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Abstract 
 

The main aim conducted and reported in this thesis is divided into two 

parts. The first part is devoted to providing some properties and 

characterizations of generalized convex, cone, and affine sets such as 

(respectively,  -convex,  -cone,  -affine) sets, and the study of some 

properties and characterizations of generalized convex functions such as (quasi 

convex   -convex, semi  -convex, quasi semi  -convex, pseudo semi  -

convex,  -quasiconvex,  -pseudoconvex) functions. The aim of the second part 

is to study some optimality properties and characterizations of generalized non-

linear optimization problems. We consider the objective functions for non-linear 

optimization problems as  -convex functions or some generalized convex 

functions and the constraint sets as  -convex sets.  

 In the first part, we presented some new properties of ( -convex,  -cone, 

 -convex hull) sets and we introduced a new characterization for  -convex sets. 

We defined new sets, namely,  -convex cone hull,  -affine sets and  -affine 

hull, and we proved some of their properties and characterizations. Moreover, 

we discussed some new characterizations of convex functions,  -convex 

functions, and their generalizations in terms of some level sets and different 

forms of epigraphs which are related to these functions. Some general properties 

of generalized convex functions, and some differentiability properties of  -

convex functions are also presented. 

 In the second part of this thesis and as an application of generalized 

convex functions in optimization problems, some optimality properties and 

characterizations of generalized non-linear optimization problems are discussed. 

In this generalized optimization problems, we used, as objective functions,   -
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convex (strictly  -convex) functions and their generalizations such as  -quasi 

convex (strictly  -quasiconvex), and strictly quasi semi  -convex functions and 

the constraint sets are  -convex sets. Some  -differentiability properties for the 

objective functions of generalized optimization problems are also discussed in 

this part. 
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Introduction 
 

Classical convex analysis is an important field of mathematics which 

plays a vital role in optimization and operation research. The main ingredient of 

convex analysis is related to convex sets and convex functions. The earlier 

definition and properties of convex sets were introduced by H. Brunn in 1887, 

followed by H. Minkowski in 1911. Convex analysis, in general, is developed 

and extensively studied in the 20
th

 century by Fenchel [51], Brøndsted [3], 

Moreau [30, 31], and Rockafellar [45, 46]. It has been studied in finite 

dimensions (see e.g. [27, 28, 29, 31]), and in infinite dimensions [10, 23, 43]. In 

addition to convex functions, convex analysis field may include other types of 

functions with less restrictive convexity assumptions, such as quasi convex and 

pseudo convex functions (see [39, 41]). The latter types of functions represent 

generalizations of convex functions. This area of the classical convex analysis 

has been generalized into other kinds of convexity by many researchers. For 

instance, the concept of convex functions has been extended to the class of  -

convex functions [21], invex functions [37], geodesic semi  -convex functions 

[5, 6], and  -vex functions [9] (see also [36, 55], for more recent papers on 

invex and  -vex functions). 

    Another type of generalized convexity is  -convexity introduced first by 

Youness in 1999 [15]. Youness introduced  - convex sets,  -convex functions, 

and  -convex programmings, defined in finite dimensional Euclidian space, by 

relaxing the definitions of the ordinary convex sets and convex functions. The 

effect of a mapping called         on a given set takes the major place in 

defining this type of generalized convexity. In other words, a non-empty set 

     is said to be  -convex if there exists a mapping         such that 

for every          and for every         we have 
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                   , 

and a real valued function         is said to be  -convex if there exists a 

mapping         such that for every           and for every        

we have 

                                           ). 

        It was shown in [15] that many results of convex sets and convex functions 

hold for the wider class of  -convex sets and  -convex functions. The research 

on  -convexity is continued, improved, generalized, and extended in different 

directions. Abou Tair and Sulaiman [22] and Suneja et. al [48] studied  -

convex sets and used these sets to prove some inequalities. Further study of  -

convex sets are recently introduced by Grace and Thangavelu [25] in which the 

authors defined  -convex hull,  -cone, and  -convex cone and study some of 

their properties. Youness [16] studied some properties of  -convex 

programming and established the necessary and sufficient conditions of 

optimality for nonlinear  -convex programming. Stability in  -convex 

programming was studied by Youness [18], and very recently, Megahed et al. 

[1, 8] introduced duality in  -convex programming and studied optimality 

conditions for  -convex programming which has  -differentiable objective 

function. Note that some results appeared in Youness's first paper [15] are 

incorrect (see [12, 53, 54] for some counter examples that clarify the erroneous 

results in [15]). This motivates Chen to introduce new classes of  -functions 

and to study some of their properties [52, 53]. These functions, which are 

generalizations of the class of convex functions, are called semi  -convex, quasi 

semi  -convex, and pseudo semi  -convex functions.  

The initial results of Youness inspired a great deal of subsequent work which 

has expanded the role of  -convexity in optimization theory. Thus, the notion of 

 -convex functions has been extended to new classes of generalized convex and 
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 -convex functions in optimization theory. For instance, some optimality 

properties of semi  -convex problems are introduced in [53].  -quasiconvex 

functions, their related properties, and their applications to optimization 

problems are studied by Youness [17] and Syau and Lee [56]. Solemani-

damaneh [40] defined  -pseudoconvexity functions and introduced an extensive 

study of  -convexity and its generalizations with applications for strict  -

quasiconvexity and  -pseudoconvexity in multi-objective optimization 

problems. For more recent papers on  -convex function and their extensions 

and generalizations, see [26, 35, 42, 57]. 

 

The overall aim of this thesis is as follows: 

     Establish new properties and characterizations of  -convex sets,  -

convex functions and their extensions and generalizations. 

      Apply  -convex functions and some generalizations of convex 

functions to a non-linear optimization problems to obtain new results and 

optimality conditions different than the ones introduced in the literature.  

This thesis starts with Chapter 1 which includes five sections of preliminary 

material and results that make this work self-contained. Chapters 2-4 include the 

main results of this work. The outline of Chapters 2-4 is summarized as follows: 

 

Chapter two: consists of four sections. Section 2 presents further study of  -

convex sets and  -convex hull. In specific, we provide a characterization for  -

convex sets (see Theorem 2.2.2). In section 3, we discuss some new properties 

of  -cone and  -convex cone (see Propositions 2.3.1, 2.3.3-2.3.6). We provide 

two characterizations of  -convex cone of an arbitrary set (see Theorems 2.3.7-

2.3.8). Then, we define  -convex cone hull sets and provide a new 

characterization of these sets (see Theorem 2.3.10). Finally, in section 4, we 

define  -affine sets and  -affine hull of a set and show a characterization of 
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each of these sets (see Theorems 2.4.15-2.4.17). Some properties related to  -

affine sets are also discussed (see Propositions 2.4.7, 2.4.9, 2.4.13-2.4.14). We 

also provide some examples to show the relationship between  -affine sets and 

their counterpart sets defined in the classical convex analysis, namely, affine 

sets (see Examples 2.4.5 and 2.4.10).  

 

Chapter three: includes four sections. Section 2 starts with some general 

properties of generalized convex functions. Namely, the closedness property 

under addition and non-negative multiplication is proved for  -convex and semi 

 -convex functions (see Theorem 3.2.1). We show a composite property which 

satisfies, under certain conditions, for semi  -convex,  -convex,  -

quasiconvex, and pseudo semi  -convex functions (see Theorems 3.2.2-3.2.4, 

3.2.6). Another property we show is the supremum property of an arbitrary non-

empty collection of semi  -convex, quasi semi (respectively, strictly quasi 

semi, strongly quasi semi)  -convex and pseudo semi  -convex functions (see 

Propositions 3.2.8-3.2.9). In section 3, we provide new properties and 

characterizations which relate convex functions and their generalizations with 

different  -level sets and different epigraphs associated with these functions. In 

other words, new relations and characterizations of semi  -convex,  -convex, 

and convex functions are given using the epigraph sets denoted by              

and         (see Propositions 3.3.12-3.3.22). In addition, new properties and 

characterizations of convex, quasi convex, and quasi semi  -convex functions 

are presented in terms of  -level sets of   denoted by   
 [ ] and  -  [ ] (see 

Propositions 3.3.2, 3.3.3, 3.3.6, 3.3.7). These  -level sets (  
 [ ] and  -  [ ]) 

are, respectively, associated with the epigraphs        and  -     mentioned 

earlier. We end this chapter, with section 4, by discussing some differentiability 

properties of  -convex and strictly  -convex functions (see Section 3.4). An 
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important result in this section is characterizing  -convex and  -concave 

functions   by using the second derivative of   (see Theorem 3.4.7). 

 

Chapter four: consists of three sections. In section 2, some optimality 

properties and characterizations of generalized non-linear optimization 

problems are presented. The properties and characterizations involve the 

existing, uniqueness, and the convexity of the global optimal solutions using ( -

convex, strictly  -convex, strictly quasi semi  -convex,  -quasiconvex, and 

strictly  -quasiconvex) functions as the objective functions. In section 3, we 

study differentiability properties of the objective functions (     of a 

generalized optimization problems. In such case, the functions   are non -

differentiable and are called  -differentiable. 
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Chapter One 

Preliminaries 

1.1 Introduction 

        In this preliminary chapter, we collect some essential definitions and 

properties that will make this thesis self-contained. The chapter is divided into 

five sections. In sections 2-4, we summarize definitions and results we need, 

from mathematical analysis, linear algebra, calculus, convex analysis, and  -

convex analysis. It is worth mentioning that, in subsection 1.4.1, some new 

examples are illustrated to clarify the properties of  -convex, cone and  -cone, 

and  -convex cone and to discuss the relationship between them. Various 

concepts related to basic optimization and generalized optimization theory is 

introduced in section 5.  

  Throughout this thesis, the real line is denoted by   and the set of  -

dimensional vectors with coordinates in   is referred to as    . All sets 

considered are non-empty subsets of   .  
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1.2 Basic Mathematical Concepts 

In this section, we recall some basic and fundamental concepts and 

properties that are needed throughout this work. These concepts are collected 

from mathematical analysis, linear algebra, and advanced calculus. 

Definition 1.2.1 [19, Section 2.4] A function ‖ ‖       is a norm if the 

following axioms hold: 

1. nonnegativity  ‖ ‖               and ‖ ‖    if and only if 

      

2. Positive homogeneity: ‖  ‖  | | ‖ ‖        and         

3. Triangle inequality:  ‖   ‖  ‖ ‖  ‖ ‖              

Definition 1.2.2 [19, Section 2.4] A mapping  〈   〉:    x       is referred 

to as scalar (inner) product if it satisfies the following properties. 

1. Positive definiteness: 〈   〉            and 〈   〉    if and only if 

     

2. Symmetry: 〈   〉= 〈   〉            . 

3. Additivity:  〈     〉 = 〈   〉 + 〈   〉             . 

4. Homogeneity  〈    〉   〈   〉                . 

 

Definition 1.2.3 [2, Definitions 1.13-1.14, 1.16] Fix     , then  

1. The open ball with center   and radius   is denoted by        and 

defined by  

        {     ‖   ‖   }  

2. The closed ball with center   and radius   is denoted by        and 

defined by  

       {     ‖   ‖   }  
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3. A set      is called a neighborhood of   if there exists an open ball 

        such that         . 

4. If        , then   is called an interior point of   if there exists an 

open ball         such that         . The set of all interior points of a 

given set   is called the interior of   and is denoted by   . The set   is 

said to be open if     . 

 

Definition1.2.4 [19, p.37] Let     . A function       is said to be 

continuous at  ̅ if for any given      there is exists a      such that      

and ‖   ̅‖    implies |        ̅ |     

Definition 1.2.5 [39, p.763] Let   be a subset of    ,               

  , and let        Then   is said to be differentiable at   if there is a vector 

called the gradient of   at the point  , and is denoted by        in   . The 

gradient vector consists of the   partial derivatives of   at  , that is,   

      

(

 
 
 
 
 

     

   

     

   
 
 
 

     

   )

 
 
 
 
 

. 

If the function   is defined on a set    , then               Moreover,   is 

called twice differentiable at  , if in addition to the gradient vector, there exists 

    matrix of second-order partial derivatives of  . This matrix is called 

Hessian and is denoted by        or     . It is defined as follows 

 

            

[
 
 
 
      

      
 

      

      

   
      

      
 

      

      ]
 
 
 

. 
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Hessian is a symmetric matrix which describes the local curvature of a function 

of many variables. If the function   defined on a set    , then        

          

 

Definition 1.2.6 [19, p.59] A continuous function           is said to be 

continuously differentiable at      if its first partial derivatives are 

continuous. i.e., if 
  

   
    exists and is continuous, for          The class of 

functions whose first derivatives are continuous is denoted by     Similarly, the 

function   is said to be twice continuously differentiable if   is continuously 

differentiable and all second partial derivatives of   exist and are continuous 

over   . i.e., if 
   

     
    exists and is continuous, for            The class of 

functions whose second derivatives are continuous is denoted by   . Note that 

when   is   , the Hessian is a symmetric matrix     

 

 As we will see later in this thesis (see Chapters 3 and 4) that the sign of a 

matrix is very useful. i.e., whether the matrix is positive (semi) definite, 

negative (semi) definite or indefinite. The sign of the Hessian, for example, 

determine whether a function is  -convex or not (see Theorem 3.4.7). It is also 

necessary to employ Taylor's Formula (see Theorems 3.4.7, 4.2.4, 4.3.9). 

Hence, we state these concepts next.  

 

Definition 1.2.7 [2, Definitions 2.9, 2.14] An     matrix   is said to be 

1. Positive definite (for short, p.d.) if the quadratic form 

                        

2. Positive semi-definite (for short, p.s.d.) if 
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3.  Negative definite (for short, n.d.) and Negative semi-definite (for short, 

n.s.d.) matrices if: 

                          , 

and 

                         , 

respectively. 

4. Indefinite if there exist non-zero vectors        such that  

        and          

 

Example 1.2.8 Clarify that the matrix  

  (
  
  

) 

is indefinite. 

Solution. Suppose that           
     is a non-zero vector. Then 

             
 (

  
  

) (
  

  
) 

        
    

              

                                            
    

       . 

Now, if         , then       > 0 and when          , then        . 

Thus, from definition 1.2.7(4), the matrix   is indefinite. 

