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 [estact | <

The main aim of this thesis is to use three iterative methods which are

implemented to get the approximate solutions for some important ODEs,
PDEs that appeared in physics and engineering.

The first objective of this thesis will be focused on some basic concepts of
the differential equations and the existence and uniqueness solution for the
ODEs.

The second objective is to implement the three proposed iterative methods,
Tamimi-Ansari method, Daftardar-Jafari method and Banach contraction
method, which are using to find the approximate solutions to some problems
that arise in physics, such as Painlevé I, Painleve 11, Pendulum , and Falkner-
skan equations. The obtained results are compared numerically with other
numerical methods, such as the fourth order method Runge-Kutta and Euler
method. In addition, we have presented several comparisons among these
methods, Adomian decomposition method and variational iteration method.
Moreover, the convergence of the proposed methods were given are based on
the Banach fixed point theorem. The results of the maximal error remainder
values show that the present methods are effective and reliable.

The third objective is to use the Tamimi-Ansari method, Daftardar-Jafari
method and Banach contraction method to solve the one dimension, two
dimension and three dimension non-linear wave equations to get a new
approximate solutions approaching to the exact solution. Also, the
convergence analysis of the three methods will be presented using the Banach
fixed point theorem. Each method does not require any assumption to deal
with a nonlinear term. These methods are quite efficient and practically well
suited for use in these problems. There are many examples that demonstrate

the accuracy and efficiency of this methods.
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Introduction

Ordinary and partial differential equations have many applications in
science and engineering, especially in problems that have the form of non-
linear equations. Application of the non-linear ordinary differential equations
(ODE) and partial differential equations (PDE) by mathematicians and
researchers have become more important and interesting. It has been
described different types of phenomenas, such as modeling dynamics, thermal
conductivity, diffusion, acoustic waves, transport and many others[89].

In recent years, approximate and analytical methods have been used to
solve different types of linear and nonlinear differential equations such as:
variational iteration method (VIM) [?)], Adomian decomposition method
(ADM) [Y¢], Homotopy perturbation method (HPM) [1°], residual power
series method [©4], Laplace decomposition method [6+] etc. In addition, these
methods give some useful solutions, but there are some drawbacks like
calculating the Lagrange multiplier in the VIM and the Adomian polynomials
for the nonlinear problems in ADM, which leads to complex calculations for a
number of iterations.

In this thesis, some types of ordinary and partial differential equations that
appear in the problems of physics, engineering and other applied sciences will
be solved using reliable iterative methods. One of these equations is the
Painleve | and Painlevé Il, which are ordinary differential equations of the
second-order with initial conditions. The Painlevé equations have appeared in
a variety of important physical applications, of which are quantum gravity,
qguantum field theory general relativity, nonlinear optics [79]. The other
problem is the pendulum equation, which is an initial value problem a

nonlinear ODEs of the second-order. There are many applications of

Xiii




pendulum equation like clocks, cranes and machinery movement and other.

Moreover, the Falkner-Skan equation, which classified as one of the
nonlinear third-order ordinary differential equations. It has modeled as a
variety of important physical applications, such as insulating materials,
applications of glass and polymer studies[33]. The main problem of numerical
methods in solving this equation is how to deal with the infinite boundary
conditions.

Furthermore, the other equations that will be solved are the second order
1D, 2D and 3D non-linear wave equations. They have great importance in the
field of physics and engineering. The wave equations have taken great interest
by the researchers, in addition to solving different types of them [38], as well
as, to describe many important phenomena's, such as acoustic problems for
the velocity potential, shock waves, chemical exchange processes in
chromatography, sediment transport in rivers and waves in plasmas [47].
There are some methods and techniques that have been used by many
researchers to solve different types of these problems [59,32,83,87,80].

Recently, Temimi and Ansari (TAM) [35] have suggested a new semi-
analytical iterative technique to solve nonlinear problems. The TAM was
inspired from the homotopy analysis method (HAM) [79]. The TAM used to
solve many ODEs and PDEs, such as PDEs and KdV equations [25],
differential algebraic equations (DAES) [48], nonlinear Burgers advection—
diffusion equations [49]. Moreover, this method is effective and reliable and

does not require restrictions to deal with non-linear terms.
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The other proposed method which is presented for the first in 2006 by
Daftardar-Gejji and Jafari, (DJM) [84] to solve nonlinear equations. This
method has been used to solve different type of equations, such as fractional
differential equations [86], PDEs [75], Volterra integro-differential equations
and some applications for the Lane-Emden equations [55] and evolution
equations [76]. This method presents a proper solutions, which converges to
the exact solution "if such a solution exists" through successive
approximations.

The third iterative method depends on the Banach contraction principle
(BCP) [85], which considered as the main source of the metric fixed point
theory. The Banach contraction principle also known to be Banach's fixed
point theorem (BFPT) which has been used to solve various kinds of
differential and integral equations [57]. Also, this method does not require

complex calculations and requires no restrictions to deal with nonlinear terms.

This thesis has been arranged as follows: in chapter one, the basic concepts
of the non-linear differential equations (ordinary and partial) and some
analytical and approximate methods will be introduced to solve some
scientific applications, such as ADM and VIM. Chapter two, presents the
basic ideas of the proposed iterative methods, the convergence of the
proposed methods will be given. Furthermore, the proposed iterative methods
successfully implemented to solve the Painleve 1, Painleve Il, pendulum and
Falkner-skan equation. In chapter three, the proposed methods will be applied
to solve the 1D, 2D and 3D linear and nonlinear wave equations and the
convergence of the proposed methods will be given. Finally, in chapter four

the conclusions and future works are presented.
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Chapter one Basic Concepts

Chapter 1

Basic Concepts

1.1 Introduction

The non-linear differential equations have played an important role in
mathematics applications and considered as a tool to interpret many events in
engineering, and applied science. Many of these problems are nonlinear
equations resulting from a particular application that may be complex and
sometimes. However, there are effective and reliable methods to find the
approximate, analytic or numerical solutions.

This chapter has been arranged into five sections. In section 2, a number
of definitions and theorems will be introduced. In section 3, the existence and
uniqueness theory for the solution of boundary value problem will be given.
In section 4, some types of ODEs are displayed, such as Painlevé I, Painlevé
I, pendulum and Falkner-Skan equations. Also, some analytical and
approximate methods will be introduced to solve some scientific applications,
such as ADM and VIM. Finally, in section 5, the wave equations in 1D, 2D,
and 3D will be presented. Also, the 1D, 2D and 3D wave equations will be
solved by ADM and VIM.

——
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Chapter one Basic Concepts

1.2 Preliminaries

Definition 1.2.1: [45]

The problem of the initial value for both ordinary and partial differential
equation, with a specified value is called the initial condition, at the point in
the domain of the solution. The number of initial conditions depends on the

order of the differential equation.

Definition 1.2.2: [45]

The problem of the boundary value for the differential equation with a set
of boundary conditions, at two or more points is called the boundary
conditions. There are four types of boundary conditions which are Dirichlet,

Neunmann, Mixed and Robin boundary conditions [5].

Definition 1.2.3: [6,9]

An equation that contains an unknown function y within an integral sign is

called an integral equation. A standard form of linear integral equation is:

y(@) = f(0) +2 [, k(e £,y) y(Odt, (1.1)

where y is the unknown function that appears in most under inside and
outside the integration sign, h and g are two functions which are the limits of
integration. The functions f and k are known functions, where k is called the

kernel of the integral equation and A is a constant parameter.
Definition 1.2.4: [23]

Let (X, d) be a metric space. Amapping T : X — X is called contraction on
X if there exist a positive real number k < 1, such that vV x,w € X implies
d(T,,T,) < kd(x,w).

——
N
| —




Chapter one Basic Concepts

Definition 1.2.5: [23]

Let T:[u,w] — [u,w] be a mapping, then is said to satisfy a Lipschitz
condition if there exist positive a constant L (called the Lipschitz constant)

such that for all x,y € [u,w], then

T, -T,| <L|x-y].

Definition 1.2.6 : [31]

The Padé approximation to y on [a, b] is the ratio between two polynomials
are Q,,(x) and R,,(x) of degrees m and n, respectively and is given by the

following relationship:

Qm(x) _ ﬁo aixi
R,(x) 1+ Yoo by xJ
Aot aix +axx® + -+ apx™
" 1+ by + byx 4 byx? + -+ byx™

P(x) =

(1.2)

Theorem 1.1.7 (Banach Fixed Point Theorem): [23]
Let (X,d) be a metric space , where X + @ . Consider that X is complete
and let T: X — X be a contraction on X , then T admits a unique fixed-point

x*eX, Tx")=x".

Theorem 1.2.8:[90]

Let F be an operator from a Hilbert space H to H. The finite series

solution y,, (x) = .1, v;(x) converges if there exists 0 < y < 1, such

that [|[F[vy + vy + - + viq ]Il S VIIF[ve + vy + - + vi]ll (Where [Jv 4] <
vilvill) vi =0,1,2, ....

Theorem(1.2.8) is a special case of Banach's fixed point theorem, which is a

sufficient condition to study the convergence.

——
w
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Chapter one Basic Concepts

Theorem 1.2.9: [90]

If the series solution y(x) = }i2,v;(x) is convergent, then this series will

represent the exact solution of the current nonlinear problem.
Theorem 1.2.10: [90]

Suppose that the series solution )72, v;(x) is convergent to the exact
solution y. If the truncated series )i~ v;(x) is used as an approximation to
the solution of the current problem, then the maximum error E, (x) is

estimated by

1 n+1
E,(x) < =7 llvoll. (1.3)

1.3 Existence and Uniqueness of the Solution for the Boundary
Value Problems|[73]

In this section, we will discuss the existence and uniqueness of the solution

for the boundary value problems.

Let us, consider the boundary value problems for equation
yW) =y y, ...y ), (1.4)
with one type of the boundary conditions:
-3y "I (1) + a2y (xy) =
Biy®D(x) + Bir2y P (x3) = ¥i42, 1=0,1,...n—3
y P (xy) = m,

or

A3y () + @y D () = 3y

——
I
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_Chapterone  ~ BasicConcepts
Biy®D(x2) + Bir2y P (x3) = ¥i42, i=0,1,....n—3

Cn—3y(n_3)(x3) + Cn—zy(n_z) (x3) = ¥

Where
X, <x, <x3, myy, €R,(k=1,2,..,n) are arbitrary constant and n >

2 is a fixed positive integer.
We denote the following conditions by Pi
Pi: f(%, Y0, V1) o» V-2, Yn—1) is continuous on [x, x3] X R"

P,: Then, there exists a unique solution of Eq. (1.4) on [x4, x3]

P3:V x € (x1, %2], f (%, Y0, Y1) s Yn-2,Yn-1) < f(%,20,21, .., Zn—2,Zn-1),

When y] S Zj’ j == 0,1, e, — 3, yn_z < Zn_z ) yn—l = Zn—l

P4-: VxE€ (XZ,X3], f(x' .YO' .YI' -"'Yn—ZJYn—l) < f(xr Zo, 21, ---;Zn—Z;Zn—1);

when y; < z; j=01,..,n—=3, yp_3 <Zpn_3, Yn-1 = Zn_1

we use these results for two and three-points BVPs

y' =flx,yy)with y(x1) =y, y(x) =y, (1.5)
y'=fl,yy,y")with y(x)) =y, y(x) =y,  y(x3) =y; (1.6)

Let us to demonstrate the existence and uniqueness of the solution for two-
point value problem by theorem 1.3.5 and three-points boundary value
problem by using theorem 1.3.6 .

——
()]
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Chapter one Basic Concepts

Theorem 1.3.1: [73]

Suppose that  P,,P,P; are satisfied andp; Sy, <0,i=0,1,..n—3,
ap_3 <0,a,_, >0, thenforeverym,y, € R,k =1,2,..n—1, then there
exists a unique solution two-point boundary value problem on [x,, x,] .
Theorem 1.3.2: [73]

Suppose that P;, P,Ps;,P, are satisfied and a,,_3 < 0,a,,_, > 0,0; Biy, <
0,i=01,..n—3, ¢,,_3 > 0then for every y, ER,k=1,2,..n—1, then

there exists a unique solution to the three-points boundary value problem.

1.4 Ordinary Differential Equations
The ODEs are the formula that contains the dependent variable y [61],

some of its derivatives and the independent variable x. In other words any
equation F(x,y,y',y",..y")=0 is called the ordinary differential
equation [45]. ODEs are of great importance especially in the interpretation

of many physical phenomena, chemical and engineering.

1.4. 1 The Painlevé Equations I, 11
The Painlevé equations firstly originated during 1895-1910 through tests

conducted by two French mathematicians Paul Painlevé and Bertrand
Gambier [20]. It was classified as the differential equations of the second
order that have a significant role in many areas of mathematics and physics.
Painlevé equations have been used in many applications including nonlinear
waves, plasma physics, statistical mechanics, fiber-optic and others [21].

Many methods are successfully used to solve the Painlevé equations. For
example, the optimal homotopy asymptotic method (OHAM) [26] to solve the
Painlevé equation 1l, Adomian decomposition method (ADM) [18] and

Legendre Tau Method [71]. Hesameddini and Peyrovi [22] have applied the

——
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Chapter one Basic Concepts

variational iteration method (VIM) and homotopy perturbation method
(HPM) to find an approximate solution of Painleve equation 1.

Painlevé equations of the first and second types will be defined by the
following formulas [20,13].

Pl: y"'(x) = 6y%(x) + x, 0<x<1 (1.7)
with the given initial conditions: y (0) = 0,y' (0) = 1.

PIl: y"(x) = 2y3(x) + x y(x) + i, 0<x<1 (1.8)
with the initial conditions y (0) = 1, y' (0) = 0, where u is a known

parameter.

1.4.2 Analytical methods for solving the Painleve equations.

In this subsection, the ADM and VIM will be used to solve the nonlinear

Painlevé equation | .

1.4.2.1 The ADM

In the late of the 20th century of the 1980s, the ADM was found by
George Adomian [28, 29]. This method has an important role in applied
mathematics [78], plus easy handling of many types of ODEs, PDEs (linear
and nonlinear), integral equations and other equations [72]. The solution

resulting from this method is in the form of a series.

Consider the nonlinear functional equation given by following [88]
Ly = Ny + f(x), (1.9)

where, L is a linear operator and N is a nonlinear operator, f(x) is a given

function.

The solution y is represented as the sum of series
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y = z Vn » (1.10)
n=0
and the nonlinear function N(y) is decomposed as follows:
N(y) = z A, (1.11)
n=0
Where A,, are Adomian polynomials which are computed by
1 dn o
Ap=— [N(Z;A ylaco, n=1,2,3,.. (1.12)
1=

Adomian polynomials are organized to have the form

Ao =F(yo),
Ay =y, F' (¥o),

2
A y n
Ay = y,F' (v0) + 5 F" (o),

3
! 14 y n
Az = y3F'(yo) + y172F" (vo) + _31l F™(¥o),

By substituting Eq. (1.10) and (1.11) in Eq. (1.9), we get:

z Yn = Z Ap +f, (1.13)
n=0 n=0

Now, we will create the ADM string terms as follows:

Yo =1, }

Yn=4,-1, n=12,3,.. (1'14)

Note 1.1:

In order to transform multiple integrations into single, we use the general

transformation formula given by [6]
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X1 X2 Xn—1
f f j y(xn)dxn ..dx
0 0 0

f (x — )" Ly(s)ds. (1.15)

(n—l)'

1.4.4 Error analysis

Since the exact solutions are unknown for both Painlevé | and 11, therefore
we used the proper function of the maximal error remainder [42]

to check the accuracy of the approximate solutions.

ERn(x) = L(y) = N(y) — f(x). (1.16)

The maximal error remainder is

MER, = max |ER,(x) |. (1.17)

0<x<1
The ADM will be used to solve the Painleve differential equations.
Painlevé | equation [82]:

Let us consider the Painleve equation | (1.7)
with the given initial conditions: y (0) = 0,y' (0) = 1.

Integrating both sides of Eq. (1.7) twice from 0 to x and using the given
initial conditions, we can get

1 X X
y(x) =x + gxg‘ +j f 6 A, drdrt (1.18)
0 Jo

where A,, are the Adomian polynomials, which represents the nonlinear term

v (D).
By reducing the integration in Eg. (1.18) from double to single [6], we get

y(x)=x + %x:“ + fx(x —1)(6 4,) dr, (1.19)

By applying the ADM, we obtain

——
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1
Yo =X + gx3,

y1(x) = [5 (x = 1)(6 4p) d, (1.20)
x* x® xB

1=5*15 338

y2(x) = [§ (x = 1)(6 Ay) d, (1.21)
x7 x9 71X11 x13

Y2 =7 %207 26200 " 26208’
x10  23x'2  5219x4 3551x1° 95x18

Y3 = 28 Y3080 | 8408400 ' 144144000 ' 224550144

Then,

n
Yn = z 47
i=0

Continue to get the approximations till n = 5, for brevity not listed.

The error remainder function is evaluated:

ERy(x) = yy/ (x) — 67 (x) — x, (1.22)
and the MER,, is:

MER, = 0.011222(0_1|ERn(x) |, (1.23)

Table 1.1 and Figure 1.1 illustrate the convergence of the solution by using
the MER,, the error will be reduced when the number of iterations will be

increased. See appendices A.
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Table 1.1: The maximal error remainder : MER» by the ADM, where n
=1,..,5.

MER,,
0.0000601952
3.22501 x 1078
1.29031 x 10~*

435069 x 10715
2.08167 x 1077

ol b W N | S

107

100-M}

MER,,

10-1°

Figure 1.1: Logarithmic plots of MER~ versus n is 1 through 5 by ADM.

Painlevé 11 equation [18]:
By using Eq.(1.8) with the initial conditions y (0) =1, y' (0) = 0.
Applying the ADM, we get

2

X
Yo=1+

4 5 6 8
X X X
40 20 224

X

y x4l E
1 6 4

11

'
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4 5 6 7 8 9 10 11 12 14
X X 23x X 19x x 131x 47x 19x 3x
2 10 90 30

+ +
320 160 16800 123200 24640 81536

n
Yn = Eyi»
i=0

Continue to get the approximations till n = 5, for brevity not listed.

Table 1.2: The maximal error remainder : MERn by the ADM, where n
=1,..,5.

MER,,
0.0634125
0.000950605
0.00001041
9.77952 x 1078
8.40299 x 1010

gl B W N| | S

1 2 3 4 5
n

Figure 1.2: Logarithmic plots of MERxn versus n is 1 through 5 by ADM.
1.4.2.2 The Variational Iteration Method (VIM):

The VIM was first suggested in 1999 by Ji-Huan He [43]. It can be applied

to many differential and integral equations, linear and nonlinear [54,30]. The

12
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VIM does not require specific treatments for nonlinear problems as in
Adomian method [5]. The VIM gives the solution in a series form that
replicates to the closed form solution if an exact solution exists [54]. In order

to clarify the basic concepts of the VIM, we consider the following

Ly(x) + Ny(x) = f(x), (1.24).

