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CHAPTER ONE

MATRICES
Definition:
An array of mn numbers arranged in m rows and n columns is said to be mxn
matrix.
J-th column
a, a, a, a, a, |
21 a22 a23 a2j a2n

a31 %z 33 a3j n

a, a, a, aij a, I-th row

aml amz a‘m3 mj a'mn

mxn is the order (or size or dimension or degree) of the matrix

The number which appears at the intersection of the i-th row and j-th column is
usually referred as the (i,j)-th’entry of the matrix A and denoted by aij and the

matrix A denoted by [aij]mxn or' A

The entries aij of a matrix”A may be real or complex (or any field).

If all entries of thermatrix are real, then the matrix is called real matrix.
If all entries of the'matrix are complex, then the matrix is called complex matrix.

If A:[aij]mxn then —A:[— aij]mxn.

Examples:

(1)

7 0 -5

A= {2 = 4 } is a real matrix, A has 2-rows and 3-columns.

a11:2’ a122_3’ 813:4 ’ 321:7’ a22=0, a23:_5

(2)

B=|2+i 4 -3

Is a complex matrix, B has 3-rows and 3-columns.



Types of Matrices

(1) Equal Matrices: The matrix A = [aj]]m«n equal to the matrix B = [Dbjj]n«n if they
have the same size and the corresponding elements of A and B are equal
aj=bj1<i<m and 1<j<n.

1 -2 3 1 -2 3
Examples: (1) The matrices 3 and 1 | are equal matrices:
0 — 025 0 15 -
2 4
11 1 1 3
(2) The matrices {5 A 2} and | o o 5| arenotequal-matrices.

5 4 2

(2) Square matrix: A matrix having n rows and n columns and we say that it is of
order n.

Examples: (1) B 31} square matrix of order.2.

2x2
5 -6 9
2 (-3 2 1 square-matrix of order 3.
0 8 0],

Note: The main diagonal in\the square matrix contains the elements a; where
i1 =1,2,...,n (beginningfrom top left upper to bottom right).

(3) Zero matrix; thesmatrix all elements are zero denoted by Opn.

Examples: (1) {0 0} square zero matrix of order 2.
2%x2

(2) 00 00 zero matrix of order 2x4.
0 00 0f,,

(4) ldentity Matrix: A square matrix all elements of the main diagonal are equal 1
and other elements are equal to 0 denoted by I,.
Other Definition: A matrix A=[aj].«n IS said to be identity matrix if

1 if i=j
a, = e . "
! 0 if i#]



Examples: (1) F 0} square identity matrix of order 2x2 (1,).
01
1 0 0 0]
(2) {0 1 0 O square identity matrix of order 4x4 (l,).
0 010
0 0 0 1]

(5) Transpose of Matrix: The matrix resulting from replacing the rows of\the matrix
by the column of it and denoted by A’ or A'or A”.

2 4
Examples: (1) If A= 203 - then Al = 0 1
4 1 5 74, 35
B _ -_1 7_4><2
2 0 -1
-1 1 0 2 -1 3 1 3
2 1fg=3 o0 —2| tenB'=0 1 0 1 2
1 -1 -1 0 -2 -1 0],
L 2 0_5><3

(6) Symmetric Matrix: A square matrix A is called symmetric matrix if it is equal to
its transpose (i.e. A =AY).

2>71 2 1]
Examples: (1) A= L 2} and A' = L 5 so A is symmetric matrix since A = A,
6 3 -2 6 3 2
2) B=({3 0 5|and B'=| 3 0 5 | so B is not symmetric
2 5 -4 -2 5 -4

matrix since B # B.

(7) Skew Symmetric Matrix: A square matrix A is called skew symmetric matrix if
it is equal to the negative of its transpose (i.e. A =—A).



o 2 -1 0 -2 1 0 2 -1
Examples: (1) o—|-2 0 3| At=|2 0 -3/and_At=|_—2 (o 23|S0
1 -3 0 -1 3 0 1 -3 0
A is skew symmetric matrix since A = — A,

(2) B= 0 _8,Bt: 0 8 and —B!' = 0 -8 so B is not skew
8 1 1 8 -1

symmetric matrix since B = — B'.

Note: All the elements of the main diagonal in the skew symmetric matrix are zero.

(8) Conjugate Matrix: A matrix A is called conjugate matrix to\the matrix B if the
elements of the matrix A are the complex conjugated numbers with the elements

of the matrix B and denoted by A .

2i

Examples: (1) The matrix C:{
1

{74

4} IS conjugate matrix to the matrix

2—1 1+i i
(2) The conjugate matrix to the matrix A={2-3i 4+i 2i | is the
1-2i - -2i
2+1 1-1 -
matrix. A=|2+3i 4—-i -2i
1+ 2i I 2i

Note: The conjugate transpose of the matrix is equal to the transpose conjugate matrix.
e (A =(AH) =A".

e [y a5 SRR
SENCENEG

(9) Hermitian Matrix: A square matrix A is called hermitian matrix if it is equal to
its conjugate transpose (i.e. A=A").



4 2 . |4 -2 . 1 | 4 2 :
Examples: (1) A=| . , A= and A"=A"=| . so A is
21 1 21 1 21 1

hermitian matrix since A=A".

2 1-2i 2 2 1-2i 2
(2) B=|1-2i 1 -3i|, B'=[1-2i 1 3i and
2 3i 3 2 -3i 3
o 2  1+2i 2
B*=B'=|1+2i 1  -3i| so B is not hermitian matrix since
2 3i 3

B=B".

(10) Skew Hermitian Matrix: A square matrix A is called-skew hermitian matrix if it
is equal to its negative conjugate transpose (i.e. A=5A").

Note: All the elements of the main diagonal in theskew hermitian matrix are zero or
pure imaginary numbers (complex number the real part of it must be equal to zero).

0 -3 2 o 31 2 0 -3 2
Examples :(1) A=|3i 0 -i|, A<p=3 0 i| and (A)=[3 0 -i|=A
2 i 0 2 - 0 2 I 0
so A is not skew hermitian matrix since A = —A".
21 AN ] — |=2i O — -2 0
(2) B= e B= 1, (B)t = _ and
073l | 0 3 0 3
oo y2i 0 ] . . .. N
—(B) 10 ail” B so B is skew hermitian matrix since B =—B".

(11) Triangular Matrix: It is two kinds:

(a):Lower Triangular Matrix: A square matrix all its elements above the main
diagonal are zeros, that is &; =0 for each i <]j.

4 . :
Examples: (1) ) square lower triangular matrix of order 3x3.

-1 0
3 4 5
5 0 : :
(2) B= 4 7 square lower triangular matrix of order 2x2.

5



(b) Upper Triangular Matrix: A square matrix all its elements below the main
diagonal are zeros, that is &; =0 for each i > j.

1 -2 3
Examples: (1) | g 4 7| square upper triangular matrix of order 3x3.
0 0 2]
1 2] . .
(2) B= 0 -1 square upper triangular matrix of order 2x2.

Note: the identity matrix is upper and lower triangular matrix.

(12) Diagonal Matrix: a square matrix A is called diagonal matrix.if-all elements are
zero except the elements in the main diagonal (i.e. a; =0 if v ).

Other Definition: A square matrix which is upper and lower triangular matrix.

1 00
Examples: (1) A={0 1 0| square matrix of.order 3x3, diagonal matrix, lower and
0 01
upper triangular matrix, identity matrix.
2 0 _ : :
(2) B= 0 _i square. matrix of order 2x2, diagonal matrix, lower and

upper triangular matrix.

(13) Scalar Matrix: A.diagonal matrix is called scalar matrix if all main diagonal
elements are‘egual.
Other Definition: A diagonal matrix A = [ajj].«n IS called scalar matrix if

dqqp =.dgp —... =ann=k.
4 00 6 0
Examples: (1) |9 4 o (2) { }
0 -6
00 4
(14) Row Matrix: An 1xn matrix has one row Az[a11 a, - aln].

Examples: (1) A=[3 2 1 4] (2) A=[7 -5 2 3 1]1ss



(15) Column Matrix: An mx1 matrix has one column A _

_2 _73
Examples: (1) B=| 0 (2) B= o
5
> L O d14x1

Ay

21

ml_|

Exercises: Classify the following matrices according to their types

3 0 4 1
1 (o 1 -2 (7 a2 1 o
4 -2 1 3 2 1
2 00 2 00
2) o 1 0 @) o2 o
00 7 0 0 2
1 -2 0 31 2
@) |2 3 -4 ® |0 5 -2
0 4 5 0 0 2
[ 0~ 1220 5i 1 0
4 |-122 0 3 (10) 10 1
()5 3 0 1
0 1
2 -1 3
5 11
(5) {4 0 1} 11) 1o 1 ©
1 0
(6) {f f} (12) [23 -4 1]
I 1

(13)

(14)

(15)

(16)

O O O




Operations on Matrices

Addition of Matrices: Matrices are said to be compatible with addition if and only
if they have the same degree.

Let A = [aj]mn and B = [bj]mn be two matrices. The addition of A and B is denoted
by A + B is also an m x n matrix, and

A + B = [ajj]mun + [Dijlmxn

= [aij + Bijlmxn
= [Cijlmxn where  a;; + b= c;; for all possible values of i,
Examples:
15 2 0 1+2 5+0| |3 5
S PN e s Pt b
4 6,, -1 0], [4+(-D) 6+0] [3 64, ,
15 1 5
(2) A= ,B=|4 6
4 6],,
. 2 -1

3x2
A + B not define since A and B have.different size. Thus A and B cannot be added.

2 0 -1 ~<3-1 3
3) A= ,B=
3 5 2 2 -3 5
2 .01 -1 1 3
A+B= +
{3 S _2}2@ {2 -3 5:|2><3

X2+(-) 0+1 (-D+3| |1 1 2
{ 3+2  5+(-3) (—2)+5}{5 2 3}

{—1 1 3} {2 0 —1}

B+A= +

2 -3 5/ [3 5 -2
B -D+2 1+0 3+(-2) B 1 1 2
| 243 (-3)+5 5+(-2)| |5 2 3

We note that A + B =B + A. So Addition of matrices is commutative.



Properties of the Addition of Matrices

Theorem: Let M,,..(F) be the set of all mxn matrices over F, where F = R or C. Then:
(1) A+B=B+A (The addition of matrices is commutative).

2 (A+B)+C=A+(B+C) (The addition of matrices is associative).

3) A+O=0+A=A.

