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ABSTRACT

The aim of this thesis is to solve the nonlinear autonomous system of
initial value problem (I\VVP) for ordinary differential equations (ODE) of
the first order that has multi variables and multi parameters, these
parameters are random variables. This study uses a modified numerical
simulation process that is more suitable to solve some models. The new
approach mixes between a random process which is Monte Carlo
technique and a numerical method which is Runge-Kutta (RK). The new
process is called Mean Monte Carlo Runge-Kutta (MMCRK). It is
applied to solve two epidemic models which are alcohol consumption
model and smoking habit model under study. Four approximate methods
which are Analytic methods, Adomian decomposition (ADM) method,
Variational iteration method (VIM), and Numerical methods, finite
difference (FD) method and Rung-Kutta of 4" order method (RK4) are
applied on the two models under study in this thesis to verify the
solutions of these models. The difference measure error and mean
square error are used for comparison between the numerical simulation
solutions of modified method MMCRK and the predicted values of the
previous study. The comparison between MMCRK and Mean Monte
Carlo Finite Difference (MMCFD) that was used in one study,
numerical simulation methods has been made, the MMCRK method has
been approached to the predicted values of the previous studies with the
alcohol consumption and smoking habit models. Three softwares are
used for computing the presented results in this thesis which are
Mathematica.11 and Matlab softwares 2013, the figures have been
sketched by the Magic Plot software.
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CHAPTER 1:

INRODECTION
AND
PRIMARY CONCEPTS




1.1 Introduction:

Ordinary differential equation (ODE) is an equation for unknown
functions of dependent variable and its derivatives. If the independent
variable of ODE is in terms of a variety of time and does not appear
explicitly, then the system is called an autonomous system or
sometimes, a time-invariant system. The highest derived to the
differential equation is the order of it [80]. The power of the highest
order derivative in the equation is its degree [83]. The itial value
problems of the nonlinear autonomous system of the first-order ordinary
differential equations in this thesis is to raise a campaign about alcohol
consumption and smoking habit in Spain as epidemiological model. The
behavior of the autonomous dynamic system of the thesis applications

are studied [42].

The mathematical model is a description of a natural phenomenon
either as a deterministic model or stochastic model. The stochastic
model provides multiply results. These results include one or more
random variables. These variables are solved by randomly, such as Mont
Carlo simulation [44, 51, 81]. On the other hand, a deterministic model
does not contain a random variable and in this case the solution is
unique and n a specified period of time. These models are solved by
deterministic methods such as Runge-Kutta, finite-difference, finite
volume, finite-element etc. [48]. There is also a randomized-
deterministic modeling approach, where it represents a specific random
model and is considered a third type of method. Where the Chemical
Master Equation (CME) application is an example of stochastic
deterministic modeling, where is mixed of deterministic and stochastic

deterministic model. This shows us the time development in the
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probability density function of the system in the case of the system.
Unfortunately, a few bounds only to solve the route approach of the
CME for general system [50, 52]. In the present thesis, stochastic-
deterministic models show us general behavior of the real social
epidemic models. The epidemic models are the extensive applications of
nonlinear autonomous stochastic-deterministic models [9, 25, 41], that

specialized in this study.

The most epidemiological models can be represented in the form of a
system of ordinary differential equations, where this system depends on
the independent time t. Using the simulation because of these models
have parameters that have random distribution in nature, some of these

systems are resolved, see [16].

1.2 Epidemic Models:

The epidemic model is a model which deals with an epidemic that
spreads rapidly in a large size of population, where the epidemic models
are considered as stochastic-deterministic models that can be formulated
as a system of differential equations from the first order. Analysis of
epidemic behavior either decays, grows or remains in the population
with the time [25].

Epidemic model is divided according to the weakness of humans
toward the disease. Susceptible (S), Exposed (E), Infectious (I),
Recovered (R). Susceptible (S) is the group people with them who has
been infected, Exposed (E) is the group people infected but not move
the infection. Infectious (1) are people transform the disease while

Recovered (R) are the individuals who have immunity from the disease




and cannot infect others. The profile of a disease that can be represented
by Susceptible-Exposed-Infection-Recovered (SEIR) type is known as
epidemic model, which is used in this thesis. There are also others
simple types of the disease models such as Susceptible-Infectious-
Susceptible (SIS) type and Susceptible-Infectious-Recovered (SIR)
type. The preliminaries of SIS, SIR and SEIR dynamic models are
outlined by [25].

The stability of the epidemic models were also evaluated in recent
year. A SIR model of a nonlinear autonomous system of ODE was
discussed by [7].

The basic reproduction number (R,) is an important tool to see the
stability of the behavior of the epidemic model. R, is threshold quantity
and considered as a tool to determine whether an epidemic occurs or the
disease simply dies out. This value determines the probability of
transmission [25]. The disease is non-transporting in infectious time in
his infectious period, if R, less than one, therefore the infectious will be
away in the future. There is an epidemic in the population, if R, more
than one. If R, equal to one, the disease becomes a settler in society and
a consistent rate, such that each infected individual transmits the disease
to other susceptible individuals [8, 15, 46, 59].

1.3 Analytical Methods:

In this section, the ADM and VIM have been used to solve the
system of nonlinear ordinary differential equations and may provide the

exact solution, as these methods will be shown in detail in Chapter 2 and




Chapter 3. In this thesis, the system of the nonlinear ordinary
differential equation of epidemic models is solved.

1.3.1 Adomian Decomposition Method (ADM):

The Adomian decomposition method (ADM), is analytic method that
was introduced and developed by George Adomian 1976 [83], ADM is
a reliable method to solve many various kinds of problems, so it is a
trusty method which emerging in applied science. This method has been
used by many researchers as well as it has extensive applications of
linear and nonlinear ordinary differential equations, partial differential
equations and integral equations [5, 83]. It consists of the sum of an
infinite number of components of decomposition the unknown function
u(x) of any equation and which is written in a series of the

decomposition:

u(x) = Xz Un (%) (L.1)
or equivalently
u(x) = uy () + ug () tuy (x) + -+

where the linear components u,(x), n > 0 are evaluated in a recursive
manner. The decomposition method concerns itself with finding the
components u,,uq,U, ,....etc. The zero component is determined by all
terms that are not included under the integral sign. Consequently, by
setting the recurrence of these components wu;(x), i =1 for the

unknown function u(x) identified.

Consider the following nonlinear differential equation




Lu+ Ru = g(x), (1.2)

where L and R are linear and nonlinear operators, respectively, and g(x)

IS the source inhomogeneous term. The ADM introduces for Eq. (1.2) in

the form
Uy (x) = g(x),
Uiy (1) = f) oo un (D))dt, n =0 (1.3)

For the nonlinear solution u(x), the infinite series of polynomials

becomes:

u(x) =270 A, (Ug,uyq, ..., Uy). (1.4)

Recurrently the components u,,(x) of the solution u(x) determined
and the Adomian polynomial (4,,) which are obtained from the formula

of the nonlinear terms [4].

_ 14" [9(2?:0 2 ui)] 10 n=1.2,.. (1.5)

nToprdan

The formulas of the first several Adomian polynomials from A, to A,,

have been listed below as given in [4].

AO = g(uO)'

Ay =u,9' (up),
! 1 2 11
Ay =u,9' (up) + 5”1 g" (),

! r 1 1244
As = uzg' (ug) + u u,g (u0)+§u13g (Uup),




1 1
Ay =usg (up) + (Eu% + u1u3) g (ug) + Eu%uzg'"(uo)

1
+ Zu;l:g,’,,(uo),

and so on.

1.3.2 Variational Iteration Method (VIM):

The Variational Iteration Method (VIM), is an iterative analytic
method that was established by Ji-Huan. This method is used widely in
scientific and engineering applications, where it is used to solve linear
equations, nonlinear, homogeneous and inhomogeneous. VIM is an
effective and reliable method and has a quick solution approach the
exact solution. The VIM differs from the ADM, where it does not
require specific treatment of nonlinear problems as in the Adomian
method [83]. If the exact solution is not possible, then the obtained
series can be used for numerical purposes. In order to define the basic
concepts of the VIM, is considered the following nonlinear equation
[39].

Lu(x) + Ru(x) = g(x), X > Xy, Xg €ER (1.6)
where, L is a linear operator, R a nonlinear operator and g(x) is the

source of the inhomogeneous term. The VIM introduces functional for
Eq. (1.6) in the form:

U1 (6) = un () + f 20 (Lu(x) + RZ, () — g())dt,  (L.7)




where A is a general Lagrange multiplier which can be identified
optimally via the variational theory, and i, as a restricted variation. The
Lagrange multiplier A may be constant or a function and it is given by

the general formula [82].

— (_—_1\n 1 _ n—1
A = (D" == (= x) (18)
However, for fast convergence, the function u,(x) should be selected

by using the initial condition for ODE as follows:

uy (x) = u(0), for first order.

uy(x) = u(0) + xu'(0), for second order.

1o (x) = u(0) + xu'(0) + - x?u" (0), for third order

and so on.
The successive approximations u,,,, (x), n > 0 of the solution u,,(x)
will be ready immediately, when using a selective function wu, (x).

Consequently, the solution is given by

u(x) = lim,_, o, u, (x) (1.9




1.4 Numerical Methods:

In this section, we study two numerical methods which are finite
difference and Runge-Kutta that give results may converge to the exact

solution.
1.4.1 Finite Difference (FD) Method:

Fmite difference (FD) method is one of the approximate methods that
used to solve the differential equations. In general, where the solution is
accurate and necessary for the technology mtended solution required
[76]. FD is a numerical method to solve initial value problem. The result
of FD represents the discrete numerical values that approximate the
exact solution. The system of differential equations which have time-
dependent coefficients can be solved numerically by FD method [23].
Sometimes, this method is called the method of lines and can be
considered as a discretization method [36]. FD is an iteration process to
solve differential equations [29]. It considered as an approximation of
the derivative of the differential equation.

There are three types of finite approximation methods; finite
difference, finite volume and finite element. Finite difference (FD)
method is the oldest numerical method to solve differential equations. It
approximates the derivatives of differential equations and deals with the
points where the solution domain is treated as a grid system. Finite
volume (FV) method deals with the integral form and approximates
surface and volume integrals when the solution domain is subdivided
into a limited number of neighboring volumes. The surface and volume
integrals are approximated by appropriate quadrature formulae. Finite
element (FE) method has the most properties of the FV method. The

domain is divided into a collection of discrete volumes of finite

8




elements. The solution is an approximation by linear function [27]. A
system of finite difference equations is stable when the cumulative
effect of all the rounding error is negligible. In some cases, it is quite

possible to develop this system [47].

The general form of FD for an ordinary differential equation (ODE) can

be written as follows:
y' =f(ty), c<t<d, (1.10)

with initial value

y(c) = Co,

FD discrete the time t in (¢,d) into m sub intervals which is equal to

endpoints, t; =c +ih, for i =1,2,...,m, where m is the maximum

number of iterations and h = dm;c IS step size.

The step size h = 1, (per day, week or year) is chosen in our study
since FD is solving the real social epidemic model estimated on a time
basis. Therefore, Eq. (1.10) becomes:

y' (&) = f(t,y(tD). (1.12)

By using the central difference formula of FD, the equation [27]

v = f), (1.12)
becomes:
Yo~ Y1 7Vio1 i=12..m. (1.13)
dt 2h




Supposethat a step size h is a fixed positive number. Some of higher
powers for approximations of a function using Taylor series, approach

to zero. The term of error for the central FD is [31].

0(h*) = —h*y" (@) (1.14)

We can explain the deriving of the central finite difference formula

by using a Taylor theorem as follows:

The expression of the Taylor series of order m at h is

y(t+1) = y(©) +hy' (&) + Ry () +h3y" (D) + -+

—hmy™ (0). (1.15)
The approximate function at (¢t + h)and (t — h) lead to
y(t+h) =yO +hy' ©+3h%y" O+ Py O+ (116)
y(t—h) =y(®) —hy' ©+3h*y" O - kY O+ (117)

we obtain by subtraction

2 2
y(t+h) —y(t—h)=2hy'(t) + gh?’y”’(t) + §h5y""’(t) + -

(1.18)
The central finite difference formula with its truncation error can be
written as
y'(0) =5 [yt +h) =yt = D] = h*y" (). (L.19)

where § is a value in the interval of a function y and —%hz y"(6)is the
error term [19].
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To construct a formula of finite difference method to solve
differential equations, let first mention that our study considers the
function f in Eq. (1.20) is a nonlinear of y, h is the step size, m is an

integer and t = 1,2,3, ..., m. Suppose that

t =ty Y(t) = Y, f(¥) = fn and fr = f (V). (1.20)
The first derivative form in calculus is given for the forward, backward

and central differential schemes is given as

( y(t+h)- Y(t) Ym+1—"Vm
| h ) {T;
Y i, 4 y(w—y(t YOy { nnes, (L.21)
y(t+h) —-y(t-h) kYm+1 ~Ym-1
k 2h ’ 2h ’

Substitute the corresponding Egs. (1.16) and (1.17) in Eq. (1.10) to
obtain the finite difference schemes of Eq. (1.10);

Ym+’1l_3"m — fmr (122)
Ym—Ym-1 Ym 1 fml (123)
Ym+1 " Ym-1

Yo Vet — (L.24)

The Equations expressions (1.22), (1.23) and (1.24) are called the
respectively forward Euler, backward Euler, and central finite difference
schemes [53].

A finite difference approximation satisfies the consistency condition
and stability that is the necessary and sufficient condition for the
convergence solutions [14].
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1.4.2 Runge-Kutta (RK) Method:

Runge-Kutta (RK) method is provided an approximate solution for a
system of ordinary differential equations with known initial conditions
[47]. Tt is a numerical technique that used to solve the ordinary
differential equation only of the first order. This method is used for high
accuracy and at the same time decrease the errors [77]. RK has

constructed a four-stage with respect fourth-order (RK4) method [43].

The study shows that the solution of the system of nonlinear ODE is
feasible by the Runge-Kutta method; it yields more accurate results than
that obtained by finite difference methods. The use of Runge-Kutta
methods to solve problems of this type is a novel approach. It is
anticipated that this technique can be utilized to solve other complex
problems of similar nature [47].

The general form of the first order ODE given in Eqg. (1.10), the
initial value y(t,) =y,, with the interval t, <t <t,,, where t is the
independent variable, y is the dependent variable, m is the number of
points;

toisgiven, t; =t,+ h, t, =t, + 2h, t,, =t, +mh,
where h is a fixed step size, the unknown function y,, y,, v, ...,m can

be solved by using the RK4 method [79] as the following:

Vier = 7 (e + 2Ky + 2k + ky) (1.25)
where

ki = hf(ty,y:) (1.26)

ko = hF(E+5,1 + ) (1.27)
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h k
ks = hf(ti+2,7, +12) (L.28)
k, =hf(t;+h,y;, +k3) (1.29)

The classical fourth order Runge-Kutta method is solves the IVP
and gives a more accurate result. This method convergent when the
difference between the exact solution and the solution of differential

equation at k*" step satisfies the condition.

limy,_,, (maxlsksm |Y(tk) — Yk ) =0, (1.30)
where m is the number of iterations of RK.

The stability of a numerical method ensures that small changes in the
initial conditions should not lead to large changes in the solutions [14].
RK numerical iteration method with different orders such as RK2, RK4,
RK45 and RK78 [58]. In this subsection, the Runge-Kutta of order four

method is used for solving some nonlinear system of ODEs.

1.5 Simulation Methods:

The use of random numbers in the statistics after taking the random
samples of experimental units without exact characteristics. Now uses in
the simulation studies of the stochastic processes, this area is called
simulation, Monte Carlo and resampling [30]. Monte Carlo (MC)
method indicates a sampling by traditional technical by generating
random numbers to sample from a probability distribution [69]. After
the development of computer system, MC method is an international
method. Monte Carlo s a derived name of a city in Principality of
Monaco [76]. The Monte Carlo algorithm using computer programs
creates random numbers with a probability density function that equal to
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one if the numbers between 0 and 1, and in another place equal to zero.
These numbers are considered as random variables a distributed

uniformly on (0,1) [68].

The MC simulation process generates uniform random numbers. The
following MC procedure is used in our study [17]: firstly, we generate
random numbers in the interval (0,1) such that each of these random
numbers is considered as a random variable that has a uniform
distribution on the interval (0,1) (standard uniform distribution). Then
the inverse transform method is used to transform the random variables
which have the standard uniform distribution, into random variables
that have specific distribution [19]. The inverse transform method

(inversion method) has the following formula:

Let X be a random variable and F(x) a cumulative distribution

function. Suppose that F~1 is the inverse of function F and let € be a
continuous random variable that distributes uniformly on interval (0,1),
such as [19].

P(F(e)<x)=P(e < F(x)) =F(x). (1.31)
€ Is a continuous random variable then P(e = F(x)) = 0 and by taking

F~! for ¢ = F(x), the random variable X is equal to F~* (&) and it has

been written as:

X =F1(). (1.32)
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Box-Muller transformation is an example of a method that uses the
inverse transform to convert two uniform random variables into

normally distributed random variables.

The probability density function of uniform distribution on (a, b),

where a and b are lower and upper bounds is

1

Flx) = {E’ fora<x< b,’ (1.33)
0 otherwise.

and the cumulative distribution function G of the uniform distribution on
(a,b) is

0 forx<a,

xX—a

F(x) = ' a fora <x <b, (1.34)
for x > b.

Then the inverse of the uniform cumulative function F~1 has the
following formula:
X=FYe)=a+ (b—a)s (1.35)

where ¢ has the standard uniform distribution [68].

The importance of the Monte Carlo and simulation methods in the past
years have increased in various sciences. The simulation methods have
a central role in the scientific developments as the physical sciences, the
computational life sciences, and the other computational sciences. The
developed approach to the simulation system as well as the

development of computers is making it a tool for a substance for the
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processing of the various natural sciences, together with theory and
traditional experimentally. At the kernel of Monte Carlo simulation is
random number generation. The parameter values can be used for any
value required in simulation applications. This is one of the features that
make the Monte Carlo simulation method is very useful [76]. The types

of random sampling are Monte Carlo and Latin hypercube sampling.

The reason of using a simulation technique in our study belong to the
nature of parameters of the models under study, are random variables
and not available, the simulation technique generates the data of these
parameters.

1.6 Numerical Simulation Method:

Numerical simulation methods can solve the system of differential
equation using a numerical method and simulation processes. The
numerical simulation method is considered more appropriated to solve
such systems that have randomness in their coefficients, these
coefficients depend on the variable time, and they are treated by the
simulation process. The Monte Carlo finite difference (MMCFD) is a
numerical simulation method that merges between Monte Carlo
simulation process (MC) and finite difference numerical iteration
method (FD). This method was suggested at the first time by
Mohammed. M, et al, in 2019 [55]. This mixed method MMCFD
simulates firstly the parameters of a model firstly when these parameters
as random variables. Then the system is solved numerically m times
using FD with the first simulated estimation parameters. The m

numerical simulated results have been gotten. The last numerical
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iteration result has been selected which is FD of order m iteration result
(FD_m) that is called the final solution. This process is returned with
the second simulated estimation parameters, and so on until the last
number of simulations. Finally, the mean of the n time simulations for
the final solutions is called Monte Carlo finite difference (MMCFD).
MMCFD is one an established approximate method using to solve the
system of differential equation numerically. This method was applied on
obesity model [55] and cocaine consumption [57]. To more understand,

see Figure 1.1.

Step 1

Simulate the model's parameters by MC at the first time

Step 2
Solve the systemm-times iterations numerically by FD.

Then select the final iteration value.

Step 3

Repeat steps 1 & 2 n- simulations times

Step 4

Evaluated the mean of the final iteration values of from step 3 to be the
solution of model

Figure 1.1: The steps of MMCFD process
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1.7 Prediction Interval and Percentile:

A prediction Interval is one of the statistical indicators to describe the
data. It is also describes the solution for numerical simulation, in this
study. The proposed modified method in Chapter four is useful to
determine the prediction interval when the random distribution of the
numerical solution is necessary for estimation of real epidemiological
models. Prediction interval is an interval contains upper and lower
bounds for predicted values of the distribution for each subpopulation of
a model. It can be obtained by using the pt"* percentiles (P%) to give
upper and lower limits. A percentile is a value within a distribution that
divided ordered predicted values into two or more parts by a straight-
line between these values. It belongs to the vector distribution of
random variables. As a consequence, the p'" percentile of the predicted
values is inside a population. The percentile value is equal to or less
than the number that required to calculate it when 0 < p < 100. Since,

the index becomes ((n)x (p +100)) when n represent the total
number of predicted values in the distribution and represents for the pt"

percentile value within the population distribution [64, 86].

1.8 Errors:

Two types of errors can be used in this thesis which are difference
measure error and mean square error. The uses of these errors, is to

purpose the comparison of the methods used in our study.
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1.8.1 Absolute and Relative Errors:

There are many types of numerical errors, where the following
species are the most common, the absolute error, relative error, and
truncation error. Let a and b are two values, one the exact value (a) and

the other approximate value (b). The general formula for absolute error

la—bl

lal

is |a — b|, and the relative error is [19].