The VIM introduces the correction functional for Eq. (1.24) in the form

Yerr (1) = () + j 2060 (Lye(©) + N7 (©) — F(O)]de,  (1.25)
0

The Lagrang multiplier A can be calculated for ODEs of n the order in the
following form [7, 8]:
_ ="

A= =D (t — )" 1, n>1. (1.26)

The sequence of solutions are given by: y(x) = lim y, (x).
n—-oo

1.4.6 The VIM for solving Painleve | differential equation

Painleveé I equation [22].

By using Eq.(1.7) with the given initial conditions: y (0) = 0,y' (0) = 1.
The correction functional is:

X

Vst = yu () + j A6, )" (8) — 63,2(8) — D), (1.27)

0

By using the formula in Eq. (1.26) leads to A(t,x) =t - x and substituting
this value into the functional Eq.(1.27), to get

13
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X

Va1 = V() + f (¢ — )" (©) — 63,2() — D), (1.28)
0

Will be the initial approximation as:

3

X
Yo=x+ P
3 X
yo= et [ =000 - 6302 - d, (1.29)
0
x3 x4 x6 X8

=x+—+—+—+—,
N1 6 2 15 336

Vs = y100) + f (t — 001" (©) — 6y:2(6) — D)dt, (1.30)
0

x3 x4 x6 X7 X8 x9 xlO 71x11 x12 x13 187x14-

Vo=x+—+—+—+—+-—+—+—+ +—+ +
6 2 15 7 336 40 60 46200 330 26208 764400
X X

+ + :
100800 5757696

We continue to find the other approximations till n = 5, for brevity they are

not listed.

It is possible to calculate the maximal error remainder to see the highest
level of precision that we can achieve. Table 1.3 and Fig. 1.3 show the MER,,
of the approximate solution obtained by VIM, by increasing the iterations, the

errors will be decreasing.

14
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Table 1.3: The maximal error remainder: MER, by the VIM, where n
=1,..,5,and 0.01 < x < 0.1

n MER,
1 0.0000601952
2 -8
1.72121 x 10
3 -12
2.29681 x 10
4 -16
1.52656 x 10
5 -17
2.77556 x 10
1078
< 107°
iy
S
10-12
1 2 3 4 5
n

Figure 1.3: Logarithmic plots of MER,,versus n is 1 through 5 by VIM

1.4.7 VIM for solving the Painleveé Il differential equation

Painlevé 11 equation[18]

By using Eq.(1.8) with the initial conditions y (0) = 1, y' (0) = 0.

The correction functional is:

Y1 = Yu () + j A6, 0 (0" (0) = 29,3(0) — ey (©) — wd, (1.31)
0

15
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Then, the iteration formula
X

Forr =30 + [ (€= VOO - 22O - y© - wdt,  (132)
0

The initial approximation will be

x2u
=14+
Yo + >

Y1 = 90(0) + f (t = D) 0o" (6) — 276> (£) — £ (6) — ), (1.33)
0

3 2 4 5 6,,2 8,,3
X X X X X X
I S A o u

6 2 4+40+20+224'

Vs = y1(0) + j (t = D01 (©) = 2y13 () — ty () — W, (1.39)
0

a2y 3+x4+x5+37x6+x7+13x8+x9+xlo+ x11
Ve = A X T T 107 180 T 21 ' 336 ' 72 ' 540 ' 11880
x2u+x4u+x5u+x6,u+x7,u+ 241x8,u+x9,u
2 4 40 4 30 2240 40 '

We continue to obtain the other iterations till n=5, they are not listed for
brevity.
When u =1 [20].

Table (1.3)and Fig (1.3) show the MER, of the approximate solution
obtained by the VIM, also, by increasing the iterations, the errors will be

decreasing.

16
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Table 1.4: The maximal error remainder : MER» by the VIM, where n
=1,..,5,and 0.01 < x < 0.1

MER,,
0.0634125
0.000323411
6.58637 x 1077
7.18421 x 10710
4.8539 x 10713

ul| | W N | S

1 2 3 4 5
n

Figure 1.4: Logarithmic plots of MER,, versus n is 1 through 5 by VIM.

1.4.8 Pendulum equation

The pendulum equation is a nonlinear ODEs that arise in physical
applications. In the 17th century, the Italian scientist Galileo was the first to
study the physical properties of the pendulum [62].The equations of
commentators describe many physical phenomenas, including the clock
pendulum and others. There are many analytical methods that have been used
to solve this type of mathematical model such as ADM [41], VIM[44]and
power series method [40]. We consider the general formula of the pendulum

equation as follows [1]:

17
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h
y"'(t) + Tsiny = 0, (1.35)

with the initial conditions: y(0) = y,and y'(0) = 0.
Where y is the angle offset, t the time, h is the quickened due to gravity and [
is the length of the pendulum.

1.4.9 ADM for solving the nonlinear pendulum equation[ 41 ]:

Consider the following pendulum equation.
y'"(x) +siny = 0, x €[0,1] (1.36)
with the initial conditions: y(0) = 0 and y'(0) = 1.

1

We can solve it by using the approximation of siny = y — %y3 + 1203/5 as
it's used in [43].

By applying the ADM, we obtain

Yo =X
x3 x5 x7
V1= "% T 120 " om0
x> 11x7 19x° x11 x13
yp = - Bl

T 120 5040 120960 246400 18869760

Then

— n
Yn = Li=0Yi

Continue to get the approximations till n = 5, for brevity not listed

18
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Table 1.5: The maximal error remainder : MERn by the ADM where n
=1,..,5.

MER,,
0.0959857
0.0059253

0.00115669
0.0000367296
473742 x 10°°

ul| | W N R S

1 2 3 4 5
n

Figure 1.5: Logarithmic plots of MER,, versus n is 1 through 5 by ADM.

1.4.10 VIM for solving the nonlinear pendulum equation[ 43 1:

By using EQq.(1.36) with the initial conditions: y(0) = 0 and y'(0) = 1.
1

5
120 y-as

We can solve it by using the approximation of siny = y — %y3 +

it's used in [43].

The correction functional is:

Yn+1 =

yn (@) + [ A x) (3" (8) + yu () =293 (0 + o 5(®) ) dt,  (1.37)

19
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By using the formula in Eq. (1.26) leadsto 4 =t - x, to be the iteration

formula

Yn+1 =

30 + [(= %) (3" + 3(® = 23O + 50 ®) ) e, (138)
The initial approximation will be

Yo=y(0)+xy'(0) =x (1.39)

Y1 = Yo + [ (¢t - x) (yo”(t) + 90 (t) =2 yo3 () + Lyos(t)> dt, (1.40)

120

3 5 7
X X X

=x——+—-—-

Y1 6 ' 120 5040’

In the same way as before, the second approximation can be written in the
form

Y2 =y () + [ (¢ - x) (yl”(t) +31() = zy:3(0) + ;ﬂ,yﬁ(t)) dt, (1.41)

x3 x5 x7 127x° 893x11 367x13 607x15
Vo =X——+———+ - + —
6 60 420 362880 19958400 70761600 1143072000

We continue in this manner to obtain the other iterations till n=5, they are not
listed for brevity, see appendix B
Table 1.4 and Fig. 1.4 illustrate the MER,, of the approximate solution

obtained by the VIM, it can be seen that by increasing the iterations, the errors
will be decreasing. See appendix B.

Table 1.6: The maximal error remainder : MERn by the VIM. where n
=1,..,5.

MER,,
0.0959857
0.00429285
0.0000881802
1.05634 x 107°
8.28868 x 1077

ul| |l W N R S
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1072

1074

MER,,

1070

1078

Figure 1.6: Logarithmic plots of MER,, versus n is 1 through 5 by VIM.

1.4.11 Falkner Skan equation

The Falkner-Skan equation was first studied in 1931 by Falkner and Skan
[15]. The equation has important applications in several industrial operations,
such as cooling of a metallic plate in a cooling bath, an aerodynamic extrusion
of plastic sheets, drawing of plastic films, metal spinning, metallic plates and
others [33]. There are many methods that have been used to solve this
equation, such as an ADM [33], VIM [58,12], OHAM [3]. An iterative finite
difference method (IFDM) [34], HPM [67], HAM [14], fourth order Runge-
Kutta method (RK4) with shooting techniques[68] and collocation method
[64].

The Falkener- Skan problem is defined by the following formula [33]:

y" () +y)y"(x) + B [e2 = (¥y'(x)?*] =0, x € [0,1] (1.42)

with the boundary conditions:

y(0) =0, y(0) =1-¢, y'() = €

21
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1.4.12 The ADM for solving the Falkner Skan equation[33]

By using Eq. (1.43) with the boundary conditions (0) = 0, y'(0) =1 —
€, y'(o) = €.

Suppose that y"(0) = a, when(e = 0.1and 8 = 0.5)[33]

Applying the ADM, we get

2
yo = 0.9x + % — 0.000833333x3

y,0.0675x3 4+ 0.0000375x> + 0.00000694444ax® — 4.96032 x 10~ %x7,

y, = —0.0030375x> — 0.0005625ax® — 0.00000160714x" —
0.00000111607ax® + 9.92063 x 107 1%°x° — 1.37787 x 10~ 7a?x° +
2.48016 X 107 1%qx19 — 1.127346 x 107 13x11,

Continue in this solution to get the fifth approximation, but for the brevity we

can't write all.

By using the Padé approximant in Eq.(1.2), we get

po (dyS) _ 09+(0.9(0.-0.37037a)+@)x+(0.27+(0.-0.37037a) a)x
1+(0.-0.37037a)x+0.075x2

By taking lim P} (%), we obtain
X—00 dx
ys'(x) = 3.6 —4.93827a% = y_'(0)

By using the condition value (y'(c0) = €) when € = 0.1, we get
3.6 —4.93827a% = 0.1 (1.43)
Solving the Eq.(1.43), we obtain

a = 1+0.841873

Thus, where dual solution for the Eq.( 1.43), we will use the value that

achieves better convergence and that is when(a = 0.841873).
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Table 1.7: The maximal error remainder : MER» by the ADM, where n
=1,..,5.

MER,

0.246021
0.0661609
0.0101075

0.000832153

ul| B W N -, S

3.40896 x 10 °

Figure 1.7: Logarithmic plots of MER,,versus n is 1 through 5 by ADM
1.4.13 The VIM for solving the Falkner Skan equation[58]
By using Eq. (1.42)

with the boundary conditions:

y(0)=0, y(0)=1—-¢, y'() = e

Suppose that y"(0) = a.

The correction functional for Eq.(1.42) is:

Ynr1 = Yu(0) + [o 206 8) (" (8) + Y ()30 (5)) +
B [€2 = (7' (s))?] ds.

23
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The Lagrange multiplier for this problem is A(x,s) = — %(s — x)2

So, we get
Va1 = () =5 [5(5 = 02 (00" () + yu ()3 () +

B le? — (' (s))?*] ds.
The first approximation, when( e = 0.1 and § = 0.5)[33] will be the

following

yo = 0.5ax% + 0.9x — 0.000833333x3,

y, = 0.5ax? + 0.9x — 0.000833333x3 — %fox(s — x)2(o" (s) +

Yo()yo"(5)) + B [€* = (¥0'(s))*]ds

y; = 0.9x + 0.5ax? + 0.0666667x3 + 0.0000375x°>
+ 0.00000694444 a x® — 4.960312 x 107%x7,

y,(x) = 0.9x + 0.5ax? + 0.0666667x3 — 0.003x> — 0.000555556ax°®
—0.0000341567x7 — 0.00000111607ax® — 5.42535
x 1078x° — 1.37787 x 107 7a%x® — 1.14707 x 10~ 8ax1°
— 1.63465 x 10712x11 — 394571 x 10~ 12ax1? + 2.92676
X 107 1x13 —3.3724 x 107 13a%x13 + 4.73168 x 10~ 6ax*
—1.57723 x 1071915,

and so ontill y<(x), we have

y5(x) = 0.5ax* 4+ 0.9x 4 0.0666667x* — 0.00833333ax*x* — 0.003x>
+ -+ 1.42488 x 107 1%3ax?x12* 4 3.76624 x 107 164x125
— 2.23633 x 107169127

By using the Pade approximant in Eq.(1.2), we get

a = 10.832666,
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we will use the value that achieves better convergence and that is
when(a = 0.832666).

We can use it to calculate the maximal error remainder to clarify the accuracy

level that we achieve. This can be clearly seen in table 1.8 and figure 1.8.

Table 1.8: The maximal error remainder : MER» by the VIM, where n
=1,..,5.

MER,,
0.246021
0.0745229
0.0150143
0.00226928
0.000274414

Ul | W N | S

10~"

1072

MER,,

10~3

Figure 1.8: Logarithmic plots of MER,,versus n is 1 through 5 by VIM
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1.5 Partial Differential Equations

The PDEs is an equation that contains unknown variables or functions and
its partial derivatives. In PDEs the function u depends on one or more
independent variables (x,y,...) with the time variable t. In addition, the
PDEs have described many natural phenomenas in the field of physics and

geometry. Such as, the heat flow, the wave propagation and other models.

1.5.1 The wave equations

The wave equation was first discovered by Brook Taylor [19].This
equation plays an important and significant role in various physical problems,
which that requires study in different fields of science and engineering [5].
We consider one dimensional (1D), two dimensional (2D) and three
dimensional (3D) non-linear wave equation, which can be given in the
following formulae [70]:
Ut = U + G, )+ f(x, ), a < x<b, t>0, (1.44)

with initial conditions

u(x,0) = fi(x), u(x,0) = fo(x).

Upp = Uyy T Uy, + 6, ) +f(,y,t), a< x,y<b, t>0, (1.45)

with initial conditions

u(x,y, O) = f1(X,y), ut(x,y, O) = fZ(x'y)

Upp = Uyy Uy U, 6, ) + f(,y,2,8), a< x,y,2<b, t>
0, (1.46)

with initial conditions

u(x,y,z, O) = f1(x;y;Z); ut(x,y,Z,O) = fZ(x'ylZ)

26
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There are many methods that have been used to solve the wave equations,
for example ADM [17,66], HPM [39], VIM [10,38], A new second-order
alternating direction implicit method (ADI) [44], Method of difference
potentials (MDP) [77], Fixed point iteration method and Newton method [37].

1.5.2 The exact and approximate solutions for non-linear wave
equation by ADM

In this subsection, we use the ADM to get the exact and approximate solution
for the 1D, 2D, 3D wave equation .
Example 1.1

Let us consider the following 1D linear wave equation[ 5].

Ut (3, 1) = Uy (x, ) — 2, O<x<mt>0 (1.47)

with initial conditions: u(x,0) = x2, u.(x,0) = sin x,
Integrating both sides of Eq. (1.51) twice from 0 to t and using the given
initial conditions, we obtain

u(x, t) = —t? + x? + t sinx + fot fot(uxx)dtdt, (1.48)

and by reducing the integration in Eq. (1.52) from double to single [6], we

get
t

u(x,t) = —t? + x? + t sinx + j(t — 5)(uyy)ds (1.49)
0
Then,
Uy = —t?+x%+tsinx, N,y )= fot(t — 5) Uy )dS

Applying the ADM, we get
Uy = —t? + x? + t sinx,
1

u, =t — gt3sinx,
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1 5 .
u2=mt sinx ,

Uy, t) =X u (x,t) n=1,2,...

Us = ug+uy+ u, + uz+ uy + us,

N _ - 1 .. t’sinx t%sinx
Us =x +t51nx—gt smx+mt sin x — 5040 +362880'

The exact solution can be defined by

o

Ux,t) = z w, (x, )

n=0

1 1 t’ N t? N
120 5040 362880

= x% + sinx (t—gt3+ t>

= x? + sinx sint.
Which is the same as the exact solution

Example 1.2

Consider the following 1D nonlinear wave equation[10]:
U = Uyy + U+ u% — xt — x2t2, 0<x <1, t>0 (1.50)
with initial condition u(x,0) = 0, u;(x,0) = x,

Integrating both sides of Eq. (1.50) twice from 0 to t and using the given
initial conditions, we find
t3x t*x?

u(x,t) = tx—?— P

t ot
+ j j (uss + u + u?) ds ds. (1.51)
0 Jo

We find the adomian polynomials (4,,) for the nonlinear term u? by the
relationship in Eq. (1.12).
Reducing the integration in Eq. (1.51) from double to single [6], we get
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) = t t3x  t*x?
WLt = T mm T

+ f (t—5s)(uss +u+A,)ds (1.52)
0

By applying the ADM, we get

o) = ¢ t3x t*x?
Ug(x,t) = tx ——— :
0 6 12

AO = uo
t

1wy (x, ) = f (¢ — 5) (ttgss + o + Ag)ds,
0

B to +t3x t5x+t4x2 t6x2+t8x2 t7x3+t9x3+t10x4
180 6 120 12 72 2016 252 2592 12960’

Al = Zu,oul

t
1y (x, ) = j (t — ) (ttyss + Uy + Ap)ds,
0

B to t8 N t10 +t5x t’x 11t9x+ t11ly +t6x2
180 1680 90720 120 5040 22680 26400 72
31t8x2 N 11t102 N
20160 302400 '

Then :
t12 1979t 14 779t16 445769t18
us(x,t) = + - + —
1069200 4358914560 5189184000 50018544576000
1051120 77583722

62523180720000 67548120659712000

U = ug u+u,+us +uy +us = tx tx 15167
57T Fo+H1 TR TS 4 5 7 6227020800 7264857600

4673t15x 3709t16 29357t17x 7591318

16345929600 46702656000 694702008000 10003708915200

The exact solution for Eq.(1.50)

u(x,t) = xt.
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We calculate the absolute error , | T | = | u—U, | , to check the accuracy of
the approximate solution U,,, where u(x, t) = xt is the exact solution. In table
1.6 the absolute error of ADM with n =1, 3 is provided.

Table 1.9: Results of the absolute errors for ADM, whent = 1.

X |7”1 | |7”4 |
0 0.00555556 1.3407 x 107
0.00652639 1.9667 x 107°
0.00778647 | 2.76817 x 107°
0.00935701 | 3.79775 x 107°
0.011259 5.12235 x 107°
0.0135134 6.82494 x 107°
0.0161408 9.00674 x 107°
0.0191616 0.0000117893
0.0225963 0.0000153167
0.0264648 0.0000197578
1 0.030787 0.0000253086

CIPIQILILIQe e e
Ol Njolu|dw(N|F

In table 1.9, we note that by increasing the iterations, the errors will be
decreased.

Example 1.3

Consider the following 2D nonlinear wave equation.