Definition 1.2.9 [24, Section 2.6] Taylor formula is a series expansion of a 

function around a point. An  -th order Taylor series is an expansion of an   

continuously differentiable real function         around a point      

which is given by  
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where         is called the remainder term of the Taylor series. 

 

Taylor's Theorem 1.2.10 [2, Theorem 1.24] 

Truncated Taylor Series (First Order): Assume that        

continuously differentiable on some open set and that        Then for every 

    .  

                           

where   is some point lies on the line segment joining   and    (i.e.,      

        for some         .  

Truncated Taylor Series (Second Order): Assume that        twice 

continuously differentiable on some open set and that        Then for every 

    .  

                           
  

 
         

              

where   is some point lies on the line segment joining   and   . 

Definition 1.2.11 Let        be a function. Then 

1)   is called linear if and only if  

                                 and      .  [47] 

2)   is called sublinear if and only if 

                                 and      .     [44] 

3)   is called non-decreasing if whenever        such that     (i.e., 

              ) we get              In other words, 
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                    .   [4, Definition 5.2.1] 

Definition 1.2.12 A function         is said to be idempotent if 

 (    )                       . [25] 

 

1.3 Elements of Convex Analysis 

In this section, we review some concepts from convex analysis in the 

classical sense such as convex sets, cone, convex cone sets, affine sets, and 

convex functions with some of their generalizations functions.  

We start first with the definition of a convex set in   .  

Definition 1.3.1 [44, p.10] A set      is said to be convex if and only if 

        ,  and for every      , we have                In this 

case,   is said to be closed for convex combinations. 

    Convex sets satisfy the relations given next. 

Proposition 1.3.2 [44] 

i. The intersection of two convex sets is a convex set. In general, if 

{      }      be a family of convex sets. Then ⋂       is a convex 

set. 

ii.  Let        be a convex set and     . Then the set     {       

  } is a convex set. 

iii. Let            be convex sets. Then the Minkowski addition 

         {                      } 

and the Cartesian product  

        = {                                  } is a convex set. 
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Definition 1.3.3 [44, p.3] A set      is said to be affine if and only if 

      , and for every      we have              In this case,   is 

said to be closed for affine combinations. 

Remark 1.3.4 Each affine set is a convex set but the converse is not true as the 

following example shows.  

Example 1.3.5 Let           be an open ball of center         and radius 

   . i.e.,                    {             ‖             ‖  

 },         . It is clear that,         is a convex but not an affine set. i.e., 

Let                             
    

    
 

 
 
 

 
        . If   

 

 
   then  

 

 
      

 

 
 
 

  
 
 

 
   

 

 
 
 

 
          

Now, if       such that    , then we get 

         
 

 
 
 

 
   

  

 
 
  

 
         . 

  Next, we define an important set in convex analysis. 

Definition 1.3.6 [44, p.13] A set      is said to be a cone if for every     

and     we get     . In case that the cone is convex, then   is called 

convex cone. 

Example 1.3.7 

 Let   {        | |}, then   is a cone but not convex set. 

 Let   {        | | }. This set is a convex cone. 

 Let   {             }. This set is a convex but not cone. 

Definition 1.3.8 [44, p.12] Let       The convex hull of  , denoted by 

        is the intersection of all convex sets containing   (or, smallest convex 

set that contains  ); that is,  

        ⋂         are convex sets. 
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Definition 1.3.9 [11, p.21] Let       The affine hull of  , denoted by 

       is the intersection of all affine sets containing   (or, smallest affine set 

that contains  ); that is,  

       ⋂         are affine sets. 

Definition 1.3.10 [13, p.36] Let       The convex cone hull of  , denoted 

by         is the intersection of all convex cone sets containing   (or, smallest 

convex cone set that contains  ); that is,  

        ⋂         are convex cone. 

  Now, let us recall the definitions of convex (concave) functions.  

Definition 1.3.11 [47, Definition 3.1.1] A real valued function        is 

said to be convex if for every          and       

                                  

If for every       and       

                                  

Then   is called strictly convex. 

Definition 1.3.12 [47, Definition 3.1.1] A real valued function        is 

said to be concave if      is convex. Mathematically,   is a concave function if 

for every         ,       we have 

                                  

If for every       and       

                                  

Then   is called strictly concave. 
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Remark 1.3.13 

1. Every linear function is convex and concave. 

2. Every convex and concave function at the same time is called an affine 

function. 

3.  The domain of a convex function is always a convex set. 

   An example of a convex function defined on    is given next. 

Example 1.3.14 Show that        defined as      ‖ ‖  is a convex 

function. 

Solution:  let         ,       then, 

               ‖           ‖, 

using triangle inequality and positive homogeneity properties of the norm, the 

right-hand side of the above equation yields 

                                                               ‖  ‖       ‖  ‖ 

                                                                               

Thus,      is a convex function. 

The field of convex analysis may include other types of functions with 

less restrictive convexity assumptions, such as quasi convex and pseudo convex 

functions. The latter types of functions represent generalizations of convex 

functions. Next, we recall the definitions of quasi convex and pseudo convex. 

Definition 1.3.15 A function          is said to be quasi convex if and 

only if   is a convex set, and for each          ,       , we have 

                    {            }.    [39, Definition 3.5.1] 

If for every       and       with              we have  

                    {            } , then   is called strictly quasi 

convex.    [39, Definition 3.5.5]  
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Definition 1.3.16 [39, p.768] The function          is said to be pseudo 

convex if   is differentiable and for each        ,with       
            

we have              The function   is said to be strictly pseudo convex on 

  if whenever       with       
            we have              

 

1.4 Elements of  -Convex Analysis 

An important class of generalized convex sets and convex functions, 

called  -convex sets and  -convex functions, respectively, has first introduced 

and studied by Youness [15]. In these classes, Youness relaxed the definitions 

of the classical convex sets and convex functions with respect to an mapping  . 

Further study of  -convex sets are recently introduced by Grace and 

Thangavelu [25] in which the authors defined  -convex hull,  -cone, and  -

convex cone and studied some of their properties. Other types of generalized 

convex functions are also introduced and studied in the literature such as semi 

 -convex, quasi semi  -convex, pseudo semi  -convex,  -quasiconvex, and  -

pseudo convex functions [17, 40, 53, 56].  

In this section, we recall  -convex sets,  -convex hull,  -cone,   -

convex cone,  -convex functions, and some of generalized convex functions. 

We review some algebraic properties of  -convex sets and add a new property 

(see Proposition 1.4.1.10). Many examples are added, in the next subsection, to 

show the relationship between  -convex sets,  -cones, and  -convex cones 

(see Examples 1.4.1.15-1.4.1.17). Other examples are shown to illustrate some 

reviewed concepts and properties (see Examples 1.4.1.19, 1.4.1.21). 

 

 

 



Preliminaries  Chapter One 

12 
 

1.4.1 Generalized Convex Sets 

In this subsection, we recall  -convex,  -cones, and  -convex cone sets 

and some of their existing properties. We also add a new property (see 

Proposition 1.4.1.10) and various examples to show the relationships between 

these concepts and to clarify some properties and observations related to the  -

convexity of sets (see Examples 1.4.1.4,1.4.1.12, 1.4.1.15-1.4.1.17, 1.4.1.19, 

1.4.1.21). In Chapter 2, we continue studying these concepts by providing new 

properties and characterizations of these generalized sets. 

Definition 1.4.1.1 [15] A set      is said to be  -convex if and only if there 

exists a mapping           such that           and for every        

we have                    . 

 

Note that  -convex sets are considered as generalization of convex sets in 

the following sense. 

 

Proposition 1.4.1.2 [15] Every convex set is an  -convex. (Choose     

identity mapping).  

Proposition 1.4.1.3 [15]  

1. If a set   is an  -convex, then       . 

2. If      is convex and       , then   is an  -convex set. 

  The following example show that the converse of Proposition 1.4.1.2 

does not hold, in general. 

Example 1.4.1.4 Suppose that         be defined as             . Let  

  {                                               } 

 {                                          
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                         } with      ,   ,       ∑   
 
     . 

First, we show that      E-convex using Proposition 1.4.1.3(2) 

     {                                          

                    }     {                           

                                        }. 

Since   is a linear mapping, the set      can be written as 

     {                                            

         }    {                                    

                          },  

     {                                         }      

                {                                          }.  

It is clear that,      is a convex set and       . Using Proposition 1.4.1.3(2), 

  is  -convex.  To show S is not convex, take                and   
 

 
 . 

Then  

 
 

 
       

 

 
             (  

 

 
)  (   

 

 
)    as we need to show. 

 The following proposition provides a condition under which a convex set 

is an  -convex without taking     the identity mapping.   

Proposition 1.4.1.5 [25, 40] If                     ,    is a convex set, and 

       then   is an  -convex set. 

Proposition 1.4.1.6 Let    and    are two  -convex sets, then 

i.   ⋂   is  -convex set. [15] 

ii. If   is a linear mapping, then       is  -convex set.  [15] 

iii. If   is a linear mapping and     then     is  -convex set. [25] 
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 Remark 1.4.1.7 

1. The intersection property, in the above proposition, has been extended to 

an arbitrary family of  -convex sets. [56, Theorem 2.1] 

2. The union of two  -convex sets may not be  -convex set.  [15, Example 

2.3]  

  For the sack of completeness, we add the following property of  -convex 

sets which is needed in Proposition 2.3.6(iii). 

Proposition 1.4.1.8 Let    and     be two  -convex sets, then       

{                   }  is    -convex set.                 

Proof. Since    and    are  -convex sets, then                      ̅      

and              with         we have  

                    and                    . 

Hence, (                               )        . 

i.e.,                                      .  Thus,       is    - 

convex set.    ■ 

We pointed out in Remark 1.4.1.7 that the intersection of arbitrary  -

convex sets is  -convex. This fact is used next to define the smallest  -convex 

set containing a fixed set. 

Definition 1.4.1.9 [25] The  -convex hull of a set     , denoted by  -

        is the smallest  -convex set contains  , that is, 

 -        ⋂     ,   are  -convex sets. 
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         An example of  -convex hull of a non-convex set   is given next. 

Example 1.4.1.10 Let                  and let       is given by 

     
 

 
         . Clearly,   is not  -convex set. For instance, let   

       and    . Then, 

                     

From Definition 1.4.1.9,  -               which is  -convex. i.e.,   

        is a smallest  -convex set in   contains    

Remark 1.4.1.11 [44] From the above definition and Proposition 1.4.1.6, it is 

clear that 

1.           is  -convex set and    -       . 

2. If   is  -convex set, then  -         . 

 

Next, we recall the definition of  -cone as a generalization of a cone set. 

Definition 1.4.1.12 [25] A set      is called   -cone if there exists a 

mapping         for every     and     we have        . If   is 

 -cone and  -convex set, then it is called  -convex cone. 

 Examples of  -convex cone set,  -convex set (not  -cone), and  -cone 

(not  -convex set) are given, respectively, next. 

Example 1.4.1.13 Let      is defined by   {                 }  , 

and let         is given by                       . 

For any         and                          Thus,   is  -cone. 

Also,   is  -convex. Indeed, let                   and             such 

that            then 

                                       

Thus,   is E-convex cone set. 
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Example 1.4.1.14 Let      is defined by   {               

         }  , and let         is given by 

       (
 

 
  

 

  
 )          . Note that      {(

 

 
  

 

  
 )       

        } is a convex set and       . From Proposition 1.4.1.3(2),   

is  -convex set. To show that   is not  -cone, take for example         and 

    . Then         (
 

 
 
 

 
)     

Example 1.4.1.15 Let      is defined by 

   {                      }   {                   

  } , and let         is given by             . For each       

  and                        Thus,     is   -       However, there 

exists                   and         such that,              

              . For example, take                 , and   
 

 
. Then 

                     
 

 
        

 

 
                

Thus,   is not  -convex. 

Proposition 1.4.1.16 Every cone is an  -cone. (Take     . 

Obviously, not every  -cone is a cone as we show in the following 

example.  

Example 1.4.1.17 Consider   defined as in the Example 1.4.1.14, i.e.,   

{                       }, and let                         

We show that   is  -cone but not cone. For any     and any           

               , thus,   is  -cone. Now, if we take    , and       

         then  

                     .  

Thus,   is not a cone. 
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Remark 1.4.1.18 Proposition 1.4.1.16 may not be true for an arbitrary mapping 

  as the next example shows. 

Example 1.4.1.19 Suppose that         be defined as        

                  and    {                 }. We show that    

is cone but not  -cone. For any     and for any          we have, 

                 . Thus,   is a cone. To show   is not  -cone. Let 

                and    , then                            

as required. 

1.4.2 Generalized Convex Functions 

In Chapters 3 and 4, we deal with  -convex functions, some of its 

generalized versions, and another class of generalized convex functions, 

namely, semi  -convex functions. To prepare the ground for this study, we 

present in this section the definitions of  -convex, semi  -convex, quasi semi 

 -convex, pseudo semi  -convex,  -quasiconvex, and  -pseudoconvex 

functions. We also provide some related notions which will be used in 

developing our work in Chapters 3 and 4. 

 Let us first define  -convex function and strictly  -convex function. 

 

Definition 1.4.2.1 [15] Let           be a real valued function. Then   

is referred to as  -convex function on   if and only if there exists a mapping 

         such that   is an  -convex set and for each        , and each  

     , we have 

                                           ). 

On the other hand,   is strictly  -convex if for each        ,      , and 

each      , we have 

 (                 )                        ). 
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Definition 1.4.2.2 [15] A real valued function        is said to be  -

concave on   if and only if there exists a mapping          such that   is 

an  -convex set and for every        , and each       , we have 

                                              

If for every        ,      , and       

 (                 )                           

Then   is called strictly  -concave. 

Remark 1.4.2.3 The class of  -convex functions is broader and more general 

than the class of ordinary convex functions. Indeed, by taking      every 

convex function is  -convex and the converse does not satisfy (for an arbitrary 

 ) as we illustrate next. 