1.8.2 Difference Measure Error (|E, |):

The difference measure error |E,| is the difference between the

approximate (either analytic or numerical) solutions and the predicted
values that propose in our study [55].

1.8.3 Mean Square Error (MSE):

The MSE is the quality of a predictor (random variable), or an
estimator (an estimate of a parameter of the population from which data
IS sampled).

If a vector of n predictions generated from a sample of n data points

on all variables, and x is the vector of observed values and x is the

variable being predicted, then denoted by MSE is computed as:
MSE = -3, (x; — £)2. (1.32)

MSE is mean (% n_) of squares of the errors (x; — &;)? [62].
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1.9 Review of Literature:

In this section, we remember the researchers who use analytical
methods such as adomian decomposition method (ADM) and variational
iteration method (VIM), and who used numerical methods such as finite
difference (FD) and Runge-Kutta (RK). Some researchers were talking

about some epidemiological models.

The modified ADM with its applications on some equations have
been given, see examples in [1, 2, 21, 60]. Some researchers used the
ADM to solve a system of ordinary differential equations [13] and apply
on the epidemic model [12, 49]. As well as, ADM solved a system of
integral-differential equations [11]. Recently, the accuracy of nonlinear
singular initial value problems was discussed using a semi-analytic [80].
ADM is applied to solve fuzzy fractional order differential algebraic
equations [10], modified adomian decomposition method was applied
on Integro-Differential Inequality [66].

Many works to solve nonlinear problems using VIM [39], with
autonomous ordinary differential systems [40] and to solve differential

equations that have fractional order [61].

The Runge-Kutta (RK) methods provide an approximate solution
for a system of ordinary differential equations with known initial
conditions. Runge-Kutta (RK) method is a powerful tool for the solution
of ordinary differential equations (ODE). Most of the research has been
oriented towards improving the accuracy or the flexibility (to
accommodate problems of diverse nature) of the classical Runge-Kutta

method [47]. The solution of the system of nonlinear ordinary
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differential equations (ODE) is obtained by using this method. A similar
approach has been taken by [57].

Previously, an inverse problem for nonlinear parabolic was solved by
finite difference scheme jointed with Monte Carlo algorithm and the
unknown diffusion coefficient was estimated using polynomial format
[26]. Finite difference method was integrated with Monte Carlo
simulation process in order to predict the behavior of the dam [67], the
random variables which were generated by Monte Carlo method in this
problem have a Gaussian distribution. In recent year, the elliptical
partial differential is analyzed by stochastic finite element method [66].
Nonlinear random differential equations were solved by generalized

polynomial chaos method [22].

The social epidemic is known as the spread of bad habits through
social pressure as the cocaine, obesity, smoking and alcohol
consumption. Some epidemiological models have been studied to
understand the dynamics of phenomena which become better. [73]
predicted the future behavior of alcohol consumption in the Spanish
population by estimating the parameters of the model and by fitting the
model to real data. [33] studied the effect of the smoke-free law on the
evolution of smoking habits in Spain, before and after applying this law
from during 2006 to 2009. Predicted the effect of this law on the growth
of the smoking habit in the Spanish population.

Recently, [20] estimated epidemic model parameters using least-
square fitting. [87] analyzed a mathematical model of epidemics of
seasonal influenza in Australia using the likelihood-based method. [45]

studied the optimal control strategies of influenza epidemic model in
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Korea. There are other researchers who analyzed the behavior of some
mathematical epidemic models recently. [18] discussed Ebola synthetic
epidemics. Chowell in 2017 discussed dynamic of epidemic outbreaks

and estimated the parameters using fitting approach [20].

In 1983, the inversion of nonlinear stochastic operators is studied by
Adomian and Rach [5]. In 1976, the nonlinear stochastic differential
equations are studied by Adomian [3].

In 2004, the mathematical model in biology is studied by Allman [9].
In 2006, solution of the epidemic model by Adomian decomposition
method are studied by Biazar [12]. In 2001, the mathematical models in
population biology and epidemiology is studied by Brauer [15]. In 2010,
the Monte Carlo simulation via a numerical algorithm for solving a
nonlinear inverse problem are studied by Farnoosh and Ebrahimi [26].
In 2000, the variational iteration method for autonomous ordinary
differential systems is studied by Ji-Huan [40]. In 1991, the numerical
methods for ordinary differential systems of the initial value problem is
studied by Lambert [48]. In 2012, the combining Monte Carlo and finite
difference methods for effective simulation of dam behavior is studied

by Rohaninejad and Zarghami [67].

1.10 Problem Statement:

A social epidemic is a bad habit that is moving community by social
pressure. Works researchers represent the mathematical model in order
to control the spread the epidemic. These epidemiological models can be
represented in the form of a nonlinear systems of ODEs. These models

have parameters and these parameters are random distribution in nature.

22




Because of the first one missing some real data n real model, the

simulation technique help to generate random variables.

The simulation technique itself, may be appropriate to such these
models for some reasons: through it, we get to better understand through
the detailed control of the system and to analyze the phenomenal
changes and the effects of the information under study. The simulation
system sometimes design the experience of a new system. The
simulation can also be used to analyze a dynamic system with their real

time [68].

The importance of this study comes, in fact from some real models of
nonlinear systems of ODEs that are made up of random variables. To
resolve these systems, use suitable numerical simulation methods such

as MMCFD and the new proposed method MMCRK, where these

methods support the expected solutions.

1.11 Research Objectives:

This research is to achieve the following objectives:

e To use some analytical methods as ADM and VIM and some
iterative numerical methods as FD and RK4 and to solve two epidemic
models which are alcohol consumption model and smoking habit model.
e C(Create a modified method which is Mean Monte Carlo Runge-
Kutta (MMCRK) for solving models in the form of nonlinear systems of
ordinary differential equations and compare it with another numerical
simulation method which is MMCFD for the purpose of comparisons.

e To apply the new method MMCRK under study on selected social

epidemic models.

23




e To compare the simulation results obtained from the modefied
numerical simulation method with the results of analytical and
numerical ~ methods with predicted and stochastic-deterministic
solutions.

e  To compare between methods under study by some indicators such
as the difference measure error of numerical and analytical solutions
and Mean square error for numerical simulation solutions.

e To analysis the analytical and numerical simulation results obtained

graphically and tabularly towards the solutions of the epidemic models.

1.12 Scope of Research:

Social epidemic models with numerical simulation technique are
considered in our study. These models are treated as deterministic
problems with a probability process that can be programmed into
computers to save time, effirte and cost [69]. Chose, two models of
social epidemics which are alcohol consumption model and the of
smoking habit model to prove modified numerical simulation method

which is MMCRK method in the present study.

1.13 Thesis Outline:

This research embarks on finding the alternative modified methods
of simulation technique approaches in order to supply numerical
simulation solutions for some real stochastic-deterministic nonlinear

epidemic systems as well as to give prediction ranges of these solutions.

This thesis is divided into five chapters; Chapter 1, introduction and

the preliminaries and concepts of this research are outlined briefly in the
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subsections of introduction, research objectives, literature review,
problem statement and scop of the research, some concepts about our
study. Chapter 2 provides a brief literature review ideas and concepts of
ordinary differential equations, epidemic model of alcohol consumption
specified with their applications, analytic methods as ADM and VIM,
also numerical iteration methods as FD and RK4. In Chapter 3,
epidemic model of smoking habit that has solved by analytic methods as
ADM and VIM, also numerical iteration methods as FD and RK4.

Next in Chapter 4, a modified approach between Monte Carlo
simulation and Runge-Kutta method, namely Mean Monte Carlo Runge-
Kutta (MMCRK) method, is applied to solve two epidemic models
which are alcohol consumption and the smoking habit. MMCRK has
been compared with a numerical simulation method which is MMCFD
some indicators. Finally, Chapter 5 is the overall findings and
conclusion of the research are provided. In addition, some future works

are added to extend the present study.
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CHAPTER 2:
Applications of Some Analytic and Numerical
Methods on Alcohol Consumption Mode

2.1 Introduction:

Alcohol consumption habit is considered as a social disease that
spread out rapidly by social pressure or social contact. Recently, the rate
of alcohol consumption has increased more with the developing
countries, so alcohol consumption represented a big problem that effirte
not only on the human health, but also on the community economy.
When the number of people who are suffering from such diseases
increased, because it is very expensive, regard to the health effects of
chloride that impact on the healthy body, the chloride can damage some
parts of the body such as heart and liver, influence also on the other
functions. An addition that, the cost of alcohol affects the economy [28,
73]. Alcohol problem in Ireland and the United Kingdom, this problem
was discussed and the data was reported for the first year of 2002 until
the end of 2014 [24]. In Spain, the effects of the different usage of
alcohol between the female and male in Spanish university alumni was
studied [32].

The type of epidemiological models had been used to of many social
diseases. In the recent years, several researchers were interested to study
and analyze the social epidemics about ecstasy or heroin addiction [70,
85], smoking habit evaluation in Spain [33, 34, 37], a cocaine abuse in
Spain [35, 57, 71], campaigns on reducing excess weight in Valencia
[56, 57, 72].
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In this chapter, we try to apply some classic analytic methods such as
ADM and VIM and some numerical methods like FD and RK4, on
social epidemic model which is Alcohol consumption in Spain. This
application is used to compare between the numerical and analytical
solutions using the difference measure error, since ADM, VIM, FD, and

RK4 are confident methods.

2.2 Mathematical Model of Alcohol Consumption:

The mathematical model of alcohol consumption was explained and
described in the current study by Santonja et al., (2010) [73]. This model
consists of three subpopulations of Spanish population who have about
15-64 years old from 1997 to 2007 years that represented as the
nonlinear system of three ordinary differential equations of the first
order. This system is referred to analyze the changing in social epidemic
stages (non-drink alcohol people, non-risk-drink alcohol people and
risk-drink alcohol people), see Table 2.1. The parameters of this model
are described in Table 2.2.

The model is described as

a’'(¢) = a + Br(t) — pa(t) — Ea(®)(m(D) + r(t)) — a(t)(a — pa(t) -
om(t) —or(t)) (2.1)

m’(t) = Sa(®)(m(t) +r(t)) — nm(t) + pa(t)m(t) — oa(t)m(t) —
am(t) (2.2)

r’(t) = nm(t) — Br(t) + pa(t)r(t) — oa(t)r(t) — ar(t) (2.3)
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These parameters are transitional links that connect the different

groups of society to move people from one stage to another stage of the

epidemic.

The initial conditions of equations (2.1), (2.2) and (2.3) in 1997 are
a(t =0) =0.362, m(t =0) = 0.581, r(t =0) = 0.057,

with the predicted parameters are given as: a = 0.01, f = 0.0014,
u=0.008, & =0.0284534, ¢ = 0.009, and n = 0.000110247, [73].

Table 2.1: Variables of alcohol consumption model [73]

Non-drink alcohol people are subpopulations who never drink
a(t) | alcohol in their life.
Non-risk-drink alcohol people are subpopulations who drink a
little liquid of alcohol that means the men who drink less than
o) 50 cc and women who drink less than 30 cc of alcohol every
day.
Risk-drink alcohol people are subpopulations who drink a lot
r () of alcohol that means the men who drink more than 50 cc and
the women who drink more than 30 cc of alcohol every day.
Table 2.2: Parameters of alcohol consumption model [73]
a | Birth rate in Spain
B | The rate at which a risk-drink alcohol people becomes a
non-drink alcohol people
u | Death rate in Spain
¢ | Transmission rate because social pressure that leads to
increase the alcohol drinking
o | Growing death rate due to alcohol drinking
n | Arate that transmits a non-risk-drink alcohol people move
to the risk-drink alcohol people
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2.3 Problem Solution using Analytical Methods:

In this section, two analytic methods have been used which are ADM
and VIM to solve the epidemic model of alcohol consumption.

2.3.1 Adomian Decomposition Method (ADM):

The nonlinear system of equations (2.1),(2.2) and (2.3) can be
solved by using the Adomian decomposition method with the initial

condition and the given parameters. Let [ be an operator that is given by
l:% and the inverse of this operation is [71 = fot(.)dt, then by

applying [~ for both sides of equations (2.1), (2.2) and (2.3) we obtain:

a(t) —a(0) =" (a + pr(t) — pa(t) — éa(m(t) + () —

a(t)(a— pa(t) — om(t) — or(t))),
where a, = 0.362.

Similarity,
m(t) —m(0) = I (éa(t)(m(t) + r(t)) — nm(t) + pa()m(t) —
oa(t)m(t) — am(t)),

where m, = 0.581, and

r(®) —r(0) = 7" (ym(6) — pr(t) + pa(Or(t) — ca(®Or() — ar(0),
where r, = 0.057.

29




The above equations equivalent the following Egs. (2.4), (2.5) and (2.7):
Aperr = U@+ Bry — pay — A, — §By — aay + uCy + oAy + 0By),

k > 0. (2.4)
My = UHEA, + B) —nmy, + pA, — A, —amy), k=0. (2.5)
Ter1 = L *(ymy, — Bry + uB, — 0B, — ary,), k = 0. (2.6)

The general form of the nonlinear borders A, B, and C, have to be:

A = Ei=0 an) Xi=omy), k =0,1,2
A = (ag+ ay + ay)(my + my +my),
=a,my+aymy +a,m, +amy+a,m +a,m,+a,m,+a,m
+a,m,
B, = Qr=0a)Xazom), k=012
B, =(ay+a,+a,)(y+nr+r), k=012
= Qgly + agry + apr, + a1y +ary +ar, +a +ar +asn
G = Er=oan)? k=0,12
C. = (ap+a;, +a,)?

C, =at+aga, +aga, + a,ay+ a3 + a,a, + a,a, + a,a, + a3
The nonlinear borders of A,, B, and C, as the following:

Ay = agmgy, By = agry, Cp = (a,)?

Substituting for all a,, 7, 44, By, and C, by Eq.(2.4), to obtain:

a, = —0.00009881¢,

Substituting for all my,A4, and B, by Eq.(2.5), to find

my; = 0.00048711¢,

Substituting for allm,,r, and B, by Eq.(2.6), to get
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r, = —0.00060638t,
Now we find a,,m, and .

The nonlinear borders of A;, B, and C; are given in the following

formula:

A, =aymy;+myay,

B, = agn, + pa4,

C, = 2a4a,4,

Substituting for all a,, r;, A;, B; and C;by Eq.(2.4), to obtain:
a, =1.2117815x 1078¢?

Substituting also for all m,,A, and B, by Eq.(2.5), to get

m, = —0.00000403t2,

Substituting for all m,,r, and B, by Eq.(2.6), to have

r, = 0.00000359¢2,

At the same previous steps, the nonlinear borders of A,, B, and C, are

given as:

A, = aym, +a;m; + mya,,

B, = agr, + a1y + 1505,

C, = 2aqa, + (a,)%

Substituting for all a,,r,.A,,B, and C, by Eq.(2.4), to be:
a; = 2.55439073 x 1071¢3,

Substituting for all m,, A, and B, by Eq.(2.5), to find
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ms; = 1.27758808 x 10783,
Substituting for all m, (t),r, (t) and B, (t) by Eq.(2.6), to get
r; = —1.42663059 x 1078¢3.

The Adomian decomposition method assumes that the unknown
functions a(t), m(t) and r(t) that can be written by series as follows:

a(t) =X, a, m() = Eigme, () = I, m

a(t) =zak= a,+a;+a, +as..
k=0

a(t) = 0.362 — 0.00009881¢ + 1.21178155 x 1082 +
2.55439073 x 10711¢3 + - 2.7)

m(t)=ka=m0+m1+m2+m3+---
k=1

m(t) = 0.581 + 0.00048711¢ — 0.00000403¢2 + 1.27758808 x
1078¢3 + - (2.8)

[00]

r(t)=2rk=r0 +r 4+ g+
k=1

r(t) = 0.057 — 0.00060638t + 0.00000359¢2 — 1.42663059 X
1078¢3 + - (2.9)

a(t), m(t) and r(t) of ADM results are unsettled terms.
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2.3.2 Variational Iteration Method (VIM):

The VIM gives a better approximate solution by constructing a
correctional functional that uses an initial function. Where Lagrange
multiplier considers the key of the correction functional which can be
specified via variation theory [83].

The nonlinear system of alcohol model under study can be solved by
using the VIM with given initial condition and parameters [73]. The
correction functional of the system of equations (2.1), (2.2) and (2.3)

becomes:

t 7
Aer = Qi+ A(ak—(Of‘|‘,37'k—liak—5ak(mk+7"k)—

a,(a—pu*a, —omy — ark)))dt, forall k > 0. (2.10)

t.r
My =My + [ A(m’ — (Ea (my + 1) — nmy + pagemy, —

oa,m;, — amk))d, forall k > 0. (2.11)
Tee1 =T + fot /1(7”’1( — (mmy — Bric + payr — oagry — m”k)) dt,
k = 0. (2.12)

The Lagrange multiplier is 4 = —1 in equations (2.10), (2.11) and
(2.12). By substituting this value in Egs. (2.10), (2.11) and (2.12). The

zero borders become:
a, = 0.362, m,= 0.581, r,= 0.057

In equations (2.10), (2.11) and (2.12) if we substitute (k=0), we obtain
the following a,(t),m,(t) and r; (t).
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a,; = 0.362 + 0.00011927¢,
m, = 0.581 + 0.00048711¢,
r; = 0.057 —0.00060638t,

By the same way, if we have (k=1), in equations (2.10), (2.11) and
(2.12), we get the following a, (t),m, (t) and r, (t).

a, = 0.362 + 0.00011927t — 0.00000147t> + 1.30183484
X 10710¢3,

m, = 0.581 + 0.00048711¢ — 0.00000212t* — 1.54291666
X 10710¢3,

r, = 0.057 — 0.00060638t + 0.00000359t2 + 2.41081825
X 107113,
Continuing in the same manner when (k=2), we can a achieved the

following a;(t), m5(t) and 3 (t).

a; = 0.362 + 0.00011928t — 0.00000147t2 + 1.04339442 x
10783 —2.97475940 x 10712¢t* 4+ 1.20789692 x 10~ **¢> —
1.75446808 x 10718t° + 6.64675814 x 10~23t7

(2.13)

ms = 0.581 + 0.00048710t — 0.00000212t> + 3.66528836 X
107°t3 4+ 3.38204598 x 107 12¢* — 1.31514568 x 107 1*¢> +
1.82643463 x 10718t® — 6.60192260 x 10723¢t”

(2.14)
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r; = 0.057 — 0.0006064t + 0.00000359t% — 1.40992325 x
10783 — 4.07286579 x 107 13t* + 1.07248763 x 1071t —
7.19665484 x 10720t — 4.48355311 x 10725¢7

(2.15)

And so on, continue in order to get better approximations:

a(t) = liInk—)oo 295 (t), m(t) = linlk—)oo my (t) and T(t) = liInk—)oo Tk (t)

2.4 Numerical Methods:

In this section, two numerical methods have been used which are FD
and RK4 to solve the epidemic model of alcohol consumption.

2.4.1 Finite Difference (FD) Method:

The nonlinear system of equations (2.1), (2.2) and (2.3) of the alcohol
consumption model under study can be solved by using the finite
difference with the given initial conditions:

a,, 1, and m, and the given parameters in Table 2.2 and the real step

Upper bound —Lower bound

size h=1, 0.5, 0.25 where h= , m=10 refers to

m

the number of years from 1997 to 2007. In the same time, m refers to
the number of iterations for the FD numerical method
The zero terms becomes: a,=0.362, m,=0.581, and r,=0.057.

In order to find a,, m,; and r;, Backward Finite Difference (BFD)

method can use as follows:
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a; = ag+ h(a+ Bry —pay — Eay(my + 1) — ag(a — uag — omgy —

o1y)), (2.16)

m, = mqy + h(&ag(my + 15 — My + pagmy — gagmy — amy)),

(2.17)
n =1, + h(nmy — Bry + pagr, — oayry — ary), (2.18)

The a,, m; and r; are calculated from Egs. (2.16), (2.17) and (2.18) to
obtain the following values a; = 0.34550505, m; = 0.59661796 and
r; = 0.05263699, respectively.

Now, the Central Finite Difference (CFD) method can be used to

find the next steps and so on for m time, follows:

Apyr = ;g + 2h(a+ Br; — pa; — &a;(m; +1;) — a;(a — pa; -
om; — ory)), (2.19)

My = my_q + 2h(Ea;(myr; — nm; + pam; — oa;m;(t) — am,)),

(2.21)
Tix1 = Tioy + 2h(m; — Bry + pa;r; — oa;r; — ary), (2.21)
forall i=1,2,..,m. Tofind a,, a,, ..., a,, m{, m,, ....,my and r,
1, ..., I, that consider as numerical solutions for alcohol consumption

model.
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2.4.2 Runge-Kutta of 4™ Order (RK4) Method:

RK4 is one of the most accurate iteration numerical methods. The
nonlinear system of equations (2.1), (2.2) and (2.3) of the alcohol
consumption model can be solved by using Fourth order Runge-Kutta
(RK4) method with the given initial condition a,, m, and 7, with the

given parameters in Table 2.2.