Uee (X, Y, 1) = Uy (0, Y, 8) + 1y, (x, 3, 8) —ulx, y,0)* + t2x2y?,

0<x,y<1,t>0

with initial conditions:  u(x,y,0) =0, u:(x,y,0) = xy.
By applying the ADM, we obtain

Uy = txy + %t‘*xzy2

t10x4y4-

12960

tox®  t®y* 1 4 5 5 1 .5 3 3
+———t"x ——t'x —
180 ' 180 12 Y T s y

u1=
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t8 tox2  11t°x3y  t0y?  t12x*y?  11t%xy3 1 £75373

U, = — X7y
2520 180 22680 180 71280 22680 252
t12x2y4 11t10x4—y4 37t13x5y5 t16x6y6
71280 45360 7076160 18662400
Then,
U, = 13t16x2 139t14x4 t1lxy 23t x5y 13t16y2
4= — —

232848000 170270100 16632 467026560 232848000

This series converges to the exact solution when

U(X,y, t) = Z%o:Oun (X;y; t) =Xy t.
Table 1.10: Results of the absolute errors for ADM, when y, t = 1.

X |7”1 | |7”4 |

0 0.00555556 436769 x 1077
0.00560714 492375 x 1077
0.00574591 6.44678 x 1077
0.00594779 8.85956 x 1077
0.0061885 1.2063 x 107°
0.00644359 1.59218 x 107°
0.00668841 2.02518 x 10~°
0.00689814 2.4808 x 107°
0.00704776 2.92748 x 107°
0.00711207 3.32569 x 107°
1 0.0070657 3.62723 x 107°

CIQICQILIQLe e
Ol N|o|ublw N E

Example 1.4.

Consider 3D nonlinear wave equation given in equation
utt(xl Y, Z, t) = uxx(x' Y, Z, t) + uyy(x: Y, Z, t) + uzz(xr Y, Z, t) -
u(x,y,z,t)? + t2x2y?z%, 0<x,y,z< 1, t >0

with the initial conditions: u(x,y,z,0) = 0,u.(x,y,2,0) = xyz

By applying the ADM, we obtain
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1
up = txyz + — ttx?y?z?

u1=

1 .6.2.2 1 .6.2.2 1 . 6.2.2 1.4 2 22
—tUxy + —t°xz°+ —t°y°z"- — -t x°y°z° —
180 180 180 12

t10x4-y4-z4-

12960

1 .7.3.3.3
—1t'x Z° —
252 y

Then

t10 13t10x%y2  13t16x2y*  139t14x%y*  59t13xyz  t1lx3yz
37800 232848000 232848000 @ 170270100 8108100 & 16632
t1lxy3z

16632

u4=

This series converges to the exact solution when

Ux,y,zt) =YooU, (x,y,2,t) = xyzt.
Table 1.11: Results of the absolute errors for ADM, when y, z,t = 1.

X |7”1 | |7”4 |

0 0.00555556 3.80939 x 1077
0.00566269 2.43012 x 1077
0.00596813 6.6647 X 1077
0.00644779 8.76941 x 1077
0.00707739 8.53484 x 1077
0.00783248 5.69642 x 1077
0.00868841 3.69911 x 107°
0.00962036 8.95526 x 1077
0.01060333 2.132x 10°°
0.0116121 3.73384 x 107°
1 0.0126213 5.71383 x 107°

CIPIQIOILIQIL e e
Ol NjoludwiNF
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1.5.3 The VIM for solving non-linear wave equation

In this subsection, we will use the VIM to get exact and approximate

solution for the wave equation.

Example 1.5

Rewrite the example 1.1 and solve it by VIM.

By using Eq. (1.47), with initial conditions: u(x,0) = x?, u,(x,0) = sin x.

The correction functional of the Eq. (1.47) is:

Unir =ty + i A0) ((tnss) = (Unax) + 2)ds, (1.53)
By using the formula in Eq. (1.26) leadsto A = s - t, we have
Uppq = Uy + fot(s = 1) ((unss) — (Unyy) + 2)ds. (1.54)
Then, we get
Uy = —t% + x? + t sinx, (1.55)
U = Ug + fot(s - t)((uOSS) — (Ugyy) + Z)ds, (1.56)
= x? + tsinx — %t:“sinx,
uy = up + f (5 - £)((tass) = (i) + 2)ds, (1.57)
= x? + tsinx — 1t3sinx + itSSinx )

6 120
continuing in this way till n =5, we find
us = x2 + tsinx — %t3sinx + Elo tosinx — t;(s)i;x ;Zz::; — 3;115612360 .

The exact solution can be given by,
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u(x, t) = lim u,(x,t) = x% + sinx sint .
n—-oo

Example 1.6
Solving the example 1.2 by VIM.

We use Eqg. (1.50), with initial conditions: u(x,0) = 0, u,(x,0) = x.

The correction functional of the Eq. (1.50) is:
Uppq = Uy + fot/l(s)((unss) — (Upey) — Uy — (U)% + xt + xztz)ds. (1.58)

By using the formula in Eq. (1.26) leadsto A = s - t, we have

Up+1 =
Uy + (5= ) (Unss) = (Unxx) — tn — (Un)? + xt + x%t2)ds, (1.59)
Then, we get
t3x  t*x?
u0=tx—?— 7 (160)

Up =1up + j(S = t)((uoss) — (Uoxx) — Uo — (Uo)* + xt + x*t?)ds, (1.61)
0

to t5x  t0x%  t8x%  t7x3 %3  t10x%
= —_— tx — —_ —_ ,
180 T 120 72 T 2016 252 T 2592 T 12960

t
U =uUp + f(s - £)((U1ss) — (Upxx) — Uy — (Ug)* + xt + x*t?)ds, (1.62)
0

t8 t10 t14 o t’x 11t9x+ t1ly
* 75040 22680 ' 47520

- 1680 T 90720 T 5896800
N t13x 11t8x? N
1684800 20160 ’

continuing in this way till n =5, we find
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14 17916 9959¢18 18763t%°

— - + +
335301120 19813248000 72754246656000 2303884477440000
tB3x 28915

— —_ + ces
6227020800 20432412000

Ug =

+ -+ tx

This series converges to the exact solution

u(x,t) = 751_)7& u,(x,t) = xt.

It is possible to calculate absolute error, to show the accuracy of the
approximate solution u,, , where u(x,t) = xt is the exact solution. In table
1.12 the absolute error of VIM withn = 1, 3 is provided.

Table 1.12: Results of the absolute errors for VIM. When t = 1.

X |7”1 | |7”4 |
0 0.00555556 461399 x 1077
0.00652639 5.76688 x 10~
0.00778647 7.17091 x 1077
0.00935701 8.8619 x 1077
0.011259 1.08821 x 10~
0.0135134 1.32813 x 107°
0.0161408 1.61177 x 107
0.0191616 1.94595 x 107°
0.0225963 2.33857 x 107°
0.0264648 2.79877 x 107°
1 0.030787 3.33704 x 107°

CILICLILQe e e
Ol N~ wNF

Example 1.7
Solving the example 1.3 by VIM.

By applying the VIM, we get the following iterations

1
=t t4 922
Uy xy+12 X<y

_ t6x2 t6y2 10,.4,,4

1 £10xty
uy = + txy + — - —t"x3y? ————
180 180 252 12960
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Continuing in this way till n = 4, we find

t18 t38 t16x2 t26x2

Uy = — — — -
4 6766578000  5309215293981634560000 86486400 = 166617032400000
t36x2

_|_ o + txy + o
108285601866624000000

This series converges to the exact solution
u(x,y,t) = limu,(x,y,t) = xyt.
n—-oo

Table 1.13: Results of the absolute errors for VIM. When y, t = 1.

X |7 | |7 |

0 0.00555556 1.57137 x 1077
0.00560714 1.84193 x 1077
0.00574591 2.63572 x 1077
0.00594779 3.94162 x 1077
0.0061885 5.74663 x 1077
0.00644359 8.03297 x 1077
0.00668841 1.07753 x 107°
0.00689814 1.39378 x 107°
0.00704776 1.74719 x 107°
0.00711207 2.13131x107°
1 0.0070657 2.53787 x 107°

o|lo|o|o|o|o|o|o|o
QOO INOO| OB WIN|F

Example 1.8
Solving the example 1.4 by VIM.
By applying the VIM, we find

1
U = txyz + ttx2y?z?

1 1 1 1
u; = —t%x%y? + txyz + — t®x2%z% + — t8y?%z%2 — —t7x3y3z3 —
180 180 180 252
t10x4y4-z4-

12960
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Continuing in this way till n = 4, we find

59(xyz)t13 23xty* 61x*y2z?  61x’y*z? 23x%z*
Uy = XYyZt —
8108100 136216080 22702680 22702680 136216080
61x2y2z* 23y4z* )t14 (_ 173x5y523 _ 173x°y3z° . 173x3y525) F15 1.
22702680 136216080 681080400 681080400 681080400

This series converges to the exact solution

u(x,y,zt) = limu,(x,y,z,t) = xyzt.
n—>0oo

Table 1.14: Results of the absolute errors for VIM. When y, z,t = 1.

X |7”1 | |7”4 |

0 0.00555556 | 1.44152 x 1077
0.00566269 5.3068 x 1077
0.00596813 | 1.09838 x 107°
0.00644779 | 1.54998 x 10~°
0.00707739 | 1.87041 x 107°
0.00783248 | 2.03909 x 10~°
0.00868841 | 2.03049 x 10~°
0.00962036 | 1.81462 x 107°
0.0106033 1.35764 x 107°
0.0116121 6.22353 x 1077
1 0.0126213 431218 x 1077

CIQILCQILIQLe e
Ol o N|lo|udMlw N E
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Chapter Two Solving Some Types of Ordinary Differential
Equations by Some Iterative Methods

Chapter 2

Solving Some Types of Ordinary Differential
Equations by Some Iterative Methods

2.1 Introduction

In this chapter, we implemented three iterative methods to solve several
nonlinear ODEs that arise in physics, engineering and other applications. The
proposed iterative methods are Tamimi-Ansari method (TAM) [36], which is
used to solve many ODEs [36] such as, Duffing equations [50], some
chemistry problems [51], thin film flow problem [52] and Fokker-Planck’s
equations [53]. Daftardar-Jafari method (DJM)[84], is an iterative method
used for solving nonlinear equations. Another iterative method is called the
Banach Contraction Principle (BCP) which is suggested by Varsha Daftardar-
Gejji and Sachin Bhalekar [85].

The approximate solutions resulting upon applying these methods will be
compared numerically with other results obtained by applying the Runge-
Kutta as well as Euler methods and some analytic methods such as ADM and
VIM. The convergence for those presented methods are also discussed.

This chapter is organized as follows; In section 2, the basic ideas of the
proposed iterative methods will be presented. In section 3, the convergence of
the proposed iterative methods will be given. In section 4, some types of
nonlinear ODEs equations will be solved by the proposed methods and the

convergence will be proved.
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2.2 The basic concepts of the proposed iterative methods

Iterative method is a mathematical procedure which generates a sequence
of improved approximate solutions for a class of problems. The iterative
method leads to an approximate solution which converges to the exact
solution if certain conditions and satisfied with some given initial
approximations.

Let us introduce the following nonlinear differential equation:

L(y (x)) + N (y(x)) +g(x) =0, (2.1)
with the boundary conditions or initial conditions

B (y, Z—z) =0, y(0) =aand y (0) =b x €D, (2.2)
where x represents the independent variable, y(x) is the unknown
function, g is a given known function, L(*) = %(-) is the linear operator,

N(-) is the nonlinear operator, B(-) is a boundary operator andy(.),
y (.) are initial operater. Now, let us begin by introducing the basic ideas of

the three iterative methods.

2.2.1 The basic idea of the TAM

We first begin by assuming that y,(x) is an initial guess to solve the
problem and the solution approach begins by solving the following initial
value problem [35]:
L(yo(x)) + g(x) = 0,and B(y,,%22) =0 or y,(0) = aandy, (0) =
b (2.3)

The next approximate solutions are obtained by solving the following

problems
L()’1(x)) +g(x)+N (yo(x)) = 0 and B(Yp% =0ory,(0) =
a and y; (0) = b (2.4)
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Thus we have a simple iterative procedure, which is the solution of a set of

problems i.e.,
L(yn+1(x) ) + g(x) + N (%) ) =0,
and B(Yn+1, dy;xﬂ) =0 or y,4,(0) = aand Yn+1l(0) =b (2.5)

Then, the solution for the problem (2.1) with (2.2) is given by
y(x) = lim y, (x) . (2.6)

2.2.2 The basic idea for the DIJM

Let us apply the inverse operator L71(-) = fox fox(-) dt dt to the nonlinear

problem presented by (2.1) and (2.2). Then, we have

X X
yo) = feo+ | [ No@)dra, @7)
0o Y0
and by reducing the integration from double to single[6], we get the following
form
X
Y0 = £ + | - DN(@)dr (28)
0

where f is a known analytic function which represents the sum of the
available initial conditions and the result of integrating of the function g (if
such function is available).

The solution y for Eq. (2.8) can be given by the following series [84]:

y = iyi (2.9)

=0
Now, the following can be defined

Go = N(yo), (2.10)
G =N 3’i>—N< )’i>» m =1
(27)-(%

So, that N(y) can decomposed as
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N (Z yi> =N®o) + [N(yo +¥1) — N(o)]

i=0 Go G,

+[NWo +y1 +¥2) = N@o +y1)]
Gy

HINGo+ Y1 + Y2 +y3) —NOo+y1 +y2)] + -
Gs3

Moreover, the relation is defined by recurrence so that

Yo =1, (2.11)
y1 = L(yo) + Go, (2.12)
Yme1 = L(Ym) + G, m=1 (2.13)

Since L represents a linear operator Y1~ , L(y;) = LX), we may write

ZJ’i= L()’i)"'N(ZYi)=L<z}’i>+N<z}’i>' mz=1
i=1 i=0 i=0 i—0 =0

So that,

Z)’i = f+L<Zyi) +N<Zyi)

i=0 i=0 i=0

and the approximate solution will be given in

n
Yn = zyi-
i=0

2.2.3 The basic idea for the Banach contraction method (BCM)

Consider Eq. (2.8) as a general functional equation. In order to implement

the BCM, we define the successive approximations [85]:

Yo = [,

y1 =Yo + N(¥o), (2.14)
Y2 =Y + N(y1),

and so on, we will get successive approximations for y, (x) in the following

generalized form
Yn=Yo+NWn_1), n= 12, ... (2.15)
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Therefore, the solution for the relations (2.1) and (2.2) will be obtained
y = lim y,. (2.16)

n-co
2.3 The convergence of the proposed iterative methods
In this section, we will present the fundamental theorems and concepts for
the convergence [90] of the considered methods.
The iterations occurred by the DJM are straight used to prove the
convergence. However, for the convergence proof of the TAM or BCM, the
following procedure should be used for handling Eq. (2.1) with the given

conditions (2.2). So, we have the terms

vO = yO(x)l
v; = Flvy],

v, = Flvy + v4], (2.17)

Vpe1 = Flvg + v + -+ 1,

where F represents the following operator

Flv,] = S, — zl:olvi(x), k> 1. (2.18)

In general, the term S, is the solution for the problem in the form, for the
TAM:

L) +g(x) + N (g vi(x) =0, k> 1. (2.19)
For the BCM:
v, =V + N <zlf__1vi(x)>, k>1. (2.20)

By using the same conditions with the intended iterative technique that will be
used. Therefore, we get y(x) = lim,_,q ¥, (x) = Yoo V. Hence, by using
Egs. (2.17) and (2.18), the following solution will be obtained in a series

form

or Zzovi(x). (2.21)

According to the recursive algorithms of the proposed methods, the sufficient
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conditions for the convergence of these methods can be given in theorem
1.2.8,1.2.9and 1.2.10

Theorems 1.2.8 and 1.2.9 states that the solutions obtained by one of the
presented methods, i.e., the relation (2.5) (for the TAM), the relation (2.13)
(for the DIM), the relation (2.15) (for the BCM), or (2.17), converges to the
exact solution under the condition then there exists 0 < & <1, such
that ||IF[ve + vy + - + v ]ll < SHIF[v + vy + -+ vi]ll (that is [[vi4 || <
&lvill), Vi =0,1,2,....). In another meaning, for eachi, if we define the

parameters as below,

V34l
lvill # 0

Bi=1 llvill ) (2.22)
0, lvill = 0

then the series solution Y72, v;(x) for the nonlinear ODE given by (2.1) will

be converged to the exact solution y(x), when0 < f; <1,vi =0,1,2,....

Also, as in Theorem 1.2.10, the maximum truncation error is estimated to

1 .
be ly () — Bio vill < 7 B lvoll, where § = max{8;,i = 0,1, .., n},

2.4 Application of the proposed iterative method with

convergence for the nonlinear examples

In this section, some types of non-linear equations which are Painlevé |
equation, Painleveé Il equation, pendulum equation and Falkner-skan equation
will be solved by the suggested methods. In addition, the convergence will be

proved.

2.4.1 The proposed iterative methods for solving nonlinear

Painleveé | equation

By using Eq.(1.7) with the initial conditions: y(0) = 0 and y'(0) = 1.
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This problem will be solved by using the three proposed iterative methods.

Solving the Painlevé | equation by the TAM:
In order to solve the Eq.(1.7) by the TAM, we have the following form

L(y) =y"(x), N(y) = — 6y*(x) and g(x) = —x. (2.23)
The initial value problem will be:
L(yo(x)) = x, with y,(0) = 0 and y4(0) = 1. (2.24)

We can get the next problems from the following generalized relationship
Lyn+1(x)) +g(x) + N (7n(x) ) = 0, yn+1(0) = 0 and y,,(0) =
1. (2.25)

Firstly, to get the zero approximation y,(x), the following initial problem
must be solved:
Yo () = x, (2.26)
By integrating both sides of Eq. (2.26) twice from 0 to x and substituting the
initial conditions y,(0) = 0 and y,(0) = 1, we get

X3

yO(x) =Xx + zi

In a similar manner, the rest of the other iterations can be carried out, the first
iteration can be obtained by evaluating
y, (%) = 6y5(x) + x, with y;(0) = 0 and y; (0) = 1, (2.27)
Then, the approximate solution for Eq. (2.27) will be then:

x3 x* x® «xB

yl(x)=x+z+7+ﬁ+ﬁ

The second iteration y, (x) can be obtained from solving the following
y, (x) = 6y2(x) + x, with y,(0) = 0 and y,(0) =1, (2.28)
Then, by solving Eq. (2.28) approximately, we obtain:

x3 x4 x6 x7 x8 x9 xlO 71x11 le
A A ST S +
Y2(X) =x+ o+ ot et o 33t 5+ 50 T 26200 T 330

513 18714 x16 x18
* 26208 * 764400 * 100800 * 5757696
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Thus, we continue in this process to obtain the approximations tilln =5
for y,, (x), but for brevity the terms are not listed.

