where W is an intersection of W, and
My n 7;-CHx} <V and hence M =][pM,is F.W. pairwise R, where
i,j=12,,i#]j.

Similar conclusion holds for infinite F.W. products provided all that of

the factors is F.W. nonempty.
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Proposition 3.1.9. Let ¢:M — N is closed, continuous F.W. surjection
function, where (M, 7,,7,) and (N, g,, 0,) are F.W. bitopological spaces over
B. If M is F.W. pairwise R, then so is N.

Proof. Assume that V is an o;-open set of y in N, where y € N,; b € B,
choose x € @~ 1(y). Then U = ¢~ 1(V) is a 7;-open set of x in M. Since M is
F.W. pairwise R,, then we have a nbd W of b in B , where My, Nn7; —
cl{x} c U. Therefore Ny, N @(z; —cl{x}) € (U) = V. Because ¢is
closed, ¢(7; — cl{x}) = o; — cl(e{x}). Hence, Ny N o; —cl(p{x}) c V
and N is F.W. pairwise R, where i,j = 1,2, i #j.

Now we introduce the concept of F.W. pairwise Hausdorff spaces.

Definition 3.1.10. A F.W. bitopological space (M, t,,t,) over (B, A4, A,) is
called F.W. pairwise Hausdorff if whenever x,y € M,; b € B and x #
y, there exist a disjoint pair of z;-open set U of x and 7;-open set V of y in M,

wherei,j =1,2, i #j.

Example 3.1.11. Let M = {1,2,3},7; ={M,0,{1},{3},{1,3}}, 7, =
{M,0,{2},{2,1},{2,3}}. Let B = {a,b}, A, = {B,0,{a}}, A, = {B,0,{b}}.
Let p: M - B where p(1) = a,p(2) = b,p(3) = a.Then M is a F.W.

pairwise T,.

Another example, (B, Ay, A,) Xg (T, 14, T,) is F.W. pairwise Hausdorff space

for any pairwise Hausdorff spaces T.

Remark 3.1.12. If (M,t,,t,) is F.W. pairwise Hausdorff space over
(B, A4, A,) then My is F.W. pairwise Hausdorff over B* for every subspace

B* of B. Especially, the fibers of (M, t,,1,) are pairwise Hausdorff spaces.
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On the other hand, a F.W. bitopological space with pairwise Hausdorff fibres

IS not necessarily pairwise Hausdorff.

Example 3.1.13. Let, 7, = {M,®,{1},{1,2}},7, = {M, ®,{1},{1,3}}, where
M =1{1,2,3}, Let B ={a,b}, A, ={B,0,{a}}, A, ={B,®}. Let M > B
where p(1) = a,p(2) = b = p(3). Then, we have M, ={2,3},
Timy, = {Mp, 8,{23}, Tom, = {Mp, ®,{3}}. Then, there existz,),-open set
U = {2} where 2 € U,and there exist t,,,;, open set V = {3} where 3 €

V where UNV = @. But M is not pairwise Hausdorff since 2 and 3 € M and

2 # 3, and there is no disjoint pair of open sets of 2 and 3.

Proposition 3.1.14. The F.W. bitopological space (M, t,,1,) over (B, A, A,)
Is F.W. pairwise Hausdorff iff the diagonal embedding A: M — M Xz M is
T; Xp T; -Closed.

Proof. (=) Let x,y € M,; b € B and x # y. Since A(M) is t; Xz 7;-closed
in M Xg M, then (x,y) a point of the complement admits a F.W. product
T; Xp Tj-open set U Xp V which does not meet A(M). Then U,V are disjoint
pair of x, y where U is 7;-open set of x,and V is t;-open set of y such that
i,j=1,2, i #].

() Let (x,y) € M Xg M — A(M), so (x,y) € A(M), and x # y since M is
F.W. pairwise T, space then there exist disjoint pair 7;-open set U of x and ;-
open set V of y, so U Xg V is 7; Xp 7;-0pen set in M Xz M. Hence M X M —

A(M) ist; Xg T; isopenand A(M) is T; Xz T; closed.

Subspaces of F.W. pairwise Hausdorff spaces are F.W. pairwise

Hausdorff spaces. Actually, we have the following proposition.

32



Chapter 3 Fibrewise pairwise Separation Axioms

Proposition 3.1.15. Assume that ¢ : M — M* is embedding F.W. function,
where (M,t,,7,) and (M*,t%,,7%,)are F.W. bitopological spaces over
(B, Ay, Ay). If M* is F.W. pairwise Hausdorff then so is M.

Proof. Let x,y € My; b € B and x # y. Then ¢(x),p(y) € M,” are
distinct. Since M* is a F.W. pairwise Hausdorff, then we have a z;-open sets
U* of ¢(x) and a z;-open set V" of ¢(y) in M* which are disjoint. Because
@ is continuous, the inverse images ¢ ~1(U*) = U and ¢ 1 (V*) = V such that
U is a 7;-open set of x and V' is a 7;-open set of y in M such that V and U are

disjoint. Hence, M is a F.W. pairwise Hausdorff where i,j = 1,2,i # j.

Proposition 3.1.16. Let ¢ : M — N be a continuous F.W. function, where
(M,t,,7,) and (N, 04,0,) are F.W. bitopological spaces over (B, A, A,). If
N is F.W. pairwise Hausdorff, then the FW. graphT': M - M Xz N of ¢
is at; Xp 05~ closed embedding.

Proof. The F.W. graph is defined in a similar way to the ordinary graph, but
with values in the F.W. product. Hence, the figure shown below is commuta-

tive.

v

Mxz N

M
<Pl @ Xpidy
A
N

NxzN

v

Figure 3.1.1: Diagram of Proposition 3.1.16.

Since A(N) is a g; X g;-closed in N Xz N, by Proposition (3.1.14.), then
I'(M) = (¢ x idy) ' (4(N)) is a 1; X gj-closed in M xp N, as asserted,

wherei,j =1,2 ,i #].
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The category of F.W. pairwise Hausdorff spaces is multiplicative, in the fol-

lowing sense.

Proposition 3.1.17. Assume that {(M,., T;,, T5,-)} is a family of F.W. pairwise
Hausdorff spaces over (B, A, A,). The F.W. bitopological product M =[]z M,
Is a F.W. pairwise Hausdorff.

Proof. Letx, y € M,;b € Bandx # y. Thenn,.(x) =x, # m.(y) =y,
for some index r. Because M,. is F.W. pairwise Hausdorff, then we have a ;-
open set U, of x,, and a z;,-open set ;. of y,. in M,. where U,. and V;. are dis-
joint. Because m, is continuous, the inverse images U and V are disjoint ;-

open and z;-open sets, respectively, of x,y in M, where i,j = 1,2 ,i # j.

The pairwise functionally version of the F.W. pairwise Hausdorff axi-
om is stronger than the non-pairwise functional version but their properties
are similar. From now on, we denote by I the closed unit interval [0, 1] in the

real line R.

Definition 3.1.18. A F.W. bitopological space (M, t,,t,) over (B, A4, A,) is
F.W. pairwise functionally Hausdorff if for every x,y € M,; b € B and
x #+ Yy, there exists a nbd W of b in B and disjoint pair z;-open sets U of x

and t;-open set V of y in M and a continuous function A: My, — I such that

M,nUcA0)andM, N VcA (1) wherei,j=1,2, i #]j.