Example 1.4.2.4 [15, Example 3.2] Let       be a function and let 

      be a mapping such that         . Suppose that for each     

           we have      {
                       
                     

 

To prove that   is  -convex, we must show that  

 (               )                        

We consider three cases: first, if        then, 

                                                    

In this case,   is  -convex 

 (               )                    

Similarly, when        and         ,  we get   is  -convex. To show 

that   is not a convex function. Take          and   
 

 
 then, 

                                                      ,           (1.1) 
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and  

                 
 

 
     

 

 
     

 

 
 .                              (1.2) 

From (1.1) and (1.2), we conclude  

                             

Then,   is not convex. 

          A new class of generalized convex functions called semi  -convex 

function is introduced by Chen [52, 53]. This class includes quasi semi  -

convex and pseudo semi  -convex functions. Chen used these functions to 

improve some of the Youness's incorrect results [15, Theorems 4.2-4.3, 4.6], 

and to study the properties of those functions.  Next, we state the definition of 

those functions. 

Definition 1.4.2.5 [52,53] Let           be a real valued function, then 

  is said to be 

i.  Semi  -convex on   if and only if there exists a mapping          

such that   is  -convex set and for each        ,       , we have 

                                       .  

ii.  Quasi semi  -convex function if and only if there exists a mapping 

         such that   is a  -convex set and for each         and 

     , we have 

                      max {           }, 

and   is strictly quasi semi  -convex function if and only if there exists a 

mapping          such that   is a  -convex set and for each         

with            , and       , we have 

                      max {           },    
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and   is strongly quasi semi  -convex function if and only if there exists a 

mapping          such that   is a  -convex set and for each         

with      , and       , we have 

                      max {           }.    

iii.  Pseudo semi  -convex on  -convex set   if there exists a positive 

function           such that if              then 

        (                 )                         

for all           and           

Remark 1.4.2.6 

i. An  -convex function is not necessary semi  -convex function. [53, 

Example 4] 

ii. A semi  -convex function is not necessary  -convex function. [53, Example 

6] 

iii. A quasi semi  -convex function is not necessary semi  -convex 

(respectively,  -convex) function. [53, Remark 4] 

iv. Every semi  -convex function is a pseudo semi  -convex. [53, Proposition 

10] 

Observe, from the preceding remark, that the class of semi  -convex 

functions is not a generalization of the class of  -convex functions. Rather, it is 

a generalization of the class of convex functions when    . The following 

proposition confirms the last observation. 

Proposition 1.4.2.7 Every convex function is a semi  -convex (respectively, 

quasi semi  -convex, pseudo semi  -convex) function when    . 

Proof. It is easy to prove that every convex function is a semi  -convex 

(respectively, quasi semi  -convex), by taking    . To show every convex 
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function is a pseudo semi  -convex, let       be a convex function defined 

on the convex set      and         such that    . Since      

     and   is a convex on  , then for every       and      , we have 

                               

                                                          

                                               (         ) 

                                                    (         ) 

                                                     (         )    

                           

where                     Hence,   is pseudo semi  -convex. ∎ 

Remark 1.4.2.8 The converse of the proceeding proposition may not be true. In 

other words, 

i. A semi  -convex function is not necessary convex function. [53, 

Example 6] 

ii. From Remark 1.4.2.6 (iii) and Proposition 1.4.2.7, a quasisemi  -convex 

function is not necessary convex function. 

         Another type of functions, namely  -quasiconvex and  -pseudoconvex, 

are introduced as a generalization of  -convex functions, and hence 

generalizations of convex functions.  -quasiconvex function is established 

independently by Youness [17] and Solimani [40] and its properties are studied. 

Some of the  -quasiconvex function properties are also studied by Syau and 

Lee [56].   -pseudoconvex function, on the other hand, is defined and studied 

by Solimani [40]. These functions are generalizations of quasi convex and 

pseudo convex functions introduced earlier (see Definitions 1.3.15-1.3.16). The 

definition of these functions is given next 
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Definition 1.4.2.9 [40] Let           be a real valued function, then   is 

said to be 

i.  -quasiconvex if and only if there exists a mapping          such 

that   is an  -convex set and for each         with       , and  

     , we have 

 (                 )   max {               }  

and   is strictly  -quasiconvex if and only if there exists a mapping       

   such that   is an  -convex set and for each          ,  (        

        , and each         we have 

 (                 )   max {               } 

ii.  -pseudoconvex function if   is differentiable, there exists a mapping 

         such that   is  -convex and for each         such that if 

  (     )
 
(           )     we have  (     )   (     )  

Remark 1.4.2.10 It can be seen that  -quasiconvex and  -pseudoconvex are 

generalization of convex functions and  -convex functions in the sense that 

i. From the definition of  -convex function, every  -convex function is  -

quasiconvex. 

ii. Every differentiable  -convex function is  -pseudoconvex. [40, Lemma 

2.3] 

iii. The converse of parts (i)-(ii) may not hold.  [40, Example 3.4] 

iv. Every convex function is  -quasiconvex where    . 

v.  -quasiconvex function is not necessary convex. [40, Example 3.3] 

vi. Every differentiable convex function is  -pseudoconvex when    . 

vii. From [40, Example 3.4] and Proposition 1.4.1.2,  -pseudoconvex 

function is not necessary convex. 



Preliminaries  Chapter One 

23 
 

  when studying convex functions in the classical sense, the set of points 

located on or above the graph of  , which is called the epigraph of   (      , is 

useful for characterizing convex functions. However, in generalized convexity 

(when the functions are  -convex, semi  -convex, quasi semi   convex, etc), 

we deal with three different notions of epigraphs [12, 15, 53]. These epigraphs 

are associated with the mapping  . We list below the ordinary epigraph and its 

generalized versions. 

 Definition 1.4.2.11 Let           be a real valued function, and 

         is a given mapping. Then the ordinary epigraph is defined as 

       {                 }   [44], 

while the epigraphs associated with the mapping   are classified as 

        {           (    )   }    [15]; 

        {                          }     [12]; 

and 

        {                       }    [52]. 

  Associated with each epigraph defined above, an   level set is defined, 

respectively, as follows. 

Definition 1.4.2.12 [40, 44, 56] Let      and   are defined as in Definition 

1.4.2.11 and    . Then 

i.       {          }. 

ii.         {     (    )   }. 

iii.               {           (    )   }.  

iv.           
     {                }. 
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1.5 Optimization Problems 

Optimization is the act of obtaining the best result with available 

resources. For example, in economics, investors minimize risk or maximize 

profits, factories minimize cost. Since the risk required or the cost desired in 

any practical situation can be expressed as a function of certain variables, 

optimization can be defined as the process of finding the condition that give the 

maximum or minimum value of a function.  

1.5.1 Mathematical Formulation of an Optimization Problem  

Mathematically, optimization problem is the minimization or maximization 

of a function   subject to a constraint set   on its variables  . The optimization 

problem consists of: 

 The variables   of the problem which represent all the possible decisions 

one can make. 

 The objective function        that we want to maximize or 

minimize. This objective can be the cost or the return of the system. 

 The constraints set   which is the restrictions on the variables  .  When 

the constraint set        the problem is said to be unconstrained. 

Otherwise, it is a constrained problem. The constraint set may include 

equality and /or inequality involving the variables.  

  We are ready now to give a mathematical expression for an optimization 

problem. 

Definition 1.5.1.1 [47, p.127] The most basic form of mathematical 

optimization problem (or optimization problem, for short) is as follows:  

                                                    min                                                       (1.3) 

subject to                         
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                                                  , 

where the vector                  is the optimization variable of the 

problem, the function        is the objective function (or cost function) of 

the problem, and the functions        
    are the inequality and equality 

constraints.  

Definition 1.5.1.2 [13, p.84] The feasible region or the feasible set or a 

constraint set      is the set of all points that satisfy the problem's 

constraints. Mathematically,  

  {               and                   &        }  

Remark 1.5.1.3 

 If there exists at least one feasible point      then Problem (1.3) is 

called feasible otherwise, if    , it is infeasible. 

 If Problem (1.3) is unconstrained, then the feasible region is      . 

 

 Below, we give two examples of constrained and unconstrained problem, 

respectively. 

 

Example 1.5.1.4 Consider the following optimization problem 

min        

subject to       

      

      

The optimization problem in this example is constrained and the feasible set  

  {                     and      }  
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Example 1.5.1.5 

min   
    

  

subject to x             

 

This is unconstrained problem in which the feasible set     . 

 

Definition 1.5.1.6 [13, p.84], [47, p. 128] The set of solutions of problems (1.3) 

is the best solution from all feasible solutions. It is denoted by          and 

its elements      are called global minimizers or optimal solutions. i.e., 

   is global minimum point or an optimal solution of   if and only if  

                    

Thus,          {                             }  

A global minimizer      is said to be strict when  

                            

Moreover, the optimal value of Problem (1.3) is defined as  

             {                      for all   and for all  }. 

Note that the set          may not be exist              and may 

contains more than one minimum. 

 

Remark 1.5.1.7 In the optimization problem (1.3) 

1. It is possible to maximize the objective function (find the maximum 

value) instead of minimizing. In this way, Problem (1.3) can be 

expressed as  

max                                                          (1.4) 

         subject to                          
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The set of the solution S will be denoted by          and     is a global 

maximum point or an optimal solution of   if and only if  

                    

The optimal value of Problem (1.4) is defined as  

             {                     for all   and for all  }. [13, p.84] 

 

2. min       max       

 

Remark 1.5.1.8 

Global minimizers (maximizers) can be difficult to find and characterize in 

general nonlinear function   Instead of global points, one can find a point    

such that            for all points   in a given neighborhood of   . This 

point is called a local minimizer point. Similarly, local maximizer point is 

defined. 

  

Definition 1.5.1.9 [38, p.11] A point       is called a local minimizer for 

Problem (1.3) if there exist     such that  

                               

This definition can be extended to the definition of a local maximum by 

reversing the inequality above. If the inequalities in the above definition become 

strict then    is called strict local minimizer. 

 

Definition 1.5.1.10 A point       is called a strict local minimizer for 

Problem (1.3) if there exists     such that  

                                   . 

          Note that every strict local minimum point is a local minimum but the 

converse is not true as we show in the next example. 
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Example 1.5.1.11 

Consider the objective function  

 

     {
                                
                               
                           

 

 

From the below graph of the function, the point     is a local minimum such 

that there exists      in which                            . However, 

  is not strict local minimum. Note that   is also a global maximizer. In fact, 

this function has multiple global maximum points (i.e., global maximum is not 

unique). Also, there are multiple local minimum points but none of them is 

strict local minimum. 

 

 

 

Figure: The graph of the function in Example 1.5.1.11 
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Remark 1.5.1.12 

 

 Every global minimum /maximum is local minimum/maximum. 

 It may not be possible to identify a global minimum by finding all local 

minima (global minimum may not exist) as we have seen in the above 

example. 

 

1.5.2 Differentiable and Convex Optimization Problem 

 

Problem (1.3) is said to be differentiable optimization problem when the 

functions                  are differentiable. If the constraints of Problem 

(1.3) are nonlinear, Problem (1.3) is called nonlinear optimization problem. 

When the objective function   and the constraint functions                  

are all linear, we have a linear optimization problem [14, p.2], [2, p.149]. 

Convex optimization problems play an important role in optimization. There 

are variety of mathematical properties and tools that help to characterize and 

efficiently solve convex problems. In general, an optimization problem 

min      

subject to       

is called convex problem if the objective function   and the constraint set   are 

convex.  [13, p.208] 

 

  The main benefit of knowing whether an optimization problem is convex 

is provided by the following theorem. 

 

Theorem 1.5.2.1 Assume that we have the following convex optimization 

problem 

min      

subject to         
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where          is a convex function defined on the convex set   . Then 

1) If      be a local minimum of  . Then   is a global minimum of  .  

[2, Theorem 8.1] 

2) If      is a strict local minimum of  . Then    is a unique global 

minimum.  [7] 

3) If   is a strictly convex function on the convex set  . Then           

has only one element. [2, Theorem 8.3] 

4) The set of all feasible solutions           is convex. [2, Theorem 8.3] 

 

1.5.3 Generalized Optimization Problems 

As for the class of convex sets and convex functions, the class of 

optimization problems have extended into the class of generalized optimization 

problems [15, 53]. Youness in his celebrity paper [15] defined two forms of 

non-linear constrained generalized optimization problem denoted, respectively, 

by (NLP) and (NLPE) and defined as.  

         

         , 

and 

             

         , 

where         be a real valued function,       be an  -convex set, and 

         is a given mapping. 

 Remark 1.5.3.1 Problems (NLP) and (NLPE) in which the objective function is 

 -convex are said to be  -convex problems [15]. Similarly, when the objective 

function is semi  -convex, Problems (NLP) and (NLPE) are called semi  -
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convex problems [53]. Hence, generalized optimization problems are classified 

according to the type of the generalized objective function. 

  Note that the relation between the solutions of the  -convex 

programming (NLP) and (NLPE) is introduced in [15, Theorem 4.2]. Also, the 

characterization of the optimal solutions and some of the optimality conditions 

of the  -convex programming problem (NLP) is addressed in [15, Theorems 

4.3, 4.5-4.6].  Later, it appears that some of Youness proceeding results are 

incorrect (see [53, Examples 1-3] for some counterexamples for Theorems 4.2, 

4.3, 4.6 in [15]).  Therefore, a new concept of semi  -convex programming is 

defined in [53], the relation between the solutions of the  -convex 

programming (NLP) and (NLPE) is corrected, and some optimality results are 

introduced, for Problem (NLP), to fix the incorrect optimality results of [15].  

Next, we list the main results introduced in [53] to correct Youness's 

results. 

Theorem 1.5.3.2 [53, Theorem 5] Assume that we have (NLP) and (NLPE) 

optimization problems such that the objective function   is semi  -convex 

function on the  -convex set   and    is a solution of problem (NLPE). Then 

      is a solution of problem (NLP).  

