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Chapter 1

Linear Space

A linear space (also called vector space), denoted by L.or V, is a collection
of objects called vectors, which may be added together and multiplied by
numbers, called scalars which are taken from a field F'. Before defining

linear space, we first define an arbitrary field.

Definition 1.1. Fzeld

Let F' be a non-empty set and 4+ and . be two binary operations on F.

The ordered triple (F, +,:) is called field if and only if
(1) (F,4+) is a commutative group

(2) (F—{e},.) is a commutative group, where e is the identity with respect

to (+).

(3) (.) is distributed over (4) (from left and right)

Example 1.2.

Let (4+) and (.) are ordinary addition and multiplications. Then

e Fach of (R, +,.),(C,+,.), and (Q,+,.) are examples of fields

e (Z,—,.) is not field ( Definition 1.1(1) does not hold) and (Z,+,.) is

not field ( Definition 1.1(2) does not hold)
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Definition 1.3. Linear Space

Let (F,+,.) be a field whose elements are called scalars. Let L is a non
empty set whose elements are called vectors.Then L is a linear space (or

a vector space) over the field F, if

(1) addition: There is a binary operation + on L called addition (not

usual addition) such that (L, +) is a commutative group.
(2) scalar multiplication: cvx € L Vx € L, Va € E-
(3) The scalar multiplication and addition satisfy

(i) a(z+y)=ax+ay Ve,ye L, YaeF
(i) (o« +p)x=ax+pax Vel Vo, feF

(iii) (a.f).x = a.(B.x) Vxel, VYo, € F

(iv) l.e =2 Va € L and 1 is the unity F

Remark 1.4.

If L is a linear space over F', we say that L(F') is a linear space. We also

can say L is a linear space.
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1.1 Examples of Linear Space

Example 1.5.

The set of real numbers R, with ordinary addition and ordinary multi-

plication, is a linear space over (F,+,.) = (R, +,.). Indeed,
(1) (R,+) is an abelian group
(2) axeR VreRaelR

(3) All other conditions are satisfied (Check!)

This linear space (R, +,.) is called real linear space.

Example 1.6.

The set of complex numbers C', with ordinary addition and ordinary

multiplication, is a linear space over (F,+,.) = (C,+,.). Indeed,
(1) (C,+) is an abelian group
(2) axeC VeelCael

(3) All other conditions are satisfied (Check!)

This linear space (C,+,.) is called complex linear space.

Example 1.7.
Let (R, +,.) be the field of real numbers. Let R” = {(x1, ..., z,) : 1, ..., T, €

R}. For any two elements X = (x1,...,z,) and Y = (y1, ..., y,) of R", define

ordinary addition
X+Y=(x14+y1, s T+ Yn)-
Also, define scalar multiplication in R™ over R by

aX = (a.xy,...,ax,) YaeR VX € R".
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Show that R" is a linear space over R.

Solution: Let us check linear space conditions

(1) We show that (R",+) is a commutative group

(a) Let X = (x1,...,x,),Y = (y1, ..., yn € R™). Since x1 + y1, ..., T, +
yn € R, then X +Y € R". Hence, R" is closed with respect to

ordinary addition.

(b) For all X = (21, ...,2,),Y = (Y1, o0y Yn), Z = (21, 00-, 2,) € R"
X+ Y +2)=(x1,....,zn) + [(y1, 59n) + (21, -0y 20)]

= (21, o0y ) F (Y1 + 21, ooy Y + 210)

= (5131 + (yl + Zl); vy Ty (yn + Zn))

= ((z14+y1) + 21, ooy (T + Yn) + 20)
= (141, o Tatyn) (21, oy 20) = (XHY)+Z.
(c) For all X = (z1,....,x,),Y = (y1,..-,yn) € R”
X4Y = (21, o0 )+ (W1, oo Un) = (@101, oo, Tntyn) = (1421, ooy Yn+20) = Y-

(d) For all X = (z1,...,x,) € R" we have (0,...,0) € R" such that
(21, ..oy xy) + (0,...0) = (21, ..., x,). Thus, (0,...,0) is the additive
identity.

(e) If X = (x1,...,x,) € R" then —X = (—z1,...,—x,) € R" such
that

X+ (=X)=(0,...,0). Thus, —X is the additive inverse of X.
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From (a)-(e) we get (R",+) is a commutative group.
(2) Let X = (xq,...,x,) € R" and a € R. Since auxy, ..., ax, € R, then
a.X = (azy,...,a.x,) € R™.
Hence, R" is closed with respect to scalar multiplication.

(3) The scalar multiplication and addition satisfy

(i) If X = (21, ..., ), (Y1, -, yn) € R" and o € R, then
a.(X+Y)=a(z1+y1,....tpn+ Yn)
= (au(z1 4+ 1), o 0 (T + Yn))
= (.71 + @Y1, .y T FQLYy)
= (.21, ..., .xy) +(yr, ..., .yp)
= a.(x1, e, Bp) + (Y1, ., Yn) = . X + .Y
(i) If X = (xq,...,2,) € R" and o, § € R, then
(a+B).X =((a+pB).z,... (a+ B).z,)
= (oz.xl + B.x1, ..., .1y + an)
= (.x1, ..., .2y) + (B2, .0y foy)
=a.(x1, .., p) + L1,y xn) = X + 5Y
(iii) If X = (21,...,x,) € R" and «, f € R, then
(a.8).X = ((a.8).21, ..., (. B)z)
= a.(B.xq, ..., B.1p) = oz.(ﬁ.(wl, ,xn)) = a.(6.X)
(iv) If X = (x1,...,7,) € R” and 1 is the unity of R, then

1L.X =1y, ..., Lay) = (21, .., 2) = X
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Hence R" is a linear (vector)space over R.

Example 1.8.
Let (C,+,.) be the field of complex numbers. Let C" = {(x1,...,2,) :

Ty, ..., € C}. For any two elements X = (xq,...,x,) and Y = (y1, ..., Yn)
of C", define

X+Y =(x14+y1,, Tn+ Yn)-

Define scalar multiplication in C" over C' by
a.X = (axy,...,ax,) YaeC, VX eC".
Show that C™ is a vector space over C. (Verify that)

Example 1.9.
Let (R, +,.) be the field of real numbers. Let M = {(z,0), (0,y) : =,y > 0}.

For any two elements X = (z,0) and Y = (0,y) of M, define ordinary
addition X +Y = (z,y).

Also, define scalar multiplication in M over R by a.X = («a.x,0) and
a.Y =(0,ay) VaeR, VXY € M. Is M a linear space over R?
Solution: Let us check if (M, +) is a commutative group.

Since (1,0),(0,1) € M but (1,0) + (0,1) = (1,1) ¢ M. Thus, M is
not closed under addition, then (M, +) is not group. Also, —1.(1,0) =

(—1,0) ¢ M. Thus, M is not closed under scalar multiplication.

Example 1.10.
Let C°(R) = {f : f : R — R ; f is bounded and continuous} set of all

bounded and continuous functions defined on R. For any f,g € C°(R) and

for any a € R, define
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(f+9)(x) = f(x)+g(x) Vx € R and (af)(z)=ca.f(x) Vr € R,Va € R.
Show that C’(R) is a linear space over R.

Now, let us check linear space conditions.

(1) We show (C*(R), +) is a commutative group

(a) Let f,g € C*(R)) such that f, g are continuous and bounded func-

tions. We want to prove f + g € C°(R). (i.e., f + g is continuous

and bounded)
Since f, g are continuous, the sum (f + g) is'a continuous func-
tion (I)
Also, since f, g are bounded functions, dM;, Ms € R, such that
|f(x)| < M; and |g(z)| < Ms. Hence, for all z € R
((f +9)(@)] = [f(2) + g(2)| < [f(2)] +|g(x)] < My + M.
|(f + g)(x)| < My +M,. Thus, f + g is bounded function (II)
By (I) and (IT), f + g € C*(R).
(b) For all f,g,h € C*(R) and for all x € R
[f + (g +h)|(x) = f(x) + [(g + h)(z)]
= [f(z) + g(z)] + h(z)
= (f+9)(@) +h(z) = [(f +9) + h](z).
(c) For all f,g € C*(R)
(f +9)(x) = f(z) + g(x) = g(z) + f(z) = (9 + f)(2).
(d) For all f € C*(R), define 0: R — 0 by 0(z) = 0.
It is clear that 0 is continuous and bounded function. Thus, 0 €

C’(R) and
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(f +0)(x) = f(z) +0(z) = f(z) +0 = f(x).
Similarly, (0 4+ f)(z) = 0(x) + f(z) = 0+ f(z) = f(z) Thus,
f+0=0+f=f
0 is called the additive identity.

(e) Forany f € C°(R), define —f : R — Rby (—f)(2) = —[f(z)] Vo€
R.
Since f is continuous, then —f is continuous.
Moreover, Vz € R, |—f(z)| = |f(z)] < M. Then, —f is bounded.
Thus, —f € C*(R) and
[+ (=) = fl@)+(=f)(2) = f(@)+(f(z)) = f(z) - f(z) =
0=0.
Similarly, [(=f) + f](z). = (=f)(z) + f(z) = (=f(z)) + f(z) =
—f(z) + f(2) =0=0

From (a)-(e) we get (C*(R), +) is a commutative group.

(2) Let f € C°(R) and a € R. We want to prove af € C°(R). (i.e., af is
continuous and bounded)

Since f is continuous, then «f is a continuous function.

Also, since f is bounded functions, 3M € R, such that |f(z)| < M.

Hence, for all x € R

((@f)(@)] = |a.f(z)| = |a] [f(z)] < [a] M.
Thus, af is bounded function. Therefore, af € C*’(R) (C*(R) is

closed with respect to scalar multiplication).

(3) The scalar multiplication and addition satisfy



Functional Analysis-Linear Space Dr. Saba Naser Majeed 9

(i) If f,g € C*°(R) and o € R, then
(a(f +9))(z) = a.(f + g)(x) = a[(f(z) + g(z)]
=a.f(z) + a.g(x)
= (af)(z) + (ag)(z) = (af + ag)(z)
(ii) If f € C*(R) and «, 8 € R, then
[(a+ B)fl(z) = (a+ B).f(z)
= a.f(z)+5.f(z)
= (af)(@) + (Bf)(2) = (af + Bf)(x)
(iii) If f € C°(R) and «, 8 € R, then
[(a.8) f](z) = (a.B).f(z) = a.(B-f(@)) = a.[(B])(x)] = [a(B))](z).
Hence, (a.8)f = a(Bf).
(iv) If f € C*(R) and 1 is the unity of R, then
(1)(@) = 1.f(x) = f(z).

Hence, C°(R) is a linear (vector)space over R.
Exercise 1.11.

(1) Let C%la,b] = {f : f :[a,b] = R f is bounded and continuous} set of
all bounded continuous functions defined on [a,b]. Show that C?[a, b]
is a linear space over R where f + g and af are defined in the same

way as in Example 1.10.

(2) Let L =R?* and F = (R, +,.). Define the following two operations:

(1) (1, 22) + (Y1, ¥2) = (@1 +y1, 22 +y2)  V(T1,22), (Y1, 42) € R2.

(2) a.(z1,12) = (a.r1,9) V(x1,22) € R?, Va € R,
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Show that L is not a linear space over R?

(3) Let L be the set of all real valued sequences (z,). Define usual addition
and multiplication of a sequence as follows: for any (x,), (y,) € L and

each o € R
() + (yn) = {xp +yu) and a.(z,) = (a.z,). Show that (x,) is a

linear space over R.

(4) Let (R,+,.) be the field of real numbers. Let N<= {(x1,x9,x3) :

x1, T2, x3 > 0}. Define the following two operations:

(1) X +Y = (21 +yi, 22 + Y2, 73 + y3). VX = (21,72, 23),Y =
(y17y27y3) € N
(2) a.X = (a.x1, a9, .x3) Ya €R, VX € N.

Is N linear space over R?

Theorem 1.12. Properties of Linear Space

Let L(F') be a linear space and 0y, is a zero vector of L. Then

(1) .0, =0, Va € F.

(2) 0.z = 0; Yz € L.

3) a.(—z) = —(avz) Vo € L, Ya € F.

4) (—a).x = —(a.x) Yz € L, Ya € F.

5) a(z —y)=ax—ay VYr,y € L, Ya e F.

(6) If a.x =0 then « =0 or x = 0.
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1.2 Linear Subspace

Definition 1.13.
Let L be a linear space over a field F' and let ¢ 2 H C L. Then H is called

a linear subspace of L if H itself is a linear space over F'.

Theorem 1.14.
Let H be a non empty subset of a linear space L(F"). H is called a subspace

of L if and only if ax + By € H for all z,y € H and for all o, 5 € F.

Exercise 1.15.

(1) Let R3 be a linear space over R. Which of the following subsets of R3

are subspaces of R3.
(1) H, = {(2,x2,:€3) e R?: To, T3 € R}
(ii) Hy = {(%1,%’2,1‘3) € R3: Tl + To + T3 = 0}
(111) H; = {(331,1’2,1’3) ER3: r1+ 229 = 1}
(2) Let C[—1,1] be a linear space over R. Which of the following subsets
of C|—1, 1] are subspaces of C[—1,1].
(i) Hy={f e C[-1,1]: f(0) = 0}
(i) Hy = {f € C[=1,1]: f(z) <0,z € [~1,1]}

(iii) He = {f € C[=1,1]: f(=1) = f(1)}
Solution (1(i)): Take (2,9, x3),(2,y1,y2) € Hy then

(2,29, 23) + (2,y1,y2) = (4, 29 + Yo, x3 + y3) ¢ Hy

Then, the closure condition is not satisfied. From Definition 1.13, H; is

not a subspace of R3.
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Another Solution (1(i)): Let (2,29, 23), (2,y1,92) € Hy and o, 8 € R,

then

(2, z9, 3)+B(2, Y1, y2) = (20428, xo+y2, x3+y3) = (2(a+5), xa+y2, x3+ys3) ¢ Hy

because 2(a 4+ ) = 2 if and only if a + 5 = 1.
Thus, from Theorem 1.14, H; is not a subspace of R3.
Solution (2(iii)): Let f,g € Hg and o, € R.
f,g € Hg = f, g are continuous on [—1,1] = «af and B¢ are continuous on
[—1,1]. Thus, af 4+ Sg is continuous on [—1, 1]. (I)
(af + Bg)(—1) = (af)(=1) + (Bg)(-1)
=a.f(=1)+ f.9(-1)

= a.f(1) + B.9(1) =(af + Bg)(1). (IT)
From (I) and (II), af + Bg € Hg. Thus, Hg is a subspace of C[—1, 1].

