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     The aim of this thesis is to solve the nonlinear autonomous system of 

initial value problem (IVP) for ordinary differential equations (ODE) of 

the first order that has multi variables and multi parameters, these 

parameters are random variables. This study uses a modified numerical 

simulation process that is more suitable to solve some models. The new 

approach mixes between a random process which is Monte Carlo 

technique and a numerical method which is Runge-Kutta (RK). The new 

process is called Mean Monte Carlo Runge-Kutta (MMCRK). It is 

applied  to solve two epidemic models which are alcohol consumption 

model and smoking habit model under study. Four approximate methods 

which are Analytic methods, Adomian decomposition (ADM) method, 

Variational iteration method (VIM), and Numerical methods, finite 

difference (FD) method  and Rung-Kutta of 4
th

 order method (RK4) are 

applied on the two models under study in this thesis to verify the 

solutions of these models. The difference measure error and mean 

square error are used for comparison between the numerical simulation 

solutions of modified method MMCRK and the predicted values of the 

previous study. The comparison between MMCRK and Mean Monte 

Carlo Finite Difference (MMCFD) that was used in one study, 

numerical simulation methods has been made, the MMCRK method has 

been approached to the predicted values of the previous studies with the 

alcohol consumption and smoking habit models. Three softwares are 

used for computing the presented results in this thesis which are 

Mathematica.11 and Matlab softwares 2013, the figures have been 

sketched by the Magic Plot software. 
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CHAPTER 1: 

 

INRODECTION 

AND 

PRIMARY CONCEPTS 
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1.1 Introduction: 

     Ordinary differential equation (ODE) is an equation for unknown 

functions of dependent variable and its derivatives. If the independent 

variable of ODE is in terms of a variety of time and does not appear 

explicitly, then the system is called an autonomous system or 

sometimes, a time-invariant system. The highest derived to the 

differential equation is the order of it [80]. The power of the highest 

order derivative in the equation is its degree [83]. The initial value 

problems of the nonlinear autonomous system of the first-order ordinary 

differential equations in this thesis is to raise a campaign about alcohol 

consumption and smoking habit in Spain as  epidemiological model. The 

behavior of the autonomous dynamic system of the thesis applications 

are studied [42]. 

     The mathematical model is a description of a natural phenomenon 

either as a deterministic  model or stochastic model. The stochastic 

model provides multiply results. These results include one or more  

random variables. These variables are solved by randomly, such as Mont 

Carlo simulation [44, 51, 81]. On the other hand, a deterministic model 

does not contain a random variable and in this case the solution is 

unique and in a specified period of time. These models are solved by 

deterministic methods such as Runge-Kutta, finite-difference, finite 

volume, finite-element etc. [48]. There is also a randomized-

deterministic modeling approach, where it represents  a specific random 

model and is considered a third type of method. Where the Chemical 

Master Equation (CME) application is an example of stochastic 

deterministic modeling, where is mixed of deterministic and stochastic 

deterministic model. This shows us the time development in the 
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probability density function of the system in the case of the system. 

Unfortunately, a few bounds only to solve the route approach of the 

CME for general system [50, 52]. In the present thesis, stochastic-

deterministic models show us general behavior of the real social 

epidemic models. The epidemic models are the extensive applications of 

nonlinear autonomous stochastic-deterministic models  [9, 25, 41], that 

specialized in this study. 

     The most epidemiological models can be represented in the form of a 

system of ordinary differential equations, where this system d epends on 

the independent time  . Using the simulation because of these models 

have parameters that have random distribution in nature, some of these 

systems are resolved , see [16]. 

1.2 Epidemic Models:  
 

     The epidemic model is a model which deals with an epidemic that 

spreads rapidly in a large size of population, where the epidemic models 

are considered as stochastic-deterministic models that can be formulated 

as a system of differential equations from the first order. Analysis of 

epidemic behavior either decays, grows or remains in the population 

with the time [25]. 

 

     Epidemic model is divided  according to the weakness of humans  

toward the disease. Susceptible (S), Exposed (E), Infectious (I), 

Recovered (R). Susceptible (S) is the group people with them who has 

been infected, Exposed (E) is the group people infected but not move 

the infection. Infectious (I) are people transform the disease while 

Recovered (R) are the individuals who have immunity from the disease 
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and cannot infect others. The profile of a disease that can be represented 

by Susceptible-Exposed-Infection-Recovered (SEIR) type is known as 

epidemic model, which is used in this thesis. There are also others 

simple types of the disease models such as Susceptible-Infectious-

Susceptible (SIS) type and Susceptible-Infectious-Recovered (SIR) 

type. The preliminaries of SIS, SIR and SEIR dynamic models are 

outlined by [25]. 

  

     The stability of the epidemic models were also evaluated in recent 

year. A SIR model of a nonlinear autonomous system of ODE was 

discussed by [7].  

 

      The basic reproduction number      is an important tool to see the 

stability of the behavior of the epidemic model.    is threshold quantity 

and considered as a tool to determine whether an epidemic occurs or the 

disease simply dies out. This value determines the probability of  

transmission [25]. The disease is non-transporting in  infectious time in 

his infectious period, if    less than one, therefore the infectious will be 

away in the future. There is an epidemic in the population, if    more 

than one. If    equal to one, the disease becomes a settler in society and 

a consistent rate, such that each infected individual transmits the disease 

to other susceptible individuals [8, 15, 46, 59]. 

1.3 Analytical Methods: 
 

     In this section, the ADM and VIM have been used to solve the 

system of nonlinear ordinary differential equations and may provide the 

exact solution, as these methods will be shown in detail in Chapter 2 and 
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Chapter 3. In this thesis, the system of the nonlinear ordinary 

differential equation of epidemic models is solved. 

1.3.1 Adomian Decomposition Method (ADM): 

   

     The Adomian decomposition method  (ADM), is analytic method that 

was introduced and developed by George Adomian 1976 [83], ADM is 

a reliable method to solve many various kinds of problems, so it is a 

trusty method which emerging in applied science. This method has been 

used by many researchers as well as it has extensive applications of 

linear and nonlinear ordinary differential equations, partial differential 

equations and integral equations [5, 83]. It consists of the sum of an 

infinite number of components of decomposition the unknown function 

     of any equation and which is written in a series of the 

decomposition: 

  

                          ∑   
 
                                                            (1.1) 

or equivalently 

           +      +     + ⋯ 

where the linear components          ≥ 0 are evaluated in a recursive 

manner. The decomposition method concerns itself with finding the 

components          ,….etc. The zero component is determined by all 

terms that are not included under the integral sign. Consequently, by 

setting the recurrence of these components           for the 

unknown function      identified. 

 

Consider the following nonlinear differential equation 
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                           +                                                                    (1.2) 

where   and   are linear and nonlinear operators, respectively, and      

is the source inhomogeneous term. The ADM introduces for Eq. (1.2) in 

the form 

 

          , 

        ∫  ∑   
 
   

 

 
             0                                                 (1.3) 

For the nonlinear solution       the infinite series of polynomials 

becomes:  

     ∑   
 
          … .     .                                                      (1.4) 

     Recurrently the components       of the solution      determined 

and the Adomian polynomial      which are obtained from the formula 

of the nonlinear terms [4]. 

 

   
 

  

  

   
[ (∑    

     )]                         2 …                         (1.5) 

The formulas of the first several Adomian polynomials from    to   , 

have been listed below as given in  [4]. 

          

             

           +
 

2 
  

           

           +           )+
 

  
  

      (   , 
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           + (
 

2 
  

 +     )        +
 

2 
  

           

+
 

  
  

            

⦙ 

and so on. 

 

1.3.2 Variational Iteration Method (VIM): 
 

     The Variational Iteration Method (VIM), is an iterative analytic  

method that was established by Ji-Huan. This method is used widely in 

scientific and engineering applications, where it is used to solve linear 

equations, nonlinear, homogeneous and inhomogeneous. VIM is an 

effective and reliable method and has a quick solution approach the 

exact solution. The VIM differs from the ADM, where it does not 

require specific treatment of nonlinear problems as in the Adomian 

method [83]. If the exact solution is not possible, then the obtained 

series can be used for numerical purposes. In order to define the basic 

concepts of the VIM, is considered the following nonlinear equation 

[39].  

 

            +                                                           (1.6) 

        

where,   is a linear operator,   a nonlinear operator and      is the 

source of the inhomogeneous term. The VIM introduces functional for 

Eq. (1.6) in the form: 

 

                 + ∫     
 

 
(     +   ̃         )             (1.7) 
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where   is a general Lagrange multiplier which can be identified 

optimally via the variational theory, and  ̃  as a restricted variation. The 

Lagrange multiplier   may be constant or a function and it is given by 

the general formula [82]. 

 

                       

      
                                                          (1.8) 

 

However, for fast convergence, the function       should be selected 

by using the initial condition for ODE as follows: 

 

        0    for first order. 

        0 +     0   for second order. 

        0 +     0 +
 

  
      0 , for third order 

⦙ 

and so on. 

The successive approximations        ,   ≥ 0 of the solution       

will be ready immediately, when using a selective function      . 

Consequently, the solution is given by 

 

                                                                                        (1.9) 
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1.4 Numerical Methods: 
  
     In this section, we study two numerical methods which are finite 

difference and Runge-Kutta that give results may converge to the exact 

solution. 

1.4.1 Finite Difference (FD) Method: 

     Finite difference (FD) method is one of the approximate methods  that 

used to solve the differential equations. In general, where the solution is 

accurate and necessary for the technology intended solution required 

[76]. FD is a numerical method to solve initial value prob lem. The result 

of FD represents the discrete numerical values that approximate the  

exact solution. The system of differential equations which have time-

dependent coefficients can be solved numerically by FD method [23]. 

Sometimes, this method is called the method of lines and can be 

considered as a discretization method [36]. FD is an iteration process to 

solve differential equations [29]. It considered as an approximation of 

the derivative of the differential equation. 

     There are three types of finite approximation methods; finite 

difference, finite volume and finite element. Finite difference (FD) 

method is the oldest numerical method to solve differential equations. It 

approximates the derivatives of differential equations and deals with the 

points where the solution domain is treated as a grid system. Finite 

volume (FV) method deals with the integral form and approximates 

surface and volume integrals when the solution domain is subdivided 

into a limited number of neighboring volumes. The surface and volume 

integrals are approximated by appropriate quadrature formulae. Finite 

element (FE) method has the most properties of the FV method. The 

domain is divided into a collection of discrete volumes of finite 
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elements. The solution is an approximation by linear function [27]. A 

system of finite difference equations is stable when the cumulative 

effect of all the rounding error is negligible. In some cases, it is quite 

possible to develop this system [47]. 

 

The general form of FD for an ordinary differential equation (ODE) can 

be written as follows: 

 

                                                                                          (1.10) 

 

with initial value  

         

 

FD discrete the time   in       into m sub intervals which is equal to 

endpoints,     +      for     2 …     where   is the maximum 

number of iterations and   
   

 
 is step size. 

 

     The step size    , (per day, week or year) is chosen in our study 

since FD is solving the real social epidemic model estimated on a time 

basis. Therefore, Eq. (1.10) becomes: 

 

                                  (        ).                                              (1.11) 

By using the central difference formula of FD, the equation [27]  

 

                                  
       ,                                                        (1.12) 

becomes: 

 

             
  

  
 

         

  
                  2 …  .                                     (1.13) 
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     Suppose that a step size   is a fixed positive number. Some of higher 

powers for approximations of a function using Taylor series, approach 

to zero. The term of  error for the central FD is [31]. 

                          
 

 
                                                           (1.14) 

 

     We can explain the deriving of the central finite difference formula 

by using a Taylor theorem as follows: 

 

The expression of the Taylor series of order   at   is 

   +        +       +
 

 
       +

 

 
       + ⋯ +

 

  
         .                                                               (1.15) 

The approximate function at   +    and       lead to  

   +        +       +
 

 
       +

 

 
       + ⋯,             (1.16) 

                  +
 

 
        

 

 
       + ⋯,             (1.17) 

 

we obtain by subtraction 

   +           2      +
2

  
       +

2

  
        + ⋯ 

                                                                                                          (1.18) 

The central finite difference formula with its truncation error can be 

written as 

      
 

  
[   +          ]  

 

 
     𝛿 .                              (1.19) 

 

where 𝛿 is a  value in the interval of a function   and  
 

 
     𝛿  is the 

error term [19]. 



11 

 

     

     To construct a formula of finite difference method to solve 

differential equations, let first mention that our study considers the 

function   in Eq. (1.20) is a nonlinear of  ,   is the step size,   is an 

integer and     2   …   . Suppose that  

 

                                      and         .            (1.20) 

The first derivative form in calculus is given for the forward, backward 

and central differential schemes is given as 

 

        
  

  
       

{
 
 

 
 

           

 
 

           

 
 

             

  
 

 

{
 

 
       

 
 

       

 
 

         

  
 

                          (1.21) 

Substitute the corresponding Eqs. (1.16) and (1.17) in Eq. (1.10) to 

obtain the finite difference schemes of Eq. (1.10); 

 

                          
       

 
                                                             (1.22) 

                          
       

 
   ,                                                        (1.23) 

                         
         

  
   .                                                      (1.24) 

 

The Equations expressions (1.22), (1.23) and (1.24) are called the 

respectively forward Euler, backward Euler, and central finite difference 

schemes [53]. 

     A finite difference approximation satisfies the consistency condition 

and stability that is the necessary and sufficient condition for the 

convergence solutions [14]. 
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1.4.2 Runge-Kutta (RK) Method:  
 

     Runge-Kutta  (RK) method is provided an approximate solution for a 

system of ordinary differential equations with known initial conditions 

[47]. It is a numerical technique that used to solve the ordinary 

differential equation only of the first order. This  method is used for high 

accuracy and at the same time decrease the errors [77]. RK has 

constructed a four-stage with respect fourth-order (RK4) method [43]. 

 

     The study shows that the solution of the system of nonlinear ODE is 

feasible by the Runge-Kutta method; it yields more accurate results than 

that obtained by finite difference methods. The use of Runge-Kutta 

methods to solve problems of this type is  a novel approach. It is 

anticipated that this technique can be utilized to solve other complex 

problems of similar nature [47]. 

 

     The general form of the first order ODE given in Eq. (1.10), the 

initial value         , with the interval        , where   is the 

independent variable,   is the dependent variable,   is the number of 

points;  

   is given,      +  ,      + 2 ,      +   , 

where   is a fixed step size, the unknown function   ,   ,   , …,  can 

be solved by using the RK4 method [79] as the following: 

 

                                
 

 
   + 2  + 2  +                               (1.25) 

where 

                                                                                              (1.26) 

                                  +
 

 
   +

  

 
                                         (1.27) 
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                                 +
 

 
   +

  

 
                                          (1.28) 

                                 +     +                                             (1.29) 

       The classical fourth order Runge-Kutta method is solves the IVP 

and gives a more accurate result. This method convergent when the 

difference between the exact solution and the solution of differential 

equation at     step satisfies the condition. 

                                  |        |  0,                          (1.30) 

where   is the number of iterations of RK. 

     The stability of a numerical method ensures that small changes in the 

initial conditions should not lead to large changes in the solutions [14]. 

RK numerical iteration method with different orders such as RK2, RK4, 

RK45 and RK78 [58]. In this subsection, the Runge-Kutta of order four 

method is used for solving some nonlinear system of ODEs.  

1.5  Simulation Methods: 
  

     The use of random numbers in the statistics after taking the random 

samples of experimental units without exact characteristics. Now uses in 

the simulation studies of the stochastic processes, this area is called 

simulation, Monte Carlo and resampling [30]. Monte Carlo (MC) 

method indicates a sampling by traditional technical by generating 

random numbers to sample from a probability distribution [69]. After 

the development of computer system, MC method is an international 

method. Monte Carlo is a derived  name of a city in Principality of 

Monaco [76]. The Monte Carlo algorithm using computer programs 

creates random numbers with a probability density function that equal to 
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one if the numbers between 0 and 1, and in another place equal to zero. 

These numbers are considered as random variables a distributed 

uniformly on (0,1) [68]. 

 

    The  MC simulation process generates uniform random numbers. The 

following MC procedure is used in our study [17]: firstly, we generate 

random numbers in the interval (0,1) such that each of these random 

numbers is considered as a random variable that has a uniform 

distribution on the interval (0,1) (standard uniform distribution). Then 

the inverse transform method is used to transform the random variables 

which have the standard uniform distribution,  into random variables 

that have specific distribution [19]. The inverse transform method 

(inversion method) has the following formula: 

 

     Let   be a random variable and      a cumulative distribution 

function. Suppose that     is the inverse of function   and let 𝜀 be a 

continuous random variable that distributes uniformly on interval (0,1), 

such as  [19].  

 

                                𝜀      (𝜀      )      .              (1.31) 

𝜀 is a continuous random variable then   𝜀        0 and by taking  

    for 𝜀      , the random variable   is equal to     𝜀  and it has 

been written as:  

 

                                              𝜀 .                                              (1.32) 
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     Box-Muller transformation is an example of a method that uses the 

inverse transform to convert two uniform random variables into 

normally distributed random variables.  

 

     The probability density function of uniform distribution on      , 

where   and   are lower and upper bounds is 

 

                     {
 

   
           

0                    .  
                                         (1.33) 

 

and the cumulative distribution function   of the uniform distribution on 

      is 

  

                    {   

0                       
   

   
                 

                 .        

                                   (1.34) 

 

Then the inverse of the uniform cumulative function     has the 

following formula: 

                                   𝜀   +      𝜀                               (1.35) 

 

where 𝜀 has the standard uniform distribution [68].  

 

     The importance of the Monte Carlo and simulation methods in the past 

years have increased in various sciences. The simulation methods have 

a central role in the scientific developments as the physical sciences, the 

computational life sciences, and the other computational sciences. The 

developed approach to the simulation system as well as the 

development of computers is making it a tool for a substance for the 
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processing of the various natural sciences, together with theory and 

traditional experimentally. At the kernel of Monte Carlo simulation is 

random number generation. The parameter values can be used for any 

value required in simulation applications. This is one of the features that 

make the Monte Carlo simulation method is very useful [76]. The types 

of random sampling are Monte Carlo and Latin hypercube sampling.  

 

     The reason of using a simulation technique in our study belong to the 

nature of parameters of the models under study, are random variables 

and not available, the simulation technique generates the data of these 

parameters. 

   

1.6 Numerical Simulation Method: 

 

      Numerical simulation methods can solve the system of differential 

equation using a numerical method and simulation processes. The 

numerical simulation method is considered more appropriated to solve 

such systems that have randomness in their coefficients, these 

coefficients depend on the variable time, and they are treated by the 

simulation process. The Monte Carlo finite difference (MMCFD) is a 

numerical simulation method that merges between Monte Carlo 

simulation process (MC) and finite difference numerical iteration 

method (FD). This method was suggested at the first time by 

Mohammed. M, et al, in 2019 [55]. This mixed method MMCFD  

simulates firstly the parameters of a model firstly when these parameters 

as random variables. Then the system is solved numerically   times 

using FD with the first simulated estimation parameters. The   

numerical simulated results have been gotten. The last numerical 
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iteration result has been selected which is FD of order   iteration result 

(FD_ ) that is called the final solution. This process is returned with 

the second simulated estimation parameters, and so on until the last 

number of simulations. Finally, the mean of the   time simulations for 

the final solutions is called Monte Carlo finite difference (MMCFD). 

MMCFD is one an established approximate method using to solve the 

system of differential equation numerically. This method was applied on 

obesity model [55]  and cocaine consumption [57]. To more understand, 

see Figure 1.1.  

 

 

 
 

Figure 1.1: The steps of MMCFD process 

 

 

 

 

Step 4 

Evaluated the mean of the final iteration values of from step 3 to be the 
solution of model 

Step 3 

Repeat steps 1 & 2 n- simulations times 

Step 2 

Solve the system  -times iterations numerically by FD. 

Then select the final iteration value.  

Step 1 

Simulate the model's parameters by MC at the first time 
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1.7 Prediction Interval and Percentile: 
 

     A prediction Interval is one of the statistical indicators to describe the 

data. It is also describes the solution for numerical simulation, in this 

study. The proposed modified method in Chapter four is useful to 

determine the prediction interval when the random distribution of the 

numerical solution is necessary for estimation of real epidemiological 

models. Prediction interval is an interval contains upper and lower 

bounds for predicted values of the distribution for each subpopulation of 

a model. It can be obtained by using the     percentiles (P%) to give 

upper and lower limits. A percentile is a value within a distribution that 

divided ordered predicted values into two or more parts by a straight-

line between these values. It belongs to the vector distribution of 

random variables. As a consequence, the      percentile of the predicted 

values is inside a population. The percentile value is equal to or less 

than the number that required to calculate it when 0     00. Since, 

the index becomes (        00 ) when   represent the total 

number of predicted values in the distribution and represents for the     

percentile value within the population distribution [64, 86].     

 

1.8 Errors: 
 

     Two types of errors can be used in this thesis which are difference 

measure error and mean square error. The uses of these errors, is to 

purpose the comparison of the methods used in our study.  
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1.8.1  Absolute and Relative Errors:  
 

     There are many types of numerical errors, where the following 

species are the most common, the absolute error, relative error, and 

truncation error. Let a and b are two values, one the exact value     and 

the other approximate value    . The general formula for absolute error 

is |   |, and the relative error is 
|   |

| |
 [19].  

1.8.2 Difference Measure Error (|  |): 

     

     The difference measure error |  | is the difference between the 

approximate (either analytic or numerical) solutions and the predicted 

values that propose in our study [55]. 

 

1.8.3 Mean Square Error (MSE):  

 
     The MSE is the quality of a predictor (random variable), or an 

estimator (an estimate of a parameter of the population from which data 

is sampled).  