Solving the Painlevé | by the DIM:

Consider the Eq. (1.7) with initial conditions y(0) = 0 andy' (0) = 1.
Integrating both sides of Eq. (1.7) twice from 0 to x and using the given

initial conditions, we have

1 X X

y(x)=x + gx3 +J f 6y?(t)dt dr. (2.29)
0 Y0

By reducing the integration in Eq. (2.29) from double to single [6], we obtain

1 X
y(x) =x + =x3 +f (x — 1) (6y2(7)) dr, (2.30)
6 0

Then, the following relations can be defined:

1
Yo =x + 2x°,

Npar) = j (x—D(6y2)dr, neNUO)
0

By applying the DJM, we get

. 1
Yo=Yo= x+ gx3,

4 6 8

S Sl
Y1 =5 757 338
x3 x* x® X8
=Yt =t o
V=Yoo =X T T T 15 T 336

X7 x9 x10 71x11 X12 x13 187x14- x16
yo ==+ —+—+ + + + +
Y2 7 40 60 46200 330 26208 764400 100800
x18
+ —
5757696
n n n . x3 x4- X6 x7 x8 x9 xlO 71x11 x12
Ya=Yot ity =Xttt et Tt e T T 0 Taez00 T30 T
x13 187x14 x16 x18

26208 764400 100800 5757696

Therefore, we continue to get approximations till n = 5, for y,, (x) but they

are not listed.
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Solving the Painlevé | by the BCM:
Consider Eq.(1.7), by following the similar procedure as given in the DJM,

we get Eq. (2.30). So, lety, = x + %xi“ and N(y,_,) = f(;‘(6y,21_1(r)) dr,

neN.
Applying the BCM, we obtain:

— +13
Yo= X 6X,

x3 x* x® X8
=Xt T 5 T 336
x3 x4— x6 x7 x8 x9 xlO 71x11 x12 x13
=xt—F ottt ot —t+—+ +—+
Y X T S T 5T 7 7336 720 T 60 ' 46200 " 330 ' 26208

187x14 X16 X18
T 764400 T 100800 + 5757696

We continue to get the approximations till n = 5, and for brevity not listed.

It can be seen clearly that the obtained approximate solutions from the
three proposed techniques are the same because we got the same series.

In order to access the convergence of the obtained approximate solution for
problem 1, the relations given in Egs. (2.17)-(2.21) will be used. The

iterative scheme for Eq. (1.7) can be formulated as

vo(x) = yo(x) =x + %3,

By applying the TAM, the operator F[v,] as defined in Eq. (2.18) with the
term S;, which is the solutions for the following problem, will be then
v () = 6(TXd ()" + x, with v, (0) = 0 and v},(0) = 1, k = 1.(2.31)
Or when applying the BCM, the S} represents the solution for the following

problem,
k-1 2
Vpy =V + 6 (Z vi(x)> , k=>1. (2.32)
i=0
On the other hand, one can use the iterative approximations directly when
( ]
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applying the DJM. Therefore, we have the following terms:

V1= 5 715 7336
x7 x9 xlO 71x11 x12 x13 187x14- x16
V2 =7 T 207 50 T 76200 7330 T 26208 | 764400 T 100800
x18
T 5757696
B 2x10 N 41 x12 N 37x13 N 527x14 N 1543x1° N 105563x1°
V3= 705 T 9240 ' 5460 ' 1401400 ' 970200 ' 112112000

N 91061x*7
571771200
As presented in the proof of the convergence of the proposed methods, the

(2.33)

terms given by the series )2, v;(x) in(2.21) satisfy the convergent

conditions by evaluating the S; values in this case, we get

By = ”m” 0.488265 < 1

v,
= = 0.332461 < 1
B = 1ol (2.34)

B, = ””3” 0.178092 < 1

By = “”‘*H 0.102841 < 1

B, = H"SH 0.065685 < 1
4-

where, the B; values fori > 0 and 0 < x < 1, are less than 1, so the proposed

iterative methods satisfy the convergence.

In order to examine the accuracy for the approximate solutions obtained by
the proposed methods for Eq. (1.7) and since the exact solution is unknown,
the maximal error remainder MER,, will be calculated. The error remainder

function for the Painleve | equation can be defined as
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ER,(x) = y;/ (x) — 6y5 (x) — x, (2.35)
and the MER,, is:
MER, = o.oﬂi)s(oalER"(x)l’ (2.36)

Table (2.1) and Fig. 2.1 below show the MER,, of the approximate solution
obtained by the proposed iterative methods which indicates the efficiency of
these methods. It can be seen that by increasing the iterations, the errors will
be decreasing.

Table 2.1: The maximal error remainder: MER= by the proposed methods.

N MER,,
1 0.0000601952
2 -8
1.72121 x 10
3 -12
2.29681 X 10
4 _16
1.52656 x 10
5 -17
2.77556 X 10
106
< 1079
\g
uj
S 10—12
10—15
1 2 3 4 5

n

Fig.2.1:Logarithmic plots for the MER,, versus n from 1 to 5, by the proposed
methods.
Also, we have made a numerical comparison between the solutions obtained

by the proposed methods, the Range-Kutta (RK4) and Euler methods.
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The comparison for problem1l is given in Fig. 2.2. It can be seen, a good

agreement has achieved.

0.10 a9
0.05 2
< v -®- Proposed methods
: v
0.02 - RK4
Eul
102 |9

0.02 0.04 0.06 0.08 0.10
X

Fig.2.2: The comparison of the numerical solutions for Painleveé | equation.

2.4.2 The proposed iterative methods for solving nonlinear

Painleve Il equation

By using Eq.(1.8)
with the initial conditions: y (0) = 1 and y'(0) = 0. Eq.( 1.8) which will be
solved by the three proposed iterative methods. The parameter 4 in this
equation will be equal to 1.

Solving the Painlevé 11 equation by the TAM:

In order to solve Eq.(1.8) by the TAM, we have the following form

Ly)=y", Ny) =2y’ +xyand g(x) = 1. (2.37)
The initial value problem is
L(yo(x)) = 1 with y,(0) = 1 and y,(0) = 0. (2.38)

The next problems can be found from the generalized iterative formula

L(n+1(0)) + N(yn(x)) + g(x) = 0, ¥,41(0) = 1 and yp,1(0) = 0.
When evaluating the following initial value problem (2.38), one can get the

solution
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XZ
ok
The first iteration y; (x) can be found by solving

y1' (%) = 2y5(x) + x yo (x) + 1 with y;(0) = 1,y;(0) = 0.
The solution will be

(= 14 2+x3+x4+x5+x6+ %8
Y1) = 2 "6 T4 20720 224

Applying the same process for y, as follows
v/ (x) = 2y (x) + x y; (x) + 1, with y,(0) = 1 and y,(0) = 0.

By solving this problem, we have

Yo(x) =1+

5 6 7 8 9 10
X 91x 17x 1409x 13x 929x
+=+——+——+ +—+ +
8 180 210 6720 288 16800

3x%  x3  3x*
y2(X) =145+ 70+

38593x11  26683x1%2 = 1483x13  6239x1% 809x15 4583x16 2357x17
3326400 2217600 655200 3057600 2352000 16128000 60928000

31273x18 37x1° 3499x20 109x21 81x22 n 3x23
959616000 10944000 1191680000 526848000 386355200 507781120

24 26

X
92323840 3652812800

Continuing in this manner to get approximationsupton = 5 for y, (x), but
for brevity they are not listed, see appendix C.

X

Solving the Painlevé Il equation by the DJM
Consider the Eq. (1.8) with initial conditions y(0) = 1 and y'(0) = 0.
Integrate both sides of Eqg. (1.8) twice from 0 to x with using the given initial

conditions, we obtain

2 X X
y(x) =1+ %+f f (2y3 (1) + y(7)) dr dr, (2.39)
0o Y0
and reducing the integration in Eg. (2.39) from double to single [6], we
achieve
2 X
y(x) =1+ x7+j (x —1)(2y3(7) + ty(7)) d7, (2.40)
0

Therefore, we have the following recurrence relation
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Npsr) = f (= D@E@ + @) dr,  nENUO)
0

By applying the DJM, we get

—g =1 4 =
Yo =Yoo = ok
x3 x* x5 x® xB
j1=x+—+—+—+—=+-—=
i =X T e T T a0 20 " 224
3x2 x3 x* x5 x® x8

=Yt =l ot ettt s

4 5 6 7 8 10 11 12
N X X 41x 17x 197x 13x° 929x 38593x 26683x
Vo= —+—+ + + + +

2 10 90 210 960 288 16800 3326400 2217600
1483x13 = 6239x14 809x15 4583x16 2357x17 31273x18 37x1°

655200 3057600 2352000 16128000 60928000 959616000 10944000

3499x20 109x21 81x22 n 3x23 x24 x26
1191680000 526848000 386355200 507781120 92323840 3652812800

3x* x5 x6 17x7 . 1409x8
= + + =1 + — + + —— + + + + +
Yo =Yoo+ 91 +9,= 210 6720
13x° = 929x10 38593x11  26683x1%2  1483x13  6239x1% 809x15
288 16800 3326400 2217600 655200 3057600 2352000
4583x16 2357x17 31273x18 37x1° 3499x20 109x21

16128000 60928000 959616000 10944000 1191680000 526848000
81x22 3x23 x24- x26

+
386355200 507781120 92323840 3652812800

Therefore, we continue to get approximations tilln =5, for y, (x) but for

brevity the terms are not listed.

Solving the Painlevé 11 equation by the BCM
Consider Eq.(1.8), by following the similar procedure in the DJM, we get

the Eq. (2.40). So, ifwe lety, =1 + x; and
Nn1) = [, (x = D) Q2ya-1 (D) + Tyy_1 (D)) dr.
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Applying the BCM, we obtain:
X2

=14 —,
Yo 5

3x2 x3 x* x> «x® «xB
=1+ St et st ot
3x2 x® 3x* x> 91x® 17x7 1409x% 13x°
2 6 + 4 8 180 T 210 T 6720 + 288
929x1° 38593x'! 26683x'? 1483x'%® 6239x*
+ 16800 T 3326400 + 2217600 + 655200 T 3057600
809x1> 4583x16 2357x17 31273x18

* 2352000 * 16128000 * 60928000 * 959616000

N 37x1° N 3499x20 N 109x21 N 81x22
10944000 1191680000 526848000 386355200
3523 224 526

* 507781120 * 92323840 * 3652812800
We continue to get the approximations tilln =5, for brevity they are not

listed.

The obtained solutions from the three proposed methods are the same
because we got the same series. Hence, as presented in the proof of the
convergence for these methods in the previous section and by following
similar procedure that presented for Painlevé Il equation, the terms given by
the series Y2, v;(x) in Eq. (2.21) satisfy the convergent conditions by

evaluating the §; values for each iterative methods, we get

By = “m“ 0.997421 < 1

_vall _ 983067 < 1
llv4l (2.41)

M_ 0.736222 < 1

B
B2
g, =vall 6500802 < 1
B

llvsll

sl _ 930419 < 1
[yl
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where, the B; values fori > 0 and 0 < x < 1, are less than 1, so the proposed
iterative methods are convergent.
Further, the investigation can be done, in order to examine the accuracy for

the approximate solution for this problem, the error remainder function is

evaluated:

ER,(x) =y (x) — 2y3 (x) — xy,(x) — 1, (2.42)
and the MER,, is:

MER, = max [ER,(x)], (2.43)

Table 2.2 and Fig. 2.2 shows the MER,, of the approximate solutions obtained
by the proposed iterative methods which indicates the efficiency of these

methods. Also, by increasing the iterations, the errors will be decreasing.

Table 2.2: The maximal error remainder: MER,, by the proposed methods.

n MER,
1 0.0634125
2 0.000323411
3 -7
6.58637 x 10
4 ~10
7.18421 x 10
5 -13
4.8539 x 10
1072
104
oS 1076
I
S o8
10710
10—12
1 2 3 4 5
n

Fig.2.3: Logarithmic plots for the MER,, versus n from 1 to 5, by the proposed methods.
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The numerical comparison between the solutions obtained by the proposed
methods, the Range-Kutta (RK4) and Euler methods for Painlevé Il equation

are given in Fig. 2.4 below, and good agreement was clearly obtained.

1.015 [
1.010 /w
™) / 4 -®- Proposed methods
X Zad
1.005 P RK4
A
N/v Eul
1.000 =¥ ¥
0.00 0.02 0.04 0.06 0.08 0.10
)

Fig.2.4: The comparison of the numerical solutions for Painlevé Il equation.

2.4.3 The proposed iterative methods for solving nonlinear

pendulum equation.

The pendulum equation presented by the form [41]:

y"(x) +siny = 0, (2.44)

with the given initial conditions: y(0) = 0 and y'(0) = 1, can be solved by

using the approximation of siny = y—%y3 +§10y5 as it used in [43].

Hence, the pendulum equation (2.44) may be written as in the following

second order nonlinear ODE
44 _|_ 1 3 _I_ 1 5 _
y'(x)+y AT A

The exact solution for Eq. (2.44) is expressed by the following Jacobi elliptic

0. (2.45)

functiony = 2 arcsin(%sn(x, i)).
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Solving the pendulum equation by the TAM:
In order to solve the pendulum equation given in Eq. (2.45) with the given

conditions by the TAM, we have:

1 1
Ly)=y", N = 6y + 1203/ : (2.46)
The initial value problem is
L(yo(x)) = 0 with y,(0) = 0 and y,(0) = 1. (2.47)

The next problems can be found from the generalized iterative formula

L(yn+1(x)) + Nn(x) ) = 0, yn+1(0) = 0 and y,,(0) = 1.
By solving the initial problem (2.47), one get

Yo(x) = x.
The first iteration y, (x) can be found by solving

yi (x) = —(¥o —-yo +—y5) with y; (0) = 0 and y; (0) = 1.

120
The solution will be as below

x3 5 7

X X
N = x=++50 - 500

Applying the same process for y,, we have to solve

vy, (x) = —( —-y1 +—y5) with y,(0) = 0 and y5(0) = 1.

120

By solve this problem, we get

5 7 9 11 13 15
X 127x 893x 367x 607x
yz(t)—x——+———+ — + —
420 362880 19958400 70761600 1143072000

56881x17 2521x1° 17x2%1 22129x23

1243662336000 781861248000 92177326080 2591207055360000

17651x25 61787x27 2021x2°

55306395648000000 6470848290816000000 8981758653235200000

73x31 13x33 x35

+
18002231783424000000 245294925978009600000 2211370923589632000000

X37

519802247686127616000000

Continuing in this manner to get approximations up to n =5 for y, (x), but

for brevity they are not listed.
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Solving the pendulum equation by the DIM:

Consider the Pendulum equation given in Eq. (2.45) with the given
conditions y(0) = 0and y'(0) = 1.
Integrating both sides of Eq. (2.45) twice from 0 to x, we get

X X 1 1

t) =x— ——y3 —S)dd, 2.48
YO =x—| | (y-gv* + g5y drds (248)
and reducing the integration in Eq. (2.48) from double to single [6], we
obtain

() = fx( )( L3y 5>d 2.49
Therefore, we have the following recurrence relation
Yo =X,

* 1 3 1 3
N(yn+1):_jo (x—1) <Yn_gyn +myn)drr n=0,12,..
By applying the DJM, we get
Yo =90 =X,
x3  x® x’
Y17 T T 120 5040
x3  x® x”

Y= Yot Y1 =X = 150 T 5040

Y2 =

x5 11x7 127x° 893x11 367x13 607x1° 56881x17

120 5040 362880 19958400 70761600 1143072000 1243662336000

2521x1° 17x2%1 22129x23 17651x25

781861248000 92177326080 2591207055360000 55306395648000000

61787x2%7 2021x2%° 73x31

6470848290816000000 8981758653235200000 18002231783424000000

13x33 X35 x37

+ .
245294925978009600000 2211370923589632000000 519802247686127616000000
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3 5 7 9 11 13
. . . X x x 127x 893x 367x
=9, +9, +9, =x——+=——"—+ — + —
Y2=YoTV1TY2 6 ' 60 420 ' 362880 19958400 @ 70761600

607x15 56881x17 2521x19 17x21 22129x23

1143072000 1243662336000 781861248000 92177326080 2591207055360000

17651x25 61787x27 2021x2°

55306395648000000 6470848290816000000 8981758653235200000

73x31 13x33 x35

+
18002231783424000000 245294925978009600000 2211370923589632000000

37

X
519802247686127616000000

Therefore, we continue to get the other iterations till n = 5, for y,, (x) but for
brevity the terms are not listed.
Solving the pendulum equation by the BCM:

Consider Eq.(2.45), by applying the same way as in the DJM, we get the Eq.

(249).  So, letyg=xand N(¥p-1) == f; (x = D) n-1 — Y1 +
1

Eyﬁ_l) dr, n € N.

By applying the BCM, we obtain:

Yo =X,

x3 x5 x’
Y1 =% =+

6 120 5040

x3 x5 x7 127x° 893x11 367x13 607x15
Vo =X——+———+ — + —

6 60 420 362880 19958400 @ 70761600 1143072000

56881x17 2521x1° 17x2%1 22129x23

1243662336000 781861248000 92177326080 2591207055360000

17651x25 61787x27 2021x2°

55306395648000000 6470848290816000000 8981758653235200000

73x31 13x33 x35

+
18002231783424000000 245294925978009600000 2211370923589632000000
37

X
519802247686127616000000

We continue in the manner to get the other approximations tilln =5, for
brevity they are not listed.
The obtained solutions by the three proposed methods are equal to each

other because we got the same series.

57

——
| —



Chapter Two Solving Some Types of Ordinary Differential
Equations by Some Iterative Methods

Hence, as presented in the proof of the convergence in the previous section,
the terms given by the series };;2, v;(x) in Eq. (2.21) satisfy the convergent

conditions by evaluating the g; values for each iterative methods, we get

o =1l _ 6114522 <1
[voll

l|v|l
= = 0.0358901 < 1
A vl (2.50)

g, =1vsll _ 6019054 < 1
Al

gy = vl _ 60114183 < 1
llvsll

= 1vsll _ 600760755 < 1
(Al

where, the B; values fori > 0 and 0 < x < 1, are less than 1, so the proposed
iterative methods are convergent.
To examine the accuracy of the obtained approximate solution for this

problem, the error remainder function is evaluated

1 1
ERp(x) = i/ (x) + yn(x) — gyﬁ’ (x) + myr? (x), (2.51)

and the MER,, is:

MER,, = 0maxllERn(x)l, (2.52)
X<

Table 2.3 and Fig. 2.3 below, shows the MER,, of the approximate solution

obtained by the proposed iterative methods which indicates the efficiency of

these methods. Moreover, by increasing the iterations, the errors will be

decreasing.
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Table 2.3: The maximal error remainder: MER= by the proposed methods.

n MER,
1 0.0959857
2 0.00429285
3 0.0000881802
4 1.05634 x 107°
5 8.28868 x 10~?
1072
<1074
&
1078
1078
1 2 3 4 5
1

Fig.2.5:Logarithmic plots for the MER,, versus n from 1 to 5, by the proposed
methods.

In addition, the numerical comparison between the solutions obtained by the
proposed methods, exact solution, the Range-Kutta (RK4) and Euler methods
for pendulum equation are presented in Fig. 2.6. The agreement between the

solutions can be clearly seen.
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-

| /'A"’d‘rd
0.5 /’A'/' o -@- Proposed methods

/1: RK4

0.2 / Euler

0.1 i —— Exact

0.2 0.4 0.6 0.8 1.0
) 4

y(x)

Fig.2.6: The comparison of the numerical solutions for pendulum equation.

