

 وزارة التعلیم العالي والبحث العلمي
 ابن الھیثم -جامعة بغداد/ كلیة التربیة للعلوم الصرفة

 قسم علوم الحاسبات
 المرحلة الثانیة

Object Oriented

Programming
 البرمجة الكیانیة

 المادة: مدرس

 أ.م.د. واثق نجاح

2020

احـواثـق نج د.إعداد مدرس المادة : Object-Oriented Programming الكیانیة البرمجة

۸

Namespace:
 namespace std ، كل المكتبة القیاسیة محتواه داخل الـ ++Cفي ھو مكان لأحتواء الدوال والمتغیرات

 using namespace stdلذلك عندما نستخدم جملة

داخل الـ coutان یبحث عن الدوال التي سوف نستخدمھا مثل compilerفاننا نطلب من المترجم

namespace مى المسstd .

 ملاحظة:
وبذلك لن stdاخر غیر الـ namespaceلكن بشرط ان یكون في coutمن الممكن تعریف كائن اسمھ

 یحدث تعارض.

 : namespaceاستعمال الـ
 القدیمة یجب كتابة السطر التالي: ++Cبشكل صحیح في نسخ لغة ال iostreamحتى تعمل دوال مكتبة

 # include < iostream . h >

 یحتوي ھذا الملف على كل شيء یحتاجھ المبرمج لنتعامل مع ھذا الملف.

 اما عندما نستورد الملف بكتابة السطر الاتي:

include < iostream >

 فإننا ایضا نحتاج لكتابة السطر الاتي:

using namespace std

 . headerستیراد ملف المن اجل ا

 : cppواستعمال مترجم لغة Visual Studioحزمة الـ
الحالي ، اما الملف القیاسي الحدیث للـ standardیعتبر ملف قدیم ولیس الملف القیاسي iostream.hملف الـ

cpp ھو الـiostream .

فیجب كتابة السطرین الاتیین اذا اردنا cppلذلك اذا تم استعمال حزمة الفیجوال ستودیو لكتابة برامج الـ

 استعمال المكتبة القیاسیة بشكل صحیح:

include < iostream >

 using namespace std

احـواثـق نج د.إعداد مدرس المادة : Object-Oriented Programming الكیانیة البرمجة

۹

Non-structured programming
Non-structured programming is the historically earliest programming paradigm. It
has been followed historically by procedural programming and then object-oriented
programming, both of them considered as structured programming.

Unstructured programming has been heavily criticized (ــد ق نـ لـ ــت لـ رضــــ عـ for (تـ
producing hardly-readable ("spaghetti") code and is sometimes considered a bad
approach for creating major projects, but had been praised(تمدح) for the freedom it
offers to programmers.

There are both high and low level programming languages that use non-
structured programming. These include early versions of BASIC (such as MSX
BASIC and GW-BASIC), COBOL, and machine-level code.

A program in a non-structured language usually consists of sequentially ordered
commands, or statements, usually one in each line. The lines are usually numbered or
may have labels: this allows the flow of execution to jump to any line in the program.

Non-structured programming introduces basic control flow concepts such as
loops, branches and jumps. Although there is no concept of procedures in the non-
structured paradigm, subroutines are allowed. Unlike a procedure, a subroutine may
have several entry and exit points, and a direct jump into or out of subroutine is
(theoretically) allowed.

Procedural programming
It derived from structured programming, based upon the concept of the procedure call.
Procedures, also known as routines, subroutines, methods, or functions simply contain
a series of computational steps to be carried out. Any given procedure might be called
at any point during a program's execution, including by other procedures or itself.
Some good examples of procedural programs are the Linux kernel, and Apache HTTP
Server.

Inputs are usually specified syntactically in the form of arguments (parameters)
and the outputs delivered as return values.

The focus of procedural programming is to break down a programming task
into a collection of variables, data structures, and subroutines.

Modular programming

http://en.wikipedia.org/wiki/Programming_paradigm
http://en.wikipedia.org/wiki/Procedural_programming
http://en.wikipedia.org/wiki/Object-oriented_programming
http://en.wikipedia.org/wiki/Object-oriented_programming
http://en.wikipedia.org/wiki/Structured_programming
http://en.wikipedia.org/wiki/Programming_language
http://en.wikipedia.org/wiki/BASIC
http://en.wikipedia.org/wiki/MSX_BASIC
http://en.wikipedia.org/wiki/MSX_BASIC
http://en.wikipedia.org/wiki/GW-BASIC
http://en.wikipedia.org/wiki/COBOL
http://en.wikipedia.org/wiki/First-generation_programming_language
http://en.wikipedia.org/wiki/Control_flow
http://en.wikipedia.org/wiki/Subroutine
http://en.wikipedia.org/wiki/Structured_programming
http://en.wikipedia.org/wiki/Subroutine
http://en.wikipedia.org/wiki/Linux_kernel
http://en.wikipedia.org/wiki/Apache_HTTP_Server
http://en.wikipedia.org/wiki/Apache_HTTP_Server
http://en.wikipedia.org/wiki/Variable_(programming)
http://en.wikipedia.org/wiki/Data_structure
http://en.wikipedia.org/wiki/Subroutine

احـواثـق نج د.إعداد مدرس المادة : Object-Oriented Programming الكیانیة البرمجة

۱۰

Is a software design technique that increases the extent to which software is composed
of separate, interchangeable components, called modules by breaking down program
functions into modules, each of which accomplishes one function and contains
everything necessary to accomplish this.

Languages that formally support the module concept include Ada, BlitzMax,
Fortran, MATLAB, Python, and Ruby. Modular programming can be performed even
where the programming language lacks explicit syntactic features to support named
modules.

Theoretically, a modularized software project will be more easily assembled by
large teams, since no team members are creating the whole system, or even need to
know about the system as a whole.

Each module can have its own data. This allows each module to manage an
internal state which is modeled by calls to procedures of this module.

Object- Oriented programming
In this technique, we have a web of interacting objects, each house keeping its own
state.

Objects of the program interact by sending messages to each other. OOP treats

data as a critical element in the program development and does not allow it to flow
freely around the system.

OOP allow us to decompose a problem into a number of entities called object

and then builds data and functions around these entities.
The data of an object can be accessed only by the functions associated with that

object. However, functions of one object can access the functions of other objects.

http://en.wikipedia.org/wiki/Ada_(programming_language)
http://en.wikipedia.org/wiki/BlitzMax
http://en.wikipedia.org/wiki/Fortran
http://en.wikipedia.org/wiki/MATLAB
http://en.wikipedia.org/wiki/Python_(programming_language)
http://en.wikipedia.org/wiki/Ruby_(programming_language)

احـواثـق نج د.إعداد مدرس المادة : Object-Oriented Programming الكیانیة البرمجة

۱۱

Some of features of OOP are:
• Emphasis is on data rather than procedure.
• Data is hidden and cannot be accessed by external functions.
• Programs are divided into what are known as objects.
• Objects may communicate with each other through functions.
• New data and functions can be easily added whenever necessary.

OOP can be defined as "OOP is an approach that provides a way to modularization
programs by creating partitioned memory area for both data and functions that can be
used as templates for creating copies of such modules on demand".