 

     If a vector of   predictions generated from a sample of   data points 

on all variables, and   is the vector of observed values and  ̂ is the 

variable being predicted, then denoted by MSE is computed as: 

 

                                 
 

 
∑      ̂  

  
   .                                    (1.32) 

 

MSE is mean  
 

 
∑   

    of squares of the errors      ̂  
  [62].  
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1.9 Review of Literature:  
 

     In this section, we remember the researchers who use analytical 

methods such as adomian decomposition method (ADM) and variational 

iteration method (VIM), and who used numerical methods such as finite 

difference (FD) and Runge-Kutta (RK). Some researchers were talking 

about some epidemiological models. 

 

           The modified ADM with its applications on some equations have 

been given, see examples in [1, 2, 21, 60]. Some researchers used the 

ADM to solve a system of ordinary differential equations [13] and apply 

on the epidemic model [12, 49]. As well as, ADM solved a system of 

integral–differential equations [11]. Recently, the accuracy of nonlinear 

singular initial value problems was discussed using a semi-analytic [80]. 

ADM is applied to solve fuzzy fractional order differential algebraic 

equations [10], modified adomian decomposition method  was  applied 

on Integro-Differential Inequality [66]. 

 

     Many works to solve nonlinear problems using VIM [39], with 

autonomous ordinary differential systems [40] and to solve differential 

equations that have fractional order [61]. 

        The Runge-Kutta (RK) methods provide an approximate solution 

for a system of ordinary differential equations with known initial 

conditions. Runge-Kutta (RK) method is a powerful tool for the solution 

of ordinary differential equations (ODE). Most of the research has been 

oriented towards improving the accuracy or the flexibility (to 

accommodate problems of diverse nature) of the classical Runge-Kutta 

method [47]. The solution of the system of nonlinear ordinary 
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differential equations (ODE) is obtained by using this method. A similar 

approach has been taken by [57]. 

     Previously, an inverse problem for nonlinear parabolic was solved by 

finite difference scheme jointed with Monte Carlo algorithm and the 

unknown diffusion coefficient was estimated using polynomial format 

[26]. Finite difference method was integrated with Monte Carlo 

simulation process in order to predict the behavior of the dam [67], the 

random variables which were generated by Monte Carlo method in this 

problem have a Gaussian distribution. In recent year, the elliptical 

partial differential is analyzed  by stochastic finite element method [66]. 

Nonlinear random differential equations were solved by generalized 

polynomial chaos method [22]. 

     The social epidemic is known as the spread of bad habits through 

social pressure as the cocaine, obesity, smoking and alcohol 

consumption. Some epidemiological models have been studied to 

understand the dynamics of phenomena which become better. [73]  

predicted the future behavior of alcohol consumption in the Spanish 

population by estimating the parameters of the model and by fitting the 

model to real data. [33] studied the effect of the smoke-free law on the 

evolution of smoking habits in Spain, before and after applying this law 

from during 2006 to 2009. Predicted the effect of this law on the growth 

of the smoking habit in the Spanish population.  

     Recently, [20] estimated epidemic model parameters using least-

square fitting. [87] analyzed a mathematical model of epidemics of 

seasonal influenza in Australia using the likelihood-based method. [45] 

studied the optimal control strategies of influenza epidemic model in 
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Korea. There are other researchers who analyzed the behavior of some 

mathematical epidemic models recently. [18] discussed Ebola synthetic 

epidemics. Chowell in 2017 discussed dynamic of epidemic outbreaks 

and estimated the parameters using fitting approach [20].  

 

     In 1983, the inversion of nonlinear stochastic operators is studied by 

Adomian and Rach [5]. In 1976, the nonlinear stochastic differential 

equations are studied by Adomian [3]. 

 

     In 2004, the mathematical model in biology is studied by Allman [9]. 

In 2006, solution of the epidemic model by Adomian decomposition 

method are studied by Biazar [12]. In 2001, the mathematical models in 

population biology and epidemiology is studied by Brauer [15]. In 2010, 

the Monte Carlo simulation via a numerical algorithm for solving a 

nonlinear inverse problem are studied by Farnoosh and Ebrahimi [26]. 

In 2000, the variational iteration method for autonomous ordinary 

differential systems is studied by Ji-Huan [40]. In 1991, the numerical 

methods for ordinary differential systems of the initial value problem is 

studied by Lambert [48]. In 2012, the combining Monte Carlo and finite 

difference methods for effective simulation of dam behavior is studied 

by Rohaninejad and Zarghami [67]. 

1.10 Problem Statement: 
 
     A social epidemic is a bad habit that is moving community by social 

pressure. Works researchers represent the mathematical model in order 

to control the spread the epidemic. These epidemiological models can be 

represented in the form of a nonlinear systems of ODEs. These models  

have parameters and these parameters are random distribution in nature. 
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Because of the first one missing some real data in real model, the 

simulation technique help to generate random variables. 

     The simulation technique itself, may be appropriate to such  these 

models for some reasons: through it, we get to better understand through 

the detailed control of the system and  to analyze the phenomenal 

changes and the effects of the information under study. The simulation 

system sometimes design the experience of a new system. The 

simulation can also be used to analyze a dynamic sys tem with their real 

time [68].  

     The importance of this study comes , in fact from some real models of 

nonlinear systems of ODEs that are made up of random variables. To 

resolve these systems, use suitable numerical simulation methods such 

as MMCFD and the new proposed method MMCRK, where these 

methods support the expected  solutions. 

1.11 Research Objectives: 
 

This research is to achieve the following objectives: 

 To use some analytical methods  as ADM and VIM and some 

iterative numerical methods as FD and RK4 and to solve two epidemic  

models which are alcohol consumption model and smoking habit model.   

 Create a modified method which is  Mean Monte Carlo Runge-

Kutta (MMCRK) for solving models in the form of nonlinear systems of 

ordinary differential  equations and compare it with ano ther numerical 

simulation method which is MMCFD for the purpose of comparisons . 

 To apply the new method MMCRK under study on selected social 

epidemic models. 
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 To compare the simulation results obtained from the modefied  

numerical simulation method with the results of analytical and 

numerical  methods with predicted and stochastic-deterministic 

solutions. 

 To compare between methods under study by some indicators such 

as   the difference measure error of numerical and analytical solutions 

and Mean square error for numerical simulation solutions. 

 To analysis the analytical and numerical simulation results obtained 

graphically and tabularly  towards the solutions of the epidemic models.  

 

1.12 Scope of Research: 
 

     Social epidemic mod els with numerical simulation technique are 

considered in our study. These models are treated as deterministic 

problems with a probability process that can be programmed into 

computers to save time, effirte and cost [69]. Chose, two models of 

social epidemics which are alcohol consumption model and the of 

smoking habit model to prove modified numerical simulation method 

which is MMCRK method in the present study. 

1.13 Thesis Outline: 

 
     This research embarks on finding the alternative modified methods 

of simulation technique approaches in order to supply numerical 

simulation solutions for some real stochastic-deterministic nonlinear 

epidemic systems as well as to give prediction ranges of these solutions.  

     This thesis is divided into five chapters; Chapter 1, introduction and 

the preliminaries and concepts of this research are outlined briefly in the 
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subsections of introduction, research objectives,  literature review, 

problem statement and scop of the research, some concepts about our 

study. Chapter 2 provides a brief literature review ideas and concepts of 

ordinary differential equations, epidemic model of alcohol consumption 

specified with their applications, analytic methods as ADM and VIM, 

also numerical iteration methods as FD and RK4. In Chapter 3, 

epidemic model of smoking habit that has solved by analytic methods as 

ADM and VIM, also numerical iteration methods as FD and RK4. 

      Next in Chapter 4, a modified approach between Monte Carlo 

simulation and Runge-Kutta method, namely Mean Monte Carlo Runge-

Kutta (MMCRK) method, is applied to solve two epidemic models 

which are alcohol consumption and the smoking habit. MMCRK has 

been compared with a numerical simulation method which is MMCFD 

some indicators. Finally, Chapter 5 is the overall findings and 

conclusion of the research are provided. In addition, some future works 

are added to extend the present study. 
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CHAPTER 2: 

Applications of Some Analytic and Numerical 

Methods on Alcohol Consumption Mode 

2.1 Introduction:  
 

      Alcohol consumption habit is considered as a social disease that 

spread out rapidly by social pressure or social contact. Recently, the rate 

of alcohol consumption has increased more with the developing 

countries, so alcohol consumption represented a big problem that effirte 

not only on the human health, but also on the community economy. 

When the number of people who are suffering from such diseases 

increased, because it is very expensive, regard to the health effects of 

chloride that impact on the healthy body, the chloride can damage some 

parts of the body such as heart and liver, influence also on the other 

functions. An addition that, the cost of alcohol affects the economy [28, 

73]. Alcohol problem in Ireland and the United Kingdom, this problem 

was discussed and the data was reported for the first year of 2002 until 

the end of 2014 [24]. In Spain, the effects of the different usage of 

alcohol between the female and male in  Spanish university alumni was 

studied [32].  

 

     The type of epidemiological models had been used to of many social 

diseases. In the recent years, several researchers were interested to study 

and analyze the social epidemics about ecstasy or heroin addiction [70, 

85], smoking habit evaluation in Spain [33, 34, 37], a cocaine abuse in 

Spain [35, 57, 71], campaigns on reducing excess weight in Valencia 

[56, 57, 72]. 
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     In this chapter, we try to apply some classic analytic methods such as 

ADM and VIM and some numerical methods like FD and RK4, on 

social epidemic model which is Alcohol consumption in Spain. This 

application is used to compare between  the numerical and analytical 

solutions using the difference measure error, since ADM, VIM, FD, and 

RK4 are confident methods. 

 

2.2 Mathematical Model of Alcohol Consumption: 

  
     The mathematical model of alcohol consumption was explained and 

described in the current study by Santonja et al., (2010) [73]. This model 

consists of three subpopulations of Spanish population who have about 

15-64 years old from 1997 to 2007 years that represented as the 

nonlinear system of three ordinary differential equations of the first 

order. This system is referred to analyze the changing in social epidemic 

stages (non-drink alcohol people, non-risk-drink alcohol people and 

risk-drink alcohol people), see Table 2.1. The parameters of this model 

are described in Table 2.2.  

 

The model is described as 

      𝛼 + 𝛽     𝜇     𝜉         +            𝛼  𝜇     

𝜎     𝜎                                                                         (2.1)  

      𝜉         +       𝜂    + 𝜇         𝜎         

𝛼                                                                                        (2.2)   

      𝜂     𝛽    + 𝜇         𝜎         𝛼                  (2.3) 
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    These parameters are transitional links that connect the different 

groups of society to move people from one stage to another stage of the 

epidemic.  

     The initial conditions of equations (2.1), (2.2) and (2.3) in 1997 are 

    0  0.  2,     0  0.   ,     0  0.0  ,               

with the predicted parameters are given as: 𝛼  0.0 , 𝛽  0.00  , 

𝜇  0.00 , 𝜉  0.02     , 𝜎  0.00 , and 𝜂  0.000  02  , [73].   

 

Table 2.1: Variables of alcohol consumption model [73]  

     

Non-drink alcohol people are subpopulations who never drink 

alcohol in their life. 

     

Non-risk-drink alcohol people are subpopulations who drink a 

little liquid of alcohol that means the men who drink less than 

50 cc and women who drink less than 30 cc of alcohol every 

day. 

     

Risk-drink alcohol people are subpopulations who drink a lot 

of alcohol that means the men who drink more than 50 cc and 

the women who drink more than 30 cc of alcohol every day. 

 

Table 2.2: Parameters of alcohol consumption model [73]  

𝛼 Birth rate in Spain 

𝛽 The rate at which a risk-drink alcohol people becomes a 

non-drink alcohol people 

𝜇 Death rate in Spain 

𝜉 Transmission rate because social pressure that leads to 

increase the alcohol drinking 

𝜎 Growing death rate due to alcohol drinking 

𝜂 A rate that transmits a non-risk-drink alcohol people move 

to the risk-drink alcohol people 
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2.3 Problem Solution using Analytical Methods: 
 

     In this section, two analytic methods have been used which are ADM 

and VIM to solve the epidemic model of alcohol consumption.  

 

2.3.1  Adomian Decomposition Method (ADM):  

 

      The nonlinear system of equations  2.    2.2  and  2.   can be 

solved by using the Adomian decomposition method with the initial 

condition and the given parameters. Let   be an operator that is given by 

  
 

  
 and the inverse of this operation is      ∫  .    

 

 
, then by 

applying     for both sides of equations (2.1), (2.2) and (2.3) we obtain: 

 

 

        0     (𝛼 + 𝛽     𝜇     𝜉      +       

     𝛼  𝜇     𝜎     𝜎     ),    

where    0.  2. 

  

Similarity,                                                                           

       0     (𝜉    (    +     )  𝜂    + 𝜇         

                              𝜎         𝛼    ),  

where    0.   , and 

  

       0       𝜂     𝛽    + 𝜇         𝜎         𝛼       

where    0.0  .  
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The above equations equivalent the following Eqs. (2.4), (2.5) and (2.7): 

         𝛼 + 𝛽   𝜇   𝜉   𝜉   𝛼  + 𝜇  + 𝜎  + 𝜎   ,  

               0.                                                                                     (2.4) 

         𝜉   +     𝜂  + 𝜇   𝜎   𝛼   ,    0.     (2.5) 

         𝜂   𝛽  + 𝜇   𝜎   𝛼   ,    0.                      (2.6)         

                                                                                       

The general form of the nonlinear borders   ,    and    have to be: 

 

    ∑   
 
     ∑   

 
        0   2                                                 

      +   +       +   +    ,  

      +     +     +     +     +     +     +     

+      

    ∑   
 
     ∑   

 
         0   2    

      +   +       +   +    ,   0   2 

     +     +     +     +     +     +     +     +      

    ∑   
 
         0   2                    

      +   +     ,  

     
 +     +     +     +   

 +     +     +     +   
  

 

The nonlinear borders of   ,    and    as the following: 

       ,                       

Substituting for all                    by Eq.(2.4), to obtain: 

    0.0000       

Substituting for all               by Eq.(2.5), to find 

   0.000        

Substituting for all              by Eq.(2.6), to get 
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    0.000 0      

Now we find             .  

The nonlinear borders of   ,    and    are given in the following 

formula: 

       +       

       +       

   2      

Substituting for all                      by Eq.(2.4), to obtain: 

    .2        0     

Substituting also for all              by Eq.(2.5), to get 

    0.00000 0     

Substituting for all             by Eq.(2.6), to have 

   0.00000       

At the same previous steps, the nonlinear borders of   ,    and    are 

given as: 

       +     +       

       +     +       

   2    +      . 

Substituting for all       .              by Eq.(2.4), to be: 

   2.     0    0       

Substituting for all              by Eq.(2.5), to find 
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    .2     0   0      

Substituting for all                        by Eq.(2.6), to get 

     . 2   0    0    . 

     The Adomian decomposition method assumes that the unknown 

functions     ,      and      that can be written by series as follows: 

 

     ∑     
            ∑   

 
   ,             ∑     

             

                                                    

     ∑   

 

   

   +   +   +   … 

     0.  2  0.0000     +  .2         0    +

2.     0     0     + ⋯                                                (2.7)                 

     ∑   

 

   

   +   +   +   + ⋯ 

     0.    + 0.000       0.00000 0   +  .2     0  

 0    + ⋯                                                                            (2.8)                   

     ∑   

 

   

   +   +   +   + ⋯ 

     0.0    0.000 0    + 0.00000       . 2   0   

 0    + ⋯                                                                            (2.9)                     

  ⦙           

    ,      and      of ADM results are unsettled terms.   
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2.3.2 Variational Iteration Method (VIM): 
   

      The VIM gives a better approximate solution by constructing a 

correctional functional that uses an initial function. Where Lagrange 

multiplier considers the key of the correction functional which can be 

specified via variation theory [83]. 

  

     The nonlinear system  of alcohol model under study can be solved by 

using the VIM with given initial condition and parameters [73]. The 

correction functional of the system of equations (2.1), (2.2) and (2.3) 

becomes: 

 

       + ∫  (    (𝛼 + 𝛽   𝜇   𝜉     +     
 

 

   𝛼  𝜇     𝜎   𝜎   ))  , for all   0.            (2.10)                                                   

       + ∫  (     𝜉     +     𝜂  + 𝜇     
 

 

𝜎     𝛼   ) , for all   0.                                      (2.11)                                          

       + ∫  (     𝜂   𝛽  + 𝜇     𝜎     𝛼   )
 

 
  , 

  0.                                                                                    (2.12) 

The Lagrange multiplier is      in equations (2.10), (2.11) and 

(2.12). By substituting this value in Eqs. (2.10), (2.11) and (2.12). The 

zero borders become: 

    0.362,   = 0.581,   = 0.057 

In equations (2.10), (2.11) and (2.12) if we substitute ( =0), we obtain 

the following                      . 
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   0.  2 + 0.000   2  , 
 
   0.    + 0.000      , 
 

   0.0    0.000 0    , 
 
     By the same way, if we have ( =1), in equations (2.10), (2.11) and 

(2.12), we get the following                      . 

 

   0.  2 + 0.000   2   0.00000     +  . 0      

  0         

 

   0.    + 0.000       0.000002 2    .  2     

  0          

  

   0.0    0.000 0    + 0.00000     + 2.  0   2 

  0              

Continuing in the same manner when ( =2), we can a achieved the 

following                      . 

 

   0.  2 + 0.000   2   0.00000     +  .0      2  

 0     2.       0    0     +  .20     2   0      

 .      0   0     +  .           0        

                                                                                                          (2.13)  

    0.    + 0.000    0  0.000002 2  +  .   2     

 0    +   .  20      0       .          0     +

 . 2        0       . 0  22 0   0       

                                                                                                        (2.14)                                                                                           
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   0.0    0.000 0   + 0.00000       . 0  2 2  

 0      .0 2       0     +  .0 2       0      

 .          0       .          0       

                                                                                                          (2.15) 

And so on, continue in order to get better approximations:  

                                   and                 .  

       

2.4 Numerical Methods:   

     In this section, two numerical methods have been used which are FD 

and RK4 to solve the epidemic model of alcohol consumption.  

 

2.4.1 Finite Difference (FD) Method:  

 

     The nonlinear system of equations (2.1), (2.2) and (2.3) of the alcohol 

consumption model under study can be solved by using the finite 

difference with the given initial conditions: 

  ,    and    and the given parameters in Table 2.2 and the real step 

size  =1, 0.5, 0.25 where  =
                       

 
,  =10 refers to 

the number of years from 1997 to 2007. In the same time,   refers to 

the number of iterations for the FD numerical method  

The zero terms becomes:   =0.362,   =0.581, and   =0.057.  

     In order to find   ,    and   , Backward Finite Difference (BFD) 

method can use as follows: 
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     +  (𝛼 + 𝛽   𝜇   𝜉     +        𝛼  𝜇   𝜎   

𝜎   ) ,                                                                                     (2.16)                                                                                

  

     +  (𝜉     +    𝜂  + 𝜇     𝜎     𝛼   ),          

                                                                                                          (2.17)  

 

     +   𝜂   𝛽  + 𝜇     𝜎     𝛼   ,                          (2.18) 

  

The   ,    and    are calculated from Eqs. (2.16), (2.17) and (2.18) to 

obtain the following values    0.    0 0 ,     0.         and 

    0.0 2     , respectively. 

     Now, the Central Finite Difference (CFD) method can be used to 

find the next steps and so on for   time, follows: 

 

         + 2 (𝛼 + 𝛽   𝜇   𝜉     +        𝛼  𝜇   

𝜎   𝜎   ),                                                                         (2.19)  

 

         + 2 (𝜉        𝜂  + 𝜇    𝜎        𝛼   ),  

                                                                                                          (2.21)  

 

         + 2  𝜂   𝛽  + 𝜇     𝜎     𝛼   ,                     (2.21)  

 

for all      2 …   . To find   ,   , …,   ,   ,   , …,    and    , 

  , …,    that consider as numerical solutions for alcohol consumption 

model. 
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2.4.2  Runge-Kutta of 4
th

 Order (RK4) Method:    

 

    RK4 is one of the most accurate iteration numerical methods. The 

nonlinear system of equations (2.1), (2.2) and (2.3) of the alcohol 

consumption model can be solved by using Fourth order Runge-Kutta 

(RK4) method with the given initial condition   ,    and     with the 

given parameters in Table 2.2.  

 

For the general form of RK in Eq.(1.24) in Chapter 1, where 

       +
 

 
    + 2   + 2   +      ,                                 (2.22)                                

       +
 

 
    + 2   + 2   +      ,                          (2.23)    

       +
 

 
    + 2   + 2   +      ,                                   (2.24) 

 

Firstly, we must find         and     for the first term of RK4 as 

follows: 

  

                      

    𝛼 + 𝛽   𝜇   𝜉     +        𝛼  𝜇   𝜎   𝜎   ,   

                                                                                                          (2.25) 

                   , 

    𝜉     +     𝜂  + 𝜇     𝜎     𝛼  ,                  (2.26)  

 

                   , 

    𝜂   𝛽  + 𝜇     𝜎      𝛼  ,                                       (2.27) 

  

Secondly, to complete the second term of RK4         and      must 

be found as follows: 
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      (  +
 

2
    +

 

2
       +

 

2
       +

 

2
    )  

 

    𝛼 + 𝛽   + 0.      𝜇   + 0.      𝜉   + 0.        +

0.    +   + 0.         + 0.      𝛼  𝜇     +

0.      𝜎   + 0.      𝜎   + 0.      ,                 (2.28)    

 

      (  +
 

2
    +

 

2
       +

 

2
       +

 

2
    )   

 

    𝜉   + 0.         + 0.    +   + 0.      𝜂   +

0.     + 𝜇   + 0.        + 0.      𝜎   +

0.        + 0.      𝛼   + 0.      ,                  (2.29) 

 

 

      (  +
 

2
     +

 

2
       +

 

2
       +

 

2
    )  

 

    𝜂   + 0.      𝛽   + 0.     + 𝜇   + 0.        +

0.      𝜎   + 0.        + 0.      𝛼   + 0.     ,  (2.30)                                                              

 

Now,         and     are calculated: 

 

      (  +
 

2
    +

 

2
       +

 

2
       +

 

2
    )   

 

    𝛼 + 𝛽   + 0.      𝜇   + 0.      𝜉   + 0.        +

0.    +   + 0.         + 0.      𝛼  𝜇   + 0.      

