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Summary

Summary

This research involved the preparation and characterisation of two types
of ligands and their metal complexes. The first ligand (Mannich-base) was
prepared using calcium chloride, HCI and EtOH, which were used as a catalyst
and reaction medium, by mixing three components:4-dimethylaminobenzaldehyde

with 2-nitroaniline and dimedone and molar ratios of 1: 1: 1.
Where: HL' = !

HL'=R)-2-((4-(dimethylamino)phenyl)((2-nitrophenyl)amino)methyl)-5.,5-

dimethylcyclohexane-1,3-dione.

While the second ligand (Schiff-base) was prepared from the reaction of

the first ligand with thiosemicarbazide at molar ratios of 1: 1.
Where: H,L*=L*

H,L*=(E)-2-(2-((S)-(4-(dimethylamino)phenyl)((2 nitrophenyl)amino)methyl)-5,5-

dimethyl-3-oxocyclohexylidene)hydrazine-1-carbothioamide .

The following diagrams illustrates the preparation of the ligands.

N+
S
[ I o
NH O
CaCl, / EtOH,conc.HC1
Stirring overnight at RT
N

|

Scheme 1: General synthetic route of HL'.
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Scheme 2: General synthetic route of H,L>.

Both ligands were used to prepare a series of metal complexes with metal
ion: ( Co(ll), Ni(l1), Cu(ll), Zn(ll) and Cd(ll)), at mixing molar ratios of 1:
2 (metal: Ligand) using DMF as reaction medium. The general formula of
complexes of HL'is [M (HL'),] where M= Co(ll), Ni(Il), Cu(ll), Zn(ll) and
Cd(ID).

The general formula of complexes of H,L? is [M (H,L?) Cl, H,0] where M=
Co (I1) and Cu (1)

[M(H,L?) CIICl where M= Ni(ll), Zn(ll) and Cd(ll)

Ligands and complexes were characterised using elemental analysis, melting
points, metal content, chloride content, thermal analysis (for selective complexes),
magnetic susceptibility, conductance, FTIR, UV-Vis and 'H,”"C-NMR and

electrospray mass spectroscopy.
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Summary
Based on spectral analytical data, the following forms are proposed:

1. Distorted octahedral geometries for all of complexes min HL' (Co(ll), Ni(ll),
Cu(ll), Zn(I1) and Cd(ll)).

2. Distorted octahedral geometries for complexes of H,L* with (Co(Il) and
Cu(ll)).

3. Square planer geometry for complexes of H,L*> with Ni(ll)
4. Tetrahedral geometries for complexes min H,L*> with (Zn(ll) and Cd(ll) ).

The biological activities of all ligands and their metal complexes were
characterised for two types of bacteria G positive (Staphylococcus aureus and
Bacillus stubtilis) and G negative  (Escherichia coli and Pseudomonas
aeruginosa). The activity was diagnosed in the for two types fungi namely

(Candida and Trichomoniasis) .
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Chapter One Introduction

(1) Introduction
(1.1) Schiff base

Schiff bases containing the azomethine (—RC=N-) are generally achieved
from the condensation of primary amine with carbonyl compound (ketone or
aldehyde). Schiff bases are one of the widely used organic combinations. They
have a wide range of applications in many fields including inorganic chemistry,
biological and analytical. Schiff base ligands are important in the field of
coordination chemistry, especially in the development of complexes of azomethine
because these ligands are potentially proficient of making stable complexes with
metal ions [1]. Azomethine ligands and their metal complexes are increasingly
used as catalysts in many biological systems, dyes and polymers [2], as effective
corrosion inhibitors [3], in pharmaceutical fields due to a broad spectrum of
biological activities, like anti-inflammatory [4-8], analgesic [9-11], antimicrobial
[12,13], anticonvulsant [14], antitubercular [15], anticancer [16, 17], antioxidant
[18] and anthelmintic [19].

(1.2) Chemistry of Schiff base

Schiff base also known as azomethine or imine, is an analogue of an
aldehyde or ketone in which the carbonyl group (C=0) has been substituted by
an azomethine or imine group [20-25], Scheme (1.1). Azomethine is a kind of
chemical compounds having a C-N double bond as functional group, where N
atom linked to alkyl group or aryl group R but not to H. The azomethine is

synonymous with an imine and were termed after Hugo Schiff.
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0

I R

R—NH; + R—C—R » C=N—R+H,0
R

Scheme (1.1) : Synthesis of the azomethine

Where R is a phenyl or alkyl group which makes the azomethine a
more stable imine. Azomethine is capable to stabilize several different metals in
many oxidation states, which enhance the performance of metals in many
catalytic transformations proceses[26]. Generlly, azomethine has N,O, or NO
donor groups with achance that O atoms to be substituted by S, N, or Se [27].
Azomethine that contain, aryl substituents are substantially more stable and more
readily synthesized, while those which contain alkyl substituents are relatively
unstable. Azomethine of aliphatic aldehydes are relatively unstable and readily
polymerizable [28,29], while those of aromatic aldehydes having effective
conjugation, are more stable [30,31]. Many azomethines can be hydrolyzed
back to their ketones or aldehydes and amines using base or aqueous acid,
Scheme (1.2).

0 OH

| | I
R—C—R+ R—NH, 'R—(‘?—R ~——= R—C—R + HO
NHR
Aldehyde or keton Primary amine Carbinol amine

Scheme (1.2) : Reversible reaction of a azomethine
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(1.2.1) Mechanism of Azomethine Formation

The mechanism of azomethine formation is another modification the
theme of nucleophilic addition to the carbonyl group, Scheme (1.3). In this
case, the nucleophile is the amine. In the first part of the mechanism, the amine
reacts with the ketone or aldehyde to give an unstable additionl compound called
carbinolamine. The carbinolamine loses water by either acid or base catalyzed
pathways. Since the carbinolamine is an alcohol, it undergoes acid catalyzed
dehydration. Generlly, the azomethine formation is a sequence of two types of

reactions, i.e. addition followed by elimination [32].

+
+
| o L
R C N R /= R Cl N—R
|_ l R 1|1
R H
(acid-catalyzed
dehydration)
R
H,0 + _ JC=—N—-R
o
H
R
\ . Z
H,0* + /C—N R
R

Scheme (1.3): Mechanism of azomethine formation
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(1. 3) Mannich-g-amino carbonyl

Mannich reaction is one of the most important reactions in organic synthesis
of C-C bond and medicinal chemistry [33]. In these reactions, three compounds
are used as starting materials. These processes consist of two or more synthetic
steps in a one-pot reaction, Scheme (1.4). They are forming rapidly, efficient, eco-
friendly and acceptable for green chemistry [34,35]. Mannich reaction applied in
the synthesis of antimalarial, antitumour, antimicrobial, antitubercular,
antiinflammatory and anticonvulsant molecules, such as nikkomycin  or

neopolyoxins [36].

NH

0]

e

Scheme (1.4): Synthesis of the mannich-g-amino carbonyl.
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(1. 3.1) Dimedone (5,5-Dimethylcyclohexane-1,3-dione)

It is a cyclic diketone that used in organic chemistry, Fig (1.1). Is white to
light yellow crystals that called also dimedone, cyclomethone, 5,5-dimethyl-1,3-
cyclohexanedione, dimethyldihydroresorcinol and methone. Cyclohexanediones in
general can be used as catalysts in the formation of transition-metal complexes.
Other uses include, its applications in colorimetry, crystallography, luminescence
and spectrophotometric analysis. The use of dimedone in green chemistry has been
described for the synthesis of selective heterocyclic motifs which are both

pharmacologically and industrially important [37].

Fig (1.1): Chemical structure of dimedone


https://en.wikipedia.org/wiki/Diketone
https://en.wikipedia.org/wiki/Organic_chemistry
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(1.3.2) Tautomerization

Dimedone in equilibrium with its tautomer in solution at a 2:1 keto to enol
ratio in chloroform [38], Fig (1.2).

0 Q O OH

Fig (1.2): Tautomerization of the dimedone.

Crystalline dimedone contains chains of molecules, in the enol form, linked by
hydrogen bonds [39], Fig (1.3).

Fig (1.3): Crystalline dimedone in the enol form linked by hydrogen bonds.


https://en.wikipedia.org/wiki/Tautomer
https://en.wikipedia.org/wiki/Chloroform
https://en.wikipedia.org/wiki/Hydrogen_bond
https://en.wikipedia.org/wiki/File:Dimedone-tautomerism-2D-skeletal.png
https://en.wikipedia.org/wiki/File:Dimedone-hydrogen-bonded-chain-from-xtal-3D-balls.png
https://en.wikipedia.org/wiki/File:Dimedone-tautomerism-2D-skeletal.png
https://en.wikipedia.org/wiki/File:Dimedone-hydrogen-bonded-chain-from-xtal-3D-balls.png
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(1.3.3) Mechanism of Mannich -g-amino carbonyl

The reaction can continue under both basic and acidic conditions, but
acidic conditions are more common. Under acidic conditions the first step is the
reaction of the amine component with the protonated nonenolizable (ketone or
aldehyde) to give a hemiaminal. After proton transfer and elimination of H,O
molecule, the electrophilic iminium ion is obtained. The formed iminium ion then
reacts with the enolized carbonyl compound (nucleophile) at its a-C in an aldol-
type reaction to give rise to the Mannich -g-amino carbonyl. H" might promote the
reaction by accelerating the formation of the imine bond in the iminium ion in the
rate-determining step, Scheme (1.5). It is worth noting that the 'H Nuclear
magnetic resonance spectra of the products show that in the keto—enol
tautomerization, the enol is the dominant form. However, this is compatible with
the fact that 1,3-dicarbonyl compounds exist predominantly in the enol form in

acidic conditions [40].
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Scheme (1.5): Mechanism of the Mannich -g-amino carbonyl
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(1.4) Schiff-bases with N, O chelating system

The synthesis of new Schiff base ligands (1,4-phenylene-bis-
(methanylylidene)-bis-  (2-nitroaniline) L' and 4-2-nitrophenyl)imino)methyl
benzaldehyde L* obtained from the condensation of terephthalaldehyde and
ortho-nitroaniline [41],in mole ratio 1:2=L' ,1:1=L7 then those ligands reacted
with Co(ll) metal ion. Compounds were characterized by FT-IR, UV-Visible, 'H-
NMR, mass spectroscopy and molar conductance. Antibacterial activity of the
metal complexes was found to be higher than that for the ligands. Physico-

chemical techniques indicated the formation of four coordinate complexes, Fig

(1.4).

O

@@"@

/ I, CO

\\\\\

L2

Fig (1.4): Chemical structure of Co(l1) complexes.
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Pahontu et al. [42] have described the synthesis of ethyl 4-((E)-(2-hydroxy-4-
methoxyphenyl)methyleneamino) benzoate HL. The ligand was prepared from
the reaction of 2-hydroxy-4-methoxybenzaldehyde with 4-aminobenzoate.
The formed ligand was then reacted with Cu(ll1).The Ligand and Its complexe
were characterised by using elemental analyses, UV-Vis, FT-IR, 'H-,"C-NMR,
mass spectram, thermal analysis and magnetic studies. The structure for Cu(ll)

complex is shown in Fig (1.5).

0—H;C

Cl
%m0 H,0
CH;—O

Fig (1.5): Chemical structure of [Cu,(L),Cl;(H,0)4] complex.
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The Schiff base (E)-2-((4-(dimethylamino)benzylidene)amino)phenol was
synthesised from the condensation of 4-dimethylaminobenzaldehyde with 2-
aminophenol as primary ligand. Then, mixed ligand chelates was synthesised from
di- and trivalent metal ions (Cr, Co, Ni, and Cu ions) and Schiff base with 2-
nitroaniline [43]. Compounds have been characterized by elemental analysis, molar
conductivity, magnetic moment measurements, infrared and electronic spectra,
mass spectra and electron paramagnetic resonance spectrum. On the basis of the
obtained data, Theprposed geometry of all compounds adopt an octahedral

geometry was proposed, Fig (1.6).

/\O/ N/
G N\
e

\0
N

N—

N

Hy

Where M= Cr(III)),X = OH, M=Cu(II), Co(I) or Ni(II),X = H,O

Fig (1.6): Chemical structure of complexes.
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A number of Cu(ll) complexes that have mixed ligands including Schiff-bases
were reported [44]. This includes the synthesis of ligands from the reaction of
salicylaldehyde with 2-aminophenol or 3-nitro amino benzene. Compounds were
characterized by magnetic measurements, ESR, UV-VIS, FT-IR, C.H.N, and
mass spectra. On the basis of the obtained data the creation of dinuclear Cu(ll)

complexes in which the suggested geometry is tetrahedral, Fig (1.7).

QA
SHES

Where: X=CIl or OAr, R=3-NO, or 2-OH

O
X
J &
e
\
O

Fig (1.7): Chemical structure of Cu(ll) complexes.
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(1.4.1) Coordination of (Nitrogen and carbonyl oxygen moiety).

In 2019, the preparation of Mannich-base ligand and its metal complexes
was reported [45]. The formation of the ligand (R)-2-((R)-(4-(dimethylamino)
phenyl)-(phenyl-amino) methyl) cyclohexan-1-one (HL) was achieved from the
reaction of4,4’- dimethylaminobenzaldehyde and aniline with cyclohexanone. The
reaction of the ligand with the metal chloride salt gave the required complexes.
The ligand and its metal complexes were characterised using a range of analytical
and spectroscopic techniques including elemental microanalysis, magnetic
susceptibility, conductance FT-IR, electronic spectra, electrospray mass
spectroscopy and nuclear magnetic resonance('H , "“C spectra).The

characterisation data showed the six and four coordinate for complexes , Fig (1.8).

\ S \ |
N— N—
; 2(H,0
///I: \O\ /N ( 2 )
H/M ! I =0l X
"y -
N \0\ L [l \M/H aill
HAAN\ __
N O
(H,0),
N
M= Zn(II) or Cd(II) \ M= Mn(II) , Co(II) , Cu(II) or Ni(II)

Fig (1.8): Chemical structure of complexes.
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The formation and structural characterisation of mixed Schiff base and 8-
hydroxyquinoline ligands and their complexes have been reported [46]. The
synthesis of Schiff base ligand was done from the reaction of 3.,4,5-
trihydroxybenzohydrazide with 4-hydroxybenzaldehyde. Ligand and complexes
were characterised by analytical and spectroscopic analyses including; FTIR,
electronic and 'H, >C-NMR spectroscopy, microanalysis, chloride content, thermal
analysis, magnetic susceptibility and conductance. Physico-chemical techniques
indicated the formation of complexes with four-coordinated arrangment. Biological
activity of the prepared ligand and their complexes were screened for their
antimicrobial activity against four bacterial species (Staphylococcus aureus and
Bacillus stubtilis(G+)), Enterobacter and Escherichia coli (G-)). Biological data
showed that complexes become potentially more active against these tested

bacteria compared with the ligands, Fig (1.9).

Cl1

OH

OH

OH

Where M= Co(1II) , Zn(1I) , Cd(I) and Hg(lI) .

Fig (1.9): Chemical structure of complexes.
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Praparation of the Mannich base ligand (2-[(3, 4-dimethoxyphenyl)(pyrrolidin-1-
yl)methyl]cyclopentanone) was performed using method one-pot,three-component.
The ligand was prepared by mixing of 3,4-dimethoxybensaldehyde and
pyrrolidine with cyclopentanone in the presence of calcium chloride using ethanol
as a solvent. The resulting Mannich base (L) was isolated and complexed with
Cu(ll), Co(ll), Ni(lI) and Fe(ll) ions, Fig (1.10). The structures of the synthesized
compounds were confirmed by IR, 'H, >C NMR, mass spectroscopy, TGA and
elemental analyses. The characterisation data indicated the isolation of four

coordinate. All compounds showed poor antibacterial activities [47].

0]
Cl —_
//14 - o
Cl \
O~

M= Cu(II), Co(II), Ni(IT) and Fe(IT)

Fig (1.10): Chemical structure of complexes.
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The synthesis of three different azomethen ligands[48], was performed by
reacting ligands with metal chlorides to give the complexes. The ligands were
synthesised from condensation of furan-2-carboxylic acid hydrazid, thiophene- 2-
carboxylic acid hydrazide and 2-hydrazino pyridine and isatine. The prepared
compounds were characterised by magnetic studies, conductance, metal content,
(UV-Vis, FTIR, Nuclear magnetic resonance spectroscopic methods) and C.H.N,

which revealed distorted octahedral structures, Fig (1.11).

Cl, Cl,

where: M= Co(II) Zn(II) or Cd(Il)

Xe 0= Ll Xo §- 1 where M=M= Co(II) , Zn(II) or Cd(II)

Fig (1.11): Chemical structure of complexes.



Chapter One Introduction

Azomethen ((E)-3-(phenylimino)indolin-2-one) was prepared from the reaction of
isatin with aniline, Fig (1.12). A series of new Te (IV) complexes with the Schiff
base ligand have been synthesised and characterised using some analytical and
physical techniques. These techniques include; FT-IR , '"H NMR spectroscopy, (C,
H, N), conductivity and magnetic moment. These studies revealed the formation

of six-coordinate Te (IVV) complexes with a distorted octahedral geometry [49].