Example 3.1.19. Let M = {2,4,6}, 7, = {M, ®,{2},{6},{2,6}}, let T, = {M,

,{4},{2,4},{4,6}}. Let B={a b}, A, ={B,0,{a}}, A, = {B,0,{b}}. Let
p:M — B where p(2) = a = p(6),p(4) = b.Hence, M is F.W. pairwise
Hausdorff and M, = {2,6} and 2 # 6, so W = {a}. Let, 1: My, = I where

AM2)=0, A6) =114y, ={My,0,{2},{6}}, Tom, = {Mw, 0 {2},{6}}.
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Thus A is continuous and M, N U c A71(0) and M, N V c A~1(1). There

for, M is F.W. pairwise functionally Hausdorff.

For another example, (B, A;,A,) X5 (T, t4,T,) is F.W. pairwise functionally

Hausdorff space for each pairwise functionally Hausdorff spaces T.

Remark 3.1.20. If (M, t,,7,) is F.W. pairwise functionally Hausdorff space
over (B, A4, A,) then My is F.W. pairwise functionally Hausdorff over B* for
every subspace B* of B. In particular, the fibers of M are pairwise functional-

ly Hausdorff spaces.

Subspaces of F.W. pairwise functionally Hausdorff spaces are F.W.
pairwise functionally Hausdorff spaces. Actually, we have the following re-
sult.

Proposition 3.1.21. Assume that ¢ : M — M™* is a embedding F.W. func-
tion, where (M, t,,7,) and (M*,t{,7;) are F.W. bitopological spaces over
(B, Ay, Ay). If M* is F.W. pairwise functionally Hausdorff then so is M.
Proof. Let x,y € M}, and x # y; b € B. Then ¢(x) =x*, ¢(y) =y* € M,,
x* # y*. Since M* is F.W. pairwise functionally Hausdorff, then we have a
nbd W of b in B and disjoint pair of z;-open set U* of x* and z;-open set V*
of y* and a continuous function A*:M* | W — [ such that M, NnU* C
(A)71(0) and M;nV* c (A*)"1(1). Now, since ¢ is continuous, then
@~ (U*) = U and ¢~ (V*) = V are disjoint pair of 7;-open set of x and t;-
open set of y, respectively and the continuous function A where A =
Ao @: My, - I such that M, nU c 271(0) and M, NV c A71(1), where
i,j=1,2,i#]j.
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Furthermore the category of F.W. pairwise functionally Hausdorff spaces is

multiplicative, as in the following proposition.

Proposition 3.1.22. Assume that {(M,., 1., T5,-)} IS a family of F.W. pairwise
functionally Hausdorff spaces over (B, 4, 4,). The F.W. bitopological prod-
uct M = [[zM, is F.W. pairwise functionally Hausdorff.

Proof. Let x,y € My; b € B, and x # y. Then, m,.(x) = x,, m,.(y) =y, €
(M,.), for some index r where x,. # y,.. Since M,. is F.W. pairwise functional-
ly Hausdorff, then we have a nbd ;. of b in B and disjoint pair of z;,.-open set
U, of x,, and 7;.-open set ;. of y,. and a continuous function A: M. | W,. — |
such that (M,), N U, € A71(0) and (M,.),, N V. € 171(1). Now, the intersec-
tion of W, is a nbd W of b in B, and since =, is continuous, then 7 1(U,) =
U and ;' () = V are disjoint pair of 7;-open set of x and ;-open set of y,
respectively, and the continuous function Q where Q = Aom,: My, — I where
M,nUcQ 1(0)and M, nV c Q 1(1)wherei,j =1,2,i #j.

3.2. Fibrewise Pairwise Regular and Pairwise Normal Spaces
In this section we consider the F.W. Concept advanced pairwise
separation axioms. Namely, F.W. pairwise regularity and F.W. pair-

wise completely regularity.

Definition 3.2.1. The F.W. bitopological space (M, t,,1,) over (B,A,,A,) is
called F.W. pairwise regular if for every x € M,; b € B, and for every t;-
open set IV of x in M, there exists a nbd W of b in B, and a ;- open set U of x

in My, such that V is containing the z;-closure of U in My, (i. e.,My, N1; —

cl(U) cV),wherei,j=1,2, i+ j.
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Example 3.2.2. Let M ={1,2,3}, 7; ={M,®,{3}}, 7, = {M,0,{1,2}}. Let
B={ab}, A ={B,0,{a}}, 4,={B,®,{b}}. Let ;M > B such that
p(1) = b =p((2),p(3) = a. Then M is F.W. pairwise regular.

We can consider another example, trivial F.W. spaces with pairwise regular

fibre are F.W. pairwise regular.

Remark 3.2.3.

(@) The nbds of x are given by a F.W. basis it is enough if the condition in
Definition (3.2.1) is satisfied for every F.W. basic nbds.

(b) If (M,t,,7,) is F.W. pairwise regular space over (B,A,,A,) then
(Mg, t7,t5) is F.W. pairwise regular space over (B*, A3, A3) for every sub-

space B* of B.

Subspaces of F.W. pairwise regular spaces are F.W. pairwise regular

spaces. Actually we have the following proposition.

Proposition 3.2.4. Assume that ¢ : M — M* is embedding F.W. function,
where (M,t,,7,) and (M*,t*;,t*,) are F.W. bitopological spaces over
(B, Ay, Ay). If M* is F.W. pairwise regular then so is M.

Proof. Let V be a t;-open set of x in M where x e M,,; b € B. Then V =
@~ 1(V*), where V* is a 7;-open set of x* = ¢(x) in M;. Because M* is F.W,
pairwise regular, then we have a nbd W of b in B and a z;-open set U* of x*
in My, where My, N 77 —cl(U*) € V*. Then U = ¢~*(U") is a 7;-open set of
x in My, such that My, nt; — cl(U) < V. Hence, M is F.W. pairwise regu-

lar, where i,j = 1,2, i # j as required.
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The class of F.W. pairwise regular spaces is F.W. multiplicative as in the fol-

lowing proposition.

Proposition 3.2.5. Assume that {(M,, t,,,7,,-)} is a finite family of F.W.
pairwise regular spaces over B. The F.W. bitopological product M =[]z M,
Is F.W. pairwise regular.

Proof. Consider a t;-opensetV =[]z V- of x in M, where x € M,; b € Band
V. is a t;-open set of m,.(x) = x, in M,. for each index r. Since M, is F.W.
pairwise regular we have a nbd ;. of b in B, and a t;,.-open set U, of x, in
M, | W, such that the z;,-closure of U, in M, | W, is contained in V.. (i. e.
(M, | W) ntj. — cl(U,) € V). Then we regard Was a nbd of b in B, where
W is the intersection of W,., and U = []gU, is a 7;-open set of x in M;,, where
the z;-closure of U in My, is contained in V. (i. e. My, N7; —cl(U) c V).

Hence, M = [z M, is F.W. pairwise regular, where ,j = 1,2 ,i #j.

Similar conclusion holds for infinite F.W. products provided that every

of the factors is F.W. non-empty.

Proposition 3.2.6. Assume that ¢ : M — N is a closed, open and continuous
F.W. surjection function, where (M, t,,t,) and (N, o0;,0,) are F.W. bitopo-
logical spaces over B. Then M is F.W. pairwise regular iff N is F.W. pairwise
regular.