For the general form of RK in Eq.(1.24) in Chapter 1, where

Ay =a; + % (ka, + 2ka, + 2ka; + ka,)h, (2.22)
mi, =m; + % (kmy + 2km, + 2kmy + km,)h, (2.23)
ooy =m; + % (kry, + 2kry + 2kr; + kr)h, (2.24)

Firstly, we must find ka,,km, and kr; for the first term of RK4 as

follows:

kal = fl(ti,ai,mi,n),

ka, = a + pr; —pa; —$a;(m; + ;) — a;(@ — pa; — om; — ory),

(2.25)
kml = f2 (ti; ai;mi; ri) 14
km1 = Eal' (mi + T'l') —nm; + uam; —oa;m; — am;, (226)
kry = f; (ti: a;,m;, T'i),
kry =nm; — Br; + pa;r; — oa;r;a — ar, (2.27)

Secondly, to complete the second term of RK4 ka,,km, and kr, must

be found as follows:
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1 1 1 1
ka, = f, (tl. +§h,ai +Ehka1,mi +Ehkm1,ri +Ehkr1>

ka, = a + B(r; + 0.5kr;) — u(a; + 0.5ka,) — &é(a; + 0.5ka,)(m; +

0.5km; +r; + 0.5kr;) — (a; + 0.5ka,)(a — u * (a; +
0.5ka,) — o(m; + 0.5km,) — a(r; + 0.5kry)), (2.28)

1 1 1 1
km, = f, (ti +=h,a; + -hka,,m; + - hkm,,r; + —hkr1>,
2 2 2 2
km, = &(a; + 0.5ka,)((m; + 0.5km, + r; + 0.5kr;) —n(m,; +
0.5km,) + u(a; + 0.5ka,)(m; + 0.5km,) — o(a; +
0.5ka,)(m; + 0.5km,) — a(m; + 0.5km,)), (2.29)

1 1 1 1
kr, = f3 (ti +§h' a; +§hka1,mi +Ehkm1,ri +§hkr1>,

kr, = n(m; + 0.5km,) — f(m; + 0.5kry) + u(a; + 0.5ka,)(r; +
0.5kr;) —o(a; + 0.5ka ) (r; + 0.5kr;) — a(r; + 0.5kr;), (2.30)

Now, kas, km; and kr; are calculated:
1 1 1 1

ka; = a + B(r; + 0.5kr,) — u(a; + 0.5ka,) — &(a; + 0.5ka,)(m; +
0.5km, + r; + 0.5kr,) — (a; + 0.5ka,)(a¢ — u(a; + 0.5ka,) —
o(m; + 0.5km,) — o(r; + 0.5kr3)), (2.31)
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1 1 1 1
km; = f, (ti +Eh' a; + Ehkaz,mi +Ehkm2,ri +Ehkrz>,

km; = é(a; + 0.5ka,)((m; + 0.5km, + r; + 0.5kr,) — n(m; +

0.5km,) + u(a; + 0.5ka )(m; + 0.5km,) — o(a; +
0.5ka,)(m; + 0.5km,) — a(m; + 0.5km,)), (2.32)

1 1 1 1
kr, = f, (ti + = hoag+ hkag,mg + hkmy,, +Ehkr2>,

kr; =n(m; + 0.5km,) — B(m; + 0.5kry) + u(a; + 0.5ka,)(r; +
0.5kr,) —o(a; + 0.5ka,)(r; + 0.5kr,) — a(r; + 0.5kry),
(2.33)
Now, to find ka,, km, and kr, as follows:
ka, = f, (t; + h,a; + hkas;,m; + hkms,r; + hkry),

ka, =a+ B(r; + kr;) —u(a; + kas) —é(a; + kaz)(m; + km; +
r,+kry) — (a; + kaz)(a— ux* (a; + kas) —a(m; + kmy) —
o(r; + kr3)), (2.34)
km, = f,(t; + h,a; + hkas,m; + hkms,r; + hkry),
km, = é(a; + kas)((m; + kmg + r; + kry) —n(m; + km3) +
u(a; + kaz)(m; + kmy) —o(a; + kaz)(m; + kmy) —

a(m; + kmy)), (2.35)

kr, = f; (t; + h,a; + hkas,m; + hkms,r; + hkry),
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kry, =n(m; + kmz) — B(m; + kr3) + p(a; + kaz)(r; + kr3) —a(a; +
kay)(r; + kry) — a(r; + kry). (2.36)

For substituting Egs. (2.25), (2.28), (2.31) and (2.34) in Eq. (2.22) to
get the numerical solutions of a;, substituting Eqs. (2.26), (2.29), (2.32)
and (2.35) in Eq. (2.23) to compute the numerical solutions of m;, in the
same proses, substituting Egs. (2.27), (2.30), (2.33) and (2.36) in
equation (2.24) to obtain the numerical solutions of r;, for all i-

iterations, i = 0,1, ..., m.

2.5 Results and Discussion:

The approximate solutions for nonlinear alcohol consumption model
in Spain are analyzed and discussed in this section then listed in Table
2.3. The predicted values of variables a(t), m(t) and r(t) for alcohol
consumption model [73] had been given. Since the exact solution is not
available for the current model, the predicted values are used to compare
between the current approximate solutions of ADM and VIM with the
predicted values [73] in the interval (0,10) from 1997 to 2007. For
comparison purpose, the corresponding difference measure error of
a(t), m(t) and r(t) for ADM and VIM methods are shown numerically
in Table 2.4, where the difference measure error in this study is the
absolute value of the difference between the analytic solutions and the
predicted values. In Table 2.4, the difference measure error of ADM for
a(t) have smaller values from 2003 to 2005 and 2007 than the VIM,
while the difference measure error of ADM for m(t) are smaller than
VIM from 1999 untill 2001 and 2007. For r(t), the difference measure
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error of ADM in the interval (0,10) from 1997 to 2007 is oscillatory
with VVIM error.

The Figures describe the behavior of alcohol drinking habit from
1997 to 2007. Figure 2.1 (a) of a(t) shows the ADM and VIM obtained
results near to some predicted values in 2001 until 2005. While Figure
2.1 (b) of m(t) shows the predicted values around both ADM and VIM
obtained results. Regarding Figure 2.1 (c) of r(t), both ADM and VIM
curves obtained results converge to the predicted values in 2001 until
2005.

For Figure 2.1 (a) that related to non-drink alcohol people a(t), the
ADM curve, there is small deacresing from 1997 to 2007. More other,
there exists a variation between them such that the VIM curve is higher
level than ADM curve. On the other hand, both ADM and VIM curves
of non-risk-drink alcohol people m(t) have higher that appears during
the ten years from 1997 till 2007 in Figure (b). Figure (c) illustrates the
decrease in the risk-drink alcohol people r(t) through the ten years
under study for both ADM and VIM curves. The results are calculated
by Mathematica software, the Figures are drawn by the Magic Plot
program. Finally, the percentage of non-drink alcohol people a(t) and
the risk-drink alcohol people r(t) are almost decreasing, but increase

with the non-risk-drink alcohol people m(t).
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Table 2.3: Approximate solutions and predicted values [73] of the alcohol consumption

model
Sub. Method | 1997 1999 2001 2003 2005 2007
pop
Sreci
redicted 1 3¢5 0.383 0.363 0.359 0.354 0.400
Values
ADM
a(t) 0.362 | 0.36180243 | 0.36160497 | 0.36140759 | 0.36121033 | 0.36101316
VIM
0.362 | 0.36223274 | 0.36245419 | 0.36266487 | 0.36286526 | 0.36305586
Predicted | og 0.578 0.581 0.588 0.591 0.566
Values
ADM
m(t) 0.581 | 0.58195819 | 0.58288472 | 0.58378022 | 0.58464529 | 0.58548056
VIM
0.581 | 0.58196578 | 0.58291479 | 0.58384724 | 0.58476327 | 0.58566309
Srodi
redicted | ) 157 0.039 0.056 0.053 0.055 0.034
Values
ADM
r(t) 0.057 | 0.05580150 | 0.05463109 | 0.05348808 | 0.05237178 | 0.05128152
VIM
0.057 | 0.05580148 | 0.05463101 | 0.05348789 | 0.05237147 | 0.05128105
Table 2.4: Difference measure error for ADM and VIM solutions as relative the predicted
values
Sub. | Difference 1999 2001 2003 2005 2007
pop measure
error
a(t) ADM 0.02119757 | 0.00139503 | 0.00240759 | 0.00721033 | 0.03898684
VIM 0.02076726 | 0.00054581 | 0.00366487 | 0.00886526 | 0.03694414
m(t) ADM 0.00395819 | 0.00188472 | 0.00421978 | 0.00635471 | 0.01948056
VIM 0.00396578 | 0.00191479 | 0.00415276 | 0.00623673 | 0.01966309
r () ADM 0.01680150 | 0.00136891 | 0.00048808 | 0.00262822 | 0.017281517
VIM 0.01680148 | 0.00136899 | 0.00048789 | 0.00262853 | 0.01728105
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(@)

Figure 2.1: Variation of analytic solutions for ADM and VIM around predicted values [73]

of (@) a(t), (b) m(t) and (c) r(t) from 1997 to 2007 years
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The numerical solutions for nonlinear alcohol consumption model in
Spain are analyzed and discussed in this section then listed in Table 2.5.
The predicted values of variables a(t), m(t) and r(t) for alcohol
consumption model, [73] had been given. In the current study, the exact
solution is not available, therefore the predicted values have been
treated to compare between the current numerical solutions of FD or
RK4 and the predicted values [73] in the interval (0,10) from 1997 to
2007.

For comparison purpose, the corresponding difference measure error
of a(t), m(t) and r(t) for FD and RK4 methods are shown numerically
in Table 2.6, where the difference measure error in this study is the
absolute value of the difference between the numerical solutions and the
predicted values. The difference measure error of FD for a(t) have the
smallest value (0.13147033) when (h=1) and it is smaller than the other
method Moreover RK4, the difference measure error of FD for m(t) are
the smallest (0.12525489) when (h=1) and it is smaller than RK4. For
r(t), the smallest difference error for a(t) is (0.00437743) with RK4
when (h=0.25) in the interval (0,10).

The Figuer 2.2 when h=1 (real step size) and m=10 (number Of
iteration) describe the behavior of alcohol drinking habit from 1997 to
2007. Figure 2.2 (a) of a(t) shows the FD and RK4 obtained results
near to some predicted values in 2001 until 2005. While Figure 2.2 (b)
of m(t) shows the predicted values around both FD and RK4 obtained
results from 1997 until 2005. Regarding to Figure 2.2 (c) of r(t), both
FD and RK4 curves obtained results converge to the predicted values in
2001 until 2005.
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For Figure 2.2 (a) that related to non-drink alcohol people a(t), the
curves for both FD and RK4 are decreasing from 1997 to 2007.
Moreover, there is not exists a variation between them and the two
curves are keep the same level. Both FD and RK4 curves of non-risk-
drink alcohol people m(t) have higher that appears during the ten years
from 1997 until 2007 in Figure2.2 (b). On the other hand Figure2.2 (c)
of the risk-drink alcohol people r(t) through the ten years under study
for both FD and RK4 curves have the same level. The results are
calculated by the Matlab 2013 software for numerical method FD and
RK4, the Figures are drawn by the Magic Plot program. Finally, the
curves of non-drink alcohol people a(t) are decreasing gradually, but
increase with the non-risk-drink alcohol people m(t) and the risk-drink

alcohol people r(t) have the same level.
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Table 2.5: Numerical solutions for the alcohol consumption

model from 1997 to 2007

(whent =10)
Model Predicted Values :Zeep D RK4
Variables [73] h :
year)

1 023052967 | 0.23038835
a(t) 0.400 0.5 023040252 | 0.23038853
0.25 023037078 | 0.23038863
1 0.70625489 0.70634659
m(t) 0.566 0.5 070637209 | 0.70634614
0.25 0.70640135 0.70634591
1 006321544 | 0.06139526
r(t) 0.034 0.5 006322538 | 0.06138333
0.25 0.06322787 0.06137743

values [73] from 1997 to 2007 (when t =10)

Table 2.6: Difference measure error |Ep|for FD and RK4 solutions with the predicted

_ Predicted Step FD RK4

Model Variables | \/qies 73] | S22 | (10iter) | (10 iter)
h(year)

1 0.13147033 0.13161165
a(t) 0.400 0.5 0.13159747 0.13161147
0.25 0.13162922 0.13161137
1 0.12525489 0.12534659
m(t) 0.566 0.5 0.12537208 0.12534614
0.25 0.12540135 0.12534591
1 0.00621543 0.00439526
r(t) 0.034 0.5 0.00622538 0.00438333
0.25 0.00622786 0.00437743
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2.6 Results Analysis:

In the current study, the purpose of using analytic and numerical
methods is to solve such difficult nonlinear system that do not have
available exact solution and to see the convergence of obtained results to
the predicted values.

The convergence of the results for the analytic methods which are
Adomian decomposition and variational iteration methods are examined
in the nonlinear case. These methods have been known as a powerful
device for solving a system of ordinary, partial differential equations or
Integral equations and so on. In our work, they are used for solving a
system of nonlinear ordinary differential equations. The behavior of
unhealthy social habit is (alcohol consumption in Spain) is analyzed,
based on the epidemiological model through ten years under study. The
ADM and VIM methods help to analyze the effects of the unhealthy
social habit of alcohol consumption. The obtained results are shown
there is increasing in alcohol consumption with non-risk-drink
consumers and declining the risk-drink consumers during the ten years
under study. For the number of the non-drink consumers has a small
increase with the VIM and maintains its level with respect to the ADM.
The most predicted values [73] around the ADM and VIM curves. Other
analytical methods can solve such system under study like homotopy
perturbation method, and Semi Analytical Iterative method Temimi and

Ansari.

There is a convergence of the results for the numerical methods which
are FD and RK4 has been noted in the nonlinear case. The FD and RK4
methods help to analyze the effects of bad social habit. The obtained

results have been shown that there is increasing in alcohol consumption
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with non- risk-drink consumers, there is increasing gradually on the of
risk-drink consumers and decreasing gradually with the non-drink
consumers during the ten years from 1997 until 2007 under study. The
most predicted value [73] around the FD and RK4 curves. The most
closer numerical results to the predicted values for the non-drink and
non-risk-drink consumer are with FD while the most closer numerical

results for the risk consumer are with RKA4.
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CHAPTER 3:
Application of Some Analytical and Numerical
Methods on Smoking Habit Model

3.1 Introduction:

Epidemiological models are used to study the epidemiological
processes as infectious diseases. When a bad habit is spreading rapidly,
the model that is being established from spread this bad habit is called a
social epidemic model. Some researchers studied such these models like
smoking habit [33], cocaine consumption [71], alcohol consumption
[73] or obesity epidemics [74]. Lung cancer affects smoking by 10 times
more than smokers as one of the ten-day smoke dying with lung Cancer.
In Spain, the smoking habit is estimated that around 55,000 deaths each

year are attributable to smoking [63].

Epidemiological models are studied to analyze epidemic stages and
infectious diseases. Many researchers analyzed the social habits models,
such as Guerrero, Santonja and. Villanueva in 2006, studied to analyze
the Spanish smoke-free legislation of 2006 [33]. In 2011, Sanchez, et al.
predicted the cocaine consumption in Spain [71]. In 2018, Mohammed,
et al. A non-conventional hybrid numerical approach to solve the multi-
dimensional random sampling for cocaine abuse in Spain [57]. In 2010,
the economic cost of alcohol consumption was studied in Spain by
Santonja, et al. [73]. The mathematical modeling of the social obesity
epidemic in the region of Valencia in Spain was being modeled in 2010
by Santonja, et al. [74]. In 2015, Mohammed, et al. Solved the weight
reduction model due to health campaigns in Spain numerically using
several types of Runge-Kutta method [57]. In the purely hyperbolic
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case, an adequate definition of the numerical viscosity required by the
WENO scheme was provided in 2013 when capillary effects are exist
[34].

Some classic analytic methods such as ADM and VIM and some
numerical methods like FD and RK4 have been applied to a social
epidemic model which is a smoking habit, in this chapter. Since ADM,
VIM, FD and RK4 are the most suitable analytic and numerical methods
to get accurate results for nonlinear autonomous system that has multi-
variable and multi-parameters. Therefore, they are used in this study to
solve such system that is difficult to find its exact solution. Moreover,
ADM, VIM, FD and RK4 are easy and efficient methods that can give

the most reliable for the solutions.

3.2 Mathematical Model of Smoking Habit:

The current model has been used successfully to predict the
evolution of the smoking habit in Spain after the Spanish smoke-free
law in 2006 was applied [33]. The population consists of four types of
individuals, whose proportions are denoted by a (non-smokers), b
(normal smokers), ¢ (excessive smokers) and d (ex-smokers). All of
them are functions of time. Four ordinary differential equations of the
first order can describe the nonlinear smoking habit model in Egs. (3.1),
(3.2), (3.3) and (3.4) as follows:

a'(0) = (1 — a®) - Ba®(b® + c(v)) (3.1)
b'(t) = Ba(t)(b(t)+ c(t)) + pd(t) + ac(t) — (y + A + whb(t)
(3.2)
c'(®=vyb® — (a + 6 + wc(t) (3.3)
d’'(t) = Ab(t) + Sc(t) — (p + wd(t) (3.4)
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The initial conditions of Egs. (3.1), (3.2), (3.3) and (3.4) are: a(t =
0)=0.5045, b(t = 0)=0.2059, c(t = 0)=0.1559, d(t = 0)=0.1337, with
the predicted parameters that are given as: u =0.01, g =0.0381, p =
0.0425, a = 0.1244, y =0.11750, A =0.0498 and § =0.0498 [33].

Table 3.1: Variables of smoking habit model, [33]

a(t) | Social class who never smokes from the total population.
Social class of people who smoke less than 20 cigarettes per
b(t) day.
c(t) Social class who smoke more than 20 cigarettes per day.
d(t) | The social class of ex-smokers.
Table 3.2: Parameters of smoking habit model, [33]
u | Rate of births Spain.
The transmission of smoke infection because of social
B pressure to adopt smoking habit.
p | The rate of returns to smoking.
The rate of smokers who are excessively and who are
a | becoming a normally smoker by reducing the number of
cigarettes per day.
The rate of smokers who are normally and who are becoming
y | an excessive smoker by reducing the number of cigarettes per
day.
1 | The rate of normal smokers who stop smoking.
s | The rate of excessive smokers who stop smoking.
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3.3 Problem Solution using Analytical Methods:

In this section has been used two Analytical methods which are

ADM and VIM to solve the epidemic model of smoking habit.

3.3.1 Adomian Decomposition Method (ADM):

The nonlinear system of Egs. (3.1), (3.2), (3,3) and (3.4) of the
smoking habit model can solve by the Adomian decomposition method
with the given initial condition. Let [ be an operator that is given by

l:% and the inverse of this operation is [™! = fot(.)dt, then by
applying [~ for both sides of Egs. (3.1), (3.2), (3.3) and (3.4), to obtain:
a(t) —a(0) = 17 (u(1 - a(®)) — a®)(b® + c(®)),
where a, = 0.5045. Similarity,
b(t) = b(0) =17 (B*a(®(b() + () + pd(D) + ac(t) -

y+ 2+ u)b(t)), where b, = 0.2059.
Also,

c(®) —c(0) =17 (yb(®) = (a + § + We(®),
where ¢, = 0.1559, and

d(t) —d(0) =17t(Ab(H) + 8c() — (p + WA(®),
where d, = 0.1337.

The above equations can generate as follows with k iterations, k > 0.
ak+1 = l_l(u(l - ak) - BAk _ﬁBk), fOI’ a" k Z 0

(3.5)
brs1 = U (BA, + BB, + pdy + ac,— (v + A + wby), forall

k>0 (3.6)
Cre1 =172y b — (@ + 8 + wey), forall k =0 (3.7)
dior = 17 b + 8¢, — (p + wd,).forall k = 0. (3.8)
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The general form of the nonlinear terms A, (t) and B, (t) have to be:

A= Qi0a,) X% ,b,), forall k =0,1,2

A, = (ao +a, + az)(bo + b, + bz),
=ayb, + ayb, + ayb, + a,by + a, b, + a,b, + a, b, + a, b
+a,b,

B, =(2%_,a,)%_,c,), foral k =0,1,2

Bk = (ao + Cl1 + az)(CO + Cl + Cz)
= ayCo+ Aoy + agCy + a4Cy + a6 + a6, + a,co + a,cy + a,c,.

The nonlinear terms of A, and B, explain as the following:

Ay, = ayby, By = ayc,.