1.3 Linear Transformation Mapping

Definition 1.16.
Let L(F) and L'(F') be two linear spaces over the same field F'. A mapping

T : L — L' is called a Linear Operator or Linear Transformation if

T(ax + PBy) = ol (x)+ pT(y) Vr,y€ L, Ya,5 € F.
Example 1.17.
Let T : R?® — R? defined by T'(x1, 29, 23) = (21, 22) Va1, 22,73 € R.

(1) Show that T is a linear transformation.

(2) If X = (z1,29,23) = (2,1,-3),Y = (y1,92,y3) = (0,—5,1). Compute

T(2X)and T(X +Y).
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Solution (1): Let X = (z1,22,23) € R3 Y = (y1,42,y3) € R? and a, 8 €
R. Then

T(aX + BY) = Tla(z1, x2, x3) + By1, Y2, y3)]
— T(ax + By, azs + Bya, axs + Lys)
= (az1 + By, azs + Puo)
= (a1, axs) + (B, Bys)
= a1, 22) + B(y1, ya)

= T (x1, 9, 23) + BT (Y1, Y2, y3) = aT(X) + BT(Y).

Solution (2): T(2X) = T(4,2, —6) = (4,2).

TX4+Y)=T(2,—4,—-2) = (2,—4).
Exercise 1.18.

(1) Let R? is a linear space over ' = R with usual addition and multipli-
cation. Show that each of the following mappings 7' : R? — R? is a

linear transformation
(1) Ti(x1,22) = 221 + X9
(ii) To(z1,22) = (0, x2)
(iii) T5(x1,x9) = (axy1, axs) where a € R
(2) Let C*(R) be the set of all bounded continuous functions defined on
R such that C’(R) is a linear space over R with usual addition and

multiplication. Let T : C*(R) — C®(R) such that T(f(z)) = 22f(x).

Show that 7" is a linear transformation mapping.
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Theorem 1.19.

Let T : L(F) — L'(F) be a linear transformation. Then

(i) T(0r) = 0z where 0y, is the zero vector of L and 0y is the zero vector

of I/

Theorem 1.20.

Let L, L' be linear spaces over same field F. Let 71,715 : L — L' linear
transformations. Define the function Ty +71% : L — L' as (11 + T3)(x) =
Ti(z) +Ts(x) Vx el

If « € F, then the function o4y @ L — L' is defined as (aT3)(z) =

a.Ti(x) Vx € L. Then

(i) Show that 77 + T5 is a linear transformation.

(ii) Show that o7y is a linear transformation.

Proof. (i) Let a, 8 € F and x,y € L. Then

(Ty + T)(ax + By) = Ti(ax + By) + To(ax + By) (Definition of +)
= CMTl(iU) + 5T1<y) + OZTQ(QL‘) + 5T2(y) (since 11,15
linear trans.)
= a(Ti(x) + Ta(x)) + B(T1(y) + Ta(y))

= o(Ty + Ty)(z) + B(Ty + To)(y).

Thus, T1 + T5 is a linear transformation.
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(ii) Let 51,02 € F and x,y € L. Then
(1h)(Brz + Poy) = a.Ti(Brz + Bay) (Definition of scalar multiplica-

tion)
= a.[f1.T1(z) + Bo.Th ()] (since T} linear trans.)
= &.Bl.Tl(l') + &.BQ.Tl(y)

= p1.(a17)(z) + Ba.(aT1)(y)

Thus, aT7 is a linear transformation. ]

Definition 1.21.

Let L be a linear space. A linear transformation 7" : L — F' is said to be

Linear functional. (Note that F' can be regarded as a linear space over

F).

Example 1.22.

Let L = F" = {(x1,...,2,)  x1,...,x, € F} be a linear space over
the field F. Let T : F" = F defined by T(z1,...,2,) = oqxy + ... +
anty, Y(r1,..,x,) €. F" and aq,...,a, € F. Prove that T is a linear

transformation.

Solution: Let z = (z1,...,2,),y = (y1, .., Yn) € F" and a, f € F. Then

T(ax+ By) = Ta(w1, ooy 20) + BY1, ooy Yn)]
= T(az1 + By, ..., oz, + Byy)
= ai(az + By1) + ... + anlaz, + By,
= a(ogry + ... + apxy,) + Blaqys + ... + anyn)
=T (21, ....;0) + BT (Y1, .., Yn).

Thus, T is a linear transformation (i.e., linear functional).



Chapter 2

Normed Linear Space

Definition 2.1.
Let L(F') be a linear space over a field F'. A mapping || || : L — R is called

norm if the following conditions hold
(1) |z]] >0 Vz € L. (Positivity)
(2) ||z|| = 0 if and only if x = 0.
3) llz+y| <zl + lyl| ~Vz,y € L. (Triangle Inequality)

(4) ||az|| = |a|||z|| Vz € L, Va e F.

(L, || |I) is called normed linear space.

Remark 2.2.

From now on, the field F' is either R or C.

Theorem 2.3.

Let (L, || ||) be a normed linear space. Then, for each x,y € L
(1) Jloc] = 0.
(2) Nzl = ll==l-

(3) llz =yl = lly — =l
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4) | ll=]| = llyll | <llz—=yll.-  (Reverse Triangle Inequality)
G) |zl =yl | < e+ vl - (Reverse Triangle Inequality)

(6) Every subspace of a normed space is itself normed space with respect

to the same norm.

Proof. (1) ||0|] = ||00y,|| (see Theorem 1.12(1))

= 0]/0p]| = 0.
) =zl = [=1 =] = |l=]| vz e L.
B) llz =yl == =)l =lly — =] (by part (2)).

(4) We must prove — ||z —y| < ||z| — |lyl| < 'flz -yl

2] = lz =y +yll < llz =yl + |yl (by Definition 2.1(3)).

Hence, ||z| = |lyll < [lz — ]| (D)

Similarly, ||y|| = ||y —« + | <|ly — 2|+ ||z|| (by Definition 2.1(3)).
Hence, [ly]| = [[z|| < [lz =yl (1I)

Hence, by (I) and (II), we get ||z — y|| > |||z]| — [|y||| Vz,y € L.

(5) We must prove — ||z + y|| < ||lzf| — [ly[| < [lz + y]|

|zl = llz +y —yll < [lz+yll + Iyl (by Definition 2.1(3)).

Hence, [lz]| — [ly|| < [lz 4yl (L1I)

Similarly, ||y|| = |ly + 2z — z|| < ||y + z| + ||—z| (by Definition 2.1(3)).
Hence, [lyl| = |lz|| < [l 4yl

]l =yl = = [l +yll (IV)

Hence, by (II) and (IV), we get —[lz+y| < [lzf| = [lyl < llz+yl

Vr,y € L.
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2.1 Examples of Normed Linear Space

Example 2.4.

Let L = R be a linear space over R with || || : L — R such that ||z| = |z|.
Show that (R, || ||) is a normed space.

Solution: We show that

(1) [|z]| = |x| > 0 Vz € R; hence ||z| > 0.

2) Letz €R, ||z|| =0 <= |z| =0 <= z=0.

(3) Ve € R,Va € R,

loz]| = [ax| = |af [z] = [a ||=]].

) llz +yll = |z +yl <zl + |yl = |zl + yll Vz,y R

Example 2.5.

Let L = C be a complex linear space over C' with || | : C' — R such that
|z|| = |2| = Va2 + b2 Vz =a+ ib. Show that (C, || ||) is a normed space.
Solution: We show that

(1) ||z]l = 2| = Va2 + 02 >0 Vz=a+ibe C; hence |z|| > 0.

(2) Let z=a+ibeC

Iz = 2| = Va2 + 12 =0 <= a=b=0 <= 2=0+0i = 0.

(3) Let z,w € C

|z +w|]* = (z + w)(z Fw) where z+ w =conjugate of z + w
= (2 + w)(Z+ V) = 2Z + W0 + w2 + Wz
= 2Z + W + WZ + wZ
= 2Z + ww + 2Re wz

2 2
< 217+ lwll” + 2[fwl 121 = Izl + lwll)*.
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Thus, ||z + w||* < (|z]| + w[])?, hence, ||z +w]| < |[2[| + [lw].
(4) Let z € C,a € C,

loz|| = |az| = [afa +ib)|

= /(aa)? + (ab)? = /a2(a® + 1?) = Va*Va2 + 1% = || |2| =

[ [|]].

As an application to Example 2.5: Let 2z =2 + 37, w =1 —1, then
Iz +wll =2+ 1) + (3 = )| = |3 + 2i]| = V3% + 22 =13,

152 = ||10 + 154|| = v/102 + 152 = /325 = 5/13.

5zl = 5v22 + 32 = 5V/13.

Example 2.6.

Show that the linear space C?(R) is a normed space under the norm

1£l = sup{[f(2)| : ¥ € R}, Vf € C*(R).
(1) Since |f(x)| > 0 V€ R. Then, ||f|| = sup|f(x)| > 0. Hence, ||f|| > 0.

2) [/l =0 <= sup{|f(z)]: x € R} =0
<~ |f(z)|]=0 Vz eR
= f(z)=0 Yz € R <= f =0 (zero mapping)
(3) Let f,g € C*°(R). Then
If + gl = sup{|f(z) + g(z)| : z € R}
< supf[f(z)| + [g(z)| : € R}

< sup{|f(z)] - v € R} +sup{lg(z)| : z € R} = |[f]| + [|g]l-
Hence, |[f + gl < [If]] + [l4]l-

(4) Let f € C*(R),a € R . Then
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lef || = sup{[(af)(z)| : © € R}

= sup{|a| |f(2) : € R}

— |a|sup{|f(2)| : = € R} (By Theorem 2.7 below where A = |f(z)|
and § = |af)

= lal [[£]-

Theorem 2.7.
If A is a bounded above set and § > 0, then SA is bounded above and
sup(BA) = fsup(A).

As an application to Example 2.6: Let f, g € C°(R) such that f(z) =

sin(z) and g(x) = 2cos(x) + 1. Hence,
I /Il = sup{|sin(z)| : x € R} =1 (sinee |sin(z)| <1, Vz € R).
|1l = supd [2c05(z) + 1] - v € R},

But |2cos(z) + 1| < 2|cos(z)[+ 1 = 3. So ||g|| = 3.

Example 2.8.
The linear space C?[0,1] of all real valued continuous functions on [0, 1] is

a normed space under the norm defined in Example 2.6. (H.W.)

Example 2.9.

The linear space C[0, 1] of all real valued continuous functions on [0, 1] is
a normed space with the norm defined as

171l = Jo f ()] dz v f € Co,1].

solution: (1) Since |f(z)| >0, Vx €[0,1], then fol |f(z)| dz > 0. Thus,
LfII > 0.

@) Ifll=0 <= [y |f(@)] dz=0
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<~ |f(x)|=0 Vz €[0,1]
— f(z)=0 Vz €|0,1]
< f =0 (zero mapping).
(3) Let f,g € C[0,1]. Then
If+all = Jy 1£(z) + g(2)| dz
< fol(\f(x)! +|g(2)]) da
= o lf@)] dz+ [} [g(@)| dz = [|f] + |lg]
(4) Let f € C[0,1],a € R . Then
lafl = fy laf@)] dz = [y o] |f(2)] dz = |a| fi [f(@)| d==|a]||f].

As an application to Example 2.9: Let f € C|0, 1] such that f(z) =

® and g(z) = —2*. Find |||, l|lgl| and [ f + g]-
1 1 1
Ifll=Jo [f@)] do = [y |2?] do = [y 2® dow =5

lgll = Ji lg(z)| do = [y |=a?| dz = [} 2 dow = 1.

1
Hf+g|\=/0 (f +g)(a) dx:/O & o do

<0

Example 2.10.
Consider the linear space F" over F' (F = R or C'). Define || || : F" - R

by [|X|| = max{|z1], ..., |zn|} VX = (21,...,2,) € F". Then (F", | ||) is a
normed space.

solution: (1) For any X = (21,....,x,) € F", |z;| >0, Vi=1,...,n

Then max{|z1|, ..., |z,|} > 0, then || X > 0.

(2) [|X|| = 0, where X = (21, ...,x,) € F"



Functional Analysis-Normed Linear Space Dr. Saba Naser Majeed 22

<— max{|zi|,...,|z.|} =0
= |r|=..=|1,) =0 <= 51=..=2,=0

— X =(21,...,2,) = (0,...,0) = Opn
(3) Let X = (z1,...,2,),Y = (y1, .., yn) € F™

| X 4+ Y| = max{|z1 + v1], -, |Tn + Yn|}
< max{|zi| + [y1] ;s [20] + [ynl}

< max{|zi], .., |zal} + max{[yi], .., yal} = [ X[+ [1V]
(4) Let X = (z1,...,x,) € F" and o € F

|aX || = max{|az|, ..., |ax,|}
= max{|al|z1], ..., |a| [z,]} = |of max{{z1], ..., [v,]} = |af | X]|

As an application to Example 2.10: Consider the linear space R? over

R. Let X = ($1,$2,I‘3) — (1727 _5)7Y - (y17y2>y3) - (Ov -7, 3) Then )

(1) [[X]| = max{[1], |2}, |=5]} = 5 and
Y]l = max{{0} , [=7],[3]} = 7.

| X +2Y|| = max{|1|,|-12|,|11]} = 12
(2) Find [2X =Y}, [[2X + 3Y[, [3X]]
(3) Show that

max{|z1|+[yil , [z2l+[yal , w3l +Hys[} < max{[za], |2of , ||} +max{fya], |y2l, [ys]}-
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Exercise 2.11.

