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Abstract

Abstract

The main aim conducted and reported in this thesis is divided into two
parts. The first part is devoted to providing some properties and
characterizations of generalized convex, cone, and affine sets such as
(respectively, E-convex, E-cone, E-affine) sets, and the study of some
properties and characterizations of generalized convex functions such as (quasi
convex , E-convex, semi E-convex, quasi semi E-convex, pseudo semi E-
convex, E-quasiconvex, E-pseudoconvex) functions. The aim of the second part
Is to study some optimality properties and characterizations of generalized non-
linear optimization problems. We consider the objective functions for non-linear
optimization problems as E-convex functions or some generalized convex

functions and the constraint sets as E-convex sets.

In the first part, we presented some new properties of (E-convex, E-cone,
E-convex hull) sets and we introduced a new characterization for E-convex sets.
We defined new sets, namely, E-convex cone hull, E-affine sets and E-affine
hull, and we proved some of their properties and characterizations. Moreover,
we discussed some new characterizations of convex functions, E-convex
functions, and their generalizations in terms of some level sets and different
forms of epigraphs which are related to these functions. Some general properties
of generalized convex functions, and some differentiability properties of E-

convex functions are also presented.

In the second part of this thesis and as an application of generalized
convex functions in optimization problems, some optimality properties and
characterizations of generalized non-linear optimization problems are discussed.

In this generalized optimization problems, we used, as objective functions, E-
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convex (strictly E-convex) functions and their generalizations such as E-quasi
convex (strictly E-quasiconvex), and strictly quasi semi E-convex functions and
the constraint sets are E-convex sets. Some E-differentiability properties for the
objective functions of generalized optimization problems are also discussed in

this part.
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Introduction

Classical convex analysis is an important field of mathematics which
plays a vital role in optimization and operation research. The main ingredient of
convex analysis is related to convex sets and convex functions. The earlier
definition and properties of convex sets were introduced by H. Brunn in 1887,
followed by H. Minkowski in 1911. Convex analysis, in general, is developed
and extensively studied in the 20™ century by Fenchel [51], Brendsted [3],
Moreau [30, 31], and Rockafellar [45, 46]. It has been studied in finite
dimensions (see e.g. [27, 28, 29, 31]), and in infinite dimensions [10, 23, 43]. In
addition to convex functions, convex analysis field may include other types of
functions with less restrictive convexity assumptions, such as quasi convex and
pseudo convex functions (see [39, 41]). The latter types of functions represent
generalizations of convex functions. This area of the classical convex analysis
has been generalized into other kinds of convexity by many researchers. For
instance, the concept of convex functions has been extended to the class of m-
convex functions [21], invex functions [37], geodesic semi E-convex functions
[5, 6], and B-vex functions [9] (see also [36, 55], for more recent papers on

invex and B-vex functions).

Another type of generalized convexity is E-convexity introduced first by
Youness in 1999 [15]. Youness introduced E- convex sets, E-convex functions,
and E-convex programmings, defined in finite dimensional Euclidian space, by
relaxing the definitions of the ordinary convex sets and convex functions. The
effect of a mapping called E: R™ — R™ on a given set takes the major place in
defining this type of generalized convexity. In other words, a non-empty set
S € R™is said to be E-convex if there exists a mapping E: R™ — R™ such that

for every s;,s, € Sand forevery 0 <A <1 we have

v
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AE(s) + (1 — DE(sy) €S,

and a real valued function f: R™ — R is said to be E-convex if there exists a
mapping E: R™ — R" such that for every s;,s, € R" and forevery 0 <1<1

we have

fAE(s) + (1= DE(s2)) < Af(E(s1)) + (1 = D (E(s2)).

It was shown in [15] that many results of convex sets and convex functions
hold for the wider class of E-convex sets and E-convex functions. The research
on E-convexity is continued, improved, generalized, and extended in different
directions. Abou Tair and Sulaiman [22] and Suneja et. al [48] studied E-
convex sets and used these sets to prove some inequalities. Further study of E-
convex sets are recently introduced by Grace and Thangavelu [25] in which the
authors defined E-convex hull, E-cone, and E-convex cone and study some of
their properties. Youness [16] studied some properties of E-convex
programming and established the necessary and sufficient conditions of
optimality for nonlinear E-convex programming. Stability in E-convex
programming was studied by Youness [18], and very recently, Megahed et al.
[1, 8] introduced duality in E-convex programming and studied optimality
conditions for E-convex programming which has E-differentiable objective
function. Note that some results appeared in Youness's first paper [15] are
incorrect (see [12, 53, 54] for some counter examples that clarify the erroneous
results in [15]). This motivates Chen to introduce new classes of E-functions
and to study some of their properties [52, 53]. These functions, which are
generalizations of the class of convex functions, are called semi E-convex, quasi
semi E-convex, and pseudo semi E-convex functions.

The initial results of Youness inspired a great deal of subsequent work which
has expanded the role of E-convexity in optimization theory. Thus, the notion of

E-convex functions has been extended to new classes of generalized convex and

Vi
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E-convex functions in optimization theory. For instance, some optimality
properties of semi E-convex problems are introduced in [53]. E-quasiconvex
functions, their related properties, and their applications to optimization
problems are studied by Youness [17] and Syau and Lee [56]. Solemani-
damaneh [40] defined E-pseudoconvexity functions and introduced an extensive
study of E-convexity and its generalizations with applications for strict E-
guasiconvexity and E-pseudoconvexity in multi-objective optimization
problems. For more recent papers on E-convex function and their extensions

and generalizations, see [26, 35, 42, 57].

The overall aim of this thesis is as follows:

(i) Establish new properties and characterizations of E-convex sets, E-
convex functions and their extensions and generalizations.

(ii) Apply E-convex functions and some generalizations of convex
functions to a non-linear optimization problems to obtain new results and
optimality conditions different than the ones introduced in the literature.

This thesis starts with Chapter 1 which includes five sections of preliminary
material and results that make this work self-contained. Chapters 2-4 include the

main results of this work. The outline of Chapters 2-4 is summarized as follows:

Chapter two: consists of four sections. Section 2 presents further study of E-
convex sets and E-convex hull. In specific, we provide a characterization for E-
convex sets (see Theorem 2.2.2). In section 3, we discuss some new properties
of E-cone and E-convex cone (see Propositions 2.3.1, 2.3.3-2.3.6). We provide
two characterizations of E-convex cone of an arbitrary set (see Theorems 2.3.7-
2.3.8). Then, we define E-convex cone hull sets and provide a new
characterization of these sets (see Theorem 2.3.10). Finally, in section 4, we

define E-affine sets and E-affine hull of a set and show a characterization of

Vii
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each of these sets (see Theorems 2.4.15-2.4.17). Some properties related to E-
affine sets are also discussed (see Propositions 2.4.7, 2.4.9, 2.4.13-2.4.14). We
also provide some examples to show the relationship between E-affine sets and
their counterpart sets defined in the classical convex analysis, namely, affine
sets (see Examples 2.4.5 and 2.4.10).

Chapter three: includes four sections. Section 2 starts with some general
properties of generalized convex functions. Namely, the closedness property
under addition and non-negative multiplication is proved for E-convex and semi
E-convex functions (see Theorem 3.2.1). We show a composite property which
satisfies, under certain conditions, for semi E-convex, E-convex, E-
guasiconvex, and pseudo semi E-convex functions (see Theorems 3.2.2-3.2.4,
3.2.6). Another property we show is the supremum property of an arbitrary non-
empty collection of semi E-convex, quasi semi (respectively, strictly quasi
semi, strongly quasi semi) E-convex and pseudo semi E-convex functions (see
Propositions 3.2.8-3.2.9). In section 3, we provide new properties and
characterizations which relate convex functions and their generalizations with
different a-level sets and different epigraphs associated with these functions. In
other words, new relations and characterizations of semi E-convex, E-convex,
and convex functions are given using the epigraph sets denoted by epif, epis f
and epif f (see Propositions 3.3.12-3.3.22). In addition, new properties and
characterizations of convex, quasi convex, and quasi semi E-convex functions
are presented in terms of a-level sets of f denoted by SZ[f] and E-S,[f] (see
Propositions 3.3.2, 3.3.3, 3.3.6, 3.3.7). These a-level sets (SZ[f] and E-S,[f])
are, respectively, associated with the epigraphs epif f and E-e(f) mentioned
earlier. We end this chapter, with section 4, by discussing some differentiability

properties of E-convex and strictly E-convex functions (see Section 3.4). An

viii
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Important result in this section is characterizing E-convex and E-concave

functions f by using the second derivative of f (see Theorem 3.4.7).

Chapter four: consists of three sections. In section 2, some optimality
properties and characterizations of generalized non-linear optimization
problems are presented. The properties and characterizations involve the
existing, uniqueness, and the convexity of the global optimal solutions using (E-
convex, strictly E-convex, strictly quasi semi E-convex, E-quasiconvex, and
strictly E-quasiconvex) functions as the objective functions. In section 3, we
study differentiability properties of the objective functions (foE) of a
generalized optimization problems. In such case, the functions f are non -

differentiable and are called E-differentiable.
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Chapter One Preliminaries

Chapter One
Preliminaries

1.1 Introduction

In this preliminary chapter, we collect some essential definitions and
properties that will make this thesis self-contained. The chapter is divided into
five sections. In sections 2-4, we summarize definitions and results we need,
from mathematical analysis, linear algebra, calculus, convex analysis, and E-
convex analysis. It is worth mentioning that, in subsection 1.4.1, some new
examples are illustrated to clarify the properties of E-convex, cone and E-cone,
and E -convex cone and to discuss the relationship between them. Various
concepts related to basic optimization and generalized optimization theory is

introduced in section 5.

Throughout this thesis, the real line is denoted by R and the set of n-
dimensional vectors with coordinates in R is referred to as R™ . All sets

considered are non-empty subsets of R™.
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1.2 Basic Mathematical Concepts

In this section, we recall some basic and fundamental concepts and
properties that are needed throughout this work. These concepts are collected

from mathematical analysis, linear algebra, and advanced calculus.

Definition 1.2.1 [19, Section 2.4] A function ||. ||: R® — R is a norm if the

following axioms hold:

1. nonnegativity: [|x]| =0 Vx € R™and ||x|| = 0 if and only if
x =0.

2. Positive homogeneity: [|Ax|| = |A| ||x]| Vx € R*and V 1 € R.

3. Triangle inequality: [|x + y|l < llx|| + |lyll Vx,y € R™

Definition 1.2.2 [19, Section 2.4] A mapping (.,.): R* Xx R® — R s referred

to as scalar (inner) product if it satisfies the following properties.
1. Positive definiteness: (x,x) > 0 Vx € R" and (x,x) = 0 if and only if
x =0.
2. Symmetry: (x,y)=(y,x) Vx,y € R"
3. Additivity: (x,y +z)=(x,y) +(x,z) Vx,y,z€ R".
4. Homogeneity: (Ax,y) = A{x,y) Vx,y € R", V1€ R.

Definition 1.2.3 [2, Definitions 1.13-1.14, 1.16] Fix x € R", then

1. The open ball with center x and radius r is denoted by B(x, r) and
defined by

Bx,r) ={y e R |lx -yl <r}

2. The closed ball with center x and radius r is denoted by B[x, r] and
defined by

Blx,r] ={y e R"|lx —y|l < r}.
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3. Aset U € R"is called a neighborhood of x if there exists an open ball
B(x,r) suchthat B(x,r) € U.

4. If x e V € R", then x is called an interior point of I if there exists an
open ball B(x,r) such that B(x,r) € V. The set of all interior points of a
given set V is called the interior of V and is denoted by V°. The set V is

said to be open if V =V,

Definition1.2.4 [19, p.37] Let S € R™. A function f:S — R is said to be

continuous at s if for any given € > 0 there isexistsaé > 0 suchthatvs € §

and ||s — §|| < & implies |f(s) — f(5)] < e.

Definition 1.2.5 [39, p.763] Let S be a subset of R", sT = (sy,...,s,)7 €
S9 and let f: S — R. Then f is said to be differentiable at s if there is a vector

called the gradient of f at the point s, and is denoted by Vf(s) in R™. The

gradient vector consists of the n partial derivatives of f at s, that is,

af (s)
/ 651 \
af (s)

652

Vf(s) =

\af'(s)

0sp

If the function f is defined on aset S c R, then Vf(s) = f'(s). Moreover, f is
called twice differentiable at s, if in addition to the gradient vector, there exists
n X n matrix of second-order partial derivatives of f. This matrix is called

Hessian and is denoted by V2 f(s) or H(s). It is defined as follows

9%f(s) 0%f(s)

051081 05105y,
Vif(s) =H(s) =] . S

f(s) 0 f(s)

05,05, 0s5p,05n

3
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Hessian is a symmetric matrix which describes the local curvature of a function

of many variables. If the function f defined on a set S c R, then V2f(s) =

£ ().

Definition 1.2.6 [19, p.59] A continuous function f: R™ — R is said to be

continuously differentiable at s € R™ if its first partial derivatives are

continuous. i.e., |f£(s) exists and is continuous, fori = 1, ...,n. The class of
i

functions whose first derivatives are continuous is denoted by C?1. Similarly, the
function f is said to be twice continuously differentiable if f is continuously

differentiable and all second partial derivatives of f exist and are continuous

2

over R". i.e., if aa f (s) exists and is continuous, for i,j = 1, ...,n. The class of
2]

S

functions whose second derivatives are continuous is denoted by C2. Note that

when f is C?2, the Hessian is a symmetric matrix .

As we will see later in this thesis (see Chapters 3 and 4) that the sign of a
matrix is very useful. i.e., whether the matrix is positive (semi) definite,
negative (semi) definite or indefinite. The sign of the Hessian, for example,
determine whether a function is E-convex or not (see Theorem 3.4.7). It is also
necessary to employ Taylor's Formula (see Theorems 3.4.7, 4.2.4, 4.3.9).

Hence, we state these concepts next.

Definition 1.2.7 [2, Definitions 2.9, 2.14] An n X n matrix A is said to be

1. Positive definite (for short, p.d.) if the quadratic form
xTAx>0 Vx=#0; xR
2. Positive semi-definite (for short, p.s.d.) if

xTAx>0 Vx=#0; x € R"
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3. Negative definite (for short, n.d.) and Negative semi-definite (for short,

n.s.d.) matrices if:
xTAx<0 Vx=#0; x€R"
and
xTAx <0 Vx=#0; x€R"
respectively.

4. Indefinite if there exist non-zero vectors x, y € R" such that

xTAx>0andyTAy < 0.

Example 1.2.8 Clarify that the matrix

-G 9

is indefinite.

Solution. Suppose that x” = (x;,x,)T € R? is a non-zero vector. Then

xTAx = (x1,x,)" (411 Lll) (2)

xTAx = xi +x2 + 4x,x, + 4x,x,
= x{ + x% + 8x;x,.

Now, if x = (1,1)7, then xTA x > 0 and when x = (1,—-1)7, thenxTA x < 0.
Thus, from definition 1.2.7(4), the matrix A is indefinite.

Definition 1.2.9 [24, Section 2.6] Taylor formula is a series expansion of a

function around a point. An n-th order Taylor series is an expansion of an n
continuously differentiable real function f: R™ — R around a point x = x,

which is given by
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1
fx) = fxo)+< Vf(xp), (x — x0) > +§ < (x = x0), V2 f(x0) (x — x¢) >

+o(x — xy),

where o(x — x;) is called the remainder term of the Taylor series.

Taylor's Theorem 1.2.10 [2, Theorem 1.24]

Truncated Taylor Series (First Order): Assume that f:R"™ — R

continuously differentiable on some open set and that x, € R™. Then for every
x € R™,

f(x) = fxo)+<Vf(E), (x — x0) >,

where & is some point lies on the line segment joining x and x, (i.e., £ = Ax +
(1 —A)x, for some 4 € [0,1]).

Truncated Taylor Series (Second Order): Assume that f: R" — R twice

continuously differentiable on some open set and that x, € R"™. Then for every

x € R™.

1
fQ) = o) +< VF(xp), (x = x0) > + 5 < (x = %), VA (§) (x = x0) >,

where ¢ is some point lies on the line segment joining x and x.

Definition 1.2.11 Let f: R™ — R be a function. Then

1) f is called linear if and only if
flax+By) =af(x)+Lf(y) Vx,y e R"anda,fS € R. [47]
2) f is called sublinear if and only if

flax+By) <af(x)+Bf(y) Vx,yeR'anda,f € R. [44]
3) f is called non-decreasing if whenever x,y € R™ such that x < y (i.e.,

x; <y, Vi=1,..,n)weget f(x) < f(y). Inother words,
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(x =T (f(x) — f(¥)) = 0. [4, Definition 5.2.1]

Definition 1.2.12 A function f: R®™ — R" is said to be idempotent if
f(f@)) =f*(x) =f(x) Vx€R"[25]

1.3 Elements of Convex Analysis

In this section, we review some concepts from convex analysis in the
classical sense such as convex sets, cone, convex cone sets, affine sets, and

convex functions with some of their generalizations functions.
We start first with the definition of a convex set in R".

Definition 1.3.1 [44, p.10] A setS < R™is said to be convex if and only if

Vsi, S, €S, and for every 0 <A <1, we have As; + (1 — A)s, € S. In this

case, S is said to be closed for convex combinations.
Convex sets satisfy the relations given next.

Proposition 1.3.2 [44]

I. The intersection of two convex sets is a convex set. In general, if
{S; : i € A} € R™ be a family of convex sets. Then N;c, S; IS a convex
set.

ii. LetS < R"be aconvex set and a € R. Then the setaS ={as: s €
S} is a convex set.

. LetS;,S, © R"™be convex sets. Then the Minkowski addition
S+ S, ={s; +5s,: 5 € 85,5 € S,}
and the Cartesian product

Si X S,={(s1,5,) € R* XxXR" : 5, € §;,s, € S,}Iisaconvex set.
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Definition 1.3.3 [44, p.3] A set M c R" is said to be affine if and only if
Vx,y € M, and for every 1 € R, we have Ax + (1 — A1)y € M. In this case, M is

said to be closed for affine combinations.

Remark 1.3.4 Each affine set is a convex set but the converse is not true as the

following example shows.