 Since the memory partitions are independent, the objects can be used in a
variety of different programs without modifications.
Basic Concepts of Object-Oriented Programming:
1- Objects. 2- Classes. 3- Data abstraction.
4- Data Encapsulation. 5- Inheritance. 6- Polymorphism.

Objects:

Objects are the basic run-time entities in an OO System. They may represent a
person, place, a bank account, a table of data or any item that the program must handle.

- Each object contains data and code to manipulate the data.
- When a program is executed, the objects interact by sending messages.

Classes:

 The entire set of data and code of an object can be made a user define data type
that called a class.

Class: is a way to bind the data and its associated functions together, it allows
the data and functions to be hidden if necessary from external use when defining a
class it means creating a new abstracted data type.

 Objects are variables of type class. Once a class has been defined, we can create
any number of objects belonging to that class. Classes are user defined data types and
behave like the built-in types of programming language.

 Note that the key feature of OOP is data hiding using private declaration.

احـواثـق نج د.إعداد مدرس المادة : Object-Oriented Programming الكیانیة البرمجة

۱۲

- Usually the data members are declared as private and the member functions as public.

If a fruit has been defined as a class then the statement
 fruit mango ;

 will create an object (mango) belonging to the class (fruit).

Specifying a Class:
Defining class means creating a new abstract data type that can be treated like any
other built in data type;

class specification has two parts:
 1- Class declaration.
 2- Class function definition.

The general form of a class declaration is:

 class class-name
 {
 private: variable declaration;
 Function declaration;
 public: variable declaration;
 Function declaration;

 } ;

Creating Objects:
Class variables are called objects; for example:

 item X ; //memory for X is created

To create more than one object use

 item x , y , z ;
Accessing Class Members:
The private data cannot be used by main function they are accessed only through class
functions.

A public member is accessible from anywhere within a program. It represents the

interface to the outside world.

احـواثـق نج د.إعداد مدرس المادة : Object-Oriented Programming الكیانیة البرمجة

۱۳

A private member can be accessed only by the member functions. A class that
enforces information hiding declares its data members as private. The word private
can be omitted.

We should try to limit or eliminate the use of public variables. Instead, we should

make all data private and control access to it through public functions.

Another class section is called protected. A member declared as protected is

accessible by the member functions within its class and any class immediately
derived from it. It cannot be accessible by the functions outside these two classes.

The three concepts of OOP languages are:

1. Encapsulation: It is the mechanism that binds together code (functions) and data

it manipulates into a single class-type variable and keeps both safe from outside
interference and misuse.

 With encapsulation, we can accomplish data hiding in which an object can be
used without knowing or caring how it works internally.

C++ supports the properties of encapsulation and data hiding through the creating
of classes.

2. Inheritance: it is a relationship among classes that allows one object to take on

properties of another. Typically, OOP uses inheritance to construct new class from
an existing class; the new class can be described as “a type of” the existing class.
The concept of inheritance provides the idea of reusability. This means that we
can add additional features to an existing class without modifying it. The new class
will have the combined features of both the classes.

 For example:
 The class of a rectangle contains data members: (length and width). A new class

Square will have similar data members with the special case (length = width).
 We also need a member function to calculate the area of a square. Instead of

defining the class (square) from scratch, we can think of square as a special case
of a rectangle. However, we can use the class of a rectangle by inheriting its
behavior and redefining the area function to work for the class of (square).

احـواثـق نج د.إعداد مدرس المادة : Object-Oriented Programming الكیانیة البرمجة

۱٤

3. Polymorphism: It is the quality that allows one name to be used for two or more
related but technically different purpose. Such as redefining member functions to
define a new behavior with different number and/or type of parameters. It simply
means "one name, multiple forms".

Example 1 (Student Class):
include <iostream.h>
class Student
{ private: char Name [30] ;
 int age ;
 public:
 void input ()
 { cin >> Name >> age ; }
 void output ()
 { cout << Name << "\n" << age ; }
 } ;
 main ()
{ Student SS ; // SS is an object

 //complete the program … }

Example 2 : (item Class)
include <iostream.h>
class item
{ int number ; float cost;
 public:
 void getdata (int a , float b)
 { number = a ; cost = b ; }
 void putdata ()
 { cout << number << "\n" << cost ; }
};
 main ()
{ item x ; // x is an object
 //complete the program … }
To access the above functions from main function use:
 Object-name . function-name (actual-arguments);

To access a member of a class use:
 Object-name . member

The dot (.) operator is also called (class member access operator).

احـواثـق نج د.إعداد مدرس المادة : Object-Oriented Programming الكیانیة البرمجة

۱٥

Therefore, the function call statement will be
 x . getdata (6 , 75.5) ;

While the following statement
 x . number =100 ; // is illegal

Since number declared as private in the class therefore it could be accessed
only through a member function and not by the object directly.

The objects communicate by sending and receiving messages. This is achieved
through the member function, for example:

 x.putdata() ; // Send message to the object x to display its data.

While the variables which are defined in public section of class could be accessed by
the object directly.

Example 3: Class with no member functions

include < iostream.h >
class xyz
{ int x ; int y ;

 public: int z;

 };

main()
{ xyz p ;

 p.x = 0 ; // error x is private
 p.y = 4 ; // error y is private
 p.z = 10 ; // ok , z is pubic
 }
Function Definition:
1- Inside Class.
2- Outside Class.

Inside a Class:
Example 4 : Class of Rectangle

احـواثـق نج د.إعداد مدرس المادة : Object-Oriented Programming الكیانیة البرمجة

۱٦

Wrtie a program to use a class of Rectangle whose data are public. Write a function
to calculate the area of a rectangle.

include < iostream.h >
class Rectangle
{ public: int length , width ;
 int area ()
 { return length * width ; }
} ;
main ()
{ Rectangle R ;
 R.length = 8 ;
 R.width = 5 ;
 cout << R.area () ; }

H.W. Write a program with a rectangle class whose its length and width are private.

Outside a Class:

The general form is:

 Return type Class-name :: function-name(argument declaration)
 {
 Function body
 }

Note: the operator (::) can be referred to as Scope Resolution Operator.

Example 5: Write a program to use a model of employee class (its data are: name,

age, and department. Its functions are input() and display().
 We can write the function definitions outside the class.