Proof.(=) Let V be a g;-open set of y in N where y € N,; b € B, choose
x € ¢ 1(y). Then U = ¢~ 1(V) is a t;-open set of x in M. Because M is F.W.

pairwise regular , we have a nbd W of b in B, and a ;- open set U* of x such

that My, N 7; — cl(U*) c U. Then Ny, N ¢ (Tj - cl(U*)) c V. Because ¢ is

closed, (p(Tj—cl(U*))=Jj—cl(go(U*)), and because ¢ is open, then
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@(U") is a g;-open set of y. Hence, Nis F.W. pairwise regular, where
i,j=1,2, i #j,asasserted.

(&) By a similar way of the first direction.

The pairwise functionally version of the F.W. pairwise regularity axiom
Is stronger than the non-pairwise functionally version. However, their proper-
ties are similar. In the ordinary theory, the word completely regular is used

instead of functionally regular. We widen this usage to the F.W. theory.

Definition 3.2.7. A F.W. bitopological space (M, t,,7,) over (B,A;,A,) is
called F.W. pairwise completely regular if for every x € My,; b € B, and for
every 7;-open set V of x there exists a nbd W of b in B and a 7;-open set U of
X in My, and a continuous function A: (My,, Ty, Tow) — [ such that M, N
UcA710) and My, n (M, — V) c A71(1), where i,j = 1,2,i # j.

Example 3.2.8. Let M ={1,2,3,4}, 7, = {M,0,{1,3}}, 7, = {M, 0,{2,4}}.
Let B ={ab}, A, ={B,0,{a}}, A, ={B,0,{b}}. Let p:M > B such
thatp(1) =a=p@3),p(2)=b=pH4), M,={1,3}, let x =1V =
{1,3}, W ={a}, My, ={1,3}, 1y, = {M,, 0} = ToMy let U = My,. Let
A:My, = I such that A(1) =0 = A(3). 4 is continuous and M, NU c
A7), My, n (My, —V) c A71(1) Similar if x=3. M, =1{2,4}, let
x=2,V ={2,4}, W = {b}, My, = (2,4}, Typ,, = {My, B} = Topy,, , lEt U =
My,. Let A: My, = I such that 1(2) = 0 = A(4). 4 is continuous and M, N
UcA71(0),My, n(My, —V) c 271(1). Similarly if x = 4

For another example, (B, Ay, A,) Xg (T, 14,7,) is F.W. pairwise completely

regular space for every pairwise completely regular spaces T.
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Remark 3.2.9.

(a) The nbds of x are given by a F.W. basis it is enough if the condition in
Definition (3.2.7.) is satisfied for every F.W. basic nbds.

(b) If (M, 7,,7,) is F.W. pairwise completely regular space over (B,A,,A,)
then (Mg ,t7,75) IS F.W. pairwise completely regular space over (B*,

A7, A%) for every subspace B* of B.

Subspaces of F.W. pairwise completely regular spaces are F.W. pair-

wise completely regular spaces. In fact, we have the following result.

Proposition 3.2.10. Assume that ¢: M - M* is embedding F.W. function,
where (M, 7;,7,) and (M*,ti,75) are F.W. bitopological spaces over
(B, Ay, Ay). If M* is F.W. pairwise completely regular then so is M.

Proof. Let V be a t;-open set of x in M where x € My; b € B, then ¢(x) =
x* €My and V =@ 1(V*) is a t/-open set of x*. Because M* is F.W,
pairwise completely regular, then we have a nbd W of b in B and 7;-open set
U* of x* and a continuous function A: My, — I such that M; n U* c 171(0)
and M;, n(M;, —V*)c A71(1). Now, because ¢ is continuous, then
@~ 1(U*) = U is 7;-open set of x in My, and the continuous function Q. = Aog
such that Q: My, -1 and M, nUc Q1(0) and My N (M, —V)cC
Q~1(1) wherei,j =1,2,i #j.

The class of F.W. pairwise completely regular spaces is finitely multi-

plicative, as we show next.

Proposition 3.2.11. Assume that {(M,, T4, T2,)} IS a finite family of F.W.
pairwise completely regular spaces over (B, A;,A,). The F.W. bitopological

product M = [[zM, is F.W. pairwise completely regular.
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Proof. Let x € My,; b € B. Consider a FW. t;-open set [[gV, of x in
M, where V. is a T;,.-open set of ,.(x) = x,. in M,. for all index r. Because M,
is F.W. pairwise completely regular, we have a nbd W, of b in B,and a tj,-
open set U of x, in M, and a continuous function A,: (M,),, — I where
(M), NU c A71(0) and (M,)y, N ((M,)y, — V,.) € A71(1). Then we regard
W as a nbd of b in B where W is the intersection of W,. and A : My, - I is a

continuous function where

/1(6) = infr:1,2,3,...,n{/1r€r} fOI’f = (fr) € My,.

Since (M,), N, "' (U) € .~ [(M,)p N U] € w72 (474,.(0)) (Ar0m,) 71 (0)
and (MT)W N T[r_l((Mr)w _Vr) = T[r_l[(Mr)W N ((MT')W _Vr)] c

T, 1 (/1[1(1)) = (Ao, ) Y1) wherei,j = 1,2,i #j.

A similar conclusion holds for infinite F.W. products if all of the fac-

tors is F.W. non-empty.

Lemma 3.2.12. Assume that ¢: M — N is a closed, open F.W. surjection
function, where M and N are F.W. bitopological spaces over B. Leta : M —
R be a continuous real-valued function which is F.W. bounded above, in the
sense that « is bounded above on each fibre of M. Then, 8: N = R is contin-

uous, where:

Bm) = sup a($)

sep™1(m)

Proposition 3.2.13. Assume that ¢ : M — N is a closed, open and continuous

F.W. surjection function, where (M, t,,7,) and (N, o0,,0,) are F.W. bitopo-
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logical spaces over (B, A;,A,). If M is F.W. pairwise completely regular then
SO is N.

Proof. Let 1, be a og;-open set of y in N where y € Nj; b € B. Choose
x € ¢~ () such that V, = ¢~1(V}) is a 7;-open set of x. Because M is F.W.
pairwise completely regular, we have a nbd W of b in B, and a t;-open set U,
of x in My, and a continuous function A : My, — I such that M, n U,,cA~1(0)
and My, n (My, — V,)cA~1(1). Using Lemma (3.2.12.), we get a continuous
function Q : Ny, — I such that N, N U, € Q7*(0) and Ny n (N — V)
QO~1(1),where i,j =1,2,i #j.

Next, we define the version of F.W. pairwise normal space.

Definition 3.2.14. A F.W. bitopological space (M, t,,t,) over (B,A,A,) is
called F.W. pairwise normal if for every b € B and every disjoint pair of ;-

closed set H, and rj-closed set K of M , there exists a nbd W of b in B and a
disjoint pair of ;-open set U, and t;-open set V of My, N H, My, N K in My,

wherei,j =1,2,i #j.

Example 3.215. Let M ={1,2}, © ={M, @ {1}}, 7, ={M, ¢ {2}}.
H={1},K ={2}. Let B={ab}, A, ={B, ¢ {a}}, A, ={B,¢,{b}}. Let
p:M— B where p(1) =a,p(2) =b. We have M, = {1}, M, = {2},

where the nbd of a is {a}, and the nbd of bis{b}, M, N H = {1}, M, N K =
o, MyNnH=¢,M,NK ={2}. Let V ={2},U = {1} . So, M is F.W. pair-

wise normal.