2.4.4 The proposed iterative methods for solving nonlinear
Falkner skan equation [33].

The Falkner skan equation is given by the following form:
y" () +y()y"(x) + B [e? — (¥'(x))*] =0, (2.53)
with the following boundary conditions:
y(0) =0, y(0)=1—¢ y'(») = e
Where, /5 and e are parameters will look at their numerical values later.

Solving Falkner skan equation by the TAM:
In order to solve the Eq. (2.53) with the boundary conditions by the TAM,

we have the following form

L) =y"(x), Ny) = —y()y"(x) + B(¥'(x))? gx) = —Be*.  (2.54)
According to the steps previously presented, we begin to solve the problem

Yo" (0) = —Be?, y5(0) =0, y,'(0)=1-¢, y,"(0) =a. (2.55)
Therefore, the initial problem will be:

L(yo(x)) = —B€* y5(0) =0, ,'(0) =1—¢, y,"(0)=a  (2.56)
The following problems can be obtained by the general relationship
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L(yns1()) + g+ N (3,(x)) = 0, ,41(0) =0, ¥4,/ (0) =1 — ¢,

Yns1' (0) = a. (2.57)
Then,
Yo" (x) = —Pe*. (2.58)

By integration Eq. (2.58) from 0 to x three times and using the initial
conditions  y,(0) = 0, y,/(0) =1—¢€, y,"(0) = a, we get

ax? 1.,
Vo(x) = x+T—xe—€x Be=. (2.59)

First iteration can be carried and is given as

yi'(x) = —yo(0)ye"(x) — B €2 + B(¥o' (x))* with y,(0) =
0, y,/(0)=1—-¢€eandy,"(0) = a. (2.60)

Then, the solution for Eq. (2.60) will be:

ax? ax* a’x%  x3p
xX)=x+ — — +
¥1(%) 2 24 120 6

1 4 1 2,50
+12axﬂ+60ax,8 X€ +
1 4 1 3, 1 4 1 55 2, 1 6p.2 _ L 5p2,.2
S, aX €E—Zx pe — ax ﬁe+60x Pe + 750 A% Pe 6Oxﬁ

x7ﬂ264

1 6p2,2 1 5, 3 1 552_3
—ax € ——x>Pe’>+—x €° —
p 60 p 60 B 1260

1
+ —x7p3e*.
120 840

The second iteration y, (x) can be obtained similarly by solving the following

y2' () = =y ()" () — B e + B(y:'(x))* with y,(0) =0, y,'(0) =
1—e€eand y,"(0) =a (2.61)
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Then, by solving the Eq. (2.61), we get:

2 4 2,.5 6 2,7 3,8 2,9 3,10
ax ax a~x ax 11a“x 11a°x a~x a-x

y.(x)=x+——-——-— +—+ + — — —

24 120 240 5040 = 40320 24192 64800

4,11
a’x ﬁ o 2,5 1 .6 a2y’ + B
+ 2+ — - — a x°p ——ax +—t
712800 6 B BB =350 X B + 35
x15ﬁ5€8 23x15ﬁ668 x15ﬁ7€8

24766560 412776000 39312000

We continue to get the other approximations tilln = 5, for y, (x) but for
brevity the terms are not listed.

After finding the approximate solution of the series y< (x) which contains
the value of the missing condition y:"(0) = a, then to find the numerical
value of a, by using the Padé approximation that was defined in Eq.(1.2)
Now, by applying the Padé approximation for y'< (x) (since the third used
boundary condition y'(o) = €), with (8 = 0.5, € = 0.1)[33] , we get

P; (yls(x))

~ 0.9 +(0.9(0. —0.375a) + a)x + (0.2675 + (0. — 0.375a)a)x?
B 1+ (0. —0.375a)x + 0.075x2

By taking lim P2 (x), we obtain
X—00

P? (x) = 3.56667 — 5a?,

By applying the condition value (y'(0) = € = 0.1), we get

3.56667 — 5a% = 0.1,

Then, the value of a will be (a = +£0.832666) this means a dual solution of
equation. Thus, we will use the value that achieves better convergence,
when (a = 0.832666), i.e. y"(0) = 0.832666.

Solving Falkner skan equation by the DIJM:

To solve the problem of the Falkner-Skan given in Eq. (2.53) by the DJM,
with boundary conditions:
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y(O) = 0! y'(O) =1- €, y'(OO) = €.
The following steps will be used:

y"(x) =—y)y"(x) — B e* + (¥ (X)) (2.62)
By integration both sides of Eq. (2.62) three times from 0 to x and using the

initial conditions when y”(0) = a, we get :

_ o, ax? 1,
Y(X)_X-I_T_xe_gx ﬁe
X X X_ 1/ 1 Zd dd 263
+f0 fo L( y(®)y"(®) + B(y'(D)?)dt dtdt (2.63)

According to the reducing of multiple integrals [6], then the functional
Eq. (2.63) become as:

y(x) =x+ asz — X€ — %x%’ez
1 X
+ Ej; (x —)*(=y@®)y"(®) + B (y'(©)*)dt. (2.64)

axz 1 3 2
Then, yo(x)=x+7—xe—gx Pe-,

NG = [ =02 " ©
+ B (v,'(t)*)dt, n=0,1,2,... .
By applying the DJM, we get
§ 2

A ax 1
Yo =Fo =x+—-—xe ——x°fe?,

A ax* a’x5>  x3pB

=Xy
Y1 24 120 6

1 .4 1 2.5 1 4, _1.3p
+ax ﬂ+60a X ﬁ+24ax €—3X Be
~ax*Be +-x3fe? + —x5Pe? + —ax®Be? — —x5p2%€2 —

12 6 60 180 60

1
120

X7BZE4

6p2.2 1 553, 1 552 3
ax®f“e =X Pe +60xﬂe o

1
703 .4
+ X €
840B !
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2 4 2,.5 3

A ~ ax ax acx x>B
=Yooty = x+ — — +

Yi=YoTh 2 24 120 6

1 .4 1 2,50 _
+12ax,8+60axﬁ xe +
1 4. _1 3p 1 2 1 5p.2, 1 6p2 _ 1 . 502, 2
ax“e —-x Pe 12axﬁe+60x Pe +180axﬁe 60x,86

24

1 1 1 x7B?e* 1
62,2 50,3 52,3 723 .4
ax € x°pe’ +—x € + X €
p 60 p 60 b 840 b

120 1260
A ax®  11a®x” | 11a3x®  a?x®  a3x?0 a*xt x5 1 6
9 = e e XP Lgyep -
240 5040 40320 24192 64800 712800 60 60
az 73 + aXSﬁ a3x8ﬁ 53a2xQB x13B667 X15ﬁ468 X15ﬁ568
315 2688 1260 181440 1235520 103194000 24766560
23x1586¢8 15878

412776000 39312000

2 4 2,.5

ax®  11a?x” 11a3x® a?x®

A A A ax ax a“x
= Yo+ +P, =+ LT + — -

Y1i=YoTYV1TY2 2 24 120 = 240 5040 40320 24192
a3x10 a*xt X3 1 4 x°B 1 o & 1 6 2 o o

- +—+—=ax*f——+—a“x’f ——ax®f ———a*x’f +
64800 712800 6 12 60 60 60 315
aXBﬁ + + xlSBSEB 23x15[)>668 x15ﬁ768
2688 24766560 412776000 @ 39312000

Since, y, = X, Vi forall n=1,23,....

Continue to find other approximations up to n = 5, for y,, (x) but for brevity

the terms are not listed.

We got the same value of a as in TAM, because the approximate solutions

are the same .

Solving Falkner skan equation by the BCM:

Consider Eq.(2.53), by applying the same procedure as in the DJM, we get
the Eq.(2.64). So, let

yo(x) = 0.9x + 0.5ax? — 0.000833333x3,

NOn-1) = 5 J3 & = )2 (= Yuo1 (DYn1"(®) + B (ynoa'(©)Ddt, neN.

ax? 1

Yo = x+T—x6—gx3,862,
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() = +ax2 ax* a2x5+x3ﬁ+ 1, N .
X)) =x+ oo oy T T B g b —xe
1 1 1 1 1
_ 4 . _ — .3 _ 4 .5 2 - 6 2
+24axe 3x Pe 12ax Be+60x Pe +180ax Pe
1 1 1 1
—%XSﬁZEZ _max6’8262 _ExS’BE?» +%x5ﬁ263
x’B%e* 1
— 7n3 -4
1260 8a0r PE
) = x 4+ ax?® ax* a®x® N ax® N 11a?x” N 11a3x®  a?x°
Yol = X T T on T 120 " 240 T 5040 | 40320 24192
a3x1° a4x11 Xgﬂ 1 xSB 1
_ _ _ 4n0 " 4245
62800 712800 7 6 T12% P60 teo* ¥ A
1 2 ax®p x15p5€8
L 6p_ 2 2.7 ey P =
60 B 315 F * 3688 T " T 22766560

23x1536¢8 X157 ¢8
T 412776000 39312000

We continue to get other approximations till n = 5, for y,,(x) but all are not
listed for brevity, we got the same value of a as for the previous methods.
TAM and DJM, since the approximate solutions are the same because we got

the same series.

Now, we can find the S; values in order to prove the convergence condition.
Hence, the terms of the series .72, v;(x) given in Eq. (2.21), where 8 = 0.5,

e = 0.1 we get

_ vl
llvoll

Bo = 0.0854743 < 1,

_ llvall

= = 0.0818763 < 1,
V4]

b

vl

= =0.125112 < 1, (2.65)
V2l

B2
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llvall

By = = 0.124664 < 1,
lvsl
|lvsll

B, = = 0.115635 < 1,
llvall

where, the §; values fori > 0 and 0 < x < 1, are less than 1, so the solution
for the TAM is convergent. Since, the approximate solutions for the all three
proposed methods are equal, therefore, the values of S; are the same, then
DJM and BCM approaches are convergent.

To examine the accuracy for the approximate solution for this problem; the

error remainder function is
ERn( X) = Ynm(x) + yn(x)Yn"(x) + ,B [62 - (yn'(x))z] (2-66)

and the MER,, is:
MER,, = 0maxllERn(x)l, (2.67)
sX<

Table 2.4 and Fig. 2.4 shows the MER,, of the approximate solution obtained
by the proposed iterative methods, it can be seen that by increasing the

iterations, the errors will be decreasing.

Table 2.4: The maximal error remainder by the proposed methods. when g =
0.5and e = 0.1.

MER,,

0.246021
0.0745229
0.0150143

0.00226928
0.000274414

ul| | W N | S
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1 2 3 4 5
n

Fig.2.7:Logarithmic plots for the MER,, versus n from 1 to 5 when g =

0.5 and € = 0.1, by the proposed methods.

Moreover, the numerical comparison between the solutions obtained by the
proposed methods, the Range-Kutta (RK4) and Euler methods for the Falkner

skan equation is presented in Fig.2.8 and a good agreement can be clearly

seen.
B L h
B S
0.5 7N
< ¥ -@- Proposed methods
g PN ‘
B 0.2 RK4
. (]
Eul

0.2 0.4 0.6 0.8 1.0
) ¢

Fig.2.8: The comparison of the numerical solutions for Falkner skan equation.
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Chapter Three Solving 1D, 2D and 3D Wave Equations by TAM, DJM, and BCM

Chapter 3

Solving 1D, 2D and 3D Wave Equations by TAM,
DJM, and BCM.

3.1 Introduction

The PDEs, have a great importance in engineering and physical
applications. The wave equation is partial differential equation for the time
variable t, with one or more variable spatial variables (x,y,...) and scalar
function u = u(x,y,...)[5]. This equation described many phenomena
including the vibration of a beam membrane or an elastic rod, a vibrating
string, shallow water waves, transmission of electric signals along a cable and
other applications[89].

The main goal of this chapter is to implement the three iterative methods
TAM, DJM and BCM to find the approximate solutions for the wave
equation. This chapter has been organized as follows: In section two, the
proposed methods will be used to solve linear 1D, 2D and 3D wave equations.
In section three, the convergent of the three iterative methods will be given. In
section four, 1D, 2D and 3D nonlinear wave equations will be solved by the
TAM, DJM and BCM and the convergence will be provided.
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3.2 Application of the proposed methods for solving linear 1D,
2D and 3D wave equations.

In this section, the proposed methods will be used to solve linear 1D, 2D

and 3D wave equations.
Example 3.1.
Let us recall example 1.1

Ut (X, 1) = Upy (x, 1) — 2, 3.1
with initial conditions: u(x,0) = x%, wu.(x,0) = sin x. Thus Eq.(3.1) will
be solved by applying the three proposed iterative methods.

Example 3.1 by using the TAM.

We first begin by solving the following initial value problem as follows:
L(u(x, t)) = U, (x,t),N (u(x, t)) = Uy (x, t), glx,t) = —2. (3.2)

The primary problem can be written as

L(uo(x, t)) = =2, with uy(x,0) = x2,  ug(x,0) = sinx. (3.3)

We get the following problems from the general relationship

L(un+1(x; t)) = g(x: t) + N (un(xr t)) = Or un+1(x' 0) = x2' u(n+1)t(x! O)
=sinx (3.4)
Ugee(x, ) = =2, (3.5)

By integrating both sides of Eq. (3.5) twice from 0 to t, with uy(x,0) =

x2,  ug(x,0) = sinx,we obtain
uo(x,t) = —t? + x? + t sinx,

By following this procedure, the rest of the other iterations can be obtained,

the first iteration can be obtained by calculating.
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Upee (X, 8) = Ugye (X, 1) — 2 with uy(x,0) = x2, uy (x,0) =sinx (3.6)
Then, the solution for Eq. (3.6) will be then:

2 : 1 s
u(x,t) =x +t51nx—gt sinx,

The second iteration u, (x, t) can be obtain from solving the following

Uper (X, 1) = U (X, 1) — 2 with u,(x,0) = x2, uy (x,0) =sinx  (3.7)

Then, by solving Eq. (3.7), we get

U, (x,t) = x% + tsinx — 1ta‘sinx + LtE‘sinx
2 6 120

Also, third Iteration us(x, t) can be obtain by solving the following

Usgee (X, £) = Upyr (x, 1) — 2 with uz(x,0) = x2, us(x,0) =sinx (3.8)

By solving Eqg. (3.8), we obtain

) = x2 + tsi 1t3' +1t5' t7sin x

uz(x,t) =x sinx c sinx 170 sinx 020

In a similar way, we obtain
— 24 tsi Bsin x + 1 (5 t7sinx+ t9sin x

Ua = XTSI TSI T 00" S T 5040 T 362880

and,

us(x,t)

— 22 4 i Fsin x4 (5 t7sinx+ tsin x

S TR eI T 0 S T 5040 T 362880
t1lsin x i
39916800’ (3.9)
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u(x,t) = rlzl—{?o U,

120 5040 362880 39916800

7 9 113
u(x,t)=x2+sinx(t—%t3+it5 ‘ L £ sinx _|_)

= x? 4 sinx sint, which is the exact solution.

Solving the Example 3.1 by the DIM:

Consider the Eq. (3.1) with initial conditions: u(x,0) = x?, u.(x,0) =
sinx.

Integrate both sides of Eq. (3.1) twice from 0 to t with using the given initial

conditions, we get
u(x,t) = —t? + x? + t sinx + fot fot(uxx(x, s))dsds. (3.10)
By reducing the integration in Eq. (3.10) from double to single [6], we obtain

u(x,t) =
—t? + x? + t sinx + fot(t — 8)(Uyy (x, 5))ds. (3.11)
Then,

Uy = —t2 +x% +tsinx, N(up4q ) = fot(t — 8)(Upyr (%, 5))ds
Applying the DJM, we get
ug(x,t) = 0y(x,t) = =t + x2 + t sinx,

0, (x,t) = fot(t — $)(Qgxx(x,8))ds = t2— %t3sinx, (3.12)

u;(x,t) =0+ 0; = x? + t sinx — gt3sinx
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ﬁz (x, t) ==
t A A A 1 5 .
fo (t = $)((Qoxxs (2, 8)+01 4 (x,8))ds — G, = gt sinx (3.13)
A A A 2 . 1 3 . 5 .
u,(x, t) =0y + 0y + 0, = x* + tsinx — =t>sinx + ——=t>sinx
6 120
and so on, we get
A t11Sin x
U5 (x, £) = 39916800
Then , we have
n
U, = Z 0; n=1,2,
i=0
u5 = ﬁo + ﬁ1+ﬁ2+ﬁ3 + ﬁ4_ + ﬁs.
Then, we get
. 1 . 1 . t7si t9si t11si
us = x2 + t sinx — - t3sinx + —t53sinx — —— 4 — — ——— =
6 120 5040 = 362880 39916800

the same of the solution in Eq. (3.9) because we got the same series.

Solving the Example3.1 by the BCM:

Also, consider the Eg.(3.1) with initial conditions: u(x,0) = x?2,
u;(x,0) = sinx
Integrate both sides of Eq. (3.1) twice from 0 to ¢t with using the given initial

conditions, we get
u(x,t) = —t% + x? + t sinx + fot fot(uxx)dxdx. (3.14)

Reducing the integration in Eq. (3.14) from double to single [6], we find
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u(x,t) =
—t? + x% + t sinx + fot(t — 5) (Uyr (x, 8))ds (3.15)
Letuy, = —t? + x? + t sinxand N(u,_) =

fot(t - S)(un—lxx(x: S))dsi (316)
Applying the BCM, we obtain:

uy = —t? + x% + t sinx,
U (x,t) =
Uy + fot(t — $)(Ugyy)ds = x* + t sinx — %t3sinx, (3.17)

U (x,t) = uy + fot(t — 5)(Upyy)ds = x?% + tsinx — %t3sinx i+ ElotSSinx,

(3.18)

and so on till ug, then

. 1 . 1 . t’sinx | t%sinx
us(x,t) = x2 + t sinx —-t3sinx + —t>sin x — + —
6 120 5040 362880

t11sin x
39916800

, Is the same of the solution in Eqg. (3.9).