 # include < itostream.h >
class employee
{ private:
 char name [30] ;
 int age ;
 char dept [10] ;

احـواثـق نج د.إعداد مدرس المادة : Object-Oriented Programming الكیانیة البرمجة

۱۷

 public: void input () ;
 void display () ;
} ;
void employee :: input ()
{ cin >> name ;
 cin >> age ;
 cin >> dept ; }

void employee :: display ()
{ cout << name << endl << age << endl << dept ; }

main ()
{ employee E ;
 E . input () ;
 E . display () ;
 }

Note: if more than one object be created from the same class the process is called

multiple objects.
Example:
 employee A , B ;

Example 6 : Class with Multiple Objects
Write a program to use a class of employee. Its data are (name, age, and salary). Its

functions are getdata() and putdata(). Use multiple objects.

include < iostream.h >
class employee
{ private: char name [30] ;
 int age ;
 float salary ;
 public:
 void getdata ()
 { cin >> name ;
 cin >> age ;
 cin >> salary ; }

 void putdata ()
 { cout << name << endl ;
 cout << age << endl ;
 cout << salary << endl ; }

احـواثـق نج د.إعداد مدرس المادة : Object-Oriented Programming الكیانیة البرمجة

۱۸

};

 void main ()
{ employee doctor , nurse , worker ;

 doctor . getdata () ;
 nurse . getdata () ;
 worker . getdata () ;

 doctor . putdata () ;
 nurse . putdata () ;
 worker . putdata () ; }

Example 7 : The Program of a Class contains errors

include < iostream.h >
class set
{ private: int a , b ;
 void input ()
 { cin >> a;
 cin >> b ; }
 void outp ()
 { cout << a << endl ;
 cout << b << endl ; }
 } ;

void main ()
{ set S ;
 S . input () ; // error because input is private function can not be accessed in main function

 S . outp () ; // error because outp is private function can not be accessed in main function
}

* In order to avoid the above errors, the functions (input and outp) must be defined as
public in class set. In such case, we can use these functions in main().

Memory Allocation of a Class
Once the member functions are defined as a part of a class, they are placed in the
memory space.

Since all objects of the same class use the same member functions, no separate
space is allocated for member functions when the objects are created. For each object,

احـواثـق نج د.إعداد مدرس المادة : Object-Oriented Programming الكیانیة البرمجة

۱۹

separate memory locations are allocated only for member data because member
variables hold different data values for different objects.

Constructor
A constructor is a ‘special’ member function whose task is to initialize the objects of
its class. It is special because its name is the same as the class name. A constructor is
a function that is executed automatically whenever an object of its associated class is
created. It is called constructor because it constructs the values of data members of the
class.

احـواثـق نج د.إعداد مدرس المادة : Object-Oriented Programming الكیانیة البرمجة

۲۰

Example 1:

class point
{ int m , n ;
 public:
 point () // constructor
 {
 m = 0 ; n = 0 ;
 }
 } ;

main ()
{
 point X1 ; //not only creates the object X1 of type point but also initializes it data members m and n to zero
}

When a class contains a constructor like the one defined above, it is guaranteed
that an object created by the class will be initialized automatically.

This is useful because the programmer may forget to initialize the object after
creating it. It’s more reliable and convenient, especially when there are a great many
objects of a given class, to cause each object to initialize itself when it’s created. The
constructor does this.

Types of Constructor:
 A constructor with no parameters is called (Default Constructor) and
 a constructor that can take arguments is called (Parameterized Constructor).

The constructor functions have some special characteristics:
1- They should be declared in public section.
2- They are executed automatically when the objects are created.
3- They do not have return types, not even void and therefore, they cannot return

values.
Parameterized Constructors
C++ permits to pass argument to the constructor function when the objects are created.

Example 2 : Rectangle Class with constructor
include < iostream.h >
class Rectangle

احـواثـق نج د.إعداد مدرس المادة : Object-Oriented Programming الكیانیة البرمجة

۲۱

{ int length , width ;
 public:
 Rectangle (int a , int b) // constructor
 { length = a ;
 Width = b ; }
 int area ()
 { return length * width ; }
 } ;
main ()
{ Rectangle R (10 , 4) ; // implicit call
 cout << R . area () ;
}

The initial values passed as arguments to the constructor function when an object

is declared this can be done in two ways (types of constructor calling):
 1- By calling the constructor explicitly.
 2- By calling the constructor implicitly.

The following declaration illustrates the first method:
 Rectangle R1 = Rectangle (9 , 2) ; //explicit call
This statement creates a Rectangle object R1 and passes the values 9 and 2 to it.

The second method is implemented as follows:
 Rectangle R1 (9 , 2) ; // implicit call

This method, sometimes called the shorthand method, is used very often as it is
shorter, looks better and is easy to implement.

Multiple Constructors in a Class
Example 3:
include < iostream.h >
class AB
{ private: int x , y ;
 public:
 AB()
 { }
 AB (int z , int r)
 { x = z ;
 y = r ; }
} ;
main ()
{ AB m ; // call constructor1

احـواثـق نج د.إعداد مدرس المادة : Object-Oriented Programming الكیانیة البرمجة

۲۲

 AB n (9 , 2) ; // call constructor2
}

When more than one constructor function is defined in class the process is called

constructor overloading, as in the following example. Generally, the process of
defining more than one function having the same name is called function
overloading.

In the above example there is the empty constructor which is do nothing constructor

(defined to satisfied (ــي the compiler), since there is the parameterized (یــرضــــ
constructor, the empty constructor must be defined otherwise the compiler will
show error message.

Example 4: shows multiple constructors and scope resolution operator.
include < iostream.h>
class Rectangle
{ public: int length , width ;
 Rectangle ()
 { length = 0 ;
 width = 0 ; }
 Rectangle (int x , int y)
 { length = x ;
 width = y ; }
 int area () ;
 void show () ;
 } ;
int Rectangle :: area ()
{ return length * width ; }

void Rectangle :: show ()
 { cout << length ;
 cout << width ; }

main ()
{ Rectangle R1 , R2 (20 , 8) ;
 R1 . length = 35 ;
 R1 . width = 12 ;
R1 . show () ;
R2 . show () ;
cout << " area of R1 = " << R1 . area () ;
cout << " area of R2 = " << R2 . area () ;

احـواثـق نج د.إعداد مدرس المادة : Object-Oriented Programming الكیانیة البرمجة

۲۳

}

H.W : Write a program that uses the above program but all data are private.

Destructor

A destructor is used to destroy the objects that have been created by a constructor.

The destructor is a member function whose name is the same as the class name but

it preceded by a tilde (~) symbol.
 For example the destructor for the class Rectangle can be defined as:
 ~ Rectangle ()
 { }
The destructor never takes any argument nor does it return any value.
It will be called implicitly by the compiler upon exit from the program to clean up

the storage that is no longer accessible.
Unlike constructors, a class may have at most one destructor.

Example 1:
include < iostream.h >
class ABC
{ public : int x , y ;
 public : ABC ()
 { x = 2 ;
 y = 7 ; }

 ~ ABC ()
 { }
 } ;
main ()
{ ABC m ;
 cout << m . x << endl ;
 cout << m . y << endl ;
}

Output : 2
 7
Example 2 : Write a program using an employee class whose member data (name,

age , salary , dept). Its member functions (input and show). Using
constructor and destructor.

احـواثـق نج د.إعداد مدرس المادة : Object-Oriented Programming الكیانیة البرمجة

۲٤

include < iostream.h>
const int size = 30 ;

class employee
{ public: char name [size] ;
 int age , salary ;
 char dept [size] ;

 employee ()
 { }

 ~ employee ()
 { }

 void input ()
 { cin >> name ;
 cin >> age ;
 cin >> salary ;
 cin >> dept ;
 }
 void show ()
 { cout << name << endl ;
 cout << age << endl ;
 cout << salary << endl ;
 cout << dept << endl ;
 }
 } ;

main ()
{ employee emp ;
 emp . input () ;
 emp . show () ;
}
Friend Function
The private member cannot be accessed from the functions that are not member to the
class. However, there could be a situation where two classes need to share a particular
function.