N

7

Fig (1.12): Structure of Schiff-base ligand ((E)-3-(phenylimino)indolin-2-one).
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Synthesis of a novel Mannich base ( (Z)-1-(2-hydroxyphenyl)-5-(piperidin-1-
yl)hex-1-en-3-one) was derived from reaction of salicylidene acetone with
formaldehyde and piperidine, then reacting of Mannich base with some transition
metal ion [50]. The structure of the synthesised compounds were confirmed by 'H
NMR, UV-Vis and IR spectroscopic techniques. The antibacterial activity of
compounds were examined and the complexes showed good activity than the
Mannich base ligand. These analysis indicated a six coordinate as shown in Fig
(1.13).

OH - \ /CI

. IN
? N '
_ ” H0
C CH C CH
H \ / 2
CH,

Where M - Cu(II), Co(II) or Ni(II)

Fig (1.13): Chemical structure of complexes.
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The formation of the azomethen ligands were reported [51], then reacted those
ligands with Co(ll) and Cd(Il) metal ion. The ligands were synthesised from
condensation of 3-hydroxy-4-methoxybenzaldehyde with furan-2-carboxylic acid
hydrazide or thiophene-2-carboxylic acid hydrazide, respectively. The structure
around the metal centres was predicted from spectroscopic and analytical data
including magnetic studies, conductance, metal content, (UV-Vis, FTIR, Nuclear
magnetic resonance). The studies indicated four coordinate as shown in, Fig
(1.14).

Cl,

N

O

7\

ZE

M = Co(I) or Cd(I)
X=0,L=L!':X=S,L=1L2

Fig (114.): The structures of the complexes.
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The formation of Mannich base (2-(morpholinomethyl)isoindoline-1,3-dione)
ligand derived from morpholine and formaldehyde with phthalimide. The
reaction of the ligand with Zn (1) and Cd (Il) ions at a 1:1 (M:L) mole ratio
resulted in the formation of six coordinate complexes, Fig (1.15). C.H.N, molar
conductance, UV-Vis, IR and 'H, >C-NMR spectroscopy was used to characterise

the structure of ligand and its metal complexes [52].

//\N .
4) 2,
U H0 ™,
Cl \ N
\M /

N

H,O

M= Zn (IT) and Cd (I)

Fig (1.15): The structure of complexes.
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Formation,characterization and antimicrobial properties of Mannich reaction ((R)-
N'-(1-morpholino-2-(pyridin-2-yl)ethyl)benzohydrazide) and its metal [Co(ll),
Cu(ll) and Mn(l1)] complexes were recently reported [53]. Mannich base
formation by the reaction of benzohydraside and morpholine with pyridine-2-
carboxaldehyde. Analytical methods such as TLC, melting point and spectral
studies UV, 'H ,”C- NMR were employed for the characterisation. These
analytical and spectroscopic analyses confirmed the formation of six and four
coordinate complexes, Fig (1.16). Compounds were tested against some

microorganisms for their antimicrobial activity.

2H,0

M = Mn (II) M = Cu (II) and Co (IT)

Fig (1.16): Chemical structure of complexes.
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(1.4.2) Coordination of N and S in thiosemicarbazone moiety

The synthesis and characterisation of mixed ligand complex of Zn(ll)
with the Schiff base ligand (2-(3-bromo-5-chloro-2-hydroxybenzylidene)-N-
phenylhydrazinecarbothioamide, Fig(1.17),and bipyridine or 1, 10-phenanthroline
were reported [54]. Compounds were characterised by 'H- NMR, FTIR and UV-
Vis spectra. The crystal structures of complexes 1 and 2 have been determined by
single crystal X-ray diffraction studies. Both complexes 1 and 2 possesses square

based pyramidally distorted trigonal bipyramidal geometry, Fig (1.18).
Br
Cl OH HN@
HN
__/ g
S

Fig (1.17): Chemical structure of 2-(3-bromo-5-chloro-2-hydroxybenzylidene)-

N-phenylhydrazinecarbothioamide.

Fig (1.18): Crystal structure of the complexes [Zn(L)(bpy)](1); and
[Zn(L)(phen)](2).
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Mn(ll) complexes with thiosemicarbaside based ligands such as 2-formyl
pyridine thiosemicarbazone(L") and 5-methyl 2-formyl pyridine thiosemicarbazone
(L*) have been synthesised and characterised [55]. The ligands and the complexes
were characterised by molar conductance, elemental analyses, magnetic
susceptibility measurements, IR, UV-Visible, EPR, 'HNMR and mass spectral

studies, which revealed distorted octahedral structures, Fig (1.19).

H,N S X \

3 \%

where L =L!, L2, R =H,CH;, X = Cl-, NO;"

Fig (1.19): Chemical structure of Mn(l1) complexes.
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The Cu(ll) complex was prepared with Schiff base N,2-bis((E)-2-
hydroxybenzylidene)hydrazine-1-carbothioamide. Schiff base ligand was derived
from the reaction of salicylaldehyde with thiosemicarbazide, Fig (1.20). The
ligand and complexes were characterised by magnetic susceptibility IR, UV-
Visible, 'H-NMR, thermal analysis The which suggested a distorted square planar
structure of the complexes. The Schiff bases and their metal complexes have

shown moderate to strong antimicrobial activity [56].

HO
|
)k N\: ::
\N H/\

OH
Fig (1.20): Chemical structure of N,2-bis((E)-2-
hydroxybenzylidene)hydrazine-1-carbothioamide.
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Monika et al. [57] reported the reaction of Pd(Il), Pt(ll), Rh(lll) and Ir(l1l) ions
with (2E,2'E)-2,2'-(pyridine-2,6-diylbis(ethan-1-yl-1-ylidene))bis(hydrazine-1-
carbothioamide) ligand.The compounds have been characterised using C.H.N.S,
molar conductance, magnetic susceptibility measurements, IR, NMR and
electronic spectral studies. Complexes of Pd(l1) and Pt(Il) ions confirmed square
planar structures about metal centres. Further, the complexes of Rh(ll) and Ir(l1)
revealed octahedral arrangement. Compounds have been tested against some
species of plant pathogenic fungi and bacteria in order to assess their antimicrobial

properties, Fig (1.21).

O L

N > M ~— —>M<—N

o N N
A

M = Pd(II), Pt(IT) M = Rh(III), Ir(IIT)

Fig (1.21): The structure of complexes.
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Schiff-base ligand (2,6-bis-[(3-phenyl thiourea-imino)-methyl]- phenol)
and its metal complexes with Cr(l11) ,Mn(l1) ,Zn(Il) and Cd(Il) are reported [58].
Schiff-base was derived from the reaction of (2,6-diformyl-4-methyl-phenol) with
(4-phenylthiosemicarbazide). Compounds were characterised by FTIR, UV-Vis,'H,
PC-NMR, chloride content, conductance and melting point measurements. These
analysis indicated six coordinate geometries as shown in Fig (1.22). Compounds
were tested against some species of bacteria in order to assess their antimicrobial

properties.

T

M=Cr(III), Mn(II), Zn(II) and Cd(II)
Fig (1.22.): The structure of complexes.
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Benzyloxybenzaldehyde-4-phenyl-3-thiosemicarbazone ligand (L) has been
synthesised from benzyloxybenzaldehyde and 4-phenyl-3-thiosemicarbazide
[59]. Complexes of this ligand with chlorides of Cu(ll) and Ni(ll) have been
prepared. Complexes were characterised by elemental analysis, EPR, IR ,UV Vis
and "H-NMR spectra. These analytical and spectroscopic analyses confirmed the
formation of six coordinate complexes. The ligand and their metal complexes were
tested in vitro for their biological effects. The prepared metal complexes exhibit

higher antibacterial activities than the parent ligand, Fig (1.23).

|
\ )k/ ::
/\N N
H H

Fig(1.23):Chemical structure of Benzyloxybenzaldehyde-4-phenyl-3-

thiosemicarbazone ligand
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The Schiff base (1-(3,4-dihydroxybenzylidene)thiosemicarbazide) HL and
its Ni(ll) and Fe(ll) complexes were synthesised [60]. The ligand and their metal
complexes have been characterised by elemental analysis, molar conductance, IR,
UV Vis, '"H-NMR and mass spectral studies resulted in the formation of four
coordinate monomeric complexes. Biological activity tests showed that the
complexes exhibit strong superoxygen dismutase activity and inhibitory actions

toward Escherichia coli, Bacillus subtilis, Staphylococcus aureus and

Cryptococcus neoforms, Fig (1.24).

NH,

/

/

HO

HO

M@LH)X, a nH,O; M =Ni(l) , X=0Ac¢),n=1; M =Fe(l) ,X=Cl),n=3

Fig (1.24): The structure of complexes.
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(1.5) Applications and uses of Mannich reaction and Schiff-base
Mannich reaction and Schiff-base are useful materials that have a variety of
applications in human life. These include biomedical, analytical ,coordination

chemistry, agriculture, industry, polymer chemistry and Environment.
1.5.1 Biomedical applications
Biomedical applications may be divided into two types;

1.5.1.1 Pharmaceutical applications

Balachandran et al.[61] reported the reaction of the tridentate (ONS)
azomethen ligands (L'-L®). The ligands were formed from the reaction isatin
with  thiosemicarbazide.Complexes were synthesis from isatin
thiosemicarbazone ligands with Ni(ll), Fig(1.25). Compounds were
characterised by magnetic susceptibility, UV-Visible, FT-IR and 'H,"’C- NMR
spectroscopic. The crystal structure of compunds was confirmed by single
crystal X-ray diffraction technique. The compounds examined for their
anticancer activity against a panel of five cell lines such as HepG2, MOLM-14,
U93, IM-9 and Vero. Complex Ni(ll) (CssH;oNgNiO,S,), Fig (1.26) showed
promising anticancer activity against IM-9 cells and induced morphological
changes, nuclear condensation, apoptosis and cell cycle arrest at G1 phase in
IM-9 cells. In addition, apoptosis was also confirmed by Western blot analysis.
Cleavage of plasmid DNA was effectively promoted after its exposure to
complex nickel(Il) (Cs;sH30NgNiO,S,). The overall results suggested that
complex may be developed as a good candidate for the treatment of leukemia

cancer in the future.
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Fig (1.25): Chemical structure of complexes nickel (I1).
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Fig (1.26): X-Ray structures of complex (C3sH3oNsNiO,S;)

Many antibiotics are formed from mannich bases for example, the mannich
base of tetracycline a broad-spectrum antibiotic is Rolitetracycline, Fig (1.27). The
mannich reaction is used in the synthesis of many pharmaceutical drugs. One
example is the use of this reaction in the production of fluoxetine, Fig (1.28), a

powerful antidepressant.[62].

OH O HO(H)O O

Fig (1.27): The structure of rolitetracycline.
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ZT
O

CFj3

Fig (1.28): The structure of fluoxetine.
(1.5.1.2) Biological activity

The synthesis of a novel Mannich base (1-((dicyclohexylamino)-12-
methyl)-3-hydroxy-1H-212-pyridazin-6(3H)-one) and its transition metal
complexes was performed [63]. The ligand was prepared from the reaction of
maleic hydrazide with formaldehyde and dicyclohexylamine, three transition metal
complexes were also prepared using this ligand. All the compounds are
characterized by physical and spectral studies. Mannich base behaves as a
bidentate chelating agent and the spectroscopic data resulted in the formation of six
coordinate, Fig(1.29). The antimicrobial property of the complexes were studied
and the antibacterial activity against certain pathogenic bacteria using disc
diffusion method at concentration of 10ug/ ml in DMSO using gram positive
Bascillus subtilis, Staphaylococcus aureus and gram negative Proteus vulgaris,
Klesiella pneumonia. It was found that the metal complexes exhibit higher
antibacterial property than that of the Mannich base ligand.

32



Chapter One Introduction

z

M =Cu(II), Co(II) and Ni(Il)

OH

Fig (1.29): The structure of complexes.

(1.5.2) Analytical applications

Formation, characterisation and studying of the fluorescence properties
for Schiff bases (N,N -bis(salicylidene)-2,3-pyridinediamine) was reported
[64]. Azomethine ligand resulted from the reaction of the aminopyridine with
salicylaldenhyde. Compounds can be used for spectrofluorimetric monitoring of
small pH changes as well as for sensitive metal ion determinations. As analysis
of Cu(ll) is presented, determination of Cu(ll) was based on the quenching
effect of Cull on the fluorescence of N,N -bis(salicylidene)-2,3-
pyridinediamine, Fig (1.30). The process was fast, simple and reproducible. It

has been characterized by high sensitivity and satisfactory selectivity.
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OH
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Fig (1.30): The structure of the azomethine

(1.5.3) Industrial applications (liquid crystal)

Schiff bases are very beneficial in liquid crystal research due to its rich
polymorphism and low temperature of phase transitions [65]. A range of
azomthen ester, 4-((4- (dimethylamino)benzylidene)amino)phenyl-4-
(alkanoyloxy)benzoates, nDMABAPB, Fig (1.31), where n denotes the number of
C in the straightalkyl chain (n = 10, 12, 14, 16 and 18), were synthesized,
characterized and the mesomorphic properties were investigated. The products
were synthesized in two main steps. The first step involved condensation of 4-
aminophenol with 4-(dimethylamino)benzaldehyde which formed the imine
linkage. The second step of the synthesis involved the Steglich esterification
between the nDMABAP and the 4- allyloxy benzoic acids, NABA. The structures
of the synthesized compounds were confirmed by IR, 'H, °C-Nuclear magnetic
resonance, as well as Mass (EI-MS) spectroscopic techniques. Differential
scanning calorimetry (DSC) and polarising optical microscopy (POM) were used
to study the thermal and mesomorphic properties of the compounds. All the
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compounds of nDMABAPB ( where n =10, 12, 14 and 16), exhibited a thread-
like texture nematic phase on cooling from the isotropic liquid only. However, for
18DMABAPB, it exhibited both smectic and nematic phases upon cooling.The
most common application of liquid crystal technology is liquid crystal displays. A
liquid crystal display (LCD are used in a wide range of applications, including
computer monitors, television, instrument panels, aircraft cockpit displays, signage
[66].
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Fig (1.31): The structure of nDMABAPB

35



Chapter One Introduction

(1.6) Aim of the work

This study aims to synthesis,structural characterisation and microbiological
activity studies of Mannich reaction and Schiff base ligands and their metal
complexes. Consequently this work involved:

1. The formation step(l) of new Mannich-base ligand (R)-2-((4-
(dimethylamino)phenyl) ((2-nitrophenyl)amino)methyl)-5,5-dimethylcyclohexane-
1,3-dione (HL') from the reaction of  4-dimethylaminobezaldehyde, 2-

nitroaniline and dimedone.

2. The formation step(2) of new Schiff-base ligand (E)-2-(2-((S)-(4-
(dimethylamino)phenyl)((2-nitrophenyl)amino)methyl)-5,5-dimethyl-3-

oxocyclohexylidene)hydrazine-1-carbothioamide (H,L*) was acheivd from the
reaction of (R)-2-((4-(dimethylamino)phenyl)((2-nitrophenyl)amino)methyl)-5,5-

dimethylcyclohexane-1,3-dione (HL') and thiosemicarbazide.
3. Complexes of the ligands with some transition metal ions were synthesised.

4, Studying the possible structures and the stereochemistry of the prepared

complexes.

5. Studying the microbiological activity of ligands and their complexes against G*

and G’ strains of bacteria and two types of fungi.

36



Chapter Two Experimenta [

Chapter Two:
Experimental
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(2) Experimental

(2.1) Materials and Solvents

All reagents (chemicals and solvents) that used in this work were
commercially available, Tables (2-1a and 2-1b). They used without further

purification.

Table (2-1a): Organic reagents used in this work and their suppliers.

Material Supplier Purity %

4-(Dimethylamino)benzaldehyde B.D.H 99

Dimedone England 99

2-Nitroaniline B.D.H 98

CHCl; Merk 98

Diethyl ether C.D.H 99

CsHs Sigma Aldrich

DMF B.D.H

DMSO B.D.H

MeCN Sigma Aldrich

Ethanol Sigma Aldrich

Methanol Sigma Aldrich

Thiosemicarbazide Thomas Baker
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Table (2-1b): Inorganic reagents used in this work and their suppliers.

Material

Supplier

Purity %

Cadmium (II) chloride dihydrate

B.D.H

Calcium chloride (anhydrous)

Merck

Cobalt (II) chloride hexahydrate

B.D.H

Copper (II) chloride dihydrate

Fluka

HCI (36%)

G.CC

Zinc (IT) chloride (anhydrous)

B.D.H

Nickel (II) chloride hexahydrate

B.D.H

Potassium hydroxide
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(2.2) Physical measurements

A range of physico-chemical measurements was used to characterise

ligands and their metal complexes and as follows;

(2.2.1) Melting point

An Electrothermal Stuart SMP,, apparatus was used to determine the
melting points of compounds at College of Education for Pure Science (lbn Al-

Haitham), Chemistry Department, Baghdad University.
(2.2.2) Fourier Transform Infrared Spectra (FT-IR)

Biotic 600 FT-IR spectrophotometer was used to obtain Infrared spectra for
the prepared copounds in the range 4000-400 cm™ as potassium bromide at College
of Education for Pure Science (Ibn al-Haitham), Baghdad University and as Csl
discs in the range 4000-200 cm™ on Shimadzu 8400s FT-IR at College of Science,
Baghdad University.