Remark 3.2.16. If (M,7,,7,) is a F.W. pairwise normal space over
(B, A4, A,), then for each subspace B* of B and (Mg, 77, 75) is F.W. pairwise
normal space over (B*, A3, A3).
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Closed subspaces of F.W. pairwise normal spaces are F.W. pairwise normal.

Actually, we have.

Proposition 3.2.17. Assume that ¢: M — M * is a closed, embedding F.W.
function where (M,t,7,) and (M*,t{,7;) are F.W. bitopological spaces
over B. If (M*, t{,t5) is F.W. pairwise normal then so is (M, 74, 7).

Proof. Let H and K be disjoint pair of 7;-closed and 7;-closed sets of M and
let b € B. Then @(H) and ¢(K) are disjoint pair of z;"-closed set and 7;"-
closed set of M*. Since M* is F.W. pairwise normal then, we have a nbd W of
bin B and a 7;"-open set U™ and 7;"-open set V* of My, N ¢ (H), My, N (K),
in My;;. Since ¢ is continuous, then ¢~1(U*) = U and ¢ 1(V*) =V are dis-
joint pair of z;-open and 7;-open sets of My, N H, My, N K in My, where

ij=12 i#]J

Proposition 3.2.18. Let @: M — N be a closed continuous F.W. surjection
function, where (M, 74, 7,) and (N, g4, g,) are F.W. bitopological spaces over
(B,A,A,). Then (M, t,,1,) is F.W. pairwise normal iff (N, o,,0,) is F.W.
pairwise normal .

Proof. (=) Let H and K be disjoint pair of g;-closed and g;-closed sets of N
and let b € B. Then, ¢ ~*(H) and ¢ ~*(K) are disjoint pair of 7;-closed and ;-
closed sets of M. Because M is F.W. pairwise normal, then we have a nbd W
of b in Band a disjoint pair of 7;-open set and z;-open set U,V of My, N
@ 1(H) and My, ne 1(K). Since ¢ is closed then, the sets N, —
oMy, —U) and Ny, — @ (M, — V) are open in Ny, and structure a disjoint
pair of g;- open, o;-open sets of Ny, N H, Ny, N K in Ny, as required, where
L,j=1,2,i #j.

(<) By similar way of first direction.
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Lastly, we define the version of F.W. pairwise functionally normal space.

Definition 3.2.19. A F.W. bitopological space (M, t,,7,) over (B,A,A,) is
called F.W. pairwise functionally normal if for every b € B and every dis-
joint pair of 7;-closed set H, and t;-closed set K of M , there exists a nbd W of
b in B and a disjoint pair of 7;-open set U, and 7;-open set VV and a continuous
function A : My, —» I such that M, NnHNU c 171(0) and My, nKnV c
A1) in My, where i,j =1,2,i # j.

Example 3.2.20. Let M = {1,2,3,4}, 7, = {M, 0,{1,2}}, 7, = {M, 0,{3,4}}.
Let B ={a b}, 4, ={B,0,{a}}, A, = {B,0,{b}}. Letp: M — B such that
p(1)=a=p2),p3) =b=p(4).LetH = {3,4}, K = {1,2}. Let
b = a,nbd of a is W ={a}, My, ={1,2}, 11y, = {My, B} = 12p,, let
U = {3,4},V ={1,2}. Let A: My, = [ such that A(1) = 1 = A(2), A is con-
tinuousand My, NHNU =@ c A71(0),My, NK NV = {1,2} c 171(1). Let
b = b,nbdof bisW = {b} , My, = {3,4} Ty, = {My, 0} = T2y, . Let
A+ My, — I such that A(3) = 0 = A(4), A is continuous and My, NHNU =
{3,4 c 271(0),My, NnK NV =c A71(1). So M is F.W. pairwise functional-

ly normal.

For another example, (B, A;,A,) Xz (T,14,1,) is F.W. pairwise functionally

normal space when T is pairwise functionally normal space.
Remark 3.2.21. If (M,t,,7,) is F.W. pairwise functionally normal space

over (B, A4, A,) then for every subspace B* of B we have (M5, t1,75) is F.W.

pairwise functionally normal space over (B*, A7, 43).
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Closed subspaces of F.W. pairwise functionally normal spaces are F.W. pair-

wise functionally normal. Actually we have.

Proposition 3.2.22. Assume that ¢: M — M* is a closed, embedding F.W.
function where (M,t,,7,) and (M*,t{,7;) are F.W. bitopological spaces
over B. If M* is F.W. pairwise functionally normal then so is M.

Proof. Let H and K be disjoint pair of 7;-closed and z;-closed sets of M and
let b € B. Then o (H), ¢(K) are disjoint pair of 7;"-closed set and z;"- closed
set of M *. Since M* is F.W. pairwise functionally normal, we have a nbd W
of b in B and a disjoint pair of 7;-open set U and 7;-open set VV and a continu-
ous function A : Mj, —» I such that Mj, n@(H)nU c 171(0) and M;, n
(K)NV c 271(1) in Mj,. Since ¢ is continuous, then ¢~ (U), =1 (V) are
T;-open set, 7;-open set and the function, O = A0 ¢ is a continuous, Q :
My, - I such that M, NnHNn o 1 (U) c Q71(0) and My, nKn ¢ 1(V) c
Q~1(1) in My, as required where i,j = 1,2, i # j.

Proposition 3.2.23. Assume that ¢: M — N is a closed, open and continuous
F.W. surjection function, where (M, t,,7,) and (N, g,,0,) are F.W. bitopo-
logical spaces over (B,Aq,A,). If (M,t,7,) is F.W. pairwise functionally
normal then so is (N, a4, 7).

Proof. Let H, K be disjoint pair of ¢;-closed and o;-closed sets of N and let
b € B. Then ¢~'(H), ¢~ (K) are disjoint pair of 7;-closed and 7;-closed
sets of M. Because M is F.W. pairwise functionally normal, then we have a
nbd W of b in B and a disjoint pair of z;-open set and 7;-open set U,V and a
continuous function A : My, — I such that My, N ¢ *(H) N U < A71(0) and
My, N Y (K)nV c A71(1) in My,. Hence, a function Q: Ny, — I is given
by Q(y) = supye,-1(5A(x);y € Ny. Because ¢ is open and closed, in addi-
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tion to continuous, it leads to that Q is continuous. Hence, Ny, N H N @ (U)
Q710) and Ny NKne(V)c Q1) in My, where i,j=1,2,i+j.
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Chapter 4

Fibrewise 1J-Perfect Bitopological Spaces

In many times, it has been mixed between topological spaces and some
of the basic concepts to get a new topological structure. In this chapter, we
shall give a new definition for fibrewise bitopological space in the light of
compactness to get a space which has big importance characteristics in topol-
ogy. Filter concept is considered as one of the rich concepts in topology for

having a notable role in the modern directions for topology.

4.1. Fibrewise 1J-Perfect Bitopological Spaces
Definition 4.1.1. Let (B, A;, A,) be a bitopological space. A F.W. ij-
bitopology on a F.W. set M over B means any bitopology on M for which the

projection p is ij-continuous, where i,j = 1, 2.