احـواثـق نج د.إعداد مدرس المادة : Object-Oriented Programming الكیانیة البرمجة

۲٥

In such situations C++ allows the common function to be made friendly with both
the classes thereby allowing the function to have access to the private data of these
classes.

Such a function need not be a member of any of these classes.

To make an outside function “friend” to a class it will be declared as in the following
example:

Example 1:

 class ABC
 { public:
 friend void xyz () ; //declaration or prototype
 }

The function declaration should be preceded by the keyword friend.

The function definition does not use either the keyword friend or the scope operator

(::).

A friend function has certain special characteristics:

 • It is not in the scope of the class to which it has been declared as friend.
 • Since it is not in the scope of the class, it cannot be called using the object of that

class it can be invoked like a normal function without the help of any object.
 • Unlike member functions, it cannot access the member names directly and has to

use an object name and dot membership operator with each member name.
 • It can be declared either in the public or the private part of a class without affecting

its meaning.
 • Usually, it has the objects as arguments.
Example 2:
Write a program to use a class of sample. Its data are two integer values and a
function (set) to give values to the class data. Write a friend function to find the
average of class data.
class sample
{ private: int x , y ;
 public:
 void set (int a , int b) { x = a ; y = b ; }

احـواثـق نج د.إعداد مدرس المادة : Object-Oriented Programming الكیانیة البرمجة

۲٦

 friend float mean (sample s) ;
} ;

 float mean (sample s) // note that there is no (::) operator
 { return (s.x + s.y) / 2.0 ; } // it uses s.x instead of x

 main ()
{ sample a ;
 a . set (20 , 45) ;
 cout << ”mean value = ” << mean (a) << endl ;
 }

Member functions of one class can be friend functions of another class. In such

cases, they are defined using the scope resolution operator as shown below:

Example 3: A friend function is a member function in another class.

 class X
{ ….
 …..
 int fun1 () ; //member function of X
 } ;

 class Y
 { …….
 ……
 friend int X :: fun1() ; //The function fun1() is a member of class X and a friend of Y
 ……
 } ;

We can also declare all the member function of one class as the friend functions of

another class. In such case, the class is called a friend class.
Inheritance

It is an important aspect in OOP. One of the major advantages is the reusability of
code. The reuse of a class that has already tested, debugged and used many times can
save us the effort of developing and testing the same again. Shared properties are
defined only once, and reused as often as desired. The mechanism of deriving a new
class from an old is called inheritance.

احـواثـق نج د.إعداد مدرس المادة : Object-Oriented Programming الكیانیة البرمجة

۲۷

The old class is referred as the base class (super class) and the new one that inherits
the properties of the base class is called the derived class (subclass).

The objects of a derived class contains all the members of the base except the private

data and functions of the base class.

A derived class can share selected properties (functions as well as data members)

of its base classes, but makes no changes to the definition of any of its base classes.

Types of Inheritance:

1- Single Inheritance.
2- Multiple Inheritance.
3- Multilevel Inheritance.
4- Hybrid Inheritance.

Single Inheritance
In this type, there is only one derived class and only one base class.

A derived class has direct access to both its own members and the public members

of the base class.

احـواثـق نج د.إعداد مدرس المادة : Object-Oriented Programming الكیانیة البرمجة

۲۸

The general form of defining a single inheritance is:

 class derived class-name : access-specifier base-class-name
 {
 Member Data ;
 Member Functions ;
 } ;

Where :
access-specifier: is either (private , public , or protected). The default is private, that

is if no access specifier is present, the access is private.

Public Access-Specifier:

Using public means that all of the public members of the base class will become

public members of the derived class and are available to the member functions of
derived just as if they had been declared inside it.

However, derived's member functions do not have access to the private elements of

base. This is an important point. Even though derived class inherits base class, it
has access only to the public members of base. In this way, inheritance does not
circumvent (یكسر او یتحایل) the principles of encapsulation necessary to OOP.

Base Class Section Public derivation
Private Not inherited

 Protected Protected
 Public Public

Example 1: Write a program to use a base class which has two integer data and

functions for input and output. The base class has a derived class with
public access specifier.

include <iostream.h>
class Base
{ int i , j ;
 public: void set (int x , int y)
 { i = x ;

احـواثـق نج د.إعداد مدرس المادة : Object-Oriented Programming الكیانیة البرمجة

۲۹

 j = y ;}
 void view ()
 { cout << i << j ; }
};
class Derived : public Base
{ int z ;
 public: Derived (int a)
 { z = a ; }
 void viewD ()
 { cout << z ; }
} ;
main ()
{ Derived xd (4) ;
 xd . set (2 , 6) ; // set is known to Derived
 xd . view () ; // view is known to Derived
 xd . viewD () ;
}

Example 2: Write a program to use a base class "institute" with data (name and

emp_no) and functions for input and output. The institute class has a derived
class "Department" with data (dept_name and tel_no) and functions for input
and output.

include <iostream.h>
class institute
{ private: char name [30] ;
 int emp_no ;
 public:
 void institute_input ()
 { cin >> name ;
 cin >> emp_no ; }
 void show ()
 { cout << name << "\n" ;
 cout << emp_no << "\n" ; } };

class Department : public institute
{ private : char dept_name [20] ;
 int tel_no ;
 public :
 void read ()
 { cin >> dept_name ;

احـواثـق نج د.إعداد مدرس المادة : Object-Oriented Programming الكیانیة البرمجة

۳۰

 cin >> tel_no ; }
 void depShow ()
 { cout << dept_name << "\n" ;
 cout << tel_no << "\n" ; }
};
main ()
{ Department D ;
 D . institute_input () ; // call to a function in class institute.
 D . read () ;
 D . show () ; // call to a function in class institute
 D . depShow () ;
}

Inheritance and protected Members:

• When a member of a class is declared as protected, that member is not accessible
by nonmember elements of the program.

• Access to a protected member is the same as access to a private member—it can
be accessed only by the members of its class.

• If the base class is inherited as public, then the base class' protected members
become protected members of the derived class and are, therefore, accessible by
the derived class.

• By using protected, you can create class members that are private to their class but
that can still be inherited and accessed by a derived class (Making a private Member
inheritable).