𝜎   + 0.      𝜎   + 0.      ,                                   (2.31)                                                                              
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      (  +
 

2
    +

 

2
       +

 

2
       +

 

2
    )   

 

    𝜉   + 0.         + 0.    +   + 0.      𝜂   +

0.     + 𝜇   + 0.       + 0.      𝜎   +

0.        + 0.      𝛼   + 0.      ,                    (2.32)  

 

      (  +
 

2
    +

 

2
       +

 

2
       +

 

2
    )  

 

    𝜂   + 0.      𝛽   + 0.     + 𝜇   + 0.        +

0.      𝜎   + 0.        + 0.      𝛼   + 0.     ,  

                                                                                                          (2.33)                                                                 

Now, to find         and     as follows: 

         +     +        +        +      , 

 

    𝛼 + 𝛽   +      𝜇   +      𝜉   +        +    +

  +         +      𝛼  𝜇     +      𝜎   +      

𝜎   +      ,                                                                         (2.34)  

 

         +     +        +        +      ,              

 

    𝜉   +         +    +   +      𝜂   +     +

𝜇   +        +      𝜎   +        +      

𝛼   +      ,                                                                   (2.35)  

 

         +     +        +        +        
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    𝜂   +      𝛽   +     + 𝜇   +        +      𝜎   +

       +      𝛼   +     .                                               (2.36)                                                                                         

 

     For substituting Eqs. (2.25), (2.28), (2.31) and (2.34) in Eq. (2.22) to 

get the numerical solutions of   , substituting Eqs. (2.26), (2.29), (2.32) 

and (2.35) in Eq. (2.23) to compute the numerical solutions of   , in the 

same proses, substituting Eqs. (2.27), (2.30), (2.33) and (2.36) in 

equation (2.24) to obtain the numerical solutions of   , for all  -

iterations,   0   …   . 

 

2.5 Results and Discussion: 

 

     The approximate solutions for nonlinear alcohol consumption model 

in Spain are analyzed and discussed in this section then listed in Table 

2.3. The predicted values of variables     ,      and      for alcohol 

consumption model [73] had been given. Since the exact solution is not 

available for the current model, the predicted values are used to compare 

between the current approximate solutions of ADM and VIM with the 

predicted values [73] in the interval (0,10) from 1997 to 2007. For 

comparison purpose, the corresponding difference measure error of 

    ,      and      for ADM and VIM methods are shown numerically 

in Table 2.4, where the difference measure error in this study is the 

absolute value of the difference between the analytic solutions and the 

predicted values. In Table 2.4, the difference measure error of ADM for 

     have smaller values from 2003 to 2005 and 2007 than the VIM, 

while the difference measure error of ADM for      are smaller than 

VIM from 1999 untill 2001 and 2007. For     , the difference measure 
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error of ADM in the interval (0,10) from 1997 to 2007 is oscillatory 

with VIM error. 

 

     The Figures describe the behavior of alcohol drinking habit from 

1997 to 2007. Figure 2.1 (a) of      shows the ADM and VIM obtained 

results near to some predicted values in 2001 until 2005. While Figure 

2.1 (b) of      shows the predicted values around both ADM and VIM 

obtained results. Regarding Figure 2.1 (c) of     , both ADM and VIM 

curves obtained results converge to the predicted values in 2001 until 

2005.  

     For Figure 2.1 (a) that related to non-drink alcohol people     , the 

ADM curve, there is small deacresing from 1997 to 2007. More other, 

there exists a variation between them such that the VIM curve is higher 

level than ADM curve. On the other hand, both ADM and VIM curves 

of non-risk-drink alcohol people      have higher that appears during 

the ten years from 1997 till 2007 in Figure (b). Figure (c) illustrates the 

decrease in the risk-drink alcohol people      through the ten years 

under study for both ADM and VIM curves. The results are calculated 

by Mathematica software, the Figures are drawn by the Magic Plot 

program. Finally, the percentage of non-drink alcohol people      and 

the risk-drink alcohol people      are almost decreasing, but increase 

with the non-risk-drink alcohol people     . 
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Table 2.3:  Approximate solutions and predicted values [73] of the alcohol consumption    

model 

 

 

 

Table 2.4: Difference measure error for ADM and VIM solutions as relative the predicted  

                   values 

      

2007 2005 2003 2001 1999 1997 Method Sub.

pop 

0. 00 0.    0.    0.    0.    0.  2 
Predicted 

Values 

     0.   0     0.   2 0   0.    0    0.    0    0.    02   0.  2 
ADM 

 

0.   0     0.  2   2  0.  2      0.  2      0.  22 2   0.  2 
VIM 

 

0.    0.    0.    0.    0.    0.    
Predicted 

Values 

      0.     0   0.      2  0.     022 0.  2    2 0.         0.    
ADM 

 

0.      0  0.      2  0.      2  0.  2      0.         0.    
VIM 

 

0.0   0.0   0.0   0.0   0.0   0.0   
Predicted 

Values 

     0.0  2   2 0.0 2      0.0     0  0.0     0  0.0   0  0 0.0   
ADM 

 

0.0  2  0  0.0 2      0.0        0.0     0  0.0   0    0.0   
VIM 

 

2007 2005 2003 2001 1999 Difference

measure 

error 

Sub.

pop 

0.0        0.00 2 0   0.002 0    0.00    0  0.02       ADM 
     

0.0        0.00    2  0.00366487 0.000      0.020   2  VIM 

0.0    0   0.00       0.00 2     0.00     2 0.00       ADM 
     

0.0     0  0.00 2     0.00   2   0.00       0.00       VIM 

0.0  2      0.002 2 22 0.000   0  0.00       0.0   0  0 ADM 
     

0.0  2  0  0.002 2    0.000      0.00       0.0   0    VIM 
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Figure  2.1: Variation of analytic solutions for ADM and VIM around predicted values [73]  

of (a)     , (b)      and (c)      from 1997 to 2007 years  
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     The numerical solutions for nonlinear alcohol consumption model in 

Spain are analyzed and discussed in this section then listed in Table 2.5. 

The predicted values of variables     ,      and      for alcohol 

consumption model, [73] had been given. In the current study, the exact 

solution is not available, therefore the predicted values have been 

treated to compare between the current numerical solutions of FD or 

RK4 and the predicted values [73] in the interval (0,10) from 1997 to 

2007. 

 

      For comparison purpose, the corresponding difference measure error 

of     ,      and      for FD and RK4 methods are shown numerically 

in Table 2.6, where the difference measure error in this study is the 

absolute value of the difference between the numerical solutions and the 

predicted values. The difference measure error of FD for      have the 

smallest value (0.13147033) when ( =1) and it is smaller than the other 

method Moreover RK4, the difference measure error of FD for      are 

the smallest (0.12525489) when ( =1) and it is smaller than RK4. For 

    , the smallest difference error for      is (0.00437743) with RK4 

when ( =0.25) in the interval (0,10). 

 

     The Figuer 2.2 when  =1 (real step size) and  =10 (number 0f 

iteration) describe the behavior of alcohol drinking habit from 1997 to 

2007. Figure 2.2 (a) of      shows the FD and RK4 obtained results 

near to some predicted values in 2001 until 2005. While Figure 2.2 (b) 

of      shows the predicted values around both FD and RK4 obtained 

results from 1997 until 2005. Regarding to Figure 2.2 (c) of     , both 

FD and RK4 curves obtained results converge to the predicted values in 

2001 until 2005.  



45 

 

     For Figure 2.2 (a) that related to non-drink alcohol people     , the 

curves for both FD and RK4 are decreasing from 1997 to 2007. 

Moreover, there is not exists a variation between them and the two 

curves are keep the same level. Both FD and RK4 curves of non-risk-

drink alcohol people      have higher that appears during the ten years 

from 1997 until 2007 in Figure2.2 (b). On the other hand Figure2.2 (c) 

of the risk-drink alcohol people      through the ten years under study 

for both FD and RK4 curves have the same level. The results are 

calculated by the Matlab 2013 software for numerical method FD and 

RK4, the Figures are drawn by the Magic Plot program. Finally, the 

curves of non-drink alcohol people      are decreasing gradually, but 

increase with the non-risk-drink alcohol people      and the risk-drink 

alcohol people      have the same level. 
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Table 2.5:  Numerical solutions for the alcohol consumption model from 1997 to 2007 

                   (when   =10) 

Model 

Variables 

 

Predicted Values 

[73] 

Step 

Size, 

h (year) 

FD RK4 

     0.400 

1 0.23052967 0.23038835 

0.5 0.23040252 0.23038853 

0.25 0.23037078 0.23038863 

     0.566 

1 0.70625489 0.70634659 

0.5 0.70637209 0.70634614 

0.25 0.70640135 0.70634591 

     0.034 

1 0.06321544 0.06139526 

0.5 0.06322538 0.06138333 

0.25 0.06322787 0.06137743 

 

 

Table 2.6:  Difference measure error |  | for  FD and RK4 solutions with the predicted 

values [73] from 1997 to 2007 (when   =10) 

Model Variables 

 

Predicted 

Values [73] 

 

Step 

Size, 

h(year) 

 

FD 

(10 iter.) 

 

 

RK4 

(10 iter.) 

 

     0.400 

1 0.13147033 0.13161165 

0.5 0.13159747 0.13161147 

0.25 0.13162922 0.13161137 

     0.566 

1 0.12525489 0.12534659 

0.5 0.12537208 0.12534614 

0.25 0.12540135 0.12534591 

     0.034 

1 0.00621543 0.00439526 

0.5 0.00622538 0.00438333 

0.25 0.00622786 0.00437743 
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Figure  2.2: Variation of numerical solutions  by using FD and RK4 around predicted values 

[73] of (a)     , (b)      and (c)      from 1997 to 2007 years when  =1 

 



48 

 

2.6 Results Analysis: 

 

     In the current study, the purpose of using analytic and numerical 

methods is to solve such difficult nonlinear system that do not have 

available exact solution and to see the convergence of obtained results to 

the predicted values. 

     The convergence of the results for the analytic methods which are 

Adomian decomposition and variational iteration methods are examined 

in the nonlinear case. These methods have been known as a powerful 

device for solving a system of ordinary, partial differential equations or 

Integral equations and so on. In our work, they are used for solving a 

system of nonlinear ordinary differential equations. The behavior of 

unhealthy social habit is (alcohol consumption in Spain) is analyzed, 

based on the epidemiological model through ten years under study. The 

ADM and VIM methods help to analyze the effects of the unhealthy 

social habit of alcohol consumption. The obtained results are shown 

there is increasing in alcohol consumption with non-risk-drink 

consumers and declining the risk-drink consumers during the ten years 

under study. For the number of the non-drink consumers has a small 

increase with the VIM and maintains its level with respect to the ADM. 

The most predicted values [73] around the ADM and VIM curves. Other 

analytical methods can solve such system under study like homotopy 

perturbation method, and Semi Analytical Iterative method Temimi and 

Ansari. 

 

     There is a convergence of the results for the numerical methods which 

are FD and RK4 has been noted in the nonlinear case. The FD and RK4 

methods help to analyze the effects of bad social habit. The obtained 

results have been shown that there is increasing in alcohol consumption 
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with non- risk-drink consumers, there is increasing gradually on the of 

risk-drink consumers and decreasing gradually with the non-drink 

consumers during the ten years from 1997 until 2007 under study. The 

most predicted value [73] around the FD and RK4 curves. The most 

closer numerical results to the predicted values for the non-drink and 

non-risk-drink consumer are with FD while the most closer numerical 

results for the risk consumer are with RK4. 
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CHAPTER 3: 

Application of Some Analytical and Numerical 

Methods on Smoking Habit Model 

3.1 Introduction: 
 

 

     Epidemiological models are used to study the epidemiological 

processes as infectious diseases. When a bad habit is spreading rapidly, 

the model that is being established from spread this bad habit is called a 

social epidemic model. Some researchers studied such these models like 

smoking habit [33], cocaine consumption [71], alcohol consumption 

[73] or obesity epidemics [74]. Lung cancer affects smoking by 10 times 

more than smokers as one of the ten-day smoke dying with lung Cancer. 

In Spain,  the smoking habit is estimated that around 55,000 deaths each 

year are attributable to smoking [63].  

   

     Epidemiological models are studied to analyze epidemic stages and 

infectious diseases. Many researchers analyzed the social habits models, 

such as Guerrero, Santonja and. Villanueva in 2006, studied to analyze 

the Spanish smoke-free legislation of 2006 [33]. In 2011, Sánchez, et al.  

predicted the cocaine consumption in Spain [71]. In 2018, Mohammed, 

et al. A non-conventional hybrid numerical approach to solve the multi-

dimensional random sampling for cocaine abuse in Spain [57]. In 2010, 

the economic cost of alcohol consumption was studied in Spain by 

Santonja, et al. [73]. The mathematical modeling of the social obesity 

epidemic in the region of Valencia in Spain was being modeled in 2010 

by Santonja, et al. [74]. In 2015, Mohammed, et al. Solved the weight 

reduction model due to health campaigns in Spain numerically using 

several types of Runge-Kutta method [57]. In the purely hyperbolic 
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case, an adequate definition of the  numerical viscosity required by the 

WENO scheme was provided in 2013 when capillary effects are exist 

[34]. 

  

     Some classic analytic methods such as ADM and VIM and some 

numerical methods like FD and RK4 have been applied to a social 

epidemic model which is a smoking habit, in this chapter. Since ADM, 

VIM, FD and RK4 are the most suitable analytic and numerical methods 

to get accurate results for nonlinear autonomous system that has multi-

variable and multi-parameters. Therefore, they are used in this study to 

solve such system that is difficult to find its exact solution. Moreover, 

ADM, VIM, FD and RK4 are easy and efficient methods that can give 

the most reliable for the solutions.  

3.2 Mathematical Model of Smoking Habit: 
 

     The current model has been used successfully to predict the 

evolution of the smoking habit in Spain after the Spanish smoke-free 

law in 2006 was applied [33]. The population consists of four types of 

individuals, whose proportions are denoted by a (non-smokers), b 

(normal smokers), c (excessive smokers) and d (ex-smokers). All of 

them are functions of time. Four ordinary differential equations of the 

first order can describe the nonlinear smoking habit model in Eqs. (3.1), 

(3.2), (3.3) and (3.4) as follows: 

        (        )        (    +      )                                    (3.1)                                                          

            (    +      ) +       +            +    +            

                                                                                                            (3.2)             

                  +    +                                                          (3.3)              

            +            +                                                     (3.4)              
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The initial conditions of Eqs. (3.1), (3.2), (3.3) and (3.4) are:     

0 =0.5045,     0 =0.2059,     0 =0.1559,     0 =0.1337, with 

the predicted parameters that are given as: 𝜇   0.01, 𝛽   0.0381,    

0.0425, 𝛼   0.1244, 𝛾  0.11750,   0.0498 and 𝛿  0.0498 [33]. 

 

Table 3.1: Variables of smoking habit model, [33] 

     Social class who never smokes from the total population. 

     
Social class of people who smoke less than 20 cigarettes per 

day. 

     Social class who smoke more than 20 cigarettes per day. 

     The social class of ex-smokers. 

 

 

Table 3.2: Parameters of smoking habit model, [33] 

𝜇 Rate of births Spain. 

𝛽 
The transmission of smoke infection because of social 

pressure to adopt smoking habit. 

  The rate of returns to smoking. 

𝛼 

The rate of smokers who are excessively and who are 

becoming a normally smoker by reducing  the number of 

cigarettes per day.  

𝛾 

The rate of smokers who are normally and who are becoming 

an excessive smoker by reducing the number of cigarettes per 

day. 

  The rate of normal smokers who stop smoking. 

𝛿 The rate of excessive smokers who stop smoking. 
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3.3 Problem Solution using Analytical Methods:  
 

     In this section has been used two Analytical methods which are 

ADM and VIM to solve the epidemic model of smoking habit.  

 

3.3.1 Adomian Decomposition Method (ADM): 
 

     The nonlinear system of Eqs. (3.1), (3.2), (3,3) and (3.4) of the 

smoking habit model can solve by the Adomian decomposition method 

with the given initial condition. Let   be an operator that is given by 

  
 

  
 and the inverse of this operation is      ∫  .    

 

 
, then by 

applying     for both sides of Eqs. (3.1), (3.2), (3.3) and (3.4), to obtain: 

       0       ( (        )        (    +      )), 

where    0. 0  . Similarity, 

       0     (      (    +      ) +       +        

    +    +        ), where    0.20  .  

Also, 

       0     (          +    +        ),  

where    0.      and 

       0           +            +          ,  

where    0.    . 

 
The above equations can generate as follows with   iterations,    0.  

                        𝛽   , for all   0  

                                                                                                            (3.5)                                                                                                                          

         𝛽  +    +     +         +    +      , for all 

  0                                                                                                  (3.6)                                                                                      

                  +    +       , for all   0                         (3.7)                              

            +          +       ,for all   0.                       (3.8) 
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The general form of the nonlinear terms       and       have to be: 

 

    ∑   
 
     ∑   

 
    ,  for all   0   2                 

 

      +   +       +   +    ,  

      +     +     +     +     +     +     +     

+      

 

    ∑   
 
     ∑   

 
    , for all   0   2      

 

      +   +       +   +     

           +     +     +     +     +     +     +     +     . 

The nonlinear terms of    and    explain as the following: 

       ,        . 

Substituting for all   ,    and    by Eq.(3.5), to get 

    0.00     2 , 

by substituting for all   ,   ,   ,    and    by Eq.(3.6), to obtain 

    0.00       , 

As well as, substituting for all    and    by Eq.(3.7), to find 

    0.00  2    ,   

In the same ways, substitute all   ,    and     by Eq.(3.8), to get 

   0.0 0      , 

 

Now   ,   ,    and    can be found. First, the nonlinear terms of    and 

   are given in the following formula: 

       +       

       +     . 
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Then by substituting all   ,    and    by Eq. (3.5), to obtain  

   0.0  + 0.000  02   , 

and for substituting all   ,   ,   ,    and    by Eq.(3.6), to find 

   0.0002  2   , 

by the same method substituting for all    and    by Eq.(3.7), we get 

   0.000       , 

similarity substituting for all   ,    and    by Eq.(3.8), we get 

    0.000  2     , 

 

To obtain   ,   ,    and   , at the same previous steps, the nonlinear 

terms of    and    are given as: 

       +     +      

       +     +      

Substituting all              by Eq.(3.5), we obtain 

   0.0   0.000    2   0.00000     . 

When substituting all   ,   ,   ,    and    by Eq.(3.6), to find 

   0.0000   2   0.0000      . 

similarity substituting    and    by Eq.(3.7), we get 

   0.000002    . 

Substituting also all   ,    and    by Eq.(3.8), to find 

   0.0    + 0.000  02   . 

 

     The Adomian decomposition method assumes that the unknown 

functions                and      can be expressed by an infinite 

series as a polynomial of the form: 

 

     ∑     
         ∑   

 
   ,      ∑     

         ∑     
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     ∑   
 
      +   +   +   …  

     0. 0   + 0.0  000    0.00000      0.00000     +

⋯                                                                                             (3.9)                                                                                          

      ∑   
 
      +   +   +   + ⋯ 

     0.20   0.00       + 0.000   2    0.0000      +

    …                                                                                            (3.10) 

       ∑   
 
      +   +   +   + ⋯ 

     0.     0.00  2    + 0.000       + 0.000002    +

⋯                                                                                             (3.11)                                                                                                           

     ∑   
 
      +   +   +   + ⋯  

     0.    + 0.0 0       0.000  2     + 0.000  02   +

⋯                                                                                           (3.12) 

 

3.3.2 Variational Iteration Method (VIM): 
  

 

     The nonlinear system of the smoking habit model can be solved by 

the VIM with given initial condition. The correction functional for the 

system of Eqs. (3.1), (3.2), (3.3) and (3.4) become: 

 

       + ∫  (    (                 +    )) 
 

 
    0                

                                                                                                          (3.13)             

       + ∫  (           +    +     +          +    +
 

 

      )        0                                                                  (3.14)                                                        

       + ∫  (             +    +       ) 
 

 
     0          

                                                                                                          (3.15) 

       + ∫  (        +          +       )
 

 
,     0.    (3.16)                                      
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The Lagrange multiplier is     . By substituting this value in 

equations (3.13), (3.14), (3.15) and (3.16), the zero terms become:  

   0.5045,    =0.2059,     =0.1559,     =0.1337. 

 

Now, to find   ,   ,    and   , in Eqs. (3.13), (3.14), (3.15) and (3.16), 

when substituting (  =0), the following has been obtained: 

 

    0. 0    0.00     2 , 

   0.20    0.00       , 

    0.      0.00  2    , 

   0.     + 0.0 0      , 

 

By the same way, if we have (  =1), in Eqs. (3.13), (3.14), (3.15) and 

(3.16) the following has been gotten: 

 

    0. 0    0.00     2 + 0.000  02    2.2        

 0    , 

   0.20    0.00       + 0.0002      + 2.2        

 0    , 

   0.      0.00  2    + 0.000       , 

   0.     + 0.0 0       0.000  2    , 

 

Continuing in the same way, when ( =2), the following can be 

achieved: 

   0. 0    0.00     2 + 0.000  02    0.00000 2   +

 .  202  2   0      . 2 0  0   0     +

 .          0     +  . 2        0                (3.17)                                                            
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   0.20    0.00       + 0.0002       0.0000 22    

2.          0    +  . 0  0     0      

 .2 0      0      2.    0 2   0                    (3.18)                                                               

     0.      0.00  2    + 0.000       +  . 0       

 0    +  .  2       0                                            (3.19)                                                                            

   0.     + 0.0 0       0.000  2    + 0.0000      +

                2.    0 0   0                                                            (3.20)                                                          

And so on, continue in order to get better approximations: 

                                                     and 

                . 

3.4 Numerical Methods:  
 

     In this section has been used two numerical methods which are FD 

and RK4 to solve the epidemic model of smoking habit.  