(1) Let L = C? be a linear space over F' = C. Define || || : C* — R such
that || X|| = a|z1| +b]|zs|, VX = (21,22) € C? and a,b > 0. Show that || ||
is a norm on C?. (H.W.)

(2) Consider the linear space R%. Let || X|| = min{|z|,|y|}, VX = (2,y) €
R?. Show that || || is not a norm on R2.

solution: Let X = (0, —3) € R?

I = ming[o] | -3[} = min{0,3} = 0

Since X # Ogz, but || X|| = 0. Condition (2) of the definition of the norm
is not valid. Hence, || || is not a norm on R2.

(3) Consider the linear space R2. Let || X || = |z|*+|y|*, VX = (z,y) € R%
Show that || || does not satisfies condition (4).

solution: Let X = (1,3),a =2

ol 1] = 2(|f? + [yf) = 207 + 8°) = 20

laX = 112(1,3)] = [[(2;6)]| = 2* + 6% = 40

Thus, |af || X|| =20 # ||aX || = 40.

(4) Let (L,] ||) be a normed space. Let ||z +y|| = ||z|| + ||y|| Vz,y € L.
Show that ||3x + 2y|| = 3 ||=|| + 2y]| -

solution: We must show |[|3z + 2y|| > 3||z|| + 2||y|| and ||3z + 2y|| <
3l + 21y

13z + 2y|| = ||3z + 3y — y|| = ||3(z + y) — ¥
> 13(+y)| = llyll | (By Theorem 2.3(4))
= 3(lz +yll) = llyll | (By axiom (4))

= [3(||z|l + [ly|l) = llyl| | (By assumption)
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= Bzl + 2yl [ = 3= + 2]yl

Thus, |3z +2y|| = 3|zl +2[lyl (1)

On the other hand, [|3z + 2y|| < 3||z|| + 2 ||y|| (By axioms (3-4)) (2)

From (1) and (2), |32 + 2y[| = 3|lz[| + 2|y] -
Some Important Inequalities

To give more examples about normed space, it is important to present

some inequalities.

If I, = {(x,) : x, isareal number and > 7 |x;|" < oo} be a set of
sequence space (see Excercise 1.11(2)). Let z, = (x1,22,...,) € I, yp =

(Y1,Y2, .., ) € lg. Then

(1) Holder’s Inequality

(o) o0
1 1

Dzl < [ |l ]| Z\yz 1%
=1 =1

Wherep>1,q>1and%—|—$:1.

(2) Cauchy Schwarz’s Inequality

ZI%%I < [Z\%IQ}%[ZI%F];,
i=1 i=1 i=1

Note that Cauchy Schwarz’s inequality is a special case of Holder’s inequal-

ity where p =q = 2.
(3) Minkowski’s Inequality

Ifp>1
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=
S =
3=

[Z|£Cz +yi’p}
i=1

Example 2.12.

<D o]+ Dl
i=1 i=1
Let L = R? be a linear space over R. If X = (—=1,2),Y = (0,5) € R? and

p = 3.
(1) Verify Cauchy Shwarz inequality.
(2) Verify Minkowski’s inequality.

Remark 2.13.

The three inequalities above hold for finite sum.

Now we can give the following examples

Example 2.14.

Show that the linear space R™ over R (or C" over C) is a normed space
with [|X]| = [0, \:1:@-|2}% VX € R" or C", X = (x1,...,1,). The space
(R™, | X]|) is called Euclidian space and (C",||X]||) is called Unitary

space.

Solution: Let X = (z1,...,2,),Y = (y1,...,yn) € R" (or C") and o € R

(or C™).

1
(1) Since |z;] > 0, Vi = 1,...,n. Then, [Z?zl \x¢|2}2 > 0; that is

X = 0.
2) X[ =0 <= [ZL |z’ ]* =0 <= X |a*=0
— |zi’=0, Vi=1,...n

— z;=0, Vi=1,...,n
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<— X = (x1,...,x,) = Ogn
3) X + Y| = [(z1 +y1, .., 20 + y) |

= [Z?:l |z + yi|2}§ < [Z?:I |xi|2]§+[2?:1 |yz‘2]

Inequality)

=

(Minkoski’s

= [IXII =+ Y]

N[

n 2

(4) llaX | = [(aw1, ...z, || = [ 300 || ]
= [ 20 laf il ]2

= o] [ X0 al*]* = |od || X]]

As an application to Example 2.14:

(1) Let (R?,]| ||) be an Euclaidian space and X = (21, 22, 23) = (1, —2,4).

Then, find || X||.

(2) Let (C%||]]) be a Unitary space and X = (z1,29) = (1 + i, —2i).

Then, find || X||.
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2.2 Product of Normed Spaces

Definition 2.15.
Let (L, [|;), (L, ]| ||,") be normed linear spaces over a field F. Let

LxL'={(X,Y): X €L,Y € L'} be the Cartesian product of L and L'.
Define + on L x L' by

X1,Y X9, Y9) = (X1 + Xo, Y1 +Y5), V(X1,Y] Xo,Yo) e L x I,
(X1, Y1) + (X, Ya) = (Xi + Xp, Vi + 1), V(X1 Y1) + (X2, Y2) X

sumon L. sum on L'
Define a scalar multiplication

a(X,Y) = (aX,aY), V(X,Y)ELx L Va€F.

Proposition 2.16.
Show that (X x Y, +, x) is a linear space over F. (H. W.)

Remark 2.17.
The product linear space defined above can be made a normed space by

different ways as we show in the following example.

Example 2.18.

Define || || : L x L" — R such that

(1) N = 11X + Y

(2) 1(X V) = max{ | X[ [V ;

Show that (L x L', ||;), (L x L', || ||,) are normed spaces.
(1) To show (L x L’,|| ||;) is a normed space,
(i) Since || X||; > 0 and ||Y||;, >0 VX € L,VY € L', then

XNz + 1Yl = (XY, = 0.
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(i) [(X, V)], =0 = [ X[l + Y]z =0
X, = [V =0
— X=Y=0 (L] ), ]| |l;) are normed spaces)
— (X,Y)=(0,0)
(iii) For each (X1,Y1), (X5, Ys) € L x I/
[(X1, Y1) + (X2, Vo) [l = [[(X1 + Xo, Y1 + Y9) [
= (1% + Xoll, + [IV1 + Yall

< [IXallz + 1%l + 1Y)

v+ IYallp
= (Xl + [¥allz) + (Xl + 1Yall )
= [1(X0, YD)l + 1(X2, Ya)lly
(iv) For each (z,y) € X x Y and for each a € F
la(X, V), = (X, a¥)ll; = llaX]|[; + oYL,
= e ([ XI[ g+l 1Yl = lal (X, + 1Y) = lal 1(XY)l,
(2) Now, we show that || ||, is a norm on L x L'
(i) Since || X||;, >0 and ||Y||;, >0 VX € L, VY € L', then
masc{ | X[, [V} = 16, V), > 0.
(i) (X, V), =0 <= max{[|X||,, [Y]|,} =0
= Xl =Yl =0
<~ X=Y=0 (L, |l,), (L] |l) are normed spaces)

— (X,Y)=(0,0)
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(iii) For each (X1,Y1), (X5, Ys) € L x I/
[(X1, Y1) + (X2, V)l = [[(X1 + Xo, Y1 + V)]
= max{[| X, + Xof ,, [V1 + Y2 1}
< max{[| X[ + | Xl V2l 4+ Y2l )
< max{|| Xyl , Vil } + max{[| Xl , [Yall }
= [|(X1, Y1)l + [[ (X2, Y2)
(iv) For each (X,Y) € L x L and for each o € F

la(X, V)l = [[(aX, aY) |l = max{|aX]], , |}

v}

= max{|al [ Xl [l [¥ ]|}
= [ max{[| X[ Y[l } = laf (X, Y)]l,

As an application to Example 2.18: Let L = (R, | |) and L' = (R?,|| ||g2)

where || ||z is the Euclaidian norm. If X =3 e L=Rand Y = (1,-2) €
L' =R Find [[(X,Y)][; and [|(X, V)]
Solution: [|(X, ¥)ll; = (I3, (1, =2))[l; = [Bllg +[I(1, =2) g

= 3+ [ ']’

=3+ [P +|-27]? =3+ V5.

Find ||(X,Y)|, (FL.W.)
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2.3 Normed space and Metric space

Definition 2.19.
Let X be a non empty set and d : X x X — R be a mapping. Then d is

called metric if

(1) d(z,y) >0 Vz,ye X

(2) d(z,y) =0 <= z=y Ve,ye X
(3) d(z,y) =d(y,z) Vo,ye X

(4) d(z,y) < d(z,z)+d(z,y) Vx,y,z € X.

(X, d) is called metric space

Theorem 2.20.

Let (L,|| ||) be a normed linear space. Let d : L x L — R defined by
dz,y) = |lxt—y|| Vz,y € X. Prove that (L,d) is a metric space.
(i.e., every normed space is a metric space). The metric d is called metric

induced by the norm.

Proof. To prove (L, d) is a metric space.

(i) By definition of norm, ||[x —y|| > 0 Vz,y € L. Hence, d(x,y) =

[z = yll =0
(i) d(z,y) = [l =yl = lly — =l = d(y, )
(i) d(z,y) =0 <= [z —y| =0 <= 2-y=0 <= z=y

() d(z,y) = lz —yll = lz — 2+ 2z = yl| < [ = 2[[+ ]z = yll = d(z, 2)+

d(y, 2) O]
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Lemma 2.21.

Let d be a metric induced by a normed space (L,| ||) (ie., d(z,y) =

|z — y||). Then d satisfies the following:

(i) d(z +a,y +a) =d(z,y) Vz,y,a € L.

(i) d(azx, ay) = |a|d(z,y) Vx,y € L, Ya € F.

Proof. (1) d(x +a,y+a) = ||lxr+a— (y+a)| =d(z,y) Vr,y,a€lL

(2) d(ox, ay) = |lox — ayl| = [[alz = y)|| = |o| [z —yll = lald(z,y). O

Remark 2.22.

Not every metric space is a normed space as we show in the next example

Example 2.23.

Let d be the discrete metric on a space X. Then d can’t be obtained from

anorm on X (i.e., (X,| ||), where

0if x=uy

1 x#vy.

Solution: Suppose d induced by a norm on X. Then, by previous

d(z,y) =

Lemma,
d(az,ay) = |a|d(z,y) Vo,y € X and Va € F.

Let x,y € X such that z # y. Then ax # ay such that d(x,y) =

1L d(az,ay) =1 (1)
But |afd(z,y) = o] (2)

Hence, d(ax,ay) = 1 # |a| = |a|d(x,y) for any a # £1. Thus, d can

not be induced by a normed space.
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Example 2.24.
Let d(z,y) = |z| + |y| Vz,y € R. Then, d is a metric on R (check!).
However, d is not induced by a normed space. To show this, let z =1,y =

3,a=2¢€R.
d(z,y) = d(1,3) = |1] + [3] = 4
On the other hand, d(x + a,y + a) = d(3,5) = |3| + |5| = 8

Thus, d(z,y) # d(x + a,y + a). By Lemma 2.21, d is not induced by a

norml.

2.4  Generalizations of Some Concepts from Metric

Space

In what follow, we give generalizations of some known concepts from metric
space such as open (closed) ball, open (closed) set, interior set, closure of

a set, convergent sequence, Cauchy sequence, and bounded sequence.

Definition 2.25.
Let (L, || ||) be a normed linear space. Let o € L,r € R,r > 0. Then the

set

By (xg) ={x € L: ||z — x| <7}

is called an open ball with center xy and radius r. Similarly,

Bi(xg) ={z € L:||x—x <r}

is called an closed ball with center xy and radius r.
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Definition 2.26.
Let (L, || ||) be a normed space and A C L. Then A is said to be

e open set if Vo € A, Ir > 0 such that B,(z) C A.

e closed set if A°= L\ A is open set

Remark 2.27.

Let (L, || ||) be a normed space. Then

(1) L, ¢ are closed and open.

(2) The union of any family of open sets is open

(3) The union of finite family of closed sets is closed

(4) The intersection of finite family of open sets is open
(5) The intersection of any family of closed sets is closed.

Theorem 2.28.

Any finite subset of'a normed space is closed.

Proof. Let L be a normed space and A C L.

If A= ¢, then A is closed (by Remark 2.27(1))

If A= {x} to prove A is closed (i.e., to prove L\ A is open)

Let y € L\ A= L\ {z} so that y # z. Put ||z —y|| = r > 0. Thus,
xr ¢ B.(y) and hence B,(y) C A°= L\ {z}. Thus, A°is open and thus A
is closed.

If A={zy,.,z,},n€ Z;,n>1then A=U" {x;}. By Remark 2.27(3),

A is closed ]
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Exercise 2.29.

Let (L, || ||) be a normed space. Prove that

(i) The set Ay = {x € L : ||z]| <1} is closed
(ii) The set Ay = {x € L : ||z|| < 1} is open

(ili) The set C = {x € L : ||z|| = 1} is closed

Solution:

() Ay = {w € L+ |ja] < 1} = Fu(0).