Example3.2. Consider the two-dimensional linear wave equation given in

equation[44]
Uee — (Uyy + Uyy) =0, 0<x,y<1, t>0 (3.19)
with the initial conditions : u(x,y,0) = e**Y, u,(x,y,0) = =2 e**Y

Eqg. (3.19) will be solved by the three proposed iterative methods
Solving the Example 3.2 by the TAM:
By applying the TAM, we obtain the following iterations

Uy(x,y,t) = e*+Y —[2e**V¢,
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1
U (x,y,t) = eXtY —\2eXVt + e¥+V2 — §‘/§ex+3’t3 ,

1 1
Uy (x,y,t) = ety —\[2eXHVt 4 X +V2 — §\/Eex+3’t3 + ge’““’t4

ex+yt5

15v2 '

and so on, then
us(x,y,t) = eXty — \/Eex‘*‘yt + eXtV2 — %\/Eexﬂ/tB + %ex+yt4 _

— e — — —
15v2 90 315v2 2520 11340v/2 = 113400
eXtyll
3.20
623700V2’ ( )

u(x,y,t) = limy_oo Uy = €Y —2e*¢ + e¥HVt2 — %x/ieﬁyﬁ § oo
This series converges to the exact solution[44]

1
u(x,y,t) = eXtY V2 = oX+Y _ \[QeXtVi 4 oX V2 §(\/§ex+y)t3 + -

Solving the Example 3.2 by the DIM:

Consider the Eq. (3.19) with initial conditions:
u(x,y,0) = e**Y, u,(x,y,0) = —2e**7.
By applying the DJM, we get

U (x,y,t) = 0y (x,y,t) = eXtY —~2e¥+7¢,
1
0, (x,y,t) = eXtVt? — §\/§ex+3’t3

1
U (6, v, t) = Qg + 0y = eXY —2e*Vt 4 e*tVt2 — §\Eex+yt3

ex+yt5

15v2

1
0,(x,y,t) = ge"“’t4 -
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N Ao 1
Uy (x,y,t) = Qo + 0y + 0y = ™Y —V2e¥Vt + e**Vt? — Ex/ie“yﬁ +

lex+yt4 _ eX+Vts

6 15v2

A ex+yt10 ex+yt11
Ug =

T 113400 623700v2
n

un=2ﬁi Tl=1,2,....

i=0

Us = Oy + 0y +0,+05 + 0y + 05 = e*1Y — 22Vt + X V2 —
5

eXtyt +iex+yt6—e _

15v2 90 315v2 2520 113402

x+yt7 ex+yt8 ex+yt9

gﬁex“’ﬁ + %e"“’t4 —

113400  623700V2°

(00]

1
u(x,y,t) = Z ; = ey —\2e¥*Vt + e**Vt2 — §x/§ex+yt3 TEp
i=0
The series converges to the closed form of the exact solution

1
w(x, y, t) = eXHV—VE = X4V _ \[DpX+Vp 4 oX+Y2 _ §(ﬁex+Y)t3 ¥ o

Solving the Example 3.2 by the BCM:
Consider Eq.(3.19) with initial conditions u(x,y,0) = e**Y, u.(x,y,0) =

—\2e*Y
Applying the BCM, we obtain:

Ug(x,y,t) = Xty —\[2e**V¢,

1
Uy (x, Y, t) = eX+Y —\2eX TVt 4 XVt — §\/§ex+yt3 )

1 1
Uy (x,y,t) = XY —2e*Vt + e* V2 — §\/§ex+3’t3 + ge"“’t4
ex+yt5

15v2°
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1 1
Us(x, v, t) = eXtY —2e*Vt 4 eX*V¢2 — 5\/§ex+3’t3 + ge"“’t4

ex+yt5 1 ex+yt7 ex+yt8 ex+yt9
+ —e* Vb — + —

15v2 90 315vV2 2520 113402
ex+yt10 ex+yt11

+ - )
113400 623700v2

. 1
u(x,y,t) = lim, o u, = e**Y —/2e*tVt + e**tVt2 — Ex/fex+yt3 +

This series converges to the exact solution

1
u(x,y,t) = eXtY V2 = oX+Y _ \[QeXtVi 4 oX V2 §(\/§ex+y)t3 + -

Example 3.3. Let us consider the following 3D linear wave equation as[5]

Usp = Uyy + Uyy + Uy, + sinx + siny, 0< x,y,z<m (3.21)
with initial conditions: u(x, y, z, 0) = sinx + siny, u;(x,y,z,0) = sinz

Eqg. (3.21) will be solved by the three proposed iterative methods

Example 3.3 by using the TAM:

By applying the TAM, we obtain:

1 1
Uy = sinx + 5 t2sinx + siny + ) t2siny + tsinz.

u, = sinx — 1 t*sinx + siny — L t*siny + tsinz — = t3sinz
! 24 24 6 ’

= si +1t6' + si +1t6' + tsi 1t3'
U, = sinx 720 Sinx siny 720 siny Sinz 6 Sinz
1

+ m t>sinz ,

76

——
| —




Chapter Three Solving 1D, 2D and 3D Wave Equations by TAM, DJM, and BCM

. t12sinx s t12siny T s 1 i
Us = S = 479001600 + 0 T 479001600 T O T gt S
N 1 5 t’sinz N tosinz
120 ™ T 5040 " 362880
t1sinz 29
39916800° (3.22)
u(x,y,zt) = lim u,
n—-0oo
e t16sinx s t16siny
= S T 50022789888000 ' 0 T 20922789888000
s 1 Bsing + 1 5 t’sinz N t9sinz
Sz =g Sz T 50" S T 5040 T 362880
t1lsinz
_— ..
39916800
This series converges to the exact solution
u(x,y,z,t) = sinx + siny + sinz sint =
e t16sinx s t16siny
= S T 50922789888000 ' 0 Y T 20922789888000
s Bsing 4 1 5 t’sinz N t%sinz
Sz = g LSzt 150" S T 5040 T 362880
t1lsinz
.
39916800
Solving Example 3.3 by the DIM:
By applying the DJM, we obtain:
Uy = Uy = sinx + %tzsinx + siny + %tzsiny + tsinz,
0, = —%tzsinx — i t*sinx — %tzsiny — it“siny — %t3sinz,
u; = Gy + 4y = sinx — it‘*sinx + siny — — t*siny + tsinz — —t3sinz
1= 70 M 24 24 6
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N L Lo, L L
uzzﬁt smx+mt 51nx+ﬁt smy+mt smy+mt sinz,

N N A . 1 . . 1 . .
U, = Gy + 0y + 0, = sinx + %t%mx + siny + %t%my + tsinz —

1 2. 1 .
~t3sinz + — t°sinz
6 120

_ t'%inx t12sinx t1%siny t12siny t11lsinz
> 3628800 479001600 3628800 479001600 39916800

n
u, = Zﬁi n=1234,..

o>

u5 = ﬁo + ﬁ1+ﬁ2+ﬁ3 + ﬁ4 + ﬁs.

t12sinx t12siny 1
Us = Sinx — ———— + siny — ————— + tsinz — = t3sinz
479001600 479001600 6
N 1 .. t’sinz N t?sinz t1lsinz
—t’sinz — — .
120 5040 362880 39916800
n . t16sinx ; t16sin ;
u = )2,0; = sinx — + siny — Y 4 tsinz —
20922789888000 20922789888000
1 . 1 . t7sinz t%sinz t1lsinz t13sinz
~t3sinz + —t°sinz — + - + -
6 120 5040 = 362880 39916800 = 6227020800
t15sinz
1307674368000
This series converges to the exact solution
) ; ; ) ) t16sinx )
u(x,vy,z t) = sinx + sin sinzsint = sinx — siny —
( Y ) T y+ 20922789888000 T y
t16sin : 1 : 1 ] t7sinz t%sinz t11sinz
Y + tsinz — = t3sinz + —t®sinz — + —
20922789888000 6 120 5040 & 362880 39916800
t13sinz t15sinz

6227020800 1307674368000
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Solving the Example 3.3 by the BCM:
By applying the BCM, we obtain:

1 1
Uy = sinx + 5 t2sinx + sinx + 5 t%sinx + tsinx,

u; = sinx — L t*sinx + siny — L t*siny + tsinz — — t3sinz
! 24 24 6 ’

= si +1t6' + si +1t6' + tsi 1t3'
U, = sinx 720 Sinx siny 720 siny Sinz 6 Sinz
1

+ FO t3sinz ,

and so on, thus, we have

Ug = sinx — 4;91;;% + siny — 4;;;2% + tsinz — %t3sinz + ElotSSinz —
t’sinz . t%sinz t1lsinz
5040 362880 - 39916800

t16sinx . t16siny

u(x,y,z,t) =lim u, = sinx — + siny —
( 'V Z, ) n—oco “n 20922789888000 y 20922789888000

. 1 ) 1 . t’sinz t9sinz t1lsinz
tsinz — =t3sinz + —t°sinz — + —
6 120 5040 @ 362880 39916800

This series converges to the exact solution

u(x,y,z,t) = sinx + siny + sinz sint =

. t16sinx s t1esiny
— S T 5922789888000 ' 0 Y T 20922789888000
© i 1t3 _— 5 t7sinz+ t9sinz
Sz = b SIZ T o0 3 T 5040 T 362880
t1lsinz
_—+...
39916800
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3.3 The convergent of the proposed methods

To prove the convergence of the proposed methods for the linear and

nonlinear 1D wave equations [91], we define the following new iterations:

Vo = Up(x, t),
v = F[UO],
Uy, = F[UO + vl], (323)
Vpe1 = Flvg + v + -+ 1]
where F is an operator which can be defined as follows:
k-1
Flv,] =S, — z v;(x,t),k=1,2,... (3.24)
i=0
The term S;, represents the solution of the following problem

Lwe(x, )+ g(x, t) + N (Xt vi(x, 1)) =0, k=1,2,.., (3.25)

using the same given conditions of the problem, in this way, we have
u(x, t) = lim,_q u, (x,t) = Yoo vy (%, t). S0, the solution of the problem

represented, we can access it by using (3.23) ,(3.24) in the resulted series

u(x,t) = zw_ v;(x,t). (3.26)

According to this procedure for the proposed methods, the sufficient
conditions for convergence of these methods can be given in theorems 1.2.8,
1.2.9and 1.2.10.

The procedure can be generalized for 2D, 3D as a similar way.
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3.4 Application of the proposed methods for solving nonlinear

1D, 2D and 3D wave equations with convergence.

In this section, the proposed methods will be applied to solve the nonlinear

1D, 2D and 3D wave equations. Moreover, the convergence will be proved.

Example 3.4: Let us recall example 1.2

U = Uy, + U+ u? — xt — x%t2, (3.27)

with initial condition : u(x,0) = 0, u.(x,0) = x, Eq. (3.27) will be solved by
the proposed iterative methods

Solving the Example 3.4 by the TAM:

In order to solve the Eq. (3.27) by TAM with the given initial conditions, we

have the following form
L(w) = up(x,t), N () = uy, (x,8) + ulx, t) + ulx, t)?, g(x,t) = —xt —
x“t? (3.28)

The initial problem is

L(uy) = —xt — x*t? with u,(x,0) = 0, u,,(x,0) = x. (3.29)
We will be found the next problems from the generalized iterative formula
L(upsq) + N(uy) = g(x,0), Un1(x,0) =0, un+1t(x, 0) =x

By solving the Eq. (3.29), we get

t3x  t*x?
Uy = tX —— —
6 12

The first iteration u, (x, t) can be obtained by solving
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Upee = Up,, (%, 8) + ug(x, t) + ug(x, t)? — xt — x*t?, withu, (x,0) =

0, ult(x, 0) = x.

The solution will be

to tSx  tOx2  t8x%  t7x3  t%3  t10x%
U =———+tx——— + — )
180 120 72 2016 252 2592 12960

Applying the same process for u,, we have

Upee = Up, (0, 8) + u (6, 1) + uy(x, £)% — xt — x?t? with u,(x,0) =

0, uzt(x, 0)=x

By solving this problem, we get
t8 t10 14 t’x  11t°x  tllx

—_ t —_— —_
1680 + 90720 + 5896800 +ix 5040 22680 + 47520
t13x 11t8x%  t10x2

T 1684800 20160 @ 181440 ©

u2=

and so on. Then, we get

xt13 1 41x2
u5 = xt — + (_ _ ) 14
6227020800 335301120 43589145600
289x 29x3
+ (= - o
20432412000 13076743680
o (3.30)

This series converges to the exact solution when
u(x,t) = xt.
Solving Example 3.4 by the DIM:

Consider the Eqg. (3.28) with the initial conditions u(x, 0) = 0, u;(x,0) = x.
Integrating both sides of Eq. (3.27) twice from 0 to t, we get
t3x t*x?

u(x,t) = tx—?— 17

t ot
+ f f Uyy + U + u? dx dx, (3.31)
0 o

and reducing the integration in Eq. (3.31) from double to single [6], we find
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4
u(x, t) = t? — % +x% —t%x% + fot(t —8)(uyy + u +u?)ds (3.32)

Therefore, we have the following recurrence relation
t3x  t*x?
Uy =tX —— — )
6 12

N(un+1) = fot(t - S)(unxx +u, + unz)ds-

By applying the DJM, we get
A t3x  t*x?
uO = Uy = tx — ——

6 12
o to t3x  t5x | t*x?  t®x%  t8x2  t7x3  t9%3 t10,4
Gy=-——--+——-—+ - + — )
180 6 120 12 72 2016 252 = 2592 12960
N n to t5x  tSx2%  t8x2%2  t7x3 %3  t10x%
U =Uyg+uyy =———=+itx——— + -
180 120 72 2016 252 = 2592 12960
n to t8 t10 ti4 t5x t7x 11t°%x tilyx ti3yx

u, = +
27180 1680 @ 90720 @ 5896800 = 120 5040 22680 @ 47520 = 1684800
t6x2 t8x2 t10x2

72 960 181440

N " o t8 10 t14 t7x 11t°%x t1ily
u1=u0+u1+u2=— + + +tx_ -
1680 90720 5896800 5040 22680 47520

t13x 11t8x2 t10y2

1684800 20160 181440

and so on. Thus, we have

65:
t12 239t 14 6619t16 29839¢18 60709t20
3326400 1452971520 435891456000 72754246656000 6911653432320000
68107471t22
46833363657400320000
— n N —
Uy, = lizoU; n=1273,...

u5 == ﬁO + ﬁl+ﬁ2+ﬁ3 + ﬁ4_ + ﬁs,

. xt13 1 41x2 14 289x
Ug = Xt — ——+ (— - ) (———— -
6227020800 335301120 43589145600 20432412000
29x3 15
—)t + -
13076743680

The series converges to the exact solution when
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u(x,t) = xt, see appendix D.

Solving Example 3.4 by the BCM:

Consider Eq.(3.27), by followed the same procedure as in the DJM, we get
the Eq. (3.32).

t3x  t*x?
So, letuy=tx ———
6 12

N(up-1) = fot(t = 5)(OxxUn-1 + Up_1 + Un_1*)ds

By applying the BCM, we obtain:

t3x  t*x?
Uy =tx —— — ,
6 12
t© t3x  tOx?%  t8x2  t7x3 t%3  t10x*
—_— t —_— —_ —_ :
W= "1g0 T T 120~ 72 T2016 252 T 2592 T 12960
B t8 N 10 N t14 o t’x  11t°x N t1x
Uz = 1680 90720 5896800 x 5040 22680 47520
t13x 11t8x2 t10x2

+ 1684800 20160 @ 181440 "

and so on. Then, we have

xt13 1 41x2

~ 6227020800 T (= 335301120 43589145600
289x 29x3

* (- 20432412000 ~ 13076743680
is the same of the approximate solution in Eq.(3.30).

)t14-

u5=xt

)t15 +

We see that the approximate solutions obtained from the three proposed
methods are the same because we got the same series.

To prove the convergence analysis for the proposed methods, we will be
applied the process as given in Egs. (3.23)-(3.26). The iterative scheme for
Eq. (3.27) can be formulated as
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t3x  t*x?
vo(x,t) = up(x, t) = tx -0

Applying the TAM, the operator F[v,] as defined in Eq. (3.27) with the

term S;, which is the solution for the following problem, it will be then
- — _ 2

Vet (6, 8) = (B150 vina (6, 0) + (ZH0 vi(x, ) + (B0 vilx, 1)) =

xt—x?t?,

with  v,(x,0) = 0,v,:(x,0) = x k>1.

Also, when applying the BCM, the S, represents the solution for the

following problem,

e = v + (T v (0, 0) + (Bt v D) + (Bt vi(x, ), k= 1.

Can be used the iterative approximations directly when applying the DJM.

Therefore, we have the following terms

v = t6 | t3x  t5x | t*x?  t5x% | 8%  t7x3 | t9x3 | t10x*
1 180 6 120 12 72 2016 252 2592 12960
to t8 t10 1t t5x  t’x  11t%x

v, = + + e
180 1680 90720 5896800 120 5040 22680

t8 t10 t12 t14 11t16 47t18
Vo, = —_ —_ —_
3 1680 33600 5987520 11531520 1415232000 46637337600
28957824000

We use the above duplicates in computing the values of Si for the equation as
in (3.27), we obtain

B, =l — 9265249 < 1

llvoll

g, =l _ 4132357 < 1

llvall

8, =l — 00800386 < 1

vl
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By =1l 0.045514 < 1

llvsll

B, = sl — 0301515 < 1,

llvall

where, the §; valuesfori > 0and 0 < x <1 arelessthan1 whent =1, so
the proposed iterative methods satisfy the convergence.

We calculate the absolute error | o | , to check the accuracy of the
approximate solution u,, , where u = xt is the exact solution.

Table3.1and Fig3. 1(a, b, c)below shows the 3D plotted graph of the | T, |
for approximate solution obtained by the suggested iterative methods. Also,
by increasing the iterations, the errors are decreasing and the accuracy of the

approximate solution increases.

Table3.1:Results of the absolute errors by the proposed methods where t =

1.

X |74 | |73 |74 |

0 0.00555556 0.0000184804 | 4.61399 x 1077
0.1 0.00652639 0.0000228675 | 5.76688 x 1077
0.2 0.00778647 0.0000278468 | 7.17091 x 10~
0.3 0.00935701 0.0000335267 | 8.8619 x 1077
0.4 0.011259 0.0000400357 | 1.08821 x 107°
0.5 0.0135134 0.000047523 | 1.32813 x 10°°
0.6 0.0161408 0.0000561599 | 1.61177 x 107°
0.7 0.0191616 0.0000661411 | 1.94595 x 107°
0.8 0.0225963 0.0000776859 | 2.33857 x 107°
0.9 0.0264648 0.0000910392 | 2.79877 x 107°

1 0.030787 0.000106473 | 3.33704 x 10

()
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0.0001
0.00008
0.00006 |
0.00004}
0.00002} > /
00 L& /0.5,

a=1u;(xt) b =uz(x,t)

c = uy(x,t)

Figure3.1(a, b, ¢): The plots of the absolute error | 168 | atn = 1,3 and 4

Example 3.5. We take the following 2D nonlinear wave equation
Ut (X, Y, 8) = U (6, 3, 8) + Uy (6,3, 8) —ulx, v, £)* + t2x%y*  (3.33)

with initial conditions:

u(x,y,0) =0, u;(x,y,0)=xy.

The Eqg. (3.33) will be solved by the three iterative methods with the initial

conditions.