Proof (1): Let A, B € My« (F) such that A = [ajj]n«n and B = [Djjlmxn » @ij, bij € F

A + B = [ajj]mxn + [Dijlmxn

= [aij + Bijlmxn (definition the addition of matrices)

= [bij + aij]mxn (the addition of numbers is commutative)
= [Di]msn + [Ai]mxn (definition the addition of matrices)
=B+A

Proof (2): Let A, B, CeMp.n(F) such that A = [ajj]mxn, B = [Bij]lm«n @and C = [Cij]mxn,

aij, bjj, cij € F
(A + B) + C = ([ajjlmn * [Bijlmxn) + [Cijlmxn
= [aij + Bijlmxn + [Ciflmxn (definition the addition of matrices)
= [dijlmxn * [Cijmsn Where djj = a;; + by
= [dij + Cijlmxn (definition the addition of matrices)
= [(a + bij) + Cijlmxn dij = ajj + bjj
= [aij + (bjj + Cij)]mxn (the addition of numbers is associative)
= [@i]mxn + [05j + €ijlmxn (definition the addition of matrices)
= [@i]mxn *+ ([DijJasa ™ [Cijlmxn)  (definition the addition of matrices)
= A+ (B+ ()

Proof (3): Let A, :OeMn.n(F) such that A=[ajj]m«n, O= [Dij]mxn, aij, € F, bj=0V 1, ]
A + O = [ai]msa [ijlmxn

= [@5. % Dij]mxn (definition the addition of matrices)
=[&i + O]mxn bj=0Vi,j

= [aij]mxn

=A

O + A = [bij]mxn + [Ajj]mxn

= [bij + @il mxn (definition the addition of matrices)
= [O + aij]mxn bij =0V |,j

= [aij]mxn

=A



Multiplication of Matrix by Scalar:

If A = [aj]m«n Matrix, c is a scalar then the scalar multiple ¢ A is the mxn matrix
obtained from A by multiplying each entry of A (which is a scalar too) by c. Thus
CA = [C ajj]mxn-

Examples:
10 i1 [=2 0 2i
(1) 2 =
3 20/ |6 4 0
4 80 L =20
12 12 4|=|t 3 1
@ 4o 3 g| |2
0o 2 2
L 4 N

.{—1 0 i} {—i 0 —1}

(3 1 = . A

3 2 0 31 21 O

Remark: If A = [aj]mxn, then (— 1) A = f(=1) aijlmn = [ @ijlmxn-

The matrix (- 1) A is denoted by — A and it is called the negative of A.
Also, A + (— A) = O i, 1.E. — A'is the additive inverse of A.

Proposition: Given A € Mua(F), there exists B € Mp,.(F) such that
A+B=0Own=B+A
In fact\A'determines B uniquely and B = — A.
Proof: Let A =\[aijln«n, since B =— A, so B = [ ajj]nxn
A + B = [ajilqpnt [ @ijlnan
= faip * (— aij)lmxn (definition the addition of matrices)
= [aij — aij]mxn
= O mun

B + A = [ ajjlnxn + [@ij]mxn
= [(— &) + ai]mxn (definition the addition of matrices)
= [~ aij + ai]mxn
= O mxn

10



Theorem: Let A, B and C are three matrices of the same degree, then
()A+B=A+C<=B=C
2)B+A=C+A<=B=C
Proof (1):
A+B=A+C<=-A+(A+B)=-A+ (A +C) (add (-A) to each side from left)
< (FA+A)+B=(-A+A)+ C (the addition of matrices is associative)
< 0+B=0+C
<B=C

Proof (2) (Home Work)

Subtraction of Matrices: Matrices are said to be compatiblerwith subtraction if
and only if they have the same degree.
Let A = [aj]mxn and B = [bjj]m«n be two matrices. The\subtraction of A and B is
denoted by A — B is also an m x n matrix, and
A-B=A+(-B)

= [ai]mxn + [ Bilmxn

= [aij — bijlmxn
= [Cijlmxn where  aj;;— b;= ;' (for all possible values of i, j
Examples:
) 8 6 -4 (2 1 -3 8-2 6-1 -4-(-)| (6 5 3
1 10 -1| |3 0,42] |1-3 10-0 -1-(-2)| |-2 10 1
3 2 1 4
(2) { }_ 2.5 not define since the matrices have different size.
0 3
1
2 = -1
(3) Let A:F 0 1}, { 3 | findA+2B , A—2B
-1 3 1
= 0 -7
1
2 - -1 2
4 = 2
282/ 5 1=|" 3
5 0 -7 1 0 -14

11



- . 2

1 0 1| (4 = =2 5 - -1
A+2B= 5 1 3 + 3 = 3

= 10 -14) |3 -1 -11

- - 2 i 2

1 0 1| |4 = =2 -3 —=
A-2B= > 1 3| 3 = 3 3 3

ST 1 0 14 |1 -1 17

Remarks:

(1) The subtraction of matrices is not commutative.

3 -1 0 4
Example: If A= and B=
2 4 -5 2
3 - 0 4 3 -5
A-B= — =
2 4 -5 2 7 2
0 4 3 1 -3 5
B-A= — =
I P o

Sowegetthat A-B=B-A

(2) The subtraction of matrices is not'associative.

Example: If A:{l 2} ,B:F _1} and c:{l 2}then
-3 0 2 5 1 -3

(A-B)-C#A=(B-C) apply that. (Home work)

Theorem: For any.two matrices of the same degree B—- A =—-(A-B).
Proof: Let A={ajj]mxn and B = [bi]m«n
—(A-B) ==/ [aij]mxn — [bij]mxn )

= — [aij — D] mxn (definition the subtraction of matrices)
=— [Cij]mxn where Cij = aijj — bij

= [_ Cij]mxn

= [ (& — bij)Imxn (replaced)

= [ ajj + Dijlmxn

= [bij — aijlmxn (the addition of numbers is commutative)
= [Bi]mxn — [Aij]mxn (definition the subtraction of matrices)
=B-A

12



Theorem: Let M,.,(F) be the set of all mxn matrices over F, where F = R or C. Then

for any scalars r, S and any A, B € M. (F)
(1)) r(A+B)=rA+1rB

(2) (r+s)A=rA+sA

(3) r(sA)=(rs) A=s(rA)

4 1A=A

(5) 0A=0

6) rA=Ar

Proof (1): Let A = [ajj]m«n » B = [bij]mmnand r e F
r (A+B)=r([aj]mnnt [Dijlnxn)

=1 [&j + Dijlmxn (definition the addition of matrices)

=1 [Cij]mxn where cjj = ajj + bjj

= [r Cijlmxn (definition the multiphication of matrix by scalar)

= [r (& + bi)]mxn (replaced)

= [r ajj + 1 Bij]mxn (distribution ofumultiplication over the addition in numbers)

= [r &ijlmxn + [ bijlmxn (definition the.addition of matrices)

=1 [&i]mxn + 1 [Dijlmxn (definitionithe multiplication of matrix by scalar)
=rA+rB

Proof (2): Let A =[ajj]m«n and r.s'e F

(r+5) A= (1 +5) [aglm
= [(r + 3) aijlmxg (definition the multiplication of matrix by scalar)
= [r ajj + S @jjlmkn (distribution of multiplication over the addition in numbers)
= [r aij]. *[S @ij]mxn (definition the addition of matrices)

= rfag] ™+ s [@ij]mxn (definition the multiplication of matrix by scalar)
=IA +sA

Proof (3): Let A = [ajj]n«n and r,s € F
F(SA) =1 (s[ai]) mxn

=1 [S &jj]mxn (definition the multiplication of matrix by scalar)
= [r (s a@;j)]mxn (definition the multiplication of matrix by scalar)
= [(rs) aijlmxn (the multiplication of numbers is associative)

= (rs) [aij]mxn (definition the multiplication of matrix by scalar)
=(rs) A

13



r (sA) =r (s[ai]) mxn

= 1 [Saj]mxn (definition the multiplication of matrix by scalar)
= [r (saij)]mxn (definition the multiplication of matrix by scalar)
= [(rs)aij)]mxn (the multiplication of numbers is associative)

= [(sr) ai)]mxn (the multiplication of numbers is commutative)
= [s (r &;j)]mxn (the multiplication of numbers is associative)
=S [r &jjlmxn (definition the multiplication of matrix by scalar)
=5 (r [ai]mxn) (definition the multiplication of matrix by scalar)
=5 (rA)

Proof (4): Let A = [@jj]mxn
1 A =1 [a] mxn = [1 ajj] mxn (definition the multiplication of matrix by scalar)

= [aij]mxn
=A

Proof (5): Let A = [@jj]mxn
0 A =0 [aij] mxn = [0 @jj] mxn (definition the multiplication of matrix by scalar)

= Om><n

Proof (6): Let A =[ajjmn.r€F

r A =1 [ai] mxn = [FaiiHnsn (definition the multiplication of matrix by scalar)
= faij mxn (the multiplication of numbers is commutative)
=Ar

Multiplication of Matrices:
Two matrices are said to be compatible with multiplication if the number of the
columns of the first matrix is equal to the number of the rows of the second matrix, i.e.

n
If A =[] B = [by] mp then AB = C = [aJmn [Dilnep = {Zaikbk ,}
k=1

mxp

14



2 0
1 -2 -1
Examples: (1) Let A:{3 0 3} and B=|-1 1 |, find AB and BA?
0 -2
Solution:

2 0
1 -2 -1
AB-= [3 0 3} -1 1
>3lo -2 3x2

_ 12+ (FED)+EDO) AO)+(E2)Q+ED2) | (4 0
3(2)+0(-D) +(-3)(0)  3(0)+0(1) +(-3)(-2) 6 6,7,

2 0
1 -2 -1
Bl %
0 -2 3x2

QD) +03)  2(-2)+0(0)  2(-1)D0(=3) 2 4 -2
= (DD +1Q3) HE2)+10) (DEH+UI) | =12 2 -2
0@ +(-2)3) 0(-2)+(-2)(0) 0(=1) + (-2)(-3) -6 0 6 |,

Note that A B # B A.

A [t 1 1 0] _[a+1-1) 10)+13)] [o 3
@1, 1,,1-1 3|, 20 +1(-1) 2(0)+13)]| [1 3],,
1 2
(3) Let A=|-12.=2|and B:{
2 1

1 0 3
c 2]find AB and BA if exist? (Home work)

1 -2 2 -1 2
(4). Let’A = and B= , find AB and BA if exist?
2 -1 1 -2 1

Solution:

AB:F —2} {2 -1 2} _{1(2)+(—2)(1) 1(-1) + (-2)(-2) 1(2)+(—2)(1)}
2 -1, ,1 21 2X3_ 22)+ ()@@ 2-HD+(-DH(-2) 2(2)+ (D)

_{o 3 o}
30 32><3

BA not exists since the number of B columns is not equal to the number of A rows.
15



Remarks: (1) Two matrices A and B are said to be commutative if AB = BA.

2 4 7 8
Example: Is the matrix A:{1 } commutative with the matrix B:{2 J ?

Solution:

2 4 7 8
mesl A0z 1
1_12><2212><2

{ 2A7)+4(2)  2(8)+4() } _ {22 20}
U7)+(-D2) 18)+ (DO > 1 o

7 8 2 4
BA=
2 1 3x2 1 -1 2x2

7@ +8@) 7(#)+8(-1)| _[22 20
_{2(2)+1(1) 2(4)+1(—1)}_{5 7L2

We get that AB = BA. So A and B are commutativesmatrices.

(2) The product of two matrices may be equal to zero matrix and each matrix is not a
zero matrix.

Example: AB:{—l 1}{2 1}:{—1(2)“(2) —1(1)+1(1)}:{o 0}20
2 2([2-4} |22 +2(2 —2m+2@m)| |0 ©

(3) The cancellation dawrnot satisfies in matrices multiplication, i.e.

AB=AC #.B=C

01 11 2 5
Example: -Let A= , B= and C=
0 2 3 4 3 4

Ag=|0 L 1 1} _{0(1)+1(3) 0(1)+1(4)}{3 4}
0 2||3 4 5 8

0 +2(3) 0()+2(4)

ace |0 1] [2 5] _[0@+13) 0E)+14)]_[3 4
|0 2] |3 4] [0(2+2(3) 0(B)+2(4)] |6 8

AB = AC while B = C.