(2.2.3) Electronic spectra

The electronic spectra of compounds were obtained wusing a
(UV-Vis) spectrophotometer type Shimadzu UV-160 in the range (200-1000 nm)
using quartz cell of (1.0) cm length with concentration 10~ mol.L" of samples in
DMSO at 25 C. The samples were tested at Ibn Siena Enterprise / Iragi Ministry of
Industry.
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(2.2.4) Mass spectroscopy

Mass spectra for the ligands were obtained using a positive mode
Electrospray mass spectrophotometer (+) (Sciex Esi mass analysis). The spectra

were recorded at Mashhad / Islamic Republic of Iran.

(2.2.5) Conductivity measurements

Conductivity measurements of the complexes were recorded at 25 °C for
10” M solutions of the samples in DMSO using an Eutech Instruments Cyberscan
con 510 digital conductivity meter. The recorded conductivity measurements were
done at College of Education for Pure Science (lbn Al-Haitham), Chemistry
Department, University of Baghdad.

(2.2.6) Metal analysis

Metal content for complexes were measured using a Shimadzu atomic
absorption spectrophotometer (A.A) 680G in Ibn Sina Company, Ministry of
Industry, Baghdad, Iraq.

(2.2.7) Nuclear magnetic resonance spectra (NMR)

NMR spectra ('H- and "C-NMR) for the compounds were recorded in
DMSO-d® using a Brucker 300 MHz for '"H-NMR and 75 MHz for C-NMR,
respectively, with a tetramethylsilane (TMS) as an internal reference. The samples

were acquired at Tehran University / Islamic Republic of Iran.
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(2.2.8) Elemental microanalyses

Elemental microanalysis was performed using a (C.H.N.S) analyzer, (Eager
300 for EA1112). The samples were recorded at Central Laboratory/ University of

Tehran, Islamic Republic of Iran.
(2.2.9) Chloride content

The chloride content for complexes was determined using potentiometric
titration method on 686-Titro Processor—665 Dosim A—Metrohm/Swiss. The

samples were recorded at Ibn Siena Enterprise / Iraqi Ministry of Industry.

(2.2.10) Thermal analysis
Thermogravimetric analysis was carried out using Differential Scanning
Calorimetry (DSC) on SDT Q600 V20.9 Build 20. The samples were recorded at

Beam Gostar Taban Lab/ Tehran, Islamic Republic of Iran.

(2.2.11) Magnetic moment measurement

Magnetic moments at 308K were determined using a magnetic susceptibility
balance (Sherwood Scientific). Samples were recorded at College of Sciences, Al-

Mustansiriyah University.
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(2.2.12) Anti-microbial Activity

The evaluation of ligands and ther metal complexes against four bacterial
species (Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus and
Bacillus) and two type of fungi (Candida and trichomoniasis) were performed
using agar-well diffusion. In this method, the wells were dug in the media using a
sterile metallic borer with centres at least 6 mm. Recommended concentration (100
uL) of the test sample 1 mg/mL in DMSO was introduced in the respective wells.
The plates were incubated immediately at 37°C for 24 h. Activity was evaluated
by measuring the diameter of inhibition zones (mm). The samples were recorded

at Market Researches and Consumer Protection Center/ University of Baghdad

(2.2.13) Molecular modelling
CS Chem 3D Ultra Molecular Modelling and Analysis Program was

performed using 3D molecular modelling to predict the proposed structure for the

synthesised complexes.
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(2.3) Ligands

Chemical structure, symbol and nomenclature of ligands are presented in

Table (2.2).

Table (2.2): Abbreviation, structure and nomenclature of the synthesised

ligands.

Chemical structure

Nomenclature

(R)-2-((4-(dimethylamino)phenyl)((2-
nitrophenyl)amino)methyl)-5,5-
dimethylcyclohexane-1,3-dione
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(2.4) Synthesis
(2.4.1) Synthesis of ligands

(2.4.1.1) Synthesis of (R)-2-((4-(dimethylamino) phenyl) ((2-
nitrophenyl)amino)methyl)-5,5-dimethylcyclohexane-1,3-dione(HL")
Ligand was prepared according to a conventional method that mentioned in

[67-70], which based on Mannich approach and as follows;

To a mixture of anhydrous CaCl, (0.5g, Smmol) in EtOH (10ml), three
drops of conc.HCIl. was added successively. Dimedone (0.7g, 5mmol) and
4-dimethylaminobezaldehyde (0.74g, Smmol), and 2-Nitroaniline (0.69g, Smmol)
was. The reaction mixture was allowed to stir overnight at RT and a yellow solid
was formed. This solid product was filtered off and washed with EtOH (25ml) and
H,O (25ml) then dried in air. Yield: 0.9g, (44%) and m.p =217-219°C.

(2.4.1.2) Synthesis of (E)-2-2- ((S)- (4-(dimethylamino)phenyl) ((2
bnitrophenyl)amino)methyl)-5,5-dimethyl-3- oxocyclohexylidene)hydrazine-1-
carbothioamide (H,L?

To a mixture of HL' (0.5g, 1.22mmol) in 15ml of hot EtOH was added
with stirring a solution of thiosemicarbazide (0.11g, 1.22mmol) in 15ml of EtOH
with 3drops of glacial acetic acid. The reaction mixture was heated at reflux for

6h, to give a yellowish-white powder, which washed with cold ethanol (5ml) and
then dried air. Yield: 0.4g (68%), m.p = 181-183°C.
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Table (2.3): Some physical properties of the prepared ligands.

Colour Melting point °C

Yellow powder 217-219

Yellowish-white powder 181-183

2.5 Complexes

Table (2.4): Abbreviation, structure and nomenclature of the synthesised

complexes.

M= Co(ll), Ni(Il) , Cu(ll) , zn(I1) and Cd(ll)

NO,
C[ YT
H

M=Co(Il) and Cu(ll)

M= Ni(ll) zn(ll) and Cd(ll) .
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(2.6) Synthesis of HL' complexes

(2.6.1) Synthesis of [Co(HL"),] (1)

To a solution of HL' (0.4g, 0.97mmol) in 5ml DMF was add CoCl,.6H,0
(0. 11g, 0.46mmol). The mixture was stirred overnight at RT. The solution was
evaporated slowly at RT and the solid powder was filtered of and washed with
15ml of ethanol. The compound was recrystallised from ethanol to give the pure
product. Yield: 0.21g (50%), m.p 255°C.

(2.6.2) Synthesis of [Ni(HL");](2), [Cu(HL");](3), [Zn(HL"),] 4)
and [Cd(HL"Y,] (5).

The procedure described for (1) that mentioned in (2.6.1) was used to
synthesis [Ni(HL"),](2), [Cu(HL"),](3), [Zn(HL"),] (4) and [Cd(HL"),] (5). Table

(2.5) shows the physical properties of the complexes and their reactant quantity.
(2.7) Synthesis of H,L*complexes
(2.7.1) Synthesis of [Co (H,L?) Cl, H,0] (1)

A mixture of H,L* (0.2g, 0.5mmol) and CoCl,.6H,0 (0.098g, 0.065mmol)
in 5ml DMF medium was stirred overnight at RT. A dark green powder was
crushed out of the solution, which washed with ethanol 15ml and 10ml of diethyl
ether then dried in air. Yield: 0.046g (67%), m.p = 360 dec.
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(2.7.2)

[Zn(H,L?) CI]CI (4) and [Cd(H,L?) CI]CI (5).

Experimental

Synthesis of [Ni(H,L*)CIICI (2), [Cu(H,L*»Cl, H,0](3),

A similar procedure which used to synthesis [Ni(H,L*)CIICI (2),
[Cu(H,L?*)Cl, H,0](3), [Zn(H,L?) CI]CI (4) and [Cd(H,L?) CIICI (5). Table (2.6)

shows the physical properties of the complexes and their reactant quantity.

Table (2.5): Metal salts quantities, yields Colours, melting points of complexes

of HL'
Complex Weight of Weight of Yield (%) Colour m.p. °C
metal salt( g) complex(g)
[Co(HLY),] 0.11 0.21 50 Pale green 255
[Ni(HL"),] 0.11 0.2 50 Greenish- 360*
yellow

[Cu(HL").]

0.083 0.25 57 Pale brown 287
[Zn(HL'),]

0.066 0.18 41 Yellow 197
[CA(HLY,] 0.11 0.23 50 Pale yellow 296

*= Decomposed.
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Table (2.6): Metal salts quantities, yields Colours, melting points of complexes
of H,L’

Metal ion Weight of Weight of | Yield (%) Colour m.p. °C
metal salt( complex(g)
9)
[Co(H,L*)CI,H,0] 0.098 0.253 67 Dark green 360*
[Ni(H,L?) CI] CI 0.098 0.253 68 Pale gray 223
[Cu(H,L*)CI,H,0] 0.07 0.25 50 Red 233
[Zn(H,L?) CI] CI 0.056 0.25 47 White 360*
[Cd(H,L?) CI] CI 0.094 0.27 46 Pale yellow 265

*= Decomposed.
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(3) Results and discussion

(3.1) Synthesis and characterisation of ligands

The synthesis of the two ligands: (i) Mannich -g-amino carbonyl
ligand from reaction of the dimedone with 2-nitroaniline and
4-dimethylaminobenzaldehyde resulted in the formation of the
(R) -2- ((4-(dimethylamino) phenyl) ((2-nitrophenyl) amino) methyl)-5,5
dimethylcyclohexane-1,3-dione  (HL') (i) Schiff base ligand from the
reaction of(R)-2-((4-(dimethylamino)phenyl)((2-nitrophenyl)amino)methyl)-
5,5- dimethylcyclohexane-1,3-dione (HL') with thiosemicarbazide resulted
in the formation of (E)-2-(2-((S)-(4-(dimethylamino)phenyl)((2-
nitrophenyl)amino)methyl)-5,5-dimethyl-3-oxocyclohexylidene)hydrazine-
1-carbothioamide (H,L?).

(3.1.1) Synthesis and characterisation of HL'ligand:.

The preparation of HL' was based on a published method using a
three component via a one pot approach [67-70]. In this approach, anhydrous
calcium chloride, HCI and EtOH were used as a catalyst and reaction
medium, respectively. The reaction of dimedone, 2-nitroaniline and 4-
dimethylaminobenzaldehyde in a 1:1:1 mole ratio in EtOH. 1mole of
anhydrous calcium chloride as a catalyst resulted in the formation of HL' in
moderate yield (Scheme (3.1)). The ligand is soluble in DMSO and DMF,
Table(3.1).The ligand was confirmed by melting point, C.H.N (Table (3.2)),
Fourier Transform Infrared Spectrum (Table(3.3)), electrospray mass

spectroscopy and 'H, ?C-NMR spectra.
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Scheme (3.1): General synthetic route of HL'.
(3.1.2) Synthesis and characterisation of H,L? ligand:.

The preparation of the thiosemicarbazide ligand (H,L?) was
accomplished using a condensation approach [71]. HL' was used as a
precursor to form H,L>.The synthesis was based on the addition of
thiosemicarbazide to HL' in a 1:1 mole ratio in EtOH, Resulted in the
formation of H,L® in moderate yield (Scheme 3.2). The ligand is soluble
in dimethyl sulfoxied and dimethylformamide, Table (3-1). The chemical
structure of the ligand was established using; Elemental microanalysis Table
(3.2), FT-IR Table (3.3), electrospray mass spectroscopy and 'H,"?C-NMR
spectra.
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o
* H
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C( X0 \K
NH _NH

N
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+
NH
\ /
N o H2N Sy o

Scheme (3.2): General synthetic route of H,L2.
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Table (3.1): The solubility of ligands in different solvents.

Compound H,O MeOH EtOH DMF DMSO | MeCN CeHs
HL' B + + + +
H,L? _ + + + +
(=) sparingly, (+) soluble, (-) in soluble
Table (3.2): Micro-analysis and physical properties for ligands.
Compound Empirical M.W | Yield Colour Microanalysis found, (calc)%o
Formula (%)
C H N S
67.02 6.23 10.00
Yellowish 59.22 5.93 17.19 6.15

(calc) = Calculated

(3.2) FT-IR spectral data of ligands
(3.2.1) FT-IR spectrum of HL'

The FT-IR spectrum of HL', Fig (3.2), is compared with that
of the starting materials, 2-nitroanilinedimedone and
4-dimethylaminobezaldehyde, (Fig 3.1 (a, b and c, respectively)). The HL'
spectrum revealed a brood peak at 3433 cm™ assigned to the overlap of (NH)
peaks of the secondary amine and OH enol of the carbonyl group, which
was formed as a result of tautomerazim between carbonyl-dimedone with a

proton of adjucted carbonyl [38,40], compared with the twin peaks of the
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primary amine of 2-nitroaniline at 3355 and 3479cm™ (the asymmetric and
symmetric v(N-H,). This peak confirmed the involvement of the 2-
nitroaniline moiety in the formation of the Mannich base. The spectrum
exhibited a band at 1647cm™ assigned to v(C=0) carbonyl group of amide,
compared with that at 1616 and 1694cm™ of the carbonyl groups of the free
dimedone and 4-dimethylaminobezaldehyde, respectively. The appearance
of a one carbonyl band and its value indicated the involvement of the ketone
and aldehyde groups in the formation of the Mannich base. Bands at 1601
and 1510cm™ assigned to O(N-H) and v(C=C)aomatic, respectively. The

assignment and values of the prominent bands are listed in Table(3.3).

Lon

50 o

MNHs

(X
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D T

T T T T
4000 3000 2000 1500 Laog 500

Fig (3.1a): The FT-IR spectrum of 2-nitroaniline.
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Fig (3.1b): The FT-IR spectrum of dimedone.
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Fig (3.1¢): The FT-IR spectrum of 4-dimeythylaminobenzaldehyde.
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Fig (3.2):The FT-IR spectrum of (R) -2- ((4-(dimethylamino) phenyl)
((2-nitrophenyl)amino)methyl)-5,5dimethylcyclohexane-1,3-dione(HL").

(3.2.2) FT-IR spectrum of H,L?

The FT-IR spectrum of H,L% Fig (3.4), is correlated with the FT-IR
spectra of the starting materials; (R) -2-((4-(dimethylamino) phenyl) ((2-
nitrophenyl)amino)methyl)-5,5dimethylcyclohexane-1,3-dione, Fig (3.2),
and thiosemicarbazide, Fig (3.3). The H,L? spectrum revealed peaks at 3442
and 3371cm” which are assigned to v(N-H) of the hydrazinic segment and
the v(N-H) of the secondary amine, respectively. The asymmetric and
symmetric bands of v(N-H,) of the thiosemicarbazide appeared at 3263 and
3174cm™, respectively. The spectrum showed a new band at 1622cm™ which
assigned to v(C=N)imine group. The appearance of this band and the
disappearance of the carbonyl ketone band at 1647cm™.The spectrum
revealed a peak at 1664cm™ assigned to carbonyl ketone group (Fig (3.2))
confirmed the condensation and the formation of the thiosemicarbazone
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Schiff-base. The appearance a band at 1198cm™ related to v(C=S) is another
indication for the formation of the thiosemicarbazone ligand. Further, the
spectrum showed a new band at 995cm™ that is related to v(N-N) of the
hydrazinic group. The assignment and values of the prominent peaks are
listed in Table (3.3).
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F|g(32)TheFTIR spectrum of (R) -2- ((4-(dimethylamino) phenyl)
((2-nitrophenyl)amino)methyl)-5,5dimethylcyclohexane-1,3-dione(HL").
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Fig (3.3): The FT-IR spectrum of thiosemicarbazide hydrochloride
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Fig (3.4): The FT-IR spectrum of (E)-2-(2-((S)-(4
(dimethylamino)phenyl)((2-nitrophenyl)amino)methyl)-5,5-dimethyl-3-
oxocyclohexylidene)hydrazine-1-carbothioamide (H,L?).
Table (3.3): The FT-IR spectral data of ligands(cm™).
Ligand | v(NH)) | v(NH)sn V(NHZ)sy,asy V(C-H)a | v(C-H) 4 V(C=0)iet. | V(C=N). | W(C=C)aro. | V(NO,) | v(C=S)
HL' 3433 - 3043,3022 | 2958,2912, 1647 1510 1460
2887,2873
H,L> 3442 3371 3263,3174 3078, 2960, 1664 1622 1510 1460 1198
3018 2875
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(3.3) Synthesis and characterisation of metal complexes

(3.3.1) Synthesis and characterisation of HL' complexes

The complexes were prepared implementing a similar method,
Scheme (3.3), that based on the addition of metal chloride of Co(ll), Ni(ll),
Cu(ll), Zn(I1) and Cd(Il) ions to the ligand in a 1:2 (M:L) mole ratio.
The reaction was carried out in DMF medium. The ligand behaves as a
neutral tridentate moiety. The obtained results indicated the formation of six-

coordinate for all complexes.