 

3.4.1 Finite Difference (FD) Method: 
 

     The nonlinear system of Eqs. (3.1), (3.2), (3.3) and (3.4) of the 

smoking habit model can solve using the finite difference method with 

the initial conditions:    0.5045,   =0.2059,   =0.1559 and  

  =0.1337  and the predicted parameters that are given in Table 3.2, and 

the real step size     0.  0.2  where   
                       

 
, 

in this study,  =16 refers to numbers of years from 2006 to 2022. In the 

same time,   refers to the number of iterations. 

 

In order to find            and   , backward finite difference (BFD) can 

be used as follows: 
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     +  (                 +    ),                                   (3.21)    

    +  (      +    +     +          +    +    ),         (3.22) 

     +           +    +       ,                                             (3.23) 

     +      +          +       ,                                         (3.24) 

 

The   ,   ,    and    are calculated from Eqs. (3.21), (3.22), (3.23) and 

(3.24) to obtain the following values:    0.50250068, 

   0.20142446,    0.15137647 and    0.14469839, respectively.   

 

Now, the central finite difference (CFD) method can be used to find the 

next steps and so on for   times follows: 

 

         + 2 (                 +    ),                            (3.25)                                                                                                                      

         + 2 (      +    +     +          +    +    ),  (3.26)                                                              

         + 2          +    +       ,                                     (3.27)          

         + 2     +          +                                          (3.28)  

  

for     2 …   , to find   ,   , …,   ,   ,   , …,    and    ,   , 

…,    that consider as numerical solutions for smoking habit model. 

 

3.4.2 Runge-Kutta of 4
th

  Order (RK4) Method: 
   

     RK4 is one of the most accurate iteration numerical methods. The 

nonlinear system of Eqs. (3.1), (3.2), (3.3) and (3.4) of the smoking 

habit model can be solved by RK4 with initial conditions:   ,   ,    and 

  , with the predicted parameters in Table 3.2.  

 

For the general form of RK in Eq.( 1.24) in Chapter 1, where 
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       +
 

 
    + 2   + 2   +                                       (3.29)                       

        +
 

 
    + 2   + 2   +                                        (3.30)                                

       +
 

 
    + 2   + 2   +                                          (3.31)                                  

       +
 

 
    + 2   + 2   +                                       (3.32)                               

 

Now, we must find    ,    ,     and    as follows: 

  

                                                                   

    𝜇       𝛽     +    ,                                                     (3.33) 

                                                                   

    𝛽     +    +    + 𝛼    𝛾 +  + 𝜇   ,                         (3.34)                                                                                         

                                                                    

    𝛾    𝛼 + 𝛿 + 𝜇   ,                                                             (3.35) 

                                                                   

       + 𝛿     + 𝜇   ,                                                         (3.36) 

 

Also, to find    ,    ,     and     as follows: 

 

      (  +
 

 
    +

 

 
       +

 

 
       +

 

 
       +

 

 
    ),     

    𝜇(     + 0.      )  𝛽   + 0.          + 0.      +

   + 0.      ,                                                                       (3.37)  

      (  +
 

 
    +

 

 
       +

 

 
       +

 

 
       +

 

 
    ),       

    𝛽   + 0.      (   + 0.      +    + 0.      ) +     +

0.      + 𝛼   + 0.        𝛾 +  + 𝜇    + 0.      ,  

                                                                                                        (3.38)  

      (  +
 

 
    +

 

 
       +

 

 
       +

 

 
       +

 

 
    ),       
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    𝛾   + 0.        𝛼 + 𝛿 + 𝜇    + 0.      ,                  (3.39)  

      (  +
 

 
    +

 

 
       +

 

 
       +

 

 
       +

 

 
    )        

        + 0.      + 𝛿   + 0.         + 𝜇    + 0.      ,     

                                                                                                          (3.40)  

To get    ,    ,     and     as follows: 

 

      (  +
 

 
    +

 

 
       +

 

 
       +

 

 
       +

 

 
    ),        

    𝜇(     + 0.      ) 𝛽   + 0.          + 0.      +

   + 0.      ,                                                                       (3.41)  

      (  +
 

 
    +

 

 
       +

 

 
       +

 

 
       +

 

 
    ),       

    𝛽   + 0.      (   + 0.      +    + 0.      ) +     +

0.      + 𝛼   + 0.        𝛾 +  + 𝜇    + 0.      , 

                                                                                                                             (3.42)  

      (  +
 

 
    +

 

 
       +

 

 
       +

 

 
       +

 

 
    ),        

    𝛾   + 0.        𝛼 + 𝛿 + 𝜇    + 0.      ,                  (3.43)  

      (  +
 

 
    +

 

 
       +

 

 
       +

 

 
       +

 

 
    ),  

        + 0.      + 𝛿   + 0.         + 𝜇    + 0.      ,     

                                                                                                          (3.44) 

 

To obtain    ,    ,     and     as follows: 

         +     +        +        +        +      ,                

    𝜇(     +      )  𝛽   +          +      +    +

     ,                                                                                     (3.45)  

         +     +        +        +        +      ,                 

    𝛽   +      (   +      +    +      )+     +      +

𝛼   +        𝛾 +  + 𝜇    +      ,                             (3.46)      
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         +     +        +        +        +      ,                 

    𝛾   +        𝛼 + 𝛿 + 𝜇    +      ,                            (3.47) 

 

         +     +        +        +        +      ,                 

        +      + 𝛿   +         + 𝜇    +      .       (3.48)  

 

     For substituting Eqs. (3.33), (3.37), (3.41) and (3.45) in Eq. (3.29) to 

get the numerical solutions of   , By the same way, substituting Eqs 

(3.34), (3.38), (3.42) and (3.46) in Eq. (3.30) we get the numerical 

solutions of    , As well as, substituting Eqs. (3.35), (3.39), (3.43) and 

(3.47) in Eq. (3.31) we obtain the numerical solutions of   . And 

substituting Eqs. (3.36), (3.40), (3.44) and (3.48) in Eq. (3.32) to get the 

numerical solutions of   ,   0   …   . 

3.5 Results and Discussion:  
    

     Approximate and numerical solutions for nonlinear smoking habit 

model in Spain are discussed and analyzed in this section. Table 3.3 is to 

validate the real and predicted values (2006-2009) [33] with 

approximate solutions. Where  =1, 0.5 and 0.25 are the step size and 

 =3 is the number of iterations. 

 

     The predicted values of variables     ,     ,      and      for 

smoking habit model, had been given [33]. The exact solution is not 

available in the current model. Therefore, a comparison between the 

predicted values and the real data with the expected approximate 

solutions of the analytic solutions for ADM and VIM methods, 

moreover, the expected approximate solutions of the numerical solutions 

for FD and RK4 methods, in the interval of years (0,16) from 2006 to 
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2022, has been done in Table 3.4. Where  =1,0.5 and 0.25 are the step 

size and  =16, is the number of iterations. 

 

     For the purpose of comparison, the difference measure error for     , 

    ,      and      between the predicted value [33] and the ADM, 

VIM, FD and RK4 methods from 2006 to 2009 which are shown 

numerically in Table 3.5, where the difference measure error |  | in 

Table 3.5, in this study, is the difference between the analytic solutions 

and the predicted values or the difference between the numerical 

solutions and the predicted values. Notes the difference measure error 

for      of FD method has the smallest value when ( =0.5) than with 

step size (  1 and 0.25) and compared with the other methods under 

study with the different step size (  1, 0.5 and 0.25). As well as, the 

difference measure errors of      ,      and      in VIM have the 

smallest errors that compared with ADM, FD and RK4 methods when 

(  1, 0.5 and 0.25). 

 

       Figure 3.1, when  =1 (real step size) describes the behavior of 

smoking habit from 2006 to 2022. In Figure 3.1 (a) that is related to 

non-smoke people     , the curve of ADM rises, this mean the people 

who do not smoke are increase through 16 years to 2022, while there is 

stable with the other methods VIM, FD and RK4, because these 

methods have the same nature which is iterative. These methods VIM, 

FD and RK4 agree with the previous study (Figure. 2, page 249) in [33].  

 

     Figure 3.1 (b) that related to normal smoke people     , show us the 

curves of the four methods ADM, FD, VIM and RK4 under study are 

near to the predicted values from 2006 until 2013. After that, the curves 
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ADM, FD, VIM and RK4 gradually decrease a yearly until 2022. Only 

the curve of VIM is more decrease from 2013 until 2022 than the other 

curves. 

 

     While Figure 3.1 (c) that related to excessive smokers     , the curve 

of all methods are decreasing. Observe that the numerical methods (FD 

and RK4) are more decreasing than the analytical methods (ADM and 

VIM). These results agree with previous study [33].  

 

     Figure 3.1 (d) that related to ex-smokers     , notes that, there is 

increasing from 2006 to 2022 for all curves. The curves of analytical 

methods (ADM and VIM) are increasing more than the curves of the 

numerical methods (FD and RK4) from 2013 until 2022. The nature of 

ex-smokers in the current study is to agree with the previous study [33].  

 

     In Figure 3.2, when  =0.5 (real step size) explain the behavior of 

smoking habit through sixteen years from 2006 to 2022. In Figure 3.2 

(a), the curve of ADM is increasing, this means, the people who do not 

smoke are increasing through 16 years, while there is stable with the 

other methods VIM, FD and RK4, these methods VIM, FD and RK4 are 

agree with the previous study (Figure. 2, page 249) in [33].  

 

     

      Figure 3.2 (b), the curves of the methods ADM, FD, VIM and RK4 

under study are near to the predicted values from 2006 until 2013. The 

curves of ADM, FD, VIM and RK4 are decreased step by step. But the 

curve of VIM is more decrease from 2013 until 2022 than the other 

curves. 
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 While Figure 3.2 (c), the curve of all methods are decreasing. We can 

be noted that the analytical methods (ADM and VIM) are more 

decreasing than the numerical methods (FD and RK4). These results 

agree with a previous study [33]. 

  

     Figure 3.2 (d), can be noted that, there is increasing from 2006 to 

2022 for all curves. The nature of ex-smokers in the current study agrees 

with the previous study [33]. 
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Table 3.3 a: Approximate solutions of the smoking habit model from 2006 to 2009 

                         (when   =3)  
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Table 3.3 b: Approximate solutions of the smoking habit model from 2006 to 2009  

                         (when   =3) 
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Table 3.4: Expected approximate solutions of the smoking habit model from 2006 to 2022  

                  (when   = 16) 

 

Model 

Variables 
ADM 

 

VIM 

(16 iter.) 

Step Size, 

h (year) 

FD 

(16 iter.) 

RK4 

(16 iter.) 

     0.77521396 0.48643685 

1 0.49049314 0.49025842 

0.5 0.49031746 0.49025841 

0.25 0.49027319 0.49025841 

     0.16532272 0.14627349 

1 0.17438741 0.17011593 

0.5 0.17128695 0.17011592 

0.25 0.17041579 0.17011591 

     0.12413672 0.12457661 

1 0.11159163 0.11499751 

0.5 0.11404419 0.11499750 

0.25 0.11475214 0.11499750 

     0.24252661 0.24427130 

1 0.22352783 0.22462814 

0.5 0.22435139 0.22462817 

0.25 0.22455887 0.22462817 

 

 

Table 3.5: Difference measure error |  | for ADM, VIM, FD and RK4 solutions as relative 

to the predicted values [33] from 2006 to 2009 (when   = 3)   

M
o

d
e
l 

V
a

r
ia

b
le

s 

 

ADM 

in 2009 

  

VIM 

(3 iter.) 

in 2009 

Step Size, 

h (year) 

FD 

(3 iter.) 

in 2009 

RK4 

(3 iter.) 

in 2009 

     0.0534247 0.00550367 

1 0.00560316 0.00549767 

0.5 0.00548782 0.00549768 

0.25 0.00549521 0.00549767 

     0.00440158 0.00377918 

1 0.30869684 0.30880233 

0.5 0.30881218 0.30880232 

0.25 0.30880479 0.30880232 

     0.0197209 0.01972145 

1 0.37529684 0.37540233 

0.5 0.37541217 0.37540232 

0.25 0.375404789 0.37540232 

     0.01799719 0.01799696 

1 0.31879684 0.31890233 

0.5 0.31891218 0.31890232 

0.25 0.31890479 0.31890232 
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Figure  3.1 (a, b): Variation of approximate and numerical solutions  by using ADM, VIM, 

FD and RK4 around predicted values [33] of (a)      and (b)    ) from 2006 to 2022 years 

when  =1 
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Figure  3.1 (c, d): Variation of approximate and numerical solutions  by using ADM, VIM, 

FD and RK4 around predicted values [33] of (c)      and (d)    ) from 2006 to 2022 years 

when  =1 
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Figure  3.2 (a, b): Variation of approximate and numerical solutions  by using ADM, VIM, 

FD and RK4 around predicted values [33] of (a)      and (b)    ) from 2006 to 2022 years 

when  =0.5 
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Figure  3.2 (c, d): Variation of approximate and numerical solutions  by using ADM, VIM, 

FD and RK4 around predicted values [33] of (c)      and          from 2006 to 2022 years 

when  =0.5 
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3.6 Results Analysis:  
 

          In the current study, the behavior of the bad social habit of the 

nonlinear epidemic model is analyzed through sixteen years under study 

from 2006 to 2022. In our work, some reliable approximate methods are 

used for solving a nonlinear system of epidemic models for ordinary 

differential equations of the first order. There is a convergence in the 

results of the analytic methods which are ADM and VIM and numerical 

methods which are FD and RK4 that examined in the nonlinear case. 

The analytic ADM and VIM with numerical FD and RK4 methods help 

to analyze the effects of the bad social habit of smoking habit model.   

The results obtained showed that subpopulation      of non-smokers 

stay stable along sixteen years except with ADM curve. While 

subpopulation      of normal-smoke and subpopulation      of 

excessive smokers are gradually declining until 2022. At least the 

subpopulation      of ex-smokers is a rising to 2022 that refer to 

increase the smoking habit in this region. The most predicted values [33] 

around the ADM, VIM, FD and RK4 curves that mean to the reliability 

of the obtained results. 

 

     Other analytical methods can solve such system under study like 

homotopy perturbation method, homotopy analysis method and semi 

analytical iterative method Temimi and Ansari. On the other hands, 

there are other numerical methods such as the iteration methods can 

solve the system under study. 
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CHAPTER 4: 

Numerical Simulation Methods 

4.1 Introduction:  
      

     In this chapter, two numerical simulation methods are used which are  

Mean Monte Carlo finite difference (MMCFD) that is applied for 

compression and a modified Mean Monte Carlo Runge-Kutta 

(MMCRK) that is created at the first time in our study. These methods 

are used to solve nonlinear  IVP systems of ODEs representing the two 

social epidemic models about alcohol consumption and smoking habit. 

The results of these methods are called as numerical simulation 

solutions. Since the previous results for the real epidemic models under 

study are available. Therefore, the comparison between the numerical 

simulation results with the predicted values is discussed. 

     The importance of this work comes from it can expect the behavior 

of the population at some next years because the randomness in the 

numerical simulation methods of MMCFD and MMCRK that come 

from simulation technique  for the parameters of the model under study.  

4.2 Mean Monte Carlo Runge-Kutta (MMCRK) Method: 
 

     The numerical simulation method that merges between Monte Carlo 

simulation process (MC) and Runge-Kutta numerical iteration method 

(RK) is called the Mean Monte Carlo Runge-Kutta (MMCRK). 

MMCRK is a modified numerical simulation process that differs the 

MMCFD that the new one use RK numerical method instead of FD 

numerical method. The RK iteration numerical method is more accurate 

than FD since RK4 is of order 4 while FD is of order 2 for the central 

form. Therefore, MMCRK may be given numerical simulation results 
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more accurate than MMCFD mostly. In the present study, RK4 is used 

as a numerical iteration method. This mixed method MMCRK simulates 

the parameters of a model firstly by MC technique, when these 

parameters as random variables that distribute uniformly on (a, b) such 

that       and    +  , when   is predicted value from [73] and 

    . Then the system is solved numerically   times using RK4 with 

the first simulated estimation parameters. The   numerical simulated 

results have been gotten. The last numerical iteration result has been 

selected which is RK4 of order   iteration result (RK4_ ) that is called 

the final solution. This process is returned with the second simulated 

estimation parameters, and so on until the last number of simulations. 

Finally, the mean of the  -time simulations for the final solutions is 

considered the Mean Monte Carlo Runge-Kutta (MMCRK). Is 

approximate method used to solve the  nonlinear system of ordinary 

differential equations numerically, with more details, see Figure 4.1. 

 
 

Figure 4.1: The steps of MMCRK process 

Step 4 

Evaluated the mean of the final iteration values of from step 3 to be the 
solution of mode 

Step 3 

Respect steps 1 & 2 n- simulations times 

 

Step 2 

Solve the system  -times iterations numerically by RK4. Then select the 
final iteration value.  

Step 1 

Simulate the model's parameters by MC at the first time 
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4.3 The Mathematical Models: 
 

    Two social epidemic models which are alcohol consumption and 

smoking habit are solved in this chapter to verify the modified 

numerical simulation method MMCRK, then to compare with the 

numerical simulation method MMCFD. 

 

4.3.1 Alcohol Consumption Model: 

 

      The model of alcohol consumption  that is mentioned in Chapter 1 is 

considered. In this section, this model under study has been solved by 

numerical simulation methods MMCFD and MMCRK. For compression 

purpose, it is solved by analytic and numerical methods.  

4.3.1.1 Results and Discussion:  

 
     The numerical simulation solutions for the nonlinear alcohol 

consumption model are discussed and analyzed in this section where the 

results are listed in Table 4.1. The predicted values of variables     , 

     and      for alcohol consumption model, [73] had been given. 

Therefore, a comparison has been made between the numerical 

simulation solutions of MMCFD method and MMCRK method in the 

interval (0,10) from 1997 to 2007. For the purpose of comparison, the 

difference measure error of     ,      and      between predicted 

value from 1997 to 2007 and the results of ADM, VIM, FD, RK4, 

MMCFD and MMCRK methods are shown numerically in Table 4.2, 

where the difference measure error |  | in this study is the difference 

between the approximate solutions and the predicted value or the 

difference between the numerical simulation solutions and the predicted 

value.  
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     Let   be the number of iteration (number of years),   be the number 

of simulation of MC process and   is real step size, then for validity 

purpose from 1997 to 2007, let us not that: 

 

 The smallest error of      is (0.119825) when  =1,  =100 and  =10 of 

MMCRK. 

 For     , the smallest error is (0.106700) when  =1,  =100 and  =10 

of  MMCRK method. 

 The smallest error of      is (0.003081) when  =0.25,  =100 and  =10 

of MMCRK method. 

 

For the above results, we note that the MMCRK method has the 

smallest difference errors, therefore considered the best method. 
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Table 4.1: Solutions for the alcohol consumption model from 1997 to 2007 

M
o

d
e
l 

V
a

r
ia

b
le

s 

P
r
e
d

ic
te

d
 V

a
lu

e
s 

 

[7
3

] 

 

  
  
  

  
  
  

  
  
 A

D
M

 

V
IM

 

S
te

p
 S

iz
e
 h

 (
y

e
a

r
) 

F
D

 

R
K

4
 P

r
e
se

n
t 

M
M

C
F

D
 

R
e
su

lt
s 

P
r
e
se

n
t 

M
M

C
R

K
 
 

R
e
su

lt
s 

1
0

0
 

r
e
p

e
ti

ti
o

n
s 

1
0

0
0

 

r
e
p

e
ti

ti
o

n
s 

1
0

0
 

r
e
p

e
ti

ti
o

n
s 

1
0

0
0

 

r
e
p

e
ti

ti
o

n
s 

 
  

  

0
.3

6
2

 

0
.3

6
1
0
1
3

 

0
.3

6
3
0
5
6

 

1
 

0
.2

3
0

5
2

9
 

0
.2

3
0

3
8

8
 

0
.2

4
1

2
2

8
 

0
.2

4
0

7
1

2
 

0
.2

4
2

1
7

4
 

0
.2

4
1

5
2

6
 

0
.5

 

0
.2

3
0

4
0

2
 

0
.2

3
0

3
8

8
 

0
.2

3
6

3
8

1
 

0
.2

3
5

8
6

1
 

0
.2

3
8

7
9

1
 

0
.2

3
8

1
6

0
 

0
.2

5
 

0
.2

3
0

3
7

0
 

0
.2

3
0

3
8

9
 

0
.2

3
3

9
5

4
 

0
.2

3
3

4
3

2
 

0
.2

3
7

1
7

5
 

0
.2

3
6

5
5

3
 

 
  

  

0
.5

8
1

 

0
.5

8
5
4
8
1

 

0
.5

8
5
6
6
3

 

1
 

0
.7

0
6

2
5

4
 

0
.7

0
6

3
4

7
 

0
.6

9
6

0
7

9
 

0
.6

9
6

4
8

2
 

0
.6

8
7

7
0

0
 

0
.6

8
7

9
5

9
 

0
.5

 

0
.7

0
6

3
7

2
 

0
.7

0
6

3
4

6
 

0
.7

0
0

7
4

3
 

0
.7

0
1

1
4

6
 

0
.6

9
0

5
4

9
 

0
.6

9
0

8
0

4
 

0
.2

5
 

0
.7

0
6

4
0

1
 

0
.7

0
6

3
4

6
 

0
.7

0
3

0
7

8
 

0
.7

0
3

4
8

1
 

0
.6

9
1

9
9

7
 

0
.6

9
2

2
1

9
 

 
  

  

0
.0

5
7

 

0
.0

5
1
2
8
2

 

0
.0

5
1
2
8
1

 

1
 

0
.0

6
3

2
1

5
 

0
.0

6
1

3
9

5
 

0
.0

6
2

6
9

3
 

0
.0

6
2

8
0

6
 

0
.0

6
0

1
6

8
 

0
.0

6
0

2
4

7
 

0
.5

 

0
.0

6
3

2
2

5
 

0
.0

6
1

3
8

3
 

0
.0

6
2

8
7

6
 

0
.0

6
2

9
9

3
 

0
.0

6
0

1
1

2
 

0
.0

6
0

1
9

2
 

0
.2

5
 

0
.0

6
3

2
2

8
 

0
.0

6
1

3
7

7
 

0
.0

6
2

9
6

8
 

0
.0

6
3

0
8

7
 

0
.0

6
0

0
8

1
 

0
.0

6
0

1
6

0
 

 

 

 



79 

 

Table 4.2: Difference measure error, |  | is between ADM, VIM, FD, RK4, 

MMCFD and MMCRK results and the predicted values [73] from 1997 

to 2007 
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Table 4.3: Expectation solutions for the alcohol consumption model from 1997 to  

2027 
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     The Table 4.3 for future solutions for alcohol consumption model, 

shows us that the value of MMCRK method is near to the predicted 

value than MMCFD method, when  =0.25 (real step size) and   =100 

(number of simulations) for non-drink alcohol people     . While      

of non-risk-drink alcohol people the value of MMCRK is near to the 

predicted  =0.5 and  =1000. The value of MMCRK when  =1 and 

 =1000 of risk-drink alcohol people. By notice, Table 4.4, seeing that 

the values of the mean within the interval. 