So, A; is a closed set (by Definition 2.25)

(i) Ap ={x € L :||z|]| < 1} = B1(0).

So, Ajp is an open set (by Definition 2.25)

(ili) C ={x € L: |jz|| =1}
L\C={zxzeL:|z||<1}U{xeL:|z|]|>1}
Let Cy ={x € L: ||z]| <1} is open set

Let Cy ={z € L:||x| > 1}

So, L\ Cy = {x € L : ||z|| < 1} which is closed set. Hence, C5 is an open
set.

Thus, L\ C' = C; U, is an open set (by Remark 2.27(2)).

Definition 2.30.
Let L be a normed space and A C L. A point x € L is called limit point

of A if for each open set G containing z, we have (G N A) \ {z} # ¢.
The set of all limit points of A is denoted by A’ and is called derived set.

The closure of A is denoted by A and is defined as A = AU A’.
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Proposition 2.31.
Let L be a normed linear space and A C L. Then = € A if and only if

Vr>0,dy e A, ||z —y| <r.

Proof. (=) Let z € A= AU A’

If x € A’ then for each open set G, x € G,(GNA) \ {z} # ¢.

Since B,(x) is an open set then Vr > 0, we have B, ()N A\ {x} # ¢. Thus,
WeBx)nAyFr = |y—z]<r (I

If + € A then 3y = x such that ||y —z||=0<r  (II)

From (I) and (II), we get the required result.

(«=) If for each r > 0,3y € A such that ||y— z| < r; that is Vr > 0,3y €
A,y € B,(x)

= Vr > 0,(B.(x)NA)\ {z} #¢ = x € A". Thus, v € A. O

2.5 Convergence in Normed Space

Definition 2.32.

Let (x,) be a sequence in a normed space (L, || ||). Then (x,) is said to
be convergent in L if dr € L such that Ve > 0,3k € Z. such that
|z, —x|| <€, Vn>k

We write x,, — x as n — oo or lim,,_,(x,) = x; that is

|zn —z|]| = 0 <= =z, = x.

(x,) is divergent if it is not convergent.
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Theorem 2.33.

If (x,) is a convergent sequence in (L, || ||), then its limit is unique. i.e.,

If (x,) - x and (z,) — y then x = y.

Proof. Let € > 0. Since (z,,) — = and (x,) — y, then Jky, ko € Z, such
that

lan — 2 < g Vn > ki and ||z, — g < % Vi > k

Let k = max{ky, k2}, so Vn > k

|z =yl = llzn =y — 20+ 2ll = [[(2n —y) = (20 — D)

< I+ f<t4<=
= || Tp Yy Tp X 5 2—6

— ||z —y|| <e€ Ve>0. Thus, |t —y||=0,s0z=uy. O

Theorem 2.34.

Let A C L where L is a normed space, let x € L. Then

v € A <= I(w,) asequence in A such that (z,) — z.

Proof. (=) Let z € A= AU A’

If x € A then the sequence (z,x,z,...) >z  (I)

If v ¢ A i.e.,x € A’ then for each open set G, z € G,(GNA)\ {z} # ¢.
Since B, (x) is an open set then Vr > 0, we have B,(z) N A\ {z} # ¢. Set
O<r:%€ Zy. Then Vn € Z+,(B%(:c)ﬂA)\{a:}7é¢

Let z, € B%(x) N A, st z, # x, hence, ||z, —z| < %, VneZ, (%)
Thus, 3(z,) € A such that ||z, —z|| <1, Vne Z,.

To show (x,) — x; that is ||z, — z|| <€, Ve>0

Let € > 0 so by Archmedian theorem dk € Z, such that % < €

1 1
Hence, Vn >k, — < — <€
n k
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From (*), Vn > k, ||z, — x| < % < % < €. Thus, x, — x (I1)
From (I) and (II), we get the required result.

(<) If 3(z,,) a sequence in A such that (z,) — z. Toprovex € A = AUA’
Ifz € Athenx € A

If x+ ¢ A. Let G be an open set in L such that © € G. Then Ir > 0
such that B.(z) € G. Since r > 0 and z, — x,3k € Z, such that
|z —z|| <7, Vn>Ek.

This implies, x,, € B,.(x) Vn > k and since z, € A Yn € Z,. Then
(Br(z) N A)\ {z} # ¢. Since B,(x) C G, then (GN A) \ {z} # ¢. So,

x € A, and therefore x € A. ]

Theorem 2.35.
Let (z,,), (y,) be two sequences innormed space (L, || ||) such that x,, — x

and vy, — y. Then

(1) (zn) £ (yn) =z y

(2) Mx,) — Az for any scalar A
(3) (@)l = [l

Proof. (1) Since z,, — x, then

for each € > 0,3k, € Z; such that ||z, — x| < g, Vn > ky
Also since y,, — y, then

for each € > 0,3ky € Z, such that ||y, — y|| < g, Vn > ko
Let k = max{ky, ko}. Then, for each n > k

€ €
i — 2 < 5 and [lga — ] < 5 M
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Now, for each n > k,
[(@n +yn) = (@ + Y| = (@0 — 2) + (Yo = Y| < lzw — 2| + llyn — ¥l

< +§=6 (from (1))

N

Thus, z, + ¥, — x* + y as required.
€

(2) Let € > 0. Since x,, = x,3k € Z, s.t ||z, — x| < Bk

Vn >k (1)
€

But |[Az, — A\x|| = |A|||xn — 2| < B

NS

Al =€

usin&II)
Thus, \(z,) = \z

(3) Let € > 0. Since x, — x,3k € Z; st ||z, —z|| <€, Vn>k (III)

But | [[z,]| = [[z]| | < [|za — 2| <€ Vn > k. Hence, ||z,| — [|z]. O

using (IIT)

Definition 2.36.

Let (z,,) be a sequence in a normed space (L, || ||). Then (z,) is said to be

Cauchy sequence if Ve > 0,3k € Z, s.t ||z, — zp|| <€, Vn,m > k.

Theorem 2.37.

Every convergent sequence in a normed space (L, || ||) is a Cauchy sequence.

Proof. Let (x,) be a convergent sequence in L. Then Jdx € L such that
x, — x and so Ve > 0,3k € Z, such that ||z, — z|| < g Vn>k ()
Now, for n,m > k,

€ €
|0 = 2mll = (20 = 2) + (2 = 2w)|| < llwn — 2l + llom —2ll <5 +5 =€

usiI:g, (I
Thus, (z,) is a Cauchy sequence. O

Definition 2.38.

Let (x,) be a sequence in a normed space (L, || ||). Then (x,) is said to be

bounded sequence if 3k € R, k > 0 such that ||z,|| <k, Vne Z,.
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Theorem 2.39.

Every Cauchy sequence (z,) in a normed space (L, || ||) is bounded.

Proof. Let € = 1. Since (x,) is a Cauchy sequence, 3k € Z, such that
|len —znl|| < 1, Vn,m > k. Hence, ||z, —xp| < 1, Vn >k (by
considering m=k+1)  (I)

By Theorem 2.3(4), we have | ||z, || — ||xg+1l| | < ||zn — 2ppa]] <1 Vn >k

usir?gr(I)
Thus, ||z,|| — ||zp] <1 Vn >k

Then, ||z,| <1+ ||zp1]  Vn >k
Let M = max{[leal, 2] all, 1+ ]}

Hence, ||z,|| <M Vn € Z,. So, (x,) is bounded. O

Corollary 2.40.

Every convergent sequence in a normed space (L, || ||) is bounded.

Proof. From Theorem 2.37, Every convergent sequence in a normed space
(L, ]|) is Cauchy, and from Theorem 2.39, every Cauchy sequence in a

normed space (L, || ||) is bounded. O

2.6 Convexity in Normed Linear Space

Definition 2.41.
A subset A of a linear space L is said to be convex if Vz,y € A, A € [0, 1]

then Az + (1 — M)y € A.
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Example 2.42.
Let A= (1,3) C R. Is A convex set?

Solution: Let z,y € A, A € [0,1]
Since l <z <3 = 1A< Az <3x ()
Since l<y<3 = 1(1-XA)<(1-Ny<3(1-X) (II)

By summing up (I) and (II)
A+ (1= <X+ (1-Ny<3Xx+3(1—-))

I<dx+(1-Ny<<3

Thus, \x + (1 — \)y € A. Hence, A is convex set.

Proposition 2.43.

Let L linear space. Then

(1) Every subspace of L is convex

(2) If A, B C L are convex sets then AN B is convex (H.W.)

(3) If A, B C L are convex sets then A + B is convex

Proof. (1) Let L be a linear space over a field ' = R or C, let A be a
subspace of L. Hence, by Theorem 1.13, Vz,y € A and Va, § € F we have
azr + By € A.

Take « = A € [0,1] and § =1 — A. Hence, ax + fy = Az + (1 — \)y € A.
Thus, A is a convex set.

(3) Let a3 + by, a2 + by € A+ B, then aj,as € A and by, b, € B.

To prove A(ay + b1) + (1 — X)(ag + b)) € A+ B, VYA€ [0,1].

Since A convex and aj,as € A = A1+ (1—-Nag € A VA€ [0,1] ()
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Since B convex and by, by € B = Abi+(1—-A\)be € B VA€ [0,1] (1)
By summing up (I) and (II) we get
)\CL1—|—(1—)\)6L2+>\I)1—|—(1—>\)[)2 c A+ B

e, Aa1+b1)+(1—A)(ay+b2) € A+ B. Thus, A+ B is a convex set. []

Remark 2.44.

The union of two convex sets is not necessary convex. For example, let
A= (3,7)U(7,12). Then A is not convex. To show this, take z = 6,y =
1 1

1
8,)\:§then>\x+(1—)\)y:5(6)+§(8):7§§AUB.

Proposition 2.45.
Let (L, ]| ||) be a normed linear space, let zy.€ L. Then B,(z,) and B,(x)

are convex sets.

Proof. To prove B,(xg) is a convex set. Let x,y € B,.(z), and let A € [0, 1].
Then,

|z — xo|| <7 and ||y — x| <7 (I)

We must prove A\z.+ (1 — Ny € B,(z); that is we must prove

Az + (1 = Ny — x| <

IAx + (1 = Ny —xo|| = ||[Ax+ Axo — Axo + (1 — N\)y — x¢|| (adding and

subtracting A\zg)
= [[A(z = 20) + (1 = A)(y — z0)|

< A =zo) [l + 11 = Allly = zof| < Ar 4 (1 = A)r =7
(by (I) and since A > 0 then [A\| = A, |1 = A =1—-))

Thus, Az+(1—\)y € B,(x) and hence B,(z) is convex. Similarly, B, (z)

1S a convex set. []
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Proposition 2.46.
Let (L, ||) be a normed linear space and A C L and convex then A is a

convex set.

Proof. Let x,y € A and X\ € [0,1]. To prove Az + (1 —\)y € A

Let r > 0. Since z,y € A then by Proposition 2.31, Ja,b € A such that
|z —al| <rand ||z =05 <r (I

Since A is convex then Ada+ (1 —A\)b € A

Now, [[Az + (1 =Ny — (Aa+ (1 = \)b)|| = Mz — a)+ (1 = X)(y — b)]|

<Az —all + (1 =A) [ly — bl

<A+ (L=XNr  (from (I))

I
ﬁ

Thus,||(Az + (1 — N)y) = (\)\a—l— (L=XMb)|| <r

7

~~

€

Thus, from Proposition 2.31, Az + (1 — \)y € A. O

Remark 2.47.
The converse of the above proposition is not true. For example, let A =
[1,2)U(2,5] C (R,]]) then A = [1,5] is a convex set. But A is not convex,

1
sinceif:r:zl,yzB,)\:5then/\x+(1—)\)y:%+%(3):2¢A.
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2.7 Continuity in Normed Linear Space

Definition 2.48.
Let L,L’" be normed linear spaces. A mapping f : L — L’ is called

continuous at xy € L if for each € > 0,35 > 0 (depend on z;) such that

Vee L, if |z — x| <9 then |[f(x)— f(zo)| <e.

ie,Voee L, if z& Bs(xg) then f(x) € Be(f(xo))

Theorem 2.49.

Let L, L' be normed linear spaces. A mapping f : L.— L’ is continuous at

xo € L iff V(z,) € L with x,, — x implies that f(z,) — f(z0).

Proof. (=) Let f be a contiunuous mapping at xy and let (x,) be a sequence
in L such that x,, — . To prove f(x,) — f(xo).

Let € > 0, then 30 > 0 such that Vz € X

if ||z — xo|| < 6 then || f(a) — f(z0)|]| <€ (From continuity of f at x).
Since x, — o and-§.> 0,3k € Z, such that ||z, — x|l <, Vn > k.
Hence, || f(z,) — f(z0)|| <€, Vn > k;thatis f(x,) — f(z0).

(<) Suppose that x, — xy implies that f(x,) — f(x¢). To prove f is
continuous at xy.

Assume that f is not continuous at xg, so de > 0 such that V6 > 0,dz € X
and

o — aoll < 6 but [ £(z) — f(a)l] > e

Now, Vn € Z+,% > (0, then dx,, € L such that

|zn — 20| < % but || f(z,) — f(x0)|| > €. This means z,, — xo but f(z,) »

f(xg) in L' which is a contradiction. Thus, f is continuous at . O
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Theorem 2.50.
Let (L, || ||) be a normed space and let f : (L, ||) — (R,]||) such that

f(x) =||z|| Vz € L. Then f is continuous at x.