Substituting forall a,, A, and B, by Eq.(3.5), to get

a, = —0.00199932¢,

by substituting for all by, ¢y, dy, A, and B, by Eq.(3.6), to obtain
b, = —0.00447553t,

As well as, substituting for all b, and c, by Eq.(3.7), to find

c, = —0.00452353t,

In the same ways, substitute all b,, c, and d, by Eq.(3.8), to get
e; = 0.01099838t,

Now a,, b,, c, and d, can be found. First, the nonlinear terms of A, and

B, are given in the following formula:

Al = aobl + boal,

B, = aycq + cpa,.
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Then by substituting all a,, A, and B, by Eq. (3.5), to obtain

a, = 0.01t+ 0.00011026t2,

and for substituting all b,, c,, d,, A; and B, by Eq.(3.6), to find

b, = 0.00029629t7,

by the same method substituting for all b, and ¢, by Eq.(3.7), we get
¢, = 0.00015368t2,

similarity substituting for all b,, ¢, and d, by Eq.(3.8), we get

d, = —0.000512785t2,

To obtain a3, b;, c; and ds, at the same previous steps, the nonlinear
terms of A, and B, are given as:

A, = ayb, +a,b, + bya,

B, = agc, +a;¢ +cpa,

Substituting all a,,A, and B, by Eq.(3.5), we obtain

a; = 0.01t — 0.00011892¢% — 0.00000399¢3.

When substituting all b,, c,, d,, A, and B, by Eq.(3.6), to find
b; = 0.00006892t* — 0.00001618t3.

similarity substituting b, and c, by Eq.(3.7), we get

c; = 0.00000216t3.

Substituting also all b,, ¢, and d, by Eq.(3.8), to find

d; = 0.0498t + 0.00011028¢3.

The Adomian decomposition method assumes that the unknown
functions a(t), b(t), c(t) and d(t) can be expressed by an infinite
series as a polynomial of the form:

a(t) = 520 @, b(t) = N by €(t) = B-o 0 () = N0 di
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a(t) =Xpor =0y +a; +a,+as..
a(t) = 0.5045 + 0.01800068t — 0.00000866t* — 0.00000399¢t> +
(3.9)

b(t) =Yr oby =by+ by +b, + by + -

b(t) = 0.2059 — 0.0044 7553t + 0.00036521t> — 0.00001618t> +
(3.10)

c(t) = Yotk =Co+ci+cy+cg+ -

c(t) = 0.1559 — 0.00452353t + 0.00015368t% + 0.00000216t3 +
(3.12)

d(t) =2p-odr =do+dy+d, +d5 + -

d(t) = 0.1337 + 0.06079838t— 0.000512785t% + 0.00011028t3 +
(3.12)

3.3.2 Variational Iteration Method (VIM):

The nonlinear system of the smoking habit model can be solved by
the VIM with given initial condition. The correction functional for the
system of Egs. (3.1), (3.2), (3.3) and (3.4) become:

Apyq = A + fot/l(a’k — (01 = ap) — Bax (b + ck))), k=0
(3.13)
Brsr = b+ [ A(b's — (Bap (b + c) + pdy + ac— (v + A +
why)), k=0 (3.14)
Crs1 = Cr + foti(c’k —(ybe— (@ 4+ 8 + Wey)), k=0
(3.15)
diyr = dy + [ A(d— Oy + 8¢, — (p + Wdy)), k>0. (3.16)
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The Lagrange multiplier is A = —1. By substituting this value in
equations (3.13), (3.14), (3.15) and (3.16), the zero terms become:
a, =0.5045, b,=0.2059, c,=0.1559, d,=0.1337.

Now, to find a4, b,, ¢, and d4, in Egs. (3.13), (3.14), (3.15) and (3.16),

when substituting (k =0), the following has been obtained:

a,; = 0.5045 —0.00199932¢,
b, = 0.2059 — 0.00447554t,
¢, = 0.1559 — 0.00452354¢,
d, =0.1337 + 0.01099838t,

By the same way, if we have (k =1), in Egs. (3.13), (3.14), (3.15) and
(3.16) the following has been gotten:

a, = 0.5045 —0.00199932t + 0.00011026t> — 2.28498716 X
1077¢3,

b, = 0.2059 — 0.00447554t + 0.00024884t> + 2.28498716 X
1077¢3,

¢, = 0.1559 — 0.00452353t + 0.00015368t2,

d, = 0.1337 + 0.01099838t — 0.00051279t2,

Continuing in the same way, when (k=2), the following can be

achieved:

a; = 0.5045 —0.00199932¢ + 0.00011026t> — 0.00000527t3 +
1.99202672 x 1078t* — 5.52507601 x 1071%¢5 +
4.65135788 x 10713¢® 4 8.52541875 x 10716¢7 (3.17)
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b; = 0.2059 — 0.00447554t + 0.00024884t* — 0.00001228¢> —
2.69344475 x 1078t* + 3.50390346 x 1071%¢> —

4.2405435 x 10713¢6 — 2.84180625 x 10716 (3.18)
c; = 0.1559 — 0.00452354¢ + 0.00015368t2 + 3.10383361 X
1077¢3 + 6.71214979 x 10~9¢* (3.19)
d, = 0.1337 + 0.01099838¢ — 0.00051279¢2 + 0.00001566¢° +
2.84480901 x 10~°t* (3.20)

And so on, continue in order to get better approximations:
a(t) = limy_ a, (t), b(t) = lim,_q by (t), c(t) = lim,_ ¢, (t) and
d(t) = limy,_, o, dy (¢).

3.4 Numerical Methods:

In this section has been used two numerical methods which are FD
and RK4 to solve the epidemic model of smoking habit.

3.4.1 Finite Difference (FD) Method:

The nonlinear system of Egs. (3.1), (3.2), (3.3) and (3.4) of the
smoking habit model can solve using the finite difference method with
the initial conditions: a, =0.5045, b,=0.2059, ¢,=0.1559 and
d,=0.1337, and the predicted parameters that are given in Table 3.2, and

Upper bound —Lower bound

the real step size h =1, 0.5, 0.25 where h = ,

m

in this study, m=16 refers to numbers of years from 2006 to 2022. In the

same time, m refers to the number of iterations.

In order to find a,, by, ¢, and d,, backward finite difference (BFD) can
be used as follows:
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a; =ag+h(p(1 — ay) — Bag(by + co)), (3.21)
by = b+ h(Bao(by + co) + pdo+ aco— (y + A + W), (3.22)
c; =co+ h(yby — (¢ + & + Wcy), (3.23)
d, =d,;+ h(Aby + 8¢, — (p + Wd,), (3.24)

The a,, by, c; and d, are calculated from Eqgs. (3.21), (3.22), (3.23) and
(3.24) to obtain the following values: a, =0.50250068,
b, =0.20142446, c, =0.15137647 and d, =0.14469839, respectively.

Now, the central finite difference (CFD) method can be used to find the

next steps and so on for m times follows:

Ajy1 = Ajq T Zh(u(l — a;) — Ba;(b; + Ci)), (3.25)
bis1 = bi_1 +2h(Ba;(b; + c) + pd; + ac;— (v + A + ), (3.26)
Civ1 = Cimg + 2h(yb; — (a + & + W), (3.27)
diyy = d;y +2hAb; + 8¢, — (p + Wdy), (3.28)
fori=1,2,..,m,tofind a,, a,, ..., a,, m;,m,, ....,m,, and r;, r;,

..., I, that consider as numerical solutions for smoking habit model.

3.4.2 Runge-Kutta of 4™ Order (RK4) Method:

RK4 is one of the most accurate iteration numerical methods. The
nonlinear system of Egs. (3.1), (3.2), (3.3) and (3.4) of the smoking
habit model can be solved by RK4 with initial conditions: a,, b,, ¢, and

d,, with the predicted parameters in Table 3.2.

For the general form of RK in Eq.( 1.24) in Chapter 1, where
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A = Q; +§(ka1 + 2ka, + 2ka; + ka,)h

b, =b; + %(kbl + 2kb, + 2kb; + kb,)h
Cit1 = Cj +%(kc1 + 2kc, + 2kcs + kcy)h

dipy = d; + = (kdy + 2kd, + 2kd; + kd,)h

Now, we must find ka,, kb,, kc, and kd,as follows:

ka, = f(t, a;, b, ci,dy)

ka, = u(1—a;) — Ba;(b; + c;),

kb, = f,(tya;, by, i, dy)

kb, = Ba;(b; +c;) + pd; + ac; — (y + A + )b,
ke, = f3(t, a5, b, ¢;,d;)

kc,=yb; — (@ + 8 + uc;,

kd, = fo(t;, a;, b, ¢, d;)

kd, = Ab, + 8¢, — (p + Wd,,

Also, to find ka,, kb,, kc, and kd, as follows:

(3.29)

(3.30)
(3.31)

(3.32)

(3.33)

(3.34)

(3.35)

(3.36)

kay = f; (ti+3h a;+2hkay, b +2hkby, ¢+ > hkey,d; + 2 hkd, ),

ka, = u(1— (a; + 0.5ka,h)) — B(a; + 0.5ka h))(b; + 0.5kb, h) +

(c; + 0.5kc h),

(3.37)

kb, = f, (& + 2h,a; + hkeay, by + 2 hkby,c; + L hkey, d; + 2hkd, )

kb, = B(a; + 0.5ka,h)((b; + 0.5kb, h) + (c; + 0.5kc, b)) + p(d; +
0.5kd,h) + a(c; + 0.5kc,h) — (¥ + A + w) (b; + 0.5kb, h),

(3.38)

1 1 1 1 1
ke, = f; (t;+2h,a,+2hkay, b + 2 hkby, ¢, + > hkey, d; + 2 hkd, ),
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kc, = y(b; + 0.5kb;h) — (@ + & + u)(c; + 0.5kc, h), (3.39)
1 1 1 1 1
kd, = f, (ti + Eh‘ a; + Ehkal,bi + Ehkbl, c; + ;hk%di + Ehkdl)
kd, = A(b; + 0.5kb, h) + &(c; + 0.5kc, h) — (p + w)(d; + 0.5kd, h),
(3.40)
Toget kas, kb, kcsand kd; as follows:

kay = f, (t;+5h a;+ 5 hkag, by +Shkb,,c;+ > hkey d; + hkd, ),
ka; = u(1— (a; + 0.5ka,h)) — B(a; + 0.5ka, h))(b; + 0.5kb, h) +
(c; + 0.5kc,h), (3.41)
kby = fy (t: +2h, a; + 1 hkag,b; + > hkby, ; + > hkes,d; + hkd, ),
kb; = B(a; + 0.5ka,h)((b; + 0.5kb,h) + (c; + 0.5kc,h)) + p(d; +
0.5kd,h) + a(c; + 0.5kc,h) — (y + A + w)(b; + 0.5kb,h),
(3.42)
kes = f; (t;+ 3 h,ag+ hkay, by + hkby, ¢+ hke,,d; + S hkd,),
kcs = y(b; + 0.5kbyh) — (a + & + 1) (c; + 0.5ke, h), (3.43)
kdy = f, (t;+5h,a; + S hkaz, by + 2 hkb,, c;+ > hkey, d; + hkd, ),
kd, = A(b; + 0.5kb,h) + 8(c; + 0.5kc,h) — (p + w)(d; + 0.5kd, h),
(3.44)

Toobtain ka,, kb,, kc, and kd, as follows:
ka, = f, (t; + h,a; + hkas,b; + hkbs, c; + hkcs,d; + hkd;),

ka, = u(1—(a; + kazh)) — B(a; + kash))(b; + kbsh) + (¢; +
kcsh), (3.45)

kb, = f,(t; + h,a; + hkas,b; + hkbs, c; + hkcs, d; + hkds),

kb, = B(a; + kazh)((b; + kbsh) + (c; + kcsh)) + p(d; + kdsh) +
a(c; + kcsh) — (y + A+ w)(b; + kbsh), (3.46)
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ke, = f; (t; + h,a; + hkas, b; + hkbs, c; + hkcs, d; + hkdy),
ke, =vy(b; + kbsh) — (a + 6 + 1) (¢; + kesh), (3.47)

kd, = f,(t; + h,a; + hkas,b; + hkbs, c; + hkcs,d; + hkds),
kd, = A(b; + kbsh) + 8(c; + kesh) — (p + ) (d; + kdsh).  (3.48)

For substituting Egs. (3.33), (3.37), (3.41) and (3.45) in Eq. (3.29) to
get the numerical solutions of a;, By the same way, substituting Eqs
(3.34), (3.38), (3.42) and (3.46) in Eq. (3.30) we get the numerical
solutions of b;, As well as, substituting Egs. (3.35), (3.39), (3.43) and
(3.47) in Eg. (3.31) we obtain the numerical solutions of c¢;. And
substituting Egs. (3.36), (3.40), (3.44) and (3.48) in Eq. (3.32) to get the

numerical solutions of d;, i = 0,1, ..., m.

3.5 Results and Discussion:

Approximate and numerical solutions for nonlinear smoking habit
model in Spain are discussed and analyzed in this section. Table 3.3 is to
validate the real and predicted values (2006-2009) [33] with
approximate solutions. Where h=1, 0.5 and 0.25 are the step size and

m=3 is the number of iterations.

The predicted values of variables a(t), b(t), c(t) and d(t) for
smoking habit model, had been given [33]. The exact solution is not
available in the current model. Therefore, a comparison between the
predicted values and the real data with the expected approximate
solutions of the analytic solutions for ADM and VIM methods,
moreover, the expected approximate solutions of the numerical solutions
for FD and RK4 methods, in the interval of years (0,16) from 2006 to
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2022, has been done in Table 3.4. Where h=1,0.5 and 0.25 are the step

size and m=16, is the number of iterations.

For the purpose of comparison, the difference measure error for a(t),
b(t), c(t) and d(t) between the predicted value [33] and the ADM,
VIM, FD and RK4 methods from 2006 to 2009 which are shown
numerically in Table 3.5, where the difference measure error |E,| in
Table 3.5, in this study, is the difference between the analytic solutions
and the predicted values or the difference between the numerical
solutions and the predicted values. Notes the difference measure error
for a(t) of FD method has the smallest value when (h=0.5) than with
step size (h =1 and 0.25) and compared with the other methods under
study with the different step size (h =1, 0.5 and 0.25). As well as, the
difference measure errors of b(t), c(t) and d(t) in VIM have the
smallest errors that compared with ADM, FD and RK4 methods when
(h =1, 0.5 and 0.25).

Figure 3.1, when h=1 (real step size) describes the behavior of
smoking habit from 2006 to 2022. In Figure 3.1 (a) that is related to
non-smoke people a(t), the curve of ADM rises, this mean the people
who do not smoke are increase through 16 years to 2022, while there is
stable with the other methods VIM, FD and RK4, because these
methods have the same nature which is iterative. These methods VIM,
FD and RK4 agree with the previous study (Figure. 2, page 249) in [33].

Figure 3.1 (b) that related to normal smoke people b(t), show us the
curves of the four methods ADM, FD, VIM and RK4 under study are
near to the predicted values from 2006 until 2013. After that, the curves
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ADM, FD, VIM and RK4 gradually decrease a yearly until 2022. Only
the curve of VIM is more decrease from 2013 until 2022 than the other

curves.

While Figure 3.1 (c) that related to excessive smokers c(t), the curve
of all methods are decreasing. Observe that the numerical methods (FD
and RK4) are more decreasing than the analytical methods (ADM and
VIM). These results agree with previous study [33].

Figure 3.1 (d) that related to ex-smokers d(t), notes that, there is
increasing from 2006 to 2022 for all curves. The curves of analytical
methods (ADM and VIM) are increasing more than the curves of the
numerical methods (FD and RK4) from 2013 until 2022. The nature of
ex-smokers in the current study is to agree with the previous study [33].

In Figure 3.2, when h=0.5 (real step size) explain the behavior of
smoking habit through sixteen years from 2006 to 2022. In Figure 3.2
(a), the curve of ADM is increasing, this means, the people who do not
smoke are increasing through 16 years, while there is stable with the
other methods VIM, FD and RK4, these methods VIM, FD and RK4 are
agree with the previous study (Figure. 2, page 249) in [33].

Figure 3.2 (b), the curves of the methods ADM, FD, VIM and RK4
under study are near to the predicted values from 2006 until 2013. The
curves of ADM, FD, VIM and RK4 are decreased step by step. But the
curve of VIM is more decrease from 2013 until 2022 than the other

Curves.
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While Figure 3.2 (c), the curve of all methods are decreasing. We can
be noted that the analytical methods (ADM and VIM) are more
decreasing than the numerical methods (FD and RK4). These results

agree with a previous study [33].

Figure 3.2 (d), can be noted that, there is increasing from 2006 to
2022 for all curves. The nature of ex-smokers in the current study agrees

with the previous study [33].
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Table 3.3 a: Approximate solutions of the smoking habit model from 2006 to 2009
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Table 3.3 b: Approximate solutions of the smoking habit model from 2006 to 2009
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Table 3.4: Expected approximate solutions of the smoking habit model from 2006 to 2022

(when t = 16)

Model Step Size, FD RK4

Variables ADM ViM h (year) (16 iter.) (16 iter.)
(16 iter.)

1 0.49049314 0.49025842
a(t) 0.77521396 | 0.48643685 0.5 0.49031746 0.49025841
0.25 0.49027319 0.49025841
1 0.17438741 0.17011593
b (t) 0.16532272 0.14627349 0.5 0.17128695 0.17011592
0.25 0.17041579 0.17011591
1 0.11159163 0.11499751
c(t) |012413672 | 012457661 05 0.11404419 0.11499750
0.25 0.11475214 0.11499750
1 0.22352783 0.22462814
d (t) 0.24252661 0.24427130 0.5 0.22435139 0.22462817
0.25 0.22455887 0.22462817

Table 3.5: Difference measure error |Ep| for ADM, VIM, FD and RK4 solutions as relative
to the predicted values [33] from 2006 to 2009 (whent =3)

" . FD RK4
% % _ADM V_IM Step Size, @iter. @iter)
= I 2009 @iter) | Gean) in 2009 in 2009
in 2009
1 0.00560316 0.00549767
a(t) 0.0534247 | 0.00550367 05 0.00548782 0.00549768
025 0.00549521 0.00549767
1 0.30869684 0.30880233
b(t) | 0.00440158 | 0.00377918 [ 05 030881218 030880032
025 0.30880479 0.30880232
1 037529684 037540233
c(t) | 00197209 | 0.01972145 [ 05 037541217 037540232
025 0375404789 | 037540232
1 031879684 031890233
d(t) | 0.01799719 | 0.01799696 [ 05 031691218 031890032
025 0.31890479 031890232
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Figure 3.1 (a, b): Variation of approximate and numerical solutions by using ADM, VIM,
FD and RK4 around predicted values [33] of (a) a(t) and (b) b(t) from 2006 to 2022 years

when h=1
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3.6 Results Analysis:

In the current study, the behavior of the bad social habit of the
nonlinear epidemic model is analyzed through sixteen years under study
from 2006 to 2022. In our work, some reliable approximate methods are
used for solving a nonlinear system of epidemic models for ordinary
differential equations of the first order. There is a convergence in the
results of the analytic methods which are ADM and VIM and numerical
methods which are FD and RK4 that examined in the nonlinear case.
The analytic ADM and VIM with numerical FD and RK4 methods help
to analyze the effects of the bad social habit of smoking habit model.
The results obtained showed that subpopulation a(t) of non-smokers
stay stable along sixteen years except with ADM curve. While
subpopulation b(t) of normal-smoke and subpopulation c(t) of
excessive smokers are gradually declining until 2022. At least the
subpopulation d(t) of ex-smokers is a rising to 2022 that refer to
increase the smoking habit in this region. The most predicted values [33]
around the ADM, VIM, FD and RK4 curves that mean to the reliability
of the obtained results.

Other analytical methods can solve such system under study like
homotopy perturbation method, homotopy analysis method and semi
analytical iterative method Temimi and Ansari. On the other hands,
there are other numerical methods such as the iteration methods can
solve the system under study.
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CHAPTER 4:
Numerical Simulation Methods

4.1 Introduction:

In this chapter, two numerical simulation methods are used which are
Mean Monte Carlo finite difference (MMCFD) that is applied for
compression and a modified Mean Monte Carlo Runge-Kutta
(MMCRK) that is created at the first time in our study. These methods
are used to solve nonlinear IVP systems of ODEs representing the two
social epidemic models about alcohol consumption and smoking habit.
The results of these methods are called as numerical simulation
solutions. Since the previous results for the real epidemic models under
study are available. Therefore, the comparison between the numerical
simulation results with the predicted values is discussed.

The importance of this work comes from it can expect the behavior
of the population at some next years because the randomness in the
numerical simulation methods of MMCFD and MMCRK that come
from simulation technique for the parameters of the model under study.

4.2 Mean Monte Carlo Runge-Kutta (MMCRK) Method:

The numerical simulation method that merges between Monte Carlo
simulation process (MC) and Runge-Kutta numerical iteration method
(RK) is called the Mean Monte Carlo Runge-Kutta (MMCRK).
MMCRK is a modified numerical simulation process that differs the
MMCFD that the new one use RK numerical method instead of FD
numerical method. The RK iteration numerical method is more accurate
than FD since RK4 is of order 4 while FD is of order 2 for the central

form. Therefore, MMCRK may be given numerical simulation results
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more accurate than MMCFD mostly. In the present study, RK4 is used
as a numerical iteration method. This mixed method MMCRK simulates
the parameters of a model firstly by MC technique, when these
parameters as random variables that distribute uniformly on (a, b) such
that a = q —p and b = g + p, when p is predicted value from [73] and
q € R™. Then the system is solved numerically m times using RK4 with
the first simulated estimation parameters. The m numerical simulated
results have been gotten. The last numerical iteration result has been
selected which is RK4 of order m iteration result (RK4_m) that is called
the final solution. This process is returned with the second simulated
estimation parameters, and so on until the last number of simulations.
Finally, the mean of the n-time simulations for the final solutions is
considered the Mean Monte Carlo Runge-Kutta (MMCRK). s
approximate method used to solve the nonlinear system of ordinary
differential equations numerically, with more details, see Figure 4.1.