16



(4) If both matrices A and B are square matrix of the same order with real entries, then
it is not necessary that (AB)* = A B,

1 0 -2 0
Example: Let A= and B=
0 -2 1

S

-2 01[2 0O 0
eer=mayce=| 7 Ol Ol =0 )

L

We get that (AB)? = A2 BZ.
Note that this relation is true when the matrices are commutative, for example

1 3 03
consider Az{2 J and Bz{ ) 2} apply that (AB)* = A>B?  (Home work)

Theorem: Let A be a matrix-of degree mxn, then

(1) Al,=A
2 I,LA=A
(3) AO=0,0A=0
1 ifi=j
Proof (1):~Let A = [ajj]mxn, In = [Sij]axn SUCh that Sij = -
0 ifi=]

n
(i,j)element of Al, = > a8y
k=1

= @18y + @iSpj ... T @S T ... Tt AinSpj
=a;1(0) + a;2(0) +... +a;(1) + ... +ain(0)
= a;j(1)
= aij
= (i,)) element of A
Degree of the matrix A =m x n = Degree of the matrix Am.nlhn, SO A I,= A.

17



Proof (2): (Home work)

Proof (3): Let A = [ajj]mxn, O = [ fijlnxp such that f; =0 forall i and ]

n

Armn Onxp = |:Zaikfkj}

k=1 mxp
Since f;=0 forall i and j, then ay f;=0. So
Amnsn C)nxp = Omxp
Degree of the matrix A O = mxp = Degree of the matrix O
L A0O=0
In the same way we can prove that OA = O.

Theorem: Associative law of multiplication
Let A, B and C matrices compatible with multiplication,then
(1) (AB)C =A(BC)

(2) r(AB) = (rA)B = A(rB), where ris a real numberand A, B eM,,»(F), F=R or C.

Proof (1) Let A= [aij]mxp, B= [bjk]pxq and ‘C'= [Cks]qxn
(AB) C = ([ai]mxp [Djklpxq) [Ckslaxn

= ia_ 'b'k:| [Cks]gxn (definition the multiplication of matrices)

LG

L1= mxq

[ a o o _
=13 (e jbjk)Cks} (definition the multiplication of matrices)

| k=1 j=1 mxn

[P 4 e _ -
=1y X aij(bjkcks) } (the multiplication of numbers is associative)

_j:]- k=1 mxn

A(BC) = [&ijlmxp ([Djidpxq [Crslaxn)

g
= [aij]mxp {Z bjkcks} (definition the multiplication of matrices)
k=1 pxn
— p q - -, . - - - -
- Z > a(0jcks) (definition the multiplication of matrices)
j=1k=1 mxn

. (AB) C = A(BC)

18



Proof (2): Let A = [aj]nxn, B = [Djjlaxn @and C = [Cij]nxn, I' IS @ real number
r(AB) =r ([aij]nxn[bij]nxn)

=1 [Cijlnxn (definition the multiplication of matrices)
= [r Cijlnxn (definition the multiplication of matrix by scalar)
[ n
=1r> g kbkj} (definition the multiplication of matrices)
L k=1 nxn
— i n |
=1 2 r(@gby;)
Lk=1 dnxn
. i}
=1 (rg; k)bkj (the multiplication of numbers is assacCiative)
k=1 dnxn
= [r @ilnxn [Dijlnxn (definition the multiplication-of matrices)
= (r [aij]nxn) [Piflnxn (definition the multiplication of matrix by scalar)
= (rA)B

As the same way we can prove
r(AB) = A(rB) and (rA)B =A(rB) (Home work)

Theorem: Distributive law,of'multiplication over addition

Let A, B and C matrices compatible with multiplication, then
(1) A(B+C)=AB +AC
(2) B+C)A=BA+¥CA

Proof (1): LetA’= [aj]mxn B = [Djlnxp: C = [Cislnxp-
Suppose that»B + C = D such that [DjJaxp + [Ckslnxp = [BjkT Ckslnxp = [dijlnxp
AB+E)=A-D

[ n
=| > gd kj} (definition the multiplication of matrices)
[ n
=| 2 aibygj+cy)) dij = by j+Ckj
[ n
= | 2 @by +aCx ;) (distribution of multiplication over the addition in numbers)
L k=1 mxp

19



n n
A (B +C) Zaikbkj"'zaikckj}
k=1 k=1

mxp

n n
=| > &by J} + { > @, Cx J} (definition the addition of matrices)
k=1 mxp Lk=l mxp

= AB + AC
~AB+C)=AB+AC

Degree of the matrix B+ C=nxp
Degree of the matrix A(B+C)=mxp
Degree of the matrix AB=m x p

Degree of the matrix AC=mxp equal
Degree of the matrix AB+ AC=mxp /
Proof (2): (Home work)

Definition: If A is any square matrix, then wg camdefine
A=A A A
%K_J

k times

Where k is any positive integer number.
Note that A’ =1.

Theorem: If A is any square matrix, then for any positive integer numbers s and t
(1) AA'=A"

(2) (AS)t — AS'[

We use the mathematical induction method in the proof.

Proof (1):

When t=7 = A*A'=A""

Suppose that the statement is true whent=k = ASAf= AS*K
Is.the statement still true whent=k + 1?

i.e. AS-Ak+1=AS+k+l

As‘Ak+l - AS (Ak A)
= (As-Ak)-A (the multiplication of matrices is associative)
=AS* k.A
— As +k+1
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Proof (2):

When t=1 = (A)'=A°

Suppose that the statement is true whent =k = (A%)= A%K
Is the statement still true whent =k + 1?

ie. (As)k+ 1_ As (k+1)

(As)k+ 1_ (As)k ‘(As)l

= A%A°
=Ask+s
— Ask+1)
11 0
Example: Let A={0 0 1 |, compute A% A®and find A*for'any positive integer
0 0 -1
number.
Solution:
11 11 0 1 1 &
A’=A-A=|0 0 1|0 0 1|=[0 @1
0 0 -1{{0 0 -1| |00 1

1

AS=A%.A=(0 0 -1/l0 O Y |=|0 0 1
0

A=A%.A=[0™0"1]l0 0 1|=|0 0 -1

ASLA% A=|0 0 -1//0 0 1|=/0 0 1

Note that:

When k = 2n (even positive integer number)
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1 1 1
A°=A*=_ . =A2"_10 0 1
00 1

When k=2n-1 (odd positive integer number)

1 1 1
A=A%=..  =aAkK=2"1_|g 0 1
00 -1

Theorem: For any matrices A, B and C,

(1) (A)' = A (the transpose of transpose matrix is equal to the matfix itself)
(2) (A£B)'=A'+B'

(3) (aA)' = aA', where o is standard number

(4) O;[‘nxn = Onxm

G) I =1, (the transpose of identity matrix is.equal to the identity matrix itself)

Proof (1): Let A =[ajlmnn

Al= [3ji]nxm (definition of matrixtranspose)
Adt= Qi |mxn (definition of matrix'transpose)
( j
s (A)'=A

Proof (2): Let A = [ajj]m«n, B’= [Dii]man
Suppose A =B =C = [Cjjlmn

(A+B)=C'= [Cjilnxm (definition of matrix transpose)
= [ 0] nxm Cji = &ji = by
=(ajilrxm £ [0ji] nxm (definition the addition and subtraction of matrices)

(A+B)'=A'+ B
Generalization: For any compatible matrices with addition Ay, A,, ..., A,
A+ A+ .. +A) = AL+ AL+ +Al

Proof (3): A = [ajlmxn
oA = o [@i]mxn

= [o &jj]mxn (definition the multiplication of matrix by scalar)
(0tA)' = [0t &) pern (definition the matrix transpose)
= o [&i] nxm (definition the multiplication of matrix by scalar)
= oAl
5 (0A)' = oAl
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Proof (4): Let O = [ fij]m«n, Where f;; =0 for all values of iand j

Omxn = [fij]mxn
By definition of matrix transpose, we get

Ol .y = [fiil wm » Where f;; = 0 for all values of iand j
< Ohen = Onum

1 ifi=j

Proof (5): Let I = [Sij]nxn , such that s;; = . J
0 ifi=#]j

In = [Sij]nxn

IB = [Sjilnxn (definition of matrix transpose)

Sij:Sji:]. if |:J

Sij:Sji=0 if I?ﬁj

ot —
S 1=,

Theorem: Let A = [aj]mn and B = [bi , then (AB)' = B'A'
Proof:
Let A'=C=[Cjlpm ——  (Cj=ay)

B'=D=[djlpm —>  (dij=by)

n
AB=E=[ejlmp — (eij T Zaikbkjj
k=1
n
(i,j) element of (AB)'= (j,i)-element of AB=g;= > aj b
k=1

(i,j) element of B'A'=.(i}j) element of DC

= 2. diCy;
k=1
n
= D bk (replaced)
k=1
n
= a; Ok (the multiplication of numbers is commutative)
k=1

Degree of the matrix AB=m x p

Degree of the matrix (AB)'=p xm —
Degree of the matrix B'A'=p xm —

-.(AB)' = B'A'

equal
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Problems:
(1) Is the matrix A equal to the zero matrix if A®>= O, where A is a matrix of order 3x3?

0
Solution: A={1 0 O # 03,3, but
0
0O 0 1|0 0 10 0 1 0 0 0lj0 0 1 0 0O
=1 0 0{/1 0 Of|1 0 O0|=|/0 0 1(|1 O O[|=|0 0 0|=0343
0O 0 0|0 0 0|0 O O 0O 0 O0lj0 0 O 0 00O

(2) Forany nxn matrices A, B and C. Prove that
@) -(A)=A
(b) A(B-C)=AB-AC
(c) (A-B)C=AC-BC
Proof (a): Let A =[ajlnn = —A=[-ajln = —EA)Y= [~ &l = [Qijln =

Proof (b): Let A = [aj]nn » B = [Dilnxn » C = [Cilisn
A (B - C) = [ajj]axn ( [Dijlaxn — [Cijlaxn )

= [@i]nxn [ij]nxn (definjtion‘the subtraction of matrices) and dj; = bj; — Cj;
= > ad Kj (definition the multiplication of matrices)
n
= 2 By —Cyj) dyj = bij — Cy
k=1

n
Z &Py 5aCxj)  (distribution the multiplication over the addition in numbers)

n

Dby — Zaikckj

k=1 k=1

=ailnxn [Pilnxn — [@ij]nxn [Cijlnxn  (definition the multiplication of matrices)

=AB-AC

Proof (c): Home work

(3) Let A and B be nxn matrices such that AB = BA. Prove that
(a) For any positive integer k, AB* = B*A.
(b) (A + B)* = A*+ 2AB + B?

Proof (a): If k=1, then AB = BA by hypothesis

Suppose that the statement true for k =n, i.e. AB"=B"A

To prove the statement true when k = n + 1, i.e. to prove AB"*' = B"*'A
24



AB"*!= A (B"B) (by pervious theorem A° A'= A* ™)

= (AB") B (the multiplication of matrices is associative)
= (B"A) B (AB" = B"A)
= B" (AB) (the multiplication of matrices is associative)
=B" (BA) (AB = BA)
= (B"B)A (the multiplication of matrices is associative)
=B"*!A (by pervious theorem A° A'= A°*Y
Proof (B):
(A+B)’=(A+B)(A+B) (definition the power of the matrices)
=AA+AB + BA + BB
=A’+AB +AB + B’ AB =BA
= A*+2AB + B’

00
(4) Find all matrices B € M,.2(R) such that B commutes,(commutative) with A:L 0}'

a
Solution: Let B= {
c

Staid ] M e
[¢ sJeess)

1
(5) Let A:{4

(ﬂ suchthat a, b, c,d eR

00:b0 = b=0,a=d
a b d 0

2
3} and the polynomials f (x) = x* + 3x— 10 and g(x) = x* + 2x — 11.