Proof. Let x,, — xy in L. Then Ve > 0,3k € Z, such that

|tn —xo|| <€ Vn>k (D)

But | [|lzn]] = llzoll [ < ll#n = ol ¥n >k

= | lznll = [lzo]| | <€ ¥n >k (Using (I))

= [f(2n) — f(zo)| <€ ¥n>Fk (Using (since f(x)=1z]))

f(xn) = f(xp); that is f is continuous at z. O

Remark 2.51.

Let Ly, Ly and L3 be normed spaces and let f : L; X Ly — L3 be a mapping.

Then f is continuous at (xg,yo) € L1 X Lo iff whenever {(x,,y,)) — (z0, ¥o)

then f(z,yn) = f(0,y0)-

Theorem 2.52.

Let L be a normed space over a field F'. Then

(1) The mapping f : L x L — L such that f(x,y) =z +y Vz,y € Lis
continuous at (xg, yo).

(2) The mapping g : F' x L — L such that g(A\,x) = Az Vr € L,VA€F

is continuous at (A, xg).

Proof. (1) Let (x,yn) — (z0,y0). Then, z,, — z¢ and y,, — yo such that

|z — zol| = 0 and ||y, — yo|| = 0 as n — oc.

Now, || £ (2, yn) — f(z0,y0)|| = [[(20 + yn) — (20 + 30|

= [[(zn = x0) + (Y0 — o)l
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< ll#n = oll + llyn — woll

Thus, || f(xn, yn) — f(zo,y0)|| — 0 as n — oo; that is f is continuous at

(20, Y0). Since (xg,yo) is arbitrary, f is continuous at (xg, yo).

(2) Let (\y, zp) — (A, zg). Then, A\, — X and z,, — .

Hence, |\, — A| = 0, ||z, — z|| = 0 as n — oo.

Hg()\naxn) - 9(>‘v 330)” = H)‘nxn - AZEOH

= H)\nxn_AnXO + )\nXO — )\x()H
= [[An(@n — o) + (An — A)zo|
< [Aalllzn = 2oll + [An = Al ffzoll
But ||z, — x| = 0 and |\, — A| — 0 so that
lg( A, ) — g(A, xo)|| = 0 as n — oo; that is g(A\,, x,) — g(A, zg). Thus,

g is continuous at (A, xg). O

Theorem 2.53.
Let L, L’ be normed spaces and let f : L — L’ be a linear transformation.

If f is continuous at 0 the f is continuous at any point.

Proof. Let o € X be an arbitrary point and let x,, — x.

To prove f(x,) — f(zg) (using Theorem 2.49).

Since x, — xg, then z,, — xg — 0

But f is continuous at 0, thus f(x, — z9) — f(0)

Since f is a linear transformation, then f(x,) — f(z¢) — f(0)

It follows that f(z,) — f(xo). O
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Remark 2.54.

The condition f is a linear transformation in the above theorem is necessary
condition. For example: consider the normed space (R, | |). Let f is defined

as

T if <1
f(x) =
r+1 i xz>1.

It is clear that f is continuous at 0 and discontinuous at 1.
Also f is not linear transformation because
f(b+6)=f(11)=11+1=12

and f(5)+ f(6)=(bB+1)+(6+1) =13

Hence f(5+6) # f(5) + f(6)

Theorem 2.55.

Let L and L' be normed spaces and let f : L — L' be a linear transforma-
tion. Then either f is continuous at each point or discontinuous at each

point.

Proof. Let x1 € L and assume that f is continuous at z;. Let o € L be
any point. To prove that f is continuous at zs. Let z,, — x5 in L. Then,
Tn — o — 0 and hence x,, — x9 + 1 — x1. Since f is continuous at z; then
flan — 22 + 1) = f(21).

Since f is a linear transformation, then f(x,) — f(z2) + f(z1) — f(21).
Hence, f(z,) — f(z2) — 0, and thus, f(x,) — f(z2).

Therefore, f is continuous at x5. Thus, f can not be continuous at some

points and discontinuos at some points. ]
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Example 2.56.
Let f: R x R — R defined by

i) ﬁyyg if (z,y) # (0,0)
T, Y) =

0 if (z,y)=(0,0).

Show that f is not continuous at (0, 0).

1
Solution: Let x, = — and y, = — Vn € N.
n n

Then, z, — 0 and y, — 0. Thus, (x,,y,) — (0,0). But

f(xnayn) -1

Hence, f(2n,y) = 5 but f(0,0) =(0,0). Thus, f(zn,ya) - f(0,0).

Thus, f is not continuous at (0, 0)-

2.8 Boundedness in Normed Linear Space

Definition 2.57. Bounded Set
Let L be a normed space and let A C L. A is called a bounded set if

there exists k > 0 such that ||z|| < k Vz € A.

Example 2.58.
Consider (R,|]) and let A =[—1,1). Since |z| < 1, then A is bounded.

Example 2.59.
Consider (R?,]| ||) be a normed space such that,
| X = [Z?:l |a:z~|2]% be the Eucledian norm, for each X = (z,79) € R%

Let A= {(x1,20) € R*: =1 <2 <1, y>0}. Then, A is unbounded.
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Theorem 2.60.
Let L be a normed space and let A C L. Then the following statements

are equivalent.

(1) A is bounded.

(2) If (z,,) is a sequence in A and (a,,) is a sequence in F such that o, — 0

then a,,z,, — 0.

Proof. (1)=(2) Since A is bounded, 3k > 0 such that |[z,|| < k Vz, € A.
Since oy, — 0 as n — oo, then |a,| — 0. Hence,

Jtnn — Ol = lanall = lanl 2] < lanl b (sitice [l < F)

But |a,| — 0, thus |a,|k — 0. Therefore, ||a,z, —0|| — 0 and hence
a,x, — Ox.

(2)=(1) Suppose A is not bounded. Then, Vk € Z,, 3z, € A such that
il > k.

1
Put o = T Hence, a;. — 0. But

1 1
— |1 A N —
Then, ||axzg|| > 1, thus agzr - 0 which contradicts (2). O

Definition 2.61. Bounded Mapping

Let L, L' be two normed space and f : L — L’ be a linear transformation.

f is called bounded mapping if for each A C L bounded then f(A) is

bounded set in Y VA C L.

Example 2.62.
Let f:R? — R such that f(z,y) =2 +y V(z,y) € R%. Show that f is a

linear transformation (H.W.). Let A C R? and A is bounded. Show that

f(A) is bounded.
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Solution: Let A C R? and A is bounded, then 3k > 0 such that ||(z, y)|| <
k V(r,y) €A = (242 <k = 22 +y? <k’

Since 7 < 22 + y* < k?, then 2* < k? = |z| <k (I)

Similarly, y* < 2? + y? < k?, then ¢> < k* = |y| <k (IT)

Note that V(z,y) € A = f(z,y) =x+y € f(A)

[f@y)l=lz+yl <|z|+|y| < k+k=2k

by (I) and (IT)
ie., |f(z,y)| < 2k. Thus, f(A) is bounded, and hence, f is bounded.

Theorem 2.63.

Let L,L be normed spaces and f : L — L' be.a linear transformation.

Then f is bounded iff 3k > 0 such that || f(2)[ < &k ||z|| Ve e X.

Proof. (=) If f is bounded and let A={x € L : ||z| < 1}.

It is clear A is bounded, and hence; f(A) is bounded in Y (by definition
of bnd function).

Thus, 3k > 0 such that ||f(x)| < k Ve e A (I)

(1) If z = Ox then f(OX) = Oy, and thus, ||f(0x)|| =0 < k||0x]|| = 0.

(2) If z # Ox, put y = H H such that ||y|| = = HiH |z|| = 1.
Hence, y € A. Thus, ||f(y)|| < k (I1)

IFwll = |16z = | f @ H = & IF @)

By (), IfW)ll < &k, thus prllf(2)] < k. ie, [f(@)] < k.[l2]| as
required.

(<) Let A be a bounded set. Then, 3k; > 0 such that ||z|| < & Ve e A
Since || f(z)|| < k||z|| Vx € X, hence ||f(z)|| < k||z|]| Vz € A. Then we
get ||f(x)|| < kky Va € A. Thus, ||f(x)| < ks Va € A where ky = kky;

that is, f(A) is a bounded set. O
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Theorem 2.64.
Let L,L" be normed spaces and f : L — L' be a linear transformation.

Then f is bounded if and only if f is continuous.

Proof. (<) Suppose that f is continuous and not bounded,

hence Vn € Z,,3dx, € L such that || f(x,)| > n ||z

Let yn = gz Then, [|f(yn)] Hf Al H e > e =1
Thus, [|f(yn) — fO)]| = [[f(ya)ll > 1, ie., f(yn) = f(0) (I)
but yn | = |77 || = 2k = 4

as n — 00, we get ||y,|| — 0, and hence, y,, — Ox.

It follows that f(y,) — f(0x) =0y  (Since f is a linear transformation)
—_—

By Theorem 1.19(i)
This contradicts (I), thus, f is bounded.

(=) Assume that f is bounded to prove f is continuous for all x € L. Let
x9 € L and € > 0, to find 6 >0 such that

Ve e L, |lv =zl <0 = |[f(z) = f@o)]| <e

| f(z) — f(xo)|| =1|f(x —xo)|| (f is linear transformation)

Since f is bounded, then 3k > 0s.t. ||f(z)|| < k|z| VzelL (I)
Hence, || f(z) — f(zo)ll =

If (@ —zo)|| < kllz— x|
By (T)

< ké (Since ||z — xo|| < 0)

= k. (By choosing 0 = £ = ¢)

€
&
Thus, ||z — x|l <0 = || f(x) — f(x0)| < e.
Hence, f is continuous at xy € L. Since x( is an arbitrary, then f is

cont. Vx € L. []
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Theorem 2.65.

Let L, L’ be normed spaces and f : L — L’ be a linear transformation. If

L’ is a finite dimensional space then f is bounded (hence, continuous).

Example 2.66.
Let f:R? — R defined as f(z,y) =2 +y V(z,y) € R%
f is a linear transformation function (check!)

and dim(R?) = 2. Hence, f is bounded (hence, continuous).

2.9 Bounded Linear Transformation

Definition 2.67.
Let L, L’ be normed spaces over a field F. The set of all bounded linear

transformation mappings from-L to L’ is defined as

B(L,L'y={T :T:L — L' is a linear bounded (hence, cont.) trans.}

Theorem 2.68.

Prove that B(L,L') is a linear subspace (over a field F') of the space of
linear transformation mappings with respect to usual addition and usual

scalar multiplication.

Proof. Let o, p € F and Ty, T, € B(L,L"). To prove o171 + 15 € B(L, L)
Since T1, T3 are linear transformations, then by Theorem 1.20(ii), o171, 5715
are linear trans.
Now, oTy, 8T, are linear trans., by Theorem 1.20(i),aT} + ST is linear
transformation.

Next, we show a1} + 8T is bounded.
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Since 17, T5 are bounded, then dkq, ks > 0 such that Vax € X we have
T3 ()| < ki ||lz]| and || To(2)[| < ks [z (I)

Then, [[(oTy + 5T3)(z)|| = [[(«T1)(2) + (BT2) (2) |
= ||a.Th(x) + B.T5(x)|| (Definition of scalar multiplication)
<l Ty (@) + 1|5 Ta(2) |
= ol [Ta(@)[[ + [B] [ T2()]]
<l B [l ]l + 18] Rz [l

= (|af k1 +|B] k2) ||lz]| = & ||| (k = |af ki+(8] k2)
Hence, o117 + BT5 is bounded.

Since o117 + 8715 is bounded and linear transformation, then o1} + B15 €

B(L, L) 0

Theorem 2.69.
Let L, L' be normed space. Prove that B(L,L’) is a normed space such
that VT' € B(L, L") we have

17|l = sup{[|T(2)[l, : @ € L, ||=]| < 1}

Proof. To prove || || is a norm on B(L, L')
(1) since || T(x)|ly >0 Vx € L, ||z]y <1, then ||T]| > 0.

2) [T =0 < sup{|T(@)|lp : x € L, ||=]ly <1} =0
= [T(@)]lp =0 Ve el |z, <1
< T(x)=0Veel,l|z| <1

— T =0

(3) Let Ty, Ty € B(L, L)
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1Ty + Tol| = sup{[[(Ty + To)(@)[|, - @ € I/, ||=]], < 1}

< sup{|[(T1()

v+ @)y e L[], <1}

< supger {[(Th (@) = 2]l < 13+ supger {I(Ta(2)]l - [lell, < 1}

= 172/l + 172

(4) [[oT|| = sup{[|[(a. T (@)[|, : x € L, |||, < 1}
= |alsup{||T(2)|| -z € L, ||lz], <1}

= [ [IT]]

93



Chapter 3

Banach Space

Detfinition 3.1.

Let L be a normed space. Then, L is complete if every Cauchy sequence

in L is convergent to a point in L. The complete normed space is called

Banach space.

3.1 Examples of Banach Space

Example 3.2.
The space F" = R" (or C") with the norm || X| = [ Y7, \xi\QP VX =
(x1,...,x,) is a Banach space.
Solution: Let <Xm> be a Cauchy sequence in F"
(X)) = (X1, Xy oo, X o)
= <(1’11, L1y eeny a;ln), (1‘21, L9292,y «.vy l’zn), ceey (.’Eml, Tm2y «ens xmn), >
Then Ve > 0,3k € Z; such that ||X,, — Xj|| <e Vm,j>k (I)

Since X, X; € F", then
X = (xmlaxm% --wxmn)a T €F, 1=1,...n

Xj - (xjhxj?n --'axjn), i € F, 1 = 1, )
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X — Xj = (Tm1 — Tj1, T2 — j2, oo, Tonn — Tijn)
From (I), || X, — Xj|| <€ Vm,j>k
1 X — X117 < € Ym,j>k
S T — xﬂ\2 <e VYm,j >k
|Tmi — xji|2 <& VYm,j>k Vi=1,..,n
|Tmi —xji| <€ VYm,j>k, Vi=1,..n
Hence, <xm2> is a Cauchy sequence in F', Vi =1, ...,n.
Then, <:c,m> is convergent to x; Vi =1,...,n.
Thus, for any € > 0,3k; € Z, such that |z,,; ~xi| < = Vm; > k;

-
Put | = max{k, ..., k,}. Then

| — x| < % VYm >1, Yi=1,.,n
2

| i — :ci|2 << VYm> [, Yi=1,..,n
n

2
X — X[ = 30, |z — 2] < n% Vm > |

| Xm — X|| <€, < Vm > L.
Thus, <Xm> be a Cauchy sequence in F" and X,, — X. Thus, " is a

Banach space.