Definition 4.1.2. A function f : (M,t4,t,) = (N,04,0,) is called ij-closed

if the image of each ij-closed set in M is ij-closed set in N, where i,j =1, 2.

Theorem 4.1.3. A function f:(M,tq,7,) = (N,01,0,) is ij-closed iff
ij — cl(f(A)) c f(ij—cl(A)) foreachA c M, wherei,j =1,2.

Proof: (=) Suppose that f is ij-closed. Let A € M, since f is ij-closed
then f(ij — cl(A)) is ij-closed set in N, since ij — cl(A) is closed set in M. so,
ij — cl(f(A)) < f(ij — cl(A)).

(<) Suppose that A is ij-closed set in M, so A = ij — cl(A), but we have ij —
cl(f(A)) < f(ij — cl(A)), thus ij —cl(f(A4)) < f(A). Thus, f(4) is ij-closed

in M. Therefore f is ij-closed.
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Definition 4.1.4. A filter base F on bitopological space (M, t,, t,) is said to

g
be ij-directed toward a set A € M, written as F -, A, iff every filter

base G finer than F has an ij —adherent point in 4, i.e. (ij —ad G) N A # o.

o .
We write F —— x to mean F U—>{x}, where x € M, wherei,j =1,2.

Now, we introduce a characterization of ij —adherent point x of a filter
base F.

Theorem 4.1.5. A point x in bitopological space (M, t,, T,) is an ij-adherent

point of a filter base F on M iff there exists a filter base F* finer than F such

ilj—con
that F* ——— x ,wherei,j =1, 2.

Proof: (=) Let x be an ij —adherent point of a filter base F on M, so it is an
ij —contact point of every number of F. This yields, for every z;-open nbd U

of x, we have 7; — cl(U) N F # ¢ for every number F in F. Consequently,

7; — cl(U) contains a some member of any filter base F* finer than F, such

that F* ——", &.

(<) Suppose that x is not an ij —adherent point of a filter base F on M, then
there exists F € F such that x is not an ij —contact of F. Hence, there exists
an t;-open nbd U of x such that 7; — cl(U) N F = ¢. Denote by F* the family
of sets F* = F n (M — t;-cl(U)) for F € F, then the sets F* are nonempty.
Also F* is a filter base and indeed it is finer than F. This is, given F'=F, N
(M \ 7j-cl(U)) and F;=F, n (M \ 7;-cl(U)), there is an F; & F;NF, and
this gives F3 = F3 N (M \ 7j-cl(U)) € F,N FK,NM \ 7;-cl(U)) = FNM\
Ti-cl(U)) N F, N (M \ t;-cl(U)). By construction F* is not ij-convergent to
x. This is a contradiction, and thus, x is an ij-adherent point of a filter base F
on M.
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Theorem 4.1.6. Let F be a filter base on bitopological space (M, 7, 7,). Let

x € M,then F ——" x iff F "% x, wherei,j = 1,2.

Proof: (&) If F does not ij-converge to x, then there exists a t;-open nbd U of
x suchthat F ¢ 7;-cl(U), forall F € F. Then § ={(M-t;-cl(U) N F : F €
F} is a filter base on M finer than F, and clearly x ¢ ij-adherence of G .
Thus, F cannot be ij-directed towards x which is contradiction. Hence, F is
Ij-converge to x.

(=) Clear.

Definition 4.1.7. A function f: (M,t,,7,) = (N,04,0,) is said to be ij-
perfect iff for each filter base F on f (M), such that F ij-directed towards
some subset A of f(M), the filter base f~1(F) is ij-directed towards f~1(A)
in M. f is called pairwise ij-perfect iff f is 12 and 21-perfect, where i,j =
1, 2.

Definition 4.1.8. The F.W. bitopological space (M, t,,7,) over bitopological
space (B,A;, A,) is called F.W. ij-perfect iff the projection p is ij-perfect,

wherei,j = 1,2.

In the following theorem we show that only points of N could be suffi-
cient for the subset A in Definition (4.1.7.) and hence ij-direction can be re-

placed in view of Theorem (4.1.5.) by ij-convergence.

Theorem 4.1.9. Let (M, 74, 7,) be a F.W. bitopological space over bitopolog-

ical space (B, A4, A,). Then the following are equivalent:

(@ (M, 14, 1,) is F.W. ij-perfect bitopological space.

(b) For each filter base F on p(M), which is ij-convergent to a point b in B,
ij—d

Mg: E— Mb'
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(c) For any filter base F on M, ij-ad p(F) < p (ij-ad F).
Proof: (a)=(b) Follows from Theorem (4.1.6.).
(b)=(c) Let b €ij-ad p (F). Then by Theorem (4.1.5.), there is a filter base G

on p(M) finer than p (F) such that L b Let U ={M; NF:G €g and
g
F € F}. Then U is a filter base on M finer than M. Since G N b, by

Theorem (4.1.6.) and p is ij-perfect, Mg ﬂ M, . ‘U being finer than Mg,
we have M, n(ij-ad U) # ¢. It is then clear that M, n (ij-ad F) # ¢.
Thusb € p (ij —ad F).

(c)=(a) Let F be a filter base on p(M) such that it is ij-directed towards
some subset A of p(M). Let G be a filter base on M finer than Mgz. Then
p( G) is a filter base on p(M) finer than F and hence A N (ij — ad p( G))# .
Thus, by (¢), A n p(ij—ad G) # @ such that M, N (ij —ad G) # ¢. This

shows that My is ij-directed towards M,. Hence, p is ij-perfect.

Definition 4.1.10. The function f:(M,t;,7,) — (N, g4, 0) is called ij-
compact function if it is ij —continuous, ij —closed and for each filter base F
in N then f~1(F) is filter base in M, where i,j = 1,2.

Definition 4.1.11. The F.W. ij —bitopological space (M,t,t,) oOver
(B,A4,A,) is called F.W. ij —compact iff the projection p isij —compact,

wherei,j = 1, 2.

For example the bitopological product B Xz T is F.W. ij-compact over

B, for all ij —compact space T, where i,j =1, 2.
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Definition 4.1.12. The F.W. ij-bitopological space (M,7,,7,) over
(B,A;,A,) is called F.W. ij-closed if and only if the projection p is ij-closed,

wherei,j =1,2.

Theorem 4.1.13. If the F.W. bitopological space (M, 74, t,) over (B,Ay,4,)
IS ij-perfect, then it is ij-closed, where i,j =1, 2.

Proof: Assume that M is a F.W. ij-perfect bitopological space over B, then
the projection py, : M — B is ij-perfect, to prove that it is ij-closed, by
[(4.1.9.) (a)=(c)] for any filter base F on M ij-ad p (F) < p (ij-ad (F)), by
Theorem (4.1.3.) f is ij-closed if ij —cl f(A) < f(ij—cl(A)for allA c M,

therefore p is ij-closed where F = {A}.

4.2. Fibrewise 1J-perfect Bitopological Spaces and 1J-Rigidity
In this section, we introduce the notion of ij-perfect bitopological, ij-

rigidity spaces and investigate some of their basic properties.

Definition 4.2.1. A subset A of bitopological space (M, T4, t,) is said to be ij-
rigid in M iff for each filter base F on M with (ij—ad F) N A = ¢, there is
a 7;-open set Uand F € F such that A ¢ Uand 7;-cl(U) N F = ¢, or
equivalently, iff for each filter base F on M and whenever A N (ij —
ad F) = ¢, then for some F € F, A n (ij — cl(F)) = ¢, where i,j =
1, 2.