0
‘+
N
N
o
2 EtOH, Strring at RT \N
0 +MCl, ——— >

Overnight /

M= Co(II) , Cu(IT) ,Ni(I) Zn(II) and Cd(II)
Scheme (3.3): General synthesis route of HL' complexes.
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The solubility of the complexes was checked in different solvents,

Table (3.4). A range of physico-chemical analysis were used to characterised

complexes. Micro-analysis, metal and chloride ratio, Table (3.5). Further,

spectroscopic methods include; fourier transform infrared spectra, electronic

spectra, 'H, "*C-nuclear magnetic resonance spectra, along with molar

conductivity and melting point were used to characterise the complexes.

Table (3.4): The solubility of HL' complexes in different solvents.

Complex H,O MeOH | EtOH | DMF | DMSO | CHCIl3 | MeCN | CgHs
[Co(HLY),] ~ + = + + ; ] _
[Ni(HL),] ~ - - + + : 3 _
[Cu(HL"),] _ - + + + - - -
[Zn(HL"),] _ - + + + - - -
[CA(HL"),] ~ + - + + ; ; _
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Table (3.5): Micro analysis and physical properties of HL' complexes.

Results and Discussion

Complex Molecular M.Wt Colour m.p.°C | Yield Micro analysis calculated
(%)
formula found (%)
C H N M
(62.34) (6.00) (9.22) (6.45)
[Co(HL"),] C4sHs4CoNgOg | 877.97 | Pale green 255 50 62.93 6.21 9.56 6.67
(62.24) (6.96) (9.24) (6.34)
Greenish-
[NI(HLY),] | CuHsiNiNOg | 877.74 | Yellow 360* 50 62.94 6.21 9.57 6.68
[Cu(HL),] | CuHs:CuN¢Os | 882.58 | Pale brown | 287 57 (62.18) (5.97) 9.11) (7.00)
62.60 6.17 9.51 7.19
[Zn(HL"),] | CuHssZnNeOs | 884.45 |  Yellow 197 41 (62.23) (5.98) (9.26) (7.15)
62.46 6.16 9.49 7.39
[CA(HL"),] | CusHssCdNgOs | 931.99 Pale 296 50 (59.27) (6.53) (8.92) (12.00)
yellow
59.28 5.85 9.01 12.11

*= Decomposed
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(3.3.2) Synthesis and characterisation of H,L* complexes

The complexes were prepared from reaction of metal chlorides (Coll,
Nill, Cull, Znll and CdlIl ions) with the ligand in a 1:1 (M:L) mole ratio,
Scheme (3.4). The solubility of the complexes in different solvents is listed
in Table (3.6). The complexes were characterised by analytical and
spectroscopic techniques including; micro-analysis, metal and chloride ratio,
Table(3.7). In addition, fourier transform infrared spectra, electronic spectra,
'H, *C-Nuclear magnetic resonance spectra, along with molar conductivity
and melting point were used to characterise the complexes. The obtained
results indicated the formation of four-coordinate and six-coordinate

complexes with (Coll, Nill, Cull, Znll and Cdll ions).

°\ / ~o, _

Cl\|/\ NH,

OH2
+MCl, DMF, Stirring at RT

M= Co(II) and Cu(Il)

No2

S,
Cl N / AN NH,

/ N ~N—NH

~

T o

Cl

M= Ni(II) , Zn(I) and Cd(Il)

Scheme (3.4): General synthetic route of H,L? complexes.
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Table (3.6): The solubility of H,L? complexes in different solvents.

Complex H,O MeOH | EtOH | DMF | DMSO | CHCIl3;| MeCN | Cg¢Hs
[Co(H,L*)Cl, H,O] B + + + + ; _ ]
[Ni(H,L?) CI]CI B + + - + ; } _
[Cu(H,L?) Cl, H,0] _ + = + + ; _ )
[Zn(H,L?) CI] CI B + + - + ; } _
[Cd(H,L?) CI] CI ~ = + = + ; _ }

Table (3.7): Micro analysis and physical properties

of H,L? complexes.

Complex Molecular M.Wt | Colour | m.p. | Yield Micro analysis calculated
oc | (%)
formula found (%)
C H N S Cl M
[Co(H,L?) C24H32CoN,0,S2¢1 | 630.45 | Dark | 360* 67 | (45.52) | (5.1) | (13.3) | (5.06) | (11.23) | (9.13)
Cl,H,0]
green 4572 | 5.126 | 13.33 | 5.09 | 11.25 9.35
[Ni(H,L")CI] CI | C,,HyNiN,O; S2C1 | 612.228 | Pale | 223 68 | (47.00) | (4.81) | (13.50) | (5.00) | (11.50) | (9.22)
gray
47.08 | 495 | 13.72 | 5.23 11.58 9.58
[Cu(H,L%) C,4H3,CuNgO, S 2C1 | 635.06 Red 233 50 (45.00) | (504) | (13.12) | (4.96) | (11.00) | (9.92)
Cl,H,0]
45.39 5.08 13.23 5.05 11.16 10.01
[Zn(H,L?) CIICI | C,,H3,ZnNO, S 2C1 | 618.94 | White | 360* | 47 | (46.12) | (4.56) | (13.23) | (5.00) | (11.23) | (10.21)
46.57 | 4.89 | 13.57 | 5.18 | 11.45 | 10.56
[Cd(H,L?) Cl]CI CyyH3CdN¢O; S 2C1 | 665.94 Pale 265 46 (43.10) | (4.26) | (12.33) | (4.67) | (10.58) | (16.76)
yellow
43.28 4.54 12.61 4.81 10.64 16.87
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*= Decomposed.

(3.4) FT-IR spectral data of complexes
(3.4.1) FT-IR spectra of HL' complexes

(3.4.1.1) FT-IR spectra of [Co(HL"),J(1), [Ni(HLY)](2),
[Cu(HL"),1(3), [Zn(HL"),](4) and [Cd(HL")](5)

The FT-IR spectra of complexes 1, 2, 3, 4 and 5 are shown in
Fig. (3.5 to 3.9). The band at 1645 cm™ related to v(C=O) in free ligand
was shifted to higher frequency at 1653,1662,1666,1660 and 1651cm™ in
complexes, respectively. The shifting of the carbonyl moiety may be
attributed to the coordination of the oxygen atom of the carbonyl to the
metal centre in a similar fashion to that reported in literature [72-74]. The
change in the position and the shape of the N-H band in the FT-IR spectra of
the complexes is an indication of the involvement of the nitrogen atom in the
complexation [74]. The spectra of the metal complexes showed new bands.
These bands are attributed to v(M-O) and v(M-N) moiety. Bands observed
in the range of (548-598) cm™ assigned to v(Co-0), v(Ni-0), v(Cu-0), v(Zn-
O) and  v(Cd-0O), respectively[74,75]. The FT-IR spectra showed bands in
the range of (471-498)cm™ attributed to v(Co-N), v(Ni-N), v(Cu-N), v(Zn-N)
and v(Cd-N), respectively [72,74]. These peaks supported the coordination
of the ligand to the metal centre through nitrogen and oxygen. Finally, the
spectra of complexes revealed additional peaks at 3425, 3440, 3433, 3441
and 3438cm’ in the complexes of Co(ll), Ni(ll), Cu(ll), Zn(ll) and Cd(lI)
respectively. The FT-IR spectra of Co(ll) and Cu(ll) complexes showed
bands can be attributed to H,O molecule . The presence of these peaks may

be related to intramolecular hydrogen bonding between secondary amine and
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OH enol of the carbonyl group for complexes [40]. The assignment of the

characteristic bands is summarised in Table (3.8).
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Table (3.8): The FT-IR spectral data of HL' complexes (cm™).

Compounds | v(NH) v(C-H)ar | v(C-H) 4 V(C=0)yet. | O(N-H) | V(C=C)yro. | VINO,) | v(M-O) | v(M-N)
v(OH)

[Co(HLY),] 3425 | 3037,3020 2958, 1653 1603 1514 | 1460 | 598.575 | 480
2875

[Ni(HLl)Z] 3440 3070,3016 2960, 1662 1620 1516 1456 584.550 | 472
2875

[Cu(HLl)z] 3433 3070,3024 2960, 1666 1615 1510 1466 579.563 | 471
2877

[ZI’I(HLI)Z] 3441 3030,3026 2958, 1660 1608 1516 1469 567.548 | 498
2875

[Cd(HLl)z] 3438 3039,3010 2958, 1651 1601 1512 1462 598.575 | 482
2902
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(3.4.2) FT-IR spectral data of H,L* complexes

(3.4.2.1) FT-IR spectra of [Co(H,L?]Cl, H,0] (6), [Ni(H,L?
CI]CI (7), [Cu(H,L»]Cl, H,0] (8), [Zn(H,L*] CIICI (9) and
[Cd(H,L?)] CIICI (10).

The FT-IR spectra of complexes 6, 7, 8, 9 and 10 are placed in Fig.
(3.10 to 3.14). The band at 1664cm ' which is referred to v( C=0) in the
free ligand, Fig (3.2), While in the complexes were appeared at 1660, 1658,
1658, 1666 and 1660cm™ for complexes 6, 7, 8, 9 and 10 respectively, this
may be explained by non-participation of v(C=0) oxygen atoms in
complexes formation [71,74]. Further, the spectra of 6, 7, 8, 9 and 10
showed bands at 1612, 1612, 1616, 1618 and 1614cm™ are attributed to the
imine group v(C=N),which and shifted to lower frequency. The shift to
lower frequency may be related to delocalisation of metal electron density
into the ligand w-system, HOMO—LUMO [76,77]. The shifting to lower
frequency indicates strong bonding nature between the metal ions and the
iminic (C=N) group. The shift in the v(C=N) confirmed the coordination of
the ligand through nitrogen atoms of imine moieties to the metal ions [78-
80]. The spectra of complexes revealed peaks that related to v(N-H)
stretching of the secondary amine at range of 3309-3366cm™ in 6, 7, 8, 9 and
10, respectively, and shifted to lower frequency. The shift in the v(N-H)
confirmed the coordination of the ligand through nitrogen atoms to the metal

ions.
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Furthe rmore, the spectra of the metal complexes showed new bands
allocated between 600-200cm™ that are attributed to v(M-0), v(M-N), v(M-
S) and v(M-CI) moiety. The FT-IR spectra exhibited bands at range (536-
585)cm™ assigned to v(Co-0O) and v(Cu-O), bands at range (498-405)cm’
assigned to v(Co-N), v(Ni-N), v(Cu-N), v(Zn-N) and v(Cd-N), respectively.
Bands at range of (370-395)cm™ are assigned to v(Co-S), v(Ni-S), v(Cu-S),
v(Zn-S) and v(Cd-S), respectively, Band that belongs to v(M-Cl) moiety
reported at range (275-233)cm™ is for (Co-Cl),(Ni-Cl), (Cu-Cl), (Zn-Cl) and
v(Cd-Cl), respectively [71,74]. The assignment of characteristic bands is

summarised in Table (3.9).

e S
NS\ P \ 746
~ e / 4 a
‘ i s | [V -
| \/
3442\ R
l X | | 03808 |
b 1421 ‘ 852 | |s03
f 2532 | | 1315 ( |
v \ 9He . / ‘ i ey i/
3371 ~) \ f L Ni{] 4 i,
Y % 2494 | { \ 1281 %50
V\ / 1230/ v 562
3263 078 |
/2875 S “ \ 995
3174 { | o4 ||
! | IV 1510 N
2960 o, © 1622 I
\N( o ‘ [ 1138
= 2| S
| \f : [1159
P T 4 i
i 1363 1198
AT |
| 1664

Fig (3.4): The FT-IR spectrum of (E)-2-(2-((S)-(4
(dimethylamino)phenyl)((2-nitrophenyl)amino)methyl)-5,5-dimethyl-3-
oxocyclohexylidene)hydrazine-1-carbothioamide (H,L?).

68



Chapter Three

Results and Discussion

1257
1448
le
o
1466
1518
20- 1612
201 1361
1660
10 T T T T T
3900 3600 3300 3000 2700 2400 2100 1800 1500 1200 500 600
1 5 ‘ : x
| : : At
200 ~bomesarsadnaass i 1 pssscacd
d : : g o
' g A
B 3 A ' [ = M\
*T \ o [ [\
At © ‘ | [0 I
150 [T : “: : N 8§ g T A V7
{ \ / = \ | \ |
| | \/ & | Vo v :
f A ! : boe ! :
| i '8 | \R g
[ ! s | [ ) & Y
= ‘ 8 \ | S S 7 \:
100 — === 77 I | | g [ b
¥ “ | 0 ‘\ \ |
3 oy ‘ f t |/ i |
] \ [ i | Vi |
“ E h 1 R ‘ 1 ) R g
50 =l g 2 ! R 8T
o - & H
Gl h
: I : 3
: r s
i 2 1
L) I
. i 1 : - ; —+ ; T ' i
390 375 360 345 330 315 300 285 270 255 240 225 2101/
cm

Fig (3.10): FT-IR spectrum of [Co(H,L?*Cl, H,0].

69




Chapter Three Results and Discussion

70

Transmittance / (%T)
g8 8

a
<)
1

10
612 1363
1658

u T T
3900 3600 3300 3000 2700 2400 2100 1800 1500 12;30 900 660
Wavenumbers / (cm-1)

80— =====>

100 —

- 25459

370.31
W38T— < b

385.74— |
324.02
23337

30280— <——

27966

. o A .

380 375 360 345 330 315 300 285

Fig (3.11): FT-IR spectrum of [Ni(H,L?) CI]CI.

270 255 240 225 210
1/em

70



Chapter Three

Results and Discussion

90
80
1869 891
1804 638
1919 1741
o L aep y
BiE
833 %% 000! 4oo
=60 3441 563!
. 945
= 3386
e 3037 536
£ 999
s 50 3080 = 461 1061
= Ml = 1441 1022
3176
40
1§16
2958 1163
1134
30
1616
1192
1361
20 1658
3900 3(;00 3300 3000 2700 2400 2100 1800 1500 1200 900 560
Wavenumbers / (cm1)
250 - T — —
%T - : i ‘
L R B e 1 ‘ ! |
] ' ! ' : i i ‘
200 — ; | e
] |
175 — i e L ST SRS SR : ‘
150
| )\
125 L H /
= |
[ &
100 ‘ t-g
75 p % 1 | / m:
8 i) ] e
5 ;8 !
50 BN =t
2 & ]
Ll < o by 0
i S g 8 g
25 s : ; : -~ ‘ o = L--
390 375 360 345 330 315 300 285 270 255 240 225 210
1/cm

Fig (3.12): FT-IR spectrum of [Cu(H,L?)Cl, H,0].

71




Chapter Three

Results and Discussion

818 673 43¢
939 g40
725
856
773
3190 2762 03 V
3016 497
997
3433 A 2495
3309 2569 557
3251 582
2665 1
2837 >4
1618
2875 2351 1481
2960 1140
1161
1363
1666
250 —--- -- - 1 T FA i
1 | N
%T | | f [
| |
! | f
200 - R ‘ feeee] -]
: 1 | [ [
‘ |
y 1. | \|
| | " [
150 — | ,,,,, | - . B A | I |
\ I 3 ! =
| \ N & [ = ‘I é
‘ { / | \ : f " |
100 —f--- - f \ - : - | fot-
] b Py i L} / || ‘
| - \ / o ] 8 { &
& 7 b ' ' &
50 5 -4 ! ! - - _ .
‘ H i |/ \
] 1/ (=
: | A
o N S . )
g
T T T T T T LI B : T ITI T \‘Y_;' T T __l__i T T T '[ LI I B | 71'7' T T . 1T T r UL ‘ T T i T
390 375 3860 345 330 315 300 285 270 255 240 225 210
FTIR Measurement 1/em

Fig (3.13): FT-IR spectrum of [Zn(H,L?*) CI]CI.

72



Chapter Three Results and Discussion

100
~ s
rd \ ~
| e ) A A >
oty Vel Ao A — -1y | %) ‘i,‘ |
1173“. »-,.“ \V_ ra - | ’,‘ -‘-—‘ 'Ia!!:
3440 \ \A - \ A
V N // \ 1296 ‘ \ | N e ||I‘,.v‘
008 | / A A / 1
5 0y NS | / A ‘ {
> | | RT3 71 W1 fres | e
il J 004 1| | s )
a0 ‘ | - ) 11§ '
, | ‘ MY Y
| PAY [1al] | | a7 s
| e | 'i“ (1 | il
= ‘ “‘\ | J | | | o9
- [ iy |
£ w [ ! ! ABRRES
: | A
3 | | i
= i [ {l] ‘: t [ ‘”
1518 ||
| 10 \Il
\ 1%
o) |4 ‘j "o
[ (l
3 130 Y91
=
)
3000 00 X300 3000 N 2400 2100 1000 1500 1200 0 &0
" e ™
1 | A '
200 — - } P ! 1
| | A | [
%T ‘ ‘ [\ 3 |
] [ : : : ! |
f | | ) |
{ \ 1
150 — f 1 / P 1
h | \ |
_ I { \
- ¥ \ | ) ‘.
| ‘ /N T f g \
B ! | S AR S N | \, g [ O U R S
100 ‘ : [ T f L AT ‘
] . Ve |
| | | ~ | | i
N N : N\
- 2 L3 b }
50—| - @ S (W L YRR - B
5 : \ o g | f /
i v Vo g 8 l / ‘
| I & \
. -y \i/ ‘g L 3
2 \/ . 2
oy W o o s
0 | T ! a 2
‘ &
“7 T T i T T - '\"1"\"""!_'_7 T T T L T ';""\ T I T T T I’}‘li’ T 1: 1
390 375 360 345 330 315 300 285 270 255 240 225 210
FTIR Measurement 1fem

Fig (3.14): FT-IR spectrum of [Cd(H,L?) CI]CI.