 

 
Table 4.4: Prediction intervals (5th percentile, 95th percentile) for MMCFD and 

MMCRK solutions 

  MMCFD   from 1997 to 2027        

Subpopulation (100 repetitions) Mean (1000 repetitions) 

     (0.095907, 0.161453) 0.129303 (0.097544, 0.167752) 

     (0.776219, 0.835442) 0.805598 (0.770562, 0.834359) 

     (0.061126, 0.069548) 0.065098 (0.061161, 0.069172) 

MMCRK  from 1997 to 2027        

Subpopulation (100 repetitions) Mean (1000 repetitions) 

     (0.090362, 0.149554) 0.120417 (0.091593, 0.155077) 

     (0.745822, 0.793217) 0.770369 (0.740725, 0.793143) 

     (0.053550, 0.060442) 0.056836 (0.053247, 0.060224) 

 

          
Table 4.5: Results of  MSE for MMCFD and MMCRK from 1997 to 2007 

 

 

Model Variables 
Step Size, 

h (year) 

Present MMCFD Results  Present MMCRK Results  

100 

repetitions 

1000 

repetitions 

100 

repetitions 

1000 

repetitions 

     
1 0.015120 0.014727 0.014066 0.014018 

0.5 0.016346 0.015932 0.014630 0.014607 

0.25 0.016978 0.016554 0.014199 0.014178 

     
1 0.013749 0.013399 0.011825 0.011542 

0.5 0.014876 0.014507 0.012457 0.012170 

0.25 0.015457 0.015079 0.012784 0.012489 

     
1 0.000033 0.000032 0.000031 0.0000026 

0.5 0.000035 0.000034 0.000029 0.0000025 

0.25 0.000037 0.000035 0.000027 0.0000023 
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     The Table 4.5 obtain the results of mean square error of the a new 

numerical simulation method MMCRK and compare it with MMCFD 

by using MSE then can be noted, let   be the number of iterations 

(number of years),   be the number of simulations of MC process and   

is real step size, then for validity purpose from 1997 to 2007, let us not 

that: 

 

 The smallest error of      is (0.014018) when  =1,  =1000 and  =10 

of MMCRK. 

 For     , the smallest error is (0.011542) when  =1,  =1000 and  =10 

of MMCRK method. 

 The smallest error of      is (0.0000023) when  =0.25,  = 1000 and 

 =10 of MMCRK method. 

 

From the above results, we noted that the MMCRK method has the 

smallest mean square errors, therefore considered the best method. 
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Figure  4.2: Variation of approximate and numerical solutions  by using ADM, VIM, 

FD, RK4, MMCFD and MMCRK around predicted values [73] when real step  size 

( =1) and simulations ( =1000) of (c)     , (b)      and (c)      from 1997 to 2027 

years 
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Figure  4.3: Variation of approximate and numerical simulation solutions  by using 

ADM, VIM, FD, RK4, MMCFD and MMCRK around predicted values [73] when 

real step  size ( =0.5) and simulations ( =100) of (a)     , (b)      and (c)      

from 1997 to 2027 years 
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     In Figure 4.2, we note the behavior of the alcohol consumption habit 

from 1997 to 2027 with  =30 (number of years),  =1000 (number of 

simulations) and   =1 (real step size). Figure 4.2 (a) the curves of 

numerical simulation methods MMCFD and MMCRK are near of 

predicted values from 1997 to 2005 and decreasing gradually until 2027. 

In Figure 4.2 (b), the curves of MMCFD and MMCRK around predicted 

values into 2007 then the curves are increasing step by step until 2027. 

While Figure 4.2 (c) shows the curves of MMCFD and MMCRK results 

converge of the predicted value in 1999 until 2005.   

 

      The Figure 4.3 describes the behavior of alcohol consumption habit 

from 1997 to 2027 with  =30 which is number of iterations (number of 

years),  =0.5 (step size) and  =100 be the number of simulations. 

Figure 4.3 (a) of      shows the MMCFD and MMCRK curves 

obtained results near to some predicted values in 2001 until 2005.While 

Figure 4.3 (b) of      shows the predicted values around both MMCFD 

and MMCRK curves. Regarding to Figure 4.3 (c) of     , both 

MMCFD and MMCRK curves for results converge to the predicted 

values in 1999 until 2005.  

 

     In Figure 4.3 (a) that related to non-drink alcohol people     , the 

MMCFD  curve decreasing from 1997 to 2027. More other, there exists 

a variation between the curves such that the MMCFD and MMCRK 

curves are higher level than the curve of other methods. On the other 

hand, both MMCFD and MMCRK curves of non-risk-drink alcohol 

people      have higher that appears during the thirty years from 1997 

until 20027 in Figure 4.3 (b). Figure 4.3 (c) illustrates the decrease in 

the risk-drink alcohol people      from 1997 to 2027 years under study 

for both MMCFD and MMCRK curves.  
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Figure  4.4 Variation of numerical simulation solutions  by using MMCFD and 

MMCRK around predicted values [73], when real step size ( =0.5) and simulations 

( =100) of (a)     , (b)      and (c)     , from 1997 to 2027 years 
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     The Figure 4.4 is to compare between MMCFD and a new proposed 

method MMCRK when real step size  =0.5,  =30 (number of years) 

and  =100 (number of simulations), then in Figure 4.4 (a), the curve of 

results  of MMCRK is more approach of the predicted values then starts 

to decline until 2027. Also Figure 4.4 (b) the curve of MMCRK is 

nearer to the predicted values than MMCFD method then starts 

increasing until 2027. The curve of a new modified MMCRK of Figure 

4.4 (c) is near than MMCFD method of the predicted values with small 

decreasing to 2027.  

  

     Generally, for the interval (0,30) the percentage of non-drink alcohol 

people      and the risk-drink alcohol people      are almost decrease, 

but there is an increase with the non-risk-drink alcohol people     .     

The results are calculated by Matlab 2013 software, the figures are 

drawn by the Magic Plot program. 

 

4.3.1.2 Results Analysis: 
   

     In the current study, the convergence of the results for the numerical 

simulation methods which are MMCFD and the new proposed MMCRK 

are examined in the nonlinear case. These methods are consider from 

reliable methods for solving a system of ordinary differential equations. 

In our work, they are used for solving a system of nonlinear ordinary 

differential equations. The behavior of bad social habit which is alcohol 

consumption in Spain is analyzed, through thirteen years from 1997 to 

2027 under study. The modified MMCRK method helps to analyze the 

effects of the bad social habit of alcohol consumption. The obtained 

results are shown that there is increasing in alcohol consumption with 

non-risk-drink consumers and declining the risk-drink consumers during 
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the thirty years under study. For the number of the non-drink consumers 

has a decrease with the MMCRK method. The most predicted values 

[73] around the MMCRK curves. That means MMCRK can expect that 

the increase may be happening in the future for alcohol consumption 

habit in Spain.  

 

4.3.2 Smoking Habit Model: 

          
     The model of smoking habit model that is mentioned in Chapter 3 is 

considered In this section, this model under study has been solved by 

the new numerical simulation method MMCRK. Then MMCRK is 

compared with the analytic methods ADM and VIM, and with the 

numerical methods FD and RK4, as well as with the numerical 

simulation method MMCFD [55]. For comparison purpose, the 

difference measure error and the mean square error.  

 

4.3.2.1 Results and Discussion: 

 

     Approximate and numerical solutions for nonlinear smoking habit 

model in Spain are analyzed and discussed in this section where they are 

listed in Table 4.6 a and Table 4.6 b. The predicted values of variables 

    ,     ,      and      for smoking habit evaluation model, [33] had 

been given. The exact solution is not available in the current model. 

Therefore, a comparison is done between the predicted values or the real 

data that available in some years with the numerical simulation solutions 

for MMCFD and MMCRK in the interval (0,3) from 2006 to 2009. For 

the purpose of comparison, the difference measure error for     ,     , 

     and      between predicted value from 2006 to 2009 and ADM, 

VIM, FD, RK4, MMCFD, MMCRK methods are shown numerically in 
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Table 4.8 a and Table 4.8 b , where the difference measure error |  | in 

this study is the difference between the approximate solutions and the 

predicted value or the difference between the numerical solutions and 

the predicted value.  Some points can be noted: let   be a number of 

simulations,   be a number of iterations which is number of years and   

be a step size. 

 

 The smallest error for      is (0.01431403) when  =1,  =1000 and 

 =16 of MMCRK method. 

 For     , the smallest error is (0.04631671) when  =0.25,  =1000 

 =16 of MMCRK method. 

 For     , the smallest error is (0.00742477) when  =1,  =100 and 

 =16 of MMCRK method. 

 For     , the smallest error is (0.03825620) when  =1,  =100 and 

 =16 of MMCRK method. 

For the above results, we note that the MMCRK method has the 

smallest difference measure errors. Therefore, it is considered the best 

method.  
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Table 4.6 a: Approximate solutions of the smoking habit model from 2006 to 2009 
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Table 4.6 b: Approximate solution of the smoking habit model from 2006 to 2009 
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Table 4.7 a: The expected of approximate solutions and  numerical simulation results 
the smoking habit model from 2006 to 2022 
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Table 4.7 b: The expected of approximate solutions and numerical simulation 
results the smoking habit model from 2006 to 2022 
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     Table 4.6 a and Table 4.6 b for  =1, 0.5, 0.25 and  =3, is the 

number of iterations is to compare between real and predicted values 

(2006-2009) with approximate solutions at the same time under study. 

 

     Table 4.7 a and Table 4.7 b contain the future solution for smoking 

habit from 2006 to 2022. The value of a new MMCRK for      can be 

noted is near of the predicted when  =1 (real step size) and  =1000 

(number of simulations). While the value of MMCRK for      is an 

approach of the predicted value when  =1 and  =100. For      the 

value of MMCRK is near of predicted value when  =1 and  =100. 

Finally, the value of MMCRK is near of predicted value when  =1 and 

 =100. 

 

 
 

 

 

 

 

 

 
 

 

 

 

 

 

 
 

 

 

 

 

 

 
 

 

 

 

 

 



95 

 

Table 4.8 a: Difference measure error |  | between ADM, VIM, FD, RK4, MMCFD 

and MMCRK solutions and the predicted values [33] from 2006 to 
2009  
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Table 4.8 b: Difference measure error |  | between ADM, VIM, FD, RK4, MMCFD 

and MMCRK solutions and the predicted values [33] from 2006 to 2009 
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     Prediction interval is a predicted region for the numerical simulation 

results from 1997 to 2027 in Table 4.9. By note the Table 4.9  we see 

that the values of mean within the interval.  

 
Table 4.9: Prediction intervals (5th percentile, 95th percentile) for MMCFD and 

MMCRK solutions 
 

  MMCFD   from 1997 to 2022        

Subpopulation (100 repetitions) Mean (1000 repetitions) 

     (0.46517544, 0.51525916) 0.48747909 (0.46784111, 0.51429054) 

     (0.12727289, 0.22106877) 0.17524276 (0.13021315, 0.22237849) 

     (0.05673551, 0.16653102) 0.11433901 (0.05846895, 0.15524955) 

     (0.20241392, 0.24716537) 0.22293914 (0.20089752, 0.24437106) 

MMCRK  from 2006 to 2022        

Subpopulation (100 repetitions) Mean (1000 repetitions) 

     (0.46495973, 0.51131111) 0.49039192 (0.46787991, 0.51307728) 

     (0.15501609, 0.19879246) 0.17420935 (0.14936064, 0.19367405) 

     (0.09742801, 0.13664182) 0.11657523 (0.09758071, 0.13563891) 

     (0.19987210, 0.23872143) 0.21875620 (0.20066171, 0.24414046) 

  

 

     

 

Table 4.10: Results of  MSE for MMCFD and MMCRK from 2006 to 2009 

 

 

Model 

Variables 

Step Size, 

h (year) 

Present MMCFD Results  Present MMCRK Results  

100 

repetitions 

1000 

repetitions 

100 

repetitions 

100 

repetitions 

     

1 0.00002917 0.00001738 0.00004396 0.00000944 

0.5 0.00004347 0.00002566 0.00006521 0.00001332 

0.25 0.00005082 0.00002974 0.00007711 0.00001541 

     

1 0.00598064 0.00584571 0.00601748 0.00585020 

0.5 0.00583757 0.00566605 0.00585286 0.00565108 

0.25 0.00575351 0.00556638 0.00577226 0.00555408 

     

1 0.00049382 0.00044614 0.00048569 0.00043818 

0.5 0.00039421 0.00034294 0.00039892 0.00034625 

0.25 0.00035902 0.00030589 0.00036061 0.00030524 

     

1 0.00075837 0.00075480 0.00070756 0.00078692 

0.5 0.00052999 0.00053100 0.00048720 0.00057448 

0.25 0.00044310 0.00044627 0.00039527 0.00048476 
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     The Table 4.10 contains the results of mean square error of the a new 

numerical simulation method MMCRK and compare it with MMCFD 

by using MSE then can be noted, let   be a number of simulations,   be 

a number of iterations which is number of years and   be a step size. 

  

 The smallest error for      is (0.00000944) when  =1,  =1000 and 

 =16 of MMCRK method. 

 For     , the smallest error is (0.00555408) when  =0.25,  =1000 

 =16 of MMCRK method. 

 For     , the the smallest error is (0.00030524) when  =0.25, 

 =1000 and  =16 of MMCRK method. 

 For     , the the smallest error is (0.00039527) when  =0.25, 

 =100 and  =16 of MMCRK method. 

 

     For the above results, we note that the MMCRK method has the 

smallest mean square errors, therefore it is considered the best method.  
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Figure 4.5 (a, b): Variation of approximate and numerical  simulation solutions  by  

ADM, VIM, FD, RK4, MMCFD and MMCRK  around predicted values [33] when  

 =0.25 (real step size) and  =100 (number of simulations) of (a)      and (b)      

from 2006 to 2022 years 

 



100 

 

         

 
 

                  Figure  4.5 (c, d): Variation of approximate and numerical solutions  by ADM, VIM, 

FD, RK4, MMCFD and MMCRK around predicted values [33]  when  =0.25 (real 

step size) and  =100 (number of simulations) of (c)      and  (d)      from 2006 to 

2022 years 
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     Figure 4.5 (a, b) and  Figure 4.5 (c, d) are describe the behavior of 

smoking habit from 2006 to 2022. Figure 4.5 (a) that related to non-

smoke people     , the curve of  MMCRK method near to the predict 

value more than the curve of MMCFD method and keep on its level. 

This means, the people who do not smoke through 16 years to 2022 

have stable case. Therefore, the behavior of curves of these methods is 

agree with the behavior of curves for      in the previous study (Figure 

2, page. 249) [33]. Figure 4.5 (b) of      that related to normal smoke 

people is showing us the curves of the methods that are MMCFD, 

MMCRK, FD, VIM and RK4 methods are near from 2006 until 2013, 

then the curves of mentioned methods are gradually decreasing  yearly 

to 2022, while with MMCRK is more decreasing from 2013 until 2022. 

 

     For Figure 4.5 (c) of      that related to the excessive smokers all the 

curves of the methods under study are decreasing, the numerical 

simulations for the methods (MMCRK, MMCFD) is more increasing 

than the other methods and agree with previous study the previous study 

(Figure 2, page. 249) [33]. 

 

     Figure 4.5 (d) of     , that related to ex-smokers, there is increasing 

from 2006 to 2022, for all the curves of the numerical simulation 

methods are decreasing more than the curves of the other methods from 

2013 until 2022 and agree with the previous study (Figure 2, page. 249) 

[33]. 
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Figure  4.6 (a, b): Variation of approximate and numerical solutions  by ADM, VIM, 

FD, RK4, MMCFD and MMCRK around predicted values [33]  when  =1 (real step 

size) and  =1000 (number of simulations) of (a)      and (b)     , from 2006 to 

2022 years 
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                   Figure  4.6 (c, d): Variation of approximate and numerical solutions  by using ADM, 

VIM, FD, RK4, MMCFD and MMCRK around predicted values [33]  when  =1 (real 

step size) and  =1000 (number of simulations) of  (c)      and d      from 2006 to 

2022 years. 
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     Figure 4.7 (a, b) and Figure 4.7 (c, d)  when  =1 (real step size), 

 =1000 (number of simulation) and  =16 (number of iteration) are 

describe the behavior of smoking habit from 2006 to 2022. Figure 4.6 

(a) the curve of  MMCRK method near to the predict value more than 

the curve of MMCFD method and keep on its level. Therefore, the 

behavior of curves of these methods is agree with the behavior of curves 

for      in the previous study (Figure 2, page. 249) [33]. Figure 4.6 (b) 

of      is explain us the curves of the methods that are MMCFD, 

MMCRK, FD, VIM and RK4 methods are near from 2006 until 2013, 

then the curves of mentioned methods are gradually decreasing  yearly 

to 2022, while with MMCRK is more decreasing from 2013 until 2022. 

      For Figure 4.6 (c) of      shows us all the curves of the methods 

under study are decreasing, the numerical simulation methods 

(MMCRK, MMCFD) more increasing than the other methods and agree 

with previous study the previous study (Figure 2, page. 249) [33]. 

   

   Figure 4.6 (d) of     , there is increasing from 2006 to 2022, for all 

the curves of the numerical simulation methods are decreasing more 

than the curves of the other methods from 2013 until 2022 and agree 

with the previous study (Figure 2, page. 249) [33]. 
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Figure  4.7 (a, b): Numerical simulation solutions using MMCFD and MMCRK 

around predicted values and Real data [33]  when  =0.25 (real step size) and  =100 

(number of simulations) of (a)      and (b)      from 2006 to 2022 years 
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                  Figure  4.7 (c, d): Numerical simulation solutions by MMCFD and MMCRK around 

predicted values and Real data [33]  when  =0.25 (real step size) and  =100 (number 

of simulations) of (c)      and (d)      from 2006 to 2022 years. 
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     Figure 4.7 (a, b) and Figure 4.7 (c, d) when  =0.25,  =100 and 

 =16  are described approaches the curve of MMCRK of the predicted 

value. Figure 4.7 (a) the curve of  MMCRK method near to the predict 

value more than the curve of MMCFD method and start decreasing 

gradually until 2022. Figure 4.7 (b) of      is explain us the curves of 

the MMCRK method is near from 2006 until 2013, then the curves of 

mentioned method is decreasing step by step  yearly to 2022. For Figure 

4.7 (c) of      the curve of MMCRK method under study is near of 

predicted value and starts with little increasing until 2022. Figure 4.7 (d) 

of     , there is increasing from 2006 to 2022, for  the curve of the 

numerical simulation method MMCRK and the mentioned method is 

near of the predicted value.  

 

 

4.3.2.2 Results Analysis:  

 
     In the current study, the behavior of the bad social habit of the 

smoking habit of the nonlinear epidemic model is analyzed through 

sixteen years under study from 2006 to 2022. In our work, some reliable 

numerical simulation methods are used to solve a nonlinear system of 

epidemic models for ordinary differential equations of the first order. 

There is a convergence in the results of the new modified MMCRK are 

smaller than MMCFD errors in the nonlinear case. The numerical 

simulation methods help to analyze the effects of the bad social habit of 

smoking habit model and expect the behavior of the population in the 

future about this habit. 
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     Because of the randomness in the numerical simulation methods, this 

feature cannot be found in the approximate (analytic, numerical) 

methods, therefore, the expectation of the next years for the smoking 

habit can be studied through using the numerical simulation methods.  

 

     The results obtained are shown the subpopulation      of non-

smokers stay stable along sixteen years with MMCFD and MMCRK 

curves. While subpopulation      of normal-smoke it is decreasing until 

2022. According subpopulation      of excessive smokers it is keep on 

the same level until 2022. Finally the subpopulation      of ex-smokers 

has a small increase to 2022 that refer to there is increase to smoking 

habit in this region. The most predicted values [33] around the ADM, 

VIM, FD, RK4, MMCFD and MCRK curves, that mean to the reliability 

of the obtained results. 
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CHAPTER 5: 

 

CONCLUTION AND FUTUER WORKS 

5.1 Conclusion:  
 
     The aim of this study is to solve a system by a special process that 

considers a randomized to merge with a numerical iteration method as a 

new process that proposed for the first time. Since the approximate 

methods (analytic, numerical) are inappropriate to solve such models 

that have constant coefficients, therefore the proposed method is more 

suitable to solve this type of the systems that have a random variable in 

their coefficients.  

     The importance of the proposed method has been highlighted; the 

proposed method can expect the behavior of a population under study 

the next few years in a predicted period, in order to help to analyze the 

behavior of some models such as epidemic models that have been 

applied which are represented in alcohol consumption and smoking 

habit. While the other analytical and numerical methods despite its 

efficiency, but they find only the current solution since there is no 

randomness in their coefficients. We do not say the proposed method is 

always better than the approximate methods in the area of the precision 

and the approach to the solutions. The proposed numerical simulation 

method is more appropriated to solve such systems that have their 

coefficients as random variables which depend on the variable time, 

these coefficients are treated by the simulation process.  