Step 1

Simulate the model's parameters by MC at the first time

Step 2

Solve the system m-times iterations numerically by RK4. Then select the
final iteration value.

Step 3

Respect steps 1 & 2 n- simulations times

Step 4
Evaluated the mean of the final iteration values of from step 3 to be the
solution of mode

Figure 4.1: The steps of MMCRK process
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4.3 The Mathematical Models:

Two social epidemic models which are alcohol consumption and
smoking habit are solved in this chapter to verify the modified
numerical simulation method MMCRK, then to compare with the

numerical simulation method MMCFD.

4.3.1 Alcohol Consumption Model:

The model of alcohol consumption that is mentioned in Chapter 1 is
considered. In this section, this model under study has been solved by
numerical simulation methods MMCFD and MMCRK. For compression

purpose, it is solved by analytic and numerical methods.
4.3.1.1Results and Discussion:

The numerical simulation solutions for the nonlinear alcohol
consumption model are discussed and analyzed in this section where the
results are listed in Table 4.1. The predicted values of variables a(t),
m(t) and r(t) for alcohol consumption model, [73] had been given.
Therefore, a comparison has been made between the numerical
simulation solutions of MMCFD method and MMCRK method in the
interval (0,10) from 1997 to 2007. For the purpose of comparison, the
difference measure error of a(t), m(t) and r(t) between predicted
value from 1997 to 2007 and the results of ADM, VIM, FD, RKA4,
MMCFD and MMCRK methods are shown numerically in Table 4.2,

where the difference measure error |E,| in this study is the difference

between the approximate solutions and the predicted value or the
difference between the numerical simulation solutions and the predicted

value.
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Let m be the number of iteration (number of years), n be the number
of simulation of MC process and h is real step size, then for validity

purpose from 1997 to 2007, let us not that:

The smallest error of a(t) is (0.119825) when h=1, n=100 and m=10 of
MMCRK.

For m(t), the smallest error is (0.106700) when h=1, n=100 and m=10
of MMCRK method.

The smallest error of r(t) is (0.003081) when h=0.25, n=100 and m=10
of MMCRK method.

For the above results, we note that the MMCRK method has the

smallest difference errors, therefore considered the best method.
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Table 4.1: Solutions for the alcohol consumption model from 1997 to 2007
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Table 4.2: Difference measure error, |Ep| is between ADM, VIM, FD, RK4,

MMCFD and MMCRK results and the predicted values [73] from 1997

to 2007
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Table 4.3: Expectation solutions for the alcohol consumption model from 1997 to

2027

suonnadau ) . . . . . . . .
s1nsay 0001 ¢6¢0¢T°0 G0S02T 0 7090¢T°0 T€669.°0 | €500.2°0 99T0..°0 | ¥#76950°0 | OV/.9S0°0 6€£9950°0
HAAONIN
jussald suonnadai . ) . . . . . . .
00T LTV0CT 0 1290270 9T.0ZT'0 89€0..°0 | 8.S0LL°0 | ¥990LL°0 [ 9289500 | T€E99S0°0 62599500
suonnadau ) ) ) : . . . . .
0001 CETOCT 0 6¢T0CT'0 | L6000CT°0 | S¥SS08°0 | 8285080 | ¢¢2¢908'0 | ¢C€S90°0 | €€2990°0 00¢S90°0
synsay
d40ININ
Juasaud suonnadal . ) : . . . . . .
00T €0T0CT0 8T002T0 ¢T000¢T0 8665080 | ¢.6S080 TEE908'0 | 660590°0 | 6005900 1/.6¥790°0
X 929210 1129¢T0 9/2¢9¢T'0 7GT7808°0 | €9T7808'0 | TST808'0 | T¥86S0°0 | T¢86S0°0 T18650°0
a4 TevleT 0 T199¢T0 €8¢9¢T0 ¢v€.08°0 | 9678080 0T¥8080 | 952¢990°0 | ¢62¢S90°0 90€590°0
Jeak . . . . . .
%N_m o_vmw_m T G0 G20 T G0 G20 T G0 GZ0
NIA 2eSv9e0 608€65°0 8G9T10°0
nav L¥06SE°0 82€265°0 6S9TY0°0
sajgeldeA [9PON (Do Dw (2)4

80




The Table 4.3 for future solutions for alcohol consumption model,
shows us that the value of MMCRK method is near to the predicted
value than MMCFD method, when h=0.25 (real step size) and n=100
(number of simulations) for non-drink alcohol people a(t). While m(t)
of non-risk-drink alcohol people the value of MMCRK is near to the
predicted h=0.5 and n=1000. The value of MMCRK when h=1 and
n=1000 of risk-drink alcohol people. By notice, Table 4.4, seeing that

the values of the mean within the interval.

Table 4.4: Prediction intervals (5th percentile, 95th percentile) for MMCFD and
MMCRK solutions

MMCFD from 1997 to 2027 (t < 30)

Subpopulation | (100 repetitions) Mean (1000 repetitions)
a(t) (0.095907, 0.161453) 0.129303 (0.097544, 0.167752)
m(t) (0.776219, 0.835442) 0.805598 (0.770562, 0.834359)
r(t) (0.061126, 0.069548) 0.065098 (0.061161, 0.069172)

MMCRK from 1997 to 2027 (t < 30)

Subpopulation | (100 repetitions) Mean (1000 repetitions)
a(t) (0.090362, 0.149554) 0.120417 (0.091593, 0.155077)
m(t) (0.745822, 0.793217) 0.770369 (0.740725, 0.793143)
r(t) (0.053550, 0.060442) 0.056836 (0.053247, 0.060224)

Table 4.5: Results of MSE for MMCFD and MMCRK from 1997 to 2007
. Step Size, Present MMCFD Results Present MMCRK Results

Model Variables | (year) 100 1000 100 1000

repetitions repetitions repetitions repetitions
1 0.015120 | 0.014727 | 0.014066 | 0.014018
a(t) 0.5 0.016346 | 0.015932 | 0.014630 | 0.014607
0.25 0.016978 | 0.016554 | 0.014199 | 0.014178
1 0.013749 | 0.013399 | 0.011825 | 0.011542
m(t) 0.5 0.014876 | 0.014507 | 0.012457 | 0.012170
0.25 0.015457 | 0.015079 | 0.012784 | 0.012489
1 0.000033 | 0.000032 | 0.000031 | 0.0000026
r(t) 0.5 0.000035 | 0.000034 | 0.000029 | 0.0000025
0.25 0.000037 | 0.000035 | 0.000027 | 0.0000023
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The Table 4.5 obtain the results of mean square error of the a new
numerical simulation method MMCRK and compare it with MMCFD
by using MSE then can be noted, let m be the number of iterations
(number of years), n be the number of simulations of MC process and h
Is real step size, then for validity purpose from 1997 to 2007, let us not
that:

The smallest error of a(t) is (0.014018) when h=1, n=1000 and m=10
of MMCRK.

For m(t), the smallest error is (0.011542) when h=1, n=1000 and m=10
of MMCRK method.

The smallest error of r(t) is (0.0000023) when h=0.25, n= 1000 and
m=10 of MMCRK method.

From the above results, we noted that the MMCRK method has the
smallest mean square errors, therefore considered the best method.
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In Figure 4.2, we note the behavior of the alcohol consumption habit
from 1997 to 2027 with m=30 (number of years), n=1000 (number of
simulations) and h=1 (real step size). Figure 4.2 (a) the curves of
numerical simulation methods MMCFD and MMCRK are near of
predicted values from 1997 to 2005 and decreasing gradually until 2027.
In Figure 4.2 (b), the curves of MMCFD and MMCRK around predicted
values into 2007 then the curves are increasing step by step until 2027.
While Figure 4.2 (c) shows the curves of MMCFD and MMCRK results
converge of the predicted value in 1999 until 2005.

The Figure 4.3 describes the behavior of alcohol consumption habit
from 1997 to 2027 with m=30 which is number of iterations (number of
years), h=0.5 (step size) and n=100 be the number of simulations.
Figure 4.3 (a) of a(t) shows the MMCFD and MMCRK curves
obtained results near to some predicted values in 2001 until 2005.While
Figure 4.3 (b) of m(t) shows the predicted values around both MMCFD
and MMCRK curves. Regarding to Figure 4.3 (c) of r(t), both
MMCFD and MMCRK curves for results converge to the predicted
values in 1999 until 2005.

In Figure 4.3 (a) that related to non-drink alcohol people a(t), the
MMCFD curve decreasing from 1997 to 2027. More other, there exists
a variation between the curves such that the MMCFD and MMCRK
curves are higher level than the curve of other methods. On the other
hand, both MMCFD and MMCRK curves of non-risk-drink alcohol
people m(t) have higher that appears during the thirty years from 1997
until 20027 in Figure 4.3 (b). Figure 4.3 (c) illustrates the decrease in
the risk-drink alcohol people r(t) from 1997 to 2027 years under study
for both MMCFD and MMCRK curves.
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The Figure 4.4 is to compare between MMCFD and a new proposed
method MMCRK when real step size h=0.5, m=30 (humber of years)
and n=100 (number of simulations), then in Figure 4.4 (a), the curve of
results of MMCRK is more approach of the predicted values then starts
to decline until 2027. Also Figure 4.4 (b) the curve of MMCRK is
nearer to the predicted values than MMCFD method then starts
increasing until 2027. The curve of a new modified MMCRK of Figure
4.4 (c) is near than MMCFD method of the predicted values with small
decreasing to 2027.

Generally, for the interval (0,30) the percentage of non-drink alcohol
people a(t) and the risk-drink alcohol people r(t) are almost decrease,
but there is an increase with the non-risk-drink alcohol people m(t).
The results are calculated by Matlab 2013 software, the figures are
drawn by the Magic Plot program.

4.3.1.2 Results Analysis:

In the current study, the convergence of the results for the numerical
simulation methods which are MMCFD and the new proposed MMCRK
are examined in the nonlinear case. These methods are consider from
reliable methods for solving a system of ordinary differential equations.
In our work, they are used for solving a system of nonlinear ordinary
differential equations. The behavior of bad social habit which is alcohol
consumption in Spain is analyzed, through thirteen years from 1997 to
2027 under study. The modified MMCRK method helps to analyze the
effects of the bad social habit of alcohol consumption. The obtained
results are shown that there is increasing in alcohol consumption with
non-risk-drink consumers and declining the risk-drink consumers during
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the thirty years under study. For the number of the non-drink consumers
has a decrease with the MMCRK method. The most predicted values
[73] around the MMCRK curves. That means MMCRK can expect that
the increase may be happening in the future for alcohol consumption

habit in Spain.

4.3.2 Smoking Habit Model:

The model of smoking habit model that is mentioned in Chapter 3 is
considered In this section, this model under study has been solved by
the new numerical simulation method MMCRK. Then MMCRK is
compared with the analytic methods ADM and VIM, and with the
numerical methods FD and RK4, as well as with the numerical
simulation method MMCFD [55]. For comparison purpose, the

difference measure error and the mean square error.

4.3.2.1 Results and Discussion:

Approximate and numerical solutions for nonlinear smoking habit
model in Spain are analyzed and discussed in this section where they are
listed in Table 4.6 a and Table 4.6 b. The predicted values of variables
a(t), b(t), c(t) and d(t) for smoking habit evaluation model, [33] had
been given. The exact solution is not available in the current model.
Therefore, a comparison is done between the predicted values or the real
data that available in some years with the numerical simulation solutions
for MMCFD and MMCRK in the interval (0,3) from 2006 to 2009. For
the purpose of comparison, the difference measure error for a(t), b(t),
c(t) and d(t) between predicted value from 2006 to 2009 and ADM,
VIM, FD, RK4, MMCFD, MMCRK methods are shown numerically in
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Table 4.8 a and Table 4.8 b , where the difference measure error |E,| in
this study is the difference between the approximate solutions and the
predicted value or the difference between the numerical solutions and
the predicted value. Some points can be noted: let n be a number of
simulations, m be a number of iterations which is number of years and h

be a step size.

The smallest error for a(t) is (0.01431403) when h=1, n=1000 and
m=16 of MMCRK method.
For b(t), the smallest error is (0.04631671) when h=0.25, n=1000
m=16 of MMCRK method.
For c(t), the smallest error is (0.00742477) when h=1, n=100 and
m=16 of MMCRK method.
For d(t), the smallest error is (0.03825620) when h=1, n=100 and
m=16 of MMCRK method.
For the above results, we note that the MMCRK method has the

smallest difference measure errors. Therefore, it is considered the best
method.
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Table 4.6 a: Approximate solutions of the smoking habit model from 2006 to 2009
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Table 4.6 b: Approximate solution of the smoking habit model from 2006 to 2009
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Table 4.6 a and Table 4.6 b for h=1, 0.5, 0.25 and m=3, is the
number of iterations is to compare between real and predicted values
(2006-2009) with approximate solutions at the same time under study.

Table 4.7 a and Table 4.7 b contain the future solution for smoking
habit from 2006 to 2022. The value of a new MMCRK for a(t) can be
noted is near of the predicted when h=1 (real step size) and n=1000
(number of simulations). While the value of MMCRK for b(t) is an
approach of the predicted value when h=1 and n=100. For c(t) the
value of MMCRK is near of predicted value when h=1 and n=100.
Finally, the value of MMCRK is near of predicted value when h=1 and
n=100.
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and MMCRK solutions and the predicted values [33] from 2006 to

2009

Table 4.8 a: Difference measure error |E,| between ADM, VIM, FD, RK4, MMCFD
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Table 4.8 b: Difference measure error | E,, | between ADM, VIM, FD, RK4, MMCFD

and MMCRK solutions and the predicted values [33] from 2006 to 2009
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Prediction interval is a predicted region for the numerical simulation
results from 1997 to 2027 in Table 4.9. By note the Table 4.9 we see
that the values of mean within the interval.

Table 4.9: Prediction intervals (5th percentile, 95th percentile) for MMCFD and
MMCRK solutions

MMCFD from 1997 to 2022 (t < 16)

Subpopulation (100 repetitions) Mean (1000 repetitions)
a(t) (0.46517544, 0.51525916) | 0.48747909 | (0.46784111, 0.51429054)
b(t) (0.12727289, 0.22106877) | 0.17524276 | (0.13021315, 0.22237849)
c(t) (0.05673551, 0.16653102) 0.11433901 | (0.05846895, 0.15524955)
d(t) (0.20241392, 0.24716537) 0.22293914 | (0.20089752, 0.24437106)

MMCRK from 2006 to 2022 (t <

16)

Subpopulation (100 repetitions) Mean (1000 re petitions)
a(t) (0.46495973, 0.51131111) | 0.49039192 | (0.46787991, 0.51307728)
b(t) (0.15501609, 0.19879246) | 0.17420935 | (0.14936064, 0.19367405)
c(t) (0.09742801, 0.13664182) | 0.11657523 | (0.09758071, 0.13563891)
d(t) (0.19987210, 0.23872143) | 0.21875620 | (0.20066171, 0.24414046)

Table 4.10: Results of MSE for MMCFD and MMCRK from 2006 to 2009

. Present MMCFD Results Present MMCRK Results

Modkl Step Size,

Variables | " O°) [T 100 1000 100 100

repetitions repetitions repetitions repetitions
1 0.00002917 0.00001738 0.00004396 0.00000944
a(t) 0.5 0.00004347 0.00002566 0.00006521 0.00001332
0.25 0.00005082 0.00002974 0.00007711 0.00001541
1 0.00598064 0.00584571 0.00601748 0.00585020
b(t) 0.5 0.00583757 0.00566605 0.00585286 0.00565108
0.25 0.00575351 0.00556638 0.00577226 0.00555408
1 0.00049382 0.00044614 0.00048569 0.00043818
c(t) 0.5 0.00039421 0.00034294 0.00039892 0.00034625
0.25 0.00035902 0.00030589 0.00036061 0.00030524
1 0.00075837 0.00075480 0.00070756 0.00078692
d(t) 0.5 0.00052999 0.00053100 0.00048720 0.00057448
0.25 0.00044310 0.00044627 0.00039527 0.00048476




The Table 4.10 contains the results of mean square error of the a new
numerical simulation method MMCRK and compare it with MMCFD
by using MSE then can be noted, let n be a number of simulations, m be

a number of iterations which is number of years and h be a step size.

e  The smallest error for a(t) is (0.00000944) when h=1, n=1000 and
m=16 of MMCRK method.

e For b(t), the smallest error is (0.00555408) when h=0.25, n=1000
m=16 of MMCRK method.

e For c(t), the the smallest error is (0.00030524) when h=0.25,
n=1000 and m=16 of MMCRK method.

e For d(t), the the smallest error is (0.00039527) when h=0.25,
n=100 and m=16 of MMCRK method.

For the above results, we note that the MMCRK method has the
smallest mean square errors, therefore it is considered the best method.
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Figure 4.5 (a, b) and Figure 4.5 (c, d) are describe the behavior of
smoking habit from 2006 to 2022. Figure 4.5 (a) that related to non-
smoke people a(t), the curve of MMCRK method near to the predict
value more than the curve of MMCFD method and keep on its level.
This means, the people who do not smoke through 16 years to 2022
have stable case. Therefore, the behavior of curves of these methods is
agree with the behavior of curves for a(t) in the previous study (Figure
2, page. 249) [33]. Figure 4.5 (b) of b(t) that related to normal smoke
people is showing us the curves of the methods that are MMCFD,
MMCRK, FD, VIM and RK4 methods are near from 2006 until 2013,
then the curves of mentioned methods are gradually decreasing yearly
to 2022, while with MMCRK is more decreasing from 2013 until 2022.

For Figure 4.5 (c) of c(t) that related to the excessive smokers all the
curves of the methods under study are decreasing, the numerical
simulations for the methods (MMCRK, MMCFD) is more increasing
than the other methods and agree with previous study the previous study
(Figure 2, page. 249) [33].

Figure 4.5 (d) of d(t), that related to ex-smokers, there is increasing
from 2006 to 2022, for all the curves of the numerical simulation
methods are decreasing more than the curves of the other methods from
2013 until 2022 and agree with the previous study (Figure 2, page. 249)
[33].
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Figure 4.7 (a, b) and Figure 4.7 (c, d) when h=1 (real step size),
n=1000 (number of simulation) and m=16 (number of iteration) are
describe the behavior of smoking habit from 2006 to 2022. Figure 4.6
(@) the curve of MMCRK method near to the predict value more than
the curve of MMCFD method and keep on its level. Therefore, the
behavior of curves of these methods is agree with the behavior of curves
for a(t) in the previous study (Figure 2, page. 249) [33]. Figure 4.6 (b)
of b(t) is explain us the curves of the methods that are MMCFD,
MMCRK, FD, VIM and RK4 methods are near from 2006 until 2013,
then the curves of mentioned methods are gradually decreasing yearly
to 2022, while with MMCRK is more decreasing from 2013 until 2022.

For Figure 4.6 (c) of c(t) shows us all the curves of the methods
under study are decreasing, the numerical simulation methods
(MMCRK, MMCFD) more increasing than the other methods and agree
with previous study the previous study (Figure 2, page. 249) [33].

Figure 4.6 (d) of d(t), there is increasing from 2006 to 2022, for all
the curves of the numerical simulation methods are decreasing more
than the curves of the other methods from 2013 until 2022 and agree

with the previous study (Figure 2, page. 249) [33].

104




(a)

0.54
—+— MMCFD
= MMCRK
B  Predict value
0.52 — ® Real data

&

B

=)
I

Subpoplution «
=]
h
L
J.
/ .

0.46
[ . | . | . ! .
2005 2010 2015 2020
t(16 years) with h =0.25 and n=100
(b)
i —+— MMCFD
0.22 |- MMCRK
B B  Predicted value
0.21 ® Real data
= i " S
g 0.2 — \:\‘l
£ i \:\J\
— . _!
2019 = = s
oy o '\."‘\
= N "
= i
90,18 —
0.17
0.16 - ) I \ | \ | .
2005 2010 2015 2020

t(16 years) with h =0.25 and n=100

Figure 4.7 (a, b): Numerical simulation solutions using MMCFD and MMCRK
around predicted values and Real data [33] when h=0.25 (real step size) and n=100
(number of simulations) of (a) a(t) and (b) b(t) from 2006 to 2022 years

105




(©)

04 - —4+— MMCFD
MMCRK
i B predict value
[ ]
03 Real data
(2
= N
2
—
=202
=9
c . . Wl — l_‘_ . - — l_ :.‘ _' — l_ . — — L}
= » WK 7 . o . " I
= - s
7]
o1l ©®
0 -
| 1 | 1 | 1 1 1
2005 2010 2015 2020
t(16 years) with h =0.25 and n=100
(d)
—+— MMCFD
i MMCRK
03 L B  Predicted value
) ® Real data
~ L
g °
g 0.2 . :
— Y PR—
% B " l__,.u..—h-—-""‘!"—‘"'".‘--"-‘—“’_* A
=% AT N T
E
wn 0.1
0 -
| 1 ] ] | ] ] 1
2005 2010 2015 2020

t(16 years) with h =0.25 and n=100

Figure 4.7 (c, d): Numerical simulation solutions by MMCFD and MMCRK around
predicted values and Real data [33] when h=0.25 (real step size) and n=100 (number
of simulations) of (c) c(t) and (d) d(t) from 2006 to 2022 years.