Example 3:
#include <iostream.h>
class base
{ protected: int i, j; // private to base, but accessible by derived
 public:
 void set (int a , int b) { i = a ; j = b ; }
 void show () { cout << i << " " << j << "\n"; }

احـواثـق نج د.إعداد مدرس المادة : Object-Oriented Programming الكیانیة البرمجة

۳۱

};
class derived : public base
{ int k;
 public: void setk() { k = i * j; } // derived may access base's i and j. If i and j declared as

// private in base, then derived would not have access to
 // them and the program would not compile.
 void showk() { cout << k << "\n"; } } ;
main()
{ derived ob ;
 ob.set (2 , 3) ; // OK, known to derived
 ob.show() ; // OK, known to derived
 ob.setk() ;
 ob.showk() ;
}

Example 4: Shows public inheritance and protected members. This example

also use the same functions' names in both base and derived class.
include <iostream.h>
const int size = 30 ;
class employee
{ protected: char name [size] ;
 int age ;
 char department [size] ;

 void initialize ()
 { cin >> name ;
 cin >> age ;
 cin >> department ;
 }
 void describe ()
 { cout << name << endl ;
 cout << age << endl ;
 cout << department ;
 }
};
class manager : public employee
{ protected : int level ;
 void initialize ()
 { employee :: initialize () ; // call to function initialize() in employee class
 cin >> level;
 }
 void describe ()

احـواثـق نج د.إعداد مدرس المادة : Object-Oriented Programming الكیانیة البرمجة

۳۲

 { employee :: describe (); // call to function describe() in employee class
 cout << level ; }
};
main ()
{ manager aa;
 aa . initialize () ; // error, manager:: initialize () is not accessible. initialize() is protected
 aa . describe () ; // error, manager:: describe () is not accessible. describe () is protected
}

Note: there are two methods to avoid the above errors:

1- Write initialize() and describe() in public section to call them in main().
2- Write initialize() in protected section, Write describe() in public section and

call the function initialize() in the describe function.

H.W: Write the above program with modification to avoid the errors.

Note: In the above example, the scope resolution operator (::) tells the compiler that

this version of initialize() and describe() belong to the employee class (i.e.,
this initialize() and describe() are in employee's scope).

 In C++, several different classes can use the same function name. The compiler
knows which function belongs to which class because of the scope resolution
operator.

Private Access-Specifier:
When a access specifier is private, all public and protected members of the base

class become private members of the derived class.
Therefore, the public members of the base class can only be accessed by the member

functions of the derived class and cannot be accessed by parts of your program that
are not members of either the base or derived class.

Base Class Section Private derivation

Private Not inherited
 Protected Private

 Public Private

Example 1: Write a program to …
include <iostream.h>
class human
{ public : char name [30] ;
 int age ;
 void getdata ()
 { cin >> name ;

احـواثـق نج د.إعداد مدرس المادة : Object-Oriented Programming الكیانیة البرمجة

۳۳

 cin >> age ; }
 void putdata ()
 { cout << name << endl ;
 cout << age << endl ; }
} ;

class worker : private human
{ public : int grade ;
 void input ()
 { cin >> grade ; }
 void view ()
 { cout << grade ; } } ;
main ()
{ worker W ;
 W. getdata () ; // error message('human::getdata' is not accessible)
 W. input () ;
 W. putdata () ; // error message('human::putdata' is not accessible)
 W. view () ;
}

Protected Access Specifier:
It is possible to inherit a base class as protected. When this is done, all public and
protected members of the base class become protected members of the derived class.

Base Class Section Protected derivation
Private Not inherited

 Protected Protected
 Public Protected

Example 1:
#include <iostream.h>
class base
{ protected: int i , j ; // private to base, but accessible by derived
 public:
 void setij (int a , int b) { i = a ; j = b ; }
 void showij () { cout << i << " " << j << "\n" ; }
 };
class derived : protected base // Inherit base as protected.
{ int k;

احـواثـق نج د.إعداد مدرس المادة : Object-Oriented Programming الكیانیة البرمجة

۳٤

 public:
 void setk() { setij (10, 12) ; k = i * j ; } // ok, access to setij , i ,and j
 void showall() { cout << k << " " ; showij (); } // ok
};

main()
{ derived ob;
 ob.setij(2 , 3) ; // illegal, setij() is protected member of derived
 ob.setk() ; // OK, public member of derived
 ob.showall() ; // OK, public member of derived
 ob.showij() ; // illegal, showij() is protected member of derived }

As you can see by reading the comments, even though setij() and showij() are public
members of base, they become protected members of derived when it is inherited using
the protected access specifier. This means that they will not be accessible inside main().
The following table summarizes the visibilities of members and modifications on
them when they are inherited.

Base Class
Section

Derived Class Visibility (derivation)
public private protected

Private Not inherited Not inherited Not inherited
Protected Protected private Protected

Public public private Protected

Note: In all cases, the private members are not inherited; therefore they never become

members of the derived class.

 ھم:مملخص
ان یكون داخل من الممكنفالاستدعاء public الاب كـ classالابن أعضاء الـ classاذا ورث الـ -

 . ()mainداخل دالة الـ أوالابن classاحدى دوال الـ

ان یكون الاستدعاء فیجب privateاو protectedالاب كـ classأما اذا تمت وراثة الاعضاء من ال -

 . publicیجب الا یوجد فیھ سوى ال ()mainلان ال داخل الابن فقطلتلك الاعضاء

Multiple Inheritances
In multiple inheritances, a class inherits the properties of two or more classes. They
allow us to combine the features of several existing classes as a starting point for
defining new classes.

The general form of a derived class with multiple base classes is as follow:

Class Derived-name : access-specifier Base-class1-name ,
 access-specifier Base-class2-name
{
 Member Data ;
 Member Functions ;

احـواثـق نج د.إعداد مدرس المادة : Object-Oriented Programming الكیانیة البرمجة

۳٥

Example:
include <iostream.h>
class Parent1
{ public : int x ;

 void display_x ()
 { cout << x ; }
} ;
class Parent2
{ public : int y ;
 void display_ y ()
 { cout << y ; }
} ;
class Derived : public Parent1 , public Parent2
{ public : void fillAB (int A , int B)
 { x = A ;
 y = B ; }
} ;
main ()
{ Derived N ;
 N . fillAB (3 , 10) ;
 N . display_x () ; // from Parent1 (Base)
 N . display_y () ; // from Parent2 (Base)
}

Multilevel Inheritance
The mechanism of deriving a class from another "derived class" is known as multilevel
inheritance.

If the class (A) serves as a base class for the derived class (B) which in turn serves as
a base class for the derived class (C), the class B is known as Intermediate Base class
since it provides a link for the derived class C.

احـواثـق نج د.إعداد مدرس المادة : Object-Oriented Programming الكیانیة البرمجة

۳٦

The chain ABC is known as inheritance path.

The general form of multilevel inheritance is as follow:

Example 1:
include <iostream.h>
class Base
{ protected : int x , y ;
 public: void input (int a , int b)
 { x = a ;
 y = b ; }
 void display ()
 { cout << x << endl << y ; }
} ;
class Derived1 : public Base
{ private : z ;
 public : void inputz ()
 { z = x + y ; } //ok, use of x and y because they are inherited as protected
 void displayz ()
 { cout << "z = " ; }
} ;
class Derived2 : public Derived1
{ int k ;
 public : void inputk ()
 { k = x * y ; } //ok , x and y are inherited as protected
 void displayk ()
 { cout << " k = " << k ; }

 class Base-class-name
 {
 …….
 } ;
class Derived-class-name1 : access-specifier Base-class-name
 {
 …….
 } ;
class Derived-class-name2 : access-specifier Derived-class-name1
 {
 …….
 } ;

احـواثـق نج د.إعداد مدرس المادة : Object-Oriented Programming الكیانیة البرمجة

۳۷

} ;
main ()
{ Derived1 ob1 ;
 Derived2 ob2 ;
 ob1 . input (3 , 7) ;
 ob1 . display () ;
 ob1 . inputz () ;
 ob1 . displayz () ;
 ob2 . input (2 , 10) ;
 ob2 . display () ;
 ob2 . inputz () ;
 ob2 . displayz () ;
 ob2 . inputk () ;
 ob2 . displayk () ; }

Note: When a derived class is used as a base class for another derived class, any

protected member of the initial base class that is inherited (as public) by the
first derived class may also be inherited as protected again by a second derived
class. For example, the program above is correct, and derived2 does indeed
have access to x and y.