Example 1.3.5 Let B(x,7)  R? be an open ball of center x = (0,0) and radius
r=4.ie, B(x,7) =B((0,0),4) ={y = (1, ¥2) € R%:[|(y1,¥2) — (0,0)]I <

4}, Vx,y € R? . It is clear that, B(x,r) is a convex but not an affine set. i.e.,

Let (y1,y,) = (11) € BGx,1), 01,73) = (,3) € Be,7). I 1=, then

1 11 111 _ 33
E( , )_E(Z’Z) = (§'§) € B(x,71)

Now, if A € R, such that A = 4, then we get

41D =3G9 = G & Blun),

Next, we define an important set in convex analysis.

Definition 1.3.6 [44, p.13] A set K ¢ R" is said to be a cone if for every x € K

and ¢ = 0 we get ax € K. In case that the cone is convex, then K is called

convex cone.

Example 1.3.7

e LetK ={(x,y):y = |x|}, then K is a cone but not convex set.
e LetK ={(x,y):y = |x| }. This set is a convex cone.

e LetK ={(x,y):x?+ y? < 1}. This set is a convex but not cone.

Definition 1.3.8 [44, p.12] Let S ¢ R™. The convex hull of S, denoted by

conv(S) is the intersection of all convex sets containing S (or, smallest convex

set that contains S); that is,

conv(S) = Nyas N; N are convex sets.

8
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Definition 1.3.9 [11, p.21] Let M c R™. The affine hull of M, denoted by
af f (M) is the intersection of all affine sets containing M (or, smallest affine set

that contains M); that is,

af f(M) = Nyoy N; N are affine sets.

Definition 1.3.10 [13, p.36] Let K < R™. The convex cone hull of K, denoted

by cone(K) is the intersection of all convex cone sets containing K (or, smallest

convex cone set that contains K); that is,
cone(K) = Nyox N; N are convex cone.
Now, let us recall the definitions of convex (concave) functions.

Definition 1.3.11 [47, Definition 3.1.1] A real valued function f: R®™ — R is

said to be convex if for every x;,x, e R"and0 <1 <1

fAxy + (1= D)xy) S Af(x) + (1 =D f (x3).
If forevery x; #x,and0 <A <1

fAx + (1= D)xy) < Af(x) + (1 =D f (x).
Then £ is called strictly convex.

Definition 1.3.12 [47, Definition 3.1.1] A real valued function f: R®™ — R is

said to be concave if (—f) is convex. Mathematically, f is a concave function if

for every x;,x, € R*, 0 < A < 1 we have

fQxy + (1= )xz) 2 Af (x1) + (1 = Df (x).

If forevery x; # x,and0 <1< 1

fQx; + (1= Dxz) > Af (x) + (1= D f (x).

Then f is called strictly concave.
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Remark 1.3.13

1. Every linear function is convex and concave.
2. Every convex and concave function at the same time is called an affine
function.

3. The domain of a convex function is always a convex set.
An example of a convex function defined on R™ is given next.

Example 1.3.14 Show that f: R"™ — R defined as f(x) = |[x]|| is a convex

function.
Solution: letx;,x, € R, 0 < A < 1 then,
f(Ax; + (1 = Dxy) = [|IAx; + (1 — Dx,|l,

using triangle inequality and positive homogeneity properties of the norm, the

right-hand side of the above equation yields
< Ayl + (1 = Dl |
= Af () + (1 =D f (xz)
Thus, f(x) is a convex function.

The field of convex analysis may include other types of functions with
less restrictive convexity assumptions, such as quasi convex and pseudo convex
functions. The latter types of functions represent generalizations of convex

functions. Next, we recall the definitions of quasi convex and pseudo convex.

Definition 1.3.15 A function f: S ¢ R™ — R is said to be quasi convex if and

only if S is a convex set, and for each s;,s, €S, 0 < 1 < 1, we have

f(As; + (1 —A)sy) <max {f(s1),f(s2)} [39, Definition 3.5.1]

If forevery s; # s,and 0 < A < 1 with f(s;) # f(s,), we have

f(As; + (1 —A)sy) <max {f(s1),f(sz)}, then f is called strictly quasi
convex. [39, Definition 3.5.5]

10
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Definition 1.3.16 [39, p.768] The function f:S ¢ R™ — R is said to be pseudo

convex if f is differentiable and for each s;, s, € S,with Vf(s;)T (s, — s;) = 0,
we have f(s,) = f(s;). The function f is said to be strictly pseudo convex on

S if whenever s; # s, with Vf(s;)T(s, —s;) = 0, we have f(s,) > f(sy).

1.4 Elements of E-Convex Analysis

An important class of generalized convex sets and convex functions,
called E-convex sets and E-convex functions, respectively, has first introduced
and studied by Youness [15]. In these classes, Youness relaxed the definitions
of the classical convex sets and convex functions with respect to an mapping E.
Further study of E -convex sets are recently introduced by Grace and
Thangavelu [25] in which the authors defined E-convex hull, E-cone, and E-
convex cone and studied some of their properties. Other types of generalized
convex functions are also introduced and studied in the literature such as semi
E-convex, quasi semi E-convex, pseudo semi E-convex, E-quasiconvex, and E-
pseudo convex functions [17, 40, 53, 56].

In this section, we recall E-convex sets, E-convex hull, E-cone, E-
convex cone, E-convex functions, and some of generalized convex functions.
We review some algebraic properties of E-convex sets and add a new property
(see Proposition 1.4.1.10). Many examples are added, in the next subsection, to
show the relationship between E-convex sets, E-cones, and E-convex cones
(see Examples 1.4.1.15-1.4.1.17). Other examples are shown to illustrate some

reviewed concepts and properties (see Examples 1.4.1.19, 1.4.1.21).

11
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1.4.1 Generalized Convex Sets

In this subsection, we recall E-convex, E-cones, and E-convex cone sets
and some of their existing properties. We also add a new property (see
Proposition 1.4.1.10) and various examples to show the relationships between
these concepts and to clarify some properties and observations related to the E-
convexity of sets (see Examples 1.4.1.4,1.4.1.12, 1.4.1.15-1.4.1.17, 1.4.1.19,
1.4.1.21). In Chapter 2, we continue studying these concepts by providing new

properties and characterizations of these generalized sets.

Definition 1.4.1.1 [15] A set S ¢ R™" is said to be E-convex if and only if there

exists a mapping E: R® — R" such that Vs;,s, € Sand for every 0 <1<1
we have 1E(s;) + (1 —1)E(s,) € S.

Note that E-convex sets are considered as generalization of convex sets in

the following sense.

Proposition 1.4.1.2 [15] Every convex set is an E-convex. (Choose E = |

identity mapping).

Proposition 1.4.1.3 [15]

1. IfasetSisan E-convex, then E(S) € S.

2. IfE(S) isconvex and E(S) € S, then S is an E-convex set.

The following example show that the converse of Proposition 1.4.1.2

does not hold, in general.

Example 1.4.1.4 Suppose that E: R? — R? be defined as E(x,y) = (0, y). Let

S={(x,y) € R*: (x,y) = 1,(0,0) + 2,(2,3) + 13(0,3) + 1,(2,0)}

U{(x,y) € R?: (x,y) = 1,(0,0) + 1,(—2,—3) + 25(0, —3)

12
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+24(—=2,0)} with 1,25, 13,1, = 0,¥7 . 4; = 1.
First, we show that S is E-convex using Proposition 1.4.1.3(2)
E(S) ={(x,y) e R?: E(x,y) = E(1,(0,0) + 1,(2,3) + 15(0,3)
+2,(2,0)} U {(x,y) e R?: E(x,y) = E(1,(0,0) +
A, (—=2,-3) + 23(0,=3) + 1,(—2,0))}.

Since E is a linear mapping, the set E(S) can be written as
ES) ={(x,y) ER?: E(x,y) = },E(0,0) + 1,E(2,3) + 13E(0,3)

+,E(2,0)} U {(x,y) € R?: E(x,y) = 1,E(0,0) + A,E(—2,-3)
+A3E(0,—3) + A,E(—2,0)},
E(S) = {(x,y) € R?*: 2,(0,0) + 1,(0,3) + 25(0,3) + 1,(0,0)}
U{(x,y) € R?: 1,(0,0) + 1,(0,—3) + 13(0,—3) + 1,(0,0)}.
It is clear that, E(S) is a convex set and E(S) < S. Using Proposition 1.4.1.3(2),
S is E-convex. To show S is not convex, take (—2,0),(0,3) € Sand 1 = % :
Then

%(—2,0) + % (0,3) =(—1,0) + (Og) = (—1,%) & S as we need to show.

The following proposition provides a condition under which a convex set

Is an E-convex without taking E = I the identity mapping.

Proposition 1.4.1.5 [25, 40] If E is a given mapping, S is a convex set, and

E(S) € S then S is an E-convex set.

Proposition 1.4.1.6 Let S; and S, are two E-convex sets, then

I.  S; NS, is E-convex set. [15]
ii. If E is a linear mapping, then S; + S, is E-convex set. [15]

ii. If E is a linear mapping and a € R then a$; is E-convex set. [25]

13
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Remark 1.4.1.7

1. The intersection property, in the above proposition, has been extended to
an arbitrary family of E-convex sets. [56, Theorem 2.1]

2. The union of two E-convex sets may not be E-convex set. [15, Example
2.3]

For the sack of completeness, we add the following property of E-convex

sets which is needed in Proposition 2.3.6(iii).

Proposition 1.4.1.8 Let S; and S, be two E-convex sets, then §; X S, =

{(s1,52):51 € §1,5, € S,} IS E X E-convex set.

Proof. Since S; and S, are E-convex sets, then Vs;, s; €S, Vs,, §, €S,,
and A,, 4, € [0,1] with A; + 4, = 1 we have

ME(sy) + A,E(57) €S, and L E(sy) + A,E(S,) €S,
Hence, (A1,E(s1) + ,E(57), ME(sy) + A,E(57)) €S, X S,

e, L,(E X E)(sy,s,) +A,(E XE)(s.,5,) €ES; XS,. Thus,S; XS, iISE X E-

convex set. =m

We pointed out in Remark 1.4.1.7 that the intersection of arbitrary E-
convex sets is E-convex. This fact is used next to define the smallest E-convex
set containing a fixed set.

Definition 1.4.1.9 [25] The E-convex hull of a set S ¢ R™, denoted by E -

conv(S) is the smallest E-convex set contains S, that is,

E-conv(S) = Nyos N, N are E-convex sets.

14
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An example of E-convex hull of a non-convex set S is given next.
Example 1.4.1.10 LetS = (—2,3) U (3,6) c Rand let E: R — R is given by

E(x) = % x Vx € R. Clearly, S is not E-convex set. For instance, let x =
2,y =4,and A = 0. Then,
AE(x)+(1—ANE(y) =3¢S.

From Definition 1.4.1.9, E-conv(S) = (—2,6) which is E-convex. i.e., E —

conv(S) is a smallest E-convex set in R contains S.

Remark 1.4.1.11 [44] From the above definition and Proposition 1.4.1.6, it is

clear that
1. E — conv(S) is E-convex set and S € E-conv(S).
2. If S is E-convex set, then E-conv(S) = S.

Next, we recall the definition of E-cone as a generalization of a cone set.

Definition 1.4.1.12 [25] A set K ¢ R™ is called E-cone if there exists a

mapping E: R™ — R" for every x € K and ¢ = 0 we have aE(x) € K. If K is

E-cone and E-convex set, then it is called E-convex cone.

Examples of E-convex cone set, E-convex set (not E-cone), and E-cone

(not E-convex set) are given, respectively, next.

Example 1.4.1.13 Let K c R? is defined by K ={(x,y) ER? : x,y >0},
and let E: R? — R? is given by E(x,y) = (x,0) Vx,y € R.

For any (x,y) €K and a =0, aE(x,y) = (ax,0) € K. Thus, K is E -cone.
Also, K is E-convex. Indeed, let (xq,y;), (x2,¥,) € K and 4;, 4, € [0,1] such

/11E(x1,y1) + AzE(xz;yz) = (A1x1 + 4,x,,0) €K
Thus, K is E-convex cone set.

15
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Example 1.4.1.14 Let K c R? is defined by K ={(x,y) ER?: -1 <x <
1,-1<y<1} and let E:R? — R? is given by

E(x,y) = Gx,%y) Vx,y € R. Note that E(K) = {(%x,%y): —1<x<
1,—1 <y < 1}is a convex set and E(K) < K. From Proposition 1.4.1.3(2), K

is E-convex set. To show that K is not E-cone, take for example (1,1) € K and

a =5.Then aE(x,y) = (g,g) ¢ K.

Example 1.4.1.15 Let K c R? is defined by

K={(xy)€ER?*:x<-1,-1<y<1}U{(x,y) ER?*:x>1,-1<y<
1}, and let E:R? — R? is given by E(x,y) = (x,0). For each (x,y) €
Kand a >0, aE(x,y) = (ax,0) € K. Thus, K is E - cone. However, there
exists (xy,yy), (x5, v,) € R? and A €[0,1] such that, AE(x;,y,) + (1 —

AMNE(x,,v,) & K. Forexample, take (—1,1),(1,1) € K,and A = % Then

AE(-1,1) + (1 - DE(1,1) = % (—1,0) + % (1,0) = (0,0) ¢ K

Thus, K is not E-convex.

Proposition 1.4.1.16 Every cone is an E-cone. (Take E = I).

Obviously, not every E-cone is a cone as we show in the following

example.

Example 1.4.1.17 Consider K defined as in the Example 1.4.1.14, i.e., K =
{((x,y) ER*: -1 <x<1,-1<y<1},andlet E(x,y) = (0,0) Vx,y €R.

We show that K is E-cone but not cone. For any « = 0 and any (x,y) € K,
aE(x,y) = (0,0) € K, thus, K is E-cone. Now, if we take a = 5, and (x,y) =
(1,1) € K, then

a(x,y) =5(1,1) = (5,5) ¢ K.

Thus, K is not a cone.
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Remark 1.4.1.18 Proposition 1.4.1.16 may not be true for an arbitrary mapping

E as the next example shows.

Example 1.4.1.19 Suppose that E:R? — R? be defined as E(x,y) =
(x%,y*) Vx,yeR.and K = {(x,y) ER?: x <0,y < 0}. We show that K

IS cone but not E -cone. For any @ =0 and for any (x,y) € K, we have,
a(x,y) = (ax,ay) € K. Thus, K is a cone. To show K is not E -cone. Let
(x,y) = (—-3,-5) € K and a = 3, then aE(x,y) = a(x?,y?) = 3(9,25) ¢ K

as required.
1.4.2 Generalized Convex Functions

In Chapters 3 and 4, we deal with E -convex functions, some of its
generalized versions, and another class of generalized convex functions,
namely, semi E-convex functions. To prepare the ground for this study, we
present in this section the definitions of E-convex, semi E-convex, quasi semi
E -convex, pseudo semi E -convex, E -quasiconvex, and E -pseudoconvex
functions. We also provide some related notions which will be used in
developing our work in Chapters 3 and 4.

Let us first define E-convex function and strictly E-convex function.

Definition 1.4.2.1 [15] Let f: S € R™ — R be a real valued function. Then f

is referred to as E-convex function on S if and only if there exists a mapping
E: R™ — R" such that S is an E-convex set and for each s;, s, € S, and each

0 <A<1, wehave

fQE(s1) + (1= DE(sz)) < Af(E(s1) + (1 = Df(E(s2).

On the other hand, f is strictly E-convex if for each s;,s, € S, s; # s,, and

gach 0 < A < 1, we have

f(AE(sy) + (1 = DE(s2)) < Af(E(s0) + (1 = Df (E(s2)).

17
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Definition 1.4.2.2 [15] A real valued function f: R™ — R is said to be E-

concave on S if and only if there exists a mapping E: R®™ — R" such that S is

an E-convex set and for every s;,s, € S,and each 0 <1 < 1, we have
fAE(s1) + (1 = DE(sz)) 2 Af(E(s1)) + (1 = Df(E(s2)).
If for every s;,s, €S,51 #s,,and 0 <1< 1
fFAE(sD) + (1 = DE(s2)) > Af (E(sp) + (1 = Df (E(s2))-
Then f is called strictly E-concave.

Remark 1.4.2.3 The class of E-convex functions is broader and more general

than the class of ordinary convex functions. Indeed, by taking E = I, every
convex function is E-convex and the converse does not satisfy (for an arbitrary

E) as we illustrate next.

Example 1.4.2.4 [15, Example 3.2] Let f:R — R be a function and let

E:R — Rbe a mapping such that E(x) = —x?2. Suppose that for each x,y €

1 x>0

R,2 € [0,1] we have f(x) = {—x x<0

To prove that f is E-convex, we must show that

fAE() + (1= DEW)) S Af(E() + (1 = DF(EW))
We consider three cases: first, if x,y > 0, then,
f(=2x? = (1 - Dy?) =Ax?+ (1 - Dy? = A (EX) + A - Df(EQ).
In this case, f is E-convex
fAEG) + (1 = DEW)) = AfE(X) + (1 = DFE®W)
Similarly, when x,y <0and x > 0,y < 0, we get f is E-convex. To show

that f is not a convex function. Takex =2,y =0and 4 = %then,

fAx+ A -Dy)=f1+0) =1, (1.1)
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and

M@ +A-DfG) =5f@ +5f0) =5 (1.2)

2

From (1.1) and (1.2), we conclude

fAx+ @A =Dy) > Af (1) + A - Df )
Then, f is not convex.

A new class of generalized convex functions called semi E -convex
function is introduced by Chen [52, 53]. This class includes quasi semi E -
convex and pseudo semi E-convex functions. Chen used these functions to
improve some of the Youness's incorrect results [15, Theorems 4.2-4.3, 4.6],
and to study the properties of those functions. Next, we state the definition of

those functions.

Definition 1.4.2.5[52,53] Let f: S € R™ — R be a real valued function, then
f is said to be

I.  Semi E-convex on S if and only if there exists a mapping E: R™* — R"

such that S is E-convex set and for each s;,s, €S, 0 <1 <1, we have

fAE(s1) + (1= DE(s2)) < Af(s1) + (1 = Df (s2).