     In this thesis, a new modified numerical simulation technique for 

solving nonlinear epidemic models is proposed. The importance of  the 

current study, the research objective, the problem statement which 
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highlighted why this study is necessary have been provided. The scope 

of the research and the outline of thesis have also been displayed. The 

important role of simulation technique has been explained for solving 

the epidemic models with random parameters.  

     In the current study that appears in Chapter 2, there is a convergence 

in the results of the used analytic methods which are AM and VIM 

methods are examined in the nonlinear case. In our work, they are used 

for solving a system of nonlinear ordinary differential equations. The 

behavior of bad social habit which is alcohol consumption in Spain is 

analyzed, based on the epidemiological model through ten years under 

study from 1997 to 2007. The obtained results are shown that there is 

increasing in alcohol consumption with the non- risk-drink consumers 

and declining the risk-drink consumers during the ten years under study 

from 1997 to 2007. For the non-drink consumers have a small increase 

with the VIM keeping the same level with the ADM. The most predicted 

values [73] are around the ADM and VIM curves. 

     In our work, some reliable numerical methods which are FD and 

RK4. The behavior of the bad social habit of the nonlinear epidemic 

model is analyzed through ten years under study from 1997 to 2007. The 

numerical FD and RK4 methods help to show the effects of the bad 

social habit of alcohol consumption on Spanish population during the 

years under study, in Chapter 2. 

     In Chapter 3, the behavior of the bad social habit of the nonlinear 

epidemic model is analyzed through sixteen years under study from 

2006 to 2022. There is a convergence in the results of the analytic 

methods which are ADM and VIM and the numerical methods which 

are FD and RK4 that examined in the nonlinear case. The analytic 

methods ADM and VIM with the numerical methods FD and RK4 

methods help to note the effects of the bad social of smoking habit. The 
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results obtained have been shown that the subpopulation      of non-

smokers stay stable along three years under study from 2006 to 2009 

except the ADM curve. While the subpopulation      of normal-smoke 

and the subpopulation      of excessive smokers are gradually declining 

until 2022. Finally, the subpopulation      of ex-smokers is arising to 

2022 that refer to there is increasing in the smoking habit of this region 

with the ex-smokers, in spite of the law of a social smoking habit was 

applied. But the law can useful to reduce this habit with the other 

subpopulations. The most predicted values [33] are around the 

ADM,VIM, FD and RK4 curves that mean to the reliability of the 

obtained results. 

      In Chapter 4, the new numerical simulation solutions of the method 

MMCFD and the new numerical simulation proposed method MMCRK, 

for the nonlinear epidemic models have been discussed and analyzed. 

The two epidemic models under study, which are alcohol consumption 

and smoking habit are applied in this chapter on the numerical 

simulation methods. The mean square  error and the difference measure 

error are used for comparison between the approximate methods or the 

numerical simulation solutions and the predicted value. The alcohol 

consumption model has the smallest mean square error when  =1000 

(number of simulations), step size   =1 and iterations  =10 for 

subpopulations      and      of MMCRK, subpopulation      has 

smalles error when  =25,  =1000, and iterations  =10 and has the 

smallest difference measure error when  =1 (real step size), repetitions 

 =100 and iterations  =10   for subpopulation     ,      and  =0.25 

for subpopulation     . The obtained results are shown that there is an 

increasing in alcohol consumption with the non- risk-drink consumers 

and declining the risk-drink consumers during the thirty years from 1997 

to 2027 under study with MMRK. For the non-drink consumers have a 
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decreasing with the MMCRK method. The most predicted values [73] 

around the MMCRK curves. That means MMCRK can expect that the 

increasing may be happening in the future for alcohol consumption habit 

in Spain. 

  

     The results obtained from smoking habit model are shown the 

subpopulation      of non-smokers stay stable along sixteen years from 

2006 to 2022 with MMCFD and MMCRK curves. While subpopulation 

     of normal-smoke it is decreasing from 2006 to 2022. According to 

the subpopulation      of excessive smokers, it is keep on the same level 

from 2006 until 2022. Finally the subpopulation      of ex-smokers has 

a small increase from 2006 to 2022 that refer to there is an increase in 

smoking habit of       only in this region under study, in spite of the 

law of avoid the smoking habit was applied. The most predicted values 

[33] around the MMCFD and MMCRK curves that mean to the 

reliability of the obtained results. 

 

     The epidemic models under study have the smallest mean square 

error and the smallest difference error with MMCRK with all 

subpopulations. In other words, MMCRK is better than MMCFD 

according to the expectation the next years. 

 

     The results are calculated by the Mathematica.11 software for 

analytical methods ADM and VIM and MATLAB 2013 software for 

numerical methods FD and RK4, the figures are drawn by the Magic 

Plot software.  
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5.2 Recommendations and Future  Works: 
 
     The current study deals with modification of the numerical 

simulation methods.We recommend the following ideas: 

 

1. We recommend to apply the methods under study, to other epidemic 

models. 

 

2. MMCRK method is suggested to solve an autonomous system of 

nonlinear IVP of higher order ODEs, partial DEs, fractional ODEs, and 

all types if they have a random variable as a coefficient in the model 

under research [38].  

 

3.  The advanced of RK numerical iteration methods with different orders 

such as RK45 and RK78 can be suggested to merge with MC simulation 

techniques as a new method to solve deterministic models with random 

parameters [58]. 

4. Other analytical methods can be suggested to solve such system under 

study like homotopy perturbation analysis method and Semi analytical 

iterative method Temimi and Ansari.  

5. On the other hands, there are other numerical iteration methods can  

be suggested to solve  the system under study. 

6. Other kinds of simulation techniques like a Latin Hypercube Sampling, 

Box–Muller transform and so on,  can be used to simulate the random 

parameters of stochastic deterministic models. 

7. We recommend to change the process of the numerical simulation 

methods to get the optimal number of iteration and simulation that help 

to obtain the best expectation for the nature of subpopulations under 

study in the future. 
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Appendix A 

 

MMCFD Application of Alcohol Consumption Model 

 
%FDM with MC to solve model of the nonlinear ODE system 

%******************************************************* 

clc 

clear 

close all 

format long 

%Nonlinear system of differential Equations for Solving 

%alcohol consumption in Spain% 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%parameters of the model% 

disp('parameters of model') 

b11 =0.01;        %prportion of the birth rate in Spain. 

b22 =0.00144;     %proportion of the rate at which a 

risk consumer becomes a non-consumer. 

b33 =0.08;        %proportion of the death rate in 

Spain. 

b44 =0.0284;      %proportion the transmission rate due 

to social pressure to increase the alcohol consumption. 

b55 =0.009;       %prportion of the augmented death rate 

due alcohol consumption. 

b66 =0.000110247; %prportion of the rate at which a non-

risk consumer moves to the risk consumption 

subpopulation. 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%  

%Generate values from the uniform distribution on the 

interval [a, b]. 

  k=1000;     %number of simulation 

  q=10;       %number of iteration 

  h=0.25;     %step size  

  

for j=1:k 

  rand('seed',k)  

  b1=(b11-0.2*b11)+((b11+0.2*b11)-(b11-

0.2*b11))*rand(j); 

  b2=(b22-0.2*b22)+((b22+0.2*b22)-(b22-

0.2*b22))*rand(j); 

  b3=(b33-0.2*b33)+((b33+0.2*b33)-(b33-

0.2*b33))*rand(j); 

  b4=(b44-0.2*b44)+((b44+0.2*b44)-(b44-

0.2*b44))*rand(j); 

Appendixes 
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  b5=(b55-0.2*b55)+((b55+0.2*b55)-(b55-

0.2*b55))*rand(j); 

  b6=(b66-0.2*b66)+((b66+0.2*b66)-(b66-

0.2*b66))*rand(j); 

  j=j+1; 

end 

  

disp('b1 b2 b3 b4 b5 b6') 

Par=[ Parameter_b1'   Parameter_b2'   Parameter_b3'    

Parameter_b4'    Parameter_b5'    Parameter_b6' ] 

  

  

%initial conditions% 

%x0=[a0 m0 r0]; 

disp('initial conditions') 

disp('------------------------------------------------') 

for j=1:k 

     

%initial conditions% 

%x0=[a0 m0 r0]; 

%disp('a0 = initial a ') 

a0=0.362; a(1,j)=a0;        %initial value of a(t) 

%disp('m0 = initial m ')  

m0=0.581; m(1,j)=m0;        %initial value of m(t) 

%disp('r0 = initial r ') 

r0=0.057; r(1,j)=r0;        %initial value of r(t) 

%disp('t0 = initial t ')  

t0=0;                       %initial condition of t  

%time per year 

  

%Backward FD of the model% 

a(2,j)=a(1,j)+h*(b1(j)+b2(j)*r(1,j)-b3(j)*a(1,j)-

b4(j)*a(1,j)*(m(1,j)+r(1,j))-a(1,j)*(b1(j)-b3(j)*a(1,j)-

b5(j)*m(1,j)-b5(j)*r(1,j))); 

m(2,j)=m(1,j)+h*(b4(j)*a(1,j)*(m(1,j)+r(1,j))-

b6(j)*m(1,j)+b3(j)*a(1,j)*m(1,j)-b5(j)*a(1,j)*m(1,j)-

b1(j)*m(1,j)); 

r(2,j)=r(1,j)+h*(b6(j)*m(1,j)-

b2(j)*r(1,j)+b3(j)*a(1,j)*r(1,j)-b5(j)*a(1,j)*r(1,j)-

b1(j)*r(1,j)); 

  

%Centeral FD of the model% 

%ai+1-ai-1/2h = b1+b2*ri-b3*ai-b4*ai(mi+ri)-ai[b1-b3*ai-

b5*mi-b5*ri] 

%mi+1-mi+1/2h = b4*ai(mi+ri)-b6*mi+b3*ai*mi-b5*ai*mi-

b1*mi 

%ri+1-ri-1/2h = b6*mi-b2*ri+b3*ai*ri-b5*ai*ri-b1*ri 

 

  

for i=2:q/h 



123 

 

a(i+1,j)=a(i-1,j)+2*h*(b1(j)+b2(j)*r(i,j)-b3(j)*a(i,j)-

b4(j)*a(i,j)*(m(i,j)+r(i,j))-a(i,j)*(b1(j)-b3(j)*a(i,j)-

b5(j)*m(i,j)-b5(j)*r(i,j))); 

m(i+1,j)=m(i-1,j)+2*h*(b4(j)*a(i,j)*(m(i,j)+r(i,j))-

b6(j)*m(i,j)+b3(j)*a(i,j)*m(i,j)-b5(j)*a(i,j)*m(i,j)-

b1(j)*m(i,j)); 

r(i+1,j)=r(i-1,j)+2*h*(b6(j)*m(i,j)-

b2(j)*r(i,j)+b3(j)*a(i,j)*r(i,j)-b5(j)*a(i,j)*r(i,j)-

b1(j)*r(i,j)); 

 sol=zeros(q,3);   

 sol(i,j,1) = a(i,j); 

 sol(i,j,2) = m(i,j); 

 sol(i,j,3) = r(i,j); 

 i=i+1; 

   end 

j=j+1;  

end 

  

%result=[a' m' r'] 

 result=zeros(q/h,k,3);  

for i=1:q/h     

  res(i,k,1) = a(i,k); 

  res(i,k,2) = m(i,k); 

  res(i,k,3) = r(i,k); 

  i=i+1; 

end  

result=[ res(:,k,1)    res(:,k,2)     res(:,k,3) ] 

  

disp('[ a m r ]') 

for j=1:k 

  sol=[  a(:,j)    m(:,j)    r(:,j)  ] 

end  

   

solfinal=zeros(q/h,3); 

for j=1:k 

    solfinal_a(j)=a(q/h,j); 

    solfinal_m(j)=m(q/h,j); 

    solfinal_r(j)=r(q/h,j); 

    j=j+1; 

end 

disp('[   solfinal_a      solfinal_m      solfinal_r   

]') 

solfinal=[solfinal_a(:)   solfinal_m(:)   solfinal_r(:)] 

fprintf('solfinal_a       solfinal_m       solfinal_r 

\n') 

fprintf( '%1.5 f  %1.5 f  %1.5 f  \n' , solfinal_a  , 

solfinal_m  , solfinal_r ) 

  

musolfinal_a = mean(solfinal_a); 

musolfinal_m = mean(solfinal_m); 

musolfinal_r = mean(solfinal_r); 
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disp('[ mean_a                   mean_m                       

mean_r ]') 

disp([musolfinal_a              musolfinal_m                

musolfinal_r]) 

  

%Predicted values in 2027, when t=30 years                 

predict_a=0.362; 

predict_m=0.581; 

predict_r=0.057; 

  

%Difference error  

Diff_a=abs(predict_a-musolfinal_a); 

Diff_m=abs(predict_m-musolfinal_m); 

Diff_r=abs(predict_r-musolfinal_r); 

  

disp('[Diff_a      Diff_b      Diff_c     Diff_d]') 

Diff_error=[Diff_a       Diff_m     Diff_r] 

  

%Absolute relative approximate error  

RE_a =abs((predict_a-musolfinal_a)/musolfinal_a); 

RE_m =abs((predict_m-musolfinal_m)/musolfinal_m); 

RE_r =abs((predict_r-musolfinal_r)/musolfinal_r); 

  

disp('[RE_a    RE_m     RE_r]') 

RE_error = [RE_a    RE_m    RE_r] 

  

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

disp('[prctile_a]') 

Pa=prctile(solfinal_a,[5 95]) 

disp('[prctile_m]') 

Pm=prctile(solfinal_m,[5 95]) 

disp('[prctile_r]') 

Pr=prctile(solfinal_r,[5 95]) 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  

disp('Results of MMCFD of alcohol consumption')  

%Predicted values in --------, when t years                 

predicta=0.362; 

predictm=0.581; 

predictr=0.057; 

  

MMCFDa=musolfinal_a; 

MMCFDm=musolfinal_m; 

MMCFDr=musolfinal_r; 

  

disp('[Numerical Simulation for the System]') 

disp('[MMCFD_a  MMCFD_m  MMCFD_r]') 

disp([MMCFDa   MMCFDm   MMCFDr]) 

%####################################################### 

%Estimate of error by mean square error 
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disp('MSE to measure results error') 

  

   %summation account 

   aMSEsum1=0; 

   mMSEsum1=0; 

   rMSEsum1=0; 

  

 k=1; 

 while k<=q 

   aMSEsum1=aMSEsum1+(predicta-solfinal_a(k))^2; 

   mMSEsum1=mMSEsum1+(predictm-solfinal_m(k))^2; 

   rMSEsum1=rMSEsum1+(predictr-solfinal_r(k))^2; 

   k=k+1; 

 end 

  

   aMSE_SOL =(1/q)*(aMSEsum1); 

   mMSE_SOL =(1/q)*(mMSEsum1); 

   rMSE_SOL =(1/q)*(rMSEsum1); 

  

disp('[aMSE_SOL       mMSE_SOL         rMSE_SOL]') 

MSE_SOL=[aMSE_SOL      mMSE_SOL      rMSE_SOL] 

%@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ 

  

figure(1) 

%Sketch the results of the last simulation 

disp('[  last simulation_a                   last 

simulation_m                       last simulation_r ]') 

last_sim=[  a(:,k)    m(:,k)    r(:,k)  ] 

t=t0:h:q; %Calculates up to t_final results  

plot(t,a(:,k),'o',t,m(:,k),'x',t,r(:,k),'*') 

title('MMCFD solutions of alcohol consumption model'); 

 

xlabel('30 Years');  

ylabel('Subpopulations a,m,r'); 

legend('a','m','r') 

  

figure(2) 

t=t0:h:q; 

subplot(3,1,1) 

plot(t,a(:,k),'o') 

title('MMCFD of a solution of alcohol consumption 

model'); 

xlabel('30 Years ');  

ylabel('a'); 

    

subplot(3,1,2) 

plot(t,m(:,k),'x') 

title('MMCFD of m solution of alcohol consumption 

model'); 

xlabel('30 Years ');  

ylabel('m'); 
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subplot(3,1,3) 

plot(t,r(:,k),'*') 

title('MMCFD of r solution of the alcohol consumption 

model'); 

xlabel('30 Years ');  

ylabel('r');   
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Appendix B 

 

MMCRK Application of Alcohol Consumption Model 
 

%RK4 with MC to solve models of the nonlinear ODE system 

%******************************************************* 

clc 

clear 

close all 

format long 

  

%To solve a model for the evolution of alcohol 

consumption in Spain%  

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%model% 

%da_dt = b1+b2*ri-b3*ai-b4*ai(mi+ri)-ai[b1-b3*ai-b5*mi-

b5*ri] 

%dm_dt = b4*ai(mi+ri)-b6*mi+b3*ai*mi-b5*ai*mi-b1*mi 

%dr_dt = b6*mi-b2*ri+b3*ai*ri-b5*ai*ri-b1*ri  

  

%initial values% 

%t0=0;                %time per year 

%y0=[a0 m0 r0];       %y0 = initial condition of a 

system  

%a0=0.362; a(1)=a0;   %initial value of a(t)  

%m0=0.581; m(1)=m0;   %initial value of m(t) 

%r0=0.057; r(1)=r0;   %initial value of r(t) 

  

%Model with RK4% 

%dy/dt in form of f(t,y).it can be a function of both 

variables t and y, 

%da_dt =f1(t,a,m,r); 

%dm_dt =f2(t,a,m,r); 

%dr_dt =f3(t,a,m,r);  

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%parameters of the model% 

%disp('parameters of model') 

%a11 =0.01;        %prportion of the birth rate in Spain  

%a22 =0.00144;     %proportion of the rate at which a 

risk consumer becomes a non-consumer. 

%a33 =0.08;        %proportion of the death rate in 

Spain. 

%a44 =0.0284;      %proportion the transmission rate due 

to social pressure to increase the alcohol consumption. 

%a55 =0.009;       %prportion of the augmented death 

rate due to alcohol consumption. 

%a66 =0.000110247; %prportion of the rate at which a 

non-risk consumer moves to the risk consumption 

subpopulation. 
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disp('******************Input Data*******************') 

  k=100;     %number of simulation 

             %q=number of iteration= numbers of years   

             between 2006 & 2009 

  q=10;      %number of iteration 

  h=0.25;    %step size 

  

%disp('parameters of model')  

 a11=0.01; 

 a22=0.00144; 

 a33=0.08; 

 a44=0.0284; 

 a55=0.009; 

 a66=0.000110247; 

  

%Generate values from the uniform distribution on the 

interval[a, b]. 

for j=1:k 

  rand('seed',k)  

  a1=(a11-0.2*a11)+((a11+0.2*a11)-(a11-

0.2*a11))*rand(j); 

  a2=(a22-0.2*a22)+((a22+0.2*a22)-(a22-

0.2*a22))*rand(j); 

  a3=(a33-0.2*a33)+((a33+0.2*a33)-(a33-

0.2*a33))*rand(j); 

  a4=(a44-0.2*a44)+((a44+0.2*a44)-(a44-

0.2*a44))*rand(j); 

  a5=(a55-0.2*a55)+((a55+0.2*a55)-(a55-

0.2*a55))*rand(j); 

  a6=(a66-0.2*a66)+((a66+0.2*a66)-(a66-

0.2*a66))*rand(j); 

  j=j+1; 

end   

  

disp('a1 a2 a3 a4 a5 a6') 

Par=[ Parameter_a1'   Parameter_a2'   Parameter_a3'    

Parameter_a4'    Parameter_a5'    Parameter_a6' ] 

   

disp('----------------------------------------------') 

for j=1:k 

  for i=1:q/h     

  

%initial conditions % 

%x0=[a0 m0 ro]; 

%disp('a0 = initial a ') 

a0=0.362; a(1,j)=a0;        %initial value of a(t) 

%disp('m0 = initial m ')  

m0=0.581; m(1,j)=m0;        %initial value of m(t) 

%disp('r0 = initial r ') 

r0=0.057; r(1,j)=r0;        %initial value of r(t) 

%disp('t0 = initial t ')  
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t0=0;                       %initial condition of t  

%time per year 

  

ka1=zeros(q/h,k); 

ka2=zeros(q/h,k); 

ka3=zeros(q/h,k); 

ka4=zeros(q/h,k); 

  

km1=zeros(q/h,k); 

km2=zeros(q/h,k); 

km3=zeros(q/h,k); 

km4=zeros(q/h,k); 

 

kr1=zeros(q/h,k); 

kr2=zeros(q/h,k); 

kr3=zeros(q/h,k); 

kr4=zeros(q/h,k); 

  

%Calculating ka1,km1,kr1 

ka1(i,j) = a1(j)+a2(j)*r(i,j)-a3(j)*a(i,j)-

a4(j)*a(i,j)*(m(i,j)+r(i,j)-a(i,j)*(a1(j)-a3(j)*a(i,j)-

a5(j)*m(i,j)-a5(j)*r(i,j))); 

  

km1(i,j) = a4(j)*a(i,j)*(m(i,j)+r(i,j))-

a6(j)*m(i,j)+a3(j)*a(i,j)*m(i,j)-a5(i)*a(i,j)*m(i,j)-

a1(j)*m(i,j); 

  

kr1(i,j) = a6(j)*m(i,j)-

a2(j)*r(i,j)+a3(j)*a(i,j)*r(i,j)-a5(j)*a(i,j)*r(i,j)-

a1(j)*r(i,j); 

 

 

  

%Calculating ka2,km2,kr2   

        

ka2(i,j)=a1(j)+a2(j)*(r(i,j)+0.5*kr1(i,j))-

a3(j)*(a(i,j)+0.5*ka1(i,j))-

a4(j)*(a(i,j)+0.5*ka1(i,j))*((m(i,j)+0.5*km1(i,j)+(r(i,j

)+0.5*kr1(i,j)))-(a(i,j)+ka1(i,j))*(a1(j)-

a3(j)*(a(i,j)+ka1(i,j))-a5(j)*(m(i,j)+km1(i,j))-

a5(j)*(r(i,j)+0.5*kr1(i,j)))); 