Theorem 1.5.3.3 Assume that we have (NLP) generalized optimization 

problem. Then 

i. If   is an  -convex function on  , and  (    )              , and 

             is a local minimum of problem (NLP). Then    is a 

global minimum of (NLP) on  . [53, Theorem 6] 

ii. If   is strictly semi  -convex function on  . Then the global optimal 

solution of problem (NLP) is unique. [53, Theorem 7]  

iii. If   is semi  -convex function on  . Then          of problem (NLP) 

is  -convex set.  [53, Theorem 9] 
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In Chapter 4, we consider the optimization problem (NLPE) for which we 

discuss some optimality properties for this problem when the objective 

functions are  -convex (strictly  -convex), strictly quasi semi  -convex,  -

quasiconvex (strictly  -quasiconvex). 
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Chapter 2 

On Generalized Convex Sets, 
Cones, and Affine Sets 
 

 

2.1 Introduction 

          An important class of generalized convex sets, called  -convex sets, has 

first introduced and studied by Youness [15]. In this class, Youness relaxed the 

definitions of the classical convex sets with respect to an mapping  . Some of 

the results introduced in [15], related to  -convex set, are recently studied by 

other researchers. Suneja et. al [48] studied  -convex sets and used it to prove 

some inequalities. Further study of  -convex sets are recently introduced by 

Grace and Thangavelu [25] in which the authors defined  -convex hull,  -cone, 

and  -convex cone and studied some of their properties. 

      In this chapter, we continue studying  -convex sets and  -cone by proving 

new properties of these sets. We give new characterizations of  -convex sets, 

 -convex hull, and  -convex cone. In addition, we define  -convex cone hull, 

 -affine set, and  -affine hull, and we discuss some of their properties and 

characterizations. Some examples are given to illustrate these different concepts 

and to clarify the relationships between them.  
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In Section 2, we give a characterization of  -convex set in terms of the 

 -convex combinations of its elements (see Theorem 2.2.2). A new 

characterization of an  -convex hull of a set  , is also given (see Theorem 

2.2.3), in terms of the set of all  -convex combinations of any finite elements of 

the set  . In Section 3, we prove some properties of  -cone and  -convex cone. 

We obtain two new characterizations of the  -convex cone set  . The first 

characterization (see Theorem 2.3.7) is proved in terms of the  -closdeness of 

  under addition and non-negative multiplications. The second characterization 

of  -convex cone (see Theorem 2.3.8) is proved in terms of non-negative  -

linear combination of any finite elements of the considered set. Then, we define 

 -convex cone hull of an arbitrary set   and discuss some of its properties.  -

convex cone hull of a set   is characterized using the set of all non-negative  -

linear combinations of   (Theorem 2.3.10). Finally, in Section 4, we define  -

affine set, explain its relationship with  -convex set, and prove some properties 

related to  -affine sets. As for  -convex set and  -convex cone set, we define 

 -affine hull and show characterizations of an  -affine set   (see Theorem 

2.4.15) and the  -affine hull of an arbitrary set   (see Theorem 2.4.17). The 

characterization of  -affine set and  -affine hull is formulated in terms of  -

affine combinations of all elements of  . Some examples are shown throughout 

this chapter to illustrate the aforementioned concepts and to show the 

relationship between them. The contents of this chapter have been published 

recently in [49]. 

2.2 Characterizations of  -Convex Set and  -Convex Hull 

        In this section, we study  -convex sets and  -convex hull of an arbitrary 

set, and we give some of their new properties and characterizations. The 

following definition will be employed to show a characterization of   -convex 

sets. 
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Definition 2.2.1 Let     . The set of  -convex combinations of   elements 

of   is denoted by        and is defined as  

          ∑         {       }    
 
           and ∑   

 
      . 

    Next, we characterize  -convex set in terms of the  -convex combinations of 

its elements.  

Theorem 2.2.2 Assume that a set      and        is the set of  -convex 

combinations of   elements of   defined in Definition 2.2.1 such that the 

mapping   appears in Definition 2.2.1 is linear and idempotent. Then   is  -

convex if and only if               . 

Proof. Assume that S is  -convex. We need to show that for each      

                                                         .                                                     (2.1) 

We show (2.1) by induction. If    , then there exists      and      such 

that                       . Since   is  -convex then, from 

Proposition 1.4.1.3(1),             Let    , then there exists          

and                    such that 

                        .  

Since S is  -convex, then 

                   . 

Assume now (2.1) holds for     i.e., 

                                         if         , then    .                          (2.2) 

We must prove that (2.1) is true when      . Let           , this 

means there exists                 and there exists              such that 

∑        
   . Assume that      and let    is the   convex combinations of 

  elements of the set               . Hence, 

     
             

        , 

where 
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   for          .                (2.3) 

This yield, ∑    
      

   .  Thus,           , and from (2.2),     .  Now, 

    
     from induction                       . Since   is linear, the 

last statement yields 

                 
                

              . 

Substituting the values of   
  from (2.3) in the expression above gives 

                                       

Since   is idempotent, then                                Thus, the 

last expression can be expressed as  

                                   

Hence,         . To show the prove of the other direction, assume that 

              . In particular, for each                          

                                   Hence,   is  -convex. ■ 

 

    A property of  -convex hull of a set   is given next. 

 

Theorem 2.2.3 Let      and   is the set of all  -convex combinations of 

elements of  . That is    ⋃            where        is defined as in 

Definition 2.2.1 and the mapping   appears in Definition 2.2.1 is linear and 

idempotent. Then    -         Moreover, if       , then   -        

  . 

Proof. To show the first assertion. Assume that    , from the definition of 

   there exists             and           with  ∑      
    such that 

   ∑           
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Since                -       , using the  -convexity of  -        and 

Theorem 2.2.2, every  -convex combination of      must remain in  -       . 

Hence,    -        and consequently, 

                                            -                                            (2.4) 

Next, we must show that  -          if         To prove this, it is 

enough to show that   is a convex set. Indeed, if   is a convex set and      

 . Then from Proposition 1.4.1.5,   is  -convex set. The last conclusion with 

the fact that     yield  -           as required.  Let show that   is a 

convex set. Take       , then 

   ∑           
 
    and     ∑       

      
 
    

where            
      

     and                    are non-negative 

which satisfy  

∑     
 
    and ∑       

 
    

Fix        , then the convex combination 

             ∑                 
 
   ∑       

  
 
   . 

Note that 

 ∑   
 
           ∑      

 
    

Therefore,              . i.e.,   is a convex set, and using the 

assumption        yield   is  -convex set. Because     and    -

       . Then 

                                                 -          .                        (2.5) 

From (2.4) and (2.5), we obtain  -             ■ 
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2.3   -Convex Cone and  -Convex Cone Hull: Properties and 

Characterizations 

In this section, some properties of  -cone and  -convex cone set are 

deduced, and two different characterizations of  -convex cone of an arbitrary 

set are introduced.   -convex cone hull is defined and a characterization of  -

convex cone hull of an arbitrary set   is shown.  

Proposition 2.3.1  

i. If a set   is  -cone, then         

ii. If      be a convex cone and       . Then   is an  -convex cone.  

Proof. First, let us show (i). Let                           . Since   is  -

cone, then     )          . If       then     )        as required. 

To prove (ii), it is enough to prove that   is an  -cone since   is already an  -

convex by Proposition 1.4.1.3(2). Consider    , then            . 

Since       is a cone, then              , for each    . Thus,   is an 

 -cone. ■ 

Remark 2.3.2 The converse of Proposition 2.3.1(i) is not true in general (see 

Example 1.4.1.14).                   

         For an arbitrary mapping  , the following proposition provides a 

condition to ensure that every cone (respectively, convex cone) is an  -cone 

(respectively,  -convex cone). Also, the first part of the proposition makes the 

converse of Proposition 2.3.1(i) holds.  

Proposition 2.3.3 Let         be a given mapping. Then 

i. Let   be a cone such that       . Then   is an  -cone. 

ii. Let   be a convex cone such that       . Then   is an  -convex 

cone.  
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Proof. To show (i), If    , then using Proposition 1.4.1.16, the conclusion 

automatically holds. Otherwise, assume that     and       Since      

 , then         Also, from the assumption,   is a cone, hence,         . 

This means   is  -cone. Part (ii) directly follows from Proposition 1.4.1.5 and 

part (i).  ■ 

Proposition 2.3.4 Let   be    -cone and   -cone, then   is an        -cone 

and (      -cone. 

Proof. Assume that     and    , we must show that             

   (     )      Now,    is   -cone then from Proposition 2.3.1(i),       

   Because   is   -cone, then using the last assertion and Definition 1.4.1.12, 

   (     )    as required. Similarly, one can show that   is an        -

cone.  ■  

Proposition 2.3.5 

i. Let          be a non-empty family of  -cones, then ⋃       is   -

cone. 

ii. Let           be a non-empty family of   -cones, then ⋂       is   -

cone. 

iii. Let   be   - cone,   is a linear mapping, and    , then the set    is 

 - cone. 

iv. If    and    be two  -cones, then       is    - cone. 

v. If    and    be two  -cones and let   is a linear mapping, then the set 

      is   - cone. 

Proof. We prove part (i) and in a similar way one can show part (ii). Take an 

arbitrary    ⋃        where    is  -cone for each     .  Then, for      

         for some      Hence        ⋃       . Thus, ⋃       is  -cone.  

The proof of parts (iii)-(iv) proceed in a way similar to that of Proposition 
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1.4.1.6(iii) and Proposition 1.4.1.8, respectively, in which (the sets under 

considerations are  -convex), hence the proof of parts (iii)-(iv) are omitted. Let 

us show part (v). Let              where        and      . Then, 

from the assumption, for      we have                         

     . Thus,       is an  -cone.  ■                                    

      Propositions 1.4.1.6 and 1.4.1.8 together with Proposition 2.3.5 yield the 

following result. 

Proposition 2.3.6  

i. Let          be a non-empty family of   - convex cone sets, then 

⋂       is   - convex cone set. [25] 

ii. Let   be an  - convex cone,   is a linear mapping, and    , then the 

set    is   - convex cone set. 

iii. If    and    be two  - convex cones, then       is     - convex 

cone set. Moreover, if   is a linear mapping then       is   - convex 

cone set. 

      In [25, Proposition 4.6], a characterization of  -convex cone   is shown if 

the image of   under the mapping   satisfies certain conditions.  The following 

theorems give alternative characterizations of  -convex cone.  

 

Theorem 2.3.7 A set   is  -convex cone if and only if   is  -closed (i.e., 

closed with respect to the mapping  ) under addition and non- negative scalar 

multiplication. 

Proof. Assume that   is  -convex cone. From the definition of  -cone  we 

have                         and for any    . Thus,   is  -closed for 

non-negative scalar multiplication. Next, we show that K is an  -closed under 

addition. Fix         which is   - convex set, then  
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(         )     

Hence,                as required.  For proving the opposite direction, 

assume that   is  -closed with respect to addition and non-negative scalar 

multiplication. Then,   is   cone automatically holds. Let              such 

that          and        then  

         and           

This yield                    and hence   is  -convex set.  ■    

Theorem 2.3.8 Let   be a subset of    and        is the set of  -non-

negative linear combinations of   elements of  . That is   

       {  ∑         

 

   

{       }        }  

  

where   is linear and idempotent. Then   is  -convex cone if and only if 

               . 

Proof. Assume that   is  -convex cone. We need to show that for each 

         

                                                                     .                    (2.6) 

We show (2.6) by induction. Let     and         , then there exist      

and      such that          . Since   is  -cone, hence          .  If 

   , then there exists          and            such that 

                        .  

We must show that                    . Since   is  -cone, then 

                 . From Theorem 2.3.7,   is  -closed under addition. 

Hence,  

                                             , 
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where we used the fact that   is linear. Since   is idempotent, then          

                 Thus, the last expression can be expressed as   

                   as required. Assume now (2.6) holds for    . i.e., 

                                      if         , then    ,                           (2.7) 

We must prove that (2.6) is true when      . Let           , this 

means there exists                 and there exists              such 

that 

  ∑                    
   . 

Since   is  -cone, then               and from (2.7),  ∑           
   . 

From Theorem 2.3.7,   is  -closed under addition, thus 

∑   
                             . 

 Using again the fact that   is linear and idempotent, we get 

∑            ∑        
   
        

   . 

Hence,   ∑        
   
     . To show the prove of the other direction, 

assume that               . In particular, for each                 

                                           and         

   Hence,   is  -convex cone.  ■ 

        Next, we introduce a smallest  -convex cone that contains a certain set. 

Definition 2.3.9 The  -convex cone hull of a set  , denoted by  -        is 

the intersection of all  -convex cone sets containing  ; that is,  -        

⋂     ,   are  -convex cone sets. 

      The following result is analogue to the one introduced in Theorem 2.2.3 for 

general  -convex sets. 

 

Theorem 2.3.10 Let      and   is the set of all non-negative  -linear 

combinations of elements of  . That is,    ⋃            where        is 
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defined as in Theorem 2.3.8. Then    -         Moreover, if       . 

Then   -          .   

Proof: Assume that     , from the definition of    there exists 

            and           such that    ∑            
 
   Since  -

        is the intersection of all  -convex cones containing  , then from 

Proposition 2.3.6 (i),  -         is also  -convex cone containing  . Using 

the fact that  -         is  -convex cone and                -       , 

we get from Theorem 2.3.8, every non-negative  -linear combinations of      

must remain in  -       . Hence,    -        which yields,    -

       .  To show  -         , we follow same technique that used to 

prove  -           in Theorem 2.2.3. Namely, we must show that  -

          if         To prove this, it is enough to show that   is a 

convex cone set. To show that   is a convex set, follow similar steps that is 

used in Theorem 2.2.3 to show that   is a convex set. Next, we show that   is 

a cone. Let    , then there exists     such that    ∑          
 
    where 

            and            are non-negative scalars. Fix    , then the 

non-negative  -linear combination 

     ∑        ∑                

 

   

   

 

   

 

Thus,   is a convex cone set, and since       , then from Proposition 

2.3.3(ii),   is an  -convex cone set. The last conclusion with the fact that 

    yield  -           as required. All together, we obtain    -

       .  ■  
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2.4  -Affine Set,  -Affine Hull and Their Characterizations 

  In this section, we define   -affine set and  -affine hull. We study some 

of their properties, and discuss their characterizations. 

 

Definition 2.4.1 A set      is said to be  -affine if           

                    and    . 

Remark 2.4.2 It is easy to show that every  -affine set is  -convex set. The 

converse does not hold as we show in the next example.  

Example 2.4.3 Let      is defined by                   

           , and let         is given by 

       (
 

 
  

 

  
 )          . From Example1.4.1.14    is  -convex set. 

However,   is not  -affine. i.e., Let                              and 

              then  

                       ,  

as required. 