Ii.  Quasi semi E-convex function if and only if there exists a mapping
E: R™ — R" such that S is a E-convex set and for each s;,s, € S and

0 <1<1, wehave

fQAE(s1) + (1 =NE(sz)) < max {f(s1), f(s2)},

and f is strictly quasi semi E-convex function if and only if there exists a
mapping E: R®™ — R™ such that S is a E-convex set and for each s;,s, €S
with E(s;) # E(s;),and 0 < A < 1, we have

fQAE(s)) + (1 =VE(s2)) <max {f(s1), f(s2)},
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and f is strongly quasi semi E-convex function if and only if there exists a
mapping E: R®™ — R"™ such that S is a E-convex set and for each s;,s, €S

withs; #s,,and 0 < A < 1, we have

fAE(s) + (1 =DE(sz)) <max {f(s1), f(s2)}.

ii.  Pseudo semi E-convex on E-convex set S if there exists a positive
function b: R™ x R™ — R such that if f(s;) < f(s,) then

f(/lE(Sﬂ +(1- A)E(Sz)) < f(s2) + A4 — 1)b(sy, 52),
forall s;,s, €S, and 0 < A < 1.

Remark 1.4.2.6

An E -convex function is not necessary semi E -convex function. [53,
Example 4]

A semi E-convex function is not necessary E-convex function. [53, Example
6]

A quasi semi E -convex function is not necessary semi E -convex
(respectively, E-convex) function. [53, Remark 4]

Every semi E-convex function is a pseudo semi E-convex. [53, Proposition
10]

Observe, from the preceding remark, that the class of semi E -convex
functions is not a generalization of the class of E-convex functions. Rather, it is
a generalization of the class of convex functions when E = I. The following

proposition confirms the last observation.

Proposition 1.4.2.7 Every convex function is a semi E-convex (respectively,

quasi semi E-convex, pseudo semi E-convex) function when E = I.

Proof. It is easy to prove that every convex function is a semi E -convex

(respectively, quasi semi E-convex), by taking E = I. To show every convex
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function is a pseudo semi E-convex, let f: S — R be a convex function defined
on the convex set S € R™ and E: R™ — R™ such that E = 1. Since f(x) <

f(¥) and £ is a convex on S, then for every x,y € S and 0 < A < 1, we have
fAE(x) + (1 -=DEQW) = f(Ax + (1 - Dy)

SAE)+A-Df )

=f) +A(f(x) — fO)

<f)+2(1 = D(f) - f»)

=f) + 20 - D(fO) — f(x))

=f) + 1A -Db(x,y),
where b(x,y) = f(¥) — f(x) > 0. Hence, f is pseudo semi E-convex. m

Remark 1.4.2.8 The converse of the proceeding proposition may not be true. In

other words,

I. A semi E -convex function is not necessary convex function. [53,
Example 6]
ii.  From Remark 1.4.2.6 (iii) and Proposition 1.4.2.7, a quasisemi E-convex

function is not necessary convex function.

Another type of functions, namely E-quasiconvex and E-pseudoconvex,
are introduced as a generalization of E -convex functions, and hence
generalizations of convex functions. E -quasiconvex function is established
independently by Youness [17] and Solimani [40] and its properties are studied.
Some of the E-quasiconvex function properties are also studied by Syau and
Lee [56]. E-pseudoconvex function, on the other hand, is defined and studied
by Solimani [40]. These functions are generalizations of quasi convex and
pseudo convex functions introduced earlier (see Definitions 1.3.15-1.3.16). The

definition of these functions is given next
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Definition 1.4.2.9 [40] Let f: S € R™ — R be a real valued function, then f is

said to be

I. E-quasiconvex if and only if there exists a mapping E: R™ — R" such
that S is an E -convex set and for each s;,s, € S with s; #s,, and
0 <A<1,wehave
fAE(sy) + (1 =DE(sz)) < max {f (E(sy), f(E(s)};
and f is strictly E-quasiconvex if and only if there exists a mapping E: R" —
R™ such that S is an E -convex set and for each s;,s, € S, f(E(sy)) #
f(E(sz)),and each 0 < A1 < 1, we have

f(AE(s1) + (1 = ME(sz)) < max {f (E(sy), f (E(s2)}

ii.  E-pseudoconvex function if f is differentiable, there exists a mapping

E: R™ — R" such that S is E-convex and for each s;,s, € S such that if
T
VF(E(sy)) (E(sy) —E(sy)) = 0, we have f(E(sy)) = f(E(s2)).

Remark 1.4.2.10 It can be seen that E-quasiconvex and E-pseudoconvex are

generalization of convex functions and E-convex functions in the sense that

I.  From the definition of E-convex function, every E-convex function is E-
guasiconvex.
ii.  Every differentiable E-convex function is E-pseudoconvex. [40, Lemma
2.3]
iii.  The converse of parts (i)-(ii) may not hold. [40, Example 3.4]
iv. Every convex function is E-quasiconvex where E = 1.
v. E-quasiconvex function is not necessary convex. [40, Example 3.3]
vi.  Every differentiable convex function is E-pseudoconvex when E = I.
vii. From [40, Example 3.4] and Proposition 1.4.1.2, E -pseudoconvex

function is not necessary convex.
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when studying convex functions in the classical sense, the set of points
located on or above the graph of f, which is called the epigraph of f (epi f), is
useful for characterizing convex functions. However, in generalized convexity
(when the functions are E-convex, semi E-convex, quasi semi E —convex, etc),
we deal with three different notions of epigraphs [12, 15, 53]. These epigraphs
are associated with the mapping E. We list below the ordinary epigraph and its
generalized versions.
Definition 1.4.2.11 Let f:SSR® — R be a real valued function, and

E: R™ — R" is a given mapping. Then the ordinary epigraph is defined as
epi f ={(s,a) € SXR: f(s) <a} [44],
while the epigraphs associated with the mapping E are classified as
E—e(f)={(s @) eSxR: f(E(s)) <a} [L5];
epip f ={(E(s), @) €EE(S) xR: f(E(s)) <a} [12];
and
epit f ={(E(s),a) EE(S)XR: f(s) <a} [52].

Associated with each epigraph defined above, an a —level set is defined,

respectively, as follows.

Definition 1.4.2.12 [40, 44, 56] Let f,S, and E are defined as in Definition
1.4.2.11and o € R. Then

i Selfl={s €S:f(s) < a}.

ii. E—Su[fl={seS:f(E(s))<al
iii. Saplfl ={E(s) € E(S):f(E(s)) < a}.
Iv. Salfl1={E(s) EE(S):f(s) < a}.
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1.5 Optimization Problems

Optimization is the act of obtaining the best result with available
resources. For example, in economics, investors minimize risk or maximize
profits, factories minimize cost. Since the risk required or the cost desired in
any practical situation can be expressed as a function of certain variables,
optimization can be defined as the process of finding the condition that give the

maximum or minimum value of a function.
1.5.1 Mathematical Formulation of an Optimization Problem

Mathematically, optimization problem is the minimization or maximization
of a function f subject to a constraint set S on its variables x. The optimization

problem consists of:

e The variables x of the problem which represent all the possible decisions
one can make.

e The objective function f:R™ — R that we want to maximize or
minimize. This objective can be the cost or the return of the system.

e The constraints set S which is the restrictions on the variables x. When
the constraint set S = R™, the problem is said to be unconstrained.
Otherwise, it is a constrained problem. The constraint set may include

equality and /or inequality involving the variables.

We are ready now to give a mathematical expression for an optimization

problem.

Definition 1.5.1.1 [47, p.127] The most basic form of mathematical

optimization problem (or optimization problem, for short) is as follows:

min f(x) (1.3)

subjectto g;(x) <0 i=1,..,r
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hj(x)=0 j=1,...m
x € R",

where the vector x7 = (xy, ....x,,)T € R" is the optimization variable of the
problem, the function f: R™ — R is the objective function (or cost function) of
the problem, and the functions g;, h;: R™ — R are the inequality and equality

constraints.

Definition 1.5.1.2 [13, p.84] The feasible region or the feasible set or a

constraint set S ¢ R™ is the set of all points that satisfy the problem's
constraints. Mathematically,

S={xeR":h(x)=0 and g;(x) <0;j=1,... m&i=1,..,r}
Remark 1.5.1.3

o If there exists at least one feasible point x € S, then Problem (1.3) is
called feasible otherwise, if S = @, it is infeasible.

e |f Problem (1.3) is unconstrained, then the feasible region is S = R™,

Below, we give two examples of constrained and unconstrained problem,

respectively.

Example 1.5.1.4 Consider the following optimization problem

min x2 + 2xy
subjecttox +y <5
0<x<3
0<y<3
The optimization problem in this example is constrained and the feasible set
S={(x,y) ER?*:x+y<50<x<3and0 <7y <3}
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Example 1.5.1.5

min x? + x5

subject to x= (x4, x,) € R?

This is unconstrained problem in which the feasible set S = R?.

Definition 1.5.1.6 [13, p.84], [47, p. 128] The set of solutions of problems (1.3)

Is the best solution from all feasible solutions. It is denoted by argminf and

its elements x* € S are called global minimizers or optimal solutions. i.e.,
x* is global minimum point or an optimal solution of f if and only if

f(x*) < f(x) Vx€eS.
Thus, argmin,f ={x* € S: f(x*) < f(x) Vx € S}.
A global minimizer x* € S is said to be strict when

f(x)<f(x) Vxe€S, x*#x.
Moreover, the optimal value of Problem (1.3) is defined as
f(x*) =p* =inf{f(x): h;(x) =0, g;(x) < 0foralliand forall j}.

Note that the set argmingf may not be exist (argmingf = @) and may

contains more than one minimum.

Remark 1.5.1.7 In the optimization problem (1.3)

1. It is possible to maximize the objective function (find the maximum
value) instead of minimizing. In this way, Problem (1.3) can be
expressed as

max f(x) (1.4)
subjectto g;(x) <0 i=1,..,r
hj(x)=0 j=1,..,m

x €ER"
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The set of the solution S will be denoted by argmaxsf and x* is a global
maximum point or an optimal solution of £ if and only if
f(x)=f(x) VvxE€S.
The optimal value of Problem (1.4) is defined as
f(x*) = q" = sup{f(x):hj(x) = 0,g;(x) < 0forall i and for all j}. [13, p.84]

2. min f(x) = —max —f(x)

Remark 1.5.1.8

Global minimizers (maximizers) can be difficult to find and characterize in

general nonlinear function. Instead of global points, one can find a point x*
such that f(x*) < f(x) for all points x in a given neighborhood of x*. This
point is called a local minimizer point. Similarly, local maximizer point is
defined.

Definition 1.5.1.9 [38, p.11] A point x* € R™ is called a local minimizer for
Problem (1.3) if there exist r > 0 such that
fx*)<f(x) VxeBx"r)nSs.

This definition can be extended to the definition of a local maximum by

reversing the inequality above. If the inequalities in the above definition become

strict then x* is called strict local minimizer.

Definition 1.5.1.10 A point x* € R™ is called a strict local minimizer for

Problem (1.3) if there exists r > 0 such that
f(x)<f(x) VxeB r)nS,x* +x.
Note that every strict local minimum point is a local minimum but the

converse is not true as we show in the next example.
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Example 1.5.1.11

Consider the objective function

x—1, x<3
f(x) =142, 3<x<7
—2x + 16, x>7

From the below graph of the function, the point P = 5 is a local minimum such
that there exists » > 0 in which f(P) = f(x) Vx € B(x*,r) n (3,7]. However,
P is not strict local minimum. Note that P is also a global maximizer. In fact,
this function has multiple global maximum points (i.e., global maximum is not
unique). Also, there are multiple local minimum points but none of them is

strict local minimum.

Piece-wise function

P:local minimum
251 P: global maximum
2 |-
1.5r
1 |-
0.5
0 P=(5.0)
-0.5
—1r
-15r
-2 L
-2 0 2 4 6 8 10 12

Figure: The graph of the function in Example 1.5.1.11
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Remark 1.5.1.12

e Every global minimum /maximum is local minimum/maximum.
e [t may not be possible to identify a global minimum by finding all local
minima (global minimum may not exist) as we have seen in the above

example.

1.5.2 Differentiable and Convex Optimization Problem

Problem (1.3) is said to be differentiable optimization problem when the
functions g4, ..., g,; h4, ..., h,, are differentiable. If the constraints of Problem
(1.3) are nonlinear, Problem (1.3) is called nonlinear optimization problem.
When the objective function f and the constraint functions g4, ..., g,; hy, ..., Ay
are all linear, we have a linear optimization problem [14, p.2], [2, p.149].
Convex optimization problems play an important role in optimization. There
are variety of mathematical properties and tools that help to characterize and
efficiently solve convex problems. In general, an optimization problem

min f(x)
subjecttox € S
is called convex problem if the objective function f and the constraint set S are
convex. [13, p.208]

The main benefit of knowing whether an optimization problem is convex

is provided by the following theorem.

Theorem 1.5.2.1 Assume that we have the following convex optimization

problem

min f(x)
subjecttox € S € R",
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where f : § — R™is a convex function defined on the convex set S. Then
1) If x* € S be a local minimum of f. Then x*is a global minimum of f.
[2, Theorem 8.1]
2) If x* € Sisastrict local minimum of f. Then x™* is a unique global
minimum. [7]
3) If fis a strictly convex function on the convex set S. Then argming f
has only one element. [2, Theorem 8.3]

4) The set of all feasible solutions argming f is convex. [2, Theorem 8.3]

1.5.3 Generalized Optimization Problems

As for the class of convex sets and convex functions, the class of
optimization problems have extended into the class of generalized optimization
problems [15, 53]. Youness in his celebrity paper [15] defined two forms of
non-linear constrained generalized optimization problem denoted, respectively,
by (NLP) and (NLPg) and defined as.

min £(s)
s.t. se S,
and
min (foE)(s)
s.t. SES,

where f: R" — R be a real valued function, S € R™ be an E-convex set, and

E: R™ — R" is a given mapping.

Remark 1.5.3.1 Problems (NLP) and (NLPg) in which the objective function is

E-convex are said to be E-convex problems [15]. Similarly, when the objective

function is semi E-convex, Problems (NLP) and (NLPg) are called semi E -
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convex problems [53]. Hence, generalized optimization problems are classified

according to the type of the generalized objective function.

Note that the relation between the solutions of the E -convex
programming (NLP) and (NLPg) is introduced in [15, Theorem 4.2]. Also, the
characterization of the optimal solutions and some of the optimality conditions
of the E-convex programming problem (NLP) is addressed in [15, Theorems
4.3, 4.5-4.6]. Later, it appears that some of Youness proceeding results are
incorrect (see [53, Examples 1-3] for some counterexamples for Theorems 4.2,
4.3, 4.6 in [15]). Therefore, a new concept of semi E-convex programming is
defined in [53], the relation between the solutions of the E -convex
programming (NLP) and (NLPg) is corrected, and some optimality results are

introduced, for Problem (NLP), to fix the incorrect optimality results of [15].

Next, we list the main results introduced in [53] to correct Youness's

results.

Theorem 1.5.3.2 [53, Theorem 5] Assume that we have (NLP) and (NLPg)

optimization problems such that the objective function f is semi E -convex

function on the E-convex set S and s* is a solution of problem (NLPg). Then
E(s*) is a solution of problem (NLP).

Theorem 1.5.3.3 Assume that we have (NLP) generalized optimization

problem. Then

i. If fis an E-convex function on S, and f(E(s)) < f(s) Vs€S, and
s* =E(z) € E(S) is a local minimum of problem (NLP). Then s* is a
global minimum of (NLP) on S. [53, Theorem 6]

ii. If f is strictly semi E-convex function on S. Then the global optimal
solution of problem (NLP) is unique. [53, Theorem 7]

ii. If fis semi E-convex function on S. Then argmingf of problem (NLP)

Is E-convex set. [53, Theorem 9]
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In Chapter 4, we consider the optimization problem (NLPg) for which we
discuss some optimality properties for this problem when the objective
functions are E-convex (strictly E-convex), strictly quasi semi E-convex, E -

quasiconvex (strictly E-quasiconvex).

32



CHAPTER TWO

ON GENERALIZED
CONVEX SETS, CONES,



Chapter two On Generalized Convex Sets, Cones, and Affine Sets

Chapter 2

On Generalized Convex Sets,
Cones, and Affine Sets

2.1 Introduction

An important class of generalized convex sets, called E-convex sets, has
first introduced and studied by Youness [15]. In this class, Youness relaxed the
definitions of the classical convex sets with respect to an mapping E. Some of
the results introduced in [15], related to E-convex set, are recently studied by
other researchers. Suneja et. al [48] studied E-convex sets and used it to prove
some inequalities. Further study of E-convex sets are recently introduced by
Grace and Thangavelu [25] in which the authors defined E-convex hull, E-cone,
and E-convex cone and studied some of their properties.

In this chapter, we continue studying E-convex sets and E-cone by proving
new properties of these sets. We give new characterizations of E-convex sets,
E-convex hull, and E-convex cone. In addition, we define E-convex cone hull,
E-affine set, and E-affine hull, and we discuss some of their properties and
characterizations. Some examples are given to illustrate these different concepts
and to clarify the relationships between them.
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In Section 2, we give a characterization of E-convex set in terms of the
E-convex combinations of its elements (see Theorem 2.2.2). A new
characterization of an E-convex hull of a set S, is also given (see Theorem
2.2.3), in terms of the set of all E-convex combinations of any finite elements of
the set S. In Section 3, we prove some properties of E-cone and E-convex cone.
We obtain two new characterizations of the E-convex cone set K. The first
characterization (see Theorem 2.3.7) is proved in terms of the E-closdeness of
K under addition and non-negative multiplications. The second characterization
of E-convex cone (see Theorem 2.3.8) is proved in terms of non-negative E-
linear combination of any finite elements of the considered set. Then, we define
E-convex cone hull of an arbitrary set K and discuss some of its properties. E-
convex cone hull of a set K is characterized using the set of all non-negative E-
linear combinations of K (Theorem 2.3.10). Finally, in Section 4, we define E-
affine set, explain its relationship with E-convex set, and prove some properties
related to E-affine sets. As for E-convex set and E-convex cone set, we define
E-affine hull and show characterizations of an E-affine set M (see Theorem
2.4.15) and the E-affine hull of an arbitrary set M (see Theorem 2.4.17). The
characterization of E-affine set and E-affine hull is formulated in terms of E-
affine combinations of all elements of M. Some examples are shown throughout
this chapter to illustrate the aforementioned concepts and to show the
relationship between them. The contents of this chapter have been published

recently in [49].
2.2 Characterizations of E-Convex Set and E-Convex Hull

In this section, we study E-convex sets and E-convex hull of an arbitrary
set, and we give some of their new properties and characterizations. The
following definition will be employed to show a characterization of E-convex

sets.
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Definition 2.2.1 Let S < R™. The set of E-convex combinations of p elements

of S is denoted by S(s,p) and is defined as
S(s,p) ={s =X, LE(s):{sy, ..,sp} €S, ;=0 and X}_, 4; = 1}

Next, we characterize E-convex set in terms of the E-convex combinations of
its elements.