If, however, base were inherited as private, then all members of base would become
private members of derived1, which means that they would not be accessible by
derived2. (However, x and y would still be accessible by derived1.) This situation is
illustrated by the following program, which is in error (and won't compile). The
comments describe each error:

Example 2: // This program will not compile.
#include <iostream.h>
class base
{ protected: int x , y ;
 public:
 void set (int a , int b) { x = a ; y = b ; }
 void show () { cout << x << " " << y << "\n"; } };

class derived1 : private base // Now, all elements of base are private in derived1
{ int k ;
 public:
 void setk() { k = x * y ; } // OK, this is legal because x and y are private to derived1
 void showk() { cout << k << "\n"; } };

// Access to x, y, set(), and show() not inherited.

Note that ob2 calls its functions,
functions of ob1, and functions of Base.

Note that ob1 calls its functions
and functions of Base.

احـواثـق نج د.إعداد مدرس المادة : Object-Oriented Programming الكیانیة البرمجة

۳۸

class derived2 : public derived1
{ int m;
 public:
 void setm() { m = x – y ; } // Error, illegal because x and y are private to derived1
 void showm() { cout << m << "\n"; }
};
main()
{ derived1 ob1;
 derived2 ob2;
 ob1.set(1, 2); // error, can't use set()
 ob1.show(); // error, can't use show()
 ob2.set(3, 4); // error, can't use set()
 ob2.show(); // error, can't use show()
}

Note: Even though base is inherited as private by derived1, derived1 still has

access to base's public and protected elements.

Hierarchical Inheritance:
Many programming problems can be cast into a hierarchical where certain features of one
level are shared by many others below that level. The following figure shows a hierarchical
classification of students in a university.

Hybrid Inheritance
There could be situations where we need to apply two or more types of inheritance
to design a program.

#include <iostream.h>

class student

student

test sports

result

احـواثـق نج د.إعداد مدرس المادة : Object-Oriented Programming الكیانیة البرمجة

۳۹

{ protected: int r ;

 public:
 void get_number(int a)
 { r = a ; }

 void put_number()
 { cout << " r = " << r << endl ; }
};

class test : public student
{ protected : float sub1;
 float sub2;
 public:
 void get_marks(float x , float y)
 { sub1 = x ; sub2 = y ; }
 void put_marks()
 { cout << " Marks in sub1 = " << sub1 << endl ;
 cout << " Marks in sub2 = " << sub2 << endl; }
};

class sports
{ protected: float score ;
 public:
 void getdata (float s)
 { score = s ; }
 void putscore ()
 { cout << " sports " << score << endl ; }
};

class result : public test , public sports
{ float total ;
 public:
 void display ()
 { total = sub1 + sub2 + score ;
 put_number () ;
 put_marks () ;
 putscore () ;
 cout << " total = " << total << endl ; }
} ;

main ()

احـواثـق نج د.إعداد مدرس المادة : Object-Oriented Programming الكیانیة البرمجة

٤۰

{ result std ;
 std.get_number (111) ;
 std.get_marks (75.0 , 59.5) ;
 std.getdata (63.5) ;
 std.display () ;
}

Polymorphism
Polymorphism is one of the crucial features of OOP. It simply means "one name,
multiple forms".

Compile-time
Polymorphism

Run-time
Polymorphism

Polymorphism

احـواثـق نج د.إعداد مدرس المادة : Object-Oriented Programming الكیانیة البرمجة

٤۱

Function Overloading
Several different functions can be given the same name. Function overloading is one
of the most powerful features of C++ programming language. It forms the basis of
polymorphism (compile-time polymorphism).

The overloaded member functions are selected for invoking by matching arguments,
both type and number. This information is known to the compiler at the compile time
and, therefore, compiler is able to select the appropriate function for a particular call
at the compile time itself. This is called early binding or static binding or static
linking. Also known as compile time polymorphism, early binding simply means that
an object is bound to its function call at compile time.

Function Overloading: is the process of using two or more functions with the same

name but differing in the signature (the number or type of arguments or both).

To avoid ambiguity, each definition of an overloaded function must have a unique
signature.

All of you know that we cannot have two variables of the same name, but can we
have two Functions having the same name. Such functions essentially have
different argument list. The difference can be in terms of number or type of
arguments or both.

Notice that a function cannot be overloaded only by its return type. At least one of
its parameters must have a different type.

In overloaded functions, the function call determines which function definition
will be executed.

احـواثـق نج د.إعداد مدرس المادة : Object-Oriented Programming الكیانیة البرمجة

٤۲

The Advantages of Overloading are:
● It helps us to perform same operations on different data-types without having the

need to use separate names for each version.

● The use of overloading may not have reduced the code complexity /size but has
definitely made it easier to understand and avoided the necessity of remembering
different names for each version function which perform identically the same task.

Example1: We have two functions with the same name: calc
 We have different signatures: (int) , (int , int)
 Overloading Functions differ in terms of number of parameters

#include <iostream.h>
class arith
{ public:
 void calc (int num1)
 { cout << " Square of a given number: " << num1 * num1 << endl ; }

 void calc (int num1, int num2)
 { cout << " Product of two numbers: " << num1 * num2 << endl ; }
} ;
main ()
{ arith a;
 a . calc (5) ; // Based on the arguments we use when we call the calc function, the
 a . calc (6 , 7) ; // compiler decides witch function to use at the moment we call the function
}
Example 2: Overloading Functions differ in terms of type of parameters
include <iostream.h>
 int func (int i) ;
 double func (double i) ;

 main ()
 { cout << func (10) ; // func(int i) is called
 cout << func (10.24) ; // func (double i) is called
 }
 int func (int i)
 { return i + 5 ; }

 double func (double i)
 { return i * 8 ; }

احـواثـق نج د.إعداد مدرس المادة : Object-Oriented Programming الكیانیة البرمجة

٤۳

Example 3: Is the program below, valid ?

 #include<iostream.h>
 int func (int i)
 { return i ; }
 double func (int i)
 {
 return i;
 }

 void main ()
 { cout << func(10) ;

 cout << func(10.201) ;
 }

No, because you can’t overload functions if they differ only in terms of the data type
they return.

H.W. Write a program to use three functions (sum) to find the summation of two
numbers.

Operator Overloading
C++ tries to make user-defined data types behave in much the same way as the built-
in types. For instance, C++ permits to add two variables of user defined types with
the same syntax that is applied to the basic types. This means that C++ has the ability
to provide the operators with special meaning for a data type. The mechanism of
giving such special meaning to an operator is known as “operator overloading”.