73



Chapter Three

Results and Discussion

Table (3.9): The FT-IR spectral data of H,L* complexes (cm™).

Compounds VONH) | vVONH)am | V(NHY)gyaey v(C=0) | ¥(C=N) | w(C=C) | v(NO,) | v(M-O) v(M-N) v(M-S) | v(M-Cl)
[CO(HZLZ)CIZHgo] 3431 | 3309 3282,3194 1660 1612 1516 1466 565 476,405 | 372 262,
246
[Ni(H,L) CIJCl | 3479 | 3315 | 3257,3151 | 1658 | 1612 | 1516 | 1466 - 476,440 | 370 | 273
[Cu(HzLZ)CleZO] 3441 3386 3276,3176 1658 1616 1516 1461 536 498,444 | 395 275,
256
[Zn(HzLZ)CI] Cl 3433 3309 3251, 3190 1666 1618 1581 1481 - 497,430 | 378 271
[Cd(HzLZ)CI] Cl 3446 3390 3211, 3163 1660 1614 1518 1456 - 478,406 | 374 270
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(3.5) UV-Vis Spectral of ligands and their complexes

(3.5.1) UV-Vis spectral data of ligands (HL' and H,L?

The UV-Vis spectra of HL' and H,L* in DMSO solution are shown
in Fig. (3.15) and (3.16). The spectra reveals absorption peaks
at (269nm = 37174cm™, ema= 1432 molar' cm™) and (301nm =33222cm’™,
Emax= 1532 molar'lcm'l), While H,L? reveals absorption peaks at (275nm
=36363cm™, ema= 1132 molar'cm™) and (313nm =31948cm™, emax= 932
molar'cm™), which  are assigned to n—n and n—m transitions,
respectively [81,82]. The U.V-Vis absorption peaks of the ligands (HL' and
H,L?) are summarised in Table (3.10).
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Table (3.10): Electronic spectral data for the ligands HL' and H,L?in

DMSO solutions
Comp. Band Position | Wave number | Extinction Assignment
y - (cm™) coefficient
3 -1 -1
€max (dm _mol _cm ) -
269 37174 1432 T—T
HL'
301 33222 1532 n —n
H,L? 275 36363 1131 T—m
313 31948 932 n—m
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(3.6) UV-Vis Spectra of complexes

(3.6.1) UV-Vis Spectra of [Co(HL"Y,]J(1), [Ni(HL"),](2),
[Cu(HL"Y,] (3), [Zn(HL"Y),] (4) and [Cd(HL"),](5) Complexes

The electronic spectra of HL' and its metal complexes with Co(ll),
Ni(ll), Cu(ll), Zn(ll) and Cd(Il) are displayed in Fig. (3.17 to 3.21),
respectively. The electronic spectra for the complexes exhibited peaks in the
range  291-297nm  are related to the ligand field (=—n and n—x)
transition, The Peaks in the range 345-445nm related to charge transfer
transitions (C.T) [83-85]. The spectrum of Coll complex displays the bands
that detected in the d-d region at 613 and 665nm when could be correlated
to ‘T,gP-*T,g® and *T,gP—*A,g®, respectively indicating a distorted
octahedral structure about the cobalt centre [86,87]. The electronic spectrum
of the Nill complex confirmed an octahedral arrangement about Nill atom.
Band at 612nm attributed to 'A,g”—'A,g® [87]. The spectrum of Cull
complex revealed peaks at 597 and 645nm, which attributed to *B,g— *B,g,
respectively. These transitions are characteristic for Cu-complexes with
distorted octahedral structures [87]. The spectra of the Zn(ll) and Cd(ll)
complexes exhibited peak assigned to ligand =—n and M—L charge transfer
[87]. It is well known that the six-coordinate number is one of the most
detected coordination numbers for transition metals. There are many factors
that have influence the formation of this coordination number. These related
to the metal ions, ligands and steric type and electronic interaction that
happened between ligands and metal ion upon complex formation [88]. The

U.V-Vis absorption peaks of the complexes are summarised in Table (3.11).

71



Chapter Three Results and Discussion

e
| x
| | I
B | -
|
| | |
o :5{': :_1 ! l‘ I |
AsDIU ) | I' }
, ,
| \ : |
| \ el |
I .l \-l.—\ : \'
[ ] ‘ 5, T
i L IO (PN |
+2 .8980 . ‘ sisls VPP — —— " ¢ | M
08 .0 166 . .aCHM DIV . > 1166 .6
Figure (3.17): Electronic spectrum of [Co(HL"),] in DMSO solution.
HrseA
7 .
J I
I [ 5
: ( | ’
I '
g.58306 | | ' |
A-DIV.> l | | |
4» I I‘ | '
| ’ " N |
| %
' \ |
L) , TN !
[ l\., i
l/- \ —_— 4 e— )
+0 .800 N N X '
206 .0 196G . aCHM- DIV, > ! ':; ‘_j r-.l {_}

Flg (3‘.i8): Electronic spectrum of [Ni(HL"),] in DMSO solution.

78



Chapter Three Results and Discussion

' S O i ./‘!‘ — I — ————
! |' !'; '
| 1 | |
. Saa I § | I
A-SDIOV ! !
BR | |
l l‘l lI |
L 'v': 'J:\ "-»,
3
+ 9 (SR s o — - }—A — HEFETE X — .
ZO90 .08 198 . NM-DIWU . > 11606 ‘_’ &
Fig (3.19): Electronic spectrum of [Cu(HL"),] in DMSO solution.
T _I - T l_T'_I'_'I g__ I — . — S . e —— - B — .
| il {
i} | [
-/ |
5] _'—'. LS o | I| _!
(= g k] J ll | [
oy
| ¥ ‘1 |
AR |
[ "-_ I
LR = = ' W= J_ - . s — o 1
ZEBa = N T F-' T :..f ,I- ',-_ ]_I SR :—:| ;'E

Fié (320) Ehle'ctron'ic-:- spectrum of [Zn(HL"),] in DMSO solution.

- —_—r— ' —

F2 .08 A ]

et}
]
i
ZE
e

S —-""-"'\.}-h B

—

+E3 . B8af " H
SEHE A 188 . 8CHM-DIW . 2 1lam .

—_——————— U —dfeee————————— g

I
[ 5]

Fig (3.21): Electronic spectrum of [Cd(HL"),] in DMSO solution.

79



Chapter Three Results and Discussion

Table (3.11): Electronic spectral data of HL' complexes.

Complex Anm Tmax Assignment Suggested
@m’mo em ) geometry
[Co(HL"),] 291 1935 L.F Distorted octahedral
399 1955 CT
445 120 C.T
613 92 g - *41,9®
665 117 TigP-4ag"
[Ni(HL"),] 297 2333 L.F Distorted octahedral
388 1697 C.T
612 45 3A9P—3A,90
[Cu(HLY,] 295 2322 L.F Distorted octahedral
378 2380 C.T
597 108 ’Big— "Bug
645 80 ’Big— "Bug
[Zn(HL"),] 296 2163 L.F Distorted octahedral
345 2350 C.T
[CA(HL"),] 293 2257 L.F Distorted octahedral
412 215 C.F
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(3.6.2) UV-Vis spectra of [Co(H,L*Cl, H,0] (6),[Ni (H,L?)
CIICI (7), [Cu(H,L*»)Cl, H,0] (8), [Zn(H,L?) CI] CI (9) and
[Cd(H,L?) CI] Cl (10) Complexes

The electronic spectra of H,L* and its metal complexes with Co(ll),
Ni(ll), Cu(ll), Zn(l1) and Cd(ll) are displayed in Fig (3.22 to 3.26)
respectively. The electronic spectra of the complexes exhibited of peaks in
the range (267-289)nm are related to the ligand field n—n and n—n
transition, The peaks in the range of (301-442)nm related to the charge
transfer transitions (C.T) [83-85]. The spectrum of Co(ll) complex displays
the bands that detected in the d-d region at 526 and 614nm could be
correlated to Tg® —*'Ag® and ‘T,g® —*Ag®, respectively
indicating a distorted octahedral structure about the cobalt centre [86,87].
The electronic spectrum of the Ni(ll) complex confirmed an distorted
square planar arrangement about Ni(ll) atom. Band at 618nm attributed to
‘A, — 'A,, [87]. The spectrum of Cu(ll) complex revealed peaks at 615
and 675nm, which attributed to *B,g— ’B,g, respectively. These transitions
are characteristic for Cu-complex with distorted octahedral structure [87].
The spectra of the Zn(Il) and Cd(Il) complexes exhibited peak assigned to
ligand =—_ and M—L charge transfer. The spectra showed no bands in the
d-d region, as the two metal ions belong to d'* configuration. Accordingly,
the isolated complexes exhibit tetrahedral geometries around metal atoms.
The U.V-Vis absorption peaks of the complexes are summarised in Table
(3.12).
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Table (3.12): Electronic spectra data of H,L? complexes.

Complex Anm Tmax Assignment Suggested
@m’mo em ) geometry
[Co(H,L*)Cl, H,0] 268 1621 L.F Distorted octahedral
375 1830 CT
442 2500 CT
526 72 Tig® —4A,g7
614 102 Tig® - 4ag®
[Ni(HL?) Cl]Cl 267 1467 LF distorted Square
301 1431 CT planer
618 19 Al — Ay
[Cu(H,L")Cl, H,0] 270 1356 L.F Distorted octahedral
388 1341 CT
615 108 ’Big— “Byg
675 80 Big—Bag
[Zn(H,L?) CI]CI 289 2236 L.F Tetrahedral
385 1114 CT
[Cd(H,L?) CI]CI 278 1157 L.F Tetrahedral
325 2011 C.F
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(3.7) Magnetic moment behaviour

Magnetic measurements give us an important information to elucidate
proposed geometry around metal ion in complexes. Also, magnetic moment
values for complexes may be used to predict the monomeric and/or their
polymeric entity of species. The magnetic susceptibility measurements were
determined using a Guoy balance. Magnetic moment may be calculated

implementing the following equation:
n=2.83 (XpT)"?

where: Xp Is the molar magnetic value that corrected for diamagnetism of

atoms in the complex using Pascal's constant. T is temperature in Kelvin (k).
XP:XM'XD

The multiplying of the mass susceptibility by the molecular mass of the

sample gives the molar magnetic (X, value:
Xu= MX,

where: Xy = molar magnetic susceptibility

M - molecular mass of the sample in g.mol™ unit
Xq=Mmass magnetic susceptibility

Diamagnetic corrections values obtained by calculating molar magnetic
susceptibility. These values are due to ligand electron pairs, counter ion

electron and core paired electrons central metal ion [89].
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Xp =[ Xp (core) + Xp (ligand) + Xp (counter ion)] [90]

The diamagnetic correction factors are agreed values, called Pascal's
constant, Tables (3-13) to (3-15) [91].

The magnetic moment values were calculated using
u=2.83 (XsT)"? Equation.

Table (3.13): Pascal’s constants values of cations.

Cation Xpi (1x10°° emu mol™)
Co™ -12
Ni™ -12
Cu™ -11

Table (3.14): Pascal’s constants values of atoms in covalent species.

Atom Xpi(1x10® emu mol™)
Cring -6.24
H 2.93
C -6
N -5.57
0 -4.6
S -15.0
Cl 234
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Table (3.15): Pascal’s constants values for specific bond types.

Bond A (1x10° emu mol™)
C=N 8.15
C-N -13
C=0 6.3
C-C 0.8
C=C 55
Ar-NR; +1
Ar-NO, -0.5
C6H6 -1.4
(C.H.)cyclohexanone 3
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Table (3.16): Theoretical spin only values of magnetic moments of the

metal

ions,

d-configuration,

octahedral , tetrahedral and square planer geometry [92].

number of unpaired electron for,

Metal ion d-configuration General spin only of Octahedral geometry Tetrahedral geometry Square planer
the metal ions
Number | Value of No. of Magnetic No. of Magnetic Magnetic
of magnetic unpaired moment unpaired moment moment (B.M)
unpaired | moment Electron (B.M) Electron (B.M)
electron Heft
Co™* d’ 3 3.87 3 high spin 43-52
1 low spin 2.0-2.7 3 high spin 4.2-4.8 1.80
Ni** d 2 2.83 2 2.9-33 2 3.7-4.0
Diamagnetic
cu* d® 1 1.73 1 1.8-2.1 1 Depend on 1.87

Table (3.17): Values of spin only of the metal ions.

Number of unpaired electron

Value of magnetic moment pies

1 1.73
2 2.83
3 3.87
4 4.96
5 5.92
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(3.7.1) Magnetic moment of HL' complexes

(3.7.1.1) Examples for the calculation of magnetic moment

The complex [Co (HL'"),] is used as an example for the calculation of the

magnetic susceptibility and as follows:

Xpi (ligand) = [12* Xp;i (C-ring) + 11* Xp; (C) + 2* Xpi (N) + 27* Xpi (H)+
Xpi (NO3) + 2* Xpj (Ogeto) T2*¥*AM(C=0) +A (Ar-NO,) + MAr-NR,)+ 9 *A(C-
C) + A (C-H) cyclohexanone + 6*¥A(C=C) + 2*A(C-N) + 8*A (C¢H¢)] x10°

emu mol™,

Xpi = [12* Xpi (-6.24) + 11* Xp; (-6) +2 Xpi (-5.57) + 27* Xpi (-2.93) +
Xpi (-10) + 2Xpi (-4.61) + 2¥M(6.3) + A(-0.5) + A (3) + A1)+ 9* A(0.8)+ 6
#0(5.5) + 2 *A (-13) + 8 *A (-1.4)] x10™° emu mol™.

Xpi = -0.00024385

The reaction was performed in a 2:1 (L:M) mole ratio of the ligand and

complex. Therefore, the Xp equation becomes:
Xpi = [ Xp (core) +2 (Xp (ligand)) ] emu mol™!
Xpi = [(-12*%10°° + 2(-0.00024385) ] emu mol”

Xpi = - 0.0004997emu mol™
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Xs= 0.0000093
Xp= MX,

Xy= 878* 0.0000093
=0.0081654 emu mol™!

Xp ~Xn—Xo

= (0.0081654) — (- 0.0004997)
=0.0086651emu mol

XpT = 0.0086651 x 308 K

= 2.6688508 K.mol™!
n=2.83(XpT)"?

=2.83 (2.6688508)"*

=4.6 Us

Results and Discussion

By implementing similar calculation approach for other complexes, the

calculated magnetic moment values related the HL' complexes are 4.6, 2.9
and 1.9 BM for Co(ll), Ni(ll) and Cu(ll) complexes, respectively. These

values agreed well with the summation of the spin's moment

indicating a

weak field and the hybridization of complexes is sp’d”. These values proved

the formation of high spin monomeric complexes with distorted octahedral

geometries.
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(3.7.2) Magnetic moment of H,L* complexes

(3.7.2.1) Examples for the calculation of magnetic moment

The complex [Co(H,L?*)CI,H,0] is used as an example for the calculation of

the magnetic susceptibility and as follows:

Xpi (ligand) = [12* Xp;i (C-ring) + 12* Xp; (C) + 5* Xpi (N) + 30* Xp;i (H)+
Xpi (NO?) + Xpi(C=N)+ Xpi(S)+ Xpi (Oketo) TMC=0) +A (Ar-NO,) + A (Ar-
NR,) + 9 *A(C-C) + A (C-H) cyclohexanone + 6*A(C=C) + 4*A(C-N) + 8*),
(C¢He)] <10 emu mol™.

Xpi = [12* Xpi (-6.24) + 12* Xpi (-6) + 5*Xpi (-5.57) + 30* Xp; (-2.93) +
Xpi (-10) + Xpi (8.15)+ Xpi (-15)+Xpi (-4.6) + M(6.3) + A(-0.5) + A (1)+ 9 *A
(0.8) + X (3) +4* M(-13) + 6 *A(5.5) + 8 *A (-1.4)] x10° emu mol™".

Xpi = -0.00029728

The reaction was performed in a 1:1 (L:M) mole ratio of the ligand and

complex. Therefore, the Xp equation becomes:

Xpi = [ Xp (core) + Xp (ligand)+ 2*Xp (Chloride )+ Xp(H,0)] emu mol™
Xpi = [(-12*%10° + (- 0.00029728) +2(-23.4*10°) +(-13*10®)] emu mol
Xpi = - 0.00036828 emu mol™!

Xq= 0.0000039

Xu= MX,q

Xm= 630.45* 0.0000039
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=0.002458755 emu mol!