Theorem 2.2.2 Assume that a set S € R™ and S(s,p) is the set of E-convex

combinations of p elements of S defined in Definition 2.2.1 such that the
mapping E appears in Definition 2.2.1 is linear and idempotent. Then S is E-

convex ifand only if S(s,p) € S Vp € N.
Proof. Assume that S is E-convex. We need to show that for each p € N,
S(s,p) cS. (2.1)

We show (2.1) by induction. If p = 1, then there exists s; € S and A, = 1 such
that s = A,E(s;) = E(sy) € S(s,1). Since S is E-convex then, from
Proposition 1.4.1.3(1), s = E(s;) € S. Let p = 2, then there exists s;,s, €S
andA, =0, 1, >0, A; + 4, = 1 such that

s =ME(sy) + 1,E(sy) € S(s,2).
Since S is E-convex, then

s =AME(sy) +A,E(sy) €S.
Assume now (2.1) holds for p = k i.e.,
ifs € S(s, k), thens € S. (2.2)
We must prove that (2.1) is true when p =k + 1. Lets € S(s,k + 1), this
means there exists {s, ..., Sx+1 } € S, and there exists A4, ..., Ax4+1 = 0 such that
k+1 ), = 1. Assume that A, # 1 and let s* is the E —convex combinations of

k elements of the set {s,, ..., Sk+1 } € S. Hence,

s* = E(sy) + -+ Ay 1 E(Skra),

where
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A
1-1,

This yield, ¥t 2 = 1. Thus, s* € S(s*, k), and from (2.2), s* € S. Now,
s1,s* € S, from induction A,E(s;) + (1 —A,)E(s™) € S. Since E is linear, the

A=

>0fori=2,..,k+1. (2.3)

last statement yields

ME(s) + (1= A)(AZE(E(s2)) + -+ + A1 E(E(s41))) €S,
Substituting the values of A7 from (2.3) in the expression above gives

ME(s1) + 2E(E(s2)) + -+ + A1 E(E(Si41)) € S.
Since E is idempotent, then E(E(s;)) = E(s;) €S Vi = 2, ...,k + 2. Thus, the
last expression can be expressed as
s = ME(s)) + A2E(sz) + -+ A1 E(sp41) €S,

Hence, S(s,p) € S. To show the prove of the other direction, assume that
S(s,p) €S Vp € N. In particular, for each s;,s, € Sand1;, 1, >0, 4, +
A, = 1wehave s = 4,E(s;) + 1,E(s,) € S.Hence, S is E-convex. =

A property of E-convex hull of a set S is given next.

Theorem 2.2.3 Let S ¢ R™ and F is the set of all E-convex combinations of

elements of S. That is F = U,ey S(s,p), Where S(s,p) is defined as in
Definition 2.2.1 and the mapping E appears in Definition 2.2.1 is linear and
idempotent. Then F € E-conv(S). Moreover, if E(F) € F, then E-conv(S) =
F.

Proof. To show the first assertion. Assume that s € F, from the definition of

F, there exists {sy, ..., S} € S and 44, ..., 4,, = 0 with Y%, A; = 1 such that

m
5= zAiE(si).
i=1
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Since {si,...,S;} © S € E-conv(S), using the E-convexity of E-conv(S) and
Theorem 2.2.2, every E-convex combination of s;'s must remain in E-conv(S).
Hence, s € E-conv(S) and consequently,
F € E-conv(S) (2.4)
Next, we must show that E-conv(S) € F if E(F) € F. To prove this, it is
enough to show that F is a convex set. Indeed, if F is a convex set and E(F) <
F. Then from Proposition 1.4.1.5, F is E-convex set. The last conclusion with
the fact that S € F vyield E-conv(S) € F as required. Let show that F is a
convex set. Take s,s* € F, then
s= Y LE(s) ands* = XL viE(s),
where {sq,...,Sp,87,...,Sg} €S and {A4,..,4,,¥1,..,¥4} are non-negative
which satisfy
P Ay=1landXl y;=1.
Fix a € [0,1], then the convex combination
as+(1—a)s" =« Zle/liE(si) +(1—a) Zle YiE(s)).
Note that
aY_ A+(A-a) XL,y =1
Therefore, as+ (1 —a)s* € F. i.e, Fis a convex set, and using the
assumption E(F) € F yield Fis E-convex set. Because S € F and S € E-
conv(S). Then
E-conv(S) € F. (2.5)
From (2.4) and (2.5), we obtain E-conv(S) =F. =
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2.3 E-Convex Cone and E-Convex Cone Hull: Properties and

Characterizations

In this section, some properties of E-cone and E-convex cone set are
deduced, and two different characterizations of E-convex cone of an arbitrary
set are introduced. E-convex cone hull is defined and a characterization of E-

convex cone hull of an arbitrary set K is shown.

Proposition 2.3.1

i. IfasetK is E-cone, then E(K) € K.

Ii. If E(K) beaconvex coneand E(K) € K. Then K is an E-convex cone.

Proof. First, let us show (i). Let E(x) € E(K) suchthat x € K. Since K is E-
cone, then aE(x)e K Va=0. If a =1,thenaE(x)= E(x) € K as required.
To prove (ii), it is enough to prove that K is an E-cone since K is already an E-
convex by Proposition 1.4.1.3(2). Consider x € K, then E(x) € E(K) € K.
Since E(K) is acone, then aE(x) € E(K) € K, for each @ = 0. Thus, K is an

E-cone. m

Remark 2.3.2 The converse of Proposition 2.3.1(i) is not true in general (see
Example 1.4.1.14).

For an arbitrary mapping E, the following proposition provides a
condition to ensure that every cone (respectively, convex cone) is an E-cone
(respectively, E-convex cone). Also, the first part of the proposition makes the

converse of Proposition 2.3.1(i) holds.

Proposition 2.3.3 Let E: R" — R" be a given mapping. Then

I. Let K be acone such that E(K) € K. Then K is an E-cone.
li. Let K be a convex cone such that E(K) € K. Then K is an E-convex

cone.
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Proof. To show (i), If E = I, then using Proposition 1.4.1.16, the conclusion
automatically holds. Otherwise, assume that x € K and a = 0. Since E(K) S
K, then E(x) € K. Also, from the assumption, K is a cone, hence, aE(x) € K .
This means K is E-cone. Part (ii) directly follows from Proposition 1.4.1.5 and

part (i). m

Proposition 2.3.4 Let K be E;-cone and E,-cone, then K is an (E;0E,)-cone

and (E,oE;)-cone.

Proof. Assume that x € K and a = 0, we must show that a(E;0E,)(x) =
aE,(E,(x)) € K. Now, K is E,-cone then from Proposition 2.3.1(i), E,(x) €
K. Because K is E,-cone, then using the last assertion and Definition 1.4.1.12,
aE,(E,(x)) € K as required. Similarly, one can show that K is an (E,0E;)-

cone. m

Proposition 2.3.5

I. Let{K;: i€ A} beanon-empty family of E-cones, then U;cp K; IS E-

cone.

ii. Let{K;:i € A} be anon-empty family of E-cones, then N;ep K; IS E-
cone.

lii. LetK be E-cone, E is a linear mapping, and a € R, then the set aK is
E- cone.

iv. If K; and K, be two E-cones, then K; X K, is E X E- cone.

v. If K, and K, be two E-cones and let E is a linear mapping, then the set

K; + K, is E- cone.

Proof. We prove part (i) and in a similar way one can show part (ii). Take an
arbitrary x € U;ep K; Where K; is E-cone for each i € A. Then, for a« = 0,
aE(x) € K; forsome i € A. Hence aE(x) € U;ep K; . Thus, U;cp K; IS E-cone.
The proof of parts (iii)-(iv) proceed in a way similar to that of Proposition
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1.4.1.6(ii1) and Proposition 1.4.1.8, respectively, in which (the sets under
considerations are E-convex), hence the proof of parts (iii)-(iv) are omitted. Let
us show part (v). Let x; + x, € K; + K, where x; € K; and, x, € K,. Then,
from the assumption, for @ > 0, we have aE(x; + x,) = aE(x;) + aE(x,) €

K; + K,. Thus, K; + K, isan E-cone. m

Propositions 1.4.1.6 and 1.4.1.8 together with Proposition 2.3.5 yield the

following result.

Proposition 2.3.6

I. Let {K;:i € A} be a non-empty family of E- convex cone sets, then
Niep K; IS E- convex cone set. [25]
ii. LetK be an E- convex cone, E is a linear mapping, and a € R, then the
set aK is E- convex cone set.
ii. If K; and K, be two E- convex cones, then K; X K, is E X E- convex
cone set. Moreover, if E is a linear mapping then K; + K, is E- convex

cone set.

In [25, Proposition 4.6], a characterization of E-convex cone K is shown if
the image of K under the mapping E satisfies certain conditions. The following

theorems give alternative characterizations of E-convex cone.

Theorem 2.3.7 A set K is E-convex cone if and only if K is E-closed (i.e.,

closed with respect to the mapping E) under addition and non- negative scalar

multiplication.

Proof. Assume that K is E-convex cone. From the definition of E-cone, we
have aE(x) € K, foranya = 0 and for any x € K. Thus, K is E-closed for
non-negative scalar multiplication. Next, we show that K is an E-closed under

addition. Fix x ,y € K which is E- convex set, then
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1 1 1
w = EE(x)+ EE(y) = E(E(x) +E(y)) € K.

Hence, E(x) + E(y) = 2w € K as required. For proving the opposite direction,
assume that K is E-closed with respect to addition and non-negative scalar
multiplication. Then, K is E —cone automatically holds. Let A4,,4, € [0,1] such
that 1, + 4, = 1,and x,y € K then

ME(x) € Kand A,E(y) € K.
Thisyield ,E(x) + A,E(y) € K, and hence K is E-convex set. m

Theorem 2.3.8 Let K be a subset of R® and K(x,p) is the set of E-non-

negative linear combinations of p elements of K. That is

p
K(x,p) = {x = Z/liE(xi): {x1, ., xp} C K, 2; = 0,

=1

where E is linear and idempotent. Then K is E-convex cone if and only if
K(x,p) c K Vp€N.
Proof. Assume that K is E-convex cone. We need to show that for each

p€EN,p =1,
K(x,p) c K. (2.6)

We show (2.6) by induction. Let p = 1 and x € K(x, 1), then there exist x; € K
and A; = 0 such that x = A, E(x;). Since K is E-cone, hence 1,E(x;) € K. If
p = 2, then there exists x;,x, € Kand 1; =0, 4, = 0 such that
x =ME(x)) +A,E(x,) € K(x, 2).
We must show that x = A,E(x,) + 1,E(x,) € K. Since K is E-cone, then
ME(x1),A,E(x,) € K. From Theorem 2.3.7, K is E-closed under addition.
Hence,
E(ME(x1)) + E(A:E(x2)) = LME(E(x1)) + 1,E(E(x;)) € K,
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where we used the fact that E is linear. Since E' is idempotent, then E(E(x;)) =
E(x;) €S Vi=1,2.Thus, the last expression can be expressed as x =
ME(xq) + 2,E(x,) € K, as required. Assume now (2.6) holds for p = k. i.e.,
if x € K(x,k), then x € K, (2.7)

We must prove that (2.6) is true when p =k + 1. Letx € K(x, k + 1), this
means there exists {xj, ...,xx4+1 } € K, and there exists 44, ..., 4,41 = 0 such
that

x =YL LE(x) € K(x, k + 1).
Since K is E-cone, then A, E(xx41) € K and from (2.7), ¥, 4,E(x;) € K.
From Theorem 2.3.7, K is E-closed under addition, thus

YKy E (LE()) + E Qs E(Xeen)) € K.

Using again the fact that E is linear and idempotent, we get

I AE(E(x)) = DI ALE(x) €K
Hence, x = Y¥*11,E(x;) € K. To show the prove of the other direction,
assume that K(x,p) € K Vp € N. In particular, for each x;,x, € K and 4,
Ay =20, 44 +1, =1wehave x = L1E(x;) + ,E(x,) € K and A E(x;) €
K.Hence, K is E-convex cone. m

Next, we introduce a smallest E-convex cone that contains a certain set.

Definition 2.3.9 The E-convex cone hull of a set K, denoted by E-cone(K) is

the intersection of all E-convex cone sets containing K; that is, E-cone(K) =

Nyox N, N are E-convex cone sets.

The following result is analogue to the one introduced in Theorem 2.2.3 for

general E-convex sets.

Theorem 2.3.10 Let K ¢ R™ and H is the set of all non-negative E-linear

combinations of elements of K. That is, H = Upey K(x,p), Where K(x,p) is
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defined as in Theorem 2.3.8. Then H € E-cone(K). Moreover, if E(H) € H.
Then E-cone(K) = H.

Proof: Assume that x € H, from the definition of &, there exists
{x{, .. xp} €K and A4,...,4, =0 such that x = >, 4,E(x;). Since E-
cone(K) is the intersection of all E-convex cones containing K, then from
Proposition 2.3.6 (i), E-cone(K) is also E-convex cone containing K. Using
the fact that E-cone(K) is E-convex cone and {x, ..., X,,} € K € E-cone(K),
we get from Theorem 2.3.8, every non-negative E-linear combinations of x;’s
must remain in E-cone(K). Hence, x € E-cone(K) which vyields, H < E-
cone(K). To show E-cone(K) € H, we follow same technique that used to
prove E-conv(S) € F in Theorem 2.2.3. Namely, we must show that E-
cone(K) € H if E(H) € H. To prove this, it is enough to show that H is a
convex cone set. To show that H is a convex set, follow similar steps that is
used in Theorem 2.2.3 to show that F is a convex set. Next, we show that # is
a cone. Let x € H, then there exists p € N such that x = f=1/1iE(xi) , Where
{x1, .., xp} © K and {44,..,4,} are non-negative scalars. Fix a = 0, then the

non-negative E-linear combination

p P
ax =a LE(x;) = ) (aA)E(x;) EH .
250",

Thus, H is a convex cone set, and since E(H) € H, then from Proposition
2.3.3(ii), H is an E-convex cone set. The last conclusion with the fact that
K € H vyield E-cone(K) € H as required. All together, we obtain H = E-

cone(K). m
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2.4 E-Affine Set, E-Affine Hull and Their Characterizations

In this section, we define E-affine set and E'-affine hull. We study some

of their properties, and discuss their characterizations.

Definition 2.4.1 A set M c R™ is said to be E-affine if AE(x)+ (1—
ME(Y)EM Vx,yeMandA € R.

Remark 2.4.2 It is easy to show that every E-affine set is E-convex set. The

converse does not hold as we show in the next example.

Example 2.4.3 Let Sc R?is defined by S={(x,y) ER?: -1<x <

1,-1<y<1} , and let E:R? — R? is given by
E(x,y) = (%x%y) Vx,y € R. From Examplel.4.1.14, S is E-convex set.

However, S is not E-affine. i.e.,, Let A; = 4,4, = -3, (x,¥,) = (1,1), and
(XZ’yZ) = (0,0) then

4E(1,1) —3E(0,0) = (2,1) ¢ S,
as required.

Remark 2.4.4 As for E-convex set and E-cone, if E =1 the identity mapping,

then every affine set is an E-affine.
An E-affine set is not necessary an affine set as we show next.

Example 245 Let M ={(x,y) € R®:y>0}U{(x,y) € R%x =0} and
E:R?* — R? is given by E(x,y) = (0,y), Vx,y € R. Let (x1,y,), (x5, ¥,) €
M and A,,1, € R suchthat A, + A, = 1. Then

ME(x1,y1) + E(x2,¥2) = (0,415, + 4;y,) E M.

Thus, M is E-affine set. To show that M is not affine, take (0,—2),(3,0) e M
and A, = 4,1, = —3,then
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4(0,—-2) —3(3,0) =(—9,—-8) ¢ M.
Consequently, M is not affine set.

Remark 2.4.6: From Remark 2.4.4 and Example 2.4.5, one deduces that the

class of E-affine sets is a generalization of the class of affine sets.

Proposition 2.4.7

I. Let M is E-affine set, then E(M) € M.
. IfE(M) isaffineand E(M) € M. Then M is an E-affine set.

Proof. Let us show (i). Since M is E-affine set, then for any x,y € M and
A € Rwe have AE(x)+ (1 —A) E(y) € M. Thus, for 1 =1, we get AE(x) +
(1-A1)E(y) =E(x) € M. Hence, E(M) < M. For proving (ii), let x,y € M,
then E(x),E(y) € E(M). Thus, for each 1 € R, we have AE(x)+ (1 —
A) E(y) € E(M) € M. The last statement holds because E(M) is affine. Thus,
M is E-affine set.

Remark 2.4.8 The converse of Proposition 2.4.7(i) does not hold (see Example
2.4.3).

For an arbitrary mapping E, the following proposition provides a

condition to ensure that every affine set is an E-affine.

Proposition 2.4.9 Let E: R™ — R" be a given mapping. If M is an affine set
and E(M) € M then M is E-affine set.

Proof: Assume that x,y € M. Since E(M) € M and M is an affine set, then
E(x),E(y) e M and for eachA,, 1, € R such thatA; + 1, =1 we have
ME(x) + A, E(y) € M. Hence, M is E-affine set. m
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In the next example, we show that for a given mapping E # I, an affine

set may not be an E-affine.