Find the values-of each polynomial? Is the matrix A is a root of each polynomial?
Solution:

el 34 Sl ]
:411 —ZSE —23H132 —69H1<;) 1%}
1% 7l SHY wlHs e a2

Hence, A is not a root of the polynomial f (x).
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A% wfe S alo al e ake

Hence, A is a root of the polynomial g (x).

Exercises:
2 5
(1) Let A=[321], , and B=| 2 -8| find AB and-BA if exists ?
-10 1

3x2
What do we conclude from this question ?

6 -2 0 5 0 3 > -3 0], .,
(2) Let A = B= , CE find A>,3C , A+2B,
4 2 2 0 -1 3 0 -4 0

A+B ,B+A , AC , AB,thenfindthematrixDif% (A-2C)+D=3B?

1 2 2 —
3) Let A= and B= 3 . find
(3)

3 4 -1 5

() (A+BY’ (c) A*-B*

(b) A? + 2AB+B? (d) (A + B) (A—B)

What is the'condition make the relation (a) = the relation (b) and
the relation (c) = the relation (d)

-1 2 -2
(ALetA=|1 2 1 | Provethat A?=1l,.
-1 -1 0

(5) Construct a matrices A = [aj]2«s , B = [bjj]s«s and find AB, where
a;=i-3j and b;=i*-}.

1 2
(6) Let A:L 3}, show that A2 =4 A + 1.
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(7) Compute AB and BA if exists

0 -3] 0 2
2 -1 0 3 1 -1 1 2
a A: y = b A: ) =
@2 3 oheet o L_JBI%;
__4 0_
3 a+b a b5 2 a-b
(8) If Ol - find the values of a, b, ¢, d?
—-c+d 4 -4 6d c 2c+d
1 0 -1 2
2 2 3
9) LetA:{3 1 2},B: 2 -2 and C=|1 O |.Provethat
3 -1 2 -2
A(B+C)=AB+AC?
4 -2 3
(10) Let A= ,then I, A=A.
5 0 2
(1 2 4 -6
(11) Let A= and B= . Prove that AB = O?
2 4 -2 3
2 0 1 1,2v=-2 -4 -6 1
(12) Let A= , B= and C= , sShow that
3 -2 5 34 5 2 3 0

(a)A+é:B+A (b) A+(B+C)=(A+B)+C

(13) If AB = BA, p integer number not negative, prove that (AB)* = A’BP.

kA2
(14) Let A ={3 4} and the polynomials f (x) = 2x*- 3x + 5 and g(x) = x* + 3x — 10.

Findthe values of each polynomial? Is the matrix A is a root of each polynomial?

0 1 -3 1 2 0
(15) Let A=|2 -2 0| and B=|-1 -3 5], find
3 4 2 2 1 0

(@) Third column from AB.

(b) Second column from BA.

(c) Third row from AB.

(d) The elements Cs3, Cs,, Cy, from AB.
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Theorems:

(1) If A is a matrix of degree nxn, then A + A'is a symmetric matrix.

(2) If A is a matrix of degree nxn, then A — A' is a skew symmetric matrix.

(3) If A is a diagonal matrix, then A'is also diagonal matrix.

(4) If A'is a symmetric matrix, then oA is a symmetric matrix where a is any standard
number.

(5) If A'is a skew symmetric matrix, then oA is a skew symmetric matrix where e s
any standard number.

(6) Any square matrix can be written as a sum of two matrices one of them®&ymmetric
matrix and the other is skew symmetric matrix, i.e.

1 ty L & t
== (A+AY+ Z(A-A
2( ) 2( )

Proof (1): We must prove that A + A'= (A + AY)'

We take the right hand side

(A+A) = A+ (AY (by previous theorem (A£'B)' = A'+ BY))
=A'+ A (the transpose of transpese matrix is equal to the matrix itself)
=A+A (the addition of matrices is commutative)

Thus (A + AY) is symmetric matrix

Proof (2): We must prove that A ~A'=— (A - A))'

We take the right hand side
—(A-AY =— (A'— (AYH (by previous theorem (A + B)' = A' + BY))
=— (At —A) (the transpose of transpose matrix is equal to the matrix itself)
=—A'+A
=A+ (= A) (the addition of matrices is commutative)
= A <A

Thus (A — A")is'skew symmetric matrix
Proof (3),Proof (4) and Proof (5) (Home work)

Proof (6): Let A=R+ Q, where
A is square matrix, R symmetric matrix and Q is skew symmetric matrix.

A=R+Q (D (from hypothesis)

A'=(R+Q) (by taking the transpose for each side)

A'=R'+ Q' (from previous theorem (A + B)' = A' + BY)

A'=R-Q ...(2) (since R is symmetric matrix from hypothesis, and Q is skew

symmetric, so R =R' and Q =— Q")
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By adding the equations (1) and (2), we get
A+A'=2R = Rzé (A + A)

Since % (A + A') is symmetric matrix, so R is symmetric matrix (proved earlier).
Subtraction equation (2) from equation (1), we get

A-A'=2Q0 = ng (A—AY

Since %(A — AY is skew symmetric matrix, so Q is skew symmetric matrix’'(proved earlier).

= % (A+A)+ % (A-A) (replaced in (1))
A=R+Q
1 20
Example: Let A=| 4 0 6/, find % (A + A); % (A — A, and show that
-2 21

A= %(A+A‘)+ % (A—AY.

Solution:
1 20 1 o4 =2 2 6 -2
A+A'=|14 0 6[+f20 2|=|6 0
2 21 0 6 1 2 8 2
. . 2" 6 -2 1 3 -1
Z(A+AY= =6 0 8= 0
2 2
2 8 2 -1 4
1 20 1 4 -2 0 -2 2
A~ A= 0 —12 0 2|=|2 0 4
2 21 0 6 1 2 -4 0
0 -2 2 0 -1 1
%mfA5=% 2 0 4|=|1 0 2
2 4 0 -1 -2 0



1 3 -1 0 -11 1 20
:3(A+At)+1(A—At): 3 0 4(+{1 0 2|=/4 0 6|=A

2 2 -1 4 1 -1 -2 0 -2 2 1
Example: Is there exist a symmetric and skew symmetric matrix?
Solution: Let A be a symmetric and skew symmetric matrix.
Since A is symmetric matrix in hypothesis = A=A (definition of symimietric matrix)
Since A is skew symmetric matrix in hypothesis = A = —A" (definition of skew symmetric matrix)

By addition
A+A=A+(-A)
2A = Op.n by divided each side by 2
oo A= Opyp

Theorem: Let A be symmetric matrix. Prove that A™is.symmetric matrix for any
positive integer number n
Proof: We must prove that A" = (A")". By using the‘mathematical induction method
When n=1 = A=A
When n=2 = A?=(A%)" since (A%'= (A:A) = ALA'= A.A =A?
Suppose the statement is true for n =k, iz A% = (A"
To prove the statement is true when n=K + 1, i.e. to prove A* "1 = (A**1)!
(Ak+ 1)t — (AkA)t
= Al (A (from-previous theorem (AB)' = B'A"))
= A-A"
— Ak +1
. The statement is_true for all positive integer values of n

Definition:-The:sum of the main diagonal elements of the square matrix say the trace

n
of the matriX and denoted by Tr, i.e. Tr=> a;;, where A = [aj]n«n.

i
i=1

4 3 2
Example: If A=|0 5 -1/, then the trace of A is
4 -3 3

3
Tr(A)=)a; =an +tap+ap=4+5+3=12
i=1
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(x2 2 3 -1]
Example: If the trace of the matrix B = i le 15 g equal to zero, find the
-2 3 7 2x]

value of x
Solution: Tr(B)=x*+2x—5+2x=x*+4x—5
Since Tr(B)=0 = x*+4x-5=0

= (x+5) (x-1)=0

= x=-5,x=1

Theorem:

1. Tr(A) = Tr (AY, for a square matrix A.

2. Tr(A+B)=Tr(A)+ Tr(B), for any matrices A and B-compatible with addition.
3. Tr(kA) =k(Tr A), where k is constant amount and"A Is a square matrix.

4. Tr (AB) =Tr (BA), for any matrices A and B coripatible with multiplication.
Proof (1):

Let A = @]l S0 A' = [@i]nen

n
TrA=>a; (definition the trace of‘the'matrix)
i=1
t n
TrA" =) a; (definition the trace of the matrix)
i=1
L TrA=TrA

Proof (2): Let Ax+B=C, where A = [ajj]nxn, B = [Dijlnxn, C = [Cijlnxn
A + B =[] ® [ii]nxn = [Cijloxn, Where a;; + by = ¢;; for all values of i and j

Tr(A+B)=TrC:icii ..(1)
i=1

n n
TrA+TrB= > a; + > b
i-1 i-1

& +b;;)

i (2) Since aij + bij = Cjj

>
i=1
S
i=1
From (1) and (2), we get

Tr(A+B)=TrA+TrB
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Generalization: Tr(A;+ Ay + ... + A) = TrA  + TrA, + ... + TrAy, where A; matrix
of degree nxn and i=1,2,....k.
Proof (3): Let A = [ajj]nxn, SO KA = [K &jj]nxn

Tr (kA) = ikaii =k iaii =kTr(A)
i=1 i=1

n
Proof (4) Let A= [aij]nxn, B= [bij]nxna AB = [Cij]nxna Cij = Z aikb kj BA = [dij]nxn;
i=1

n
dij=2> bixay;
i=1

n n
Tr (AB) = > cjj=2 &;b;; (D)
i=1 i=1
n n n
Tr(BA) = > djj=> bjia; =2 &;b;; (2)
i=1 i=1 i=1
From (1) and (2), we get Tr (AB) = Tr (BA).
Theorem:
(1) For any matrix A, AA' symmetric matrix. (The proof home work)
(2) If A is a skew symmetric matrix, then AA"' = A'A. (The proof home work)

Properties of the Symmetric:Matrix:

(1) A is symmetric matrix.if.and only if A'is symmetric matrix.

(2) If A and B are syminetric matrices, then (A + B) is symmetric matrix.

(3) If A and B aressymmetric matrices, then AB is symmetric matric if and only if
AB = BA, i.e. AB symmetric matrix << AB = BA.

Proof (1) (Home work)
Rroof (2): Let A and B are symmetric matrices, so A = A, B = B', we must prove
A+B=(A+B)
(A+B) =A'+ B (by previous theorem (A £ B)' = A'+ B")
=A+B (by hypothesis A= A' , B=B")

. A+ B symmetric matrix

32



Proof (3): Let A and B are symmetric matrices, so A= A', B = B,
= Suppose that AB symmetric matrix, to prove that AB = BA

AB = (AB)' (definition of symmetric matrix)
=B'Al (by previous theorem (AB)' = B'A")
=BA (replaced)

.. AB =BA

< Suppose that AB = BA, to prove AB symmetric matrix

AB = BA
= B'A (replaced)
= (AB)' (by previous theorem (AB)" = B'A")

. AB is symmetric matrix

Remark: The opposite of second property is not true, i.e. if-({A.#B) is symmetric
matrix that is not necessary that the matrices A and B are.symmetric matrices.

1 0 0 1 4 -3
Example: A= 4 -1 O0|and B=|0 -1 5%} are not symmetric matrices, but
-3 5 3 0 03
2 4 -3
A+B=| 4 -2 5 |issymmetricimatrix.
-3 5 6

Properties of the Skew Symmetric Matrix:

(1) A is a skew symmetric matrix if and only if A'is a skew symmetric matrix.