106




Figure 4.7 (a, b) and Figure 4.7 (c, d) when h=0.25, n=100 and
m=16 are described approaches the curve of MMCRK of the predicted
value. Figure 4.7 (a) the curve of MMCRK method near to the predict
value more than the curve of MMCFD method and start decreasing
gradually until 2022. Figure 4.7 (b) of b(t) is explain us the curves of
the MMCRK method is near from 2006 until 2013, then the curves of
mentioned method is decreasing step by step yearly to 2022. For Figure
4.7 (c) of c(t) the curve of MMCRK method under study is near of
predicted value and starts with little increasing until 2022. Figure 4.7 (d)
of d(t), there is increasing from 2006 to 2022, for the curve of the
numerical simulation method MMCRK and the mentioned method is
near of the predicted value.

4.3.2.2 Results Analysis:

In the current study, the behavior of the bad social habit of the
smoking habit of the nonlinear epidemic model is analyzed through
sixteen years under study from 2006 to 2022. In our work, some reliable
numerical simulation methods are used to solve a nonlinear system of
epidemic models for ordinary differential equations of the first order.
There is a convergence in the results of the new modified MMCRK are
smaller than MMCFD errors in the nonlinear case. The numerical
simulation methods help to analyze the effects of the bad social habit of
smoking habit model and expect the behavior of the population in the
future about this habit.
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Because of the randomness in the numerical simulation methods, this
feature cannot be found in the approximate (analytic, numerical)
methods, therefore, the expectation of the next years for the smoking

habit can be studied through using the numerical simulation methods.

The results obtained are shown the subpopulation a(t) of non-
smokers stay stable along sixteen years with MMCFD and MMCRK
curves. While subpopulation b(t) of normal-smoke it is decreasing until
2022. According subpopulation c(t) of excessive smokers it is keep on
the same level until 2022. Finally the subpopulation d(t) of ex-smokers
has a small increase to 2022 that refer to there is increase to smoking
habit in this region. The most predicted values [33] around the ADM,
VIM, FD, RK4, MMCFD and MCRK curves, that mean to the reliability
of the obtained results.
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CHAPTER 5:

CONCLUTION AND FUTUER WORKS

5.1 Conclusion:

The aim of this study is to solve a system by a special process that
considers a randomized to merge with a numerical iteration method as a
new process that proposed for the first time. Since the approximate
methods (analytic, numerical) are inappropriate to solve such models
that have constant coefficients, therefore the proposed method is more
suitable to solve this type of the systems that have a random variable in
their coefficients.

The importance of the proposed method has been highlighted; the
proposed method can expect the behavior of a population under study
the next few years in a predicted period, in order to help to analyze the
behavior of some models such as epidemic models that have been
applied which are represented in alcohol consumption and smoking
habit. While the other analytical and numerical methods despite its
efficiency, but they find only the current solution since there is no
randomness in their coefficients. We do not say the proposed method is
always better than the approximate methods in the area of the precision
and the approach to the solutions. The proposed numerical simulation
method is more appropriated to solve such systems that have their
coefficients as random variables which depend on the variable time,
these coefficients are treated by the simulation process.

In this thesis, a new modified numerical simulation technique for
solving nonlinear epidemic models is proposed. The importance of the

current study, the research objective, the problem statement which
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highlighted why this study is necessary have been provided. The scope
of the research and the outline of thesis have also been displayed. The
important role of simulation technique has been explained for solving
the epidemic models with random parameters.

In the current study that appears in Chapter 2, there is a convergence
in the results of the used analytic methods which are AM and VIM
methods are examined in the nonlinear case. In our work, they are used
for solving a system of nonlinear ordinary differential equations. The
behavior of bad social habit which is alcohol consumption in Spain is
analyzed, based on the epidemiological model through ten years under
study from 1997 to 2007. The obtained results are shown that there is
increasing in alcohol consumption with the non- risk-drink consumers
and declining the risk-drink consumers during the ten years under study
from 1997 to 2007. For the non-drink consumers have a small increase
with the VIM keeping the same level with the ADM. The most predicted
values [73] are around the ADM and VIM curves.

In our work, some reliable numerical methods which are FD and
RK4. The behavior of the bad social habit of the nonlinear epidemic
model is analyzed through ten years under study from 1997 to 2007. The
numerical FD and RK4 methods help to show the effects of the bad
social habit of alcohol consumption on Spanish population during the
years under study, in Chapter 2.

In Chapter 3, the behavior of the bad social habit of the nonlinear
epidemic model is analyzed through sixteen years under study from
2006 to 2022. There is a convergence in the results of the analytic
methods which are ADM and VIM and the numerical methods which
are FD and RK4 that examined in the nonlinear case. The analytic
methods ADM and VIM with the numerical methods FD and RK4
methods help to note the effects of the bad social of smoking habit. The
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results obtained have been shown that the subpopulation a(t) of non-
smokers stay stable along three years under study from 2006 to 2009
except the ADM curve. While the subpopulation b(t) of normal-smoke
and the subpopulation c(t) of excessive smokers are gradually declining
until 2022. Finally, the subpopulation d(t) of ex-smokers is arising to
2022 that refer to there is increasing in the smoking habit of this region
with the ex-smokers, in spite of the law of a social smoking habit was
applied. But the law can useful to reduce this habit with the other
subpopulations. The most predicted values [33] are around the
ADM,\VIM, FD and RK4 curves that mean to the reliability of the
obtained results.

In Chapter 4, the new numerical simulation solutions of the method
MMCFD and the new numerical simulation proposed method MMCRK,
for the nonlinear epidemic models have been discussed and analyzed.
The two epidemic models under study, which are alcohol consumption
and smoking habit are applied in this chapter on the numerical
simulation methods. The mean square error and the difference measure
error are used for comparison between the approximate methods or the
numerical simulation solutions and the predicted value. The alcohol
consumption model has the smallest mean square error when n=1000
(number of simulations), step size h=1 and iterations m=10 for
subpopulations a(t) and m(t) of MMCRK, subpopulation r(t) has
smalles error when h=25, n=1000, and iterations m=10 and has the
smallest difference measure error when h=1 (real step size), repetitions
n=100 and iterations m=10 for subpopulation a(t), m(t) and h=0.25
for subpopulation r(t). The obtained results are shown that there is an
increasing in alcohol consumption with the non- risk-drink consumers
and declining the risk-drink consumers during the thirty years from 1997
to 2027 under study with MMRK. For the non-drink consumers have a
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decreasing with the MMCRK method. The most predicted values [73]
around the MMCRK curves. That means MMCRK can expect that the
increasing may be happening in the future for alcohol consumption habit

in Spain.

The results obtained from smoking habit model are shown the
subpopulation a(t) of non-smokers stay stable along sixteen years from
2006 to 2022 with MMCFD and MMCRK curves. While subpopulation
b(t) of normal-smoke it is decreasing from 2006 to 2022. According to
the subpopulation c(t) of excessive smokers, it is keep on the same level
from 2006 until 2022. Finally the subpopulation d(t) of ex-smokers has
a small increase from 2006 to 2022 that refer to there is an increase in
smoking habit of d(t) only in this region under study, in spite of the
law of avoid the smoking habit was applied. The most predicted values
[33] around the MMCFD and MMCRK curves that mean to the
reliability of the obtained results.

The epidemic models under study have the smallest mean square
error and the smallest difference error with MMCRK with all
subpopulations. In other words, MMCRK is better than MMCFD
according to the expectation the next years.

The results are calculated by the Mathematica.11 software for
analytical methods ADM and VIM and MATLAB 2013 software for
numerical methods FD and RK4, the figures are drawn by the Magic
Plot software.
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5.2 Recommendations and Future Works:

The current study deals with modification of the numerical
simulation methods.We recommend the following ideas:

. We recommend to apply the methods under study, to other epidemic

models.

. MMCRK method is suggested to solve an autonomous system of
nonlinear IVP of higher order ODEs, partial DEs, fractional ODEs, and
all types if they have a random variable as a coefficient in the model
under research [38].

The advanced of RK numerical iteration methods with different orders
such as RK45 and RK78 can be suggested to merge with MC simulation
techniques as a new method to solve deterministic models with random
parameters [58].

. Other analytical methods can be suggested to solve such system under
study like homotopy perturbation analysis method and Semi analytical
iterative method Temimi and Ansari.

. On the other hands, there are other numerical iteration methods can

be suggested to solve the system under study.

. Other kinds of simulation techniques like a Latin Hypercube Sampling,
Box—Muller transform and so on, can be used to simulate the random
parameters of stochastic deterministic models.

. We recommend to change the process of the numerical simulation
methods to get the optimal number of iteration and simulation that help
to obtain the best expectation for the nature of subpopulations under
study in the future.
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Appendixes

Appendix A

MMCFD Application of Alcohol Consumption Model

$FDM with MC to solve model of the nonlinear ODE system
%*******************************************************
clc

clear

close all

format long

$Nonlinear system of differential Equations for Solving
%alcohol consumption in Spain%

Sparameters of the model%

disp ('parameters of model')

b1l =0.01; sprportion of the birth rate in Spain.
b22 =0.00144; %proportion of the rate at which a
risk consumer becomes a non-consumer.

b33 =0.08; proportion of the death rate in
Spain.

b44 =0.0284; sproportion the transmission rate due
to social pressure to increase the alcohol consumption.
b55 =0.009; sprportion of the augmented death rate

due alcohol consumption.
b66 =0.000110247; S%prportion of the rate at which a non-
risk consumer moves to the risk consumption

subpopulation.
0 000000000000 0 0 00 0000000000000000000000000000000000020
V0000000000000 00000000000 0000000000000 00000000000000000D0

$Generate value
interval [a, bl.
o
[6)

k=1000; number of simulation
ag=10; snumber of iteration
h=0.25; %step size

for j=1:k

rand('seed', k)

bl=(b11-0.2*b1l1l)+((b11+0.2*b11) - (b11-
0.2*b11)) *rand (j) ;

b2=(b22-0.2*b22) +( (b224+0.2*b22) - (b22-
0.2*b22)) *rand (J) ;

b3=(b33-0.2*b33) +( (b33+0.2*b33) = (b33-
0.2*b33)) *rand (73) ;

bd= (b44-0.2*b44) +((b4d4+0.2*bd4) - (bd4d-
0.2*b44)) *rand (J) ;
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b5=(b55-0.2*b55) +( (b55+0.2*b55) - (b55-
0.2*b55)) *rand (7j) ;

b6=(b66-0.2*b66) +( (b66+0.2*b606) - (b66-
0.2*b66)) *rand (7j) ;

j=3+1;
end

disp('bl b2 b3 b4 b5 bo6'")
Par=[ Parameter bl' Parameter Db2' Parameter b3'
Parameter b4' Parameter b5' Parameter bo6' ]

%$initial conditions%

$x0=[a0 mO r0];

disp('initial conditions'")

disp('-——=—=="-—""—""-—- - ")
for j=1:k

%$initial conditions%
$x0=7a0 mO r0];

sdisp('a0 = initial a ")

a0=0.362; a(l,j)=a0; %$initial value of a(t)
disp ('m0 = initial m ")

m0=0.581; m(1l, j)=mO; %initial value of m(t)
sdisp('r0 = initial r ")

r0=0.057; r(l,3)=r0; $initial value of r(t)
Tdisp('t0 = initial t ")

t0=0; %initial condition of t

$time per year

%Backward FD of the model%
a(2,3)=a(l,j)+h*(b1l(3)+b2(3)*r(1,73) -b3(j)*a(l,7) -

b4 (j)*a(l,3J)*(m(1,3)+r(1,3))-a(l,J)*(bl(J)-b3(J)*a(l,]) -
b5 (J) *m(1,3)-b5() *r(1,3)));
m(2,j)=m(1l,j)+h*(b4(j)*a(l,J)*m(1,J)+r(l,3))-

b6 (J) *m(1,J)+b3(J) *a(1,]J)*m(1l,J)-b5(]) *a(l,])*m(1l,]J)-

bl (J)*m(1,3));

r(2,3)=r(l,3)+h*(b6(3)*m(1, )~

b2 (3)*r(1,3)+b3(3) *a(l,J)*r(1l,J)-b5(3)*a(l,j)*r(1,3)-

bl (J)*r(1,3));

%Centeral FD of the model%

%$ai+l-ai-1/2h = bl+b2*ri-b3*ai-b4*ai(mi+ri)-ail[bl-b3*ai-
b5*mi-b5*ri]
$mi+l-mi+1/2h
bl*mi
$ri+l-ri-1/2h

b4*ai(mi+ri) -b6*mi+b3*ai*mi-b5*ai*mi-

bo*mi-b2*ri+b3*ai*ri-b5*ai*ri-bl*ri

for i=2:9/h
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a(i+l,3)=a(i-1,9)+2*h* (bl (§)+b2(3)*r(i,3)-b3(J) *a(i,])-
b4 (3)*a(i,3J)*(m(i,3)+r(i,3J))-a(i,]J)*(b1(J)-b3()*a(i,])-
b5 (3) *m(i,3J)-b5(]) *r (1 ))),
m(i+l,j)=m(i-1,73)+ 2*h*( 4(J)*a(i,3)*(m(i,J)+r(i,3)) -
b6 (j)*m(i,J)+b3(J)*a(i,J)*m (i, J) b5(j) a(i,Jj)*m(i,3J)-
bl (J)*m(1 ,j))
r(i+l,j)=r(i-1,3)+2*h* (b6 (j)*m (i, J) -
b2 () *r(i,3J)+b3(J) *a(i,]J) *r(i,J)-b5(J) *a (i, ) *r(i,J)-
bl(j)*r(i,j))
sol=zeros (q,3) ;
sol(i,3,1) = a(i,J);
sol(i,3,2) = m(i,3J);
sol (i,3,3) = r(i,J);
1i=1+1;
end
J=3+1;
end
$result=[a' m' r']
result=zeros(g/h, k, 3) ;
for i=l1:9/h
res(i,k,1l) = a(i,k);
res(i,k,2) = m(i,k);
res(i,k,3) = r(i,k);
i=i+1;
end
result=[ res(:,k,1) res(:,k,2) res(:,k,3) ]
disp('[ a mr 1")
for j=1:k
sol=[ a(:,3) m(:,3) r(:,3) ]
end
solfinal=zeros (q/h,3);
for j=1:k
solfinal a(j)=a(g/h,Jj);
solfinal m(j)=m(g/h,Jj);
solfinal r(j)=r(g/h,3);
j=j+1;
end
disp('[ solfinal a solfinal m solfinal r
")
solfinal=[solfinal a(:) solfinal m(:) solfinal r(:)]
fprintf ('solfinal a solfinal m solfinal r
\n'")
fprintf( '%1.5 £ %1.5 £ %1.5 £ \n' , solfinal a ,

solfinal r )

solfinal m ,

musolfinal a
musolfinal m
musolfinal r

mean(solfinal a);
mean(solfinal m);
mean (solfinal r);
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disp('[ mean a mean m
mean r ]'")

disp ([musolfinal a musolfinal m
musolfinal r])

%$Predicted wvalues in 2027, when t=30 years
predict a=0.362;
predict m=0.581;
predict r=0.057;

sDifference error

Diff a=abs (predict a-musolfinal a);
Diff m=abs (predict m-musolfinal m);
Diff r=abs (predict r-musolfinal r);

disp('[Diff a Diff b Diff c Diff d]")
Diff error=[Diff a Diff m Diff r]

$Absolute relative approximate error

RE a =abs ((predict a-musolfinal a)/musolfinal a);
RE m =abs ((predict m-musolfinal m)/musolfinal m);
RE r =abs ((predict r-musolfinal r)/musolfinal r);

disp('[RE a RE m RE r]'")

RE error = [RE a RE m RE r]
disp('[prctile a]")

Pa=prctile(solfinal a, [5 95])

disp('[prctile m]")

Pm=prctile (solfinal m, [5 95])

disp('[prctile r]")
Pr=prctile(solfinal

disp ('Results of MMCFD of alcohol consumption')
%$Predicted values in —--——-————-—- , when t years
predicta=0.362;

predictm=0.581;

predictr=0.057;

MMCFDa=musolfinal a;
MMCEFDm=musolfinal m;
MMCFDr=musolfinal r;

disp (' [Numerical Simulation for the System]')
disp (' [MMCFD a MMCEFD m MMCEFD r]"')

disp ([MMCFDa  MMCFDm  MMCFDr])

SHAHHHFHH A A AR A AR AR AR A S

$Estimate of error by mean sguare error
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disp ('MSE to measure results error')

%$summation account
aMSEsuml1=0;
mMSEsuml=0;
rMSEsuml=0;

k=1;

while k<=g
aMSEsuml=aMSEsuml+ (predicta-solfinal a(k))"2;
mMSEsuml=mMSEsuml+ (predictm-solfinal m(k)) "2;
rMSEsuml=rMSEsuml+ (predictr-solfinal r(k))"2;

k=k+1;
end
aMSE _SOL =(1/q) * (aMSEsuml) ;
mMSE_SOL =(1/qg) * (mMSEsuml) ;
rMSE SOL =(1/q) * (rMSEsuml) ;
disp (' [aMSE_SOL mMSE_SOL rMSE_SOL] ')
MSE_ SOL=[aMSE SOL mMSE_ SOL rMSE SOL]

gadaddaagdadaddaddadaaaadaaaddaddacddadadaaaadaadadcdcaaaaageaeger

figure(l)

%3Sketch the results of the last simulation

disp('[ last simulation a last
simulation m last simulation r ]')
last sim=[ af(:,k) m(:,k) r(:,k) ]

t=t0:h:qg; %Calculates up to t final results
plot(t,a(:,k), 'o',t,m(:, k), "x',t,r(:, k), "*")
title ("MMCFD solutions of alcohol consumption model');

xlabel ('30 Years');
ylabel ('Subpopulations a,m,r'");
legend('a','m"', 'r'")

figure(2)

t=t0:h:qg;

subplot (3,1,1)

plot(t,a(:,k),'o")

title ("MMCFD of a solution of alcohol consumption
model') ;

xlabel('30 Years ');

ylabel('a');

subplot (3,1, 2)

plot(t, m(:,k), "x")

title ("MMCFD of m solution of alcohol consumption
model"'") ;

xlabel('30 Years ');

ylabel('m');
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subplot (3,1, 3)
plot(t,r(:, k), "*")

title ("MMCFD of r solution of the alcohol consumption
model ') ;

xlabel('30 Years ');

ylabel('r');
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Appendix B

MMCRK' Application of Alcohol Consumption Model

$RK4 with MC to solve models of the nonlinear ODE system
%*******************************************************
clc

clear

close all

format long

$To solve a model for the evolution of alcohol
consumption in Spain%

0 0000000000000000000000000020020000000009000000002020200200000
O O0OO0O0OO0OO0OO0OOOOOOODOOOODODOOLOLODOODODOLDODOODODODODOOODODODOOODOOOOODOOOOODOOOOO™ O
O O

smodel%

sda dt = bl+b2*ri-b3*ai-bd4*ai(mi+ri)-ail[bl-b3*ai-b5*mi-
b5*ri]

Zdm dt = bd*ai (mi+ri)-b6*mi+b3*ai*mi-b5*ai*mi-bl*mi

$dr dt = b6*mi-b2*ri+b3*ai*ri-bS*ai*ri-bl*ri

$initial values$%

5t 0=0; $time per year

sy0=[a0 mO rO0]; %y0 = initial condition of a
system

%a0=0.362; a(l)=a0; $initial value of al(t)
sm0=0.581; m(1)=mO; %initial value of m(t)
5r0=0.057; r(l)=r0; $initial value of r(t)

$Model with RK4%
$dy/dt in form of f(t,y).it can be a function of both
variables t and vy,
%da dt =fl(t a,m,r

55 555 6556505565055 6556555655565 3855

Sparameters of the model%
disp ('parameters of model')

%all =0.01; $prportion of the birth rate in Spain
$a22 =0.00144; $proportion of the rate at which a
risk consumer becomes a non-consumer.

%a33 =0.08; $proportion of the death rate in
Spain.

%ad4d =0.0284; proportion the transmission rate due
to social pressure to increase the alcohol consumption.
%ab5 =0.009; sprportion of the augmented death

rate due to alcohol consumption.