Example 2.4.10 Suppose that M = {(0,y) € R? : y € R} and E: R? — R?, be

defined as E (x,y) = (y, x).
Let (0,y7),(0,y,) € M and A1 € R. We show that
A(0,y1) + (1 =2)(0,y2) € M,

A00,y;) + (1 —=2)(0,y,) = (0, Ay; + (1 — 1)y,) € M. Hence, M is an affine
set. To show that M is not E-affine set, take (x;,y;) = (0,4), (x3,y,) = (0,8),

and let A = % . Then,

1 1
AE((x1,y1)) + (1 = DE((x2,¥2)) = P (4,0) + P (8,0)

=(6,0)¢M
Then, M is not E-affine.

Remark 2.4.11 The union of two E-affine sets is not E-affine set as it

demonstrated in the next example.

Example 2.4.12 Define E: R? — R? such that E(x,y) = (2x,y). Let M; =
{(x,y) ER?:x=0}and M, ={(x,y) € R?:y = 0}. We show that M, is
E-affine set. Suppose that (0,y,),(0,y,) € M; and A;,4, € R such that
A1+ 1, = 1then

ME0,y,) + ,E(0,y;) = (0,4,y1 + 1;¥;) € M;.
Similarly, we can show that M, is E-affine set.
Now, take (0,3) € M, ,(4,0) € M,,and A, = —=5,1, = 6.Then
—5E(0,3) + 6E(4,0) = (48,—15) ¢ M, U M,,
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thus M; U M, is not E-affine set.

Proposition 2.4.13 Let M be E,and E,-affine sets, then M is an (E,0E,) and
(E,oE,)-affine set.

Proof. Assume that x,y € M and 4;, 4, € R such that1; + 4, = 1. Since M
is E,-affine set, then form Proposition 2.4.7(1), E,(x) and E,(y) € M. Now,

because M is E; -affine set, then using the last assertion, we get

ME;(E;(x)) + A5 E1(Eo(¥)) = 2,(E10E,) (x) + A,(E,0E,) (¥) € M.

Hence, M is an (E,oE,)-affine set. In the same way, we can show that M is

E,oF,-affine set. m

Proposition 2.4.14

I. Let {M;:i € A} be a non-empty family of E-affine sets, then N;cp M;

Is E- affine set.

Ii. Let M be E-affine set, E is a linear mapping, and a € R, then the set
aM is E- affine set.

ii. If M; and M, be two E-affine sets, then M; X M, is an E X E- affine
set.

iv. If M; and M, be two E- affine set and let E is a linear mapping, then
M; + M, is E- affine set.

Proof. The proof follows in the same way as for the proof of [15, Proposition
2.4, Lemma 2.2], [25, Proposition 3.2], and Proposition 1.4.1.8. The only
difference is that, for E-affine sets, we take 4,,A, belongs to R (rather than to

the closed interval [0,1]). m
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Theorem 2.4.15 Let M be a subset of R™ and M(x,p) is the set of E-affine

combinations of p elements of M. That is
M(x,p) ={x = ?zl/liE(xi):{xl,..,xp} cM, 4; €R and ¥F_ A; = 1} such
that the mapping E given in M(x,p) is linear and idempotent. Then M is E-
affine setifand only if M(x,p) €M Vp €N.
Proof. The proof is analogous to the one of Theorem 2.2.2. =

In the same way E-convex hull and E-convex cone hull was defined, one

can introduce E-affine hull as follows.

Definition 2.4.16 The E-affine hull of a set M, denoted by E-af f (M) is the

intersection of all E-affine sets containing M; that is,
E-aff(M) = Nyaou N, N are E-affine sets.

Theorem 2.4.17 Let M < R™ and M is the set of all E-affine combinations of
the elements of M. That is

M = Upen M(x,p),

where M (x, p) is defined in Theorem 2.4.15. Then M’ € E-af f(M). Moreover,
if E(M) € M. Then E-aff(M) = M.
Proof. The proof follows in a way similar to that of Theorem 2.2.3. First, we
prove M € E-aff(M). Assume that x € M, from the definition of M, there
exists {xq,..,xn} €M and 44,..,4,, € R with }™, 1, =1 such that x =

mLoAE(x). Since  {xy,..,xp} M c E-aff(M), then using Theorem
2.4.15 and the fact that E-aff(M) is E-affine set, every E-affine combination
of x;'s must remain in E-af f(M). Hence, x € E-aff (M) and consequently,

M S E-aff(M). (2.8)

Next, we must show that E-af f(M) € M if E(M) € M. As we have shown in
Theorem 2.2.3, it is enough to show that M is an affine set. That is, if M is an
affine set and E(M) € M. Then from Proposition 2.4.9, M is E-affine set. The
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last conclusion with the fact that M € M vyield E-af f(M) € M as required.
To show that M is an affine set. Let x,y € M, then

x=Y_  LE(x) andy = ¥, vE(),
where {xy, ..., xp, ¥1, .., ¥s} € S and {44,..,4,, ¥4, ..., ¥s} are real numbers such

that Zle/li =1land Y;_,v; = 1.Fix @ € R, then the affine combination

(4 s
ax+(1-ay= ) (@IEE)+ ) (1-aEGD.

Therefore, ax+ (1 —a)y e M. i.e., Mis an affine set, and using the
assumption E(M) € M yield M is E —affine set. Since M € M and M € E-
af f(M).Then

E-aff(M) € M. (2.9)
From (2.8) and (2.9), we obtain E-af f(M) = M. =
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Chapter Three

On Convex Functions, E -Convex Functions
and Their Generalizations

3.1 Introduction

E-convex functions is considered as an important generalization of convex
functions. This class of functions is established by Youness [15] in the same
paper in which E-convex set is first defined. As for E-convex set, the mapping
E played an essential role in the definition of E-convex function. Despite the
importance of Youness's first paper [15] on E-conexity, some of the results
appeared in this paper are incorrect (see [54]). This motivates Chen to introduce
new classes of E-convex functions called semi E-convex, quasi semi E-convex
functions and pseudo semi E-convex functions. These functions are
generalization of the class of convex functions. Using those functions, Chen
improved Youness's incorrect results and study some properties of those
functions [52, 53]. Another class of functions which are generalization of E-
convex function is independently studied by different authors. This class

includes E-quasiconvex and E-pseudoconvex functions [17, 40, 56].

In this chapter, we introduce and prove some general properties and
differentiability properties of generalized convex functions and E-convex
functions, respectively. We also provide some characterizations of convex
functions, E-convex functions, and their generalizations functions mentioned
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above. In Section 2, a variety of properties related to E-convex functions and
some of generalized convex functions mentioned above are introduced. In
Section 3, some new characterizations of convex function, E-convex function,
and their generalizations are discussed in terms of different level sets and
different forms of epigraphs which are related to these functions. Namely, we
introduce some new properties and characterizations of convex function, quasi
convex functions, and quasi semi E-convex functions in terms of some a-level
sets of f (see Propositions 3.3.2, 3.3.3, 3.3.6, 3.3.7). We also show some new
properties and characterizations of semi E-convex function, E-convex function,
and convex function using the epigraph sets epif, epig f and epif f (see
Propositions 3.3.12-3.3.22). Finally, in Section 4, some differentiability
properties of E-convex functions are discussed. The contents of section 3.3 have

been published recently in [50, Section 2].

For the sake of brevity in writing the statements of the properties in this

chapter, we refer to the following assumption.

Assumption A. Let f:S € R® — R be a real valued function, and E: R"* —

R™ is a given mapping.

Remark: For simplicity in appearance, in the rest of the thesis, we omit in the
proofs and calculations the parentheses from E (x), and writing it instead as Ex

whenever it seems convenient.
3.2 Some Properties of Generalized Convex Functions

In this section, we discuss some basic properties of E-convex functions
and their generalization E-quasiconvex functions. Similar properties are also

shown for some generalized convex functions which are semi E-convex, pseudo

semi E-convex, and quasi semi E-convex functions.
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We start first by showing that the set of E-convex functions (respectively,
semi E-convex) functions is closed under addition and nonnegative scalar

multiplication. Same property holds for classical convex functions.

Theorem 3.2.1 Let f,g:S — R are two functions such that S and E are

defined as in Assumption A and S is an E-convex set. Then

1. If f and g are E-convex on S, then af + g is an E-convex on S
forall ¢, = 0.

2. If fand g are semi E-convex on S, then af + B g is a semi E-convex on
S foralla,p = 0.

Proof. We prove (1) and in a similar manner one can show (2). Let x,y € S,
and 1€ [0,1].Setz =AE(x) + (1 —A)E(y) € S. Then

(af +Bg )z) = af (2) + Bg(2).
Using the E-convexity of fand g and the above equality, we obtain

(af + Bg)(2) = af (2) + Bg(2) < aAf(Ex) + a(1 — D)f(Ey)
+ BAg(Ex) + (1 —N)g(Ey),

= Aaf +Bg)(Ex) + (1 = D(af +Bg)(EY).
Hence, af + fg isan E-convexon S. m

Theorem 3.2.2 Let f,S and E are defined as in assumption A such that f is a

semi E-convex on the E-convex set S. Assume also that G: R — R is a convex

non-decreasing function. Then Gof is a semi E-convex function.

Proof. Let x,y € S,and 0 < A < 1. Since, f is semi E-convex on the E-convex
set S, then AE(x) + (1 — A)E(y) € S and

fAE(x) + (1= DEWY) S Af(x) + (1 = Df (),

52



Chapter Three On Convex Functions, E -Convex Functions and Their Generalizations

G(fE@) + (1= DEM))) < G(Af () + (1 = DF D).

The last inequality holds because G is a non-decreasing function. Using the

convexity assumption of G, the right-hand side of the last inequality yields,
G(f(AE(x) + (1 - DE()) = AG(f(x)) + (1 = HG(f (),

e, (Gof)(AE(x) + (1 = DE)) < A(Gof)(x) + (1 = D) (Gof)(»).

Thus, Gof is a semi E-convex on S. m

An analogous to the above property is followed when f is E-convex

function.

Theorem 3.2.3 Let £, S and E are defined as in assumption A such that f is an

E-convex on the E-convex set S. Assume also that G: R — R is a convex non-

decreasing function. Then Gof is an E-convex function.

Proof. The proof follows in exactly same steps as in the above Theorem. The
only difference occurs in applying the definition of E-convex function rather

than the definition of semi E-convex function. =

Theorem 3.2.4 Let f,S and E are defined as in assumption A such that f is an

E-quasiconvex onthe E-convex set S. Let G:R — R is a non-decreasing

function. Then Gof is an E-quasiconvex function on S.

Proof. Let x,y € S, and 0 < 2 < 1. From the definition of f and S, we have
fAE(X) + (1= DE(y)) < max{f(E(x)), f(E(y))},

and AE(x) + (1 — A)E(y) € S. Since G is non-decreasing function then,

G(f(AE(x) + (1 = DEY)) < G(max{f (E(x), fE(¥)}). That s,

(Gof)(AE(x) + (1 = DE(y) < max{G(f(E(x)), GUE(Y))},
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= max{ (Gof) (E(x)), (Gof) (E()))}.
Hence, Gof is E-quasi convexon S. m

Corollary 3.2.5 Let f,S and E are defined as in assumption A such that f is an

E-convex onthe E-convex set S. Assume also that G:R — R iS a non-

decreasing function. Then Gof is an E-quasiconvex function on S.

Proof. From [40, p. 3339], every E-convex function on S is E-quasiconvex on
S. Consequently, f is E-quasiconvex on S. Using now Theorem 3.2.4, we obtain

Gof is E-quasiconvexon S. m

The composite property is also held if f is a pseudo semi E-convex as we

show next.

Theorem 3.2.6 Let f, S and E are defined as in assumption A such that f is a

pseudo semi E-convex on the E-convex set S. Assume also that G: R — R is a
non-decreasing strictly positive sublinear mapping and b:RX R — R is a

strictly positive function. Then Gof is a pseudo semi E-convex.

Proof. Let x,y € S, 4 € (0,1). From the definition of f we have, if f(x) <

f(y) then fAE(x)+ (1 - VDEW)) < f(y) + A(A—1)b(x,y). Since G is a
non-decreasing function, then, using the last expression, if (Gof)(x) <

(Gof)(y) we get
(GofY(AE(x) + (1 = DEW)) < G[f(y) + 44 = Db(x, y)].

From the assumption, G is a sublinear mapping. Thus, the right-hand side of the

last inequality yields,
(Gof)(AE(x) + (1 = DEW)) < (Gof)(y) + A(4 = 1)(Gob)(x,y)

= (Gof)(») + 2(A — Db(x, ),
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where b(x,y) = (Gob)(x,y). Since G and b are strictly positive functions,

then b(x, y) is a strictly positive. Hence, we obtain the required conclusion. m

Remark 3.2.7: It was shown in [56, Theorems 3.6-3.7] that the supremum of an

arbitrary non-empty collection of E-convex (respectively, E-quasiconvex)
bounded above functions {f;:i € A} onE- convex set S is E-convex
(respectively, E-quasiconvex) on S. Similar property is given in [53, Proposition
2] for semi E-convex functions f; for each i € A. The latter proposition is given

in [53] without proof. We give its proof next.

Proposition 3.2.8 Let f;: R™ — R is semi E-convex and bounded from above

on an E-convex set S ¢ R™ with the same map E:R™ — R" for all i € A.

Then, f = supjep f; 1S a semi E-convex on S.

Proof. Since f; is a semi E-convex, Vi € A, then, foreach x,y € Sand 0 < 1 <

1 we have

fiQE@) + (1 - DEY) < Afi(x) + (1 = Dfi(y) Vi €A

Taking the supremum to the right-hand side of the inequality above, we get

f(AEX) + (1 - DEW)) < sup [2f;(x) + (1 = D] Vi € A

Then, Silel}\)ﬁ(w(x) +(1-DE®W)) < Sig}\)[/lﬁ(X) +@A =D ]

From the assumption and the fact that supM and supN are finite, then sup(M +
N) =supM +supN, the last inequality yields,

fAE() + (1 =DE(y) < Asup fi(x) + (1 = 2) sup fi(y)

=Af )+ A =-Df ).

Then, we get f isa semi E —convex. m
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Similar result is formulated next, if the functions f; are quasi semi
(respectively, strictly quasi semi / strongly quasi semi) E-convex or pseudo

semi E-convex, for each i € A.

Proposition 3.2.9 Let f;: R®™ — R is bounded from above foreach i € Aand S

Is E-convex set with the same map E: R"™ — R"™. Define, f: R — R such that

f = sup;ep fi - Then

1. If f; isaquasi semi E-convex on S for each i € A, then f is a quasi semi
E-convex.

2. If f; is strictly quasi semi E-convex on S, for eachi € A. Then, f is
strictly quasi semi E-convex.

3. If f; is strongly quasi semi E-convex on S, for eachi € A. Then, f is
strongly quasi semi E-convex.

4. If f; pseudo semi E-convex bounded above functionson S, for eachi € A
and b;: RX R — Ris a strictly positive, Vi € A such that b(x,y) =

supb; (x, y) exists in R. Then f is pseudo semi E-convex on S.
ieA
Proof. To show (1), f; is a quasi semi E-convex, Vi € A. Then, for each

x,y€Sand 0 <A1 <1we have

fiQE(x) + (1 = DE(Y)) < max{f;(x), fi(y)} Vi € A.

Taking the supremum for the right-hand side and then for the left-hand side, we

get

supfi (AE (x) + (1 = DER)) < sup{max(f;(x), i)},

FOEG) + (1= DEG)) < max{supf;), supfi»),

< max{f (x), f(y)}.

56



Chapter Three On Convex Functions, E -Convex Functions and Their Generalizations

The last inequality yields, f is a quasi semi E-convex. The proof of Parts (2)
and (3) proceed in a way similar to the proof of part (1). The only different is
that we require strictly inequality with f(x) # f(y), when f is strictly quasi
semi E-convex, and x # y in case, f is strongly quasi semi E-convex. Finally,
we show Part (4), let {f;:i € A} is an arbitrary nonempty collection of bounded

above pseudo semi E-convex on S. By the definition of f;, we have

If f;(x) < f;(y), thenforalli € A
fi{(AE(x) + (1 = DEW)) < f;(y) + 1A = Dby(x,y)
ie., sup fi(AE@) + 1 = DE(Y)) < S;g/l\){ﬁ () + A = Dbi(x,¥)}.

That is,
sup f;(AE(x) + (1 = DE()) < supfi(y) + A(A — 1) sup b;(x,y).
lEA LEA lEA
Now from the assumption, b(x,y) = sup b;(x,y).
ieA

This yield,

fAEX) + (1 -=DEW)) < f() + 44 - Db(x,y),

where b(x, y) is strictly positive function. Thus, f is pseudo semi E-convex on
S. m
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3.3 Some Characterizations of Convex Function, E-Convex

Function and Their Generalizations

In this section, we provide some relations and characterizations of convex
functions, quasi convex functions, and quasi semi E-convex functions using the
a —level sets SE[f] and E —S,[f] of a function f. Note that, some
characterizations of E-convex function and its generalizations (semi E-convex
functions, quasi semi E-convex functions, and E-quasiconvex functions) are
given using S, [f] and S, g[f] (see [53, Proposition 4, Proposition 6] and [40,
Theorem 3.10, Theorems 3.12-3.14]). We also introduce new relations and
characterizations of semi E-convex function, E-convex function, and convex

function using the epigraph sets epif, epiy f and epif f.
The following definition is needed in this section.

Definition 3.3.1 [20, 34] Let S; and S, be two subsets of R™. Then S, is said to

be slack 2-convex with respect to S, (for short, S; is s. 2-convex w.r.t. S,) if,

for every for every s;,s, € S; NS, and every 0 < A < 1 such that (1 —A)s; +
ASZ E Sz, we get (1 - A)Sl + ASZ E Sl'

The next two propositions give sufficient conditions for SEZ[f] to be a

convex set and a s. 2-convex w.r.t. E(S), respectively.

Proposition 3.3.2 Let £, S, and E are defined as in assumption A such that f is

convex on the convex set S, E is a linear mapping, and E(S) is a convex set.

Then SE [f] is a convex set, for all a € R.