Example 3.3.
Show that (F™,|| ||) is a Banach space where F" = R" (or C" and || X]|| =

> |:1:Z]p]’% VX = (z1,...,x,) € R" (or C"), p > 1. (H.W.)

Example 3.4.
The space R" (or C™) with the norm || X|| = max{|z1], ..., |z,|}, VX =

(1, ...,x,) € R" (or C™) is a Banach space.
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Solution: Let <Xm> be a Cauchy sequence in F"
(X} = (X1, Xay ooy Xy o)

= <(:c11, T12y ooy T1n)s (T21, 22, vy Top )y ovvs (Tin1s T2y vy T ), >
Then Ve > 0,3k € Z; such that ||X,, — Xj|| <e Vm,j>k ()
Since X,,, X; € ", then
X = (Tim1s T2y ooy Tonp)s T €F, 1=1,....n
X = (zj1,2j2, ... Tjn), ri€F, i=1..,n
X — Xj = (Tp1 — Tj1, Tz — L2, .oy Ty, — Tjn)
Then, | X, — Xj|| = max{|zp1 — zj1|, ..., |[2mn — @jn|} <€, Vm,j >k,
It follows that |z, — x| < € Vi=1,...,nand VYm,j > k.
Hence, <x,m> is a Cauchy sequence in R (or C). So it is convergent to x;
in F' Vi=1,..,n.
Hence, for any € > 0,3k; € Z, such that |z,; — z;| <€ Vm; > k;
Put [ = max{k, ..., k,}. Then, for each ¢ > 0

T — x| <e Ym>1, Vi=1,..,n

for each € > 0, [| X, — X|| = max{|zp1 — 21|, o, [Ty — Tn|} <€ VM >
Thus, (X,,) be a Cauchy sequence in R" (or C") and X, — X.

Thus, R" (or C™) is a Banach space.

Example 3.5.

The space C|a,b] with the norm || f|| = max{|f(x)| : z € [a,b]} Vf €
C'la, b] is a Banach space.

Solution: Let ( f,) be a Cauchy sequence in Cfa, b]

Then Ve > 0,3k € Z, such that ||f, — fi]| <€ Vn,m >k (I)

Hence, Ve > 0,3k € Z, such that max{|f,(z) — fi(z)| : © € Cla,b]} <
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e Vn,m >k

It follows that |f,(z) — fn(z)| <€ Vz € Cla,b] VYn,m >k

Hence, < fn(x)> is a Cauchy sequence in R.

Since R is a Banach space, then <fn(x)> is convergent to f(z) in R. Thus,
Ve > 0,3k € N such that |f,(z) — f(x)| <e Vn>k

Thus, [|fn — fll = max{[fu(z) = f(2)[ : # € [a,0]} <€ Vn >k

Hence, f, — f as n — oo. Thus, C|a, b] ia a Banach space.

Example 3.6.

The space C[0, 1] with the norm || f|| = fol | f(x)| dx.is not a Banach space.
Solution: The space (C[0,1], || ||) is a normed space (see, Example 2.9).
Let

p

1 if 0<z<i
@) =9 —nz+in+1 if lep<iqld
: 1 1

\

where n > 2. Then, f, is continuous function on [0,1]. Now, for all

n,m > 2 we have

1o — full = / fal@) = fula)| da
- / (@) — fula)] da + / ful@) = fula)| da

:/)H—Hd$+ (@) = fra(2)] da
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</ @) do / @)l de ()

I=

+

1 g+ n 1
But/ | ful(2)] d:z::/ (—nx+§+1) dx+/ 0 dx

S

2

[\~

—nx nx 141
=ty el

-n,1 1, n,1 1 1 1 1
= —(=z+— —(= + — -4+ == II
2(2+n)+2(2+n)+(2+n) 2n ()

1
1
Similarly, / | fn(2)] dz = o (I11)
1 n

Substitute (II) and (III) in (I) to'get || fo — funl| < & + 2 — 0
as m,n — 0o
Thus, (f,) is a Cauchy sequence. From the definition of f,, we note that

fn — g where

1if 0<z<3
g(x) =

0 if=<z<1.

N | —

But ¢ is not continuous. Thus, (f,,) does not converge in C[0,1]. Then

(C[0,1],]| |) is not a Banach space.
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3.2 Some Properties of Banach Space

Theorem 3.7.

Let L be a Banach space and let H be a subspace of L. Then, H is a

Banach space if and only if H is a closed set in L.

Proof. =) If H is a Banach space T.P. H = H. We know that H C H
Let x € H, then by Theorem 2.34, 3(x,,) € H such that z,, — x

Hence, (x,) is a Cauchy sequence in H. Then, dy € H such that x,, — y
Thus, 2, — = and z, — y, so x = y. Thus, z.€ H (ie., H C H).
Therefore, H = H (i.e., H is closed).

<) If H is a closed set. Let (x,) be a Cauchy sequence in H, so that (z,)
is a Cauchy sequence in L. Hence, it converges; that is dx € L such that
r, — x. But (z,,) is a sequence in H. By Theorem 2.34, v € H = H. i.e.,

x € H. Thus, H is a Banach space. ]

Theorem 3.8.

Every finite dimensional normed space is a Banach space.

Corollary 3.9.

Every finite dimensional subspace of a Banach space is closed set.

Proof. Let L be a Banach space and let H be a finite dimensional subspace
of L. Then, by Theorem 3.8, H is a Banach space. From Theorem 3.7, H

is a closed set. []
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Definition 3.10. Quotient Space
Let L be a linear space over I'. Let H be a subspace of L.

Let L/H={x+H:z€L}
Define addition and scalar multiplication by

($1+H)+(SC2+H):(5L’1—|-SCQ>—|—H \V/SC1—|—H,SUQ—|—HEL/H

a(vy+H)=ax1+H  Vry+H € L/H and Va € F.

Proposition 3.11.
Prove that (L/H,+,.) is a linear space over F. (H.W.)
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Theorem 3.12.

Let (L,|| ||) and H C L be a closed set. Then (L/H,+,.) is a normed
space with || ||; where

|+ H[, = inf{l|lz +yll : y € H}.

Proof. (1) T.P. |[x+ H|; >0

Forany + + H € L/H

lz+yll >0 vy € H

{llz+yll:yeH} >0

|+ Hll, = f{ |z + gl -y € H} >0

(2) TP |[z+H|, =0 <= 2+ H=H =05

() I |z +H|, =0 = inf{|lz+yll:ye H} =0

Hence, 3(y,) € H such that ||z +yy| — 0 as n — 0. Hence, x +y, — 0 as
n — 0o.

Thus, y, — —z. Thus, 3(y,) € H such that y, — —z. Thus, by Theorem
2.34, —x € H.

Since H is closed, then —x € H = H, ie., —x € H.

Since H is a subspace then x € H and x + H = H, that is, v + H = 0.
(<) fo+H=H=0ythenocH ie,z2+HcH VycH

Hence, ||z + H||; =inf{|[z +y| : y € H} = inf{||z] : z € H}

Since 0 € H and ||0]] = 0, so inf{]|z|| : # € H} = 0. Thus, ||z + H||; = 0.
(3) T.P. la(z + B, = lal o+ H]|

If &« = 0 then (3) holds

If o # 0 then

lo(z + H)l, = nf{[la(z +y)ll : y € H}



Functional Analysis-Banach Space Dr. Saba Naser Majeed 62
= inf{la| ||z +y|[ : y € H}
= |a|inf{||z +y[| : y € H}

(If A is bounded below, then inf(aA) = ainf(A))
= |l ||z + H]y

(4) Let x1+ H,xo+ H € L/H

(1 + H) + (z9 + H)l, = (21 + 22) + HI|,
= inf{||lz1 + 22 +yl 1y € H}
= inf{||z1 + 22+ 21 + 22| : 21,20 € H}
< inf{||zy + z1|| + ||x2 + 29]| = 21,22 € H}
= inf{||z1 + z1|| : zr € H} + inf{||xs + 22|| : 20 € H}

= ||y + +HHl + ||z + HHI

Thus, L/H is a normed space. O

Proposition 3.13.

If (L,]]) is a Banach space and H is a closed subspace of L. Then

(L/H,| ||;) is a Banach space.

Proof. L/H = {x+ H : z € L}. Let (X,,) be a Cauchy sequence in L/H.
Then, X,, =z, + H, where x, € L, Vn € N

Ve > 0,3k € Z; such that ||X,, — X,,||; <€ Vn,m >k

so, Ve > 0,3k € Z such that ||z, — z,, + H||; <€ Yn,m >k

Then, Ve > 0,dk € Z, such that

inf{||x, —axm+y||l:ye H} <e Vn,m >k

This implies, Vy € H, <xn + y> is a Cauchy in L
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Since L is a Banach space,then 3z € L such that z, +y — 2= (z—y)+y

=w+y Yye H

Thus, x, + H — w+ H. Thus, L/H is a Banach space. O



Chapter 4

Inner Product Space

Definition 4.1.
Let L is a linear space over F. A mapping ( ,) + L x L — F'is called an

inner product on L if the following axioms hold
(1) (z,z) >0 Vxe L.

(2) (z,2) =0 <= x=0.

(3) (z,y) = (y,x) Vz,y € L, where (z,y) =conjugate of (x,y).
(4) {ax + By, 2) = afz, 2) + By, 2) Va,y,z € L.

(L,(,)) is called inner product space (briefly, I.LP.S) or Pre-Hilbert

space.

Remark 4.2.
(1) If FF =R then axiom (3) becomes (z,y) = (y,z) Vz,y € L.

(2) Every subspace of inner product space is an inner product space.
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4.1 Examples of Inner Product Space

Example 4.3.

Let L = R? and let (,) : R?* x R? — F is defined as (X,Y) = z1y1 +
zoys VXY € R? where X = (21,23),Y = (y1,32). Show that (,) is an
inner product on R?.

Solution: (i) We check the I.P.S axioms

DX, X)=a2?4+23>0 VX = (21, 12) € R?

2) (X, X) =0 <= 224+ 13=0 < 11 =20=0"<= X =(0,0)

3) (X,Y) = zyy1 + 2910 = (X,Y) (since F =R)

4) Let o, 6 € Rand let X = (x1,22),Y = (y1,v2), Z = (21, 22)

aX + BY, Z) = ((ax1 + Byi, axs + Bys), (21, 22))
= (aw1 + By1)21 + (ars + Bya) 2o
= (ax121 + ax229) + (By121 + By222)
= a(r121 + T222) + B(Y121 + Yo20)
=a(X,Z)+ p{Y, Z)

Thus, (,) is an inner product on R2,

As an application to Example 4.3:

Let X = (2,1),Y = (0,-3), Z = (3,4). Find (X, Z), (X, X),(X + Y, Z).
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Remark 4.4.
As a generalization of Example 4.3, let L = R" and ( ,) : R" x R" —» F

is defined as (X,Y) = zy1 + zoyp + ... + 2y VX, Y € R" where
X = (z1,..,20),Y = (Y1, -+, Yn). Then, (R",(,)) is an inner product space

(check!). The space (R", (,)) is called usual inner space.

Example 4.5.

Let L = R?, which of the following is an inner product on L.

(i) (X,Y) = 3z1y1 + x2y2 (H.W.)
(i) (X,Y) = 27y + 2393

where X = (x1,22),Y = (y1,92)
Solution: (i) We check the I.P.S axioms
(ii) The first three axioms of the definition of inner product hold but the
forth condition does not satisty.
fa=p=1andlet X =(1,-1),Y =(-1,0),Z = (—2,2). Then
(aX + BY, Z) = ((0,—1),(=2,2)) = 0%(—2)? + (—1)?2* =4
and a(X, Z) + B(Y, Z) = ((1,~1),(~2,2)) + B{(—1,0), (—2,2))
= 11(=2)2 + (—=1)2.22 + (—1)2.22 + 02.2712

Thus, (aX + Y, Z) # o(X, Z) + (Y, Z).

Example 4.6.
Let L = F™ be a linear space and let ( ,) : F" x F" — F defined as

(X,Y)=>" 27, VX, Y € F"where X = (21,...,2,),Y = (Y1, -, Yn)-
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Show that ( ,) is an inner product on F™.
Solution:
(1) (X, X) =20 2 = 0 |l 2 0
2) (X, X)=0 <= Y0 |o['=0 &= 2,=0 Vi=1,..,n
— X =(x1,...,2,) = (0,...,0) = Opn
(3) (X,Y) = S0 2% = Limy Ty = oy 4T = (Y, X)
(4) Let o, 8 € F and let X, Y, Z € F"
aX + BY = (azy + By, ..., axy + Byn)
(X +BY, Z) =3 1 (awi+Byi)zi = a D wiZi+ 8 yizi = a(X, Z) +
BY, Z).
Thus, (,) is an inner product on F".

