Abstract

Topology & Topological Space

Let X be a nonempty set and τ be a family of subsets of X (i.e., IP(X). We say τ is tipology on X if satisfy the following conditions:

(1) X, $\phi \in \tau$ (2) If \cup , V $\in \tau$, then $\cup \cap$ V $\in \tau$

The finite intersection of elements form τ is again an element of τ .

(3) If $\bigcup_a \epsilon \tau$; a ϵ A, then $\bigcup_{a \in A} \bigcup_a \epsilon \tau \quad \forall a \in A$

The arbitrary (finite or infinite) untion of elements of τ is again element of τ .

We called a pair (X, τ) topological space.