(2) If A and B are'skew symmetric matrices, then (A + B) is a skew symmetric matrix.

(3) If A and“B-are skew symmetric matrices, then AB is a skew symmetric matric
if and only if AB =—BA, i.e. AB is a skew symmetric matrix < AB = - BA.

Proof{(1): (Home work)

Proof (2): Let A and B are skew symmetric matrices, so A =— A", B = — B!, we must
prove A+B=—(A+B)

~(A+B)'=—(A"+B) (by previous theorem (A +B)'= A'+ B")
=—-(-A+-B) (by hypothesis A=—A' , B=—B'")
=A+B (by previous theorem — (-A) = A)

- A + B skew symmetric matrix
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Proof (3): (Home work)
Remark: The opposite of second property is not true, i.e. if (A + B) is a skew
symmetric matrix that is not necessary that the matrices A and B are skew symmetric

matrices.
Give example (Home work)

Exercises:

(1) If A is a square matrix of degree n , p is a positive integer number and k real
number, then (kKA)" = kPAP,

(2) Let A and B are matrices such that AB = A and BA'='B, show that (A)* = A
and (B")? =B

(3) Find all matrices A of degree 2x2 with cémplex entries such that A*=— 1.

Fi 0}
Answer: A = .
0 Fi
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CHAPTER TWO
DETERMINANTS

Determinant:

A function whose domain is the set of square matrices and their range (codomain)
the set F.
Where: (F is the set of real or complex numbers)
The value of the square matrix function is called "determinant™ for that matrix.and is
written as follows:

f (A) = det (A) = | Al
f(a]) = lal =a

Examples:
@Wf(-8)=1-8l=-8

o ]

Determinant of the matrix of degree 2x2

It is the product of the elements.-0f'the main diagonal minus the product of the
elements of the secondary diagonal,"That is:

det([aij]ZXz):det[Ez i 2]: e, e
Examples:
(1) det 4 1 }:‘4 2‘:(4)(1)—(2)(—3)=4+6=1O
3 1),,) |3 1
7 -2 7 -2
(2) “dét 1 3L2J=‘_1 3‘=(7)(3)—(—2)(—1):21—2:19
(3) det 8 5} ):‘_8 5‘=(—8)(0)—(5)(7)=O—35=—35
7 0L,) |7 0
2 3 _2 3 2 12 30
(4) det|| 7 =l 7 = (—;) (6) - (-3)(2) = 7 - (-6) = El
2 6),) |2 6
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Determinant of the matrix of degree 3x3

%1 A3
det|A=|a; =det| |a,;, a, a
ij g3 21 Sy 83
d31 @83 833 |5 4

The calculation of the determinant is as follows:

= allalla_’-:‘- + aﬂalia_:l + alla;‘-ltzl_’-

—dyad, —dda, —ddd.,

3% 2r -1
Example: Find the determinant of the matrix A=[4~ 1 2
5 -2 3

Solution:

S = 00B* @O+ (42D
) —(£HOO) -2 (=2)(3) - (2)(4)(3)
=(9+20+8)+(5+12—-24)=54-24=30

Second methed: ‘which is to write the first and second columns after the third column,
then we find'the multiplication products as follows:

Ay dp G3 _
3x3

3 83 Az

= allalla_:_: + aual_:a_:l + allailal_:

—aaa, —addd, —add,

or
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Examples: Find the determinant of the following matrices

3 2 -1
(1) A= {4 1 2 ]

5 -2 3
Solution:

=(3)D)A) + (2)(2)(5) + (-1) (H(-2) - 1(D)(5) - ) (2)(-2)~(2)(4)(3)
=(9+20+8)+(5+12—24)=54-24=30

1 0 3
. [ : ]

0 4 0
Solution:
IAl=(1) (2) (0) + (0) (-1) (0) +(3)\(}) (- 4) oot
~(3) () (0)-(1) (1) (¢9)=0) (1) (0) aI=| 1 = 2

= 0+0+(-12)-0-40=_16

o

1
4
3) A=| 00 0 -2

278 0

N

Solution:

1 1 1
IAI= (7)) (0) + (-2)22) + (5)0) 8)

1 oy iy 1 a0
(2)(0)( 2) (4)( 2) (8) (6)(0)(0)

=o+(—3j+o—o+4—o=19
3 3
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Finding the determinant of the matrix using cofactor method

Definition: C;; the cofactor of the element a;; of the elements of the square matrix
A = [aj]nn "is @ product of (-1) '*J by the determinant of the matrix A after remove the
i-th row and j-th column. This determinant is called the miner determinant for a; and
denoted by M;;"

Examples:

(1) The cofactor of the element a,, in the matrix A =

. M ETEE
C22 — (_1)2 2M22 — (_1)2 21 M1 13

Az g3

(2) The cofactor of the element a,; in the matrixcA'=

. ..lay a
C23 — (_1)2 3M23 — (_1)2 3| “11 12

a3 (A3

(3) The cofactor of the element (— 4) in the position (1,1) in the matrix

Cu= (—1)1+1M11 = (—1)1+ .

-1 -4
; 5‘—(—1)(5)—(—4)(1)-—5+4-—1

Theorem. Matrix determinant: is the sum of the product of the elements of a row
(column) by their cofactors.

Let Cj; is the cofactor of the element a;; in the matrix A = [ajj]n«n, SO the determinant

of the matrix is as follows:

n
(1) If chose the row i, then |A| = det A= Y a;,C;; = auCis + azCiz +...+ ainCin
=1

n
(2) If chose the column j, then |A| =det A = Y a;,C;; = ayCyj + aCy +...+ ayCyy
i=1
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Remark: When using this method, we choose the row or column that contains the
largest number of zeros.

Examples:

(1) If A:{aﬂ alZ}.Find det A?
dy; 8y

Solution: chose the row 1

A1 9

|Al=det A= =anCy +a12Cyp

dy; Ay

= 3—11(—1)1 ¥ 1‘ azz| + c"llz(—l)1 e | 6121| =aj dp —agp dy

Q1 o A3

dzy Q3 daz3
Solution: chose the row 1

&1 G g3
|A| =detA= A= Ay1 Qgp Qdgg| = a11Cr + a1,C1o + a13C13

d3p Qzp dz3

a a a a a a
— a]_]_(_l)l +1| 922 23 + a12(_1)1 +2| 921 23 + a13(_1)l +3| 921 22

a3y g3 Az dzp

dzp dg3
= a11(822 833 — Ap3.832) — A12(Ap1 Q33— 823 831) + As3(A2; 832 — 822 A31)
= aj1 App Az =841 Ap3 A3z — Ao App Azz T Agp Apz 831 t Agzdp Azp— Agzdy, Az

= apayazz’t ajp dpz Azy + Agzdyy Azp — djg Apz Azp— Agp Apg Azz— dAjzdyp Az

3 2 -
(3) Find [A|=[4 1 2
5 2 3

Solution: chose the row i = 2
Al = a21Co1 + @22C2 + a23C 3
2 - 3 3 2
=4_12+l +1_12+2
1) -2 31‘ 1) 5 5 -2
=-46-2)+19+5)-2(-6-10)=—-4(4) +1(14) - 2(-16) =— 16+ 14 + 32 =30
39
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3 2 14
0 1 00
(3) Find [B|=
4 2 01
1 3 0 2

Solution: We can chose the row i =2 or the columnj=3
Now we chose the row i =2
| Bl = bp1Ca1 + 025Ca0 + bpsCos + b24Cos

2 1 4 3 1 4 3 2 4
Bl =0(-1)>**-2 0 1] +1(-1)*"%34 0 1/ +0(-1)**34 -2 1+
3 02 -1 0 2 -1 3.2
3 2 1
0(-1)***4 -2 0
-1 3 0
3 1 4
B|={4 0 1
-1 0 2

To find the value of this determinant we can find it directly or by using the cofactor by
chose the second column

3 1 4
4" 1 3 4 3 4
1Bl =4 0 1|=1(-1)}"? +0(=1)%"2 +0(-1)%"2
A (-1) 1 (-1) 1 (-1) 41
4 1
=_ =_(8+1)=-9
\_1 2\ 6+1)

Exercise: Resolve the previous example using the third column

cosd sind
Example: Prove that |A|=| . =0s26 .
sing cosé@
Proof:
cosd sind 2 . 9
|A|: _ =Cc0s- @ —sin“ @ =cos20
sin@d cosé
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cosd 1 1
Example: Prove that [B|=| 1  cos@ 1=(cosf—sind)(cosd —1).

sin@ 1 1
Proof:
cosdé 1 1
B|=| 1 cos@® 1=cos®+1+sin@-sindcosd—cosd -1
sin6 1 1

= cos% #—sin@cosd — cosd +sind
=Cc0sd(cosd —sind) —1(cosf —sinf)
= (cos@—sind)(cosH —1)

Some Properties of Determinants:

Property (1):
If all elements of row or column of any matrix are zero, then their determinant
equal to zero.
Proof: Let the row i all elements of it are.zero.
ap=ap=...=q,=0=> (0,0,...,0) the row i
We open the determinant around the'row i
|Al =a,Ciy + @, Cip + ... + &y, Cig

=0Ci1+0Ci2+...+OCin
=0+0+...+0=0

The same method remains if all elements of one of the columns are zeros. (Home work)

Examples:
0.0 O
(1) 2 1 -12=0 since all elements of the first row are zero
3 2 1
-4 0 0
(2)|3 0 2[=0 since all elements of the second column are zero
1 0 2
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Property (2):
The determinant of the square matrix A equal to the determinant of its transpose,
ie. [Al=]A"

&1 & ... @ &, 8y ... Ay
ay; @y, ... a a, a a
Proof: Let A=| =& 2 7 PM | g0 At=| P ?2 "

_anl dny .- ann_ _aln dp - ann_
|Al=a3;,Cyy + a1, Cpo+ ... + @y, Crn (by opening the determinant about‘1% row)
| A= a;1Cyy +a, Cp + ... + a3, Cyp (by opening the determinant:about 1* column)
Thus |Al=|A".