Xp ~Xp—Xp

= (0.002458755) - (-0.00036828)
=0.002827035 emu mol

XpT = 0.002827035 x 308 K
=0.87072678 emu K mol™
n=2.83(XpT)"?
=2.83(0.933127419)

=2.6

By implementing similar calculation approach for other complexes,
the calculated magnetic moment values related the H,L* complexes 2.5 and
1.9 BM for Co(ll) and Cu(ll) complexes, respectively. While the
experimental magnetic values of Ni(ll) complex indicate square planer
geometry about Ni atom. These values agreed well with the summation of
the spin moment indicating a strong field and the hybridization of
complexes is d*sp’ except nickel complex is dsp”. These values proved the
formation of low spin monomeric complexes with distorted octahedral

geometries.
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Table (3.18): Experimental

Results and Discussion

data of the magnetic moment susceptibility.

Complexes Xo(-1*10°%) | Xg*10° | Xp*107 | XpT U
[Co(HL",] 499.7 93 |0.28 0.88 4.6
[Ni(HL"),] 499.7 3.5 0.35 1.10 2.9
[Cu(HLY,] 498.7 12 |0.15 0.47 1.9
[Co(H,L?) Cl, H,0] 368.28 3.9 0.28 0.87 2.6
[Ni(H,L»)CI]CI
Diamagnetic
[Cu(H,L") Cl, H,0] 367.28 2.00 0.16 0.50 2.0
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(3.8) Electrospray (+) mass spectra

(3.8.1) Mass spectrum of HL'

The electrospray (+) mass spectrum of HL', Fig (3.27), reveals the
parent ion peak at M/Z=409.49amu. This peak is related to (M+H)". The

assignment of the successive fragmentation ions of the compound along with

their relative abundance is shown in Scheme (3.5).
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Fig (3.27): The electrospray (+) mass spectrum of HL'.
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Scheme (3.5): The fragmentation pattern and relative abundance of
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(3.8.2) Mass spectrum of H,L?

The electrospray (+) mass spectrum of H,L>, Fig (3.28), displays
the parent ion peak at M/Z=482.60 amu. This peak is related to (M+H)". The

assignment of the fragmentation ions and their relative abundance is shown

in Scheme (3.6).
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Fig (3.28): The electrospray (+) mass spectrum of H,L>.
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(3.9) Nuclear magnetic resonance (NMR) spectra of
compounds

NMR technique was used to elucidate the structure of compounds and
their purity. The NMR data include the 'H, *C-NMR spectra [93].

(3.9.1) Nuclear magnetic resonance (NMR) spectrum of HL'
and H,L?
The 'H-NMR analysis was used to characterise the ligands (HL' and

H,L?). The spectra were recorded in DMSO-d, solvent.
(3.9.1.1) 'H-NMR spectrum of HL'

The 'H-NMR spectrum of HL' is depicted in Fig (3.29).The spectrum
displays chemical shift at 6= 0.85-1.98ppm (6H, s, -C-(Me),) which are
attributed to (C,, , -H) of the two methyl groups protons. The chemical shift
at 6= 2.01 -2.47ppm (4H, s, CH,) that appeared as a multiplete and
equivalent to four protons which are assigned to (C;, ; -H). More, the
spectrum displays chemical shift at 6= 2.56 -3.17ppm (6H, s, -N-(Me),) are
attributed to  (Cyo, 1o -H) of the two methyl groups protons. The peak at &=
3.44-3.91ppm (H, d, CH), which equivalent to one proton is related to
(C4-H). The peak at 6= 4.31-4.55ppm (H, t, CH), which equivalent to one
proton is related to (Cs -H). The signal at 6= 6.01-6.00ppm (H, d, Jyu=
3Hz) belongs to N-H which equivalent to one proton. Resonances at &=
6.94-7.08ppm (2H, d, CH) assigned to (Cg g -H), 7.10-7.23ppm (H, t,CH)
are assigned to (Cy3-H), 7.25-7.30ppm (2H, d, Jyu= 15 Hz) assigned to
(C;, 7-H), 7.32-7.34ppm (H, d, Jyu= 6 Hz) assigned to (C,;-H), 7.60-
7.62ppm (H, t, Jyy= 6 Hz) assigned to (Ci,-H) and 7.64-7.66ppm (H, d,
Juny=6Hz) assigned to (C,4-H) of the aromatic ring protons, respectively.
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The signal at 13.35 ppm that belongs to O-H which equivalent to one proton
is related to (H, s, OH). The appearance more than one signal for CH; CH,
CH and some group can be attributed to appearance two isomer in solution.
The spectrum revealed peaks at 2.51-2.52 and 3.27ppm related to the
DMSO-ds; solvent and the traces of water molecules in the solvent,

respectively. The chemical shifts data are summarised in Table (3.19).
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Fig (3.29): 'H NMR spectrum of HL' in DMSO-d.

(3.9.1.2) "H-NMR spectrum of H,L?

The 'H-NMR spectrum of H,L> is depicted in Fig (3.30). The
spectrum displays chemical shift at 6= 0.85-1.04ppm (6H, s-C-(Me),) which
are attributed to (C,, ;" -H) of the Two methyl group protons. The chemical
shift at 6= 2.08-2.11ppm (2H, s, CH,, Juu= 9 Hz) that appeared as a singlet

and equivalent to tow protons which assigned to (C4 -H). The chemical
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shift at 6= 2.25-2.28ppm (2H, s, CH,, Juy= 9 Hz) that appeared as a singlet
and equivalent to Two protons which assigned to (C; -H). More, the
spectrum displays chemical shift at 6= 2.36 -2.51ppm (6H, s, -N-(Me),) are
attributed to (C,; ; -H) of the two methyl groups protons. The peak at 6=
2.56-2.59ppm (H, d, CH, Juy= 9 Hz), which equivalent to one proton is
related (Cs-H). The peak at 6= 4.53-4.80ppm (H, t, CH), which equivalent to
one proton is related (C4-H).The signal at 6= 5.59ppm (H, d, NH) that
belongs to N-H which equivalent to one proton. Resonances at 6= 7.09ppm
(2H, d, CH) assigned to (Co o -H), 7.22ppm (H, t,CH) are assigned to (Ci4-
H), 7.23ppm (2H, d,CH) assigned to (Cs 5 -H), 7.24ppm (H, d) assigned to
(Ci»-H), 7.31ppm (H, t) assigned to (C,5-H) and 8.01ppm (H, d) assigned to
(Cis-H) of the aromatic ring protons, respectively. The peak at 10.23-
10.03ppm that belongs to N-H, which equivalent to two protons is related
to (H, s, NH,).The signal at 11.08 ppm that belongs to N-H which equivalent
to one proton is related to (H, s, NH). The spectrum revealed peaks at 2.55
and 2.99-3.93ppm s related to the DMSO-d, solvent and the traces of water
molecules in the solvent, respectively. The chemical shifts data are

summarised in Table (3.19).
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Fig (3.30): '"H-NMR spectrum of H,L? in DMSO-d.

Table (3.19): 'H-NMR data for ligands measured in DMSO-ds and
chemical shift in ppm (0).

ligand Fund. group 0 (ppm)

(C.1 -H) 0.85-1.98 (6H, s, -C-(Me),)
(Cs.3™-H) 2.01 -2.47 (4H, s, CH,)
(Cio.10'-H) 2.56 -3.17 (6H, s, -N-(Me),)
(C4-H) 3.44-3.91 (H, d, CH)

HL' (Cs -H) 4.31-4.55 (H, t, CH)
(N-H) 6.01-6.00 (H, d, Jy= 3Hz)
(Cs,5°-H) 6.94 -7.08 (2H, d, CH)
(C15-H) 7.10-7.23 (H, t,CH)
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(C7.7-H) 7.25-7.30 (2H, d, Jun= 15 Hz)
(C11-H) 7.32-7.34 (H, d, Juw= 6 Hz)
(C1-H) 7.60-7.62 (H, t, Jus= 6 Hz)
(C14-H) 7.64-7.66 (H, d, Ju=6Hz)
(O-H) 13.35(H, s, OH).

H,L* (C.\ -H) 0.85-1.04 (6H, s-C-(Me),)
(Cs—H) 2.08-2.11 (2H, s, CH,, Juy=9 Hz)
(Cs-H) 2.25-2.28 (2H, s, CH,, Ju= 9 Hz)
(Ciii-H) 2.36-2.51 (6H, s, -N-(Me),)
(Cs-H) (2.56-2.59 (H, d, CH, Jy= 9 Hz))
(Cs —H) 4.53-4.80 (H, t, CH)

(N'H)mannich

5.59(H, d)

(Co,9-H) 7.09 (2H, d, CH)
(C14-H) 7.22 (H, t,CH)
(Cs,5°-H) 7.23 (2H,dCH)

(C12-H) 7.24 (H, d,CH)

(C13-H) 7.31 (H, t.CH)

(Ci5-H) 8.01 (H, d.CH)

(N-H) 10.23-10.03(H, s, NH,).
(N-H) 11.08 (H, s, NH).
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(3.9.2.1) “C-NMR spectrum of HL'

The C-NMR spectrum of HL' is depicted in Fig (3.31). The
Resonances at & = 149.45 and 144.01ppm were assigned to (Cy) and (Cs),
respectively. Signals related to (C,,), (C¢) and (C;s) were detected at 132.17,
129.34 and 128.83ppm, respectively. Resonances assigned for (C,7), (Cy4),
(Cy3), (Cyy) and (Cgg) were observed at 128.82, 127.22, 119.22, 113,46 and
113.33ppm, respectively. The chemical shifts that appeared at 56.55, 49.80
and 45.01ppm are assigned to(C,), (C;) and(Cs), respectively. The two
methyl groups, N-(Ci¢1¢), appeared as a one peak at 44.84ppm. The peaks
of (C,) and (C;) are resonances appeared at 32.81ppm and 28.64ppm,
respectively. Finally, the C=0 of the carbonyl group appears as expected
downfield at 6=200.07 and 208.64ppm. The spectrum revealed peak at
39.52-38.52ppm which is related to the DMSO-ds solvent. The C-NMR

results are summarised in Table (3.20).
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Fig (3.31): “C-NMR spectrum of HL' in DMSO-d;.

(3.9.2.2) *C-NMR spectrum of H,L?

The C-NMR spectrum of H,L* is depicted in Fig (3.32). The
resonances at 6 = 149.18 and 144. 00ppm were assigned to (C,,) and (C),
respectively. Signals related to (C;), (C;) and (Cys) were detected at 131.73,
131.28 and 129.29ppm, respectively. Resonances assigned for (Cgg), (Cs),
(Ci4), (Cy2) and (Cyo') were observed at 128.70, 128.49, 127.07, 113,70 and
100.53ppm, respectively. The chemical shifts that appeared at 53.82, 53.37
and 53.13ppm are assigned to (Cs), (C;) and (C), respectively. The two
methyl groups, N-(C,;,"), were appeared as a one peak at 49.52ppm.The
peaks of (Cy), (C,) and (C,) resonances appeared at 31.99,30.76ppm and
28.07ppm, respectively. The chemical shifts that appeared at 169.00ppm is
assigned to C=N. The chemical shift that appeared at 186.75ppm is assigned
to C=S. Finally, the C=0 of the carbonyl group appears as expected
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downfield at 6=195.55ppm. The spectrum revealed peak at 39.61-38.89ppm
is related to the DMSO-d4 solvent. The >*C-NMR results are summarised in
Table (3.20).

oo
| 2 ® g 28 REAREBR a apn °£§3§££gn ooooooooo 2 \ X )
2 NEaRES DR85RZ2S2GRERAR
g 2 S £3 aad88N2 8 BRGY¥ARRRRRRARSRRRRRS BRUKER
[ | 11 N/ NA | N M\\W“ -
Parameter Vale
1 Deta Fie Name C:/ Users/ abdullah ¢
-200(} Desktop/ A.NMR/ 69
2 Tee ANMR.690.fid
3 Comment MZn 13CNMR in DMS
L1804 298k 1398/ 04/ 18
4 Orign UXNMR, Bruker Anah
Messtechnk GmbH
5 Owmer root
IS(I6 peas
7 Instrument spect
| 8 Author
14«9 Solvent

12 Experiment 10
13 Probe S nm QNP 1H/ 1SN/
31P 20002/ 03058

14 Number of Scans 256

15 Receiver Gain 7298.2
"800 | 16 Relaxation Delay  1.0000
17 Pulse Width 15.0000

19 Acquisition Time 1.0912
20 Acquisition Date  2019-07-11T11:03:1

F400 | 21 Modification Date  2019-07-11T11:03:1

23 Spectrometer 300.77
Frequency

200
24 Spectral Width 30030.0
25 Lowest Frequency -2567.0
Lo |26 Mudeus 13
27 Acquired See 32768
28 Spectral Sze 65536

T T T T T T T T T T T T T T T T T T T T T
210 200 190 180 170 160 150 140 130 120 110 100 9 80 720 60 50 40 30 20 10
f1 (ppm)

Fig (3.32): "C-NMR spectrum of H,L? in DMSO-ds.
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Table (3.20): “C-NMR data for ligands measured in DMSO-ds; and
chemical shift in ppm (6).

ligand Fund. group 6 (ppm)
(Co) 149.45
(Cio) 144.01
(Co) 132.17
(Co) 129.34
HL' (Cis) 128.83
(C77) 128.82
(Cia) 127.22
(Ci3) 119.22
(Cn) 113,46
(Csg) 113.33
(C4) 56.55
(%)) 49.80
(Cs) 45.01
N-(C10,10) 44.84
(C) 32.81
(C) 28.64
C=0 200.07 and  208.64
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H,L’ (C10) 149.18
(Civ) 144. 00
(Ci3) 131.73

(C7) 131.28
(Cie) 129.59
(Css) 128.70
(Cis) 128.49
(Cia) 127.07
(Cio) 113,70
(Coyv) 100.53

(Cs) 53.82

(%)) 53.73

(Co) 53.13

N-(Ci1.11) 49.52

(Cs) 31.99

(C) 30.76
(Cir) 28.07
C=N 169.00
C=S 186.75
C=0 195.55
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(3.9.3) Nuclear magnetic resonance (NMR) spectral for
complexes

(3.9.3.1) 'H-NMR spectrum of [Zn(HL"),]

The 'H-NMR spectrum of [Zn(HL'),] is depicted in Fig (3.33).The
spectrum displays chemical shift at 6= 0.85-1.97ppm (6H, s, -C-(Me),) are
attributed to (C, , -H) of the two methyl groups protons for both ligands.
The chemical shift at 6= 2.00 -2.55ppm (4H, s, CH,) that appeared as a
multiplete and equivalent to four protons is assigned to (C; 5 -H) for each
ligands. More, the spectrum displays chemical shift at o= 2.61-3.14ppm
(6H, s, -N-(Me),) are attributed to (C,o, 1o -H) of the two methyl groups
protons for each ligands. The peak at 6= 3.64-3.89ppm (H, d, CH), which
equivalent to one proton, is related to (C,-H). The peak at 6= 4.30-4.48ppm
(H, t, CH), which equivalent to one proton is related to (Cs -H) for each
ligands. The signal at 6= 5.94ppm (H, d) that belongs to N-H which
equivalent to one proton also for both ligands. Resonances at 6= 6.89 -
7.07ppm (2H, d, CH) is assigned to (Cg s -H), 7.15-7.18ppm (H, t,CH Jyy=
9 Hz) assigned to (C,3-H), 7.20ppm (2H, d) assigned to (C;,; -H), 7.25ppm
(H, d) assigned to (C;,-H), 7.27ppm (H, t) assigned to (C,,-H) and 7.38ppm
(H, d) assigned to (C,4-H) of the aromatic ring protons for each ligands,
respectively. The spectrum revealed peaks at 2.59 and 3.23ppm is related to
the DMSO-ds solvent and the traces of water molecules in the solvent,

respectively. The chemical shifts data are summarised in Table (3.21).
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Fig (3.33): "H-NMR spectrum of [Zn(HL"),] in DMSO-ds.
(3.9.3.2) 'H-NMR spectrum of [Zn (H,L?*CI] Cl

The 'H-NMR spectrum of [Zn(H,L?)CI]CI is depicted in Fig. (3.34).
The spectrum displays chemical shift at &= 0.93-1.04ppm (6H, s) are
attributed to (C, ; -H) of the two methyl groups protons. The chemical shift
at o= 1.10-2.09ppm (2H, s, CH,) that appeared as a singlte and equivalent to
tow protons which assigned to (C4-H). The chemical shift at 6= 2.23-
2.26ppm (2H, s, CH, Jyy=9 Hz) that appeared as a singlte and equivalent to
Two protons which assigned to (Cs;-H). More, The spectrum displays
chemical shift at 6= 2.53-2.57 ppm (6H, s, -N-(Me), Juy= 12 Hz) are
attributed to (C;;, ; -H) of the two methyl group protons. The peak at &=
4.26ppm (H, d, CH), which equivalent to one proton is related (Cs -H). The
peak at o= 4.43ppm (H, t, CH), which equivalent to one proton is related (Cs
-H). The signal at 6= 5.73ppm (H, d, NH) that belongs to N-H which
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equivalent to one proton. Resonances at 6= 6.46ppm (2H, d, CH) assigned to
(Co, 9 -H), 6.53ppm (H, t,CH) assigned to (Ci4-H), 7.22-7.32ppm (2H,
d,CH) assigned to (Cg s -H), 7.33-7.47ppm (H, d) assigned to (C;,-H),
7.48ppm (H, t) assigned to (C3-H) and 7.95ppm (H, d) assigned to (C,s-H)
of the aromatic ring protons, respectively. The peak at 10.13ppm that
belongs to N-H, which equivalent to two protons is related to (H, s, NH,).
The signal at 12.96 ppm that belongs to N-H which equivalent to one proton
is related to (H, s, NH).The spectrum revealed peaks at 2.51 and 2.82-
3.23ppm related to the DMSO-d, solvent and the traces of water molecules
in the solvent, respectively. The chemical shifts data are summarised in
Table (3.21).
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Fig (3.34): "H-NMR spectrum of [Zn(H,L?)CI]CI in DMSO-d;.
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Table (3.21): 'H-NMR data for complexes measured in DMSO-ds and
chemical shift in ppm (0).

complexes Fund. group 6 (ppm)
(Ci.1-H) 0.85-1.97 (6H, s, -C-(Me),)
(Cs.5-H) 2.00 -2.55 (4H, s, CH,)
[Zn(HL"),] (Cio. 10 -H) 2.61 -3.14 (6H, s, -N-(Me),)
(C4-H) 3.64-3.89(H, d, CH)
(Cs -H) 4.30-4.48 (H, t, CH)
(N-H) 5.94 (H, d)
(Cs.s-H) 6.89 -7.07 (2H, d, CH)
(Ci3-H) 7.15-7.18 (H, t,CH Jyy=9Hz)
(C7.7-H) 7.20 (2H, d)
(C11-H) 7.25 (H, d)
(C1-H) 7.27 (H, t)
(C14-H) 7.38 (H, d)
[Zn(H,L")CI]CI (Ci.1"-H) 0.93-1.04 (6H, s)
(Ca-H) 1.10-2.2.09 (2H, s, CH,)
(Cs-H) 2.23-2.26(2H,s,CH; Ju=9Hz)
(Ci1,11-H) 2.53-2.57 (6H, s, -N-(Me),
Jnn=12Hz)
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(Cs-H) 4.26 (H,d, CH)
(Cs—H) 4.43 (H, t, CH)
(N-H)mannich 5.73 (H, d, NH)
(Co,0-H) 6.46 (2H, d, CH))
(Cia-H) 6.53 (H, t,CH)
(Cs,5-H) 7.22-7.32 (2H,d CH)
(Ci-H) 7.33-7.47 (H, d)
(Ci5-H) 7.48 (H, t.CH)
(Cis-H) 7.95 (H, d)

(N-H) 10.13(H, s, NH,)
(N-H) 12.96 (H, s, NH).