Remark 2.4.4 As for  -convex set and  -cone, if      the identity mapping, 

then every affine set is an  -affine. 

      An  -affine set is not necessary an affine set as we show next.  

Example 2.4.5 Let                                  and 

        is given by             ,        . Let                 

  and          such that          Then 

                                     . 

Thus,   is  -affine set. To show that   is not affine, take                 

and      ,      ,then  
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                        . 

Consequently,   is not affine set. 

Remark 2.4.6: From Remark 2.4.4 and Example 2.4.5, one deduces that the 

class of  -affine sets is a generalization of the class of affine sets. 

Proposition 2.4.7  

i. Let   is  -affine set, then       . 

ii. If      is affine and       . Then   is an  -affine set. 

Proof.  Let us show (i). Since   is  -affine set, then for any       and 

    we have                    . Thus, for      we get       

                   Hence,         For proving (ii), let      , 

then               . Thus, for each    , we have          

              . The last statement holds because      is affine. Thus, 

  is  -affine set.  

Remark 2.4.8 The converse of Proposition 2.4.7(i) does not hold (see Example 

2.4.3). 

              For an arbitrary mapping  , the following proposition provides a 

condition to ensure that every affine set is an  -affine. 

Proposition 2.4.9 Let         be a given mapping. If   is an affine set 

and        then   is  -affine set. 

Proof: Assume that      . Since        and   is an affine set, then 

            and for each          such that         we have 

                   Hence,   is  -affine set. ■ 
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           In the next example, we show that for a given mapping    , an affine 

set may not be an  -affine. 

Example 2.4.10 Suppose that                  and          be 

defined as                 

Let                 and    . We show that  

                     , 

                                       . Hence,   is an affine 

set. To show that   is not  -affine set, take                            , 

and let   
 

 
 . Then, 

                            
 

 
      

 

 
      

                                                                                           

Then,   is not  -affine.  

Remark 2.4.11 The union of two  -affine sets is not  -affine set as it 

demonstrated in the next example.  

Example 2.4.12 Define         such that              . Let    

               and                     . We show that    is 

 -affine set. Suppose that                   and          such that 

        then     

                                     .  

Similarly, we can show that    is  -affine set. 

 Now, take            ,        , and              Then 

                                , 
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thus       is not  -affine set. 

Proposition 2.4.13 Let   be    and   -affine sets, then   is an         and 

(      -affine set. 

Proof. Assume that       and          such that         . Since   

is   -affine set, then form Proposition 2.4.7(1),       and        . Now, 

because   is   -affine set, then using the last assertion, we get 

    (     )       (     )                             . 

Hence,   is an        -affine set. In the same way, we can show that    is 

     -affine set.  ■                                                                                                                                                                                      

Proposition 2.4.14  

i. Let           be a non-empty family of   -affine sets, then ⋂       

is   - affine set. 

ii.  Let   be  -affine set,   is a linear mapping, and    , then the set 

   is   - affine set. 

iii. If    and    be two  -affine sets, then       is an    - affine 

set. 

iv. If    and    be two  - affine set and let   is a linear mapping, then 

      is   - affine set. 

Proof. The proof follows in the same way as for the proof of [15, Proposition 

2.4, Lemma 2.2], [25, Proposition 3.2], and Proposition 1.4.1.8. The only 

difference is that, for  -affine sets, we take       belongs to   (rather than to 

the closed interval      ).  ■ 
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Theorem 2.4.15 Let   be a subset of    and        is the set of  -affine 

combinations of   elements of  . That is   

          ∑        
 
                       and ∑   

 
       such 

that the mapping   given in        is linear and idempotent. Then   is  -

affine set if and only if                .  

Proof. The proof is analogous to the one of Theorem 2.2.2.  ■  

        In the same way  -convex hull and  -convex cone hull was defined, one 

can introduce  -affine hull as follows. 

 

Definition 2.4.16 The  -affine hull of a set  , denoted by  -       is the 

intersection of all  -affine sets containing  ; that is, 

 -       ⋂     ,   are  -affine sets. 

 

Theorem 2.4.17 Let      and   is the set of all  -affine combinations of 

the elements of  . That is   

  ⋃          , 

where        is defined in Theorem 2.4.15. Then    -        Moreover, 

if       . Then   -         . 

Proof. The proof follows in a way similar to that of Theorem 2.2.3. First, we 

prove    -      . Assume that     , from the definition of    there 

exists             and           with  ∑      
    such that   

 ∑            
 
   Since                -      , then using Theorem 

2.4.15 and the fact that   -       is  -affine set, every  -affine combination 

of      must remain in  -      . Hence,    -       and consequently, 

                                              -      .                                 (2.8) 

Next, we must show that  -         if         As we have shown in 

Theorem 2.2.3, it is enough to show that   is an affine set. That is, if   is an 

affine set and       . Then from Proposition 2.4.9,   is  -affine set. The 
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last conclusion with the fact that     yield  -         as required.  

To show that   is an affine set. Let      , then 

   ∑           
 
    and    ∑            

 
    

where                      and                    are real numbers such 

that ∑     
 
    and ∑        

    Fix    , then the affine combination 

           ∑              

 

   

∑                

 

   

 

 Therefore,            . i.e.,   is an affine set, and using the 

assumption        yield   is   affine set. Since     and    -

      .Then 

                                       -         .                                        (2.9) 

From (2.8) and (2.9), we obtain  -           ■ 
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Chapter Three    

On Convex Functions,  -Convex Functions 
and Their Generalizations 

 

3.1 Introduction 

        -convex functions is considered as an important generalization of convex 

functions. This class of functions is established by Youness [15] in the same 

paper in which  -convex set is first defined. As for  -convex set, the mapping 

  played an essential role in the definition of  -convex function. Despite the 

importance of Youness's first paper [15] on  -conexity, some of the results 

appeared in this paper are incorrect (see [54]). This motivates Chen to introduce 

new classes of  -convex functions called semi  -convex, quasi semi  -convex 

functions and pseudo semi  -convex functions. These functions are 

generalization of the class of convex functions. Using those functions, Chen 

improved Youness's incorrect results and study some properties of those 

functions [52, 53]. Another class of functions which are generalization of  -

convex function is independently studied by different authors. This class 

includes  -quasiconvex and  -pseudoconvex functions [17, 40, 56].   

         In this chapter, we introduce and prove some general properties and 

differentiability properties of generalized convex functions and   -convex 

functions, respectively. We also provide some characterizations of convex 

functions,  -convex functions, and their generalizations functions mentioned 
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above. In Section 2, a variety of properties related to  -convex functions and 

some of generalized convex functions mentioned above are introduced. In 

Section 3, some new characterizations of convex function,  -convex function, 

and their generalizations are discussed in terms of different level sets and 

different forms of epigraphs which are related to these functions. Namely, we 

introduce some new properties and characterizations of convex function, quasi 

convex functions, and quasi semi  -convex functions in terms of some  -level 

sets of   (see Propositions 3.3.2, 3.3.3, 3.3.6, 3.3.7). We also show some new 

properties and characterizations of semi  -convex function,  -convex function, 

and convex function using the epigraph sets              and         (see 

Propositions 3.3.12-3.3.22). Finally, in Section 4, some differentiability 

properties of  -convex functions are discussed. The contents of section 3.3 have 

been published recently in [50, Section 2]. 

         For the sake of brevity in writing the statements of the properties in this 

chapter, we refer to the following assumption. 

Assumption A. Let             be a real valued function, and       

   is a given mapping. 

Remark: For simplicity in appearance, in the rest of the thesis, we omit in the 

proofs and calculations the parentheses from     , and writing it instead as     

whenever it seems convenient.   

3.2 Some Properties of Generalized Convex Functions      

In this section, we discuss some basic properties of  -convex functions 

and their generalization  -quasiconvex functions. Similar properties are also 

shown for some generalized convex functions which are semi  -convex, pseudo 

semi  -convex, and quasi semi  -convex functions.  



Chapter Three                     On Convex Functions,  -Convex Functions and Their Generalizations 

05 
 

     We start first by showing that the set of  -convex functions (respectively, 

semi  -convex) functions is closed under addition and nonnegative scalar 

multiplication. Same property holds for classical convex functions. 

Theorem 3.2.1 Let  ,         are two functions such that   and   are 

defined as in Assumption A and   is an  -convex set. Then 

1. If   and   are  -convex on    then       is an  -convex on           

for all        

2.  If   and   are semi  -convex on    then       is a semi  -convex on 

     for all        

Proof. We prove (1) and in a similar manner one can show (2). Let      , 

and        . Set                    . Then 

(      )(              . 

Using the  -convexity of   and   and the above equality, we obtain  

(     )(                                                                

                                                                                        , 

                                                                        . 

Hence,       is an  -convex on  .  ■ 

Theorem 3.2.2 Let     and   are defined as in assumption A such that   is a 

semi  -convex on the  -convex set  . Assume also that        is a convex 

non-decreasing function. Then     is a semi  -convex function. 

Proof. Let      , and      . Since,   is semi  -convex on the  -convex 

set  , then                   and 

                                  , 
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 ( (               ))   (                )  

The last inequality holds because   is a non-decreasing function. Using the 

convexity assumption of  ,  the right-hand side of the last inequality yields, 

                                           , 

i.e.,                                                 

Thus,     is a semi  -convex on  .  ■ 

      An analogous to the above property is followed when   is  -convex 

function. 

Theorem 3.2.3 Let     and   are defined as in assumption A such that   is an 

 -convex on the  -convex set  . Assume also that        is a convex non-

decreasing function. Then     is an  -convex function. 

Proof. The proof follows in exactly same steps as in the above Theorem. The 

only difference occurs in applying the definition of  -convex function rather 

than the definition of semi  -convex function.  ■ 

Theorem 3.2.4 Let     and   are defined as in assumption A such that   is an 

 -quasiconvex on the  -convex set  . Let        is a non-decreasing 

function. Then     is an  -quasiconvex function on  . 

Proof. Let      ,  and      . From the definition of   and  , we have 

                                       , 

and                  . Since   is non-decreasing function then, 

                                         . That is,  

                                             ,   
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                                          {      (    )      (    )}  

Hence,     is  -quasi convex on  .  ■ 

Corollary 3.2.5 Let     and   are defined as in assumption A such that   is an 

 -convex on the  -convex set  . Assume also that        is a non-

decreasing function. Then     is an  -quasiconvex function on  . 

Proof. From [40, p. 3339], every  -convex function on   is  -quasiconvex on 

 . Consequently,   is  -quasiconvex on  . Using now Theorem 3.2.4, we obtain 

    is  -quasiconvex on  .  ■ 

        The composite property is also held if   is a pseudo semi  -convex as we 

show next.            

Theorem 3.2.6 Let  ,   and   are defined as in assumption A such that   is a 

pseudo semi  -convex on the  -convex set  . Assume also that        is a 

non-decreasing strictly positive sublinear mapping and         is a 

strictly positive function. Then     is a pseudo semi  -convex. 

Proof. Let      ,        . From the definition of   we have, if      

     then                                      . Since   is a 

non-decreasing function, then, using the last expression, if          

         we get  

                                              

From the assumption,   is a sublinear mapping. Thus, the right-hand side of the 

last inequality yields, 

                                                  

                                                     =                  ̅     , 
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where  ̅                . Since   and   are strictly positive functions, 

then  ̅      is a strictly positive. Hence, we obtain the required conclusion. ■ 

Remark 3.2.7: It was shown in [56, Theorems 3.6-3.7] that the supremum of an 

arbitrary non-empty collection of  -convex (respectively,  -quasiconvex) 

bounded above functions {        on  - convex set   is  -convex 

(respectively,  -quasiconvex) on  . Similar property is given in [53, Proposition 

2] for semi  -convex functions    for each    .  The latter proposition is given 

in [53] without proof. We give its proof next. 

Proposition 3.2.8 Let     
    is semi  -convex and bounded from above 

on an  -convex set      with the same map          for all    . 

Then,            is a semi  -convex on    

Proof. Since    is a semi  -convex,     , then, for each       and     

  we have 

                                                     . 

Taking the supremum to the right-hand side of the inequality above, we get  

  (               )     
   

                                    . 

Then,    
   

  (               )     
   

                               

From the assumption and the fact that sup  and  up  are finite, then       

   sup  sup   the last inequality yields, 

                     sup             sup       

                                                           . 

Then, we get   is a semi   convex. ■ 
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        Similar result is formulated next, if the functions    are quasi semi 

(respectively, strictly quasi semi / strongly quasi semi)  -convex or pseudo 

semi  -convex, for each    .         

Proposition 3.2.9 Let     
    is bounded from above for each     and   

is  -convex set with the same map        . Define,          such that 

             Then 

1. If      is a quasi semi  -convex on   for each    , then    is a quasi semi 

 -convex. 

2. If     is strictly quasi semi  -convex on  , for each    . Then,   is 

strictly quasi semi  -convex. 

3. If     is strongly quasi semi  -convex on  , for each    . Then,   is 

strongly quasi semi  -convex. 

4. If     pseudo semi  -convex bounded above functions on  , for each     

and            is a strictly positive,      such that         

   
   

        exists in  . Then    is pseudo semi  -convex on  . 

Proof. To show (1),    is a quasi semi  -convex,     . Then, for each 

      and       we have 

                                                     . 

Taking the supremum for the right-hand side and then for the left-hand side, we 

get  

   
   

  (               )     
   

                             

                           {   
   

         
   

     }  

                      . 
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The last inequality yields,   is a quasi semi  -convex. The proof of Parts (2) 

and (3) proceed in a way similar to the proof of part (1). The only different is 

that we require strictly inequality with            when   is strictly quasi 

semi  -convex, and     in case,   is strongly quasi semi  -convex. Finally, 

we show Part (4), let {        is an arbitrary nonempty collection of bounded 

above pseudo semi  -convex on    By the definition of   , we have 

If            , then for all     

  (               )                         

i.e.,    
   

   (               )      
   

                     . 

That is,  

   
   

   (               )      
   

                 
   

       .  

Now from the assumption,             
   

       . 