Examples:
3 -2 3
W [A]=|] 4‘:12+2=14 and ‘At‘:‘ —1242%14
~Al =AY
1 -2 201
4 31 3
(2) Show the correctness of |A|= =80 and ‘At‘:BO?
0~2 0 0
-1 2 3 4
Solution: To find the value-0f'the determinant to the matrix A, we choose the third
row (why ?)
| Al = a3Cy; + agy CagP+ ags Caz + @34 Cas
22052 1 1 2 1 1 -2 1
= 0(-1)°4348" -1 3/ +2(-1)°*%4 -1 3 +0(-1)°*°4 3 3+
2 3 4 -1 3 4 -1 2 4
1 -2 2
0-1)°%***4 3 -1
-1 2 3
1 2 1
Al =-2[4 -1 3 =-2[(-4)+(6)+(12) - (1) - (9) - (32)]
-1 3 4

=—2(2-42)=-2(-40)=80
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To find the value of the determinant to the transpose of the matrix A, we choose the
third column.
| A'| = @33 Cy + @3 Cy + 33 Cas + 43 Cu

1 4 0 -1
s 3 9 o 2 3 2 1 4 -
A = =0(-1)'*"%2 -1 3[+2(-1)*"%2 -1 3|+
2 -1 0 3
1 3 4 1 3 4
1 3 0 4
1 4 - 1 4 -1
0-1)°%*3-2 3 2[+0(-1)*"%-=2 3 2
1 3 4 2 -1 3
1 4 -
Al==2]2 -1 3
1 3 4
=-2[(-4) +(-6) + (12) - (1) - (9) - (32)]
=_2(@2-42)=-2(-40)=80
~ AL =AY
300
(3)Let A=|1 7 9
4 5 8

Al =168 +0+0-0-135-0

e
=33

=168 — 135 Al =

And
31 4
Al=l0 7 5
09 8
+ + +
t] —
A =168+0+0-0-135-0 aT|=| o 7
=168 — 135
=33
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Property (3):

If a matrix B results from interchanging row by row or column by column in
matrix A, then det B = —det A
In other words: If replace a row with a row (column by column) in the matrix, then
the signal determinant is changed.
Proof: when n=2

A:|:a11 a12} 5o |A|:a11 Y

=818, —ypdy;
Ay Ay dy; Ay

If we replace the second row with the firstrow R; <> R,

B:|:a21 a22} 50 |B|:
dy 9

a a
S 184y — 319y

&1 G
= — (&332 —ay1a,)
=— A
when n=3
%1 dp 93
A=|ay 8p axp
831 Q3 833
|Al= aq18z A3z T Q1283 Az1 T A21832813 = A13A22831 — Q12821833 — A23A32811

N J
. ' - v

Multiply towards the main diagonal™"Multiply towards the secondary diagonal

If we replace the second rowswith the firstrow R; <> R,
81 dyp A3
B=la; &, ag;
831 83 (dg3
|Bl= Ap1Q17 A3z F Azp813 A1 T A11d32823 — A3di2d3; — A11822033 — A13A32821
= — (@812 833 — A2813 31 — Q11832823 + Ap3812831 + 11827833 + A13832871)
T (3;11322333 + Qppdzzas T a21a32a1J3 - ?13322331 — dg2821833 — a3261235111)

v g

Multiply towards the main diagonal Multiply towards the secondary diagonal

=—|A]

As well as if we replace the first row with the third row R; <> Rs, we get |B|=— | A|
In the same way if the replace was on the columns.
And so in the same way we prove when n = k.

.". The property is true for all values of n.
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Examples:

(1) A= L _33} , B= B - } (replace the first row with the second row R; <> Ry)
2 -3
|A|:‘l 3‘:6—(—3):9
|B|:‘1 3 ‘:_3_ _ g
2 -3
-~ IBl=-|Al
1 2 3 1 2 3
(2) A={1 -1 1| ,B=|2 3 4| (replace the third row with the second row R, <> R3)
2 3 J 1 -1 1
2 3
Al=|1 -1 1| =0)ED@)+ @O + AW - B)DE) - (1)E)D) - (1))
3 4
=(-4+4+9)+(6-3-8) =9-5=4
3
B=|2 3 4|=@0)@)Q +E®Q) + ) -EB)E)M) - @D - @)1
1 -1 1
=(3+8x56)-(9+4-4) =5-9=-4
. IBl=-]A]
1 3\
Let C=|1x1 "-1| (replace the third column with the second column C, <> C,).
24 3
Shew that |C|=—|Al  (Home work)
3 2 1
Let D=1 -1 1| (replace the third column with the first column C; <> C3).
4 3 2

Show that |D|=-|Al  (Home work)
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Property (4):

If the elements of two rows (two columns) are equal in a square matrix then its
determinant is equal to zero.
Proof: Suppose in the matrix A the elements of the row (i) equal to the elements of the
row (0).
Suppose the matrix B results from replace the row (i) by the row ().

IB|=-|A] (by Property (3))
But B=A, so |B|=|A| (the row (i) = the row (£))
|Al=—|A (replaced)
2|Al=0= 220
~ Al =0
Examples:
4 -2 3
;B 1 2 32 (the second and third rows are equal)
3 1 2w
¥ ¥
3 1 2 2
-2 0 0 0
(2) =0 (the thirdvand fourth columns are equal)
1 300
2 211
Property (5):

Determinant. efrthe product of two square matrices of the same degree = product
of the determinants of those two matrices. i.e. |AB|= |Al-|B]
Proof: We+preve this property when n=2

a, a b b
@ %] aanfn B
dy1 Ay by, by,
AB — |:a11b11 +agphy;  Aygbyp +agoby, }
Aybyg +anh,;  Ayby; +a5by,
| AB|= (a11b11 + a12021) (A21012 + @22 b22) — (211012 + @12027) (821011+822021)
After opening and arranging it, produce:
|AB| = | ap1b11822027 — @1182:012021— b1102s81801 + @12851012024
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|A| =8118y; —8ppay;

|B| =by1bgy —byoby
|A| ' |B| = (81857 — 87851 ) (013D —Dy0y)

= | a1b1182002, — 11822015091 11020810891 + 8128210120

. |AB|=|Al-|B]
As the same way when n = 3.
Thus this property can be proved when n = k.

Examples:
2 -3 1 4

(1) Let A= , B= , show that |AB|=|Al-|B|2
-1 5 2 3

Solution: |AB|= |Al-|B|

2 -3|[1 4] |2 -3 4
-1 5|2 3|| |11 5|2 3
o
= (10-3)-(3-98)

9 11

—44+9=(7) (-5)
~35=-35

0 2 2 1 3 0
(2)Let A=|3 -1 0|~B=|0 2 1|, showthat|AB|=]|Al-[B|?
1 4. 2 -1 3
Solution: |ABI=VA|-|B|
0 2 .2]r 3 0]] 0o 2 21

3 -15070 2 1(|=[3 -1 0 2 1
1@ 1(2 -1 3[| |1 4 1/]2 -1 3
4 2 8
3 7 -1 = (20)(13)
310 7
260 =260

1 2 1 0] . , )
(3) Let A= 2 ol Bl7 5 find |Al, BI, |ABI, |A®BI, |B? Al? (Home work)
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@) If |Al = 4, find |A3] 2

Solution:
A% = |AA]
=|Al-|A?| (by property (5))
= |Al[AA]
= |Al-|A]-|A] (by property (5))
| A% =[Al®
=43
| A%| =64

This example leads to the following corollary:

Corollary: If A is a square matrix, then |A*|=| A|¥ whete*Kis a positive integer
number. (The prove home work)

Generalization: If Ay, A,, ..., A, are square matrices'of the same degree, then
ALA, . A = IAL AL AL (The prove home work)

Remark: |A +Bl|= |A| + [B], for example:

S FAILS

2 2 2 —
‘:4, |A|:‘ ]1:7, |B|=
2 4 32

|A+Bl=|A| +|B]

|A+B|= =3

0 3
-1 2

4 =+ 7 + 3
4 = 10
Property (6):

If A=Brand D are three matrices of degree (nxn) equal in all rows except in the
row(i) in"the matrix D such that d;; = a&;; + bjj, j = 1,2,..., n, then det D = det A + det B.
The same way if it is a column.

Proof: Let
fdyy dpy e e dy, | [dy; dyp e e e dy, |
dyy dpy oo e o d,, dyy dpy oo o o dy,
A = ‘ ] B = H
- P an i-th row bil bi2 ......... bin i-th row
dy dpp oo e e dnn_nxn dyy dpp o e e dnn_nxn
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dpy d, dyp,
dyy dy, d,,
D= i _
ap by @ +bip o o @ by || i-th row
| A2 Ao Joen

Where dij = ajj +bij ,J=1,2,...n
We open the determinant of the matrix D about the row i

n
|D| = 2. (@ +bu) Cix) By theorem:
k=1 Matrix determinant is the“sum-of the product of the
N n elements of a row (columr) by their cofactors.
= 2.8 G + 2. by Ciy
k=1 k=1

Bl=|Al + B

In the same way if it is
The column j from D = The column j from,A + The column j from B, i.e.

j-th column
dyy  dip - @y +by (o dyy
dyy dyp - | @y +0y1 - dyy
D=| . \
dnl dn2 S A +bnj dnn
dpp~Oyp | @y | =+ yp| |dyg iy oo | by dy,
_d21 dyy -oo| @y | - d2n+d21 dy -+ | by dy,
dnl dn2 anj dnn dnl dn2 bnj dnn
j-th column j-th column
D|=|A|+|B|
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Examples:

1 0 2 1 0 2 1 0 2
M |c=|[4_6 8]=|[1 2 1]+|[3 4 7]
2 10| |=210|]-=210
24  =9+15
3 0 1 0 1]1 0
Q62 -1|=]|2]2 -1|+||4]2 =1
9 4 1 4| ||7]1 4

24+ (-9) + (0) - (0) — (-3) — (24) =8 + (- 14)

Property (7):

- 6=-06

If all the elements of a row (column) in a square,matrix A multiplying by a fixed
(k #0), then the determinant of it multiply by the'fixed k. i.e.

A1 9
dy; Ay
Bl—| :
‘ ‘ ka;; Kka,
anl an2

a1
dyq

Ay,

anl

Ao
Ay

Aip

an2

aln
a2 n

ain

ann

k[A]

Proof: Let B is thesmatrix obtained by multiply the row (i) in the matrix A by the fixed

(k = 0), when.we.open the determinant of the matrix B about the row i, we get

|Bl =k an€iy ¥k axCip + ... + k a,,Ciy
= k(anCiy + ai2Ci + ... + aiCip)

1Bl =K[A]

The same way when the column of the matrix is multiply.

Examples: \ fawal Y
1 2 3 1 21

@Wl1 5 3|/=31 5 1|=3(0)=0
2 8 6 2 8 2
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11
= (2)(3)‘ 14 ‘= (6)(3)=18

) 2.6 100 @G| _,1 3|_,1 OO
1 12 1 12 1 12 1 (3)(4)
1 -1 2 1 -1 2
() LetA=[2 3 2| ,s0 |Al=[2 3 2|=(-15)
3 2 1 3 2 1
Let B is the matrix obtained by multiply the first column of the matrix A by the, fixed
k =10, then
10 -1 2
B|]=/20 3 2| =(-150)=10(-15)
30 2 1
Bl =10 |A|
Corollary:

If B = [bjj]axn is @ matrix obtained from,multiply each entry of A = [ajj]q« by c,

ie.by=cay Vi j,1<i,j<n Then Bl =cAl.

a1 9 A
dy; Ax Aop
Proof: Let A= ' , B=
all ai2 al n
_anl an2 ann i
Then
Q. o A
ca ca ca
|B| —c .21 -22 ‘Zn
ca, Ca, Ca,
a1 9 A
a a a
_c.c| & _22 2n
Ca, Ca, Ca,,

cay,
Cay

Caj

| Can

Cayy
Cayy

Ca»

ca,,

By repeating the process n-times, we get |B| =c" |Al.

o1

cay, |
Cay,

Caj,

Ca,,

Extract the number ¢ from the first row (R,)

Extract the number ¢ from the second row (R,)



1 -1 0
Example: Let A={2 1 2| ,let c=3.Show that 3* |Al = |B|, where B = 3A.
3 4 1

Property (8):
If the corresponding elements of two rows (two columns) in a square matrix are
proportional then the determinant of that matrix = zero.
Proof: Let the row (i) proportional with the row (£) in the matrix A,.n, then:
row () =row (i) x (fixed k) , where k =0 (by property (7))

%1 8 81 9 84
dy; 8 82n 81 8y oy
Al=| & ar - & | row (i) Al=| &y & aw| row (i)
a1 A - an | row (1) ka;; Kkaj, ~~& Ka,| row (£)
8n1  An2 8nn NG 8nn replacing the
row (€)
a, 4, a,
aZl a‘22 a2n
|A| =kla, a, 8, (by property (7))
equal
a'il a'i2 a'in “/
a'nl an2 a'nn
Al =k (0)=0 (by property (4))
Examples:
3.6 . : . : 3
(1) |A| = ol =0 the first row proportional with the second row where the ratio between them 1
1 2 3
) |B| =2 0 6|=0 the first row proportional with the third row where the ratio between them %
2 4 6
or the first column proportional with the third column where the ratio between them %
4 0 6
(3) |B| =12 -1 3|=0 the first column proportional with the third column where the ratio between them %
10 3 15
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Property (9):

If add to the elements of a row (column) in a square matrix the multiplying of the
corresponding elements in another row (column) by the constant k (k = 0), then the
value of its determinant does not change.