%a66 =0.000110247; %prportion of the rate at which a
non-risk consumer moves to the risk consumption
subpopulation.
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disp("k*****‘k********‘k**lnput Data*********‘k‘k********l)

k=100, snumber of simulation
sg=number of iteration= numbers of years
between 2006 & 2009

g=10; snumber of iteration
h=0.25; %step size

tdisp ('parameters of model')
all=0.01;

a22=0.00144;

a33=0.08;

ad44=0.0284;

a55=0.009;

a66=0.000110247;

%Generate values from the uniform distribution on the
intervalla, b].
for j=1:k
rand('seed', k)
al=(all-0.2*all)+((all+0.2*all)-(all-
0.2*%all)) *rand (7j) ;
az=(a22-0.2*a22)+((a22+0.2*a22) - (az22-
0.2*a22)) *rand (j) ;
a3=(a33-0.2*a33)+((a33+0.2*a33) - (a33-
0.2*%a33)) *rand (7j) ;
ad=(ad44-0.2%*ad4)+((ad44+0.2*ad4d) - (add-
0.2*ad4)) *rand (J) ;
ab=(ab5-0.2*ab5)+((a55+0.2*ab5) - (ab5-
0.2*ab5)) *rand (7j) ;
a6=(a66-0.2*a66)+((a66+0.2*a66) —(abb-—
0.2*a66)) *rand (j) ;
J=J+1;
end

disp('al a2 a3 a4 ab a6')

Par=[ Parameter al' Parameter aZ2' Parameter a3'
Parameter a4d' Parameter ab' Parameter a6' ]
disp('———=—=——"—-——"--- - ")
for j=1:k

for i=1:g/h

[e)

%$initial conditions %
$x0=[a0 mO ro];

disp('al0 = initial a ")
a0=0.362; a(l,j)=a0; %initial value of a(t)
sdisp ('m0 = initial m ")
m0=0.581; m(1l,j)=mO0; %initial value of m(t)
sdisp('r0 = initial r ")
r0=0.057; r(l,3)=r0; %$initial value of r(t)
disp('t0 = initial t ")
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t0=0; $initial condition of t
$time per year

kml=zeros
km2=zeros
km3=zeros
kmd=zeros

%$Calculating kal, kml,krl
kal(i,3) = al(j)+a2(3)*
ad (jJ)*a(i,j)*(m(i,J)+r

(i,3)-a3(j)*a (i, 3) -
(1,
a5(j)*m(i,j)-ad5(j)*r(i,J)

i,J)-a(i,j)*(al(j)-a3(j)*a(i,j)-
));

kml(i,3) = ad4(j)*a(i,j)*(m(i,j)+r(i,3))-
a6 (j)*m(i,j)+a3(3j)*a(i,j)*m(i,J)-ad5(i)*a(i,J)*m(i,J)-
al(j)*m(i,J);

krl(i,J) = a6(j)*m(i,3) -

a2(j)*r(i,j)+a3(3)*a(i,j)*r(i,J)-ad5(3)*a(i,J)*r(i,3)-
al(3)*r(i,3);

%$Calculating ka2, km2,kr2

ka2 (i, )= al(j)+a2(j) (r(i,3)+0.5%krl(i,3)) -
a3(j)*(a(i,j)+0.5*kal (i ,j))

a4 (j)*(a(i,3)+0.5%kal(i,3))* ((m(i,3)+0.5*kml (i,3)+ (r (i, ]
) +0. 5*krl( ,j))) (a (i,j)+ka1(i,j))*(al(j)

a3 (j)*(a(i,j)+kal(i,3))-ad(3)*(m(i,3)+kml(i,])) -
a5(J)*(r(i,3)+0.5*krl(i,3))));

km2 (1,3)=a4(3)*(a(i,3)+0.5*kal (1,3))* ((m(i,])+0.5*kml (1,
J)+r (1 )+O S*krl(i,3)))-
a6 (j)* ( (1,3)+0.5*kml(i,J))+a3(j)*(a(i,3)+0.5*kal(i,3))*
( (1,3)+0.5%kml (i,73))-

5(3 ) (a(i,3)+0.5*kal(1,3)) * (m(i,J)+0.5*kml(1,3)) -
1(3)*(m(1,3)+0.5%kml(1,3))

6(3)* (m(1,3)+0.5%kml (1,3)) -

kr2(i,j)=a
) *(r(i,J)+krl (i,3))+a3(J)*(a(i,J)+0.5*kal(i,]))*(r (1

a2 (j
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,J)+0.5%krl (i, J)) -
a5(j)*(a(1,3)+0.5+kal(1,J)) *(r(1,]J)+0.5*krl (1,3))~
al(3)*(r(1,3)+0.5*krl(1,3))7

%Calculating ka3, km3,kr3

ka3(i,j)=al(j)+a2(j)*(r(i,3)+0.5*kr2(1i,3)) -
a3(j)*(a(i,3)+0.5*ka2(i,3)) -

a4 (j)*(a(i,3)+0.5*ka2(1i,3J))* ((m(1, J)+O 5*km2 (i, J)+r(i,3)
+0.5*kr2(1,3)))-(a(i,]j)+kaz2(i,3)) *(al(J) -
a3(j)*(a(i,j)+ka2(i,3))-ad5(3)*(m(i,3)+km2(i,J)) -
a5(j)*(r(i,3)+0.5*kr2(i,3)));

km3(i,j)= a4(j) (a(i, ) +0.5*ka2 (i,3))* ((m(i,3)+0.5*km2 (i,
J))+(r(i,3)+0.5*kr2(1i,3))) -

a6(j)*(m(' J)+0.5*km2(1i,3))+a3(3) *(a(i,j)+0.5*ka2(i,J))*
(m(i,7)+0. 5*km2( ,3)) -

a5(j)*(a(i,j)+0.5*ka2 (i ,j)) (m(i,j)+0.5%km2 (i,3)) -
al(j)*(m(i,3)+0.5*km2(i,3));

kr3(i,j)=a6(j)* (m(i,3)+0.5%km2 (i, 3)) -
az2(j)*(r(i,J)+kr2(i,3j))+a3(j)*(a(i,J)+0.5*ka2(i,3J)) *(r(1i
,3)+0.5%kr2(i,3)) -

a5(3)*(a(i,j)+0.5+ka2(i,J)) *(r(i,3)+0.5*kr2(i,3)) -
al(3)*(r(i,3)+0.5*kr2(i,3));

%Calculating ka4, km4d,kr4

ka4(l,j)=a1( )+a2 () *(r (i, 3)+0.5%kr3(i,3)) -
a3(j)*(a(i,J)+0.5*ka3(i,3)) -
a4(j)*(a(i,3)+0.5*ka3(1,3))* ((m(1,3)+0.5*km3(1,J))+(r (1,
J)+0. 5*kr3( 3))) - (a(i,J)+ka3(i,3)) *(a (j)—

a3 (j)*(a(i ,j)+ka3( ))—a5(j)*(m(l, ) +km3(i,3)) -
as(j)*(r(i ,j)+0.5*kr3(i, )));

km4 (i,3)=a4(j)*(a(i,3)+0.5%ka3(i,3))* ((m(i,J)+0.5%km3 (i,
J))+(r(i,3)+0.5*%kr3(1,3))) -
a6(3)*(m(i,3)+0.5%km3(1,3)) +a3 (3) *(a(i,3)+0.5*ka3(i,3)) *
(m(i,3)+0.5*km3 (i,3)) -

as5(j)*(a(i,j)+0. 5*ka3(i,j))*(m(i,j)+0-5*km3(i,j))—
al(j)*(m(i,j)+0.5*km3(i,j));

kr4 (i,3)=a6(j)* (m(i,J)+0.5*km3 (i,3)) -
az2(j)*(r(i,J)+kr3(i,J))+a3(j)*(a(i,J)+0.5*ka3 (i,3J)) *(r(1i
,3)+0.5%kr3(i,3)) -

a5(j)*(a(i,j)+0.5+ka3(i,3)) *(r(i,3)+0.5*kr3(i,73)) -
al(3)*(r(i,3)+0.5*kr3(i,3));

%Using 4th Order Runge-Kutta formula
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a(i+l,j)=a(i,J)+(1/6)*(kal(i,J)+2*ka2(i,]J)+2*ka3(i,]) +ka
4(1,3)) *h;

m(i+l,j)=m(i,3)+(1/6)* (kml(i,J)+2*km2 (i,J)+2*km3 (1, J) +km
4(1,3)) *h;

r(i+1,9)=r(i,3)+(1/6)* (krl(i,J)+2%kr2 (i,3)+2*kr3 (i, ) +kr
4(1,7)) *h;

i=1+4+1;

end
J=3+1;
end

$result=[a' m' r']
result=zeros(q/h, k, 3) ;
for i=1:9/h

res(i,k,1) = a(i,k);
res(i,k,2) = m(i,k);
res(i,k,3) = r(i,k);
i=1+1;
end
result=[ res(:,k,1) res(:,k,2) res(:,k,3) ]
disp('[ amzr ]")
for j=1:k
sol=[ a(:,3) m(:,J) r(:,3) ]
end
solfinal=zeros(g/h,3);
for j=1:k

solfinal a(j)=a(a/h,J);
solfinal m(j)=m(g/h,J);
solfinal r(j)=r(a/h,Jj);

J=3+1L;
end
disp('[ solfinal a solfinal m solfinal r
)
solfinal=[solfinal a(:) solfinal m(:) solfinal r(:)]
fprintf ('solfinal a solfinal m solfinal r

\n')
fprintf( '%1.5 £ %1.5 £ %1.5 £ \n' , solfinal a ,
solfinal m , solfinal r )

musolfinal a = mean(solfinal a);
musolfinal m = mean(solfinal m);
musolfinal r = mean(solfinal r);
disp('[ mean a mean m
mean r ]'")
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disp ([musolfinal a musolfinal m
musolfinal r])

$Predicted values in 2009, when t=3 years
predict a=0.362;
predict m=0.581;
predict r=0.057;

$sDifference error

Diff a=abs (predict a-musolfinal a);
Diff m=abs (predict m-musolfinal m);
Diff r=abs (predict r-musolfinal r);

disp('[Diff a Diff b Diff c Diff d]"')
Diff error=[Diff a Diff m Diff r]

$Absolute relative approximate error

AE a =abs((predict_a—musolfinal_a)/musolfinal_a);
AE m =abs ((predict m-musolfinal m)/musolfinal m);
AE r =abs ((predict r-musolfinal r)/musolfinal r);

disp('[AE a AE m AE r]')
AE error = [AE a AE m AE 1]

)
Pa=prctile(solfinal a, [5 95])
disp('[prctile m]")
Pm=prctile (solfinal m, [5 95])
disp('[prctile r]")
Pr=prctile(solfinal

disp('Results of MMCRK of alcohol consumption')

%$Predicted values in --——-—-———--—- , when t years
predicta=0.362;
predictm=0.581;
predictr=0.057;

MMCRKa=musolfinal a;
MMCRKm=musolfinal m;
MMCRKr=musolfinal «r;

disp (' [Numerical Simulation for the System]')

disp ('[MMCRK a MMCRK m MMCRK r]"')

disp ( [MMCRKa MMCRKm MMCRKr1])
SHE#HHHHHFHHAHHHHHFH S AR HH AR A A A H RS HHH
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$Estimate error by mean square error
disp ('MSE to measure results error')

%$summation account
aMSEsuml=0;
mMSEsuml1=0;
rMSEsuml=0;

k=1;

while k<=qg
aMSEsuml=aMSEsuml+ (predicta-solfinal a(k))"2;
mMSEsuml=mMSEsuml+ (predictm-solfinal m(k))"2;
rMSEsuml=rMSEsuml+ (predictr-solfinal r(k))"2;

k=k+1;
end
aMSE SOL =(1/q) * (aMSEsuml) ;
mMSE SOL =(1/q) * (mMSEsuml) ;
rMSE SOL =(1/qg) * (rMSEsuml) ;
disp('[aMSE SOL mMSE SOL rMSE SOL]"')
MSE_SOL=[aMSE_SOL mMSE_ SOL, rMSE_SOL]

gddyddyggaaaaaaaadadddadgdaaaaadaeeaaaedaadaaaagageaeaeeeeaeeace

figure (1)

%$Sketch the results of the last simulation

disp('[ 1last simulation a last
simulation m last simulation r ]')
last sim=[ af(:,k) m(:,k) r(:,k) ]

t=t0:h:qg; %Calculates up to t final results

plot(t,a(:,k),'o',t,m(:,k), "x",t,r(:, k), "*")

title ("MMCRK solutions of alcohol consumption model') ;
xlabel('30 Years');

ylabel ('Subpopulations a,m,r'");

legend('a','m"', 'r'")

figure(2)

t=t0:h:qg;

subplot (3,1,1)

plot(t,a(:,k),'o")

title ("MMCRK of a solution of alcohol consumption
model') ;

xlabel('30 Years ');

ylabel('a');

subplot (3,1, 2)

plot(t, m(:,k), "x")

title ("MMCRK of m solution of alcohol consumption
model"'") ;

xlabel('30 Years ');

ylabel('m');
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subplot (3,1, 3)
plot(t,r(:, k), "*")

title ("MMCRK of r solution of the alcohol consumption
model ') ;

xlabel('30 Years ');

ylabel('r');
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Appendix C

MMCFD Application of Smoking Habit Model

$FDM with MC to solve model of the nonlinear ODE system
%**********‘k*****‘k*****‘k************‘k*****‘k*****‘k*******
clc

clear

close all

format long

O O O

$%%Nonlinear system of differential Equations for
Solving a model for the Evolution of smoking habit in

o [elye)
Spainss
0 0 00 0 00 00 00 00 0000000000000000000000000000
0000000000000 0000000000000000000000000000

3%parameters of the model
disp ('parameters of model

b1l =0.01; birth rate in Spain.

b22 =0.0381; %transmission rate due to social
pressure to adopt smoking habit.

b33 =0.0425; %rate at which ex-smokers return to
smoking.

b44 =0.1244; %rate at which an excessive smoker

becomes a normal smoker by decreasing the number of
cigarettes per day.

b55 =0.1175; srate at which normal smokers become
excessive smokers by increasing the number of cigarettes
per day.

b66 =0.0498; %rate at which normal smokers stop
smoking.

b77 =0.0498; srate at which excessive smokers stop
smoking.

3%%%Generate values from the uniform distribution on the
interval [a, Db]

k=1000; gnumber of simulation

a=3; Snumber of iteration

h=0.25; %step size
for j=1:k

rand('seed', k)

bl=(b1l1-0.2*b11)+((b11+0.2*b11l) - (bl1l-
0.2*b11)) *rand (j) ;

b2=(b22-0.2*b22) +( (b224+0.2*b22) - (b22-
0.2*b22)) *rand (J) ;

b3=(b33-0.2*b33)+( (b33+0.2*b33) - (b33-
0.2*b33)) *rand (7j) ;

bd=(b44-0.2*b44)+( (b44+0.2*b44) - (bd4-
0.2*b44)) *rand (J) ;
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b5= (b55-0.2*b55) +( (b55+0.2*b55) - (b55-
0.2*b55)) *rand (j) ;

b6=(b66-0.2*b66) +( (b66+0.2*b66) - (b66-
0.2*b66)) *rand (7j) ;

b7=(b77-0.2*b77)+( (b77+0.2*b77) - (b77-
0.2*b77))*rand (7J) ;

J=J+1;
end

disp('bl b2 b3 b4 b5 bo6'")

Par=[ Parameter bl' Parameter b2' Parameter b3'
Parameter b4' Parameter Db5' Parameter bo'
Parameter b7' ]

disp('-——=="""="=""""—"="="—"—"—="—-"—"————-—————- ")
%initial conditions%
disp('initial conditions')

for j=1:k
%$initial conditions %
sdisp('t0 = initial t ")

t0=0; $initial condition of t Stime per year
sdisp('al0 = initial a ")

a0=0.5045;

a(l,j)=al; %$initial value of a(t)
tdisp('al0 = initial a ")

b0=0.2059;

b(1l,3)=b0; %$initial value of b (t)
tdisp('al0 = initial a ")

c0=0.1559;

c(1l,3)=cO; $initial value of c(t)
tdisp('al0 = initial a ")

d0=0.1337;

d(l,3)=d0; $initial value of d(t)

%Backward FD of the model%
a(2,j)=a(l,j)+h*(b1l(J)*(1-a(l,3))-
b2 (3)*a(l,3j)* (b(lrj) c(1l,3)));

)
b(2,j)=b(1,j)+h*( 2(3)*a(l,J)* (0 (1,3)+c(1l,J))+b3(3) *d(1,
J)+tb4 (3)*c(1,3) - (b5(3)+b6(J) +b1(J)) *b (1, 3)) ;
c(2,3J)=c(1, j)+h*( 5(3) *b(1,7J) -
(b4 (J) +b7 (j)+bl(3))*c( rJ))
d(2,3)=d(1,3J)+h*(b6(J)*b(1,3)+b7(J)*c(1,]) -
(b3(3)+b1(J))*d(1,3));

enteral FD of the model$%
(1+1)-a(i-1)/2h = bl* (1

C
a a(i))-b2*a(i)* (b(i)+c(i))
$b (i+1) -b (i+1) /2h = b2*a (i) *
(b
C

i)
(b(i)+c (i) )+b3*d (1) +bd*c (1) -

5+b6+bl) *b (i)
(i+1) -c(i-1)/2h = b5*b (i) - (b4+b7+bl) *c (1)
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$d(i+1)-d(i-1)/2h = b6*s (i) +b7*c (i) - (b3+bl) *d (1)

for i=2:g9/h

a(it+l,j)=a(i-1,3)+2*h* (bl (J)*(1l-a(i,3j))-

b2 (j)*a(i,3)*(b(i,3)+c(1,3)));
b(i+1l,73)=b
1,3)+ 2*h*(
) *c(i,J) = (
(l+1,j) C
(
=d
(

*

J) * (b (4
)+bl(

i,9)+c(i,3))+b3(j)*d(i,7) +b4 (]
( )) ;
2*h~k( (j)*
) * ) ;
7)

j) +
*b (1 ))
b —

) *a (1
) b6
s J)+ (1,3)
(b4 (7)+b7 1(3)
d(i+1l,73)=

(b3(73)+bl

c(i,j)
) + 2*h*( 6 (
3))7:

a (1
]
(1
b
b
(
J
( *b(i,3)+b7(3)*c(i,]) -
J

2(]
5(3)+
i-1,7
) b1 (3
i-1,7
))*d (1

sol=zeros (q/h,
sol(i,j,1)
sol(i,j,2)
sol(i,j,3) =
sol(i,j,4)

i=i+1;
end
J=3+1;
end

$result=[a' Db' c' d']
result=zeros(g/h, k, 4) ;
for i=1:g/h
res(i,k,1)
res (i, k,2)
res (i, k, 3)
res (i, k, 4)
i=1+1;

end
result=[ res(:,k, 1) res(:,k,2) res(:,k,3)
res(:,k,4)]

14

disp('[ a b ¢ d1")
for j=1:k

sol=[ a(:,7) b(:,3) c(:,7) d(:,3) ]
end

solfinal=zeros(g/h,4);
for §=1:%

solfinal a(j)=a(a’/h,]);
solfinal b(j)=b(a/h,J);
solfinal c(j)=c(gq/h,J);
solflnal ~d(j)=d(a/h,3);
=J+1;
end
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disp ('[ solfinal a solfinal b solfinal c
solfinal d]"'")

solfinal=[solfinal a(:) solfinal b(:) solfinal c(:)
solfinal d(:)]

fprintf ('solfinal a solfinal b solfinal c
solfinal d \n'")

fprintf ( '%1.5 £ 1.5 £ %1.5 £ %1.5 f\n' ,

solfinal a , solfinal b, solfinal ¢, solfinal d )

musolfinal a = mean(solfinal a);
musolfinal b mean (solfinal b);
musolfinal c mean(solfinal c)
musolfinal d mean (solfinal d)

4

4

disp('[ mean a mean b
mean_ cC mean d ]"')

disp ([musolfinal a musolfinal b
musolfinal c musolfinal dJ)

3Predicted values in 2009, when t=3 years
predict a=0.5049;
predict b=0.1240;
predict c¢=0.1240;
predict d=0.1805;

$Difference error

Diff a=abs (predict a-musolfinal a);
Diff b=abs (predict b-musolfinal b);
Diff c=abs (predict c-musolfinal c)
Diff d=abs (predict d-musolfinal d)

14

14

disp('[Diff a Diff b Diff c Diff d]"')
Diff error=[Diff a Diff b Diff c Diff d]

$Absolute relative approximate error

AE a =abs ((predict a-musolfinal a)/musolfinal a);
AE b =abs ((predict b-musolfinal b)/musolfinal b);
AE c =abs ((predict c-musolfinal c)/musolfinal c);
AE d =abs ((predict d-musolfinal d)/musolfinal d);
disp ('[AE a AE b AE c AE d]')
AE error = [AE a AE Db AE c AE d]

disp('[prctile al]")
Pa=prctile(solfinal a, [5 95])
disp('[prctile b]")
Pb=prctile(solfinal b, [5 95])
disp('[prctile c]")
Pc=prctile(solfinal ¢, [5 95])
disp('[prctile d]")
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Pd=prctile(solfinal