This yield, 

 (               )                      

 where        is strictly positive function. Thus,   is pseudo semi  -convex on 

 .  ■ 
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3.3 Some Characterizations of Convex Function,  -Convex 

Function and Their Generalizations 

      In this section, we provide some relations and characterizations of convex 

functions, quasi convex functions, and quasi semi  -convex functions using the 

  level sets   
     and         of a function  .  Note that, some 

characterizations of  -convex function and its generalizations (semi  -convex 

functions, quasi semi  -convex functions, and  -quasiconvex functions) are 

given using       and          (see [53, Proposition 4, Proposition 6] and [40, 

Theorem 3.10, Theorems 3.12-3.14]). We also introduce new relations and 

characterizations of semi  -convex function,  -convex function, and convex 

function using the epigraph sets              and       .   

       The following definition is needed in this section. 

Definition 3.3.1 [20, 34] Let    and    be two subsets of   . Then     is said to 

be slack 2-convex with respect to    (for short,    is s. 2-convex w.r.t.   ) if, 

for every for every             and every       such that         

        we get                 

     The next two propositions give sufficient conditions for   
     to be a 

convex set and a s. 2-convex w.r.t.     , respectively. 

Proposition 3.3.2 Let      and   are defined as in assumption A such that   is 

convex on the convex set     is a linear mapping, and      is a convex set. 

Then   
      is a convex set, for all    . 

Proof. Let     and               
       then                     and 

                 Since       is a convex set, then 

                                                     .                    (3.1) 

 For each      . Using (3.1) and the linearity of   ,  



Chapter Three                     On Convex Functions,  -Convex Functions and Their Generalizations 

05 
 

                                             .                (3.2) 

This means that                   From the convexity of   we have 

                                             .         (3.3)  

  By       and (3.3), we get                       
         ■ 

Proposition 3.3.3 Let      and   are defined as in assumption A. If   is a 

convex function on the convex set  , and   is a linear mapping. Then   
     is a 

s. 2-convex w. r. t.     , for all      

Proof. Let    . Assume that               
          such that for each 

        we have                         Since              

  
    , then        , and          ,          By the linearity of  , 

                                           .          (3.4) 

This means              . Since    is a convex function, then  

                                           .          (3.5) 

From (3.4) and (3.5),                     
       which implies,   

     is 

a s. 2-convex w. r. t.     .  ■ 

Remark 3.3.4 If the set   
     is convex or s. 2-convex w. r. t.     , it is not 

necessary that   is a convex function as we show in the following example. 

Example 3.3.5 Let             ,        be a linear mapping such 

that      
 

 
  for each     and define a function        as      

               . It is clear that   is not a convex function on  . However, the 

level sets 

  
     {

 

 
             }                    
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are either empty sets or intervals. In either case,   
     is convex, for all    . 

Also, since      and   
     are convex sets, then for each             

  
          such that  

                       , 

for every      , we have 

                    
      

for all      i.e.,   
     is a s. 2-convex w. r. t.     . 

       The following proposition proposes a necessary and sufficient condition for 

  to be a quasiconvex. 

Proposition 3.3.6 Let      and   are defined as in assumption A. If   is a linear 

mapping,   is a convex set. Then   
      is a convex set, for all     if and 

only if   is a quasi convex on    

Proof. First, we prove   is a quasi convex on  . Let        , and set   

 max             . Let               
     which is a convex set, then for 

each      . 

                                                    
    .                    (3.6) 

Using (3.6), and the linearity of  , we get  

                                   
         . 

Then, 

             . 

and              )                     . Hence,   is a quasi convex 

on  . Let us show the other direction and obtain   
      is a convex set, for all 

     Let     and               
    , then         and         



Chapter Three                     On Convex Functions,  -Convex Functions and Their Generalizations 

55 
 

       . Since   is convex and   is linear, then, for each      , 

               and 

                                                 .        (3.7) 

From the assumption,   is a quasi convex on  , thus, 

                                        )                    .      (3.8) 

From (3.7) -(3.8), we conclude   
      is a convex set.  ■ 

          A necessary and sufficient condition for the level set         of a 

function   to be  -convex is given next. 

Proposition 3.3.7 Let       ,      is  -convex set, and        . 

Then     is a quasi semi  -convex on   if and only if          is  -convex 

set, for all    . 

Proof. let      and              , then  (     )     and           

 . We intend to show that                          , for each 

     . Since     is a quasi semi   convex on the   convex set  , then  

                   . 

 and 

                                                    . 

 Therefore,                          . To show the reverse direction, 

let              , and      . Set                            . 

Since         is  -convex, then                            such 

that     
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i.e,                                                   . Thus, 

    is a quasi semi  -convex on  .  ■ 

        In general, the epigraphs defined in Definition 1.4.2.11 are not equal, e.g. 

(see [53]). We start first with the below proposition which shows the 

relationship between       and       ,      , and       , respectively. The 

first part of this proposition has been proved in [52, Theorem 2.2]. We get same 

conclusion but under weaker condition than the one assumed in [52]. 

 Proposition 3.3.8 Let      and   are defined as in assumption A such that 

 (    )                 then 

1.            . 

2.               

Proof. To show (1), let             from the definition of      and the 

assumption,                which implies that                For 

proving (2), suppose that               , then                    such 

that         Since  (    )        then  (    )     Thus,          

      as required.  ■ 

 Proposition 3.3.9 Let      and   are defined as in assumption A such that 

      , then                

Proof. Let                 , thus  

                     and  (    )   . 

Since         then                Thus,                .  ■ 

Remark 3.3.10 In the preceding proposition, if       then               

automatically holds [52]. However, if        , the assumption        

is essential for proving              . If we ignore this assumption, then the 

conclusion of Proposition 3.3.9 may not hold. For example, let            
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and       defined as            for all    . Let       such that 

                     . Clearly,                . i.e.,   is not  -

convex set [15]. Moreover,              . Indeed, let                  , 

i.e.,  (    )          but          . Thus,                . 

        In classical analysis, one of the possible characterization of convex 

functions is given in terms of       as in the following proposition.  

Proposition 3.3.11 [44, p.21] let       . Then      is a convex set if and 

only if   is convex. 

       Youness [15] has provided a characterization of  -convex function using 

 -     (see [15, Theorem 3.1]). Unfortunately, this characterization has some 

erroneous (see [12, Counterexample 2.1] for a counter example).  This 

motivates Chen [53, Proposition 9] and [52, Theorems 2.4-2.5, 2.8] to provide 

some characterizations of semi  -convex function   in terms of            , 

     , and         Duca and Lupsa [12, Theorems 3.1-3.5], on the other hand, 

relate  -convex function   with      and       .  In what follow, we give new 

relations and characterizations of semi  -convex functions,  -convex functions, 

and convex functions in terms of              and       .  We start first with 

sufficient conditions for   to be semi  -convex function using the epigraph 

     . Another sufficient condition, for this result, is shown in [52, Theorem 

2.8]. 

 Proposition 3.3.12 Let      and   are defined as in assumption A, if   is  -

convex,  (    )               and       is a convex set. Then   is a semi 

 -convex function. 

Proof. Let         such that (           )                      which is 

a convex set. Thus, for each       we have 

(                                                    
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Since                         then      , such that   

                         and    

                                                                .         

From the assumption and the inequality in (3.9), 

  (                 )    (    ) 

                                                                    . 

 Hence,   is a semi  -convex function.  ■ 

 Proposition 3.3.13 Let      and   are defined as in assumption A, if    is  -

convex,    ) is convex,  (    )                 and      is a s. 2-convex 

w. r. t.         Then   is a semi  -convex function. 

Proof. The conclusion directly follows from [12, Theorem 3.4] and [53, 

Proposition 5]. Indeed, since   is  -convex set,    ) is a convex set, and      

is a s. 2-convex w. r. t.       , then using [12, Theorem 3.4],   is an  -

convex function. Applying [53, Proposition 5], the last conclusion with the 

assumption   (    )                yield   is a semi  -convex function. ■ 

          A necessary condition for   to be semi  - convex on   is given next. 

 Proposition 3.3.14 Let      and   are defined as in assumption A. Assume that 

  is   -convex set and   is semi  - convex on  . Then        is a s. 2-convex w. 

r. t.       . 

Proof. Suppose that                              such that         

                  . Let         we must prove that   

                               . 

Because                    , then         and        .  We also have 

                     and   is  -convex then from Proposition 1.4.1.3(1). 
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                          and                   .  (3.10) 

From the first inclusion in (3.10), there exists       such that  

                                                   and        .                   (3.11) 

 Since   is a semi  -convex on  , thus, from (3.10) and (3.11), 

                (               ) 

                                    (    )        (    ) 

                                                      

                                              .                                                (3.12) 

From (3.10) and (3.12),                                ■ 

         The next proposition provides a necessary condition for   to be  -convex 

function using the set       . The sufficient condition is given in [12, Theorem 

3.1]. 

Proposition 3.3.15 Let      and   are defined as in assumption A. If      is a 

convex set and    is an  -convex function on the  -convex set  . Then       is 

a convex set.  

Proof. Assume that                          . From the definition of 

       we have                        and                 . Since 

     is a convex set, it follows that, for each         we have 

                                                           .                      (3.13) 

 Since   is an  -convex function, then  

 (                  )                         

                                                                          .                (3.14)  
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From (3.13) and (3.14), we get                                 

       i.e.,       is a convex set.  ■ 

        Combining the preceding Proposition and [12, Theorem 3.1], we obtain the 

following result. 

 Proposition 3.3.16 Let      and   are defined as in assumption A. Assume that 

     is a convex set and   is an   -convex set. Then       is a convex set if 

and only if   is an  -convex function on  . 

     Another necessary condition for   to be an  -convex function using the set  

      is given next.  

Proposition 3.3.17 Let      and   are defined as in assumption A. If   is an  -

convex on the  -convex set,    Then       is a s. 2-convex w. r. t.         

Proof. Assume that                                       such that, 

for each         we have 

                                       

 From the last assertion and the  -convexity of  , we have  

                                                             .                 (3.15) 

Since   is  -convex, then 

 (                 )     (     )                

                                                                      .                   (3.16) 

 From (3.15) and (3.16), it follows that  

                                   , as required.   ■  
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      The converse of the preceding proposition is satisfied when      is a 

convex set (see [12, Theorem 3.2]).  Consequently, the following proposition 

follows. 

 Proposition 3.3.18 Let      and   are defined as in assumption A. Assume that 

     is a convex set and   is an   -convex set. Then       is a s. 2-convex w. 

r. t.        if and only if   is an  -convex function on  . 

            The following two propositions give necessary conditions for   to be a 

convex function using, the convexity and the slack 2-convexity of the set      , 

respectively. 

 Proposition 3.3.19 Let      and   are defined as in assumption A. If      is a 

convex set,   is a convex function on the convex set    and   is a linear 

mapping. Then       is a convex set. 

Proof. Suppose that                           and      . We must 

show that                                       From the 

definition of        we have                  and                 . 

Since      is a convex set and   is a linear mapping, then  

                                                              (3.17) 

where              . Since   is a convex function on  , then  

 (           )                            .       (3.18) 

Thus, from (3.17) and (3.18),                                

       and hence,        is a convex set.  ■ 

Proposition 3.3.20 Let      and   are defined as in assumption A.  Assume that 

  is a convex on the convex set     is a linear mapping, and   (    )  

      for all    .  Then        is a s. 2-convex w. r. t.         
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Proof.                                      such that, for         

we have                                              

                                                   .                        (3.19) 

Since                          , then         and         . Because 

  is a linear mapping, hence,                                   

     . Thus,              .  Using the last two assertions and the 

assumption   (    )        for all    , we get 

 (                 )   (              ) 

                                                     

                                                                        .            (3.20) 

By (3.19) and (3.20), we obtain                               

     , as we want to prove.  ■ 

        The next proposition suggests a sufficient condition for   to be a convex 

function using the set       . 

Proposition 3.3.21 Let      and   are defined as in assumption A. If    is a 

linear mapping,   is a convex set, and       is a s. 2-convex w. r. t.       . 

Then   is a convex function. 

Proof. Let         and         Let                                

               such that whenever 

(                                   )        .  

then (                                   )        . 

Since   is a linear mapping, the last statement yields 
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 (                                   ) 

                                          .  

This means                                     From the 

convexity of  ,              . Therefore,   is a convex function.  ■ 

        From Propositions 3.3.20 and 3.3.21, the following result deduces. 

Proposition 3.3.22 Let      and   are defined as in assumption A. If    is a 

linear mapping,   is a convex set, and  (    )        for all    . Then 

      is a s. 2-convex w. r. t.        if and only if   is a convex function. 

3.4 Differentiability Properties of  -convex Functions 

The differentiability of  -convex functions has been briefly studied by 

Youness [16]. It is also discussed recently by Soleimani-damaneh [40]. Both 

researchers presented some characteristics of differentiable of  -convex 

functions by using different approaches (for more details, see Lemmas 3.1-3.2 

in [16], and their counter parts Lemmas 2.3-2.4 stated in [40], respectively). 

According to Lemmas 2.3-2.4 [40], Soleimani-damaneh [40, Proposition 2.5] 

provided a characterization of differentiable  -convex functions with respect to 

 -monotonicity of the gradient of the differentiable function.  In this section, we 

prove the characterizations of  -convex (respectively,  -concave) functions 

using different assumptions (see Theorems 3.4.1-3.4.2). We also obtain 

differentiability properties for strictly  -convex (respectively,  -concave) 

functions. Some test criteria of  -convexity and  -concavity of a function are 

presented in this section with an illustration example (see Theorem 3.4.7 and 

Example 3.4.8). 

Theorem 3.4.1 Let      and   are defined as in assumption A such that   is 

differentiable on      and   is an open  -convex set. Then 
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i. If   is  -convex on    then  

                                                          .            (3.21)            

ii. If   is  -concave on    then  

                                                            .          (3.22)            

Proof. Let us show (i). Since   is  -convex and   is differentiable on  , then in 

particular,   is differentiable on       . If          , then the gradient 

inequality directly satisfied. Consider now       such that           and  

       , then using the  -convexity of  , we have 

                                                                (3.23) 

That is, 

 (           )         (           )  

Re-arranging the last inequality yields, 

 (           )       

 
              

Taking the limit to both sides of the above inequality           yields, 

       
 (           )      

 
             .                           

       

The left-hand side of the inequality (3.24) is the directional derivative of   at 

     in the direction of        . Thus, (3.24) becomes  

                            . 