Proof. Let « € R and E(s;),E(s,) € SE[f], then E(s;),E(s,) € E(S) and

f(sy) <a,f(sy) < a.Since E(S) is a convex set, then
AE(sy) + (1 — A)E(sy) € E(S). (3.1)

Foreach 0 < 4 < 1. Using (3.1) and the linearity of E,
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AE(s) + (1 — DE(s;) = EQAs; + (1 — D)s,) € E(S). (3.2)
This means that As; + (1 — A)s, € S. From the convexity of £ we have
FQsy + (1= D)s) < Af(s) + (L= Df(sy) < a. (3.3)
By (3.2) and (3.3), we get AE(sy) + (1 — DE(s,) € SE[f]. m

Proposition 3.3.3 Let £, S, and E are defined as in assumption A. If f isa

convex function on the convex set S, and E is a linear mapping. Then SZ[f] is a

s. 2-convex w. r. t. E(S), for all « € R.

Proof. Let @ € R. Assume that E(s;), E(s,) € SE[fINE(S) such that for each
0<A<1, we have AE(s;)+ (1 —A)E(s,) € E(S). Since E(s;),E(sy) €
SE[f], then sy, s, € S,and f(s;) < a, f(s,) < a. By the linearity of E,

AE(s1) + (1 = A)E(sy) = E(As; + (1 = A)s,) € E(S). (3.4)
This means As; + (1 — A)s, € S. Since f is a convex function, then
flsy + (1= Dsp) Af(s) + (A= Df(sy) < a (3.5)

From (3.4) and (3.5), AE(s;) + (1 — 2)E(s,) € SE[f], which implies, SE[f] is

as.2-convexw.r.t. E(S). m

Remark 3.3.4 If the set SE[f] is convex or s. 2-convex w. r. t. E(S), it is not

necessary that f is a convex function as we show in the following example.

Example 3.35 Let S =[-10,10] € R, E: R — R be a linear mapping such
that E(x) = %x for each x € R and define a function f: S — R as f(x) =

x3 for each x € S. It is clear that f is not a convex function on S. However, the

level sets

SE[f] = {%x € [-5,5]:x3 < a} = {x € [-10,10]: x3 < a}
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are either empty sets or intervals. In either case, SE[f] is convex, for all « € R.
Also, since E(S) and SE[f] are convex sets, then for each E(s;),E(s,) €
SE[FINE(S) such that

AE(sy) + (1 — A)E(sy) € E(S),
forevery 0 < A <1, we have

AE(s;) + (1 = DE(s;) € SZ[f],
forall « € R.i.e., SE[f]isas. 2-convex w. r. t. E(S).

The following proposition proposes a necessary and sufficient condition for

f to be a quasiconvex.

Proposition 3.3.6 Let £, S, and E are defined as in assumption A. If E is a linear

mapping, S is a convex set. Then SE[f] is a convex set, for all « € R if and

only if f is a quasi convex on S.

Proof. First, we prove f is a quasi convex on S. Lets;,s, €S, and set a =
max{f (s;), f(s,)}. Let E(s;),E(s,) € SE[f] which is a convex set, then for
each0 <A< 1.

AE(s1) + (1 — DE(sz) € S [f]. (3.6)
Using (3.6), and the linearity of E, we get
AE(sy) + (1 = DE(sy) = E(Asy + (1 — A)s,) € SE[f] € E(S).
Then,
As; + (1 —A)s, €S.

and f(1s; + (1 — 1)s,) < a = max{f(s,), f(s,)}. Hence, f is a quasi convex
on S. Let us show the other direction and obtain SE[f] is a convex set, for all
a €R. Let « € R and E(sy),E(s,) € SE[f], then s;,s, €S and f(s;) < «a,
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f(s;) < a. Since S is convex and E is linear, then, for each 0 <A <1,
/151 + (1 - A)SZ e S and

AE(sy) + (1 = A)E(sy) = E(As; + (1 — A)sy) € E(S). (3.7)
From the assumption, f is a quasi convex on S, thus,
f(Asy + (1 — A)sy) < max{f(s1), f(s2)} < a. (3.8)
From (3.7) -(3.8), we conclude SE[f] is a convex set. m

A necessary and sufficient condition for the level set E —S,[f] of a

function f to be E-convex is given next.

Proposition 3.3.7 Let f:R" — R, S € R" is E-convex set, and E: R" — R".

Then foE is a quasi semi E-convex on S if and only if E — S,[f] is E-convex

set, for all ¢ € R.

Proof. let @ € R,and sy, s, € E — Sy[f], then f(E(sy)) < @, and f(E(sy)) <
a. We intend to show that AE(s;) + (1 —A)E(s,) € E—S,[f], for each

0 < A < 1. Since foE is a quasi semi E —convex on the E —convex set S, then
AE(sy) + (1 — DE(sy) € S.
and
(foE)(AE(s1) + (1 — DE(s,)) < max{(foE)(s1), (foE)(s2) } <a.

Therefore, AE(s;) + (1 — 1)E(s,) € E — S,[f]. To show the reverse direction,
let 51,5, € E—S,[f], and 0 <A < 1. Set @ = max{(foE)(s;), (foE)(s,) }.
Since E — S,[f] is E-convex, then AE(s;) + (1 —A)E(s,) € E — S,[f] such
that

fEQE(s)) + (1 = DE(sz)) < a = max{(foE)(s,), (foE)(sz)}.

61



Chapter Three On Convex Functions, E -Convex Functions and Their Generalizations

ie,  (foE)(AE(s1) + (1 = ME(sz)) < max{(foE)(s1), (foE)(sz) }.  Thus,
foE isaquasi semi E-convexonsS. m

In general, the epigraphs defined in Definition 1.4.2.11 are not equal, e.g.
(see [53]). We start first with the below proposition which shows the
relationship between epif and E — e(f), epiff, and episf , respectively. The
first part of this proposition has been proved in [52, Theorem 2.2]. We get same

conclusion but under weaker condition than the one assumed in [52].

Proposition 3.3.8 Let f, S, and E are defined as in assumption A such that
f(E(s)) < f(s) VsE€S,then

1. epif c E —e(f).

2. epiff c epi:f.
Proof. To show (1), let (s,a) € epif, from the definition of epif and the
assumption, f(E(s)) < f(s) < a which implies that (s,a) € E —e(f). For
proving (2), suppose that (E(s), @) € epif f, then (E(s),a) € E(S) X R such
that f(s) < a.Since f(E(s)) < f(s),then f(E(s)) < a. Thus, (E(s),a) €
epigf asrequired. m

Proposition 3.3.9 Let f,S, and E are defined as in assumption A such that
E(S) € S, then epiy f C epi f.

Proof. Let (E(x), @) € epig f, thus
(E(x),@) € E(S)XR and f(E(x)) < a.

Since E(S) < S, then (E(x),a) € S X R.Thus, (E(x),a) € epif. m

Remark 3.3.10 In the preceding proposition, if E: S — S then epiy f € epi f

automatically holds [52]. However, if E: R™ — R", the assumption E(S) € S
is essential for proving epigz f € epi f. If we ignore this assumption, then the

conclusion of Proposition 3.3.9 may not hold. For example, let S = [—-6,6] c R
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and E:R — R defined as E(x) = 2x, for all x € R. Let f:S — R such that
f(x) =x? forallx € S. Clearly, E(S)=[-12,12] ¢ S. ie.,, S is not E-
convex set [15]. Moreover, epip f ¢ epi f. Indeed, let (E(6),150) € epig f,
i.e, f(E(6)) =144 < 150 but E(6) = 12 & S. Thus, (E(6), 150) ¢ epif.

In classical analysis, one of the possible characterization of convex

functions is given in terms of epi f as in the following proposition.

Proposition 3.3.11 [44, p.21] let f: R™ — R. Then epif is a convex set if and

only if f is convex.

Youness [15] has provided a characterization of E-convex function using
E-e(f) (see [15, Theorem 3.1]). Unfortunately, this characterization has some
erroneous (see [12, Counterexample 2.1] for a counter example). This
motivates Chen [53, Proposition 9] and [52, Theorems 2.4-2.5, 2.8] to provide
some characterizations of semi E-convex function f in terms of epif, E — e(f),
epirf, and epiff. Duca and Lupsa [12, Theorems 3.1-3.5], on the other hand,
relate E-convex function f with epif and epiz f. In what follow, we give new
relations and characterizations of semi E-convex functions, E-convex functions,
and convex functions in terms of epif, epiy f and epif f. We start first with
sufficient conditions for f to be semi E-convex function using the epigraph
epif f. Another sufficient condition, for this result, is shown in [52, Theorem
2.8].

Proposition 3.3.12 Let £, S, and E are defined as in assumption A, if S is E-

convex, f(E(s)) < f(s) Vs €S, and epiff is a convex set. Then f is a semi

E-convex function.

Proof. Let s,,s, € S such that (E(sl),f(sl)) ,(E(sy), f(s3)) € epif f which is
a convex set. Thus, for each 0 < 1 < 1 we have
(AE(s)) + (1 = DE(s), Af (s1) + (1 — D)f (s2)) € epi®f S E(S) X R.

63



Chapter Three On Convex Functions, E -Convex Functions and Their Generalizations

Since AE(s;) + (1 — A)E(s,) € E(S),then 3 w € §, such that
E(w) = AE(s;) + (1 — 1)E(s,) and
fw) < Af(s1) + (1 = Df (s2). (3.9)

From the assumption and the inequality in (3.9),
f(AE(s) + (1 = DE(sy)) = (F(EW))
Sfw) <Af(s1) + (A= Df(s2) -

Hence, f is a semi E-convex function. m

Proposition 3.3.13 Let £, S, and E are defined as in assumption A, if S is E-

convex, E(S) is convex, f(E(s)) < f(s) Vs €S, and epif is as. 2-convex

w.r. t. E(S) X R. Then f is a semi E-convex function.

Proof. The conclusion directly follows from [12, Theorem 3.4] and [53,
Proposition 5]. Indeed, since S is E-convex set, E(S) is a convex set, and epif
is a s. 2-convex w. r. t. E(S) X R, then using [12, Theorem 3.4], f is an E-
convex function. Applying [53, Proposition 5], the last conclusion with the

assumption f(E(s)) < f(s) Vs e Syield f isasemi E-convex function. m
A necessary condition for f to be semi E- convex on S is given next.

Proposition 3.3.14 Let £, S, and E are defined as in assumption A. Assume that

S is E-convex set and f is semi E- convex on S. Then epif isas. 2-convex w.
r.t. E(S) X R.

Proof. Suppose that (s;, @), (s,, B) € epif N (E(S) X R) such that A(s,, a) +
(1—-2A)(s,,B) €EE(S) xR. Let0 <A <1, we must prove that

(As; + (1 = A)s,, da+ (1 — A)B) € epif.

Because (s, @), (s,, B) € epif, then f(s;) < a and f(s,) < . We also have
(s1,a),(s,,B) € E(S) X Rand S is E-convex then from Proposition 1.4.1.3(1).
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s1,5, €E(S) € Sand As; + (1 — A)s, € E(S) € S. (3.10)
From the first inclusion in (3.10), there exists s, w € S such that
s; = E(s) and s, = E(w). (3.11)
Since f is a semi E-convex on S, thus, from (3.10) and (3.11),
fQAs; + (1= D)s,) = F(AE(s) + (1 — DEW))
< M (E() + A~ DF(EW))
=AM (s1)+ (1 —=2A)f(s2)
< Aa+ (1-21)B. (3.12)
From (3.10) and (3.12), (As; + (1 — A)sp, Aa + (1 — 1)B) € epif. m

The next proposition provides a necessary condition for f to be E-convex
function using the set epizf. The sufficient condition is given in [12, Theorem
3.1].

Proposition 3.3.15 Let £, S, and E are defined as in assumption A. If E(S) is a

convex set and f is an E-convex function on the E-convex set S. Then epigf is

a convex set.

Proof. Assume that (E(s,),a),(E(s,),B) € epigf. From the definition of
epigf, we have f(E(sy)) < a,f(E(sy)) <p and E(s1),E(s,) € E(S). Since

E(S) is a convex set, it follows that, for each 0 < A < 1, we have
AE(sy) + (1 — DE(s,) € E(S). (3.13)
Since £ is an E-convex function, then
fQAE(s1) + (1 = DE(s2))< Af (E(sp)) + (1 = Df(E(s2))
<ila+(1-2p. (3.14)
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From (3.13) and (3.14), we get (1E(s)) + (1 —DE(sy),Aa+ (1 —-A)p) €

epipf.i.e., epipf isaconvex set. m

Combining the preceding Proposition and [12, Theorem 3.1], we obtain the

following result.

Proposition 3.3.16 Let £, S, and E are defined as in assumption A. Assume that

E(S) isaconvex set and S isan E-convex set. Then epigf is a convex set if

and only if f is an E-convex function on S.

Another necessary condition for f to be an E-convex function using the set

epigf is given next.

Proposition 3.3.17 Let £, S, and E are defined as in assumption A. If f isan E-

convex on the E-convex set, S. Then epigfisas. 2-convex w. r.t. E(S) X R.

Proof. Assume that (E(sy), @), (E(s2),B) € epirfN (E(S) X R) such that,

foreach 0 < A <1, we have
(AE(s1) + (1 = DE(sy), Aa+ (1 = A)B) € E(S) X R,

From the last assertion and the E-convexity of S, we have

AE(s)) + (1 —A)E(sy) € E(S) € S. (3.15)
Since f is E-convex, then

FAE(s) + (1= DE(sp)) < Af(E(sp)) + (1 = DF(E(s,))
<la+ (1-2A)B. (3.16)

From (3.15) and (3.16), it follows that

(AE(s1) + (1 = ADE(sy), da+ (1 = )B) € epigf, as required. m
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The converse of the preceding proposition is satisfied when E(S) is a
convex set (see [12, Theorem 3.2]). Consequently, the following proposition

follows.

Proposition 3.3.18 Let £, S, and E are defined as in assumption A. Assume that

E(S) isaconvex set and S is an E-convex set. Then epigf is as. 2-convex w.

r.t. E(S) x Rif and only if f is an E-convex function on S.

The following two propositions give necessary conditions for f to be a
convex function using, the convexity and the slack 2-convexity of the set epif f,

respectively.

Proposition 3.3.19 Let £, S, and E are defined as in assumption A. If E(S) is a

convex set, f is aconvex function on the convex set S, and E is a linear

mapping. Then epif f is a convex set.

Proof. Suppose that (E(s;),a),(E(s,),B) € epiffand0 <A1 <1. We must
show that  (AE(sy) + (1 —DE(sy), Aa + (1 — )P) € epiff. From the
definition of epiff, we have f(s;) < a,f(s,) < B and E(sy),E(s,) € E(S).

Since E(S) is a convex set and E is a linear mapping, then
AE(s;) + (1 — DE(s,) = E(As; + (1 — A)s,) € E(S), (3.17)
where 1s; + (1 — A)s, € S. Since f is a convex function on S, then
fAs; + (1 = D)s)S Af(s1) + (A = Df(sy) <da+ (1 -21B. (3.18)

Thus, from (3.17) and (3.18), (AE(sy) + (1 — DE(s,), da + (1 =) €

epif f, and hence, epif f is a convex set. m

Proposition 3.3.20 Let £, S, and E are defined as in assumption A. Assume that

f is a convex on the convex set S, E is a linear mapping, and f(E(s)) <

f(s) forall s € S. Then epiffisas.2-convex w.r.t. E(S) X R.
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Proof. (E(sy), @), (E(s,),B) € epif fN (E(S) X R) such that, for 0 < 1 < 1,
we have (AE(s;) + (1 —AD)E(sy),Aa+ (1 —1)B) € E(S) X R,i.e,

AE(s) + (1 — DE(sy) € E(S). (3.19)

Since (E(s1), @), (E(s,),B) € epif f, then f(s;) < a and f(s,) < B. Because
E is a linear mapping, hence, AE(s;) + (1 —AD)E(sy) = E(As; + (1 —A)s,) €
E(S). Thus,As; + (1 —A)s, € S. Using the last two assertions and the
assumption f(E(s)) < f(s) forall s € S, we get

f(AE(sy) + (1= DE(s2)) = f(E(sy + (1= Ds)
< f(As; + (1 —A)sy)
<da+ (1-21)B. (3.20)

By (3.19) and (3.20), we obtain (AE(s;) + (1 — )E(s,), Aa + (1 — 1)) €

epif f, as we want to prove. m

The next proposition suggests a sufficient condition for f to be a convex

function using the set epiff.

Proposition 3.3.21 Let f,S, and E are defined as in assumption A. IfE is a

linear mapping, S is a convex set, and epif f is as. 2-convex w. r. t. E(S) X R.

Then f is a convex function.

Proof. Lets;,s, €Sand 0 <A < 1. Let (E(s1),f(s1)),(E(sy),f(sy)) €
(E(S) x R)Nepif f such that whenever

(AE(sy) + (1 = DE(s2), Af (s1) + (1 = D) f(s3)) € E(S) X R.

then (AE(sy) + (1 = DE(s3), Af (s1) + (1 — D) (s2)) € epiff.

Since E is a linear mapping, the last statement yields
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(AE(S1) + (1= DE(s2), Af(sy) + (1 — A)f(sz))
= (E(Asy + (1 = D)s2), Af (s1) + (1 = Df (s2)) € epi®f.

Thismeans f(As; + (1 —A)s,) < Af(sy) + (1 — 1) f(s,). From the

convexity of S, As; + (1 — A)s, € S. Therefore, f is a convex function. m
From Propositions 3.3.20 and 3.3.21, the following result deduces.

Proposition 3.3.22 Let f,S, and E are defined as in assumption A. IfE is a

linear mapping, S is a convex set, and f(E(s)) < f(s) for all s €S. Then

epif f isas. 2-convex w. r. t. E(S) x R if and only if f is a convex function.
3.4 Differentiability Properties of E-convex Functions

The differentiability of E-convex functions has been briefly studied by
Youness [16]. It is also discussed recently by Soleimani-damaneh [40]. Both
researchers presented some characteristics of differentiable of E-convex
functions by using different approaches (for more details, see Lemmas 3.1-3.2
in [16], and their counter parts Lemmas 2.3-2.4 stated in [40], respectively).
According to Lemmas 2.3-2.4 [40], Soleimani-damaneh [40, Proposition 2.5]
provided a characterization of differentiable E-convex functions with respect to
E-monotonicity of the gradient of the differentiable function. In this section, we
prove the characterizations of E-convex (respectively, E-concave) functions
using different assumptions (see Theorems 3.4.1-3.4.2). We also obtain
differentiability properties for strictly E-convex (respectively, E-concave)
functions. Some test criteria of E-convexity and E-concavity of a function are
presented in this section with an illustration example (see Theorem 3.4.7 and
Example 3.4.8).