Theorem 4.2.2. If (M,t,, 7,) is a F.W. ij-closed bitopological space over
(B, A4, A,) such that each M, where b € B is ij-rigid in M, then (M, 14, T,) IS
a F.W. ij-perfect, where i,j =1, 2.

Proof: Assume that M is a F.W. ij-closed bitopological space over B, then the

projection p,, : M — B exist. To prove that it is ij-perfect, let F be a filter
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base on p (M) such that F L b in B, for some b € B. If G is a filter

base on M finer than the filter base M, then p( G) is a filter base on B, finer

than F. Since F ——b by Theorem (4.15)), b €ij-ad p (G), i.e, b €N
{ij —adp(G) : G €G}and hence b e N{p(ij —ad (G) : G € G} by Theo-
rem (4.1.3.). Since p is ij-closed, then M, nij-ad (G) # ¢, for all G € G.
Hence, for all U € t; with M}, c U, 7;-cl(U) N G # ¢, forall G € §. Since,

M, is ij-rigid, it then follows that M, N (ij-ad G)% @. Thus My —— M,
Hence by Theorem [(4.1.9.) (b)=(a)], p is ij-perfect.

Theorem 4.2.3. If the F.W. ij-bitopological space (M, 74, 1,) over (B, Ay, A,)
Is ij-perfect, then it is ij-closed and for each b € B, M,, is ij-rigid in M, where
i,j =1,2.

Proof: Assume that M is a F.W. ij-bitopological space over B, then the pro-
jection py, : M — B exist and it is ij-continuous. Since p is an ij-perfect so
it is ij-closed. To prove the other part, let b € B, and suppose F is a filter
base on M such that (ij-ad F) N M,=¢. Then b & p (ij-ad F). Since p is ij-
perfect, by Theorem [(4.1.9) (a)=(c)], b € ij — ad p(F). Thus there exists an
F € F such that b € ij-ad p(F). There exists an A;-open nbd V of b such
that A; — cl(V) n p(F) = ¢. Since p is ij-continuous, for each x € M, we
shall get a 7;-open nbd U, of x such that p(z; — cl(Uy) © Aj —cl(V) c
B —p(F). Thenp(t; — cl(Uy) N p(F) = ¢, so that 7;-cl-(U,) N F = .
Then x ¢ ij-cl(F), for all x € M,, so that M, n (ij-cl(F)) = ¢, Hence M, is
ij-rigid in M.

Corollary 4.2.4. A F.W. ij-bitopological space (M, t,,t,) over (B, Ay, A,) is
Ij-perfect iff it is ij-closed and each M,, where b € B is ij-rigid in M, where
i,j =1,2.
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Next we show that the above theorem remains valid if F.W. ij-closedness
bitopological space replaced by a strictly weaken condition which we shall
called F.W. weak ij-closedness bitopological space. Thus we define as fol-

lows.

Definition 4.2.5. A function f : (M,14,7,) = (N, 0y, 0,) is said to be weak-
ly ij-closed if for every y € f(M) and every t;-open set U containing
f~1(y) in M, there exists a g;- open nbd V of y such that f~* (g;-cl(V)) < ;-
cl(U) ,wherei,j =1,2.

Definition 4.2.6. The F.W. ij-bitopological space (M, t,,t,) over (B, 4;,4,)
is called F.W. weakly ij-closed iff the projection p is weakly ij-closed, where
i,j =1,2.

Theorem 4.2.7. The F.W. ij-closed bitopological space (M,t,, T,) over
(B, A4, A,) is weakly ij-closed, where i,j =1, 2.

Proof: Assume that M is a F.W. ij-closed bitopological space over B, then the
projection p), : M — B exist and to prove its weakly ij-closed. Let b €
p(M) and let U be a t;-open set containing M, in M. Now, by Lemma
(1.1.25) 7, — cl (M —7— cz(U)) =ij—cl (M —7— cl(U)) and hence by
theorem (4.1.3.) and since p is ij-closed, we have ij-cl p(M — t; — cl(U)) <
plij — cl(M — 7; — cl(U)]. Now since b & p[ij —cl(M — t; — cl(U)],
b & ij —clp(M — 1;-cl(U)) and thus there exists an o;-open nbd V of b in
B such that gj-cl(V) n p(M —1; —cl(U)) = ¢ which implies that
Me;-aey N (M =1 —cl(U)) = ¢ e, M-y © 7;-cl (U), and thus p

is weakly ij-closed.
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A F.W. weakly ij-closed is not necessarily to be F.W. ij-closed and the fol-

lowing example show this.

Example 4.2.8. Let 7., 7,, A; and A, be any topologies and p : (M, 14, 75)
— (B, A4, A,) be a constant function, then p is weakly ij-closed for i,j = 1, 2
and (i # j).Now, let M = B = R. If A; or A, is the discrete topology on B,
thenp : (M, 1, 7,) = (B,A44,4,) given by p(x) = 0, forall x € M, is nei-
ther 12-closed nor 21-closed, irrespectively of the topologies 7,, T, and A, (or
Ay).

Theorem 4.2.9. Let (M, 1, 7,) be F.W. ij-bitopological space over (B, A,
A,). Then (M, 1, T,) IS F.W. ij-perfect if :

(@) (M, tq,1,) is F.W. weakly ij-closed bitopological space, and

(b) My, is ij-rigid, for each b € B.

Proof: Assume that M is a F.W. ij-bitopological space over B satisfying the
conditions (a) and (b), then the projection p,, : M — B exist. To prove that
p is ij-perfect we have to show in view of Theorem (4.2.2.) that p is ij-closed.
Let b € ij —clp(A), for some non-null subset Aof M, but b & p (ij —
cl(A)). Then H = {A} is a filter base on M and (ij-ad %) N M, = ¢. By ij-
rigidity of M,,, there is a 7;-open set U containing M,, such that z; — cl(U) N
A = ¢@. By weak ij-closedness of p, there exists an A; —open nbd VV of b such
that M;—awy © 7;-cl(U), which implies that M;—awyy N A=, e,
(Aj — cl(V)) n p(A) = @, which is impossible since b € ij — clp(A).
Hence b € p(ij — cl(A)). So fis ij-closed.

Theorem 4.2.10. If (M, 4, 7,) is F.W. ij- perfect bitopological space over
(B,A4,45) and B* c B is an ij-H-set in B, then Mp- is an ij-H-set in M, where
i,j =1,2.
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Proof: Assume that M is a F.W. ij-perfect bitopological space over B, then
the projection p), : M — B exist. Let F be a filter base on Mg+, then p(F)
is a filter base on B*. Since B* is an ij-H-set in B,B* N ij —ad p(F) # ¢
by Lemma (1.1.21.). By Theorem [(4.1.9) (a)=(c)], B* N p(ij —ad (F)) #
@, so that Mg+ Nnij-ad (F)# ¢. Hence by Lemma (1.1.21.), M- is an ij-H-
setin M.

The converse of the above theorem is not true, is shown in the next ex-

ample.