Re-arranging last expression, we get 

                                .  
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Part (ii) which assumes that   is  -concave function, and obtaining the 

inequality (3.22), proceeds in a way similar to part (i) where we use the 

definition of  -concave function in (3.23) instead of using the definition of  -

convex function.   ■ 

         The reverse direction of Theorem 3.4.1(i) has been proved in [40, Lemma 

2.4] if   is a convex set and   is linear. We give an alternative assumption to 

prove the other direction of Theorem 3.4.1(i-ii).        

Theorem 3.4.2 Let      and   are defined as in assumption A. Assume that   is 

differentiable on the  -convex set  ,       is convex and 

i.                                                   (3.25) 

            Then   is  -convex on  . 

ii.                                                      (3.26) 

            Then   is  -concave on  . 

Proof. For proving (i). Take arbitrary         such that   is a  -convex set, 

and let         . Define                    Since             

     and      is convex, then 

                    .                

Hence, there exists     such that                        

Apply (3.25) with        and       yields, 

                                                .                             (3.27)  

Similarly, apply (3.25) with        and       we get,  

                                               .                            (3.28) 

We multiply (3.27) by   and (3.28) by      , and sum the two inequalities up  
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                                                                       . 

The last inequality yields 

                                      . 

Hence,   is  -convex as required. Part (ii) which assumes the inequality (3.26), 

and establishing   is  -concave function, follows in a way similar to part (i) 

where we reverse each inequality in the proof of part (i).  ■ 

         Theorems 3.4.1 and 3.4.2 can be extended to give a characterization to a 

differentiable strictly  -convex (respectively,  -concave) function in terms of 

its strictly gradient inequality as we show next. 

Theorem 3.4.3 Let      and   are defined as in assumption A. Assume that   is 

a differentiable function on the   -convex set   and      is a convex set. Then  

i.   is strictly  -convex if and only if for all       such that     we 

have                               

ii.   is strictly  -concave if and only if for all       such that     we 

have                               

Proof.  We show (ii) and in a similar pattern one can prove (i). Assume that the 

function is   strictly  -concave on  , hence   is  -concave. From Theorem 

3.4.1(ii), the inequality (3.22) follows, for all      . i.e., 

                            .             

Assume that there exists           such that  

                                             .                     (3.29) 

Since   is strictly  -concave, then for any          
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                (            )                   

                                                      .                                           

Substitute        in (3.29) into the right-hand side of (3.30), we get 

 (            )                       .                  (3.31) 

Also, apply (3.22) with                which yields 

                                    .                  (3.32) 

Combining (3.31) and (3.32) yields 

                         (            ) 

                                                                              , 

which is a contradiction. Therefore, for all      , we have that   

                                           .                    

The proof of the other direction proceeds in a way similar to Theorem 3.4.2(ii). 

■         

       The following theorem provides a necessary and sufficient conditions for   

to be  -convex function using the gradient test of   

Theorem 3.4.4 Let      and   are defined as in assumption A. Let   is a 

differentiable function on the open   -convex set  . Then 

i. If   is  -convex on   then for all       

                        . 

That is,          is increasing for all    .    

ii. If      is a convex set and   for all       
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                        . 

Then   is  -convex on  . 

Proof. For the proof of (i), see [40, Proposition 2.5(i)]. To show (ii)   let 

        and          If         or     or     then, using the 

definition of  -convex functions, we get   is  -convex. Assume that     

    and set                 for some           i.e. 

                                                         .         

Note that, since   is  -convex set and      is a convex set, then     and 

      , respectively. The last assertion means there exists     such that 

           . Hence, (3.33) becomes                         . 

Apply the Mean Value Theorem for  , 

                               ,  

i.e. 

                                              .         

Apply                           with        and          

                                 .                                                 

Substitute          from (3.33) into (3.35), we obtain 

                                                          

Dividing both sides by        and re-arranging (3.36), we get  

                                                           

Combining (3.34) and (3.37), we obtain  

                                 



Chapter Three                     On Convex Functions,  -Convex Functions and Their Generalizations 

50 
 

                                                              .              

Thus, from Theorem 3.4.2(i),   is an  -convex function.  ■ 

Remark 3.4.5 Part (ii) of the preceding theorem has been proved [40, 

Proposition 2.5(ii)] wherever   is linear and   is a convex set.    

Theorem 3.4.6 Let      and   are defined as in assumption A such that   is a 

differentiable function on the open   -convex set  . Then 

i. If   is strictly  -convex on   then for all       

                        . 

That is,          is strictly increasing for all    .    

ii. If      is a convex set and   for all       

                        . 

Then   is strictly  -convex on  .   

Proof: The proof proceeds in a way like that of Theorem 3.4.4.   ■ 

      To detect  -convexity (respectively,  -concavity) of   using the second 

derivative of  , we have the following result.      

   

Theorem 3.4.7 Let       is a twice continuously differentiable function on 

an open   -convex set   and      is a convex set. Then 

i.   is   -convex on   if and only if               is a p.s.d. for all 

   . 

ii. If               is a p.d. for all    , then   is strictly   -convex 

on  . 
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iii.   is  -concave on   if and only if                is n.s.d. for all 

   . 

iv. If               is a n.d. for all    , then   is strictly   -concave 

on  . 

Proof. We prove (i) and in a similar manner one can show (iii). Suppose there 

exists      such that        is not p.s.d. Our aim to show that   is not  -

convex. From the assumption, there exists      such that  

                                         
                      (3.38) 

Let                ,  for some             Since   is  -convex set and 

     is a convex set such that             , then        

            and there exists     such that            .   

Using now second order truncated Taylor's series, we have  

                                  

                                
 

 
         

               .  (3.39) 

Choose      sufficiently close to      we can use     (continuity of 

second order patrials) such that 
 

 
         

                  where 

the last inequality follows from (3.38). Therefore, (3.39) becomes   

                                 . 

By Theorem 3.4.1(i), this contradicts the  -convexity of   on   as required to 

show. Next, we prove the reverse direction, let         and       is p.s.d. 

for all    . Let                , for some              Using the 

same argument used above, we conclude that      and there exists     such 

that            .  From second order truncated Taylor's series, we have  
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               . 

 Since            is a p.s.d., the last term is non-negative. Hence  

                                    . 

Hence, using Theorem 3.4.2(i),   is  -convex over    The proof of (ii) and (iv) 

is similar. Hence, it is enough to prove (iv). Let         and       is n.d. for 

all     . Let                , for some              Using the same 

argument used above, we conclude that      and there exists     such that 

           .  From second order truncated Taylor's series, we have  

                                  

                                      
 

 
         

               .              

 Since            is a n.d., the last term is non-positive. Hence  

                                    . 

Hence, using Theorem 3.4.3(ii),   is strictly  -concave over  .  ■ 

       To illustrate the proceeding theorem, we consider the following example. 

Example 3.4.8 Assume that        and          are defined as 

                    and                      respectively. Test  -

convexity/  -concavity of  . 

Solution. We follow Theorem 3.4.7 to detect  - convexity/  -concavity of  . 

The gradient is            (
  
 
  

) , and the Hessian  

           (
   
   
   

) 
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   (        )                (
   
   
   

).  

  -convexity of   can be checked by testing the sign of 

        (        )      for each              
          . 

Now, 

           
   (

   
   
   

)                                

                        
    

    
    (

   
   
   

)   (

  
 

  
 

  
 

). 

Then we get,    
       

   . Hence,     (        ) is p.s.d. which yields   

is  -convex on   . 
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Chapter 4 

Applications of Generalized 
Convexity to Non-Linear 
Programming 

 
4.1 Introduction 

As we mentioned in Chapter 1, the non-linear constrained optimization is 

extended into generalized optimization problem. In such problems, the 

constraint set is  -convex and the objective functions is either  -convex 

function or one of the generalized convex functions discussed earlier in 

subsection 1.4.2. Generalized non-linear constrained problems are studied by 

many researchers. Youness was the first to introduce  -convex optimization 

problem and studied some of its properties and optimality results. He continued 

with his collaborators studying different aspects of  -convex problems such as 

establishing the necessary and sufficient conditions of optimality, the study of 

the stability in  -convex programming, developing some duality properties in 

 -convex programming, and studying optimality conditions for  -convex 

programming which has  -differentiable objective functions (for more details 

see [1, 8, 16, 18]). Due to some incorrect results related to  -convex 

programmings introduced in [15], Chen in [53] defined semi  -convex 
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problems and proved some optimality properties for  -convex and semi  -

convex problems. Applications of  -quasiconvex optimization problems are 

studied by Youness [17] and Syau [56], and strict  -quasiconvexity and  -

pseudoconvexity multi-objective optimization problems are studied by 

Solemani-damaneh [40].  

  As an application of generalized convex functions in optimization 

problems, we study in section 2 of this chapter, some optimality properties and 

characterizations of generalized non-linear optimization problems using  -

convex (respectively, strictly  -convex) functions and some generalized convex 

functions such as  -quasiconvex (respectively, strictly  -quasiconvex) 

functions, and strictly quasi semi  -convex functions. In section 3, we study 

differentiability properties of      . In such case, the function   is called  -

differentiable which is non-differentiable. Most of the contents of section 4.2 

have been published recently in [50, Section 3]. 

 

4.2 Some Results of Generalized Convex Programming 

 In this section, we consider some applications of  -convex (strictly  -

convex) functions, strictly quasi semi  -convex functions,  -quasiconvex 

(strictly  -quasiconvex) functions in optimization programming problem. 

Namely, we give some characterizations of the optimal solutions of a 

generalized non-linear optimization problem using the generalized convex 

functions mentioned above. To start, consider the non-linear constrained 

optimization problem (NLPE) defined in subsection 1.5.3 as follows. 

             

         , 
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where         be a real valued function,     , and          is a 

given mapping. Equivalently, problem (NLPE) can be expressed as 

         

       . 

Definition 4.2.1 The set of all optimal solutions (or global minimum) of 

problem (NLPE) is denoted by            and is defined as 

           {                         }  

A global minimum      is said to be strict when  

                      ,        

A point       is called a local minimizer for problem (NLPE) if there is exists 

     such that                               

Definition 4.2.1 can be extended to the case when the optimization 

problem (NLPE) is to maximize the objective function by reversing the 

inequalities above. For the rest of this section, the function  , the set  , and the 

mapping   are defined as in problem (NLPE).  

Remark 4.2.2 For the rest of this thesis and wherever it is needed, we assume 

that the set of minimums (respectively, maximums) optimal solutions is a non-

empty set.   

  The following result provides conditions under which each local 

minimum of problem (NLPE) is a global minimum. 

 Theorem 4.2.3 Let    is a local minimum of problem (NLPE) where   is  -

convex on    which is  -convex set,      is a convex set, and   is a linear 

mapping. Then    is a global minimum. 
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Proof. Assume that      is a local minimum, then there exists     such that           

                                  .                              (4.1) 

It is enough to show that                          . Consider any 

      such that   lies on the extended line formed from    and  . In other 

words,           and for a fixed value of  , we define          

      where   
 

      
  . Since   is  -convex and   is linear, then  

                                  

On the other hand, using the convexity of     , we have        

             . Thus, there exists     such that 

                                                             (4.2) 

Using the expressions for   and  , we get          . i.e.,          . The 

last conclusion together with (4.2) yields              . Since    is a 

local minimum then from (4.1) 

                                  

                                                                      , 

where the last inequality follows because   is  -convex function. By re-

arranging last inequality, we get                which yields 

                                                                   .  (4.3) 

From (4.1) and (4.3),                     . Therefore,    is a global 

minimum of problem (NLPE).  ■ 

The following theorem provides a necessary and sufficient condition for a 

global minimum when the function   is differentiable and  -convex in (NLPE) 

problem. 
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Theorem 4.2.4 Assume that   is a continuously differentiable  -convex on an 

 -convex set  , and   is a linear mapping. Then problem (NLPE) has a global 

minimum      if and only if,  

                                  . 

Proof.  Consider    global minimum of        . Take any    , since   is an 

 -convex then for any          , we have                   . Since    

is a global minimum, then 

                                           . 

Using first order truncated Taylor Theorem. 

                                    

Divide by   and take     , the last inequality yields  

                     . 

Since   is an arbitrary point then,      

                                                    

as required. To prove the other direction, let      then for each      we have 

                     . We need to show that    is a global minimum. 

By the  -convexity of   we have for each     

                                   . 

i.e., for each    ,              . Thus,    is a global minimum.  ■ 

       Next, we give a sufficient condition to obtain unique optimal solution of 

(NLPE) using strictly  -convex function  .   
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Theorem 4.2.5 Assume that   is strictly  -convex on an  -convex set  ,      

is a convex set, and   is a linear mapping. Then the global optimal solution of 

problem (NLPE) is unique. 

Proof. Let   
    

    be two different global optimal solutions of 

problem (NLPE),  then      
        

  . Since    is  -convex,      is convex 

and   is linear, then for each      , the  -convex combination  

    
          

       
         

          , 

 and hence, there exists     such that      
         

    where     
  

and     
 . Since   is strictly  -convex on the  -convex set  , we have 

            
          

          
             

        
  .   

This means,   is a global optimal solution which is a contradiction. Thus, the 

global minimum is unique.  ■ 

Another two sufficient conditions for a unique optimal solution of 

problem (NLPE) are given next. 

Theorem 4.2.6 Assume that   is strictly quasi semi  -convex,      is a convex 

set,   is linear and fixed with respect to the global optimal solution. Then the 

global optimal solution of (NLPE) is unique. 

Proof. Let   
    

    be two global optimal solutions of problem (NLPE) such 

that   
    

 ,  then      
        

  . Since     
     

  and     
     

 , the last 

equality yields     
       

   . Now   is strictly quasi semi  -convex on the  -

convex set  , then for each      ,  we have 

      
          

      {     
       

  }      
         

        

By the linearity of  , the left-hand side of the inequality above can be written as  

           
         

          
          

          
      (4.4) 
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The expression above entails a contradiction. Indeed, because      is convex 

and   is  -convex, then      
         

          . i.e., there exists 

     
         

    where     
  and     

 . Using this fact with the 

inequality in (4.4), we conclude    is a global optimal solution which is a 

contradiction. Thus,   
    

  as required.  ■  

Theorem 4.2.7 Consider problem (NLPE) in which   is  -convex set,      is a 

convex set, and   is a linear mapping. 

i. If   is  -quasiconvex on  , then the set of optimal solutions 

           is a convex set.  

ii. If   is strictly  -quasiconvex, then            is singleton (i.e., 

optimal solution is unique).  