As an application to Example 4.6:

Let L =C?and (X,Y) =37 127, VX,Y € C?where X = (z1,27),Y =

(yroyo). IE X = (2431, 1504),Y = (1 +4,1—4),Z = (2,1 +1)

Find (X, X),(X +Y, 2),(X,Y + Z)

Solution: (X, X)= (2+ 3i)(Z +3i) + (1 +i)(T+1)
= (2+31)(2 = 31) + (1 +i)(1 — 1)
—(44+9)+(1+1) =15

X4+Y =(3+4i,2)

(X +Y,Z) = (3+40)2+20+0) = (6+8i) +2(1 —i) =8 +6i

(XY + Z) =
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Example 4.7.
Let L = C[0, 1] be a linear space over R, and let (, ) : L x L — R is de-

fined by (f, g) / f(x)g(z) dx. Prove that ( , ) is an inner product on L.

Solution: / f dx_/ [f($)]2 de >0
()<ff>—0<:>/ (2)]?dz =0 < [f(z)]?=0 Yz €0,1]

— f(x)=0 Vze[0,1] « f=0
(3) Let a, € R and f,g,h € L

th®ﬁ%=lﬁﬁ+6QWM@Mm

1 1
:a/O f(x)h(m)derﬁ/o g(x) h(x) dx

= alf, h) + B(g,h)

@%m=lf@%ﬂwzlg@ﬂﬂw=@ﬁ



Functional Analysis-Inner Product Space Dr. Saba Naser Majeed 69

As an application to Example 4.7:

Let f(x) =2 +1, g(x)=2% h(z)=3x+2 Vzecl0,1]

Find <f7f>7<f+gah>7<f7h>7<2f+3.g>h>v<f_gvh_g>

Example 4.8.
Let X =R and (, ) : R xR — R such that {z,y) = |ry|] Vz,y e R. Is

(X,(,)) LP.S? (H.W.)
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4.2 Some Properties of Inner Product Space

Theorem 4.9.

Let (L, (, )) be an inner product space (I.P.S). Then, Vz,y,z € L

(1) (x,0x) = (0x,z) =0
(2) (z,ay + Bz) = alz,y) + B(z, 2).

Proof. (1) (0x,2) = (0x + Ox, z)
— (0x, z) + (Ox, )
Hence, (Ox,z) + 0 = (Ox, ) + (0x, z)
Thus, 0 = (0x, z) (1)
Now, (0x,z) = (r,0x)
0= (z,0%)
0 = (z,0x)

(2) (z,ay + B2) = (ay + Bz, z)

= aly,z) + B(z, )

Corollary 4.10.
If (L,(, ))is an I.LP.S. Then

(i) (X0, i y) = i g ai(xi,y) where zy, ..., 2,y € L

(H) <$7 Z?:l 62yl> = Z?:l Bz<x7yl> Where x7y17 7yn c L

70
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(i) (Do i, Y5 Biyy) = 2oimy i ( 25 Bli, y5))

where x1, ..., T, Y1, ..., Ym € L

Proof. (i) We proof using induction.

If n =1 then (ayx1,y) = ay(x1,y) (by definition of norm)

If n = 2 then (ayx1 + asxs,y) = ai{x1,y) + as(xs,y) (by definition of
norm)

Suppose (i) hold when n = k

(i awiy) = i oz y) (I)
To prove (i) hold when n =k + 1

Top. (X aiwiy) = S0 ailwiy)
(3010 aimivy) = (X it + Ak 12k11,Y)
= (20 iy y) + (nmre, y)
=Yz, y) + api (T, y)

S (e, y)

(ii) The proof is similar to the proof of (i).

(i) Let == S0, By,

<Z T, Zﬁg%> = <Z o, z>
= Z CY¢<37¢, Z> (by part (1))

= Z o, Z Biy;)
i=1 =1
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n m

= Z Q; Z Ti, ;) (by part (ii)) O
=1 7=1

Theorem 4.11.
Let (L,(, )) is an L.P.S. such that (v, w) = (vo,w) Vw € L. Then

v1 = v9. Also, if (v;,w) =0 Vw € L then v; = 0.

Proof. By assumption, (v; — ve, w) = (v, w) — (vg,w) =0, Yw € L.
Put w = v; — vy, then (v; —v9,v1 —v2) =0 = v —v2 =0 = v = vs.

Now, (v1,w) =0, Ywe L = (v,v1) =0 = v, =0. O

Theorem 4.12. General Cauchy Schwarz’s Inequality
Let (L,( , )) is an L.LP.S. and let ||| : L — R is defined by |jz|] =

\/<x,x> Vo € L. Then,

[z, )| < [l |yl Va,y € L.

Proof. If x =0 or y = 0-then (z,y) = 0, and hence (z,y) =0 < ||z| ||y||

f uz—y
fy#£0putz=gh @
)

Il = (.2 >‘ﬁmwmu
<y y) =

—o llyl* = (IT)

Next, it is enough to show that |(z,z)| < [|z]|

because if |(z, z>| < ||x]| then from (I)

o) = (o )| =

| [(z,9)| < 2|

|y Iyl

[z, )| <l Nyl

Let a € F then (z — az,z — az) >0
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<a:,:1;> — oz<z,x> — a<x, z> + aa<z, z> >0

2 >0

2 _ _
z|” —a(z,z) — az,z) + o H\Z/H-/
=1 from (I)

lz||” = (z, 2)(z, 2) + (x, 2)(z, 2) —a(z,2) — alz,2) +aa@ > 0

ol = |z, )7 + (o, 2) (i, 2y — ) — (=) — @) 2 0

el = |G ) + (. 2) (. 2) — @) — a({2) — ) 2 0
(o) + ((22) = @) (w2 7) — ) 20
(

|z = [(z,2)] + [(z,2) —a|*>0 VaeF (III)

lzl* — |

Put o = (z, z), then (III) becomes
2l = [, 2) 20 = |2 2)[" < Jl2ff

(@, 2)] < Il

Yy .
<x,m>] <zl (using (1))
1
()| ol < ||zl

[z, )| < llzll Iyl 0

As an application to Theorem 4.12:

If L=R"and (X,Y) =>"" zy; for any X = (21,...,2,), Y = (Y1, ..., Yn)-

Apply Cauchy Schwarz inequality.

N|—=

N

— (2 22 and [V = [(V,Y)]

i=1"1

Sloution: We have , || X|| = [(X, X)]

[Z?:l yi ]
From Theorem 4.12,

n
E T3y
i=1

(SIS

(X, V)| < IX|IY]); that is

n n

< (L) [ ou)
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Theorem 4.13.

Every inner product space is a normed space and hence a metric space.

Proof. Let (L, (, )) is an I.P.S. and let the function || || : L — R is defined
by

|z|| = y/(z,z) Vx € L. To prove | | is a norm on L
(1) Since (z,z) >0 Ve e L = |lz|| =+/(z,2) >0 Vo el

2) z]| =0 <= /(z,2) =0 < (z,2) =0 <> z=0x

(3) Let « € F and x € L
Hosz2 = <oz:z:,oz:c> = o@<a;‘,a:> = \04\2 H:UH2

Thus, [lax| = |af ||z

(4) T.P. flz +yl| <[zl + [ly]| Vz,yeL
|z +ylI* = (z + yiz +y)
= (z,2) + (v, 2) + (2,9) + (y.9)
= ll2|® + (2, y) + (z,y) + |yl
= ||lz|I” + 2Re{z, y) + |ly|I*
<l +2|(z, )| + lul®
< Jlzl* + 2[lz| lyll + lly|*  (by Cauchy Schwarz)

= (Il + llyl)?

Thus, ||z + y|| < [lz] + |y]- -
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Theorem 4.14.
Let (I,(, )) isan LLP.S. and z,y € [. Then

(1) |z +y|* = =] + 2Re(z, ) + ||ly|* (Polarization Identity)
2) llz+ylI* + lz = yl* = 2]z + 2|yl (Law of Parallelogram)

[z +yll® =z —yl> +illz + iyl — i |z — iy|?]

]

(3) (z,y) =

Proof. (1) ||z + y||2 = <x +y,x+ y>
= (2,2) + (v, x) + (2, 9) + (v, 9)

= [lz[I* + (2, y) + (2, y) + |yl

= [lz* + 2Re(z, y) + ||y’

2 2 2 2
(2) TPl +yll” + lo =yl =2 ]=]" + 2]ly]]

By part (1), ||z +y|I* = [[lI” + 2Re(z,y) + lyI* (D)

|z —ylI* = (z —y,x —y)
= (z,2) = (¥, 2) — (z,9) + (v,9)

= [l = (z,y) — (2, 9) + Iyl

= |l||* = 2Re(z,y) + y|*  (I0)

By summing up (I) and (II) we get ||z + y||* + ||z — y|* = 2 ||=||* + 2 ||y|”

(3) By parts (1) and (2), we have
Iz +yl* =llz = ylI* = ll=]* +2Re(z, y) +llyl* = (I2]* = 2Re(z, y) + |yl
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= 2Re<x, y> + 2Re<x, y>
= (@7) + (z,y) +(T7) + (2.9)

=2(y,z) + 2(x,y) (I)

|z +dy||> = (x + iy, z + iy)
= (z,2) +i{y,z) +i(z,y) + (y, )
= |ll* + iy, x) — i{z,y) + |yl
|z —iy||® = (x — iy, x — iy)
= (w,x) =iy, ) —i{z,y) + (v, 9)

= |l2||* = i{y, z) + i{z, y) + |ylf’

Hence we get,

ille+iyll* —ille —ayl* = i |l* + iy, ) — i{z,y) + lyl* ] =i ll]* -
i(y, x) + i(z,y)
+lyl*]
=il = (v, ) + (zy) +illyl* =i l=)* = (v, ) +
(z,y) —illyl®

= 2<a:, y> — 2<y, x> (IT)

By (I) and (II), we have

lz+ylI* = v —yll” +ille+ayl® —illv —iy]* = 2{y,z) + 2(z,y) +

2(z,y) — 2(y, )
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|+ ylI* = o = yllI* +illz + iy —illz — iy]* = 4(z,y)
in+MF—Hw—m3+ihﬁ%MF—iWF%MV=<%y> O

Remark 4.15.

Any normed linear space generated from inner product space must satisfies

the three laws of Theorem 4.14.

Example 4.16.
Let L = Cl[a,b] and let ||f|| = max{|f(x)| : € [a,b]}. Then the converse

of Theorem 4.13. i.e.,

(1) Show that (L, || ||) is a normed linear space (H.W.)

(2) Show that L is not generated by I.P.S (i.e, L is not I.P.S)

Solution: (2) To show that L is not-I.P.S, we shall show that parallelo-
gram law does not hold. i.e., ||f + gl* + |lf — gl # 2If1I> + 2lg|* for

some f,g € Cla,b|.
Let f(z) =1 and g(z) = Z;j_ ® vre a, b]
—a

Note that f, g are continuous on |[a,b]. Thus, f,g € Cla,].

IfI =1 and [lgl| = 1

Tr—a Tr—a

If + 9l = |1+ 37— || = max{ |l + 37— € [a,}]} =2
r—a Tr—a

If =gl =1 = 3— = max { L— L2 € [a,b]} =1

If+allP+1f -9l =4+1=5 (1)

201FI1F+2gl? =212 +212 =4 (1)



Functional Analysis-Inner Product Space Dr. Saba Naser Majeed 78

By (I) and (II), we get || f + glI* + [If — glI* # 2 |fI* + 2 lg]*

ie.,b#4

Example 4.17.
Let L = R? and let || X|| = |z1| + |z2|] VX = (21,29) € R% Then the

converse of Theorem 4.13. i.e.,

(1) Show that (R? || ||) is a normed linear space (H.W.)

(2) Show that R? is not generated by I.P.S (i.e, R? is not I.P.S)

Solution: (2) To show that L is not I.P.S, we shall show that parallelogram
law does not hold. ie., |X +Y|* + | X<=V|* # 2||X|> + 2|Y|* for
some X,Y € R?

Let X =(2,3) and Y = (—6,1)

1X) = 2+ 18] = 5 = 2{[x][* = 50

2
Y[ =|=6]+[1] =7 = 2|[Y[" =98
[ X + Y[ =[[(=44)f = |-4[ + 4] =8
IX +Y]|* =64

[ X =Y =(8,2)] = [8] +[2] =10

I X — Y| =100

Thus, [|[ X + Y|+ | X — Y| = 64 + 100 = 164
and 2 || X||> +2||Y|* = 50 + 98 = 148

Hence, | X + Y|+ [|X — Y| # 2|| X" + 2| Y||*

i.e., || || does not satisfy paralleogram law.
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Example 4.18.

Let L = R? and let || X|| = max{|xy], |22|} V(z1,22) € R% Then

(1) Show that (R?, || ||) is a normed linear space (H.W.)

(2) Is R? generated by I.P.S? (H.W.)

79
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Theorem 4.19.

Let (L,(, ))is an [.LP.S. Then

(1) If (z,) — « and (y,,) — y then <xn,yn> — {(x,y)

(2) If (z,) and (y,) are Cauchy sequences in L then (z,,y,) is a Cauchy

sequence in F'.