Theorem 3.4.1 Let £, S, and E are defined as in assumption A such that f is

differentiable on S € R™ and S is an open E-convex set. Then
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I. If fis E-convex on S, then

f(Ey) = f(Ex)+< Vf(Ex),Ey — Ex > Vx,y €S. (3.21)
ii. If fis E-concave on S, then

f(Ey) < f(Ex)+< Vf(Ex),Ey — Ex > Vx,y € S. (3.22)

Proof. Let us show (i). Since S is E-convex and f is differentiable on S, then in
particular, f is differentiable on E(S) € S. If E(x) = E(y), then the gradient
inequality directly satisfied. Consider now x,y € S such that E(x) # E(y) and
A € (0,1], then using the E-convexity of f, we have

f(AEy + (1 — D)Ex) < Af(Ey) + (1 — D) f(Ex). (3.23)
That is,
f(Ex + A(Ey — Ex)) < f(Ex) + A(f (Ey) — f(Ex)).

Re-arranging the last inequality yields,

f(Ex + A(Ey — Ex)) — f(Ex)
A

< f(Ey) — f(Ex).

Taking the limit to both sides of the above inequality (as 1 — 07) yields,

f(Ex+A(Ey—Ex))—f(Ex)

- < f(Ey) - f(Ex).

(3.24)

The left-hand side of the inequality (3.24) is the directional derivative of f at
E(x) in the direction of (Ey — Ex). Thus, (3.24) becomes

<Vf(Ex),Ey —Ex > < f(Ey) — f(Ex).
Re-arranging last expression, we get
f(Ey) = f(Ex)+< Vf(Ex),Ey — Ex >.
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Part (ii) which assumes that f is E-concave function, and obtaining the
inequality (3.22), proceeds in a way similar to part (i) where we use the
definition of E-concave function in (3.23) instead of using the definition of E-

convex function. m

The reverse direction of Theorem 3.4.1(i) has been proved in [40, Lemma
2.4] if S is a convex set and E is linear. We give an alternative assumption to

prove the other direction of Theorem 3.4.1(i-ii).

Theorem 3.4.2 Let £, S, and E are defined as in assumption A. Assume that f is

differentiable on the E-convex set S, E(S) is convex and
i. f(Ey)=f(Ex)+<Vf(Ex),Ey—Ex> Vx,y€S. (3.25)
Then f is E-convex on S.
ii. f(Ey) < f(Ex)+<Vf(Ex),Ey—Ex> Vx,y€S. (3.26)
Then f is E-concave on S.

Proof. For proving (i). Take arbitrary x,,x, € S such that S is a E-convex set,
and let A €[0,1]. Define z = AEx; + (1 — A)Ex, € S. Since E(x;),E(x;) €
E(S) and E(S) is convex, then

z=AEx; + (1 —A)Ex, € E(S).
Hence, there exists s € Ssuchthat E(s) =z = AEx; + (1 — 1)Ex,
Apply (3.25) with Ey = Ex; and Ex = Es yields,
f(Exy) = f(Es)+< Vf(Es),Ex; — Es >. (3.27)
Similarly, apply (3.25) with Ey = Ex, and Ex = Es we get,
f(Exy) = f(Es)+ < Vf(Es),Ex, — Es >. (3.28)

We multiply (3.27) by 4 and (3.28) by (1 — 4), and sum the two inequalities up
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AMf(Ex) + (1 =A)f(Exy) = f(Es)
+< Vf(Ex),AEx; + (1 — A)Ex, — Es >.
The last inequality yields
AM(Exy) + (1= Df(Exy) = f(AEx; + (1 — A)(Exy)).

Hence, f is E-convex as required. Part (ii) which assumes the inequality (3.26),
and establishing f is E-concave function, follows in a way similar to part (i)

where we reverse each inequality in the proof of part (i). =

Theorems 3.4.1 and 3.4.2 can be extended to give a characterization to a
differentiable strictly E-convex (respectively, E-concave) function in terms of

its strictly gradient inequality as we show next.

Theorem 3.4.3 Let £, S, and E are defined as in assumption A. Assume that f is

a differentiable function on the E-convex set S and E(S) is a convex set. Then

I.  fis strictly E-convex if and only if for all x,y € S such that x # y we
have f(Ey) > f(Ex)+< Vf(Ex),Ey — Ex > .

Ii. f isstrictly E-concave if and only if for all x,y € S such that x # y we
have f(Ey) < f(Ex)+< Vf(Ex),Ey — Ex > .

Proof. We show (ii) and in a similar pattern one can prove (i). Assume that the
function is f strictly E-concave on S, hence f is E-concave. From Theorem

3.4.1(ii), the inequality (3.22) follows, for all x,y € S. i.e.,
f(Ey) < f(Ex)+< Vf(Ex),Ey — Ex >.
Assume that there exists E (x), E (y) such that
f(Ey) = f(Ex)+< Vf(Ex),Ey — Ex >. (3.29)

Since f is strictly E-concave, then for any A € (0,1)
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f(AEy + (1 — DEx) = f(Ex + A(Ey — Ex))

> Af(Ey) + (1 — D) f(Ex). (3.30)
Substitute f(Ey) in (3.29) into the right-hand side of (3.30), we get
f(Ex+ A(Ey —Ex)) > f(Ex) + A < Vf(Ex),Ey — Ex >. (3.31)
Also, apply (3.22) with Ey = Ex + A(Ey — Ex) which yields
f(Ex+ A(Ey — Ex)) < f(Ex) + A< Vf(Ex),Ey — Ex >. (3.32)
Combining (3.31) and (3.32) yields
f(Ex) + A < Vf(Ex),Ey —Ex > < f(Ex + A(Ey — Ex))

< f(Ex)+ A< Vf(Ex),Ey — Ex >,
which is a contradiction. Therefore, for all x, y € S, we have that
f(Ey) < f(Ex)+< Vf(Ex),Ey — Ex >.

The proof of the other direction proceeds in a way similar to Theorem 3.4.2(ii).

The following theorem provides a necessary and sufficient conditions for f

to be E-convex function using the gradient test of f

Theorem 3.4.4 Let £, S, and E are defined as in assumption A. Let f isa

differentiable function on the open E-convex set S. Then
i. If fis E-convexon S then forall x,y € S
<Vf(Ex)—Vf(Ey),Ex—Ey>=0.
Thatis, Vf(Ex) isincreasing forall x € S.
ii. IfE(S)isaconvexsetand forallx,y €S
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<Vf(Ex)—Vf(Ey),Ex—Ey >=0.
Then f is E-convex on S.

Proof. For the proof of (i), see [40, Proposition 2.5(i)]. To show (ii), let
xX1,x, €S and A €[0,1]. If Ex, =Ex, or A=0 or A= 1then, using the
definition of E-convex functions, we get f is E-convex. Assume that Ex; <
Ex, andsetx = AEx; + (1 — A)Ex, forsome 1 € (0,1) . i.e.

x—Ex;=00—- 1)(Ex, — Ex;). (3.33)

Note that, since S is E-convex set and E(S) is a convex set, then x € S and

x € E(S), respectively. The last assertion means there exists s € S such that

x = E(s) € E(S). Hence, (3.33) becomes E(s) —Ex; = (1 — A)(Ex, — Exy).
Apply the Mean Value Theorem for f,

V(Es) (Ex; — Exy) = f(Exz) — f(Exy)

f(Exy) = f(Ex1)+< Vf(Es),(Ex, — Exq) >. (3.34)
Apply < Vf(Ex) —Vf(Ey),Ex —Ey >>0 with Ey = Ex; and Ex = Es,
<Vf(Es)—Vf(Exy),Es—Ex; >>0. (3.35)
Substitute (Es — Ex;) from (3.33) into (3.35), we obtain
(1-— A) <Vf(Es)—Vf(Exy),Ex, —Ex; >=0. (3.36)
Dividing both sides by (1 — 4) and re-arranging (3.36), we get
<Vf(Es),Ex, —Ex; >=><Vf(Exy),Ex, — Ex; >. (3.37)
Combining (3.34) and (3.37), we obtain

f(Exy) = f(Ex))+< Vf(Es),(Ex; — Ex;) >
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> f(Ex))+< Vf(Exy),Ex, — Ex; >.
Thus, from Theorem 3.4.2(i), f is an E-convex function. m

Remark 3.4.5 Part (ii) of the preceding theorem has been proved [40,

Proposition 2.5(ii)] wherever E is linear and S is a convex set.

Theorem 3.4.6 Let £, S, and E are defined as in assumption A such that f is a

differentiable function on the open E-convex set S. Then
I. If fisstrictly E-convex on S then forall x,y € S
<Vf(Ex)—Vf(Ey),Ex—Ey>>0.
Thatis, Vf(Ex) is strictly increasing for all x € S.
. IfE(S)isaconvexsetand forallx,y €S
<Vf(Ex)—-Vf(Ey),Ex—Ey>>0.
Then f is strictly E-convex on S.
Proof: The proof proceeds in a way like that of Theorem3.4.4. =

To detect E-convexity (respectively, E-concavity) of f using the second

derivative of f, we have the following result.

Theorem 3.4.7 Let f: S — R is a twice continuously differentiable function on

an open E-convex set S and E(S) is a convex set. Then

i. fis E-convex on S if and only if H(Ex) = V2f(Ex) is a p.s.d. for all
x €S.
ii. If H(Ex) =V?f(Ex)isap.d. forall x €S, then f is strictly E-convex

onS.
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iii. f is E-concave on S if and only if H(Ex) = V2f(Ex) is n.s.d. for all
xXES.
iv. If H(Ex) =V?f(Ex)isan.d. forall x € S, then f is strictly E-concave

onS.

Proof. We prove (i) and in a similar manner one can show (iii). Suppose there
exists x; € S such that H(Ex,) is not p.s.d. Our aim to show that f is not E-

convex. From the assumption, there exists x, € S such that
(Ex, — Ex))TH(Ex,)(Ex, — Ex;) < 0. (3.38)

Letx = AEx; + (1 — 1)Ex,, forsome A € (0,1) . Since S is E-convex set and
E(S) is a convex set such that Ex;, Ex, € E(S), then x = AEx; +
(1 —A)Ex, € S and there exists s € S such that x = E(s) € E(S).

Using now second order truncated Taylor's series, we have
f(Exy) = f(Ex))+< Vf(Exy),(Exy, — Exy) >
+~(Ex; — Ex,)TH(Es)(Ex, — Exy). (3.39)

Choose x = Es sufficiently close to Ex;, we can use f € C?(continuity of
second order patrials) such that %(Ex2 — Ex))TH(Es)(Ex, — Ex;) < 0 where

the last inequality follows from (3.38). Therefore, (3.39) becomes
f(Exy) < f(Ex))+< Vf(Exy),(Ex; — Ex;) >.

By Theorem 3.4.1(i), this contradicts the E-convexity of f on S as required to
show. Next, we prove the reverse direction, let x;,x, € S and H(Ex) is p.s.d.
for all x€S. Let x = AEx; + (1 — A)Ex,, for some A € (0,1). Using the
same argument used above, we conclude that x € S and there exists s € S such

that x = E(s) € E(S). From second order truncated Taylor's series, we have

f(Exy) = f(Ex))+< Vf(Exy),(Ex; — Exy) >
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+2 (Ex; — Ex))TH(ES)(Ex, — Exy).
Since H(x) = H(Es) is a p.s.d., the last term is non-negative. Hence

f(Exy) = f(Ex))+<V f(Ex;),(Ex, — Ex;) >.

Hence, using Theorem 3.4.2(i), f is E-convex over S. The proof of (ii) and (iv)
Is similar. Hence, it is enough to prove (iv). Let x;,x, € S and H(Ex) is n.d. for
all x €S . Let x =AEx; + (1 — A)Ex,, for some A € (0,1). Using the same
argument used above, we conclude that x € S and there exists s € S such that

x = E(s) € E(S). From second order truncated Taylor's series, we have
f(Exz) = f(Ex))+< Vf(Exq), (Exy — Exy) >
+= (Ex; — Ex,)TH(Es)(Ex, — Exy).
Since H(x) = H(Es) is an.d., the last term is non-positive. Hence
f(Exy) < f(Ex)+<V f(Exy), (Exy — Exq) >.
Hence, using Theorem 3.4.3(ii), f is strictly E-concave over S. m
To illustrate the proceeding theorem, we consider the following example.

Example 3.4.8 Assume that f:R3> — R and E: R® — R3 are defined as

f(x,y,z) =x%*+ 2y +3z% and E(x,vy,z) = (x?,y2,z?) respectively. Test E-

convexity/ E-concavity of f.

Solution. We follow Theorem 3.4.7 to detect E- convexity/ E-concavity of f.

2x
The gradientis Vf(x,y,z) = ( 2 ) , and the Hessian
6z
2 0 0
VZf(x,y,z) = (O 0 0)
0 0 6
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2 00
sz(E(x,y,z))=V2f(x2,y2,zz)=(0 0 o>.
0 0 6

E-convexity of f can be checked by testing the sign of

EW)TV2f(E(x,y,2))E(v) foreach v’ = (vy,v,,v3)" # (0,0,0)7.

Now,
2 0 0
E(Vl,Vz,V3)T 0O 0 O E(Vl;VZ:VB) )
0 0 6
2 0 0\ [vi
vz vivaTlo 0 0] | vE]
0 0 6/ \y2

Then we get, 2vf + 6v3 > 0. Hence, V2f(E(x,y,z)) is p.s.d. which yields f

is E-convex on R3,
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Chapter 4

Applications of Generalized
Convexity to Non-Linear
Programming

4.1 Introduction

As we mentioned in Chapter 1, the non-linear constrained optimization is
extended into generalized optimization problem. In such problems, the
constraint set is E-convex and the objective functions is either E-convex
function or one of the generalized convex functions discussed earlier in
subsection 1.4.2. Generalized non-linear constrained problems are studied by
many researchers. Youness was the first to introduce E-convex optimization
problem and studied some of its properties and optimality results. He continued
with his collaborators studying different aspects of E-convex problems such as
establishing the necessary and sufficient conditions of optimality, the study of
the stability in E-convex programming, developing some duality properties in
E-convex programming, and studying optimality conditions for E-convex
programming which has E-differentiable objective functions (for more details
see [1, 8, 16, 18]). Due to some incorrect results related to E-convex

programmings introduced in [15], Chen in [53] defined semi E-convex
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problems and proved some optimality properties for E-convex and semi E-
convex problems. Applications of E-quasiconvex optimization problems are
studied by Youness [17] and Syau [56], and strict E-quasiconvexity and E-
pseudoconvexity multi-objective optimization problems are studied by

Solemani-damaneh [40].

As an application of generalized convex functions in optimization
problems, we study in section 2 of this chapter, some optimality properties and
characterizations of generalized non-linear optimization problems using E-
convex (respectively, strictly E-convex) functions and some generalized convex
functions such as E-quasiconvex (respectively, strictly E-quasiconvex)
functions, and strictly quasi semi E-convex functions. In section 3, we study
differentiability properties of foE. In such case, the function f is called E-
differentiable which is non-differentiable. Most of the contents of section 4.2

have been published recently in [50, Section 3].

4.2 Some Results of Generalized Convex Programming

In this section, we consider some applications of E-convex (strictly E-
convex) functions, strictly quasi semi E-convex functions, E-quasiconvex
(strictly E-quasiconvex) functions in optimization programming problem.
Namely, we give some characterizations of the optimal solutions of a
generalized non-linear optimization problem using the generalized convex
functions mentioned above. To start, consider the non-linear constrained

optimization problem (NLPg) defined in subsection 1.5.3 as follows.

min (foE)(s)

s.t. SES,
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where f: R™ — R be a real valued function, S € R", and E: R" — R" is a

given mapping. Equivalently, problem (NLPg) can be expressed as
min f(Es)
s.t.s €S.

Definition 4.2.1 The set of all optimal solutions (or global minimum) of

problem (NLPg) is denoted by argmingfoFE and is defined as
argmingfoE = {s* € S: f(Es*) < f(Es) Vs € S}.
A global minimum s* € S is said to be strict when
f(Es*) < f(Es) Vs€eS,s"#s.
A point s* € R™ is called a local minimizer for problem (NLPg) if there is exists
r > 0suchthat f(Es*) < f(Es) Vs €B(s",r)nS§,

Definition 4.2.1 can be extended to the case when the optimization
problem (NLPg) is to maximize the objective function by reversing the
inequalities above. For the rest of this section, the function f, the set S, and the

mapping E are defined as in problem (NLPg).

Remark 4.2.2 For the rest of this thesis and wherever it is needed, we assume

that the set of minimums (respectively, maximums) optimal solutions is a non-

empty set.

The following result provides conditions under which each local

minimum of problem (NLPg) is a global minimum.

Theorem 4.2.3 Let s*is a local minimum of problem (NLPg) where fis E-

convex on S which is E-convex set, E(S) is a convex set, and E is a linear

mapping. Then s* is a global minimum.
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Proof. Assume that s* € S is a local minimum, then there exists r > 0 such that
f(Es*) < f(Es) VseW =Sn B(s%1). (4.1)

It is enough to show that f(Es*) < f(Es) Vse€S\W. Consider any
s € S\W such that s lies on the extended line formed from s* and y. In other

words, s € B(s*,r) and for a fixed value of A, we define y = AEs + (1 —

A)Es* where 1 =

T

e < 1. Since S is E-convex and E is linear, then

y=AEs+ (1 —A)Es*=Es+ (1 —-A1)s*) €S.