Solving Example 3.5 by the TAM:
By applying the TAM

1
=t t4x2y2?,
Uy xy+12 x°y
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_t6X2 t6y2 . i 7 3 3 _ t10x4-y4-
Y1780 tixy + 180 252t Xy 12960 ’
U, = - + txy — - -
2520 5896800 22680 2948400 142560

11t9xy3 t15x5y3 t14y4 t12x2y4
22680 ' 4762800 5896800 142560 & "

continuing in this way till n = 4, we find

23x* 61x>y? 23y* 9y 173x°y®
Uy = xyt + ( + + )t -
136216080 22702680 136216080 681080400
173x%y°
_ Y s (3.34)
681080400

This series converges to the exact solution when

ulx,y,t) = limu,(x,y,t) = xyt.
n—-oo

Solving Example 3.5 by the DJM:

By applying the DJM

A 1
Uy = Gy = txy + Et“xzy2 ,
6.2 61,2 10,44
b= Y L Loays DXV
180 180 12 252 12960 °
£652 £6y2 1 £10 x4yt
u; =0+ 0y = + txy + ——t7x3y} - —
180 180 252 12960
ﬁ . t8 t6x2 t14x4 11t9x3y t6y2 t14x2y2 t12x4y2 11t9xy3
272520 180 5896800 22680 180 2948400 142560 22680
1 7.3 3
_t X + cee
252 y
R R R ¢8 (1454 11t%9x3y  t1%x2y2 t12x%y2
Uy =Ug+ Uy +U, = - + txy — — — —
2 0 1 27 2520 5896800 Y T 22680 2948400 142560
11t9xy3 t15x5y3 t14y4 t12x2y4

.o
)

22680 4762800 5896800 142560

Continue to till n = 4
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e = 378928368000 5309215293981634560000 3891888000
t26x2

+166617032400000 T

—_ n I —
Uy, = lizoU; n=12,...

u4_ = ﬁo + ﬁ1+ﬁ2+ﬁ3 + ﬁ4 .

Uy = xyt + ( 23x* 61x2y? 23y* Vel ( 173x%y3
4 =Xy 136216080 22702680 136216080 681080400

173x3y°

IS + -
681080400

Which is the same of the approximate solution in Eq. (3.34), and converges
to the exact solution .

u= Y2,0; =xyt

Solving the Example 3.5 by the BCM:
By applying the BCM

1
uy = txy + — t*x?y?,

12
t6x2 t6 2 1 t10x4y4
_ ¢ #7433 _ ’
U1 =180 T T 180 T 2528 Y T 12960
t8 t14x4— 11t9x3 t14x2 2 t12x4 2
U, + txy — 24 24 24

~ 2520 5896800 22680 2948400 142560
Y, y: vt y
22680 @ 4762800 5896800 142560

+ e,

Continue to till n = 4

23x* 61x2y? 23y*
136216080 ' 22702680 | 136216080

173x5y3 173x3y°
*+ (581080400 ~ 681080400

Uy = xyt + ( et

)ES 4 -,
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is the same approximate solution as given in (3.34), we see that the
approximate solutions obtained from the three proposed methods are the same

because we got the same series.

To prove the convergence analysis for the proposed methods, we can find
the B; values in the problem as in Eq. (3.34). Hence, the terms of the

series Y.~ v; (x,y, t) given in Eqg. (3.26), we have

llva |

By = = 0.0564883 < 1
llvoll

B, = Ivall _ 142938 < 1

Yol

lvsll

B, = = 0.0770897 < 1
v, |l
[EA

By = = 0.066341 < 1
llvsl

where, the §; values fori > 0and 0 < x,y < 1are lessthan1 whent =1,

so the proposed iterative methods satisfy the convergence.

In order to test the accuracy of the approximate solution, we calculate the

| T | where u = x y t is the exact solution.

Table 3.2 and Fig. 3.2(a, b, ¢) shows the 3D plotted graph of the | £ | for
approximate solution obtained by the suggested iterative methods. It can be

seen clearly, by increasing the number of iterations the error will be reduced

and the solution becomes more accurate.
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Table3.2:Results of the absolute errors by the proposed methods, where

y,t=1.

X |74 | |73 |74 |

0 0.00555556 8.89033 x 1078 | 1.57137 x 1077
0.1 0.00560714 5.95471 x 10~°¢ | 1.84193 x 1077
0.2 0.00574591 0.0000115097 | 2.63572 x 1077
0.3 0.00594779 0.0000166991 | 3.94162 x 1077
0.4 0.0061885 0.0000214338 | 5.74663 x 1077
0.5 0.00644359 0.0000255918 | 8.03297 x 1077
0.6 0.00668841 0.0000290187 | 1.07753 x 107°
0.7 0.00689814 0.0000315298 | 1.39378 x 107
0.8 0.00704776 0.0000329106 | 1.74719 x 107°
0.9 0.00711207 0.0000329184 | 2.13131x 107°

1 0.0070657 0.0000312834 | 2.53787 x 107°

a=1u(xyt)

'\
0.00003 “t&

\

0.00002

0.00001 |
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c =uu(x,y,t)

Figure3.2(a,b,c): The plots of the absolute error |7‘n| at n =
1,3 and 4 with t = 1.

Example 3.6. Consider 3D nonlinear wave equation given in equation
U (X, Y,2,8) = U (X, Y, 2, 1) + Uy, (X,1,2,8) + Uz (X, y,2,8) —
u(x,y,z t)? + t2x2y?z2, (3.35)

with the initial conditions: u(x,y,z,0) = 0,u.(x,y,z,0) = xyz

Solving the Example 3.6 by the TAM:
By applying the TAM

1
Uy = txyz + Et“xzyzz2

1 1

1 1

u; = —t%x%y? + txyz + — t®x2%z% + —tOy?%z%2 — —t"x3y323 —
180 180 180 252

t10x4y4-z4-

12960 ’

t8x2 t8y2 t14x4y4 11t9x3y3z tSZZ t14x4y222

Uy = — + txyz — — —
2520 ' 2520 5896800 22680 2520 2948400

tlhx2ytz2 12,4452 11t%%3yz3  11t%xy323

2948400 142560 22680 22680
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and so on. Then, we have

U = xvzt 59(xyz)t13 ( 23xty* 61x*y2z?  61x’y*z? 23x%z*
4 =Xy 8108100 136216080 22702680 22702680 136216080

61x2y?z* 23ytz* )t“ ( 173x5y5z3  173x5y3z° 173x3y5z5) $15 4

22702680 136216080 681080400 681080400 681080400

(3.36)
Is the approximate solution, which converges to the exact solution when
u(x,y,z,t) = rllll?o u, = xyzt.
Solving Example3.6 by the DIM:
By applying the DIJM

. 1
Uy = 0y = txyz + Et“xzyzzz,

1 1 1 1
i, = t6x2y2 + 65272 + t6y272 — — ttx2y272

180 180 180 12
104,44
—Lt7x3y3z3—t Xxyz
252 12960 ’

A 1 1 1
u; = 0y + 0y = —t%x%y? + txyz + Et%zzz + Eﬁyzzz —

180
Lt7x3 323 _ t10x4y4z4
252 y 12960
2520 2520 180 5896800 22680 2520
— — 64252 4 ...
180t x“z°+
t8x2 t8y2 _ t14-x4-y4 11t9x3y3z tSZZ

u2=ﬁ0+ﬁ1+ﬁ2=

+txyz — + —

2520 2520 5896800 22680 2520

tl4x4y252 tl4x2y472 t12x%y472 11t%%x3yz3 11t%xy32z3
2948400 2948400 142560 22680 22680

93

——
| —



Chapter Three Solving 1D, 2D and 3D Wave Equations by TAM, DJM, and BCM

Continue to till n = 4

He =7 37800 660124080000 36921225600 * 378928368000
t30x4 t38x8
* 31952405923200000 5309215293981634560000
t20y2 t18x2y2

36921225600 5262894000 "

n
un=Zﬁi n=1273,...

=0
N A oA o o 59(xyz)t13 23x%y* 61x*y?z?
Uy, =0+ 04+0,+05; + 0y = xyzt — 2 (
8108100 136216080 22702680
61x2y*z? 23x%z*% 61x2y?z* 23y4z4 )t14 +( 173x5y523
22702680 136216080 22702680 136216080 681080400

173x5y3z%>  173x3y52z°

)t15 + e
681080400 681080400

Which is the same of the approximate solution in Eqg. (3.36), and converges to

the exact solution.

Solving the Example3.6 by the BCM:
By applying the BCM
1

Uy = txyz + Et“xzyzz2
1 1 1 1
=_t6 24,2 t _t6 2,2 _t6 2 2—_t7 3,,3.,3
T T R A T L T LA T L i
t10x4y4z4
12960
t8x2 t8y2 t14x4y4 11t9X3y3Z t8Z2
U, = + - + txyz — +
2520 ' 2520 5896800 22680 2520

t14x4y222 t14x2y4Z2 t12X4y422 11t9x3yz3
2948400 2948400 142560 22680
11¢%xy323
22680
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and so on. Then, we have

59(xyz)t!3 23x*y* 61x*y?z2  61x%y*z?

8108100 T 136216080 & 22702680 | 22702680
23x*z* 61x%y2z* 23y*z*

T 136216080 © 22702680 136216080

173x°%y5z3  173x°y3z>  173x3y52°

*+ (= %81080400 _ 681080400 _ 681080400

Uy = xyzt —

)14

)t15 + ..

Is the same of the approximate solution in Eqg. (3.36), and converges to the
exact solution, we see that the approximate solutions obtained from the three

proposed methods are the same because we got the same series

To prove the state of convergence we find values of g; for the problem as in
(3.35). Hence, the terms of the series }.;2, v;(x, y, z, t) given in Eq. (3.26),
we get

B, =l _ 0.053744 < 1

llvoll

g, =l _ 5213378 < 1

llvll

B, =l — 4.0530355 < 1

vl

By =l _ 0157401 < 1,

llvsll

where, the B; values fori > 0and 0 < x,y,z < 1 are less than 1 when
t = 1, so the proposed iterative methods satisfy the convergence.

To examine the accuracy of the approximate solutions for this example, we
have to calculate the absolute error of the approximate solution, where

u =t x y z is the exact solution .
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Table 3.3 Fig3. 3(a, b, c) show the 3D plotted graph of the | T, |
for approximate solution obtained by the proposed iterative methods, we note
that by increasing the number of iterations, errors will decreasing and the

accuracy of the approximate solutions is increasing

Table 3.3:Results of the absolute errors by the proposed methods, where

y,z,t =1.

X |T1 | |T3 | |7”4 |

0 0.00555556 0.0000263533 | 1.44152 x 1077
0.1 0.00566269 0.0000144065 | 5.3068 x 1077
0.2 0.00596813 | 2.41046 x 107° | 1.09838 x 10~°
0.3 0.00644779 |9.88883 x 107° | 1.54998 x 10~°
0.4 0.00707739 0.000022676 | 1.87041 x 10°°
0.5 0.00783248 0.0000360674 | 2.03909 x 10°°
0.6 0.00868841 0.0000501122 | 2.03049 x 10~°
0.7 0.00962036 0.0000647933 | 1.81462 x 10~°
0.8 0.0106033 0.0000800281 | 1.35764 x 107°
0.9 0.0116121 0.0000956701 | 6.22353 x 1077

1 0.0126213 0.000111509 |4.31218 x 1077

u(x,y,2,t)

0.0001 |

0.00005 |

96

'

'
0.0090)_
\\\

0.0

b =us(x,y,2t)

——




Chapter Three Solving 1D, 2D and 3D Wave Equations by TAM, DJM, and BCM

c =uu(x,y,21t)

Figure3.3(a, b, c): The plots of the absolute error | £ | atn = 1,3 and 4,
witht,z = 1.
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Chapter 4

Conclusions and Future Works

4.1 Introduction

The main objective of this work has been achieved by solving some non-
linear ordinary and partial differential equation by various iterative methods.
This purpose was obtained by applying three iterative methods, which are
TAM, DJM and BCM. Also, the comparison between these suggested
methods and other methods such as ADM and VIM.

4.2 Conclusions

1.The three iterative methods are reliable and effective to find the
approximate solutions for Painlevé 1, Il, Pendulum and Falkner —skan
equations, and the linear and nonlinear wave equations in 1D, 2D and 3D.
The accuracy and efficiency of those proposed methods have been

demonstrated through the study of convergence.

2. The three proposed methods do not require any restrictive assumptions to
deal with non-linear terms unlike other iterative methods. Such as the ADM
that need, to calculate the adomain Polynomial and VIM required to evaluate

the Lagrange Multiplier.

3.The convergence of the proposed methods is given based on the Banach
fixed point theorem. The results of the maximal error remainder values show

that the present methods are effective and reliable.

4. We solved these problems by numerical methods which are the Rang-Kutta
(RK4) and Euler methods. We compared the numerical results with

approximate solutions and were in good agreement.
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5. For comparison, we take examples for nonlinear painleve I equation and

Painlevé Il equation.

In comparing results for by suggested methods with some existing methods
such as ADM and VIM. We note that the approximate solutions for painlevé
equation | obtained by the suggested methods the same as VIM and better
than ADM without adomain Polynomial and Lagrange Multiplier. That can be
clarified inthe table 4.1, figure 4.1.

Table 4.1: Comparative results of the maximal error remainder: MER,, for
proposed methods, VIM and ADM, for Painlevé | equation, where n=1,...,5.

.| MER, bythe | MER, bythe MER,, by the
Proposed methods ADM VIM
1| 0.0000601952 | 0.0000601952 | 0.0000601952
2| 172121x10 ° | 3.22501x10 © | 1.72121 x 10 °
3 -12 -11 -12
2.29681 X 10 1.29031x 10 | 2.29681 x 10
4 —-16 —-15 -16
1.52656 % 10 4.35069 X 10 1.52656 X 10
5 -17 -17 —-17
2.77556 X 10 2.08167 x 10 | 2.77556 x 10
"
10_7 \ r
n:t -®- Proposed methods
W 10-1
= )
et VIM
1071° - ADM
1 2 3 4 5

Figure 4.1: Comparison of the maximal error remainder for the proposed
methods, VIM and ADM.
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Also, we note that the approximate solutions for Painlevé equation Il
obtained by suggested methods the same as VIM without adomain
Polynomial and Lagrange Multiplier. That can be clarified in the table 4.2
figure, 4.2.

Table 4.2: Comparative results of the maximal error remainder: MER,, for the
proposed methods, VIM and ADM, for Painlevé Il equation where n =1,...,5 .

.| MER, bythe | MER, bythe MER, by the
Proposed methods ADM VIM
1 0.0634125 0.0634125 0.0634125
2 0.000323411 0.000950605 0.000323411
3| 658637x10 | 0.00001041 | 658637 x 10
4 -10 -8 -10
7.18421 x 10 9.77952 x 10 7.18421 x 10
5 -13 -10 —13
4.8539 x 10 8.40299 x 10 4.8539 x 10
1029
10~ @
Ijl:: 10-° o -®- Proposed methods
S 10°® VIM
10-1° =
. ADM
10- .
1 2 3 4 5

Figure 4.2: Comparison of the maximal error remainder for proposed
methods, VIM and ADM.

6. We take example for nonlinear Pendulum equation. In comparison the
results by the proposed methods with the some existing methods such as
ADM and VIM. We note that the approximate solutions obtained by
suggested methods the same as VIM without adomain Polynomial and
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Lagrange Multiplier. It can be seen that by increasing the iterations, the errors

will be decreasing, that can be clarified in the table 4.3 and figure 4.3.

Table 4.3: Comparison results of the maximal error remainder: M ERx for the
proposed methods, VIM and ADM, wheren =1,...,5.

.| MER, bythe | MER, bythe MER,, Dby the
Proposed methods ADM VIM
1 0.0959857 0.0959857 0.0959857
2 0.00429285 0.0059253 0.00429285
3 0.0000881802 0.00115669 0.0000881802
4 1.05634 x 107° 0.0000367296 | 1.05634 x 107°
5| 8.28868x107° |4.73742x107°%| 8.28868 x 10~°
=
1072 °.
E:: 10~ o -@- Proposed methods
=
105 - VIM
ADM
10°8 U
1 2 3 4 5

Figure 4.3: Comparison of the maximal error remainder for proposed
methods, VIM and ADM.

7. We take example for nonlinear Falkner- skan equation, when comparing
the results of the proposed methods with those of the ADM and VIM. We
note that the approximate solutions obtained by the proposed methods the

same as VIM without adomain Polynomial and Lagrange Multiplier.
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Note that when increasing the number of iterations, The maximal error
remainders will be decreased, that can be illustrated by a table 4.4 and figure
4.4

Table 4.4: Comparative results of the maximal error remainder: ME Rn for the
proposed methods, VIM and ADM, wheren =1,...,5.

.| MER, bythe | MER, bythe |MER, by the
Proposed methods ADM VIM
1 0.246021 0.246021 0.246021
2 0.0745229 0.0661609 0.0745229
3 0.0150143 0.0101075 0.0150143
4 0.00226928 0.000832153 0.00226928
5 0.000274414 3.40896 X 10_6 0.000274414
101 ® -
102 ¥
E:: 10-2 \ -~ Proposed methods
S 10~ < VIM
10-5 ADM
1 2 3 4 5
n

Figure 4.4: Comparison of the maximal error remainder for the Falkner-skan
equation between the proposed methods, VIM and ADM.
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8. In chapter three, we used the proposed methods TAM, DJM and BCM to
find exact solution for linear equation and approximate solutions for nonlinear
1 D, 2D and 3D wave equations. We compared the approximate solutions
with the exact solutions for the nonlinear equations, by the absolute error,
then we found that increasing the iterations it would reduce the errors and

increase the accuracy of the approximate solutions.

9. We take examples for nonlinear 1D, 2D and 3D wave equation. In
comparison the results by the proposed methods with some methods such as
ADM and VIM. In addition, it is noted that the approximate solutions
obtained by the proposed methods converge quicker without any constrained
assumptions. As given in tables 4.5, 4.6 and 4.9, we compare the absolute
error for the methods used, with n =4 together with the VIM, and ADM.

Table 4.5: Comparative results for the absolute errors of the proposed
methods , ADM and VIM for nonlinear 1D, where t = 1

|r | by the
Prgposed methods |74 | by ADM |74 [by VIM

0 461399 x 1077 1.3407 x 107¢ | 4.61399 x 1077
5.76688 x 1077 1.9667 x 107® | 5.76688 x 10~
7.17091 x 1077 2.76817 x 1076 | 7.17091 x 1077
8.8619 x 1077 3.79775 x 107¢ | 8.8619 x 1077
1.08821 x 10 5.12235 x 107¢ | 1.08821 x 107°
1.32813 x 107 6.82494 x 107¢ | 1.32813 x 107°
1.61177 x 107 9.00674 x 107¢ | 1.61177 x 10~°
1.94595 x 107 0.0000117893 | 1.94595 x 10~°
2.33857 x 107° 0.0000153167 | 2.33857 x 10~°
2.79877 x 107° 0.0000197578 | 2.79877 x 10~°
1 3.33704 x 107° 0.0000253086 |3.33704 x 10°°

CIPIQIQILIQ|Le e
Olo|N|o|lu|hwNE
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It can be observed clearly from table 4.5, the absolute error for the proposed
methods and VIM are lower than ADM. In addition, we note that the
approximate solutions obtained by the proposed methods and VIM are the

Same.