Proof: Let

all a.12 cee aln

81 &2 .- b | row (i)
Aol : :

a1 8 .- 8 [TOW(S)

_anl an2 ann
aq Ao A
Ay Y A
B= : : :
ka, +ay ka,+a, ... Ka,#+a, | Adding the row (i) multiplying by k to the row (s)
G ano I
A1 app A V81 A
||3| = : : N E : : \ (by property 6)
N8 oo Bs| K&y Kap . K&t two rows are proportional
anl an2 ce ann anl an2 ce ann

But the determinant of the second matrix = 0 by property (8), so
|Al =[BI.

53



-1 2
Example: If A=
3 5

(1) B= {_1 2 +10(_1)} Adding to the second column ten times of the first column

3 5+10(3)
-1 -8
| |:‘ —_35+24=-11
3 35
1 2
|A|:‘ ‘:—5—6:—11
3 5
. |A] = |B]

(2) Adding to the first row double the second row (multiplying, the second row by 2
and adding it to the first row)

B {—1+ 23) 2+ 2(5)} ~ {5 12}
3 5 3 5

Is |Al =B

12 5 12

‘3 5H3 5‘

(-11) = (-11)

Property (10):

The determinant of a triangular matrix A equal to the product of the elements of
the main diagonal, i.e. IFA= [aj]nn = |Al =det A= apag, ... an.
Proof: Let A be an_(nxn) upper triangular matrix, to prove |Al=det A= aj1dy ...aAn.
We use the methadhof mathematical induction.

a, a
(1) When h=2, A= * 2| = |Al =anax
0 ay

\.\The property true when n = 2.

(2)-"Suppose the property is true when k = n

&1 Ao Yz ..o A
0 ay ay ... ay
0 0 O A
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(3) Is the property stay true when n=k+1

Ay &y A3 ... A A (k+1)
0 @y ay ... ay A2(k+1)
Aj=|0 0 ag .. agy A3(k +1)
0 0 0 .. agak Ak

We open the determinant around the last row (k + 1).

1 S A3 ..o Y
0 ay ay ... ay

A|=|0 0 ag .. ag Ak +1)(k+1) — H1822833 - - - A A #1) (k1)
0 0 0 .. a

Apply the same proof if the matrix is lower triangular-matrix.  (Home work)

Examples:
3 0 O
1) |Al=|2 1 0]|=(Q3)@)(5)=15
a -1 5
1 2 -3
(2) B|=|0 4 1 |5/(D)(4)@8)=32
0O 0 8
4. ~7 8
(3) |A|=[0>"5 4 |=(4)(5)(-1)=-20
0 0 -1
-7 0 O
(4) |B|=|12 8 0 |=(-7)(8)(-2)=112
15 6 -2

Remark: The determinant of the unity matrix = 1, since it is upper and lower
triangular matrix and the elements of its main diagonal 1 x...x1x1.
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Property (11):

The sum of the products of multiplying the elements of a row (column) in the
square matrix A by the cofactors for the corresponding elements in another row
(column) of the matrix A equal to zero.

all a12 Y aln
a21 a22 oo a2n
It A=|ay &, ... &, |row (i)

91 &2 .- @ | row (S)

a1 Ay ... A

And Cj, Ci, ..., Cj, the cofactors for the row (i), then

ds1 Cil'l'asZ C:i2+ +asn Cin=0

The same way if the cofactors for any column multiply by the corresponding elements
in another column respectively.

%1 & 3
For example, if A=|a,; a,, ay }'and Cy;, Cip, Cy3 the cofactors for the first row
d3; 83y, @z3
respectively, if we multiplyCthe cofactors for the first row by the elements of the
second row or the third.rew, then
ay C1p +ap Cpp £.a53C13=0
az Cy1 + a3 Cp+asi Ciz=0

2 -1 2
Exampler If [A|=|3 4 2
3 21

1+1 4 2
Ci=(-0) ) 1 =8 (the cofactors for the element a;;=2)

3
C — _1 1+2
1 =(-1) 3

2
1‘ =3 (the cofactors for the element a;,=—1)
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Cps = (-3 - —18 ( the cofactors for the element a;3= 2)

34‘

a1 CpptapCpt+tayCiz=

3(8) +4(3) +2(-18)=24+12-36=0
Also,

az Cip +a3 CptagCiz=
3(8)+(-2)(3) +1(-18)=24-6-18=0

Property (12):
If the elements of the matrix is complex number, then
The determinant of the conjugate matrix = conjugate determinant~of the matrix,

ie. |K|:|_A|

I =2 — -1 2
Example: Let A= . . |,then A= i <
2+i 3 2—1 <3
|Ap-_i Zi—mz—ma—n
2—i -3i

=3i2—4i + 2i*=5i>— 4i=nE 5 4i

i =2
= 3i% — (=2i)(2 ki
24 a‘ (=2D)(2 %))
=3i%+ 4i +2i*=5i’+4i= —5+4i
|A|=—5+4i=[-54i

- -

[Al=

Examples:
(1) Find-the value of the determinant of each matrix by using the properties of the
determinant (without opening it mathematically)
1 3 2
(@ A=|-1 0 3
0 11
Solution:
1 1 2
|A| =|-1 -3 3| Multiply the third column by k= —1 and added it to the second column (Property 9)
0O 0 1
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1 1 2

|A| =10 -2 5 Multiply the first row by k= 1 and added it to the second row (Property 9)
0 0 1
=-2 The determinant of a triangular matrix equal to the product of the elements

of the main diagonal (Property 10)

4 3 2
(b)B=| 3 -2 5
2 4 6
Solution:
4 3 2
|B | =23 -2 5 Take out a common factor the number 2 fromthe'third row (Property 7)
1 2 3
4 3 2
|B | =24 0 8 Multiply the third row by k= 1 and added it to the second row (Property 9)
1 2 3
4 3 2
|B | =(2)4)|1 0 2 Take out'a common factor the number 4 from the second row (Property 7)
1 2 3
3 2
|B | =-8/0 1 2 Reéplacement the first column with the second column with change the signal (Property 3)
2 3
3 2
|B | ==8\0 1 2 Multiply the second row by k= — 1 and added it to the third row (Property 9)
2 1
4 2
1 3 3
|B | =(-8)(3)|0 1 2 Take out a common factor the number 3 from the first row (Property 7)
2 0 1
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4 2
1 3 3
|B | =240 1 2 Multiply the first row by k= — 2 and added it to the third row (Property 9)
£ -1
0 3 3
4 2
1 3 3
|B | =-24/0 1 2 Multiply the second row by k= % and added it to the third row (Property-9)
0 0 5
| B | = - 24 [(D)(1)(5)] =-120 The determinant of a triangular matrix equal.to, the product

of the elements of the main diagonal (Property, £0)

2 2
(ch{s 1}

Solution:
1 -1 _
IC|=2 3 1 Take out a common factor the number 24rom the first row (Property 7)
1 -1 : . .
|C| =2 0 4 Multiply the first row by k= — 8.and added it to the second row (Property 9)
| C | = (2)(4) =8 The determinant of a.triangular matrix equal to the product of the elements
of the main diagonal (Property 10)
1 -4 Kk
(2) Prove the correctness' (of the following |2 3 2k|=0 without opening it
3 6 3k

mathematically.

Proof:
1 -4 Kk I 4 1
2 3 2ki=k|l2 3 2 Take out a common factor k from the third column (Property 7)
3 603K 3 6 3

=k(0)=0 The first column equal to the third column (Property 4)

Other proof:
Since the elements of the first column proportional with the elements of the third
column and the ratio is k : 1, then

1 4 Kk
2 3 2k|l=0 If two columns are proportional then the value of the determinant equal to zero (Property 8)
3 6 3k
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a 1l b+c
(3) Provethat |b 1 c +a |=0 without opening it mathematically.
c 1 a+b
Proof:
a l b+c| |a 1 a+b+c
b 1 c+al=lb 1 a+b +C | Multiplying the first column by k= 1 and added it to the third column (Property.9)
c 1 a+b| |c 1 a+b+c

all

=(a+b+c)lb 1 1 Take out a common factor (a + b + ¢) from the third eoltmin (Property 7)
c 11

=(a+b+c)(0)=0 If the elements of two rows (two columns) ate equal in a square matrix

then its determinant is equal to zero (Property 4)

& +b; a,+b, a;+bg a % &y ag

(4) Prove that |b;+c; b,+c, by+cg|=2/0~b, bs| without opening it
Ci+& Cy,+a, Cg+ag C, C, Csg

mathematically.

Proof: We take the left side

Itiplying the first
a, +b, a,+b, a,+b a, &b a, +b a, +b Multiplying

1 4 2 2 3 3 1 1 2 2 3 3 and second rows by
by +c; by +cC, bg+csl= bpdcy b, +¢, bs +cC, k=1 and added it to

he  thi
C,+a C,+a, Cz+as| [2@+b +c) 2(@, +b,+C,) 2@ +bs+cg)| o third  row

(Property 9)
& + bl B0 b2 a3 + b3 Take out a common factor the
=2 by+c; b, +c, bs +Cy number 2 from the third row

& +b ¥y a, +by+C, ag+by+cy (Property 7)

a +b” a, +b, a;+by

=2 bl +Cq1 b2 +C»y b3 +C3 Multiplying the second row by k= —1 and added it to the third row (Property 9)

=2b; +C; b, +C, b3 +Cs| Multiplying the third row by k= ~1 and added it to the first row (Property 9)
Cl] ay as
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b, b, b,
=2 C; C, Cg Multiplying the first row by k= —1 and added it to the second row (Property 9)
& 8 83
& d g3
=-2 C; Cy Cj Replacement the first row with the third row with change the signal (Property 3)
bl b2 b3

q 8 @
=2 bl b2 b3 Replacement the second row with the third row with change the signal\(Property 3)

C; C, GCj

(5) Without opening the determinant. Prove that

af a 1
2
aZ a; 1

Proof: We take the left side

af a 1| |al-a; a-a, O
2 2 Multiplying the second row by k= —1 and added it to
aQ a 1li=| & ay i the first row (Property 9)

aZ a; 1 aZ a; (O 1

yq+a, 1.00

= —ay)| & @5y 1| Take outacommon factor (a; — ;) from the first row (Property 7)

Multiplying the third row by k= -1 and added it to the

2 2
= (al - a2) d; —83 & 0 second row (Property 9)
2
ag as 1
y+a, 1 0
_ Take out a common factor (a, — a3) from the
=(a-a)@ -a)y,+a; 1 0 second row (Property 7)

a;  a; 1
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ay+a, 1 0

Multiplying the first row by k= —1 and added it to the
=@ -a)@ -a)jag—a 0 0 o ’

second row (Property 9)
al a; 1

y+a, 1 0

—(a, —a,)a, —a,)a, —a 1 0 0 Take out a common factor (a; — a;) from
( 1 2)( 2 3)( 3 1) the second row (Property 7)

al a; 1

1 0 0

Replacement the first row withthe second
=@ -—a)@ -a)@—a)y+a, 1 0

row with change the signal (Praperty 3)

aZ a; 1

The determinant of a triangular-matrix equal to the product

=—(a —a)(@; —a3)(as —a) of the elements of the main diagonal’= 1 (Property 10)

(6) Find the value of x without opening the determinant mathematically.