  

km2(i,j)=a4(j)*(a(i,j)+0.5*ka1(i,j))*((m(i,j)+0.5*km1(i,

j)+r(i,j)+0.5*kr1(i,j)))-

a6(j)*(m(i,j)+0.5*km1(i,j))+a3(j)*(a(i,j)+0.5*ka1(i,j))*

(m(i,j)+0.5*km1(i,j))-

a5(j)*(a(i,j)+0.5*ka1(i,j))*(m(i,j)+0.5*km1(i,j))-

a1(j)*(m(i,j)+0.5*km1(i,j)); 

  

kr2(i,j)=a6(j)*(m(i,j)+0.5*km1(i,j))-

a2(j)*(r(i,j)+kr1(i,j))+a3(j)*(a(i,j)+0.5*ka1(i,j))*(r(i
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,j)+0.5*kr1(i,j))-

a5(j)*(a(i,j)+0.5+ka1(i,j))*(r(i,j)+0.5*kr1(i,j))-

a1(j)*(r(i,j)+0.5*kr1(i,j)); 

  

%Calculating ka3,km3,kr3          

  

ka3(i,j)=a1(j)+a2(j)*(r(i,j)+0.5*kr2(i,j))-

a3(j)*(a(i,j)+0.5*ka2(i,j))-

a4(j)*(a(i,j)+0.5*ka2(i,j))*((m(i,j)+0.5*km2(i,j)+r(i,j)

+0.5*kr2(i,j)))-(a(i,j)+ka2(i,j))*(a1(j)-

a3(j)*(a(i,j)+ka2(i,j))-a5(j)*(m(i,j)+km2(i,j))-

a5(j)*(r(i,j)+0.5*kr2(i,j))); 

  

km3(i,j)=a4(j)*(a(i,j)+0.5*ka2(i,j))*((m(i,j)+0.5*km2(i,

j))+(r(i,j)+0.5*kr2(i,j)))-

a6(j)*(m(i,j)+0.5*km2(i,j))+a3(j)*(a(i,j)+0.5*ka2(i,j))*

(m(i,j)+0.5*km2(i,j))-

a5(j)*(a(i,j)+0.5*ka2(i,j))*(m(i,j)+0.5*km2(i,j))-

a1(j)*(m(i,j)+0.5*km2(i,j)); 

  

kr3(i,j)=a6(j)*(m(i,j)+0.5*km2(i,j))-

a2(j)*(r(i,j)+kr2(i,j))+a3(j)*(a(i,j)+0.5*ka2(i,j))*(r(i

,j)+0.5*kr2(i,j))-

a5(j)*(a(i,j)+0.5+ka2(i,j))*(r(i,j)+0.5*kr2(i,j))-

a1(j)*(r(i,j)+0.5*kr2(i,j)); 

   

%Calculating ka4,km4,kr4     

  

ka4(i,j)=a1(j)+a2(j)*(r(i,j)+0.5*kr3(i,j))-

a3(j)*(a(i,j)+0.5*ka3(i,j))-

a4(j)*(a(i,j)+0.5*ka3(i,j))*((m(i,j)+0.5*km3(i,j))+(r(i,

j)+0.5*kr3(i,j)))-(a(i,j)+ka3(i,j))*(a1(j)-

a3(j)*(a(i,j)+ka3(i,j))-a5(j)*(m(i,j)+km3(i,j))-

a5(j)*(r(i,j)+0.5*kr3(i,j))); 

  

km4(i,j)=a4(j)*(a(i,j)+0.5*ka3(i,j))*((m(i,j)+0.5*km3(i,

j))+(r(i,j)+0.5*kr3(i,j)))-

a6(j)*(m(i,j)+0.5*km3(i,j))+a3(j)*(a(i,j)+0.5*ka3(i,j))*

(m(i,j)+0.5*km3(i,j))-

a5(j)*(a(i,j)+0.5*ka3(i,j))*(m(i,j)+0.5*km3(i,j))-

a1(j)*(m(i,j)+0.5*km3(i,j)); 

  

kr4(i,j)=a6(j)*(m(i,j)+0.5*km3(i,j))-

a2(j)*(r(i,j)+kr3(i,j))+a3(j)*(a(i,j)+0.5*ka3(i,j))*(r(i

,j)+0.5*kr3(i,j))-

a5(j)*(a(i,j)+0.5+ka3(i,j))*(r(i,j)+0.5*kr3(i,j))-

a1(j)*(r(i,j)+0.5*kr3(i,j)); 

   

%Using 4th Order Runge-Kutta formula 
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a(i+1,j)=a(i,j)+(1/6)*(ka1(i,j)+2*ka2(i,j)+2*ka3(i,j)+ka

4(i,j))*h; 

 

m(i+1,j)=m(i,j)+(1/6)*(km1(i,j)+2*km2(i,j)+2*km3(i,j)+km

4(i,j))*h; 

 

r(i+1,j)=r(i,j)+(1/6)*(kr1(i,j)+2*kr2(i,j)+2*kr3(i,j)+kr

4(i,j))*h; 

  

  i=i+1; 

  end 

j=j+1;  

end 

  

%result=[a' m' r'] 

 result=zeros(q/h,k,3);  

for i=1:q/h     

  res(i,k,1) = a(i,k); 

  res(i,k,2) = m(i,k); 

  res(i,k,3) = r(i,k); 

 i=i+1; 

end  

result=[ res(:,k,1)    res(:,k,2)     res(:,k,3) ] 

    

 disp('[ a m r ]') 

for j=1:k 

  sol=[  a(:,j)    m(:,j)    r(:,j)  ] 

end  

  solfinal=zeros(q/h,3); 

  for j=1:k 

    solfinal_a(j)=a(q/h,j); 

    solfinal_m(j)=m(q/h,j); 

    solfinal_r(j)=r(q/h,j); 

    j=j+1; 

  end 

  

disp('[   solfinal_a      solfinal_m      solfinal_r   

]') 

solfinal=[solfinal_a(:)   solfinal_m(:)   solfinal_r(:)] 

fprintf('solfinal_a       solfinal_m       solfinal_r 

\n') 

fprintf( '%1.5 f  %1.5 f  %1.5 f  \n' , solfinal_a  , 

solfinal_m  , solfinal_r ) 

  

musolfinal_a = mean(solfinal_a); 

musolfinal_m = mean(solfinal_m); 

musolfinal_r = mean(solfinal_r); 

  

disp('[ mean_a                   mean_m                       

mean_r ]') 
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disp([musolfinal_a              musolfinal_m                

musolfinal_r]) 

  

%Predicted values in 2009, when t=3 years                 

predict_a=0.362; 

predict_m=0.581; 

predict_r=0.057; 

   

%Difference error  

Diff_a=abs(predict_a-musolfinal_a); 

Diff_m=abs(predict_m-musolfinal_m); 

Diff_r=abs(predict_r-musolfinal_r); 

  

disp('[Diff_a      Diff_b      Diff_c     Diff_d]') 

Diff_error=[Diff_a       Diff_m     Diff_r] 

  

%Absolute relative approximate error  

AE_a =abs((predict_a-musolfinal_a)/musolfinal_a); 

AE_m =abs((predict_m-musolfinal_m)/musolfinal_m); 

AE_r =abs((predict_r-musolfinal_r)/musolfinal_r); 

  

disp('[AE_a    AE_m     AE_r]') 

AE_error = [AE_a    AE_m    AE_r] 

  

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

disp('[prctile_a]') 

Pa=prctile(solfinal_a,[5 95]) 

disp('[prctile_m]') 

Pm=prctile(solfinal_m,[5 95]) 

disp('[prctile_r]') 

Pr=prctile(solfinal_r,[5 95]) 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

 

disp('Results of MMCRK of alcohol consumption') 

  

%Predicted values in  --------, when t years                 

predicta=0.362; 

predictm=0.581; 

predictr=0.057; 

  

MMCRKa=musolfinal_a; 

MMCRKm=musolfinal_m; 

MMCRKr=musolfinal_r; 

  

disp('[Numerical Simulation for the System]') 

disp('[MMCRK_a  MMCRK_m  MMCRK_r]') 

disp([MMCRKa   MMCRKm   MMCRKr]) 

%####################################################### 
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%Estimate error by mean square error 

disp('MSE to measure results error') 

  

%summation account 

   aMSEsum1=0; 

   mMSEsum1=0; 

   rMSEsum1=0; 

  

 k=1; 

 while k<=q 

   aMSEsum1=aMSEsum1+(predicta-solfinal_a(k))^2; 

   mMSEsum1=mMSEsum1+(predictm-solfinal_m(k))^2; 

   rMSEsum1=rMSEsum1+(predictr-solfinal_r(k))^2; 

    k=k+1; 

 end 

  

   aMSE_SOL =(1/q)*(aMSEsum1); 

   mMSE_SOL =(1/q)*(mMSEsum1); 

   rMSE_SOL =(1/q)*(rMSEsum1); 

  

disp('[aMSE_SOL       mMSE_SOL         rMSE_SOL]') 

MSE_SOL=[aMSE_SOL      mMSE_SOL      rMSE_SOL] 

%@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@  

 

figure(1) 

%Sketch the results of the last simulation 

disp('[  last simulation_a                   last 

simulation_m                       last simulation_r ]') 

last_sim=[  a(:,k)    m(:,k)    r(:,k)  ] 

t=t0:h:q;     %Calculates up to t_final results  

plot(t,a(:,k),'o',t,m(:,k),'x',t,r(:,k),'*') 

title('MMCRK solutions of alcohol consumption model'); 

xlabel('30 Years');  

ylabel('Subpopulations a,m,r'); 

legend('a','m','r') 

  

figure(2) 

t=t0:h:q; 

subplot(3,1,1) 

plot(t,a(:,k),'o') 

title('MMCRK of a solution of alcohol consumption 

model'); 

xlabel('30 Years ');  

ylabel('a'); 

    

subplot(3,1,2) 

plot(t,m(:,k),'x') 

title('MMCRK of m solution of alcohol consumption 

model'); 

xlabel('30 Years ');  

ylabel('m'); 
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subplot(3,1,3) 

plot(t,r(:,k),'*') 

title('MMCRK of r solution of the alcohol consumption 

model'); 

xlabel('30 Years ');  

ylabel('r');   
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Appendix C 

 

MMCFD Application of Smoking Habit Model 
 
%FDM with MC to solve model of the nonlinear ODE system 

%******************************************************* 

clc 

clear 

close all 

format long 

%%%Nonlinear system of differential Equations for 

Solving a model for the Evolution of smoking habit in 

Spain%% 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%%parameters of the model%% 

disp('parameters of model') 

b11 =0.01;        %birth rate in Spain. 

b22 =0.0381;      %transmission rate due to social 

pressure to adopt smoking habit. 

b33 =0.0425;      %rate at which ex-smokers return to 

smoking. 

b44 =0.1244;      %rate at which an excessive smoker 

becomes a normal smoker by decreasing the number of 

cigarettes per day. 

b55 =0.1175;      %rate at which normal smokers become 

excessive smokers by increasing the number of cigarettes 

per day. 

b66 =0.0498;      %rate at which normal smokers stop 

smoking. 

b77 =0.0498;      %rate at which excessive smokers stop 

smoking. 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%Generate values from the uniform distribution on the 

interval [a, b]. 

  k=1000;     %number of simulation 

  q=3;        %number of iteration 

  h=0.25;     %step size  

  

for j=1:k 

  rand('seed',k)  

  b1=(b11-0.2*b11)+((b11+0.2*b11)-(b11-

0.2*b11))*rand(j); 

  b2=(b22-0.2*b22)+((b22+0.2*b22)-(b22-

0.2*b22))*rand(j); 

  b3=(b33-0.2*b33)+((b33+0.2*b33)-(b33-

0.2*b33))*rand(j); 

  b4=(b44-0.2*b44)+((b44+0.2*b44)-(b44-

0.2*b44))*rand(j); 
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  b5=(b55-0.2*b55)+((b55+0.2*b55)-(b55-

0.2*b55))*rand(j); 

  b6=(b66-0.2*b66)+((b66+0.2*b66)-(b66-

0.2*b66))*rand(j); 

  b7=(b77-0.2*b77)+((b77+0.2*b77)-(b77-

0.2*b77))*rand(j); 

  j=j+1; 

end 

  

disp('b1 b2 b3 b4 b5 b6') 

Par=[ Parameter_b1'    Parameter_b2'   Parameter_b3'    

Parameter_b4'     Parameter_b5'   Parameter_b6'  

Parameter_b7' ] 

  

disp('---------------------------------') 

%initial conditions% 

disp('initial conditions') 

  

for j=1:k     

%initial conditions % 

%disp('t0 = initial t ')  

t0=0;           %initial condition of t  %time per year 

  

%disp('a0 = initial a ') 

a0=0.5045; 

a(1,j)=a0;      %initial value of a(t)  

%disp('a0 = initial a ') 

b0=0.2059; 

b(1,j)=b0;      %initial value of b(t) 

%disp('a0 = initial a ') 

c0=0.1559; 

c(1,j)=c0;      %initial value of c(t) 

%disp('a0 = initial a ') 

d0=0.1337; 

d(1,j)=d0;      %initial value of d(t) 

  

%Backward FD of the model% 

a(2,j)=a(1,j)+h*(b1(j)*(1-a(1,j))-

b2(j)*a(1,j)*(b(1,j)+c(1,j))); 

b(2,j)=b(1,j)+h*(b2(j)*a(1,j)*(b(1,j)+c(1,j))+b3(j)*d(1,

j)+b4(j)*c(1,j)-(b5(j)+b6(j)+b1(j))*b(1,j)); 

c(2,j)=c(1,j)+h*(b5(j)*b(1,j)-

(b4(j)+b7(j)+b1(j))*c(1,j)); 

d(2,j)=d(1,j)+h*(b6(j)*b(1,j)+b7(j)*c(1,j)-

(b3(j)+b1(j))*d(1,j)); 

  

%Centeral FD of the model% 

%a(i+1)-a(i-1)/2h = b1*(1-a(i))-b2*a(i)*(b(i)+c(i)) 

%b(i+1)-b(i+1)/2h = b2*a(i)*(b(i)+c(i))+b3*d(i)+b4*c(i)-

(b5+b6+b1)*b(i) 

%c(i+1)-c(i-1)/2h = b5*b(i)-(b4+b7+b1)*c(i) 
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%d(i+1)-d(i-1)/2h = b6*s(i)+b7*c(i)-(b3+b1)*d(i) 

  

   for i=2:q/h 

a(i+1,j)=a(i-1,j)+2*h*(b1(j)*(1-a(i,j))-

b2(j)*a(i,j)*(b(i,j)+c(i,j))); 

b(i+1,j)=b(i-

1,j)+2*h*(b2(j)*a(i,j)*(b(i,j)+c(i,j))+b3(j)*d(i,j)+b4(j

)*c(i,j)-(b5(j)+b6(j)+b1(j))*b(i,j)); 

c(i+1,j)=c(i-1,j)+2*h*(b5(j)*b(i,j)-

(b4(j)+b7(j)+b1(j))*c(i,j)); 

d(i+1,j)=d(i-1,j)+2*h*(b6(j)*b(i,j)+b7(j)*c(i,j)-

(b3(j)+b1(j))*d(i,j)); 

  

   sol=zeros(q/h,4);   

   sol(i,j,1) = a(i,j); 

   sol(i,j,2) = b(i,j); 

   sol(i,j,3) = c(i,j); 

   sol(i,j,4) = d(i,j);    

  

 i=i+1; 

   end 

j=j+1;  

end 

  

%result=[a'  b'  c'  d'] 

 result=zeros(q/h,k,4);  

for i=1:q/h     

  res(i,k,1) = a(i,k); 

  res(i,k,2) = b(i,k); 

  res(i,k,3) = c(i,k); 

  res(i,k,4) = d(i,k); 

  i=i+1;   

end  

result=[ res(:,k,1)    res(:,k,2)     res(:,k,3)     

res(:,k,4)] 

  

disp('[ a  b  c  d ]') 

for j=1:k 

  sol=[  a(:,j)   b(:,j)    c(:,j)     d(:,j) ] 

end  

  

  solfinal=zeros(q/h,4); 

  for j=1:k 

    solfinal_a(j)=a(q/h,j); 

    solfinal_b(j)=b(q/h,j); 

    solfinal_c(j)=c(q/h,j); 

    solfinal_d(j)=d(q/h,j); 

    j=j+1; 

  end 
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disp('[   solfinal_a      solfinal_b      solfinal_c   

solfinal_d]') 

solfinal=[solfinal_a(:)   solfinal_b(:)   solfinal_c(:)    

solfinal_d(:)] 

fprintf('solfinal_a       solfinal_b       solfinal_c      

solfinal_d \n') 

fprintf( '%1.5 f    %1.5 f    %1.5 f    %1.5 f\n' , 

solfinal_a  , solfinal_b, solfinal_c, solfinal_d )  

  

musolfinal_a = mean(solfinal_a); 

musolfinal_b = mean(solfinal_b); 

musolfinal_c = mean(solfinal_c); 

musolfinal_d = mean(solfinal_d); 

  

disp('[ mean_a                   mean_b                      

mean_c               mean_d ]') 

disp([musolfinal_a              musolfinal_b              

musolfinal_c               musolfinal_d]) 

  

%Predicted values in 2009, when t=3 years                 

predict_a=0.5049; 

predict_b=0.1240; 

predict_c=0.1240; 

predict_d=0.1805; 

  

%Difference error  

Diff_a=abs(predict_a-musolfinal_a); 

Diff_b=abs(predict_b-musolfinal_b); 

Diff_c=abs(predict_c-musolfinal_c); 

Diff_d=abs(predict_d-musolfinal_d); 

  

disp('[Diff_a      Diff_b      Diff_c     Diff_d]') 

Diff_error=[Diff_a       Diff_b     Diff_c       Diff_d] 

  

%Absolute relative approximate error  

AE_a =abs((predict_a-musolfinal_a)/musolfinal_a); 

AE_b =abs((predict_b-musolfinal_b)/musolfinal_b); 

AE_c =abs((predict_c-musolfinal_c)/musolfinal_c); 

AE_d =abs((predict_d-musolfinal_d)/musolfinal_d); 

  

disp('[AE_a    AE_b     AE_c     AE_d]') 

AE_error = [AE_a    AE_b    AE_c    AE_d] 

  

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

disp('[prctile_a]') 

Pa=prctile(solfinal_a,[5 95]) 

disp('[prctile_b]') 

Pb=prctile(solfinal_b,[5 95]) 

disp('[prctile_c]') 

Pc=prctile(solfinal_c,[5 95]) 

disp('[prctile_d]') 
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Pd=prctile(solfinal_d,[5 95]) 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  

disp('Results of MMCFD of smoking habit') 

 

%Predicted values in --------, when t years                 

predicta=0.5049; 

predictb=0.1240; 

predictc=0.1240; 

predictd=0.1805; 

  

MMCFDa=musolfinal_a; 

MMCFDb=musolfinal_b; 

MMCFDc=musolfinal_c; 

MMCFDd=musolfinal_d; 

  

disp('[Numerical Simulation for the System]') 

disp('[MMCFD_a   MMCFD_b   MMCFD_c  MMCFD_d]') 

disp([MMCFDa    MMCFDb    MMCFDc    MMCFDd]) 

%####################################################### 

  

%Estimate error by mean square error 

disp('MSE to measure results error') 

   

%summation account 

   aMSEsum1=0; 

   bMSEsum1=0; 

   cMSEsum1=0; 

   dMSEsum1=0; 

  

 k=1; 

 while k<=q 

   aMSEsum1=aMSEsum1+(predicta-solfinal_a(k))^2; 

   bMSEsum1=bMSEsum1+(predictb-solfinal_b(k))^2; 

   cMSEsum1=cMSEsum1+(predictc-solfinal_c(k))^2; 

   dMSEsum1=dMSEsum1+(predictd-solfinal_d(k))^2; 

    k=k+1; 

 end 

  

   aMSE_SOL =(1/q)*(aMSEsum1); 

   bMSE_SOL =(1/q)*(bMSEsum1); 

   cMSE_SOL =(1/q)*(cMSEsum1); 

   dMSE_SOL =(1/q)*(dMSEsum1); 

  

disp('[aMSE_SOL       bMSE_SOL        cMSE_SOL      

dMSE_SOL]') 

MSE_SOL=[aMSE_SOL      bMSE_SOL        cMSE_SOL     

dMSE_SOL] 

%@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ 
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figure(1) 

%Sketch the results of the last simulation 

disp('[  last simulation_a                   last 

simulation_b                  last simulation_c              

last simulation_d  ]') 

last_sim=[  a(:,k)    b(:,k)    c(:,k)      d(:,k) ] 

t=t0:h:q; %Calculates up to t_final results  

plot(t,a(:,k),'o',t,b(:,k),'x',t,c(:,k),'*',t,d(:,k),'+'

) 

title('MMCFD solutions of smoking habit model'); 

xlabel('3 Years');  

ylabel('Subpopulations a,b,c,d'); 

legend('a','b','c','d') 

  

figure(2) 

t=t0:h:q; 

subplot(4,1,1) 

plot(t,a(:,k),'o') 

title('MMCFD of a solution of smoking habit model'); 

xlabel('3 Years ');  

ylabel('a');    

  

subplot(4,1,2) 

plot(t,b(:,k),'x') 

title('MMCFD of b solution of smoking habit model'); 

xlabel('3 Years ');  

ylabel('b');  

  

subplot(4,1,3) 

plot(t,c(:,k),'*') 

title('MMCFD of c solution of smoking habit model'); 

xlabel('3 Years ');  

ylabel('c');    

  

subplot(4,1,3) 

plot(t,d(:,k),'+') 

title('MMCFD of d solution of smoking habit model'); 

xlabel('3 Years ');  

ylabel('d');   
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Appendix D 
 

MMCRK Application of Smoking Habit Model 
 

 
%RK4 with MC to solve model of the nonlinear ODE system 

%******************************************************* 

clear 

close all 

format long  

 

%%%To solve a model for the evolution of smoking habit 

in Spain%%%  

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%model% 

%da_dt = a1*(1-a(t))-a3*a(t)*(b(t)+c(t)); 

%db_dt = a3*a(t)*(b(t)+c(t))+a2*d(t)+a4*c(t)-

(a5+a6+a1)*b(t); 

%dc_dt = a5*b(t)-(a4+a7+a1)*c(t); 

%dd_dt = a6*b(t)+a7*c(t)-(a2+a1)*d(t); 

  

%initial values% 

%t0=0;                %time per year 

%y0=[a0 b0 c0 d0];    %y0 = initial condition of a 

system  

%a0=0.5045;a(1)=n0;   %initial value of a(t)  

%b0=0.2059; b(1)=s0;  %initial value of b(t)  

%c0=0.1559; c(1)=c0;  %initial value of c(t) 

%d0=0.1337; d(1)=e0;  %initial value of d(t) 

  

% model with RK4 % 

%dy/dt in form of f(t,y).it can be a function of both 

variables t and y, 

%where y is n or s or c or e. 