(3.9.3.3) "C-NMR spectrum of [Zn(HL"),]

The >C-NMR spectrum of [Zn(HL"),] is depicted in Fig. (3.35). The
Resonances at 6 = 149.60 and 145. 26ppm were assigned to (Co) and (Cyy),
respectively. Signals related to (C;,), (Cs) and (C,s) were detected at 129.34,
128.88 and 128.82ppm, respectively. Resonances assigned for (C;,), (Ci4),
(C13), and (Cgg’) were observed at 127.22, 119.22, 113.33 and 100.57ppm,
respectively. The chemical shifts that appeared at 56.55, 49.80and 45.01-
44 .96ppm are assigned to (C,), (Cs) and (Cs), respectively. The two methyl
groups, N-(Cy¢.19), were appeared as a one peak at 44.84ppm. The peaks of
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(C,) and (C;) resonances appeared at 32.81and 30.79ppm, respectively.

Finally, the C=0 of the carbonyl group appears as expected downfield at
0=199.55 and 211.22ppm. The spectrum revealed peak at 39.52-38.52ppm

is related to the DMSO-d, solvent. The >C-NMR results are summarised in

Table (3.22).
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Fig (3.35): “C-NMR spectrum of [Zn(HL"),] in DMSO-d.
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(3.9.3.4) PC-NMR spectrum of [Zn(H,L?)CI]CI

The *C-NMR spectrum of [Zn (H,L*)CI]CI is depicted in Fig. (3.36).
The Resonances at 6 = 149.29 and 144. 00ppm were assigned to (C,,) and
(Cy7), respectively. Signals related to (C;3), (C;) and (Cys) were detected at
131.66, 129.34 and 128.88ppm, respectively. Resonances assigned for (Cg ),
(Cis), (Cig), (Cpp) and (Coy) were observed at 128.82, 127.22, 119.22,
113,46 and 113.33ppm, respectively. The chemical shifts that appeared at
56.66, 52.38 and 49.80ppm are assigned to (Cs), (C3) and (Cq), respectively.
The two methyl groups, N-(C,;;,’), were appeared as a one peak at
49.62ppm.The peaks of (C,), (C,) and (C,) resonances appeared at
29.41,28.17ppm and 26.00ppm, respectively. The chemical shifts that
appeared at 161.00ppm is assigned to C=N. The chemical shifts that
appeared at 181.68ppm is assigned to C=S. Finally, the C=0 of the carbonyl
group appears as expected downfield at 6=198.55ppm. The spectrum
revealed peak at 39.61-38.89ppm is related to the DMSO-d4 solvent. The
PC-NMR results are summarised in Table (3.22).
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Fig (3.36): *C-NMR spectrum [Zn(H,L?*CI]CI in DMSO-ds.

Table (3.22): *C-NMR data for complexes measured in DMSO-dg and

chemical shift in ppm (6).

complex Fund. group 0 (ppm)
(Co) 149.60

(Cie) 145.26

(Ci2) 129.34

(Co) 128.88

[Zn(HL").] (Cis) 128.82
(C77) 127.22

(Cia) 119.22
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(Ci3) 113.45
(Ci) 113.33
(Css) 100.57
(C4) 56.55
(C5) 49.80
(Cs) 45.01
N-(Cio0,10) 44.84
(C) 32.81
(C) 30.79
C=0 199.55 and 211.22
[Zn(H,L?)CI]CI (C10) 149.29
(C1n) 144.00
(Ci3) 131.66
(C) 129.34
(Cie) 128.88
(Csg) 128.82
(Cis) 127.22
(Ci4) 119.22
(C1o) 113,46
(Cov) 113.33
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(Cs) 56.66
(%)) 52.38
(Co) 49.80
N-(Ci1.11) 49.62
(C4) 29.41
(Cy) 28.17
(Ci1) (26.00)
C=N 161.00
C=S 181.68
C=0 195.55
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(3.10) Thermal analysis of ligands and complexes.

Thermal decomposition data for the ligands and some of their metal
complexes are summarised in  Table(3.23). Analysis curves
Thermogravimetric analysis (TGA) and Differential scanning calorimetry

(DSC) of compounds are studied and interpreted as follows:

(3.10.1) Thermal analysis of ligands.
(3.10.1.1) Thermal decomposition of HL'

The thermogram of HL' is depicted in Fig (3.37). The first
exothermic peak detected at 205-275 C may be attributed to the loss of a
molecule of the (NH;+ NH,+ CO,+ H,CO + (CHs;)) segment;
(0bs.=0.648mg, 30.26%; calc. =0.639mg, 29.80%). The second step
occurred at 280-625 C indicated the loss of (CO + NH, + C,H, + C¢H,
+C,H;) fragment; (obs.=1.22mg, 56.92%; calc.=1.21mg, 56.47 %). The third
step recorded at 630-1000 C indicated the loss of (4H,) fragment, (obs.=
0.044mg, 2.055%; calc.=0.042mg, 1.97%). The final residue of the (4C)
calc.= 48mg, 11.735%. The TGA indicated several peaks at 205, 219, 404
and 457 "C. The second peak may indicate the melting point of the ligand. In
the DSC analysis, peaks at 205, 404 and 457 °C are correlated to exothermic
decompositions process. However, the peak at 219 °C refers to endothermic
decompositions process. The exothermic and endothermic peaks may

indicate combustion of the organic ligand in nitrogen atmosphere [94, 95].
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Fig (3.37): Thermal decomposition of HL' in N, atmosphere.
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(3.10.1.2) Thermal decomposition of H,L?

The thermogram of H,L* is depicted in Fig. (3.38). The first
exothermic peak detected at 181-315'C may be attributed to the loss of a
molecule of the (CO + NO + NH, + NH; +H,S +H,CO + CH,) segments;
(obs. =0.8497mg, 35.05%; calc. = 0.848mg, 35.02). The second step
occurred at 320-660C indicated the loss of (4NH, + C4;H, + C;H, + CgHy)
fragment; (obs.=1.347mg, 55.55%; calc.=1.340mg, 55.30%). The third step
recorded at 665-1000°C indicated the loss of (NHs+H,) fragment, (obs.=
0.112mg, 4.61%; calc.=0.0955mg, 3.94%). The final residue of the (C,H)
calc.= 25.01mg, 5.18%. The DTGA indicated several peaks at 210, 221,
441, 459, 509 and 542°C. In the DSC analysis, peaks at 210, 441, 459, 509
and 542°C correlated to exothermic decompositions process. However, the
peak at 221°C refers to endothermic decompositions process. The
exothermic and endothermic peaks may indicate the combustion of the

organic ligand in nitrogen atmosphere.

121



Chapter Three

Results and Discussion

Temperature (°C)

Sample: MT-N File: C:._\96-04-03\MT-N\MT-N.001
Size: 24240 mg DSC-TGA Operator: Beam Gostar Taban Lab
Method: Ramp Run Date: 25-Jun-2019 17:12
Comment: 25-1000@20-Air Instrument: SDT Q600 V209 Build 20
12
459 83°C
1004 | N I
i 2.01°C
95.23% Weight Change [
] (2.308mag) 10
i 411 65°C L
&80 1.002°C-min/mg L
| 509.88°C 08 =
1 | 6559°C-min/mg I E
] o °
— . B 8
s 60 I 0.6 g
£ -2
o 1 - (=]
@©
= - o4 &
=
40 210.55°C I o
] 0.05236°C-min/mg, r L
r E
g o2z @
20| I
1 ~0.0
| L
0 T T T T -D2
0 200 400 600 800 1000
Exo Up Temperature (°C) Universal V4 54 TA Instruments
Sample: MT-N File: C:._\Desktop\TGAWMT-NMT-N.001
Size: 24240 mg DSC-TGA Operator: Beam Gostar Taban Lab
Method: Ramp Run Date: 25-Jun-2019 17:12
Comment: 25-1000@20-Air Instrument: SDT Q600 V20.9 Build 20
100 |
35.05%
(0.8497ma)
80+
— 60
=
=
o
QO
=
55.55%
40+ (1.347mg)
20
4.6519%
(0.1120mg
0 T T T T
0 200 400 600 800 1000

Universal ¥4.5A TA Instruments

Fig (3.38): Thermal decomposition of H,L? in N, atmosphere.
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(3.10.2) Thermal decomposition of some the complexes.

(3.10.2.1) Thermal decomposition of [Zn(HL"),] complex

The thermogram of [Zn(HL'),] is depicted in Fig(3.39). The first
exothermic peak detected at 197-270°C may be attributed to the loss of a
molecule of the (2NO + 2NH, + 2CO + CsH; + CsHs) segments; (obs.
=1.272mg, 28.82%; calc. =1.23 mg, 28.05). The second step occurred at
275-540°C indicated the loss of (O, + 2CN "+ CO, + CsH, + CsH4 + C4H,)
fragment; (obs.=1.691mg, 38.32%; calc.=1.68mg, 38.23%). The third step
recorded at 550-1000°C indicated the loss of (C,H, + C4Hs + CgHs)
fragment, (obs.=0.7855mg, 17.80%; calc.=0.780mg, 17.65%). The final
residue of the (6H, + C,Hys + ZnO) calc.= 107.56mg, 12.16%. The DTGA
indicated several peaks at 197, 214, 270 and 995 C. In the DSC analysis,
peaks at 197°C are correlated to exothermic decompositions process.
However, the peak at 214, 270 and 995C refer to endothermic
decompositions process. The exothermic and endothermic peaks may

indicate the combustion of the organic ligand in nitrogen atmosphere.
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Fig (3.39): Thermal decomposition of [Zn (HL"),] in N, atmosphere

(3.10.2.2) Thermal decomposition of [Ni (H,L*) CI] Cl complex

The thermogram of [Ni (H,L?)] Cl, is depicted in Fig (3.40). The first
exothermic peak detected at 223-500C may attribute to the loss of a
molecule of the 2NO + H,S + Cl, + CH + CO) segment; (obs.=3.145mg,
66.53%; calc.= 3.13mg, 66.30). The second step occurred at 510-1000 C
indicated the loss of (2NH; + C4Ho) fragment; (0bs.=0.8918mg,18.87%);
calc.=0.888mg,18.80%). The final residue of the (C,H; + NiO) calc.=
89.7634mg, 14.662%. The DTGA indicated several peaks at 223, 231 and
500C. In the DSC analysis, peaks pointed at 223°C correlated to exothermic

decompositions process. However, the peak 231 and 500 C refer to

endothermic decompositions process. The exothermic and endothermic

peaks may indicate combustion of the organic ligand in nitrogen atmosphere.
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Sample: TNi File: C-_\98-04-24\TNINTNi 001
Size: 47270 mg DSC-TGA Operator: Beam Gostar Taban Lab
Method: Ramp Run Date: 17-Jul-2019 14:36
Comment: 25-1000@20-Ar Instrument: SDT Q600 V20.9 Build 20
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F1g (3.40): Thermal decomposition of [Ni (H,L?)CI]CI in N, atmosphere.
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(3.10.2.3) Thermal decomposition of [Cu(H,L*Cl,H,0]

complex

The thermogram of [Cu(H,L?)Cl, H,0] is depicted in Fig (3.41). The
first exothermic peak detected at 140-320 C may be attributed to the loss of
a molecule of the (H,O + H,S + CO, + CO) segments; (obs.= 0.5178mg,
14.85%; calc.=0.5164mg, 14.81). The second step occurred at 325-1000C
indicated the loss of C;Hg+Cl, + N,H, + C,H¢) fragment; (obs.=1.125mg,
32.25%; calc.=1.120mg, 32.13%). The final residue of the (C¢H4N,+
C¢Hs;N+CsH;N + CuQO) calc.= 33.553mg, 52.52%. The TGA indicated
several peaks at 233,280,320,769 and 789 C. In the DSC analysis, peaks at

233 and 789°C are correlated to exothermic decompositions process.
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However, the peak at 280, 320 and 769 C. refers to endothermic
decompositions process. The exothermic and endothermic peaks may

indicate the combustion of the organic ligand in nitrogen atmosphere

Sample: TCU File: C:..\98-04-20\TCINTCU.001
Size: 3.4880 mg DSC-TGA Operator: Beam Gostar Taban Lab
Method: Ramp Run Date: 17-Jul-2019 06:15
Comment: 25-1000@20-Ar Instrument: SDT Q600 V20.9 Build 20
120 04
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T789.31°C
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Fig(3.41):Thermal decomposition of [Cu(H,L*)Cl, H,0] in N,

atmosphere
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Results and Discussion

Table (3.23): Thermal analysis data of ligands and some of their

complexes.
Comp Stable up | Stage | Decomposition Nature of Nature of DSC peak
to°C Temperature | Transformation/Inter and Temp. °C
mediate Formed %
Initial-Final mass found (calc.)
°C)
HL' 205 1 205-275 0.648 (0.639) 205, 404, 457 Exo
219 Endo
2 280-625 1.22 (1.21) 219,457 Endo
3 630-1005 0.044(0.042) 650 Endo
H,L* 181 1 181-315 0.8497(0.848 ) 210 Exo
221Endo
2 320-660 1.347(1.340) 441, 459, 509,
542 Exo
3 665-1000 0.112 (0.0955) 660ENdo
[Zn(HL"),] 197 1 197-270 1.27 (1.23) 197 Exo
214, 270 Endo
2 275-540 1.691 (1.68) -
3 550-1000 0.785 (0.780) 995 Endo
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[Ni(H,L?) CI]CI 223 223-500 3.145 (3.13) 223 Exo
510-1000 0.891 (0.888) 231 Endo
[Cu(H,L?) CI,H,0] 140 140-320 0.5178 (0.513) | 233,280 Exo
325-1000 1.125 (1.125) 789 Endo
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(3.11) Molar conductivity measurement of the complexes

The electro-conductivity measurement values of complexes were
determined to revealed conductance of (electrolyte or non-electrolyte)
[96,97]. The molar electro-conductanctivity of the complexes in DMSO

were summarised in Table (3.24).

Table (3.24): The molar conductivity of the complexes.

Comp. Am S.cm”.mole™
[Co(HL"),] 10.51
[Ni(HL",] 21.4
[Cu(HL"),] 8.62
[Zn(HL"),] 16.74
[Cd(HL"),] 14.94
[Co(H,L*)Cl, H,0] 20.4
[Ni(H,L?) CI]CI 36.3
[Cu(H,L")Cl, H,0] 17.3
[Zn(H,L)CI] CI 38.4
[Cd(H,L)CI] CI 32.7
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Chapter four

(4.1) Microbiological activity

The synthesised ligands and their metal complexes were screened
for their microbiological activity against two strains of bacterial species:
G positive (Staphylococcus aureus and Bacillus stubtilis) and Gnegative
(Escherichia coli and Pseudomonas aeruginosa). Additional to two types of

fungi were explored (Candida and Trichomoniasis).