Proof.  To prove (i), let    
    

             , such that   
    

 . Thus, 

         
        

        ,   for all    . Since   is   convex,   is  -

quasiconvex on   and   is linear, then for each        we have 

 (      
          

  )        
          

   

     max{     
        

  } 

                                                     
         .                     (4.5) 

Since   
    

     which is  -convex and      is convex, and   linear. Then for 

each         we get  

     
         

        
            

           Hence, 

                                                        
         

   .                        (4.6) 

From (4.5) and (4.6),    
         

             . Thus,             is 

a convex set. To show (ii). Let   
    

    be two global optimal solutions of 

problem (NLPE) such that   
    

 ,  then      
        

  . Since   is  -
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convex,   is linear, and   is strictly  -quasiconvex, then     each       we 

have 

       
         

          
          

     

                                           {      
        

  } 

                                       
                                          (4.7) 

The rest of the prove follows as in the Theorem 4.2.6 where (4.7) and the 

convexity of      provide an optimal solution       
         

    such 

that     
  and     

 . From (4.7), we have            
   which contradicts 

the optimality of   
  of problem (NLPE).  ■ 

The conclusions of the preceding Theorem can be also obtained if the 

function   is  -convex (respectively, strictly  -convex) as we show next. 

Corollary 4.2.8 Consider problem (NLPE) in which   is  -convex set,      is a 

convex set, and   is a linear mapping. 

i. If   is  -convex on  , then the set of optimal solutions            is 

a convex set.  

ii. If   is strictly  -convex, then            is singleton.  

Proof. From [40, p.3339], every  -convex (respectively, strictly  -convex) 

function is  -quasiconvex (respectively, strictly  -quasiconvex). Thus, the 

conclusions of (i)-(ii) directly follow.   ■ 

Theorem 4.2.9 Consider problem (NLPE) in which   is a differentiable  -

convex function on the  -convex set  , and   is a linear and idempotent 

mapping. Then              is an  -convex. 

Proof. Take an arbitrary                 , we have from Theorem 3.4.4(i), 

for each      
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                                       ,  

Re-arranging the last inequality and apply Theorem 4.2.4, we get 

                                                    . 

 i.e.,                                  . 

Apply Theorem 4.2.4 again to get  

                   ⋂  {                        }  ⋂  ,  

where    {                      }. Since   is linear and 

idempotent, then applying Proposition 3.3 in [25], each    is  -convex. This 

yield,               is an  -convex.  ■ 

Theorem 4.2.10 Consider the following maximization non-linear problem (M-

NLPE)     

             

       , 

where       an   convex set,         is  -convex on  , and       

   is a given linear mapping. Assume that       is a convex set  (    )  

       for all      and the set of optimal solutions of problem (M-NLPE) is a 

non-empty. i.e.,             {                         }     

Then, the maximal optimal solutions of     occur on the boundary of   . 

Proof. By a contrary, assume that the maximum exists at a point    belongs to 

the interior of  . That is,                       and        Draw a line 

passing through   and cutting the boundary of   at   and   . Since   is 

  convex, then for some        we have                      

    We also have      is convex and   is linear, then 

                                         . 
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Thus, there exists     such that                 . Since   is  -

convex on  , then 

                                       ,   (4.8) 

where in the left most inequality, we used the assumption  (    )         for 

all    . Now, we have two possibilities. If                then 

                                               . 

Using (4.8), we get              , yielding    is not a global maximum 

which is a contradiction. Similarly, if                we get        

      , a contradiction. Hence, the maximum point must occur at the boundary 

of   .  ■ 

 

4.3  -Differentiability Properties of  -Convex Functions 

 -convex functions which are non-differentiable can be transformed into 

differentiable using a mapping        . This class of functions is referred 

to as  -differentiable functions and is defined by Megahed et al [8] as follows. 

‘‘Let          be a function and let          be a mapping. A 

function   is said to be  - differentiable at    if and only if   is    -

                              and       is a differentiable function at   ’’. 

Megahed et al [8] apply Fritz-John and Kuhn-Tucker conditions to obtain 

a solution of a generalized optimization problem (NLP) with a non-

differentiable objective function  . In this section, we consider (NLPE) problem 

in which the function   is non-differentiable (i.e.,     is differentiable). We 

apply all the differentiability properties in section 3.4 for the case when   is  -

differentiable in problem (NLPE). 
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To clarify the definition of  -differentiable function, we recall the 

following example. 

Example 4.3.1 [8] Consider the real valued function      | | and the 

mapping        such that        . It is clear that the function   is non-

differentiable at the point     and the function                   is a 

differentiable function at    . Hence,   is an  -differentiable function. 

 Remark 4.3.2 The proof of the next Theorems is similar to that of Theorems 

3.4.1-3.4.4 and Theorems 3.4.6-3.4.7 in section 3.4. We only replace each   in 

the proceeding theorems by    . Next, we show the detailed proof of next 

theorem which is similar to the proof of Theorems 3.4.1-3.4.2. 

Theorem 4.3.3 Consider problem (NLPE) in which   is  -differentiable on   is 

an open  -convex set. Then 

i. If     is  -convex on  , then  

                                                        . 

ii. If       is convex and 

                                                     

Then,     is  -convex on  . 

iii. If     is  -concave on  , then  

                                                        . 

iv. If       is convex and 

                                                  

Then,     is  -concave on  . 



Chapter Four                                        Applications of Generalized Convexity to Non-Linear Programming   

;8 
 

Proof. Let us show (i). If          , then the gradient inequality directly 

satisfied. Consider now       such that           and         , then 

using the  -convexity of  , we have 

                                              

That is, 

     (           )             (                   )  

Re-arranging the last inequality yields, 

     (           )         

 
                      

Taking the limit to both sides of the above inequality           yields, 

       
     (           )          

 
                    .              

(4.9) 

The left-hand side of the inequality (4.9) is the directional derivative of     at 

     in the direction of        . Thus, (4.9) becomes  

                                        . 

Re-arranging last expression, we get 

(                                     .                       (4.10) 

To show (ii), take arbitrary         such that   is a convex set, and let  

       . Define                     Since                  and 

     is convex, then 

                    .                

Hence, there exists     such that                      .  
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Apply (4.10) with        and       yields, 

                                        .              (4.11) 

Similarly, apply (4.10) with        and       we get,  

                                        .                      (4.12) 

We multiply (4.11) by   and (4.12) by      , and sum the two inequalities up  

                            

                                          . 

The last inequality yields 

                                                  . 

Hence,      is  -convex as required. The proof of parts (iii) which assumes 

that     is  -concave function proceeds in a way similar to part (i) where we 

use the definition of  -concave function instead of using the definition of  -

convex function.  Finally, part (iv) follows in a way similar to part (ii) where we 

reverse each inequality in the proof of part (iv).   ■   

Theorem 4.3.3 can be extended to give a characterization to the  -

differentiable strictly  -convex (respectively,  -concave) functions in terms of 

their strictly gradient inequalities. 

Theorem 4.3.4 Consider problem (NLPE) in which   is  -differentiable on   is 

an open  -convex set such that      is a convex set. Then 

i.     is strictly  -convex if and only if for all       such that     we 

have 

(                                         
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ii.    is strictly  -concave if and only if for all       such that     we 

have 

(                                         

 

The following theorem provides a necessary and sufficient conditions for 

    to be  -convex function using the gradient test of    . 

Theorem 4.3.5 Consider problem (NLPE) in which   is  -differentiable on   is 

an open  -convex set. Then 

i. If     is  -convex on   then for all       

                                . 

That is,              is increasing for all    .    

ii. If      is a convex set and   for all       

                                . 

Then     is  -convex on  . 

Theorem 4.3.5 can be applied for the case when     is 

strictly  -convex function 

Theorem 4.3.6 Consider problem (NLPE) in which   is  -differentiable on   is 

an open  -convex set. Then 

i. If       is strictly  -convex on   then for all       

                                . 

That is,              is strictly increasing for all    .    

ii. If      is a convex set and   for all       
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                                . 

Then,     is strictly  -convex on  . 

      To detect  -convexity (respectively,  -concavity) of (     using the 

second derivative of      , we have the following result   

Theorem 4.3.7 Consider problem (NLPE) in which   is twice continuously  -

differentiable on   is an open  -convex set such that      is a convex set. Then 

i.      is   -convex on   if and only if                    is a p.s.d. 

for all    . 

ii. If                    is a p.d. for all     then      is strictly   -

convex on  . 

iii.      is  -concave on   if and only if                     is n.s.d. 

for all    . 

iv. If                    is a n.d. for all     then      is strictly   -

concave on  . 

  

Example 4.3.8 Assume that        and         be such that 

           
 

  
 and        (     

  ). Test  -convexity/ -concavity of  

   . 

Solution.                 . Note that 

        (   
    )  and              (   

  
). 

Since,   is not differentiable at       while     is differentiable at      , 

then   is  -differentiable at      . The Hessian of     at         is 

                (                  
                    

).  
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Now,         
 (                  

                    
)            for each        

         

      

  
  (                  

                    
) (

  

  

  
 
) =    

    

From Theorem       (iii),               is n.s.d. Thus,      is   -concave on 

  .   
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Future Work 
We conclude this thesis by mentioning some open problems, which suggest 

possible future research directions. 

 

1) Considering unconstrained non-linear generalized optimization problem 

(NLPE) and studying the first and second necessary and sufficient 

optimality conditions for this problem. 

2)  Develop the dual structure of the generalized optimization problem 

(NLPE). In specific, study each of Fenchel and conjugate duality of this 

problem. 

3) Study the development of constraint qualifications to obtain strong 

duality and zero duality gap for the (NLPE) problem. 

4) Develop duality properties for special kinds of separable  -convex 

optimization problems and obtain constraint qualifications to prove strong 

duality for this separable problem. 
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 المستخلص
 

حسََ  ًٍشبمو الأٍثييت المحذبت ، اىذًاه المحذبت ،ىنبك ٌّع ٍِ اىخعَيَبث الديَت ىيَجٌَعبث المحذبت 

ًاىتي عشُّفج ًدُسسّج ٍِ  Eٍِ اىنٌع  ًٍشبمو الأٍثييت المحذبت ، اىذًاه المحذبت ، المجٌَعبث المحذبت

قبو يٌّس ًببحثين اخشيِ. في ىزا اىنٌع ٍِ المجٌَعبث ًاىذًاه، قبً يٌّس بخعشيف المجٌَعت المحذبت 

 . Eسََ ح داىتببىنسبت الى ًاىذاىت المحذبت 

ىنو ٍِ المجٌَعبث  جذيذة ًٍنبفئبثدساست خٌاص اُ الذذف اىشئيسي لذزه اىشسبىت ىٌ حقذيٌ 

 ببلاضبفت الى اعغبء خٌاص جذيذة لدشبمو الاٍثييت المحذبت ، Eٍِ اىنٌع  ًحعَيَبتهب ًاىذًاه المحذبت

 .Eٍِ اىنٌع  ًحعَيَبتهب

 Eىيَجٌَعت المحذبت ٍِ ٌّع  جذيذةًٍنبفئبث في اىفصو اىثبّي لذزه اىشسبىت قَنب بذساست خٌاص 

. قَنب ايضبً بخعشيف لرٌَعبث جذيذة ًالدسَبة بمجٌَعت الاّغلاق الدخشًعي Eًالدخشًط ٍِ ٌّع 

ًمزىل قَنب  Eًلرٌَعبث الاّغلاق اىخآىفيت ٍِ ٌّع  Eًالمجٌَعبث اىخآىفيت ٍِ ٌّع  Eالمحذة ٍِ ٌّع 

ىزه المجٌَعبث. ًاخيراً قَنب بؤعغبء بعض الأٍثيت ىخٌضيح  ًٍنبفئبث بذساست بعض خٌاص

 .ًٌىخٌضيح اىعلاقت فيَب بيني أعلاهضت الدفبىيٌ الدسخعش

حعَيَبث اىذًاه المحذبت مبىذًاه المحذبت بعض في اىفصو اىثبىث قَنب بذساست بعض الخٌاص الدخنٌعت ى

ًاىذًاه    ٍِ اىنٌع اىذًاه اىخببعت شبت المحذبت   ، اىذًاه شبو المحذبت ٍِ اىنٌع  ،  ٍِ اىنٌع 



اىقببيت   خٌاص اىذًاه المحذبت ٍِ اىنٌع مَب قَنب بذساست بعض   ، شبو المحذبت ٍِ اىنٌع  اىنبربت 

اىذًاه المحذبت ًبعض حعَيَبتهب بؤٌّاع لسخيفت ٍِ لربٍيع اه  بشبظقَنب ايضب ىلاشخقبق. 

epigraphs   ٌٍلذزه اىذًاه ً لربٍيع الدسخlevel sets   الدشحبغت بمجبٍيع اهepigraphs 

. 

ٍب داىت لزذبت ٍِ إٍثييت الدعََت ًاىتي حنٌُ فييب داىت الذذف ٍشبمو الأ فصو اىشابع قَنب بذساستفي اى

ٍثو اىذًاه اىخببعت شبت    اىنٌع ً اىذاىت المحذبت ٍِ أً احذٍ دًاه اىخعَيٌ ىيذاىت المحذبت أ   اىنٌع 

ٍب لرٌَعت اىقيٌد فيي لرٌَعت لزذبت ٍِ أ ،  ًاىذاىت اىخببعت المحذبت ٍِ اىنٌع    ٍِ اىنٌع المحذبت 

ٍخَ حنٌُ لرٌَعت ٍثو ًٍخَ ينٌُ ًحيذ ًمزىل . اىذساست شميج إٍنبّيت ًجٌد الحو الأ  اىنٌع 

غير   ٍثييت الدعََت عنذٍب حنٌُ اىذاىت ذبت. ًمزىل قَنب بذساست ٍشبمو الأٍثو لرٌَعت لزالحو الأ

 شخقبق.ىي داىت قببيت ىلأ    شخقبق ًىنِ في قببيت ىلأ
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