Example 4.2.11. Let M = B = R, t; and t, be the cofinite and discrete to-
pologies on M and A, A, respectively denote the indiscrete and usual topolo-
gies on B. Suppose p: (M,t,,1,) = (B, A1, 4;,) is the identity function.
Each subset of either of (M,7;,7,) and (B, Ay, A,) is a 12-set. Now, any
non-void finite set A € M is 12-closed in M, but p(A) (i.e., A) is not 12-
closed in B (in fact, the only 12-closed subsets of B are B and ¢).

Definition 4.2.12. A function f : (M,t4,7,) = (N, 0y,0,) is said to be al-
most ij-perfect if for each ij-H-set K in N, f~1(K) is an ij-H-set in M, where
i,j =1,2.

Definition 4.2.13. The F.W. ij-bitopological space (M,7,,7,) over
(B, A4, A,) is called F.W. almost ij-perfect iff the projection p is almost ij-

perfect, where i,j =1, 2.

By analogy to Theorem (4.2.2.), a sufficient condition for a function to

be almost ij-perfect, is proved as follows.
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Theorem 4.2.14. Let (M,t,, 7,) be F.W. ij- bitopological space over
(B, A4, A,) such that:

(a) My, is ij-rigid, foreach b € B, and

(b) (M, 74, T,) Is F.W. weakly ij-closed bitopological space.

Then (M, 7, T,) is F.W. almost ij-perfect bitopological space.

Proof: Assume that M is a F.W. ij-bitopological space over B, then the pro-
jection p,, : M — B exist and it is ij-continuous. Let B* be an ij-H-set in B
and let F be a filter base on Mg-. Now p(F) is a filter base on B* and so by
Lemma (1.1.21)), (ij —ad p(F)) N B* + ¢. Let b € [ij —ad p(F)] n
B*. Suppose that F has no ij-ad point in Mg+ so that (ij-ad (F)) N M,= ¢.
Since M, is ij-rigid, there exists an F € F and a t;-open set U containing M,

such that F n t; — cl(U) = ¢. By weak ij-closedness of p, there is a A;-
open nbd V of b such that M—awyy © T — cl(U) which implies that

Mu—awy N F = o, i.e., Aj-cl(V) n p(F) = ¢, which is a contradiction.
Thus by Lemma (1.1.21.), Mg~ is an ij-H-set in M and hence p is almost ij-

perfect.

4.3. Application of Fibrewise 1J-Perfect Bitopological Spaces

We now give some applications of fibrewise ij-perfect bitopological
spaces. The following characterization theorem for an ij-continuous function
is recalled to this end.
Theorem 4.3.1. A bitopological space (M, t,,7,) is F.W. ij-bitopological
space over (B, A4, Ay) iff p(ij — cl(4)) < ij — cl(p(A)), for each A c M,
where i,j =1,2.
Proof: (=): Assume that M is a F.W. ij-bitopological space over B, then the
projection py, : M — B exist and it is ij-continuous. Suppose that x € ij —
cl(A) and V is A;-open nbd of f(x). Since p is ij-continuous, there exists an
7;-open nbd U of x such that p(z; — cl(U)) c A; — cl(V). Since 7;-cl (U) N
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A # @, then A;j-cl(V) N p(A) # ¢. So, p(x) € ij —cl(p(A)). This shows

that p(ij — cl(A)) c ij — cl(p(4)).
(<) Clear.

Theorem 4.3.2. Let (M, 14,7,) be a F.W. ij-perfect bitopological space over
(B, A4, Ay). Then M, preserves ij-rigidity, where i,j =1, 2.

Proof: Assume that M is a F.W. ij-bitopological space over B, then the pro-
jection p,, : M — B exist and it is ij-continuous. Let A be an ij-rigid set
in B and let F be a filter base on M such that M, N (ij- ad(F)) = ¢. Since p is
ij-perfect and A N p(ij — ad(F)) = ¢ by Theorem [(4.1.9.) (a)=(c)] we get
AN (ij—ad p(F)) = ¢. Now A being an ij-rigid set in B, there exists an
F € Fsuchthat A nij — clp(F) = ¢. Since p is ij-continuous, by Theorem
(4.3.1)) it follows that A n p(ij — cl(F)) = ¢. Thus My, n (ij — cl(F)) =
@. This proves that M, is ij-rigid.

In order to investigate the conditions under which a F.W. almost ij-
perfect bitopological space may be F.W. ij-perfect bitopological space, we in-

troduce the following definition.

Definition 4.3.3. A function f:(M,t,t,) = (N,0y,0,)is said to be ij*-
continuous iff for any o;-open nbd V of f(x), there exists a ;-open nbd U of

x such that f(z;-cl(U)) < o;-cl(V) ,where i,j =1,2.

Definition 4.3.4. The F.W. ij-bitopological space (M, t4,7,) over (B, A4, 4,)
is called F.W. ij*-bitopological space iff the projection p is ij*-continuous,
wherei,j =1,2.

The relevance of the above definition to the characterization of F.W. ij-

perfect bitopological space is quite apparent from the following result.
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Theorem 4.3.5. If (M, 74, 7,) is F.W. ij*-bitopological space on a pairwise

Urysohn space (B, A4, A,) , then it is F.W. ij-perfect bitopological space iff for

every filter base F on M, if p(F) L b wher b e B, then ij — ad F + ¢,
wherei,j =1,2.

Proof: (=) Let (M,t,,7,) be a F.W. i j*-bitopological space on a pairwise
Urysohn space (B, A4, A,), then there is a ij*-continuous projection function
p: (M, 7q,7,) = (B, 41, 4,) and p(F) T, b where b € B, for a filter base

i

F on M. Then My u>M,,. Since F is finer than My, M, Nij —
ad F + ¢,sothatij — ad F # ¢.

(<) Suppose that for every filter base F on M, p(F) = b where b € B

implies ij — ad F # ¢. Let G be a filter base on B such that G i b, and
suppose that G* is a filter base on M such that G* is finer than M. Then p(G*)

is finer than G. So p(G™) L, b. Hence ij—ad G* + ¢. Let z € B such
that z # b. Then since B is pairwise Urysohn, there exist a A;-open nbd U of

b and A;-open nbd V of z such that (/1]- —cl (U)) N (4; — cl(V)) = ¢. Since

p(G™) ﬂb there exist a G € G* such that p(G) c A; — cl(U). Now,
since p is ij*-continuous, corresponding to each x € M, there is a 7;-open nbd
W of x such that p (rj — cl(W)) c A; —cl(V). Thus A; —cl(W) NG = o.
It follows that M, nij—G* = ¢, for each z € B —{b}. Consequently
My, Nij—adG* + @, and p is ij- perfect and hence (M, 74, 1,) IS F.W. ij*-
bitopology.

Definition 4.3.6. A bitopological space (M, t,,7,) is said to be locally ij-
QHC iff for every x € M, there is a t;-open nbd of x, which is an ij-H-set,

wherei,j =1,2.
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Corollary 4.3.7. Let (M,t4,7,) be a F.W. ij*-bitopological space over ij-
QHC on a pairwise Urysohn bitopological space (B, A;, A,), then (M, 74, 7,)

is F.W. ij-perfect bitopological space, where i,j =1, 2.

Theorem 4.3.8. Let (M, 74, 7,) be a F.W. ij*-bitopological space over locally
i]-QHC on a Urysohn space (B,A;,4,), then (M,t4,1,) is FW. ij*-
bitopological space iff it is F.W. almost ij-perfect, where i,j =1, 2.