Table 4.6: Comparative results for the absolute errors of the proposed
methods , ADM and VIM, for nonlinear 2D, where y, t = 1.

|r4| by the
Proposed methods

| r, | by ADM

|7, [by VIM

1.57137 x 1077

436769 x 1077

1.57137 x 1077

1.84193 x 1077

492375 x 1077

1.84193 x 1077

2.63572 x 1077

6.44678 x 1077

2.63572 x 1077

3.94162 x 1077

8.85956 x 1077

3.94162 x 1077

5.74663 x 1077

1.2063 x 107°

5.74663 x 1077

8.03297 x 1077

1.59218 x 107

8.03297 x 1077

1.07753 x 107

2.02518 x 10~°

1.07753 x 107

1.39378 x 10~

2.4808 x 107

1.39378 x 10

1.74719 x 10~

2.92748 x 107°

1.74719 x 107

Cle|e|Ie|Ie|e|e|e|e
Ol o/ N|lo|lgalslw|N|Ek

2.1313 x 107°

3.32569 x 107°

213131 x10°°

2.53787 x 107°

3.62723 x 107°

2.53787 x 107°

Table 4.7: Comparative results for the absolute errors of the proposed
methods , ADM and VIM, for nonlinear 3D, y, z, t = 1.

X

|7, | by the
Proposed methods

|7, | by ADM

|7, | by VIM

1.44152 x 1077

3.80939 x 1077

1.44152 x 1077

5.3068 x 1077

2.43012 x 1077

5.3068 x 1077

1.09838 x 10°°

6.6647 x 1077

1.09838 x 107

1.54998 x 10°°

8.76941 x 1077

1.54998 x 10

1.87041 x 10°¢

8.53484 x 1077

1.87041 x 107

2.03909 x 107°

5.69642 x 1077

2.03909 x 107°

2.03049 x 107°

3.69911 x 107°

2.03049 x 10°°

1.81462 x 10°°

8.95526 x 1077

1.81462 x 107

1.35764 x 10°°

2.132x107°

1.35764 x 107

Sl fo

Ol |IN[fO|O D W|IN|PF

6.22353 X 1077

3.73384 x 10°°

6.22353 x 1077

431218 x 1077

5.71383 x 107°

431218 x 1077
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It can be observed clearly from table 4.6 and 4.7, the absolute error for the
proposed methods and VIM are lower than ADM. In addition, we note that
the approximate solutions obtained by the proposed methods and VIM are the
same.

4.3-Future works

In this section some of future works will be suggested

1- Solving the beam-type actuators equation[27], by using TAM

v ___ % B g B _
= A—v@) T a—veor T wa vz T

with boundary conditions:
v(0)=v'(0)=v"(1)=v"(1)=0

2- Using BCM for solving the Blasius equation[46]
v"(x) + %v(x)v”(x) =0, 0< x < oo,
With initial-boundary conditions:

v(0) =v'(0) =0 and v'(w) = 1.

3-Applying the Homotopy-Pad e method [74], for solving Falkner skan
equation .

4- Using the DJM for solving the sixth-order boundary-value problems[ 63]
yOx) =1+ )y®(x) —cy@(x) +cx, 0< x<1,

with the boundary conditions:

y(0) =1, y®(0) =1, y*(0) =0,

(1) = Z+sinh(1), y®(1) = 1 + cosh(1),y®(0) = 1 + sinh(1)
The exact solution : y(x) = (1 + E) + sin(x).

5- Using the TAM for solving Lane-Emden equation[4]
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Y () +2y' () + g(x,y) = f(2),
with the initial conditions:

y(0) = a, y'(0) = b.

6-Using the DJM for solving advection-diffusion-reaction equation
(ADRE)(1D) [81]
C) + b(x) v(x) +c(x)v(x)=f(x), 0<x<1,

dx? dx

a(x)
with boundary conditions:
v(0) =v, v(1)=v,, vy+ v, >0.

7-Solving the Benjamin-Bona-Mahoney-Burgers (BBMB) equations [16] by
using the TAM

u2
vt—vxxt+vx+(7) =0
X

With initial conditions:
— 2 (%
v(x,0) = sech (4).

8-Using the harmonic balance method (HBM)[56]for solving Pendulum
equation.

9-Solving the class of boundary value problems with polynomial coefficients
[2] by the TAM .

10- Solving the Painlevé equation | by the Modification of homotopy
perturbation method[11].
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A: Code of Mathematica for chapter one (the ADM)

Code of Painlevé equation |
(*u"=6u*+x, u(0)=0 u(0)=1%

X3

(*u=x+—+ 6j ((Jx(uz/.x - t)dt)/.x = t)dt*)
6 0
0

A0 = u0?;

ul =6 f:((fox(AO/.x S t)dt)/.x > t) dt

4 X6 x8

6(12 750 2016

Simplify[ul]

x* x® x8

2 T15 7336

Al = 2u0ul;

u2 = 6 [ ((J; (A1/.x > t)dt)/.x - t) dtU1=u0+u;
x7 x9 71x11 x13

(G2 * 220 Y 277200 * 157248

Simplify[uZ2]

x7 N x9 N 71x11 N x13

7 40 ' 46200 ' 26208

A2 = ul? 4 2ulu2;
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u3 = 6j0x((f(j‘(A2/.x S t)dt)).x - t)dt

x10

_|_23x12 5219x14 3551x16 95x18
28 3080 = 8408400 144144000 224550144

A3 = 2(ulu2 + ulu3);

u4 = 6j ((jx(AS/.x - t)dt)/.x = t)dt;
0
0

A4 = u2? + 2ulu3 + 2ulu4;

u5 = 6j ((jx(AlL/.x S 6)dt)/.x - t)dt;
0
0

Ul=u0+ul,
U2=u0+ul+u2;
U3=u0+ul+u2+u3;
U4=u0+ul+u2+u3+ud4,
U5=u0+ul+u2+u3+ud+ub;

rl = Abs[D[U1, {x,2}] — 6U1? — x];

Plot[r1, {x, 0,1}]

0.2 04 0.6 08 10

r2 = Abs[D[U2,{x, 2}] — 6U2% — x];

Plot[r2, {x, 0,1}]
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25

20

15

10

05

0.2

04

r3 = Abs[D[U3, {x, 2}] — 6U3? — x];

Plot[r3, {x, 0,1}]

05

04 -

03

02

01 -

0.6 0.8

10

02

04

r4 = Abs[D[U4, {x, 2}] — 6U4? — x];

Plot[r4, {x, 0,1}]

010

008

006

004

002

06 08

10

02

04

o]

——

6 08
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r5 = Abs[D[US5, {x, 2}] — 6U5% — x];

Plot[r5, {x, 0,1}]

0015

0010

0006

02 04 06 08 10

yl=Max[rl]
0.0000601952
y2=Max[r2]
3.22501*10°®
y3=Max|r3]
1.29031*10™*
y4=Max[r4]
4.36456*10"°
y5=Max|[r5]
1.38778*10"

ListLogPlot[{{1,y1},{2,y2},{3,y3}, {4,y4},{5,y5}},Joined
— True, PlotRange — All, Frame — True, Axes
— True, FrameLabel —» {Row[{Style["n", FontSlant
- Italic]}], Row[{Style[MER,, FontSlant
- Italic]}]}, PlotMarkers — {Automatic, 15}]
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Code of pendulum equation

(*u” + ySin[u] = 0,u[0] = 0,u’[0]
= 1, the exact solutionisexpressedin]Jacobiellipticfunctionu

= 2 * ArcSin[k * sn(\/? *t,k?)]*)
t
(*u(t) =t — yj fot Sin[u]dsds *)
0

inful = u — % 4+ % 7
(*Sin[u] = u —t5t Olu]”*)
ClearAll["Global” * "]

ul = x

X

x 3
ul = uo+f (t = x) * (D[u0, {x, 2] +u0 — L + 22/ x - 1)) dt
0

3 5
P I AU 1
6 = 120 5040
X
ul® u1d
uz =ul+ (t—x)*((D[ul,{x,Z}]+u1—7+m/.x—>t))dt
0
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x3 x5 x7 127x° 893x11 367x13 607x13 56881x17 2521x1°
x= 6 + 60 420 + 362880 19958400 + 70761600 1143072000 t 1243662336000 781861248000
17x21 22129x23 17651x25 61787x27
92177326080  2591207055360000 ' 55306395648000000  6470848290816000000
2021x%° 73x31 13x33 x35
8981758653235200000  18002231783424000000 + 245294925978009600000  2211370923589632000000 t
x37

519802247686127616000000
X 3 5
u3=u2+j (t —x) * (D[u2, {x, 2}] + u2 — ==+ = /.x - t)) dt;
Ox 3 5
u4=u3+j (t—x) * (D[u3, {x, 2}] + u3 — ==+ 2= /.x - t)) dt;
0

1 1
ux = 2 * ArcSin[E * JacobiSN|[x, Z]]

2ArcSin[§ JacobiSN[x, %]]

Plot[ux, {x, 0,1}]

08

06

04

02

02 04 06 08 10
1 = Abs[D[ul 2} + (ul 1113+1115 ;
Plot[r1, {x, 0,1}]
[ 10 )
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0.10 f
0.08 t
0.06 f
0.04 +

0.02 -

0.2 04 0.6 0.8 10

2 = Abs[D[uZ2 2} + (u2 u23+u25 ;

Plot[r2, {x, 0,1}]

0004
0003
0002

0001

3 = Abs[D[u3, [, 2)] + (u3 — " + 2,

Plot[r3, {x, 0,1}]

0.00006
0.00005
0.00004
0.00003
0.00002

0.00001

0.2 04 0.6 0.8 10
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4= Abs[D[ud, (x, 2)] + (ud — 2E 4 1
Plot[r4, {¢t,0,1}]
4 %1077
3 x1077
2 x10~7
1 x10~7
02 04 06 08 10

y1=N[Max[r1]]

0.0959857

y2=N[Max[r2]]

0.00429285

y3=N[Max[r3]]

0.0000881802

y4=N[Max[r4]]

1.05634*10°°

gl0=ListLogPlot[{{1,y1},{2,y2},{3,y3}.{4,y4}} Joined->True,PlotRange->All,Frame-
>True, Axes->True,FrameLabel->{Row[{Style["'n",FontSlant-
>[talic]}],Row[{Style["MER.",FontSlant->Italic]}] },PlotMarkers->{ Automatic,15}]
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C: Code of Mathematica for chapter two (the TAM)

.........................................................................................................

Code of Painlevé equation 11

(*Theequation(u " (x) = 2 xu(x)"3 + x * u(x) + p,u(0) = 1,u’(0)
= 0%)

(*L(w) =u ' ,Nw) = -2 *u(x)"3 —x *u(x) —pandg(x) = x*)

Clear All["Global *"]

tt=AbsoluteTime;

zz=SessionTime;

u=1

1

u01[x_] = u0[x]/. First@DSolve[{u0"[x] == u,u0’'[0] == 0,u0[0] =
= 1},u0[x], x]

1 2
ul[x]

ull[X_] = m@DSOlVG[{UlH[X] =

= 2% u01[x]® + x * u01[x] + &, ul’[0] == 0,ul[0] =
= 1},ul[x], x]

3360 + 5040x2 + 560x3 + 840x* + 84x° + 168x° + 15x8
3360

u22[x_| = u2[x]/. First@DSolve[{u2"[x] =
= 2*ull[x]*3 + x xull[x] + u, u2'[0] == 0,u2[0] =
= 1},u2[x], x];

u33[x_]=u3[x]/.First@DSolve[{u3"[X]==2*u22[x]*3+x*u22[X]+u,u3'[0]==0,
u3[0]==1},u3[x],X];

ud4[x_]=u4[x]/.First@DSolve[{u4d"[x]==2*u33[x]*3+x*u33[x]+p,u4'[0]==0,
u4[0]==1},u4[x],X];

127

——
| —




Appendices

uS5[x_]=u5[x]/.First@DSolve[{u5"[x]==2*u44[x]*3+x*ud4[Xx]+u,u5'[0]==0,
u5[0]==1},u5[x],x];

rl = Abs[((D[ull]x],{x, 2}]) — (2 * ull[x]"*3) —x xull[x] — w)];

Plot[r1, {x, 0,1}]

50
40
30
20

10

02 04 0.6 08 10

r2 = Abs[((D[u22]x],{x, 2}]) — (2 * u22[x]"*3) — x xu22[x] — w)];

Plot[r2, {x, 0,1}]

50
40
30
20

10

r3 = Abs[((D[u33[x], {x,2}]) — (2 * u33[x]"3) — x * u33[x] — w)];

Plot[r3, {x, 0,1}]
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15

10

0.2 04 0.6 038 10

r4 = Abs[((D[u44[x],{x, 2}]) — (2 * u44[x]"3) — x * ud4[x] — p)J;
Plot[r4, {x, 0,1}]

r5 = Abs[((D[u55[x], {x, 2}]) — (2 * u55[x]*3) — x * u55[x] — w)J;
Plot[r5, {x, 0,1}]
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04
03
02

01

02 04 06 08

z1=Max|r1]
0.0634125
z2=Max|[r2]
0.000323411
z3=Max|r3]
6.58637*10"
z4=Max|[r4]
7.18423*10%°
z5=Max|r5]
4.876*10™"

Log[z4/z3]/Log[z3/z2]

1.1007606329593649

z ={z1,22,723,74,25};
04
03
02

01

02 04 06 08
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ListLogPlot[{{1,z1}, {2, 22}, {3, 23}, {4, z4}, {5, z5}}, Joined
— True, PlotRange — All, Frame — True, Axes
— True, FrameLabel — {Row[{Style["n", FontSlant
— Italic]}], Row[{Style[MER,, FontSlant
- Italic]}]}, PlotMarkers — {Automatic, 15}]

Code of example (3.4)

(*0ptu = Oy ,u + u + u* — xt — x*t?, initialconditions: u(x, 0)
= 0,0.u(x,0) = x*)
t3x  t*x?

*:t —
(Fu=tx = ===

t
t
+j(j ((Oxyu+u+u?)/.t >s)ds/.t > s)ds*)
0
0

ClearAll["Global™ * "]

t3x  t*x?

U0 =tx === ==
t3x  t*x?
X T 12

t
t
ulzj (j ((0xxu0 +u0 +u0?)/.t > s)ds /.t > s)ds
0
0
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to +t3x t5x+t4x2 t6x2+t8x2 t7x3+t9x3+t1°x4
180 6 120 12 72 2016 252 2592 12960

u2 = f (ft((ax’x(uO +ul) + (u0 + ul) + (u0 + ul)?)/.t » s)ds /.t
0
0

- s)ds —ul;

u3=f (j ((Oxx(u0 +ul +u2) + (u0 + ul +u2)
0
0+(u0+u1+u2)2)/.t—>s)ds/.t—>s)ds
t
t
—f (j ((0xx(u0 +ul) + (u0 + ul) + (u0 + ul)?)/.t
0
0

- 5s)ds /.t > s)ds;

t
t
u4=f(j ((Oxx(u0+ul+u2+u3)+ (u0 +ul +u2+u3)
0
0

+ (u0 +ul+u2+u3)?)/.t>s)ds/.t > s)ds

- j (j ((Oxx(u0 +ul +u2) + (u0 +ul +u2)

;I—(u0+u1+u2)2)/.t—>s)ds/.t—>s)ds;
u5=f(jt((é‘x,x(u0+u1+u2+u3+u4)+(u0+u1+u2+u3
0
’ +u4t)+(u0+u1+u2+u3+u4)2)/.t—>s)ds/.t—>s)ds
— f (jt((ax,x(uo +ul +u2 +u3) + (u0 + ul + u2 + u3)
0

+ (u0 +ul +u2+u3)?)/.t > s)ds /.t » s)ds;
Ul=u0+ul,
U2=u0+ul+u?;
U3=u0+ul+u2+u3;
U4=u0+ul+u2+u3+u4;

TableForm[Table[Abs[U1-uex],{x,0,1,0.1} {func,{u}}], TableHeadings-
>{Range[0,1,0.1],(ToString[#]< >"[x,t]") &/ @{"Absolute errorl"}}]

{

{Xx, Absolute errorl[x,t]},

{0., 0.00555556},

{0.1, 0.00652639},

132

——
| —




Appendices

{0.2,0.00778647},
{0.3, 0.00935701},
{0.4, 0.011259},

{0.5, 0.0135134},
{0.6, 0.0161408},
{0.7, 0.0191616},
{0.8, 0.0225963},
{0.9, 0.0264648},
{1.,0.030787}
absr1=N[Abs[uex-U1]];
Plot3D[absr1,{x,0,1}{t,0,1}]

TableForm[Table[Abs[U2-uex],{x,0,1,0.1}{func,{u}}], TableHeadings-
>{Range[0,1,0.1],(ToString[#]< >"[x,t]") &/ @{"Absolute error2"}}]

{x, Absolute error2[x,t]},
{0., 0.000584046},

{0.1, 0.000655976},
{0.2,0.000741215},
{0.3, 0.000842609},
{0.4, 0.000963196},
{0.5, 0.0011062},

{0.6, 0.00127503},
{0.7,0.00147329},
{0.8,0.00170474},

{0.9, 0.00197335},
{1.,0.00228325}

}

absr2=N[Abs[uex-U2]];
Plot3D[absr2,{x,0,1}{t,0,1}]
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TableForm[Table[Abs[U3-uex],{x,0,1,0.1}{func,{u}}], TableHeadings-
>{Range[0,1,0.1],( To String[#]< >"[x,t]") &/ @{"Absolute error3"}}]
{

{x, Absolute error3[x,t]},

{0., 0.0000184804},

{0.1, 0.0000228675}%,

{0.2, 0.0000278468%},

{0.3, 0.0000335267},

{0.4, 0.0000400357},

{0.5, 0.000047523},

{0.6, 0.0000561599},

{0.7, 0.0000661411},

{0.8, 0.0000776859},

{0.9, 0.0000910392},

{1.,0.000106473}

¥

absr3=N[Abs[uex-U3]];

Plot3D[absr3,{x,0,1}{t,0,1}]

TableForm[Table[Abs[U4-uex],{x,0,1,0.1} {func,{u}}], TableHeadings-
>{Range[0,1,0.1],(ToString[#]< >"[x,t]")&/@{"Absolute error4"}}]
{

{x, Absolute error4[x,t]},

{0., 4.61399*107},

{0.1, 5.76688*10"'},

{0.2, 7.17091*10°'},

{0.3, 8.8619*107},

{0.4, 1.08821*10°°},

{0.5, 1.32813*10°°},

{0.6, 1.61177*10°%},

{0.7, 1.94595*10°°},

{0.8, 2.33857*10°°},

{0.9, 2.79877*10°°},

{1.,3.33704*10°%}

absr4=N[Abs[uex-U4]];

Plot3D[absr4,{x,0,1},{t,0,1}]
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