Proof. (1) {n,yn) = (x + (0 — ),y + (o — )
= (2,y) + (T, yn — ) + (z0 — 2, y) 4+ (T0 — T, Y0 — )
(T yn) — (2,9) = (2,90 — y) + (20 — 2,y) + (T — 2,90 — ¥)
{2 yn) = (@ 9)| = (90 = ¥) + (o0 —2,9) + (20 = 2,90 = y))|
< [z, yn = )| +{{20 = 2, 9)| + (o0 = 2,90 — 9)|

< @l lyn = wlb+ llzn = 2l Iyl + lzn = z[Hlya =yl (By

Cauchy Schwarz)

But (x,) — « and (y,) — y then ||z, — z|| = 0 and ||y, —y|| = 0

Hence, }<xn,yn> — <x,y>’ — 0, and hence, <xn,yn> — <x,y>
(2) for any n,m € Z,

<$na yn> = <(517n — Tm) + Ty (Yn — Ym) + ym>

= (Tn — Ty Yn — Ym) + (T Y ) + (T Yn — Ym ) + (20 —

Tins Ym )
<xm yn> - <xm7 ym> = <37n = Ty Yn — ym> + <$m, Yn — ym> + <£Cm, Yn — ym>
{2y Yn) = (@ Y ) | = [(Zn = T Yo = Ym) + (@ Yo = Ym) + (T Y = Y|

S ‘<:Un — Ty Yn — ym>‘+|<xmayn - ym>|+‘<xmyyn - ym>‘
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< l#n = 2wl 1y = ymllFllzmll 190 = ymll+ll2n = 2l [[ymll - (By
Cauchy Schwarz)
But (x,) and (y,) are Cauchy sequences, then ||z, — x| — 0 and ||y, — ym|| —

0 as n — oo. Also, (x,) and (y,) are bounded sequences, then as n — oo

[(@ns Yn) = (T Ym)| = 0 O

Corollary 4.20.
Let (L,(, )) is an I.P.S. Then

(1) If (x,) — « then ||x,| — |||

(2) If (z,) is a Cauchy sequences in L then (||z,|| ) is a convergent se-

quence in R.

Proof. (1) Since (z,) — = then (y,z,) = (z,2) (By Theorem 4.19)
Hence, [|zall? = [l2]% te., feall = o]

(2) Since (z,) is a Cauchy sequences in L, then by Theorem 4.19(2),
<xn,a:n> is a Cauchy sequence in F. Since F' = R or C then F' is com-
plete. Thus, ( H:cn|]2> is a convergent sequence in F. Thus, (||lz,] ) is a

convergent sequence in F []
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4.3 Hilbert Space

Definition 4.21.
Hilbert space is an I.P.S. (L, (, )) which is a Banach space with respect

to ||| = /(z, x).

Example 4.22.

Consider the L.P.S. (R", (, )) (or (C™,(, )) such that (X,Y) =>"" 2,7,
where X = (21,...,2,),Y = (y1,...,yn) € R" (or C"). (see Example 4.6)
Show that (R", (, )) (or (C",(, )) is Hilbert space.

Solution: Since 1/(X,X) = [Y1, xﬁi}% = [>" |xi|2]% = || X

From Example 3.2, R" (or C") is a Banach space w.r.t. || X| = /(X, X),

and thus, (R", (, )) (or (C™,(, )) is a Hilbert space.

Example 4.23.
1
The space C|—1, 1] with the inner product defined by (f, g) = / f(z) g(x) dx
~1

is not a Hilbert space.

Solution: Let

0 if 1<z <0
fol@) =< nz if O<zx<i

1 if

3=
IA
8
IA
—_

\

an - me2 = <fn - fm; fn - fm>

1 1
Suppose n > m, then — < —. We must find f,(z) — f, ()
n o m
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fa(z) =

and

Then

0 if
{ nx if

1 if
L
¢

0 if
§ mx if

1 if
\

0

(n—m)x
<

1 —mx

0

Vo= full? = / (o) = fonl2)? da

1
ma)? da

Dr. Saba Naser Majeed

if —1<x<0

if o<z <

if L<r<
= <

if

83



Functional Analysis-Inner Product Space Dr. Saba Naser Majeed 84

C(n=m)* 1 n—mg
~ 3n3 +3m( n )
_(n—m)2
3n2m
2 _ (n—m)’
Thus7 ”fn _me = ?m—Qm
Since n > m, thenn =m +t
2 t?
W= fullf = =—— =0 —
1= foll = gy = 0 s o0

Hence, || f, — fi|| = 0. Thus, (f,,) is a Cauchy sequence.

But f, — f where

1 if 0<z <1

Thus, f ¢ C[—1,1].. Then, (f,) is not convergent in C[—1,1]. i.e., The

space is not Hilbert space.

Remark 4.24.

Every Hilbert space is a Banach space but the converse is not true. For
example, the space C|[a, b] with || f|| = max{|f(z)| : © € [a,b]} is a Banach
space (see Example 3.5). However, Cla,b] is not a Hilbert space since it
does not satisfy parallelogram law; that is || || can not be obtained from

inner product (see Example 4.16).
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4.4 Orthogonality and Orthonormality in Inner Prod-

uct Space

Definition 4.25. orthogonal Elements
Let (L,(,)) be an I.LP.S and x,y € L. Then z is said to be orthogonal

on y (denoted by z L y) if and only if (z,y) = 0.

Example 4.26.

Let L = R? is I.P.S such that (X,Y) = x1y1 + x2ys is usual inner product
VX = (21,22),Y = (y1,12) € R% Let X = (—6,3),Y =(2,-1),7Z = (1,2).
Show that X | Z)Y 1 Zand Y [ X.

Solution: (X, 7) = ((—6,3),(1,2)) = =6+ 6 =0. Hence, X 1 Z.

(Y, 2) =

(¥, X) =

Proposition 4.27.
Let (L,(,)) be an L.P.S and z,y € L. Then

(i) Ifx L ytheny L x.
(i) 0 Lz Vz e L. (HW.)

(iii) if x L o then x = 0;. (H.W.)

Proof. (1) Let x L y then (z,y) = 0. From Definition 4.1(3), we have

(y,z) = (z,y) =0. Le,y L z. []
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Proposition 4.28.
Let (L,{,)) be an I.P.S and z,x1, ..., x, € L such that z is orthogonal on

x1, ..., T,. Prove that x is orthogonal on any linear combination of z1, ..., z,,.

Proof. Let w be a linear combination of x4, ..., x,. i.e., there exists a; € F

such that w = " | az;. We must show (z,w) = 0.
(z,w) = (2, > i) = > 0 a(x,x;)  (by Corollary 4.9(ii))

=>" .0 (From the assumption)

= 0. [
Example 4.29.

(1) Find the value of a that makes the vectors X = (a,2,—1),Y =

(3, —5,2) orthogonal vectors in R* with usual inner product. (H.W.)

(2) Let (L, (,)) bean .LP.S over R and let z, y € L such that ||z| = ||y|| =1

(i.e., = and y are normal elements). Prove that x +y L x — y.

Answer: (z +y,x—y) = (x,z) — (x,y) + (y,2) — (y,y) = HCL‘HQ — (z,y) +

(z,y) — ||ly|I” = 0. Hence, z +y L z — .

(3) Let (L,(,)) be an I.P.S and let z,y € L such that z L y. Prove that

2 2 2 2
|z +yl|” = [lzl|” + lyll” = [z —y|".
Answer: ||z +y|* = (z+y, 2 +y) = (2, 2) + (x,y) + {y,2) + (y,)
2 2 2 2
= [|z[|” + 0+ 0+ |lyl|” = [l + [yl

. 2 2 2
Similarly, ||z —y|” = [l=[]" + |ly[I"
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(4) Let (L,(,)) be an .P.S and let =,y € L such that x L y. Prove that

|z + Ayl = ||z — Ay

Answer: (H.W.)

(5) Let (L,( ,)) be an L.P.S and let x,zs,...,2%, € X such that z; L
v Vi # j. Prove that |0, ail” = Y0, il
Answer: We prove using induction. If n.= 1, the statement is true.

If n = 2. Since 21 L x5 then ||z + 2o|” = ||z1|]” + ||22]|>  (by part (3)).

2
k 2
= 2 iz1 il

k .
i=1Li

Suppose the statement is true for n = k. i.e.,

To prove the statement is true when n =k + 1. i.e.,

k+1
= > |l
_ k - k 2
= H2i=1 Ti + $k+1H = HZH T
= Zf:l szH2 + ||$k;+1H2 (by induction n = k)

k+1
=300 .

sz—l—l

2
+ lze]

Definition 4.30. Orthogonal to Set
Let (L,( ,)) be an .P.S, x € L, and A C X. Then, x is said to be

orthogonal on A (x L A) if z L a Va € A.

Example 4.31.
Consider the space R? with usual product space and A = {(0,a) : a € R}.

Then (2,0) L A because ((2,0),(0,a)) = 2.0+ 0.a = 0.
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Definition 4.32. Orthogonal Sets

to B(ALB)ifalb, Vae AVbe B.

Let (L,{,)) be an I.LP.S, and A, B C L. Then, A is said to be orthogonal

Example 4.33.

Consider the space R? with usual inner product and A = {(0,a) : a € R}

and B = {(b,0) : b € R}. Show that A | B.
Answer: for each (0,a) € A and for each (b,0) € B, then

((a,0),(0,b)) =a.0+0.b=0. Thus, A L B.

Proposition 4.34.

Let (L,(,)) bean L.P.S, and A, B C L such that A 1. B then ANB = {0}.

Proof. Let r€e ANB=2x¢€ Aand x € B (I)
Since A L B = (a,b) =0, Vae&AVbe B.
From (I), (a,b) = (x,z) = 0.

Using Definition 4.1(2), « = 0, then AN B = {0}.

Definition 4.35.
Let (L,(,)) be an L.LP.S. and ¢ # A C L. Then, the set

At ={reL:x La, VacA}

is called the orthogonal complement on A.
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Proposition 4.36.
Let (L,(,)) be an L.P.S. and ¢ # A, B C L. Then,

(1) L* = {0}.

(2) {0} = L. (H.W.)

(3) An A+ = {0}.

(4) AC AL

(5) If A C B then B+ C A+, (H.W.)

(6) If A C B+ then B C AL

Proof. (1) L* ={x € L:2 1L L} ={x€L:{x,])=0,Vlie L} ={0}.

(3) Let z € ANAt = xr € Aand v € AL (T)
Since r € A* then z L A (IT)

From (I) and (II), z L. ie., (z,x) =0, thus x = 0.
Then, AN A+ = {0}

(4) To prove A C A++. Let 2 € A.

For any y € At = y L A. In particular, y Lz (z € A)

From Proposition 4.27(1), x Ly, Vy € AL, Thus, z € A+

(6) Let A C B+, then from part (5), B++ C At

Now, from part (4), B C B*+ C A+, Then, B C AL,

89
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Theorem 4.37.
Let (L,(,)) be an I.P.S. and ¢ # A C L. Then, A+ is a closed subspace

of L.

Proof. (1) To prove At is a subspace of L.

Let 2,y € At and o, 8 € F. T.P. ax + By € A+

T.P. (ax + Py,a) =0, Va € A.
Since z,y € At = (z,a) = (y,0) =0  (I)
(ax + By, a) = alz,a) + B(y,a) = a.0 + 5.0 =0 [from ()]
Thus, At is a subspace of L.
(2) T.P. AL is a closed set (i.e., A~ C AL and AL C A')
It is clear that A~ C AL (I)
T.P. AL C AL, Let 2 € AL then 3(x;) € AL such that (z,,) — =.

Since (z,) € A*, Yne N=ux, L A=x, La, Vac A

= (zp,a) =0, Va € A.

But (z,) = = and-@ — a. Thus, from Theorem 4.19(1), (z,,a) — (x,a).
——

=0
(r,a) =0 Va € A. Then, x € A*. Thus, AL C AL (IT).

From (I) and (IT), At is a closed set.

Definition 4.38. Orthonormal Set
Let (L,(,)) be an I.P.S. and A C L. Then, A is called orthonormal set

if
(1) A is said to be orthogonal if x 1 y Vz,y € A, = #y.

(2) Each clement = € A is a normal element. i.c., (z,z)2 = ||z|| =1 Va €

A.
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Remark 4.39.

Orthonarmal set has no zero element (0 ¢ A) because ||0]| # 1 (0 is not

normal element).

Example 4.40.

Let L = R3 with usual inner product and A = {(1,2,2),(2,1,-2),(2,-2,1)} C
L. Show that A is orthogonal but not orthonormal.

Solution: T.P. A is orthogonal set (H.W.).

To show not every vector in A is normal. i.e.,

H(1,2,2)||2 =((1,2,2),(1,2,2)) = 14+44+4=9# 1= ||(1,2,2)]] # 1.

Thus, A is not orthonormal.

Theorem 4.41.

Let L be an I.P.S. and x4, ..., z;; be orthonormal vectors in L. Then

Z [z, 2:)|* < ||=||* VzeL

1=1

Example 4.42.
1 1 1
Let L =R? and X; = 5(1,2, 2), Xy = 5(2, 1,-2), X3 = 5(2, —2,1).

Let X = (2,1,3). Then

X X0 = [+ 2+ 62 =~
(X, X)) = [3(4+1-6)] = %
06,27 = a2 +3) = 3
Sioexpp =10, LBy,

-~ 9 "9 9
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on the other hand, || X||* = (X, X) =4+ 1+9 = 14.
3
As in Theorem 4.41, » "[{X, X;)|* = || X||*
=1
Take X = (1,1,1) and apply Theorem 4.41. (H.W.)

Theorem 4.43.
Let (L,( ,)) be an I.P.S. Let (x,) be an orthonormal sequence in L and
(An) be a sequence in F such that S |\i|* < +00. Let y, = 20, i

Then, (y,) is a Cauchy sequence.

Proof. Let y, = > " Niiy  Ym = Y ioq Nii. Assume that n < m then

m = n + k for some k € N. We must prove |4, — yn| — 0.
= S N — Sty N = S N — S N = SR A,
Hym - yn”2 - HZ?::H i 2 = (Z?I:Jrl i, E?I:H )\il‘i>
- Z?:Jrfﬂ Ai Z?tﬁrl _<xi: ;)
= S A, i)
= X0 Al ]

=S A (el =1 vi)

1=n+1

As n — 400, Z?;Lfﬂ IA|)? =0 (327 |Ai]* convergent)

Thus, ||ym — vall> — 0 which means ||y, — yn|| — 0. Hence, (y,) is a

Cauchy sequence. []