On the other hand, using the convexity of E(S), we have y = E(As +
(1 —=2A)s™) € E(S). Thus, there exists z € S such that

z=As+ (1 —-A)s* €S. (4.2)

Using the expressions for zand A, we get |l z—s* ll=r.i.e., z € B[s",r]. The
last conclusion together with (4.2) yields z € W = S n B(s*,r). Since s* is a

local minimum then from (4.1)
f(Es™) < f(Ez) = f(y) = f(AEs + (1 = A)Es™)
S Af(Es) + (1= Df(Es™),

where the last inequality follows because f is E-convex function. By re-

arranging last inequality, we get Af (Es*) < Af(Es) which yields
f(Es*) < f(Es) VseS\W. (4.3)

From (4.1) and (4.3), f(Es*) < f(Es) Vs € S. Therefore, x* is a global

minimum of problem (NLPg). m

The following theorem provides a necessary and sufficient condition for a
global minimum when the function f is differentiable and E-convex in (NLPg)

problem.
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Theorem 4.2.4 Assume that f is a continuously differentiable E-convex on an

E-convex set S, and E is a linear mapping. Then problem (NLPg) has a global

minimum s* € S if and only if,
< Vf(Es*),Es—Es*>=0 Vs € S.

Proof. Consider s* global minimum of (NLPg). Take any s € S, since S is an
E-convex then forany A € (0,1), we have AE(s) + (1 — A)E(s*) € S. Since s*

Is a global minimum, then
f(Es) < f(AE(s) + (1 —A)E(s*)) = f(Es* + A(Es — Es™)).
Using first order truncated Taylor Theorem.

f(Es*) < f(Es*)+< Vf(Es*),A(Es — Es™) >.
Divide by 4 and take A — 0, the last inequality yields

<Vf(Es*),(Es—Es*)>=0.
Since s is an arbitrary point then, Vs € S
<Vf(Es*),(Es—Es*)>=0

as required. To prove the other direction, let s* € S then for each s € S, we have
< Vf(Es*),(Es — Es*) > = 0. We need to show that s* is a global minimum.

By the E-convexity of f we have for eachs € §
f(Es)— f(Es*) > < Vf(Es*),(Es—Es*) >=0.
i.e., foreachs € S, f(Es*) < f(Es) . Thus, s* is a global minimum. =

Next, we give a sufficient condition to obtain unique optimal solution of

(NLPE) using strictly E-convex function f.
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Theorem 4.2.5 Assume that f is strictly E-convex on an E-convex set S, E(S)

IS a convex set, and E is a linear mapping. Then the global optimal solution of

problem (NLPg) is unique.

Proof. Let s;,s;, €S be two different global optimal solutions of
problem (NLPg), then f(Es;) = f(Es;). Since S is E-convex, E(S) is convex

and E' is linear, then for each 0 < A < 1, the E-convex combination
AEs; + (1= A)Es; =E(As; + (1 —A)s;) EE(S) € S,

and hence, there exists z € S such that z = As; + (1 — 1)s; € S where z # s;

and z # s;. Since f is strictly E-convex on the E-convex set S, we have

f(Ez) = f(AEs; + (1 = DEsy) < Af(Esy) + (1 = Df(Esz) = f(Esy).

This means, z is a global optimal solution which is a contradiction. Thus, the

global minimum is unique. =

Another two sufficient conditions for a unique optimal solution of

problem (NLPg) are given next.

Theorem 4.2.6 Assume that f is strictly quasi semi E-convex, E(S) is a convex

set, E is linear and fixed with respect to the global optimal solution. Then the

global optimal solution of (NLPg) is unique.

Proof. Let s{,s;, € S be two global optimal solutions of problem (NLPg) such
that s; # s;, then f(Es7) = f(Es3). Since E(s7) = s; and E(s;) = s5, the last
equality yields f(s7;) = f(s3) . Now f is strictly quasi semi E-convex on the E-

convex set S, then foreach 0 < 1 < 1, we have
f@Esi + (1 = DEsz) <max{ f(s1), f(s2)} = f(s1) = f(E(s1)).
By the linearity of E, the left-hand side of the inequality above can be written as

fEMs; + (1= D)sz)) = f(AEs; + (1 = DEs;) < f(E(s).  (44)
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The expression above entails a contradiction. Indeed, because E(S) is convex
and S is E-convex, then E(As; + (1 —A)s;) € E(S) € S. i.e., there exists
z=As{ + (1 —A)s; €S where z # s; and z # s;. Using this fact with the
inequality in (4.4), we conclude z is a global optimal solution which is a

contradiction. Thus, s; = s, as required. =

Theorem 4.2.7 Consider problem (NLPg) in which S is E-convex set, E(S) is a

convex set, and E is a linear mapping.

I. If f is E-quasiconvex on S, then the set of optimal solutions
argmingfoFE is a convex set.
ii. If f is strictly E-quasiconvex, then argmingfoE is singleton (i.e.,

optimal solution is unique).
Proof. To prove (i), let s{,s; € argmingfoE, such that sy # s;. Thus,

f(Esy) = f(Es;) < f(Es), for all s€S. Since S is E convex, f is E-

guasiconvex on S and E is linear, then for each 0 < A < 1, we have
F(ECAs; + (1 —A)s3)) = f(AEs; + (1 — DEs3)
< max{f (Es7), f(Esz)}

= f(Esy) < f(Es). (4.5)

Since s7,s;, € S whichis E-convex and E(S) is convex, and E linear. Then for

each 0 <1 <1, we get
E(As; + (1 —A)s3) = AE(s]) + (1 —V)E(s;) € E(S) € S. Hence,
Asi + (1 —A)s; €S. (4.6)

From (4.5) and (4.6), As7 + (1 — A)s; € argmingfoE. Thus, argmingfoE is
a convex set. To show (ii). Let s;,s, € S be two global optimal solutions of
problem (NLPg) such that s; #s5, then f(Esy) = f(Es;). Since S is E-
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convex, E is linear, and f is strictly E-quasiconvex, then for each0 < 1 < 1 we

have
fE@st + (1= Ds3)) = f(AEsy + (1 = DEs;)
< max{ f(Es7), f(Es;)}
= f(Es7) < f(Es). (4.7)

The rest of the prove follows as in the Theorem 4.2.6 where (4.7) and the
convexity of E(S) provide an optimal solution z = As; + (1 — A)s; € S such
that z # s; and z # s;. From (4.7), we have f(Ez) < f(Es;) which contradicts
the optimality of s; of problem (NLPg). =

The conclusions of the preceding Theorem can be also obtained if the

function f is E-convex (respectively, strictly E-convex) as we show next.

Corollary 4.2.8 Consider problem (NLPg) in which S is E-convex set, E(S) is a

convex set, and E is a linear mapping.

I. If fis E-convex on S, then the set of optimal solutions argmingfoE is
a convex set.

ii. If fisstrictly E-convex, then argmingfoE is singleton.

Proof. From [40, p.3339], every E-convex (respectively, strictly E-convex)
function is E-quasiconvex (respectively, strictly E-quasiconvex). Thus, the

conclusions of (i)-(ii) directly follow. =

Theorem 4.2.9 Consider problem (NLPg) in which f is a differentiable E-

convex function on the E-convex set S, and E is a linear and idempotent

mapping. Then agrming(foE) is an E-convex.

Proof. Take an arbitrary s* € agrming(foE) , we have from Theorem 3.4.4(i),

foreach s € S
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<Vf(Es)—Vf(Es*),Es —Es*>=0,
Re-arranging the last inequality and apply Theorem 4.2.4, we get
<Vf(Es),Es—Es*>=><Vf(Es*),Es—Es*>=>0 Vs €S.
i.e., <Vf(Es),Es—Es*>=0 Vs € S.
Apply Theorem 4.2.4 again to get
agrming(foE) = Nges {u € S: < Vf(Es),Es — Eu > = 0} = NH;,

where H; ={u€S: <Vf(Es),Es—FEu>=>0}. Since E is linear and
idempotent, then applying Proposition 3.3 in [25], each H; is E-conveXx. This

yield, agrming(foFE) is an E-convex. =

Theorem 4.2.10 Consider the following maximization non-linear problem (M-
NLPg)

max(foE)(s)
s.t.s €S,

where S € R™ an E —convex set, f: R"™ — R is E-convex on S, and E: R"* —
R™ is a given linear mapping. Assume that E(S) is a convex set f(E(s)) <
f(s) forall s € S, and the set of optimal solutions of problem (M-NLPg) is a
non-empty. i.e.,, argmaxsfoE ={s* € S:f(Es*) = f(Es) Vs € S}+ Q.

Then, the maximal optimal solutions of foE occur on the boundary of S.

Proof. By a contrary, assume that the maximum exists at a point s* belongs to

the interior of S. That is, f(Es*) = f(Es) Vs€ S and s* €S". Draw a line
passing through s*and cutting the boundary of S at s;and s,. Since S is
E —convex, then for some 0 < A < 1, we have s* = AE(s;) + (1 —A)E(s,) €

S . We also have E(S) is convex and E is linear, then

s* = AE(sy) + (1 = DE(s,) = E(Asy + (1 — A)s,) € E(S).
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Thus, there exists z € S such that z = As; + (1 —A)s, € S. Since f is E-

convex on S, then
f(Es™) < f(s*) = f(Ez) < Af(Esy) + (1 = D)f(Es;), (4.8)

where in the left most inequality, we used the assumption f(E(s)) < f(s) for

all s € S. Now, we have two possibilities. If f(Es;) < f(Es,), then

Af(Es)) + (1= Df(Esz) < Af (Esy) + (1= Df (Esz) = f(Esy).

Using (4.8), we get f(Es*) < f(Es,), yielding s*is not a global maximum
which is a contradiction. Similarly, if f(Es,) < f(Es;), we get f(Es*) <
f(Es;), a contradiction. Hence, the maximum point must occur at the boundary
of S. m

4.3 E-Differentiability Properties of E-Convex Functions

E -convex functions which are non-differentiable can be transformed into

differentiable using a mapping E: R™ — R™. This class of functions is referred

to as E-differentiable functions and is defined by Megahed et al [8] as follows.

“Let f:S € R®™ — R be a function and let E: R — R"™ be a mapping. A
function f is said to be E- differentiable at s* if and only if f is non-

differentiable function at s* and (foE) is a differentiable function at s*”".

Megahed et al [8] apply Fritz-John and Kuhn-Tucker conditions to obtain
a solution of a generalized optimization problem (NLP) with a non-
differentiable objective function f. In this section, we consider (NLPg) problem
in which the function f is non-differentiable (i.e., foE is differentiable). We
apply all the differentiability properties in section 3.4 for the case when f is E-
differentiable in problem (NLPg).
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To clarify the definition of E-differentiable function, we recall the

following example.

Example 4.3.1 [8] Consider the real valued function f(x) = |x|and the

mapping E:R — R such that E(x) = x2. It is clear that the function f is non-
differentiable at the point x = 0 and the function (foE)(x) = f(Ex) = x% is a

differentiable function at x = 0. Hence, f is an E-differentiable function.

Remark 4.3.2 The proof of the next Theorems is similar to that of Theorems
3.4.1-3.4.4 and Theorems 3.4.6-3.4.7 in section 3.4. We only replace each f in

the proceeding theorems by foE. Next, we show the detailed proof of next

theorem which is similar to the proof of Theorems 3.4.1-3.4.2.

Theorem 4.3.3 Consider problem (NLPg) in which f is E-differentiable on S is

an open E-convex set. Then
I. If foE is E-convex on S, then

(foE)(Ey) = (foE)(Ex)+< V(foE)(Ex),Ey — Ex > Vx,y €S.
i. If E(S) is convex and

(foE)(Ey) = (foE)(Ex)+< V(foE)(Ex),Ey —Ex > Vx,y €S.

Then, foE is E-convexon S.

iii. If foE is E-concave on S, then

(foE)(Ey) < (foE)(Ex)+< V(foE)(Ex),Ey — Ex > Vx,y €S.

iv. If E(S)isconvex and
(foE)(Ey) < (foE)(Ex)+< V(foE)(Ex),Ey —Ex > Vx,y €S.
Then, foE is E-concave on S.
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Proof. Let us show (i). If E(x) = E(y), then the gradient inequality directly
satisfied. Consider now x,y € S such that E(x) # E(y) and 4 € (0,1], then

using the E-convexity of f, we have
(foE)(AEy + (1 — )Ex) < A(foE)(Ey) + (1 — A)(foE) (Ex).
That is,
(foE)(Ex + A(Ey — Ex)) < (foE)(Ex) + A((foE)(Ey) — (foE)(Ex)).
Re-arranging the last inequality yields,

(foE)(Ex + A(Ey — Ex)) — foE (Ex)
A

< (foE)(Ey) — (foE) (Ex).

Taking the limit to both sides of the above inequality (as 2 — 07) yields,

(foE)(Ex+A(Ey—EX))—(foE)(Ex)
y)

< (foE)(Ey) — (foE)(Ex).

(4.9)

The left-hand side of the inequality (4.9) is the directional derivative of foE at
E(x) in the direction of (Ey — Ex). Thus, (4.9) becomes

< V(foE)(Ex),Ey — Ex > < (foE)(Ey) — (foE)(Ex).
Re-arranging last expression, we get
(foE)(Ey) = (foE)(Ex)+< V(foE)(Ex),Ey — Ex >. (4.10)

To show (ii), take arbitrary x;,x, € S such that S is a convex set, and let
A € [0,1]. Define z = AEx; + (1 — A)Ex, € S. Since E(x,),E(x,) € E(S) and

E(S) is convex, then
z=AEx; + (1 — 1)Ex, € E(S).

Hence, there exists s € S suchthat E(s) = z = AEx; + (1 — 1)Ex,.
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Apply (4.10) with Ey = Ex, and Ex = Es yields,

(foE)(Exy) = (foE)(Es)+< V(foE)(Es), Ex, — Es >. (4.11)
Similarly, apply (4.10) with Ey = Ex, and Ex = Es we get,

(foE)(Ex,) = (foE)(Es)+< V(foE)(Es), Ex, — Es >. (4.12)
We multiply (4.11) by 2 and (4.12) by (1 — 4), and sum the two inequalities up
A(foE)(Exy) + (1 — D) (foE)(Ex,)

> (foE)(Es)+< V(foE)(Ex),AEx; + (1 — A)(Ex,) — Es >.
The last inequality yields
A(FOE)(Exy) + (1 — D) (foE)(Ex,) = (foE)(AEx; + (1 — D)(Ex,)).

Hence, foE is E-convex as required. The proof of parts (iii) which assumes
that foE is E-concave function proceeds in a way similar to part (i) where we
use the definition of E-concave function instead of using the definition of E-
convex function. Finally, part (iv) follows in a way similar to part (ii) where we

reverse each inequality in the proof of part (iv). =

Theorem 4.3.3 can be extended to give a characterization to the E-
differentiable strictly E-convex (respectively, E-concave) functions in terms of

their strictly gradient inequalities.

Theorem 4.3.4 Consider problem (NLPg) in which f is E-differentiable on S is

an open E-convex set such that E(S) is a convex set. Then

I.  foE isstrictly E-convex if and only if for all x,y € S such that x + y we

have

(foE)(Ey) > (foE)(Ex)+< V(foE)(Ex),Ey — Ex > .
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Il.  foEis strictly E-concave if and only if for all x,y € S such that x + y we

have

(foE)(Ey) < (foE)(Ex)+< V(foE)(Ex),Ey —Ex > .

The following theorem provides a necessary and sufficient conditions for

foE to be E-convex function using the gradient test of foE.

Theorem 4.3.5 Consider problem (NLPg) in which f is E-differentiable on S is

an open E-convex set. Then
I. If foE is E-convexon Sthenforall x,y €S
< V(foE)(Ex) —V(foE)(Ey),Ex — Ey > = 0.
Thatis, V(foE)(Ex) isincreasing forall x € S.
i. IfE(S)isaconvexsetand forall x,y €S
< V(foE)(Ex) —V(foE)(Ey),Ex —Ey > = 0.
Then foE is E-convex on S.

Theorem 4.35 can be applied for the case when foE is

strictly E-convex function

Theorem 4.3.6 Consider problem (NLPg) in which f is E-differentiable on S is

an open E-convex set. Then
I. If (foE) is strictly E-convex on S then forall x,y € S
< V(foE)(Ex) —V(foE)(Ey),Ex — Ey > > 0.
Thatis, V(foE)(Ex) is strictly increasing for all x € S.

ii. IfE(S)isaconvexsetand forallx,y €S
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< V(foE)(Ex) — V(foE)(Ey),Ex — Ey > > 0.
Then, foE is strictly E-convex on S.

To detect E-convexity (respectively, E-concavity) of (foE) using the

second derivative of (foFE), we have the following result

Theorem 4.3.7 Consider problem (NLPg) in which £ is twice continuously E -

differentiable on S is an open E-convex set such that E(S) is a convex set. Then

i. foE is E-convexon S if and only if H(Ex) = V2(foE) (Ex) is a p.s.d.
forall x € S.

i. IfH(Ex)=V?2(foE) (Ex)isap.d. forall x € S then foE is strictly E-
convex on S.

iii. foE is E-concave on S if and only if H(Ex) = V?(foE) (Ex) is n.s.d.
forall x € S.

iv. If H(Ex) = V2(foE) (Ex) is an.d. for all x € S then foE is strictly E-

concave on S.

Example 4.3.8 Assume that f: R? — R and E: R? — R? be such that

flx,y) = —x? — y_12 and E(x,y) = (x y‘zl). Test E-convexity/E-concavity of

foE.
Solution. (foE)(x,y) = —x? — y. Note that
V(@ y) = (5,%) and V(foE)(xy) = (7).

Since, f is not differentiable at (x,0) while foE is differentiable at (x, 0),
then f is E-differentiable at (x, 0). The Hessian of foE at E(x,y) is

V2(foE)E@, ) = (3> o)
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Now, E (v, vz)T(az S)E(vl,vz) for each (v,, v,)T # (0,0)T

T\ (2 0 1 2
(v, vy’ )(0 0) <v_71> =—2vy =0
2

From Theorem 4.3.7 (iii), V?(foE) (Ex) is n.s.d. Thus, foE is E-concave on
R2.
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Future Work,

Future Work

We conclude this thesis by mentioning some open problems, which suggest

possible future research directions.

1) Considering unconstrained non-linear generalized optimization problem
(NLPg) and studying the first and second necessary and sufficient
optimality conditions for this problem.

2) Develop the dual structure of the generalized optimization problem
(NLPg). In specific, study each of Fenchel and conjugate duality of this
problem.

3) Study the development of constraint qualifications to obtain strong
duality and zero duality gap for the (NLPg) problem.

4) Develop duality properties for special kinds of separable E-convex
optimization problems and obtain constraint qualifications to prove strong

duality for this separable problem.
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