_ M
S35 3%%%%

disp('Results of MMCFD of smoking habit')

$Predicted values in —-—-—-———-- , when t years
predicta=0.5049;
predictb=0.1240;
predictc=0.1240;
predictd=0.1805;

MMCFDa=musolfinal a;
MMCFDb=musolfinal b;
MMCFDc=musolfinal c;
MMCEFDd=musolfinal d;

disp (' [Numerical Simulation for the System]')
disp ('[MMCFD a  MMCFD b  MMCFD ¢ MMCFD d]'
disp ( [MMCFDa MMCF Db MMCFEDc MMCFDdA] )

SHAE#HHFHHH A AR A A A H AR AR S H

)

$Estimate error by mean square error
disp ('MSE to measure results error')

$summation account
aMSEsuml=0;
bMSEsuml1=0;
cMSEsuml=0;
dMSEsuml1=0;

k=1;
while k<=qg
aMSEsuml=aMSEsuml+ (predicta-solfinal a(k))"2;
bMSEsuml=bMSEsuml+ (predictb-solfinal b(k))"2;
cMSEsuml=cMSEsuml+ (predictc-solfinal c(k))"2;
dMSEsuml=dMSEsuml+ (predictd-solfinal d(k)) "2;
k=k+1;
end
aMSE SOL =(1/q) * (aMSEsuml) ;
bMSE_SOL =(1/q) * (bMSEsuml) ;
cMSE SOL =(1/qg) * (cMSEsuml) ;
dMSE_SOL =(1/q) * (dMSEsuml) ;
disp ('[aMSE SOL bMSE_SOL cMSE_ SOL
dMSE SOL] ")
MSE SOL=[aMSE SOL bMSE SOL cMSE SOL
dMSE_SOL]

gdddddaggaadageaeeaeadeedaddaaadaaecceaeaaaedaeedagaadegecideeeeaeece
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figure (1)
%$Sketch the results of the last simulation

disp('[ last simulation a last
simulation b last simulation c
last simulation d 1")

last sim=[ af(:,k) b(:,k) c(:,k) d(:,k) ]

t=t0:h:qg; %Calculates up to t final results
plOt(tla(:lk)l'O'Itlb(:lk)l'X'Itlc(:lk)l'*'Itld(:lk)l'+'
)

title ("MMCFD solutions of smoking habit model') ;

xlabel ('3 Years');

ylabel ('Subpopulations a,b,c,d");
legend('a','b','c','d")

figure(2)

t=t0:h:qg;

subplot (4,1,1)

plot (t,a(:,k),'o")

title ("MMCFD of a solution of smoking habit model');
xlabel ('3 Years ');

ylabel('a');

subplot (4,1, 2)

plot (t,b(:,k), "x")

title ("MMCFD of b solution of smoking habit model');
xlabel ('3 Years ');

ylabel('b");

subplot (4,1, 3)

plot(t,c(:,k),"*")

title ("MMCFD of ¢ solution of smoking habit model');
xlabel ('3 Years ');

ylabel('c'");

subplot (4,1, 3)

plot (t,d(:,k),"'+")

title ("MMCFD of d solution of smoking habit model');
xlabel ('3 Years ');

ylabel('d");
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Appendix D
MMCRK Application of Smoking Habit Model

$RK4 with MC to solve model of the nonlinear ODE system
%*******************************************************
clear

close all

format long

in
00000000000000000000000000000000000000000000000000000000
O 0O O0OO0OO0OO0OO0OOOOOOO0ODODOOOODODODODODOODOODODODODODOODODODODODODOODOOODODOOODODODODODOOOOWO™O
gmodel$

$da dt = al*(l-a(t))-a3*a(t)*(b(t)+c(t));

$db dt = a3*a(t)* (b(t)+c(t))+a2*d(t)+ad*c(t) -

(a5+a6+al) *b (t) ;
sdc_dt = ab*b(t)-(ad+a7+al) *c(t);
$dd_dt a6*b(t)+a7*c(t)-(a2+al) *d(t) ;

$initial values$%

$t0=0; $time per year
sy0=[a0 b0 cO0 doO]; %y0 = initial condition of a
system

) = %$initial value of a(t)
1) %initial value of b(t)
1)= $initial value of c(t)
1)= $initial value of d(t)

%a0=0.5045;a (1
%b0=0.2059; Db(
%c0=0.1559; (
%d0=0.1337; d(

% model with RK4 %

$dy/dt in form of f(t,y).it can be a function of both
variables t and vy,

twhere y is n or s or c or e.

$da dt =fl(t,a,b,c,d);
sdb _dt =f2(t,a,b,c,d);
sdc _dt =f3(t,a,b,c,d);
$dd dt =f4(t,a,b,c,d);
S 5555555555555 555555555555 %555555%55%55%5555%55%%%

k=1000; snumber of simulation
h=1; %step size
a=3; gnumber of iteration

%$Generate values from the uniform distribution on the
interval [a, b].
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disp ('parameters of model')
all=0.01;

a22=0.0425;

a33=0.0381;

ad4=0.1244;

ab55=0.1175;

a66=0.0498;

a77=0.0498;

for j=1:k
rand('seed', k)
al=(all-0.2*all)+((all+0.2*all)-(all-
0.2*%all)) *rand(3) ;
a2=(a22-0.2%*a22)+((a22+0.2*a22) - (a22-
0.2*%a22))*rand (7J) ;
a3=(a33-0.2*a33)+((a33+0.2*a33)-(a33-
0.2*a33)) *rand (J) ;
ad=(ad44-0.2%add)+((ad44+0.2*ad4d) - (add-
0.2*%ad4))*rand (73) ;
ab=(ab55-0.2*ab55)+((a55+0.2*ab5) - (ab55-
0.2*ab5)) *rand (j) ;
a6=(a66-0.2*a66)+((a66+0.2*a66) - (a66-
0.2*a66)) *rand (J) ;
a’7=(a77-0.2*a77)+((a77+0.2*a77) - (all-
0.2*a77))*rand (7j) ;

J=3+1;

end

tparameters=[ al a2 a3 a4 a5 a6 a7 ]
disp('al a2 a3 a4 a5 a6 a7'")
par=[ par al par a2 par a3 par a4 par ab
par a6 par a7 ];

disp('-—==""==="""""—""—"""—~ - ")
for j=1:k

for i=l:g/h
sg=number of iteration= number of years between 2006 &
2009
Tdisp('t0 = initial t ")

t0=0; $initial condition of t Stime per year
sy0=[a0 b0 cO0 dO];

disp('al0 = initial a ")

a0=0.5045;

a(l,j)=al; %$initial value of al(t)
disp ('b0 = initial b ")

b0=0.2059;

b(1l,73)=b0; %initial value of b(t)
disp('cO = initial c ")
c0=0.1559;

c(l,3)=c0; %$initial value of c(t)
$disp ('d0 = initial d ")
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d0=0.1337;
d(l,j)=d0; %initial value of d(t)

kbl=zeros (
kb2=zeros(q/h,k
kb3=zeros (
kbd=zeros (

kcl=zeros (
kc2=zeros (
kc3=zeros (g/h, k) ;
kcd=zeros (

%$Calculating kal, kbl,kcl, kdl
Skal= fl(t(i),a(i),b(i),c(i),d(i));
kal(i,j)= al(j)*(l-a(i,J))-a3(j)*a(i,J)*(b(i,]J)+c(i,J));
skbl= f2(t(i),a(i),b(i), c(i), d(i));
kbl (i, 3)=
a3 (j)*a(i,]
(a5(j)+a6(3J)
Skcl= £3(t (i
kcl (i, Jj)= a
Skdl = f4 (t
kdl (i,9)= a
(a2 (j)+al(3)

%$Calculating ka2, kb2,kc2, kd2
ka2
=f1(t(1i)+0.5*h,a(i)+0.5*kal (i) *h,b(i)+0.5*kbl (i) *h,c (i) +
0.5*kcl (1) *h,d(1)+0.5*kdl (1) *h);
ka2 (i,73)= al(j) (1-(a(i,J)+0. 5*ka1(' J) *h)) -
a3(') (a(i,3)+0.5*kal(i,3)*h)* ((b(1i,3)+0.5*kb1(1i,7) *h)+(
c(i,J)+0. 5*kcl( i,3)*h));
okb2( )=
f2(t(1i)+0.5*h,a (i) +0.5*kal (i) *h,b (i)+0.5*kb1 (i) *h,c(i)+0
.5*kcl (1) *h,d(1)+0.5*kd1 (1) *h) ;
kb2 (i,3) =
a3(') (a(i,3)+0.5*kal(i,3)*h)*(

( J)+0.5%kb1(1i,3) *h)+(
c(i,3)+0.5*kcl (i,3)*h))+a2(3)* (d

b (1
(1,73 )+O 5*kdl (i,3j) *h) +a4d
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(3)*(c(i,3)+0.5%kcl (i
(a5(J)+ao6(J)+al(g))~*
Tkc2=
£f3(t(i)+0.5*h,a(1i)+0.5*kal (i) *h,b(i)+0.5*kb1 (1) *h,c(i)+0
.5*kcl (i) *h,d(1)+0.5*kd1l (i) *h) ;
kc2(i,3) = a5(j)*(b(i,3)+0.5*kbl (i,]J) *h) -
(a4(j)+a7(j)+al(j))*(c( J)+0.5*kcl (i,3) *h) ;
$kd2 (1,3) =
a6 (j)*(b(i,3)+0.5*kb1l(i,j)*h)+a7 (]
*h)y-(a2(j)+al(j))*(d(i,3)+0.5*kdl (
kd2 (i,3J) =
b
(

*h) -

i, 3)
(b(1i,3)+0.5*kb1l (i,3) *h);

*

) *(c(i,J)+0.5*%kcl (1,7)
i,3)*h);

a6 (J)*(b(1,3)+0.5*kbl(1,J)*h)+a7(J) *(c(1,3)+0.5%kecl (1,])
*h) - (a2 j)+al( )) *(d(1,3)+0.5*%kd1l (1,7]) *h);

% Calculating ka3, kb3, kc3, kd3

%ka3
=fl1(t(1)+0.5*%h,a(i)+0.5*ka2 (i) *h,b (i) +0.5*kb2 (i) *h,c (i) +
0.5*kc2 (1) *h,d (i) +0.5*kd2 (i) *h) ;

ka3 (i,3) = al(j)*(1-(a(i,j)+0.5%ka2(i,j)*h)) -
a3 (j)*(a(i,j)+0.5*ka2(i,J)*h)*((b(i,7)+0.5*kb2(i,7) *h)+(
c(i,3)+0.5%ke2 (i,3)*h)) ;

kb3=
f2(t(1)+0.5*h,a(i)+0.5*ka2(i)*h,b (i)+0.5*kb2 (i) *h,c(i)+0
.5*%kc2 (i) *h,d(i)+0.5*kd2 (i) *h) ;
kb3 (i,3) =
a3(') (a(i,3)+0.5*ka2(i,3)*h)* ((
c(i,J)+0. 5*k02( i,j)*h))+a2(3j)*(d
(j)*(C( J)+0.5*%kc2(1,3)*h) -
(a5(')+a6(j)+al(j))*(b(i,j)+O.5*kb2(i,j)*h);

/kc3 =

3(t(i)+0.5*h,a(i)+0.5*ka2(i)*h,b(i)+0.5*kb2 (i) *h,c(i)+0

5*kc2( )*h,d(i)+0.5*kd2(') h) ;

kc3 (i,3) = a5(3) * (b (i, ) +0.5%kb2 (i ,j> h) -
(a4<j)+a7<j)+a1<j)>*(c< ) +0.5%ke2 (i, 3) *h) ;

Tke3 =
4 (t (1 )+O 5¥h,a (i) +0.5*ka2(1i)*h, b (1)+0.5*kb2 (i) *h,c (1)+0
.5*kc2 (1) *h,d(1)+0.5*kd2 (1) *h) ;
a6(j)*(b(i,j)+0.5*kb2(' J)*h)+a7 (j) *(c(i,J)+0.5*kc2 (i,73)
*h) - (a2 (3) +al(3)) * (d (1, §) +0.5%kd2 (i,3) *h) ;

J)+0.5*kb2(1,3) *h)+(

b (1
(1,7 )+O 5*kd2 (i, j) *h) +a4

%Calculating ka4, kb4, kcd, kd4

%kad
=fl(t(i)+h,a(i)+ka3 (1) *h,b(1)+kb3(1i)*h,c (i) +kec3 (i) *h,d(1
) +kd3 (1) *h) ;

ka4 (1,3) =al(j)*(1-(a(i,]j)+ka3(i,j)*h)) -
a3 (j)*(a(i)+ka3(i,3)*h)*((b(i,J)+
kb3 (i,3)*h)+(c(i,]3)+ke3(i,3)*h));

Tkbd=
f2(t(i)+h,a(i)+ka3(i)*h,b(i)+kb3 (i) *h,c (i) +kc3(i)*h,d (1)
+kd3 (1) *h) ;
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kb4 (i,3)=a3(3j)*(a(i,J)+ka3(i,3)*h)*((b(i,3)+kb3(1i,3)*h
(c(i,3J)+kec3(1,J)*h))+a2(3)* (d(i,J)+kd3(i,3)*h)+ad(3)*(
i,3)+tkec3(i,J)*h) -
(a5(jJ)+a6(j)+al(j))*(b(i,3J)+kb3(i,3)*h);

$kcd =
f3(t(i)+h,a(i)+ka3(i)*h,b(i)+kb3 (i) *h,c(i)+kc3(i)*h,d (i)
+kd3 (i) *h) ;

kcd (i,3) = a5(3)* (b(i,3)+kb3(i,3)*h) -
(ad(j)+a7(j)+al(g))*(c(i,3)+kc3(i,]J)*h);

$kdd =
f4(t (i) +h,a(i)+ka3(i)*h,b(i)+kb3 (i) *h,c(i)+kc3(i)*h,d (i)
+kd3 (i) *h) ;

kdd (i,3) =
a6 (j)*(b(i,J)+kb3(i,3J)*h)+a7(3)* (c(i,J)+kec3(i,7) *h) -
(a2(3)+al (3))* (d(i,3)+kd3 (i,3) *h) ;

%Using 4th Order Runge-Kutta formula
a(i+l,j)=a(i,j)+(1/6)* (kal(i,j)+2*ka2(i,J)+2*ka3 (i, ) +ka
4(1,3)) *h;

b(i+l,3)=b(i,j)+(1/6)* (kbl(i,]j)+2*kb2(i,7)+2*kb3 (i, ) +kb
4(1,3)) *h;

c(it+l,9)=c(i,3)+(1/6)* (kcl(i,3)+2*kc2 (i,3)+2%ke3 (i, ) +kc
4(1,7)) *h;

d(i+l,3)=d(i,j)+(1/6)*(kdl(i,J)+2*kd2 (i,7)+2*kd3 (i, ) +kd
4(1,3)) *h;

i=i+1;

end
J=3+1;
end

sresult=[a' Db' c¢c' d']
result=zeros(g/h, k, 4) ;
for i=1:gq/h

res(i,k,1
res (i,k,2
res(i,k,3
res(i,k,4
i=i+1;
end
result=[ res(:,k,1) res(:,k,2) res(:,k,3)
res(:,k,4)]

|
Q0 0w
A
AN AN AN

(
(
(
(

a(:,3) b(:,3) c(:,3) d(:,3) 1
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solfinal=zeros(g/h,4) ;
for j=1:k
solfinal a(j)=a(g/h,Jj);
solfinal b (j)=b(g/h,3);
solfinal c(j)=c(g/h,Jj);
solfinal d(j)=d(g/h,Jj);
J=]+1;
end
disp('[ solfinal a solfinal b solfinal c
solfinal d]"'")
solfinal=[solfinal a(:) solfinal b(:) solfinal c(:)
solfinal d(:)]
fprintf ('solfinal a solfinal b solfinal c
solfinal d \n'")
fprintf ( '%1.5 £ 1.5 f 1.5 f 1.5 f\n' ,
solfinal a , solfinal b, solfinal ¢, solfinal d )
musolfinal a = mean(solfinal a);
musolfinal b = mean(solfinal b);
musolfinal ¢ = mean(solfinal c);
musolfinal d = mean(solfinal d);
disp('[ mean a mean b
mean_ c mean d ]"')
disp ([musolfinal a musolfinal b
musolfinal c musolfinal dJ)
%$Predicted values at 2009, when t=3 years
predict a=0.5049;
predict b=0.1240;
predict ¢=0.1240;
predict d=0.1805;
sDifference error
Diff a=abs (predict a-musolfinal a);
Diff b=abs (predict b-musolfinal b);
Diff c=abs (predict c-musolfinal c);
Diff d=abs (predict d-musolfinal d);
disp('[Diff a Diff b Diff c Diff dJ]"')
Diff error=[Diff a Diff b Diff c Diff d]

$Absolute relative approximate error

AE a =abs((predict_a—musolfinal_a)/musolfinal_a);
AE b =abs ((predict b-musolfinal b)/musolfinal b);
AE c =abs ((predict c-musolfinal c)/musolfinal c);
AE d =abs ((predict d-musolfinal d)/musolfinal d);
disp('[AE a AE Db AE c AE dl")
AE error = [AE a AE Db AE c AE d]
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2 2

disp('[prctile al')
Pa=prctile(solfinal a, [5 95])
disp('[prctile b]")
Pb=prctile (solfinal b, [5 95])
disp('[prctile c]")
Pc=prctile(solfinal ¢, [5 95])
disp('[prctile d]")

Pd=prctile(solfinal d, [5 95])
990/0/999999999999999;99999990/0/999999999999999999999999999
O O0OO0O0OO0OO0OO0OO0OOOOO0DODOOODODODODOLOODODODODODODOODODODODODOODODODODOODOODOOODODODOOODOOOOO™D©
disp ('Results of MMCFED of smoking habit')

$Predicted values in —-—-—-————-- , when t years

predicta=0.5049;
predictb=0.1240;
predictc=0.1240;
predictd=0.1805;

MMCRKa=musolfinal a;
MMCRKb=musolfinal b;
MMCRKc=musolfinal c;
MMCRKd=musolfinal d;

disp (' [Numerical Simulation for the System]')

disp (' [MMCRK a MMCRK b  MMCRK ¢ MMCRK d]'")

disp ( [MMCRKa MMCRKDb MMCRKc MMCRKA])
SHEFHHHHFHHAHHHHHFH S AR RHHAHH A A A H RS HHH

tEstimate of actual error by mean square error
disp ('MSE to measure results error')

%$summation account
aMSEsuml=0;
bMSEsuml1=0;
cMSEsuml1=0;
dMSEsuml1=0;

k=1;

while k<=qg
aMSEsuml=aMSEsuml+ (predicta-solfinal a
bMSEsuml=bMSEsuml+ (predictb-solfinal b
cMSEsuml=cMSEsuml+ (predictc-solfinal c

(

k))"2;
k))"2;
k))"2;
dMSEsuml=dMSEsuml+ (predictd-solfinal d(k)) "2;

—_—~ o~ o~ o~

k=k+1;
end
aMSE SOL =(1/q) * (aMSEsuml) ;
bMSE_SOL =(1/q) * (bMSEsuml) ;
cMSE SOL =(1/qg) *(cMSEsuml) ;
dMSE_SOL =(1/q) * (dMSEsuml) ;
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disp (' [aMSE SOL bMSE_SOL cMSE_ SOL
dMSE_SOL] ')

MSE_SOL=[aMSE_SOL PMSE_SOL cMSE_SOL

dMSE_ SOL]
ddcddedddeddddelddddelddddelddddddddddddeddddeddddedddde

figure (1)

%3Sketch the results of the last simulation

disp('[ last simulation a last
simulation b last simulation c
last simulation d ]")

last sim=[ af(:,k) b(:,k) c(:,k) d(:,k) 1

t=t0:h:qg; %Calculates up to t final results

plot(t,a(:, k), 'o",t,b(:, k), "x",t,c(:, k), "*",t,d(:, k), "+
)

title ("MMCFD solutions of smoking habit model') ;

xlabel ('3 Years');

ylabel ('Subpopulations a,b,c,d");
legend('a',"'b','c','d")

figure(2)

t=t0:h:qg;

subplot (4,1,1)

plot (t,a(:,k),'o")

title ("MMCFD of a solution of smoking habit model');
xlabel ('3 Years ');

ylabel('a');

subplot (4,1, 2)

plot (t,b(:,k), 'x")

title ("MMCFD of b solution of smoking habit model');
xlabel ('3 Years ');

ylabel('b");

subplot (4,1, 3)

plot(t,c(:,k),"*")

title ("MMCFD of ¢ solution of smoking habit model');
xlabel ('3 Years '),

ylabel('c');

subplot (4,1, 3)

plot (t,d(:, k), "+")

title ("MMCFD of d solution of smoking habit model');
xlabel ('3 Years '");

ylabel ('d")
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