%da_dt =f1(t,a,b,c,d); 

%db_dt =f2(t,a,b,c,d); 

%dc_dt =f3(t,a,b,c,d);  

%dd_dt =f4(t,a,b,c,d);  

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%  

 

disp('******************Input Data********************') 

 

 k=1000;   %number of simulation 

 h=1;      %step size 

 q=3;      %number of iteration 

  

%Generate values from the uniform distribution on the 

interval [a, b]. 
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disp('parameters of model')  

 a11=0.01; 

 a22=0.0425; 

 a33=0.0381; 

 a44=0.1244; 

 a55=0.1175; 

 a66=0.0498; 

 a77=0.0498; 

  

for j=1:k 

  rand('seed',k)  

  a1=(a11-0.2*a11)+((a11+0.2*a11)-(a11-

0.2*a11))*rand(j); 

  a2=(a22-0.2*a22)+((a22+0.2*a22)-(a22-

0.2*a22))*rand(j); 

  a3=(a33-0.2*a33)+((a33+0.2*a33)-(a33-

0.2*a33))*rand(j); 

  a4=(a44-0.2*a44)+((a44+0.2*a44)-(a44-

0.2*a44))*rand(j); 

  a5=(a55-0.2*a55)+((a55+0.2*a55)-(a55-

0.2*a55))*rand(j); 

  a6=(a66-0.2*a66)+((a66+0.2*a66)-(a66-

0.2*a66))*rand(j); 

  a7=(a77-0.2*a77)+((a77+0.2*a77)-(a77-

0.2*a77))*rand(j); 

  j=j+1;   

end 

  

%parameters=[ a1  a2  a3  a4  a5  a6  a7 ] 

disp('a1  a2  a3  a4  a5  a6  a7') 

par=[ par_a1    par_a2    par_a3    par_a4    par_a5    

par_a6    par_a7 ]; 

  

 disp('---------------------------------------------') 

for j=1:k 

  for i=1:q/h  

%q=number of iteration= number of years between 2006 & 

2009 

%disp('t0 = initial t ')  

t0=0;        %initial condition of t  %time per year 

%y0=[a0 b0 c0 d0]; 

%disp('a0 = initial a ')  

a0=0.5045; 

a(1,j)=a0;  %initial value of a(t)  

%disp('b0 = initial b ')  

b0=0.2059; 

b(1,j)=b0;  %initial value of b(t)  

%disp('c0 = initial c ') 

c0=0.1559; 

c(1,j)=c0;  %initial value of c(t) 

%disp('d0 = initial d ')  



143 

 

d0=0.1337; 

d(1,j)=d0;  %initial value of d(t) 

  

ka1=zeros(q/h,k); 

ka2=zeros(q/h,k); 

ka3=zeros(q/h,k); 

ka4=zeros(q/h,k); 

  

kb1=zeros(q/h,k); 

kb2=zeros(q/h,k); 

kb3=zeros(q/h,k); 

kb4=zeros(q/h,k); 

  

  

kc1=zeros(q/h,k); 

kc2=zeros(q/h,k); 

kc3=zeros(q/h,k); 

kc4=zeros(q/h,k); 

  

kd1=zeros(q/h,k); 

kd2=zeros(q/h,k); 

kd3=zeros(q/h,k); 

kd4=zeros(q/h,k); 

  

%Calculating ka1,kb1,kc1,kd1     

 %ka1= f1(t(i),a(i),b(i),c(i),d(i)); 

ka1(i,j)= a1(j)*(1-a(i,j))-a3(j)*a(i,j)*(b(i,j)+c(i,j)); 

 %kb1= f2(t(i),a(i),b(i), c(i), d(i)); 

 kb1(i,j)= 

a3(j)*a(i,j)*(b(i,j)+c(i,j))+a2(j)*d(i,j)+a4(j)*c(i,j)-

(a5(j)+a6(j)+a1(j))*b(i,j); 

 %kc1= f3(t(i),a(i),b(i), c(i), d(i)); 

 kc1(i,j)= a5(j)*b(i,j)-(a4(j)+a7(j)+a1(j))*c(i,j); 

 %kd1 = f4(t(i),a(i),b(i), c(i), d(i)); 

 kd1(i,j)= a6(j)*b(i,j)+a7(j)*c(i,j)-

(a2(j)+a1(j))*d(i,j); 

  

%Calculating ka2,kb2,kc2,kd2          

 %ka2 

=f1(t(i)+0.5*h,a(i)+0.5*ka1(i)*h,b(i)+0.5*kb1(i)*h,c(i)+

0.5*kc1(i)*h,d(i)+0.5*kd1(i)*h); 

 ka2(i,j)= a1(j)*(1-(a(i,j)+0.5*ka1(i,j)*h))-

a3(j)*(a(i,j)+0.5*ka1(i,j)*h)*((b(i,j)+0.5*kb1(i,j)*h)+(

c(i,j)+0.5*kc1(i,j)*h)); 

 %kb2(i)= 

f2(t(i)+0.5*h,a(i)+0.5*ka1(i)*h,b(i)+0.5*kb1(i)*h,c(i)+0

.5*kc1(i)*h,d(i)+0.5*kd1(i)*h); 

 kb2(i,j) = 

a3(j)*(a(i,j)+0.5*ka1(i,j)*h)*((b(i,j)+0.5*kb1(i,j)*h)+(

c(i,j)+0.5*kc1(i,j)*h))+a2(j)*(d(i,j)+0.5*kd1(i,j)*h)+a4
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(j)*(c(i,j)+0.5*kc1(i,j)*h)-

(a5(j)+a6(j)+a1(j))*(b(i,j)+0.5*kb1(i,j)*h); 

 %kc2= 

f3(t(i)+0.5*h,a(i)+0.5*ka1(i)*h,b(i)+0.5*kb1(i)*h,c(i)+0

.5*kc1(i)*h,d(i)+0.5*kd1(i)*h) ; 

 kc2(i,j) = a5(j)*(b(i,j)+0.5*kb1(i,j)*h)-

(a4(j)+a7(j)+a1(j))*(c(i,j)+0.5*kc1(i,j)*h); 

 %kd2(i,j) = 

a6(j)*(b(i,j)+0.5*kb1(i,j)*h)+a7(j)*(c(i,j)+0.5*kc1(i,j)

*h)-(a2(j)+a1(j))*(d(i,j)+0.5*kd1(i,j)*h); 

 kd2(i,j) = 

a6(j)*(b(i,j)+0.5*kb1(i,j)*h)+a7(j)*(c(i,j)+0.5*kc1(i,j)

*h)-(a2(j)+a1(j))*(d(i,j)+0.5*kd1(i,j)*h); 

   

 % Calculating ka3,kb3,kc3,kd3          

 %ka3 

=f1(t(i)+0.5*h,a(i)+0.5*ka2(i)*h,b(i)+0.5*kb2(i)*h,c(i)+

0.5*kc2(i)*h,d(i)+0.5*kd2(i)*h); 

 ka3(i,j) = a1(j)*(1-(a(i,j)+0.5*ka2(i,j)*h))-

a3(j)*(a(i,j)+0.5*ka2(i,j)*h)*((b(i,j)+0.5*kb2(i,j)*h)+(

c(i,j)+0.5*kc2(i,j)*h)); 

 %kb3= 

f2(t(i)+0.5*h,a(i)+0.5*ka2(i)*h,b(i)+0.5*kb2(i)*h,c(i)+0

.5*kc2(i)*h,d(i)+0.5*kd2(i)*h); 

 kb3(i,j) = 

a3(j)*(a(i,j)+0.5*ka2(i,j)*h)*((b(i,j)+0.5*kb2(i,j)*h)+(

c(i,j)+0.5*kc2(i,j)*h))+a2(j)*(d(i,j)+0.5*kd2(i,j)*h)+a4

(j)*(c(i,j)+0.5*kc2(i,j)*h)-

(a5(j)+a6(j)+a1(j))*(b(i,j)+0.5*kb2(i,j)*h); 

 %kc3 = 

f3(t(i)+0.5*h,a(i)+0.5*ka2(i)*h,b(i)+0.5*kb2(i)*h,c(i)+0

.5*kc2(i)*h,d(i)+0.5*kd2(i)*h) ; 

 kc3(i,j) = a5(j)*(b(i,j)+0.5*kb2(i,j)*h)-

(a4(j)+a7(j)+a1(j))*(c(i,j)+0.5*kc2(i,j)*h); 

 %ke3 = 

f4(t(i)+0.5*h,a(i)+0.5*ka2(i)*h,b(i)+0.5*kb2(i)*h,c(i)+0

.5*kc2(i)*h,d(i)+0.5*kd2(i)*h); 

 kd3(i,j) = 

a6(j)*(b(i,j)+0.5*kb2(i,j)*h)+a7(j)*(c(i,j)+0.5*kc2(i,j)

*h)-(a2(j)+a1(j))*(d(i,j)+0.5*kd2(i,j)*h); 

   

 %Calculating ka4,kb4,kc4,kd4    

 %ka4 

=f1(t(i)+h,a(i)+ka3(i)*h,b(i)+kb3(i)*h,c(i)+kc3(i)*h,d(i

)+kd3(i)*h); 

 ka4(i,j) =a1(j)*(1-(a(i,j)+ka3(i,j)*h))-

a3(j)*(a(i)+ka3(i,j)*h)*((b(i,j)+ 

kb3(i,j)*h)+(c(i,j)+kc3(i,j)*h)); 

 %kb4= 

f2(t(i)+h,a(i)+ka3(i)*h,b(i)+kb3(i)*h,c(i)+kc3(i)*h,d(i)

+kd3(i)*h); 
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kb4(i,j)=a3(j)*(a(i,j)+ka3(i,j)*h)*((b(i,j)+kb3(i,j)*h)+

(c(i,j)+kc3(i,j)*h))+a2(j)*(d(i,j)+kd3(i,j)*h)+a4(j)*(c(

i,j)+kc3(i,j)*h)-

(a5(j)+a6(j)+a1(j))*(b(i,j)+kb3(i,j)*h); 

 %kc4 = 

f3(t(i)+h,a(i)+ka3(i)*h,b(i)+kb3(i)*h,c(i)+kc3(i)*h,d(i)

+kd3(i)*h); 

 kc4(i,j) = a5(j)*(b(i,j)+kb3(i,j)*h)-

(a4(j)+a7(j)+a1(j))*(c(i,j)+kc3(i,j)*h); 

 %kd4 = 

f4(t(i)+h,a(i)+ka3(i)*h,b(i)+kb3(i)*h,c(i)+kc3(i)*h,d(i)

+kd3(i)*h); 

 kd4(i,j) = 

a6(j)*(b(i,j)+kb3(i,j)*h)+a7(j)*(c(i,j)+kc3(i,j)*h)-

(a2(j)+a1(j))*(d(i,j)+kd3(i,j)*h); 

  

 %Using 4th Order Runge-Kutta formula 

a(i+1,j)=a(i,j)+(1/6)*(ka1(i,j)+2*ka2(i,j)+2*ka3(i,j)+ka

4(i,j))*h; 

 

b(i+1,j)=b(i,j)+(1/6)*(kb1(i,j)+2*kb2(i,j)+2*kb3(i,j)+kb

4(i,j))*h; 

 

c(i+1,j)=c(i,j)+(1/6)*(kc1(i,j)+2*kc2(i,j)+2*kc3(i,j)+kc

4(i,j))*h; 

 

d(i+1,j)=d(i,j)+(1/6)*(kd1(i,j)+2*kd2(i,j)+2*kd3(i,j)+kd

4(i,j))*h; 

  

  i=i+1; 

  end 

j=j+1;  

end 

  

%result=[a'  b'  c'  d'] 

 result=zeros(q/h,k,4);  

for i=1:q/h     

  res(i,k,1) = a(i,k); 

  res(i,k,2) = b(i,k); 

  res(i,k,3) = c(i,k); 

  res(i,k,4) = d(i,k); 

 i=i+1;   

end  

result=[ res(:,k,1)    res(:,k,2)     res(:,k,3)     

res(:,k,4)] 

  

disp('[ a  b  c  d ]') 

for j=1:k 

  sol=[  a(:,j)   b(:,j)    c(:,j)     d(:,j) ] 

end  
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  solfinal=zeros(q/h,4); 

  for j=1:k 

    solfinal_a(j)=a(q/h,j); 

    solfinal_b(j)=b(q/h,j); 

    solfinal_c(j)=c(q/h,j); 

    solfinal_d(j)=d(q/h,j); 

    j=j+1; 

  end 

  

disp('[   solfinal_a      solfinal_b      solfinal_c   

solfinal_d]') 

solfinal=[solfinal_a(:)   solfinal_b(:)   solfinal_c(:)    

solfinal_d(:)] 

fprintf('solfinal_a       solfinal_b       solfinal_c      

solfinal_d \n') 

fprintf( '%1.5 f    %1.5 f    %1.5 f    %1.5 f\n' , 

solfinal_a  , solfinal_b, solfinal_c, solfinal_d ) 

  

  

musolfinal_a = mean(solfinal_a); 

musolfinal_b = mean(solfinal_b); 

musolfinal_c = mean(solfinal_c); 

musolfinal_d = mean(solfinal_d); 

  

disp('[ mean_a                   mean_b                      

mean_c               mean_d ]') 

disp([musolfinal_a              musolfinal_b              

musolfinal_c               musolfinal_d]) 

  

%Predicted values at 2009, when t=3 years                 

predict_a=0.5049; 

predict_b=0.1240; 

predict_c=0.1240; 

predict_d=0.1805; 

   

%Difference error  

Diff_a=abs(predict_a-musolfinal_a); 

Diff_b=abs(predict_b-musolfinal_b); 

Diff_c=abs(predict_c-musolfinal_c); 

Diff_d=abs(predict_d-musolfinal_d); 

  

disp('[Diff_a      Diff_b      Diff_c     Diff_d]') 

Diff_error=[Diff_a       Diff_b     Diff_c       Diff_d] 

  

%Absolute relative approximate error  

AE_a =abs((predict_a-musolfinal_a)/musolfinal_a); 

AE_b =abs((predict_b-musolfinal_b)/musolfinal_b); 

AE_c =abs((predict_c-musolfinal_c)/musolfinal_c); 

AE_d =abs((predict_d-musolfinal_d)/musolfinal_d); 

disp('[AE_a    AE_b     AE_c     AE_d]') 

AE_error = [AE_a    AE_b    AE_c    AE_d] 
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

disp('[prctile_a]') 

Pa=prctile(solfinal_a,[5 95]) 

disp('[prctile_b]') 

Pb=prctile(solfinal_b,[5 95]) 

disp('[prctile_c]') 

Pc=prctile(solfinal_c,[5 95]) 

disp('[prctile_d]') 

Pd=prctile(solfinal_d,[5 95]) 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

disp('Results of MMCFD of smoking habit') 

%Predicted values in --------, when t years                 

predicta=0.5049; 

predictb=0.1240; 

predictc=0.1240; 

predictd=0.1805; 

  

MMCRKa=musolfinal_a; 

MMCRKb=musolfinal_b; 

MMCRKc=musolfinal_c; 

MMCRKd=musolfinal_d; 

  

disp('[Numerical Simulation for the System]') 

disp('[MMCRK_a   MMCRK_b   MMCRK_c  MMCRK_d]') 

disp([MMCRKa    MMCRKb    MMCRKc    MMCRKd]) 

%####################################################### 

 

%Estimate of actual error by mean square error 

disp('MSE to measure results error') 

  

   %summation account 

   aMSEsum1=0; 

   bMSEsum1=0; 

   cMSEsum1=0; 

   dMSEsum1=0; 

  

 k=1; 

 while k<=q 

   aMSEsum1=aMSEsum1+(predicta-solfinal_a(k))^2; 

   bMSEsum1=bMSEsum1+(predictb-solfinal_b(k))^2; 

   cMSEsum1=cMSEsum1+(predictc-solfinal_c(k))^2; 

   dMSEsum1=dMSEsum1+(predictd-solfinal_d(k))^2; 

    k=k+1; 

 end 

  

   aMSE_SOL =(1/q)*(aMSEsum1); 

   bMSE_SOL =(1/q)*(bMSEsum1); 

   cMSE_SOL =(1/q)*(cMSEsum1); 

   dMSE_SOL =(1/q)*(dMSEsum1); 
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disp('[aMSE_SOL       bMSE_SOL        cMSE_SOL      

dMSE_SOL]') 

MSE_SOL=[aMSE_SOL      bMSE_SOL        cMSE_SOL     

dMSE_SOL] 

%@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ 

  

figure(1) 

%Sketch the results of the last simulation 

disp('[  last simulation_a                   last 

simulation_b                  last simulation_c              

last simulation_d  ]') 

last_sim=[  a(:,k)    b(:,k)    c(:,k)      d(:,k) ] 

t=t0:h:q; %Calculates up to t_final results  

plot(t,a(:,k),'o',t,b(:,k),'x',t,c(:,k),'*',t,d(:,k),'+'

) 

title('MMCFD solutions of smoking habit model'); 

xlabel('3 Years');  

ylabel('Subpopulations a,b,c,d'); 

legend('a','b','c','d') 

  

figure(2) 

t=t0:h:q; 

subplot(4,1,1) 

plot(t,a(:,k),'o') 

title('MMCFD of a solution of smoking habit model'); 

xlabel('3 Years ');  

ylabel('a'); 

    

subplot(4,1,2) 

plot(t,b(:,k),'x') 

title('MMCFD of b solution of smoking habit model'); 

xlabel('3 Years ');  

ylabel('b'); 

     

  

subplot(4,1,3) 

plot(t,c(:,k),'*') 

title('MMCFD of c solution of smoking habit model'); 

xlabel('3 Years ');  

ylabel('c');   

  

subplot(4,1,3) 

plot(t,d(:,k),'+') 

title('MMCFD of d solution of smoking habit model'); 

xlabel('3 Years ');  

ylabel('d')



1 

 

 

 

انٓذف يٍ ْزِ انشسانت ْٕ حم َظاو غيش خطي يٍ يسائم  انميى           

الابخذائيت  نهًعادلاث انخفاضهيت الاعخياديت يٍ انشحبت الأنٗ يكٌٕ يٍ يخغيشاث 

ٔيعهًاث يخعذدِ انخي حًثم كًخغيشاث عشٕائيت. في ْزِ انذساست َسخخذو طشيمت 

ْزِ انًُارج. انطشيمت انًمخشحت  يحاكاة عذديت خذيذِ حكٌٕ يُاسبت اكثش نحم يثم

ساَكا كٕحا ْي خهيط بيٍ طشيمت يَٕخي كاسنٕ راث انعًهياث انعشٕائيت ٔ طشيمت 

( طبمج نحم ًَٕرخيٍ ٔبائييٍ ًْا (MMCRK, حسًٗ ْزِ انطشيمت انعذديت

ًَٕرج اسخٓلان انكحٕل ًَٕٔرج عادة انخذخيٍ. َطبك اسبع طشق حمشيبيت عهٗ 

ُيٍ يًُٓا ححهيهيت ًْا طشيمت ادٔييٍ ٔطشيمت انخغايش انًُٕرخٍ انٕبائييٍ, اث

ٔانطشق الاخشٖ عذديت ًْا طشيمت انفشٔلاث انُسبيت ٔطشيمت ساَكا كٕحا. 

يخٕسط يشبع انخطأ ٔ يمياس الاخخلاف أسخخذيا نغشض انًماسَت بيٍ حهٕل 

انًحاكاة انعذديت نهطشيمت انًمخشحت ٔانميى انًخٕلعت. حى يماسَت طشيمت 

(MMCRK)  يع طشيمت(MMCFD)  ٌنهًحاكاة انعذديت, ٔحى انخٕصم انٗ ا

( الشب انٗ انميى انًخٕلعت يٍ انذساساث انسابمت يع ًَٕرج MMCRKطشيمت )

 اسخٓلان انكحٕل ٔ ًَٕرج عادة انخذخيٍ.

انبشايح انخي اسخخذيج نحساب انُخائح انًمذيّ في ْزِ انشسانت ًْا بشَايح  

, ٔنهشسى اسخخذو بشَايح 3112اصذاس  انًاحلاببشَايح ٔ 11اصذاس  انًاثًاحكا

 انشاسى انساحش.

 الوستخلص      
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 الوعذلت تقنيت الوحاكاة العذديت  

خطيتال غير ىباءلحل نوارج ال   

 

 سسانت

 يمذيت انٗ كهيت انخشبيت نهعهٕو انصشفت/أبٍ انٓيثى

 خايعت بغذاد ْٔي خزء يٍ يخطهباث َيم دسخت 

 انًاخسخيشفي عهٕو انشياضياث

 يٍ لبم

 

 ههذي عبذ الرضا سبع

 بأشراف

 أ.م. د. هها عبذ الجبار هحوذ

.م          0440 ھ .                                                                                  9102 

   

 

العراق جوهىريت  

العالي التعلين وزارة  

العلوي والبحث  

بغذاد جاهعت  

( الهيثن ابن) الصرفت للعلىم التربيت كليت  

الرياضياث قسن  