Proof: (=) If (M,7,,7,) is F.W. ij*-bitopological space, then by corollary
(4.3.7.), it is F.W. almost ij-perfect.

(<) Let (M, 4, T,) is F.W. almost ij-perfect, then there exist almost ij-perfect

projection function p: (M, 74, 7,) = (B, A4, 45), and let F be any filter base on

M and let p(F) Heom, b where b € B. There are an ij-H-set B* in B and A;-
open nbd V of b such that b €V € B*. Let H = {A; — cl(U) Np(F) N
B*;F € F and U is a A;-open nbd of b}. By Lemma (1.1.24.), B is ij-closed
and hence no member of H is void. In fact, if not, let for some A;-open nbd U
ofbandsome F € F, A; —cl(U)Nnp(F)NB*=¢. Then W = U NV since

yeUNVeA and A —clW)=1ij—cl(W)cij—cl(B*)=B" by
Lemma (1.1.25.). Now ¢ = A; —cl(W) np(F) N B* = A; — cl(W) N p(F),

which is not possible, since p(F) T b. Thus # is filter base on B, and is

clearly finer than p(F), so that H mb Also G ={MynNnF:H € X and
F € F}is clearly a filter on Mg-. Since p is almost ij-perfect, M- is an ij-H-
setand hence ij —ad G N Mg+ + @. Thus ij — ad F # ¢. Thus p is ij-perfect
and by Theorem (4.3.5.) (M, 74, T,) is F.W. ij*-bitopological space.

The following characterization theorem for a F.W. ij-bitopological

space is recalled to this end.
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Theorem 4.3.9. A F.W. set M over (B, A4, A,) is F.W. ij-bitopological space
iff p(ij-cl(A)) c ij-clp(A) foreach A ¢ M, wherei,j =1, 2.

Proof: Since M is a F.W. set over B,then there is projection p where
p: M — B. Now we have to prove that p is ij-continuous. But it directly by
Theorem (4.3.1.).

Theorem 4.3.10. If (M,7,,7,) IS a F.W. ij-perfect bijective bitopological
space with M is a pairwise Hausdorff space on (B, A;, A,), Then B is also
pairwise Hausdorff.

Proof: Let b;, b, € B such that b; # b,. Since p is onto, then My, M,, € M
and since p is one to one, then My, # M,,. Since p is ij-perfect, so by Theo-
rem (4.1.13) it is ij-closed. By Lemma (1.1.26.) we have { M, } =ij —
cl{M,.} and { M,,} = ij — cl{M,,}. Since p is pairwise Hausdorff. Now
p(ij — cl{ My,}) = ij — cl{b;} and p(ij — cl{ M},}) = ij — cl{b,} sincep is
ij-closed. This mean {b,} = ij — cl{b;} and {b,} = ij — cl{b,}. Hence B is

pairwise Hausdorff.

Our next theorem give a characterization of an important class of F.W.
bitopological space viz. the ij-QHC spaces in terms of F.W. ij-perfect bitopo-

logical space.

Theorem 4.3.11. For a bitopological space (M, t4,75), the following state-

ment are equivalent:

a) Misij-QHC

b)  The FW. (M, t,,1,) is ij-perfect bitopological space with constant pro-
jection over B* where B* is a singleton with two equal bitopologies viz.

the unique bitopology on B*.
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c) The FW. (BXxM,Q,,0Q,) is ij-perfect bitopological space over (B, A4,
Ay), where Q; = A; Xt;.0,j=1,2andi #j.

Proof: (a) = (b) Let p: (M, 1,,7,) =(B*, A4, A,) is a constant projection
over B* where B* is a singleton with two equal bitopologies viz the unique
bitopology on B*. P is clearly ij-closed. Also, Mg+, i.e. M is obviously ij-
rigid since B* is i]-QHC. Then by Theorem (4.2.2.) p is ij-perfect.

(b) = (a) Follows from Theorem (4.3.2.).

(@) = (c) Suppose that (B x M, Q,,Q,) is F.W. bitopological space over
(B, Ay, Ay) where Q; = A; X 1;, i,j = 1,2 and i # j, then there is a projec-
tion p =m;: (BXM,Qq,Q,) = (B, A4, 4,). We show that m; is ij- closed
and for each b € B, My is ij-rigid in B X M. Then the result will follow from
Theorem (4.2.2). Let Ac Bx M and a & m;(ij — cl(A)). For each m €
M, (a,m) & ij — cl(A), so that there exist a A;-open nbd G, of a and a ;-
open nbd H,, of m such that [Q; — cl(G,, X H,,)] N A = ¢. Since M is ij-
QHC, {a} x M is a ij —H-set in B x M. Thus there exist finitely many ele-
ments my, m,, ms, ..., my, With {a} x M c Up_; Q; — cl(Gp,, X Hp, ). Now,
a € Ni=1 Gy, = G Which is a A;-open nbd of a such that (4; — cl(G) N
m;(A) = ¢. Hence a & ij — clm;(A) and thus ij — clm;(A) < =(ij — cl(4)).
So m is ij-closed, by Theorem (4.1.3.). Next, let b € B. To show that
(B x M), = m;~1(b) to be ij-rigid in B x M. Let F be a filter base on B x M
such that m;71(b)nij —ad F = ¢. For each m € M,(b,m) & ij —ad F.
Thus there exist A;-open nbd U,,, of b in B, a t; —open nbd V,,, of m in M and
an F,, € F such that Q; — cl(U,, X V;,,) N E,, = ¢. As show above, there ex-
ist finitely many elements m,, m,,ms, ..., m,, of M such that {b} X M c
U=y Qi — cl(Up, X Vi, ). Putting U = N}—; Up,, and choosing F € F with
F € Ni=q Fp,, We get {b} X M c U x M c Q; such that Q; — cl(U X M) n

61



Chapter 4 Fibrewise 1J-Perfect Bitopological Spaces

F=¢. Thus (ij — cl(F)) n[m;"(b) 1= ¢. Hence m;~1(b) is ij-rigid in
B X M.

(c)=(a) Taking B* = B, we have that p = m;: B* X B X— B* is ij-perfect .
Therefore by Theorem. (4.2.10.) B* X M is an ij-H-set and Hence M is ij-
QHC.
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2 Conclusions S

The main purpose of the present work is the starting point for the appli-

cations of abstract topological structures in fibrewise theory by using bitopo-
logical systems. We believe that fibrewise bitopological structure will be an
important base for modification of knowledge extraction and processing.

We used separation axioms concept in fibrewise bitopological space to
introduce a new notion namely fibrewise pairwise separation axioms. The
suggested methods of fibrewise pairwise separation axioms open way for con-

structing new types of fibrewise topologies.

Finally, the generalization of fibrewise bitopology in the ij-perfect
space are introduced, we believe such generalization will be useful in compact

bitopology, as well as soft bitopology.
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z Future Works f

The following are some open problems for the future works:

In the future we can use the concepts fibrewise bitopological spaces in
define fibrewise soft bitopological spaces, also we can define fibrewise soft
bitopological-T; where i=1,2,3,4. On the other hand we can discuss the rela-
tion between fibrewise soft bitopological spaces and fibrewise soft j-
bitopological spaces, where j € {«, S, P, b, }. Furthermore, we will study fi-
brewise bitopological digital (resp., di, tri, nano, filte, girll, fuzzy) topological

spaces.
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