All C++ operators can be overloaded (given additional meaning) except the following:
- class member access operator (.)
- scope resolsution operator (::).
- size operator (sizeof)
- conditional operator (? :)

When an operator is overloaded, its original meaning is not lost. For instance, the

operator +, which has been overloaded to add two vectors, can still be used to add
two integers.

احـواثـق نج د.إعداد مدرس المادة : Object-Oriented Programming الكیانیة البرمجة

٤٤

Although the semantic of an operator can be extended, we cannot change its syntax,
the grammatical rules that govern its use such as the number of operands,
precedence and associatively. For example: the multiplication operator is higher
precedence than the addition operator.

Defining Operator Overloading:

 The general form of an operator function is

Operator is reserved word and (op) is the operator being overloaded, operator op is
the function name.

Note that operator functions can be either member function or friend function.

A basic difference between them is that a friend function take two argument for

binary operators and one for unary operator while the member function take one
argument for binary operator and no argument for unary operator.

This is because the object used to invoke the member function is passed implicitly
and therefore is available for the member function. This is not the case with the
friend function.

The process of overloading involves the following steps:
1- First, create a class that defines the data type that is to be used in the overloading

operation.
2- Declare the operator function operator op() in the public part of the class. It may

be either a member function or a friend function.
3- Define the operator function to implement the required operations.

Overloading Unary Operators
Example: A minus operator, when used as a unary, takes just one operand
void space :: operator - ()

Return type classname :: operator op (arguments-list)
{
 Function body

}

احـواثـق نج د.إعداد مدرس المادة : Object-Oriented Programming الكیانیة البرمجة

٤٥

{ x = - x ;
 y = - y ;
 z = - z ;
}
void space :: getdata (int a , int b , int c)
{ x = a ;
 y = b ;
 z = c ; }
void space :: display ()
{
 cout << x << " " << y << " " << z << "\n" ; }
main ()
{ space s ;
 s . getdata (10 , -20 , 30) ;
 cout << " s : " ;
 s . display () ;
 s . operator - () ; // or -s ;
 cout << " s : " ;
 s . display () ;
}

Note that statement like: s2 = - s1 ;
Will not work because the function operator – () does not return any value. It can
work if the function is modified to return object.

Overloading Unary Operators using Friends
To overload a unary minus operator using a friend function as follow:

 void operator - (space & ss)
 { ss . x = - ss . x ;
 ss . y = - ss . y ;
 ss . z = - ss . z ;
 }

Overloading Binary Operators:
The following example explain how to perform overloading for + operator

class complex
{ float x ;
 float y ;
 public:

احـواثـق نج د.إعداد مدرس المادة : Object-Oriented Programming الكیانیة البرمجة

٤٦

 complex ()
 { }

 complex (float real , float image)
 { x = real ;
 y = image ; }

 complex operator + (complex C) ;

 void display()
 { cout << x << " , " << y << "\n" ; }
 } ;
complex complex :: operator + (complex C)
{ complex temp;
 temp . x = x + C . x ;
 temp . y = y + C . y ;
 return temp ;
}
main ()
{ complex c1 , c2 , c3 ;
 c1 = complex (2.5 , 3.5) ;
 c2 = complex (1.6 , 2.7) ;
 c3 = c1 + c2 ; // or c =c1.operator + (c2) ;
 cout << "c1= " ; c1 . display () ;
 cout << "c2 = " ; c2 . display () ;
 cout << "c3 = " ; c3 . display () ;
}

Overloading Binary Operators using Friends
The complex number program discussed in the previous section can be modified using
a friend operator function as follows:

 1- Replace the member function declaration by the friend function declaration

friend complex operator + (complex , complex)
 2- Redefine operator functions as follows:

 complex operator + (complex a , complex b)
 { complex temp ;
 temp . x = a . x + b . x ;
 temp . y = b . y + b . y ;
 return temp ;

احـواثـق نج د.إعداد مدرس المادة : Object-Oriented Programming الكیانیة البرمجة

٤۷

 }
In this case the statement
 c3 = c1 + c2 ;
Is equivalent to
 c3 = operator + (c1 , c2) ;

Note that the friend and member functions give the same result. Why then these
alternatives? Consider a situation where one operand of binary operator is object and
the second is built in data type as shown below:
 A = B + 2 ; (or A = B * 2)

This will work in member function and A , B object of the same class.

But the statement:
 A = 2 + B ; (or A = 2 * B)

Will not work, this is because the left hand operand which is responsible for invoking
the member function should be object of the same class. Friend function solves this
problem.

Pointers to Objects
Just as you can have pointers to other types of variables, you can have pointers to
objects.

Sometimes, we don't know, at the time we write the program, how many objects we
want to create. When this is the case we can use new to create objects while the
program is running.

Object pointers are useful in creating objects at run time. We can also use the object
pointer to access the public members of an object.

Item x;
Item* ptr;
Item *ptr=&x;

We also can create the objects using pointers and new operator as follows:

 Item*ptr=new Item;
 ptr->show () ;
 Item*ptr = new Item[10] ;

احـواثـق نج د.إعداد مدرس المادة : Object-Oriented Programming الكیانیة البرمجة

٤۸

 ptr [0] -> show () ;

When accessing members of a class given a pointer to an object, use the arrow (–>)
operator instead of the dot operator.

The next program illustrates how to access an object given a pointer to it:

Example 1:
class distance
{ private: int feet ;
 float inches ;

 public: void getdist ()
 { cin >> feet ;
 cin >> inches ; }
 void showdist ()
 { cout << feet << "\n" << inches ; }
} ;
main ()
{ distance dist ;
 distance * distptr ; // pointer to distance
 dist . getdist () ;
 dist . showdist () ;

 distptr = new distance ; // points to new distance object
 distptr -> getdist () ; // access object members with -> operator
 distptr -> showdist () ;
}

Note: that we cannot refer to the member functions in the object pointed by distptr

using the dot (.) membership-access operator, as in

 distptr . getdist () ; // will not work, distptr is not a variable

The dot operator requires the identifier on its left to be a variable. Since distptr is a
pointer to a variable, we need another syntax.

One approach of dereference (get the contents of the variable pointed by) the pointer:

احـواثـق نج د.إعداد مدرس المادة : Object-Oriented Programming الكیانیة البرمجة

٤۹

 (*distptr) . getdist () ; // ok but it is inelegant
The parentheses are necessary because the dot (.) has higher the indirection operator
(*). An equivalent but more concise approach is by using the membership-access
operator ->.

 distptr -> getdist () ; // better approach

Example 2: An Array of pointer to object

include <iostream.h>
class item
{ int code ; float price ;
 public:
 void getdata (int a , float b)
 { code = a ; price = b ; }
 void show ()
 { cout << code << endl ;
 cout << price << endl ; }
} ;

const int size = 2 ;
main ()
{ item *p = new item [size] ;
 item *d = p ; // another pointer to first location in item in order not to loss the address of location
 int x , i ;
 float y ;

 for (i = 0 ; i < size ; i ++)
 { cout << "input code and price for item" << i+1 ;
 cin >> x >> y ;
 p -> getdata (x , y) ;
 p ++ ;
 }

 for (i = 0 ; i < size ; i ++)
 { cout << "item: " << i+1 << endl ;
 d -> show () ;
 d ++ ;
 }
}

H.W: Can we use only one pointer instead of two pointer (p & d) ? How ?