(4.1.1) Anti-bacterial activity

(4.1.1.1) Anti-bacterial activity of HL' and its complexes

The Mannich-base ligand and its complexes with Co(ll), Ni(l1), Cu(ll),
Zn(11) and Cd(I1) ions were screened against two bacterial strains G* positive
(Staphylococcus aureus and Bacillus stubtilis) and G-negative (Escherichia
coli and Pseudomonas aeruginosa), using Kirby-Bauer method. DMSO, has
shown no activity against any bacterial strains [98]. The obtained results are
listed in Table (4.1) and Fig. (4.1 to 4.4). The strains of bacteria, under this
study, revealed high resistant against HL', which means that the ligand
showed no activity against all type of bacteria. However, the metal
complexes have shown antimicrobial activity against several bacteria
species, compared with the free ligand. The high activity of the complexes
could be discussed on the basis of chelation theory and Overtone’s model
[99]. According to the chelation hypothesis, the complex has the ability to
move and across the cell membrane of organism. This may be related to the
decrease of the polarity of the metal ion, by the partial sharing of metal
positive charge with donor groups. Subsequently, this will enhance the

lipophilic property of the chelation system of metal allowing the complex to
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cross the lipid layer of the cell tissue. The anti-bacterial activity of the

different complexes against different organisms depends on [100,101]:

1. Their impermeability of the microbial cells.
2. The difference in the ribosome of the microbial cells.

Table (4.1) displays the evolution of diameter zone (mm) of  HL'-
complexes, inhibition against the growth of various bacterial strains, the

following conclusions are observed;
1. The ligand showed no any activity against tested bacteria.

2. The Co(ll), Ni(l1) and Cu(ll) complexes indicated no activity towards
all tested bacteria. This may be related to the size of the metal ion or the
stability of the complex in the tested medium, the complex suffers

decomposition in the medium.

3. The Zn(Il) and Cd(Il) complexes indicated inhibition activity against all
bacterial species; (Staphylococcus aureus, Bacillus stubtilis, Escherichia coli

and Pseudomonas aeruginosa).
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(4.1.1.2) Anti-bacterial activity of H,L* and its complexes

The synthesised thiosemicarbazone ligand and its metal complexes
were examined to assess their antimicrobial activity against four bacterial
species (Staphylococcus aureus, Bacillus stubtilis, Escherichia coli and
Pseudomonas aeruginosa). DMSO showed no activity against any bacterial
strains [98]. The tests results against the growth of different bacterial strains
are listed in Tables (4.1). Fig (4.5 to 4.8) displays the effect of the
synthesised ligand and its complexes towards all bacteria under study. From
the obtained results, the ligand showed no activity against all type of bacteria
compared with its complexes. This may be related to the nature of the
prepared complexes. From the obtained results, the following conclusion

could be derived:
1. The ligand didn’t show any activity against tested bacteria.

2. The complexes of Ni(ll) showed no activity against any type of the

bacterial strains.

3. The Co(ll)-complex exhibits antibacterial activity against Escherichia

coli.

4. The Cu(ll)-complex exhibits antibacterial activity against (Escherichia

coli.and Bacillus stubtilis ).

5. The Zn(Il)-complex exhibits antibacterial activity against (Staphylococcus

aureus and Bacillus stubtilis).

6. The Cd(ll)-complex indicated inhibition activity against all bacterial
species; (Staphylococcus aureus, Bacillus stubtilis, Escherichia coli and

Pseudomonas aeruginosa).
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Table (4.1): The inhibition zones (mm) of anti-bacterial activity for

ligands and thier complexes.

Compounds Escherichia | Pseudomonas | Bacillus stubtilis Staphylococcus
coli (G-) | aeruginosa(G-) (G+) aureus (G+)
HL' - - - -
[Co(HL"),] - - - -
[Ni(HL"),] - - - -
[Cu(HLY,] - - - -
[Zn(HL').] 8 6 9 3
[CA(HL"),] 12 17 11 6
H,L? - - - -
[Co(H,L?) Cl, H,0] 16 - - -
[Ni(H,L?) CI] CI - - ; _
[Cu(H,L?) Cl, H,0] 13 - 15 -
[Zn(H,L?) CI] CI - - 18 11
[Cd(H,L") Cl] CI 18 24 27 22
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Fig (4.1): The microbiological activity of HL' and its complexes against
Escherichia coli.

Fig (4.2): The microbiological activity of HL' and its complexes against
Pseudomonas aeruginosa.
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Fig (4.3): The microbiological activity of HL' and its complexes against
Bacillus stubtilis.

Fig (4.4): The microbiological activity of HL' and its complexes against
Staphylococcus aureus.
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Fig (4.5): The microbiological activity of H,L* and its complexes against
Escherichia coli.

Fig (4.6): The microbiological activity of H,L? and its complexes against
Pseudomonas aeruginosa.
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Fig (4.7): The microbiological activity of H,L* and its complexes against
Bacillus stubtilis.

Fig (4.8): The microbiological activity of H,L* and its complexes against
Staphylococcus aureus.

137



Chapter four

(4.1.2) Anti-Fungi activity
(4.1.2.1) Anti-fungi activity of HL' and its complexes

The antifungal activity of the HL' ligand and its metal complexes
have been explored against two types of fungi (Candida and
Trichomoniasis). The antifungal activity data of the complexes is listed in
Table (4.2), Fig. (4.9 and 4.10) displays the inhibition zones of the
synthesised compounds on the tested fungi types. From the obtained data,
the ligand indicated no activity against the two types of fungi. Otherwise,
some of the complexes revealed activation toward fungi organism. The
increase of the anti-fungal activity of complexes could be described by the
chelation concept [99], which related to the delocalization of m-electrons
across the entire chelate segment. This mean that the polarity of the ligand
and the central metal atom decreases, and then results in the incursion of the
complex through the lipid tissue of the cell membrane [100,101]. Based on
the obtained results, the following conclusion may be pointed out;

1. Some complexes showed higher activity against the tested fungi,

compared to the ligand. This could be attributed to the chelation effect [99].

2. The Co(ll), Ni(ll) and Cu(ll) complexes revealed no action against the

tested fungi.

3. The Zn(Il) and Cd(Il) complexes indicated inhibition activity against
fungi species (Candida and Trichomoniasis)
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(4.1.2.2) Anti-fungi activity of H,L? and its complexes

The synthesised thiosemicarbazone ligand and its metal complexes
were examined for their antifungal activity against (Candida and
Trichomoniasis). DMSO, which showed no activity against any bacterial
strains [98]. The cultured results against the growth of two fungi are listed in
Table (4.2). Figure (4.11 and 4.12) displays the antimicrobial effect of the
synthesised ligand and its complexes against fungi under survey.The
collected data indicated that, the ligand indicated no activity against the two
types of fungi. The Cd(ll)-complex found to be more active against
(Candida and Trichomoniasis). Further, the complexes of Ni(Il) and Cu(ll)
ions show no activity against both types of fungi. Accordingly, the following

conclusion is pointed out;

1. The tested ligand and its some complexes showed no influence on the

activity of (Candida and Trichomoniasis)fungi.

2. The complex of Co(ll) revealed a comfortable inhibition activity against
Candida.

3. The Zn(I1)-complex indicated a high activity against Trichomoniasis.

4. The complexes of Ni(ll) and Cu(ll) exhibited no activity towards tested
fungi.

5. The Cd(Il)-complex indicated inhibition activity against fungi species;

(Candida and Trichomoniasis)
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Table (4.2): The inhibition zones (mm) of anti-fungal activity for ligands
and thier complexes.

Compounds Candida Trichomoniasis

HL' - -

[Co(HL"),] - -

[Ni(HL"),] - -

[Cu(HL'):] - -

[Zn(HL"),] 3 3

[CA(HL"),] 16 7

H,L? - -

[Co(H,L?) Cl, H,0] 11 -

[Ni(H,L*) CI] CI - -

[Cu(H,L?) Cl, H,0] - -

[Zn(H,L?) CI] CI - 17

[Cd(H,L?) Cl] CI 22 14
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Fig (4.9): The microbiological activity of HL' and its complexes against
Candida.

Fig (4.10): The microbiological activity of HL' and its complexes
against Trichomoniasis.
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Fig (4.11): The microbiological activity of H,L*> and its complexes
against Candida.

Fig (4.12): The microbiological activity of H,L*> and its complexes
against Trichomoniasis.
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(3.12) Conclusions and the proposed molecular structure of
ligands and their complexes

The molecular structures of ligands and their metal complexes were

deduced and proposed according to their analytical and spectroscopic data as

follows:
(3.12.1) FT-IR Spectral data

The FT-IR spectra of ligands and their complexes, Table (3.3), (3.8) and
(3.9), were exhibited the following bands:

1. The spectrum of HL', Fig (3.2), revealed the characteristic band of the
functional groups including a peak at 3433cm™ assigned to the overlap of
peaks (NH) of the secondary amine and OH enol of the carbonyl group
which formed as a result of totomerazim between carbonyl-dimedone with
a proton for adjacted carbonyl, Further, the spectrum indicated a band at
1647cm’™ that assigned to the carbonyl group, compared with peaks at 1694
and 1616cm™ which belongs  to carbonyl group  of
4-dimethylaminobenzaldehyde and dimedoe carbonyl group. The data

proved the formation of the HL' ligand.

2. The spectrum of H,L? ligand indicated the condensation reaction of
HL' with thiosemicarbazide moiety. The spectrum indicated two peaks at
1664 and 1622 cm" attributed to the carbonyl group and imine moiety of the
thiosemicarbazide, respectively confirming the formation of Sciff-base
compound, Fig. (3.4). Further, the spectrum showed peaks at 3371 and 3263,
3174cm’™, which related to V(IN-H)hydrazinic and v(N-H,) derived from the
thiosemicarbazone segment. The band that related to the N-H of secondary

amine was detected at 3442cm’.
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3. The spectra of HL' complexes displayed facts:

|. The band at 1645cm™ that related to V(C=0)yeto In free ligand was
shifted to higher frequency at 1653,1662,1666,1660 and 1651cm™ in
complexes, respectively. The shifting to higher of the carbonyl moiety may
attributed to the coordination of the oxygen atom of the carbonyl to the

metal centre in a similar fashion to that reported in literature.

I1. The spectra of the metal complexes showed new bands. Which can be
attributed to v(M-O) and v(M-N) moiety. Bands observed in the range (598-
548)cm™ assigned to v(Co-0), v(Ni-O), v(Cu-0), v(Zn-O) and v(Cd-0),
respectively. The FT-IR spectra showed bands in the range (498-471)cm’
are attributed to v(Co-N), v(Ni-N), v(Cu-N), v(Zn-N) and v(Cd-N),

4. The spectra of H,L? complexes displayed facts:

I. The spectra of complexes showed bands at 1612, 1612, 1616, 1618 and
1614cm™ attributed to the imine group v(C=N) were shifted to lower
frequency. The shift to lower frequency may be related to delocalisation of
metal electron density into the ligand m-system, HOMO—LUMO. The
shifting to lower frequency indicates strong bonding nature between the
metal ions and the iminic (C=N) group. The shift in the v(C=N) confirmed
the coordination of the ligand through nitrogen atoms of imine moieties to

the metal ions.

I1. The spectra of complexes revealed peaks that related to v(N-H) stretching
of the secondary amine at rungs 3479-3331cm™ in complexes respectively

which were shifted to lower frequency. The shift in the v(N-H) confirmed

the coordination of the ligand through nitrogen atoms to the metal ions.
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I1l. The spectra of the metal complexes showed bands allocated between
600-200cm’ that attributed to v(M-N), v(M-S) and v(M-CI) moiety. The FT-
IR spectra exhibited bands at the range (498-405)cm™ were assigned to
v(Co-N), v(Ni-N), v(Cu-N), v(Zn-N) and v(Cd-N) respectively, the bands at
the range (395-370)cm™ were assigned to v(Co-S), v(Ni-S), v(Cu-S), v(Zn-S)
and v(Cd-S) respectively, Band that belongs to v(M-CI) moiety reported at
(275-233)cm™ for (Co-Cl), (Cu-Cl), (Zn-Cl) and v(Cd-Cl) respectively.

(3.12.2) (UV-Vis) Spectra and magnetic susceptibility

1. The electronic spectra data of HL' complexes are listed in Table (3.11).

The spectra show the following peaks;

|. Peaks detected around 291-297nm attributed to n— n*, n—z* ligand field
and 345-445nm are related to the charge transfer (C.T) transitions,

respectively.

I1. Additional peaks recorded in the visible region, which assigned to d-d
electron-transitions, confirmed the isolation of complexes with octahedral
geometries for Co(ll), Ni(ll), Cu(ll), Zn(Il) and Cd(Il) complexes. The
magnetic moment values are in agreement with the proposed structure, Table
(3.11). Complexes of Zn(ll) and Cd(ll) ions (d' configuration) exhibit

peaks related to =— 7*, n— @* and to charge transfer (C.T) transitions only.
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2. The electronic UV-Vis spectra data of H,L*> complexes were listed in

Table (3.12). The complexes spectra show the following peaks:

|. Peaks detected around 267-289nm related to the ligand field n—= and
n—n transition and peaks in the range of 301-442nm are related to the

charge transfer (C.T) transitions, respectively.

I1. Additional peaks observed in the visible region confirmed the isolation of
four and six-coordinate compounds with square planer for Ni(ll) and
octahedral geometries about Co(ll), Cu(ll), Zn(l1) and Cd(ll). The magnetic
moment values are in agreement with the proposed structure, Table (3.12).
Complexes of zn(ll) and Cd(Il) ions (d" configuration) exhibit peaks

related to m— ©n*, n— 7* and to charge transfer (C.T) transitions only.
(3.12.3) Conductivity measurements

The molar conductance of the complexes carried out in DMSO
solution. The electro-conductivity measurement values of complexes were
determined to revealed conductance of (electrolyte or non-electrolyte)
(3.24).

(3.12.4) Microanalysis

The microanalysis data (C.H.N.S) along with the chloride and metal
content of HL' and H,L* complexes Tables (3.5 and 3.7) are in good
agreement with the calculated values. These results supported the proposed

structure of the complexes.
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(3.12.5) NMR data

1. The '"H-NMR spectra of HL'and H,L* confirmed the deduced structure
of the ligands and their complexes, Fig (3.29) and (3.30). The spectrum of
Zn-HL' and Zn-H,L* complexes indicated the chemical shift values of the
ligands with the appropriate shift due to complexation, Fig (3.33) and
Fig (3.34)

2. The C-NMR spectra of ligands in DMSO-d° solvent gave the right
number of the resonances confirming the chemical structure and the purity
of the compound, Fig (3.31) and (3.32). The spectrum of Zn-HL'and Zn-
H,L* complexes indicated the chemical shift values of the ligands with the

appropriate shift due to complexation, Fig (3.35) and (3.36).
(3.12.6) Thermal gravimetric analysis

The thermal decomposition of the ligands and some complexes was
studied to show the thermal stability of their chemical structure, which

assisted in the characterization of compounds.

(3.12.7) Mass spectra

The electrospray (+) mass spectra of ligands; showed fragmentation

pattern that confirmed the formation of the prepared compounds.

Based on the above, distorted octahedral structures were suggested for
complexes of HL' ligand. The data indicated square planer, tetrahedral and

distorted octahedral structure was suggested for H,L* complexes.
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The proposed molecular structures of complexes were sketched by CS
Chem 3D Ultra Molecular Modelling and Analysis Program. The proposed
structure [Co(HL'),] has been used as an example for the octahedral
geometry, Fig (3.42). The proposed structure of [Co (H,L?) Cl,H,0] and [Ni
(H,L*)] Cl, have been used as an example for H,L*> complexes, Fig (3.43
and 3.44).

-
Fig (3.42): The proposed molecular structure of [Co(HL"),].
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Table (3.25): The important bond length of [Co(HL"),].

atom Bond length(°/A)
N-H 1.050
N-CO 1.836
N-O 1.132
C=0 1.208

Fig (3.43): The proposed molecular structure of [Co(H,L*)Cl, H,Ol.
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Table (3.26): The important bond length of [Co(H,L*)Cl, H,O].

atom Bond length(°/A)
C=N 1.266
C=0 1.208
Cl-Co 2.150
C-S 3.389
N-N 1.352
N-H 1.012

-
Fig (3.44): The proposed molecular structure of [Ni(H,L?) CI] CI.
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Table (3.27) : The important bond length of [Ni(H,L?) CI] CI.

atom Bond length(°/A)
C=N 1.266
C=0 1.208
S-Ni 2.170
C-S 3.372
N-Ni 1.826
N-H 1.012
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(3.13) Prospective studies

1. Preparation of new Mannich-base ligands with different substituents.

2. Preparation of new thiosemicarbazone ligands with different

substituents.

3. Preparation of new metal complexes with the above ligand that based

on the second and /or third series of transition ions.

4. Working on the recrystallisation of the ligands and their metal

complexes to isolate compound suitable for X-ray single crystal.

5. Expanding the microbiological activity study by testing the ligands

and their metal complexes against other microorganisms.

6. Studying the anti-cancer activity and DNA cleavage of the prepared

compounds.
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