احـواثـق نج د.إعداد مدرس المادة : Object-Oriented Programming الكیانیة البرمجة

٥۰

Pointers to Derived Class
It is means that a single pointer variable can be made to point to objects belonging to
different classes, for example, if B is a base class to the derived class D then declaring
a pointer pointing to the base class can also be used to point to the derived D.

B *ptr ;
B b ;
D d ;
ptr = &b ;
ptr = &d ; // This is perfectly valid because d is an object derived from the class B

Example 3:

include <iostream.h>
class B
{ public : void display ()
 { cout << " hello B " << endl ; }
} ;
class D : public B
{ public :
 void display()
 { cout << " hello D " << endl ; }
} ;
main ()
{ B a ; D b ;
 B *p ;
 p = &a ;
 p -> display () ;
 p = &b ;
 p -> display () ; // call to display in base class not in derived
}

Note: There is a problem in using p to access the public members of the derived class.
Using p, can access only the members inherited from the class B and not the functions
in the derived class. In case the derived contain the function in the same name of the
base class then any reference to that member by pointer p will always access the base
class member.

احـواثـق نج د.إعداد مدرس المادة : Object-Oriented Programming الكیانیة البرمجة

٥۱

Virtual Functions
An essential requirement of polymorphism is the ability to refer to objects without any
regard to their classes. This necessitates (یلزم -یوجب) the use of a single pointer variable
to refer to the objects of different classes.

Why are virtual functions needed? Suppose you have a number of objects of

different classes but you want to put them all in an array and perform a particular
operation on them using the same function call.

Virtual functions can be used when a member function is called through a pointer

of the type pointer to a base class. The function called will be the function of that
name in the derived class, even though the pointer is declared as a pointer to the
base class declared to be virtual.

The function in base class is declared as virtual using the keyword virtual preceding

its normal declaration.
C++ will determines which function to use at run time based on the type of object

pointed to by the base pointer, rather than the type of the pointer. Thus, by making
the base pointer to point to different objects, then we could execute different
versions of the virtual function.

Rules for virtual functions:
1- The virtual function must be member of some class.
2- They are accessed by using object pointer.
3- A virtual function can be friend of another class.
4- A virtual function in the base class must be defined even if it will not use.
5- The prototype of virtual function in the base class and derived class must be

identical, if two functions with the same name has different prototype C++
considers them as overloaded functions not as virtual function (ignored).

6- While a base pointer can point to any type of derived object, the reverse is not true.
That is, we cannot use a pointer to a derived class to access an object of the base
type.

7- If the virtual function is defined in the base class. It need not be necessarily
redefined in the derived class. Calls will invoke the base function.

Example 1: The following example illustrates the difference between a normal

member function and virtual function.
include <iostream.h>
class base
{ public:

احـواثـق نج د.إعداد مدرس المادة : Object-Oriented Programming الكیانیة البرمجة

٥۲

 virtual void show () { cout << "base class\n"; }
 void ABC () { cout << "ABC from base \n"; } } ;
class derv1 : public base
{ public:
 void show () { cout << "derv1 class\n" ; }
 void ABC () { cout << "ABC from derv1 \n" ; }
} ;

class derv2 : public base
{ public:
 void show () { cout << "derv2 class\n" ; }
 void ABC () { cout << "ABC from derv2 \n" ; }
} ;
main ()
{ derv1 D1 ;
 derv2 D2 ;
 base *ptr ;

 ptr = &D1 ; // pointer to derived
 ptr -> show () ; // which show method do we get? ans: derv1's show
 ptr -> ABC () ; // which ABC method do we get? ans: base's ABC

 ptr = &D2 ;
 ptr -> show () ; // call derv2's draw
 ptr -> ABC () ; // call base's ABC

 base *list[10] ; // declare an array of 10 pointers to base
 list[0] = new derv1 ; // set list[0] to point to derv1
 list[1] = new derv2 ; // and list[1] to point to derv2

 for (int i = 0 ; i < 2 ; i++)
 list[i] -> show () ; // call draw method of the appropriate derived class
}

Example 2:
include <iostream.h>
class base
{ public: virtual void show () // virtual function
 { cout << " base \n " ; }
} ;
class Derv1 : public base
{ public :

احـواثـق نج د.إعداد مدرس المادة : Object-Oriented Programming الكیانیة البرمجة

٥۳

 void show ()
 { cout << " Derv1 \n " ; }
} ;
class Derv2 : public base
{ public :
 void show ()
 { cout << " Derv2 \n " ; }
} ;

main ()
{ Derv1 dv1 ;
 Derv2 dv2 ;
 Base * ptr ; // pointer to base class

ptr = & dv1 ; // put address of dv1 in pointer
ptr -> show () ; // call derv1 's show

ptr = & dv2 ; // put address of dv2 in pointer
ptr -> show () ; // call derv2 's show
}

The same function call ptr -> show () executes different functions, depending on the
contents of ptr. The rule is that the compiler selects the function according to the
contents of the pointer, not on the type of the pointer.

Note:
 A class that declares or inherits a virtual function is called a polymorphic class.

Early Binding and Late Binding
In normal function (Non-Virtual), the compiler has no problem with the expression

 ptr->show() ; // it always call to the show function in the base class.

But in virtual the compiler doesn't know what is the contents of ptr. It could be the
address of an object of the Derv1 class or of the Derv2 class.

At run-time, when it is known what class is pointed to by ptr the appropriate version
of show() will be called. This is called late binding or dynamic binding. (Choosing
functions in the normal way, during compilation, is called early binding, or static

احـواثـق نج د.إعداد مدرس المادة : Object-Oriented Programming الكیانیة البرمجة

٥٤

binding). Late binding requires some overhead but provides increased power and
flexibility.

Pure virtual function & Abstract Class
It is normal practice to declare a function virtual inside the base class and redefine it
in the derived classes. The function in the base class is seldom used for performing
any task. Such functions are called “do nothing” functions or called pure virtual
function.

A “do nothing” function may be defined as follows:
 virtual void display () = 0 ;

The value 0 is not assigned to anything. The =0 syntax is simply how we tell the
compiler that a function will be pure.

We cannot create objects of abstract class.
Note that, although this is only a declaration you never need to write a definition of

the base class.
A pure virtual function is a function declared in the base class that has no definition

relative to the base class. In such cases, the compiler requires each derived class to
either define the function or redeclare it as a pure virtual function.

Any class containing pure virtual functions cannot be used to declare any objects of
its own. Such classes are called abstract base classes.

The main objective of an abstract base class is to provide some traits (میزات) to the

derived classes and to create a base pointer required for achieving runtime
polymorphism.(i.e.,: we can create pointers to an abstract class and take advantage
of all its polymorphic abilities.

 # The main difference between an abstract base class and a regular polymorphic class

is that we cannot create instances (objects) of it.