2 2-X
=0
1+Xx 0
Proof:
2 2-X
(1+x) 1 =0 Take out a cofimmon factor (1 + x) from the second row (Property 7)
1
— (1 + X ) 5 9 =0 Replacément the first row with the second row with change the signal (Property 3)
—X

—-(1+x)(2-x)=0 The determinant of a triangular matrix equal to the product of the elements of
the main diagonal (Property 10)

(1+x)(2=%) =0 Multiply each side by — 1

l+x=0=x=-1or 2—-x=0=>x=2

1 2 05
() Let A= and B= .Is|A+B\:|A|+\B\?
3 4 4 3

1 7
Sdumm:A+B:{7_J — |A+B|=7-49=—_42

Al =4-6=-2, |B| =0-20=—"20.
So we get, |A+B| = |A|l + |B]|since—42 = -2 +-20 (ile.—42 = - 22)

62



Exercises:
(1) Find the value of the determinant of each matrix by using the properties of the
determinant or by reduction to triangular matrix (without opening it mathematically)

1 0 -3 1 00 2 3 4 3 4 2 4 -3 5
@12 2 -1 () |0 2 0| ()|0 0 3/ (M2 5 0/ (|5 2 O
4 1 4 0 0 4 0 21 3 00 2 0 4
1 4 3 1 4 0 O
2 12 31 = 010 -2 120
-1 0 3 2a 2b 2| (h NEORS
(® @ Mg, ol D], 55
X Yy z 2 1 2
0 31 4 5 3 5
. . |la-1 : — :
(2) Find the value of a if . 2‘:0 without opening it mathematically?

(3) If |Al =—5and |B| =2, find the value of | Al2)PAY |, |AZB?] .

1 1 1

(4) Provethat | x y z |=0\without opening it mathematically.
y+z zZ+X Xty

28 +b, ~2bp4c; 20+ & b
(5) Prove that |2a, +b, 2b, +Cc, 2c,+a,|=9|a, b, c,| without opening it
285 +03" 2b;+C3 205 +ay ag by cCj

mathematically

yz X X Yz Xy Xz
(6) Prove» that y2 xz y?l=xy xz vyz|,xyz=0 without opening it
z%2 7% xy| X2 yz xy
mathematically.
(7) Without opening the determinant, show that the equation obtaining from the value
of the following determinant is of degree two and has the roots a and b
1 x x?2
1 a a’|=0a=b
1 b b?
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(8) If the points (x1,y1), (X2,¥2), (X3,y3) on a straightened one, then prove that

X1 yp 1
X, Y, 1|=0 without opening it mathematically.

Xz Yz 1

(9) Find the value of x for all the following without opening it mathematically
x-1 0 1
‘:0 (b) 0 x-1 0 |=0
1 0 x-1

X —2 7

@ 3 X +2

3 -1 2
(10) If A:{2 J and B:{1 1]showthat

(a) AB = BA.
(b) |AB| = [Al.]BI.
(c) |AB| = [BA.

(11) Prove that |AB| = |BA| for any matrices A and B?

(12) Let k be any real number and, A ts'a matrix of degree n x n, prove that
(KAl =K"|A|

(13) Without opening the-determinant prove that

1 a bc| |Eoa a°
1 b ac{=M b b?|,a#0,b=0,c#0.

1 ¢ ab 1CC2

Note: Multiply and divided by abc.

1

a, b, ¢ & —5d83 @ &
a3 by c3 C, —3C3 Cp Cg
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CHAPTER THREE
INVERSE OF MATRIX

Definition: The inverse of the square matrix A denoted by A™* it is a matrix has the
same degree of the matrix A suchthat AAT=A"A=1.
Or A is called inverse matrix or invertible if there exists a matrix B such that
AB = BA =1, in this case the B is called the inverse of the matrix A and written
B=A"

Remark: The degree of matrix B (the inverse of the matrix A) must;be equal to the
degree of the matrix A and the rectangular (non-square) matrix has ne-inverse.

Examples:
: : . -2 1
(1) Find the inverse of the matrix A= 3 ! ?

a ¢
Solution: Let B = L’ d } = Alis the inversé ofthe matrix A.

It must be prove that AB =BA = 1.

-2 1fla c|_ |10 . ~2a+b -2c+d| |1 0
3 —1||lb d| [0 1 3a—-b 3c-d | |0 1

—2a+b =1 ...(1) —2c+d =0 ...(3)
3a—-b =0 ...(2) 3c-d=1 ..4
by addition by addition
a=1 c=1
so, b=3 so, d=2c = d=2(1)=2

11
. B=A%= {3 2} which is the inverse of the matrix A.

lnvestigation:

-2 111 1 10
Itmustbe AB=1, = AB= = =1,

3 -1{3 2 0 1

1 1)-2 1 10
Itmustbe BA=1l, = BA= = =1,

3 2|3 -1 0 1

B=A"
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2
(2) Find the inverse of the matrix A = L } if exists?

a ¢
Solution: Let B = L’ d } = A lis the inverse of the matrix A.

It must be prove that AB =BA = 1,.
2 —4|la c 10

AB = =
o o)l t

2a—4b 2c-4d| |1 O
a-2b c-2d | |0 1

2a—4b =1 ...(1) 2c—4d =0 ...(3)
a-2b=0 ..(2 c-2d =1 ...4)
by. multiply the equations (2) and (4) by 2
2a—4b =1 ...(1) 2c—-4d =0
2a—4b =0 ...(2) 2c —4d =2
by subtraction by subtraction
0=1 0==2

This is not possible. So there is-ap.Solution to the system.
". We hypothesized that théere is’an inverse of the matrix A is not true.
". There is no inverse to-the'matrix A.

Properties:
(1) The squarematrix A is called not invertible if det(A) = |A| = 0.
(2) Thesguare matrix A is called invertible if det(A) = | Al =0 and |A|= —‘ 11‘ .
A
Proof:
Suppose the matrix A invertible < there exists a matrix B, such that
AB=BA=1, = |AB| = | In| (taking determinant for each side)
= |Al[B] =1 (previous theorems | AB|= | Al B/ and det(l,) = 1)
= |Al #0 and |B| +#0
So we get |A 1 A =L_1 or ‘A‘l‘ _ 1
B A A
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Remark: Sometimes invertible matrix is called (inverse matrix) or non-singular or has
an inverse.
And not invertible matrix is called (non-inverse matrix), singular, or has no inverse.

Examples:
3 1] ) ) ..

(1) A= not invertible matrix since |A| = 0.
12 4
5 -3]. . _

(2) B= ) - invertible matrix since |B/| # 0.

(3) Is the zero matrix has inverse (invertible)?
Solution: The zero matrix does not have an inverse because 1ts determinant = zero.
Or If we suppose the matrix B is the inverse of the zero-matrix O,, then

O,B =0,#1, whichis a contradiction

.". The zero matrix does not have an inverse

(4) Is the identity matrix has inverse\(invertible)?
Solution: Yes, the identity matrix has inverse which is the same matrix.
Suppose the matrix B is thelinverse of the identity matrix I,
1,.B =Bl =1, (the definition of an inverse matrix)
B=B=1I, (previous theorem 1,A = A)
. B=1I,

Therefore,sthe inverse of the identity matrix is the identity matrix itself.

(5) If A= A", Show that det(A) = + 1.

Solution: A=A' = AA=|, (the definition of an inverse matrix)
— (det(A))? = det(l,) (taking determinant for each side)
— (det(A))?=1 (det(1,) = 1)
= det(A)==1
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(6) If A is nonsingular matrix such that A% = A. Find the value of det(A) ?

Solution: Since A is nonsingular, so A exists.

A*=A

AZAT=AA? (multiply each side by A™)
AAAT=AA? (A2=AA)

Al, =1, (AAL=1,)

A=1, (previous theorem A I, = A)
det(A) = det(l,) (taking determinant for each side)
det(A) = 1 (det(ly) = 1)

Theorem: If A is an invertible matrix, then A' is also. an invertible matrix and
(At)fl — (Afl)t.

Proof: Since A is invertible matrix, 3 A (nxn).matrix) such that

AAT=ATA=],

AADH =(ATA) =(1,) (taking transpose for each side)

(A A=A (AD =1, (by previous theorems, (I,)"' = I, and (AB)' = B'A")

. Alis invertible and (A)™ = (A"

Remark: The previous method-of finding the inverse of a matrix (by definition) is
impractical to find'the inverse of a matrix of degrees higher than (2x2). But

there are other methods to do this.

Finding the inverse of a matrix (by the adjoint matrix method)

The Method of Adjoint Matrix

I A = [aj]wn such that [A] # 0 and C = [ci]. represents the matrix of
coefficients cofactor for the matrix A.

Theorem: without proof

The adjoint matrix for the matrix A is transposed matrix of the coefficients
cofactor for the matrix A and denoted by adj(A), i.e.
adj(A) = C'(A) = [cj]

M t . t
The inverse of the matrix A is A% = 24(A) _ {Ci} = [C”] .
Al LAl A
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Examples:

4 2
(1) Find the inverse of the matrix A = L 2} by adjoint matrix method?

Solution:
4 2
3 2

cu= (D" 2l =2, cp=(1)"?3] =-3

Al -2

Co = (—1)2+1‘ 2 =2 ,cp= (—1)2+2 4] =4

4} = adj(A)=Ct(A):{2 _2}

2
) {—2 3 4

The inverse of the matrix A is

2 -2 . .
A i) _[8 4] |7

N
2

2

Investigation:

4[4 2 1o 9 LIk 2111 0
AA T = 3 = and A"A=| 3 =
3 2 -5 2 01 5 23 2| |0 1

1 2 3
(2) Find the inverseefithe matrix A={1 3 3| by adjoint matrix method ?
1 2 4
Solution:
1 23
|A|:1 3 3=(12+6+6)-(9+8+6)=24-23=1
1 2 4
3 3 1 3 1 3
Cis = _11+1 :6 , C — _11+2 :_1 ’ C — _11+3 :_1
11()24‘ 12()14 13()12
2 3 1 3 1 2
C — _1 2+1 :_2 ’ C — _12+2 :1 ’ C — _1 2+3 :0
21()24‘ 22()14 23()12
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2 3 1 3 1 2
C — _1 3+1 :_3 ’ C — _1 3+2 :0 ’ C — _1 3+3 :1
31()33‘ 32()13 33()13
6 -1 -1 6 -2 -3
C(A)=|-2 1 0/,adjA)=C'(A)=|-1 1 0
-3 0 1 -1 0 1
The inverse of the matrix A is
i 6 -2 -3
PR (o N R
Al
-1 0 1
Theorem: without proof
If A = [ajj]nxn then A (adj(A)) = (adj(A)) A = (det(A)) 1.
Exercises:
(1) Find the inverse for each of the following matrices (if exists)
1 1 2 1 3 -1
-2 1 1 3
(a)A:[3 } (b)A:L 9} ©BZ/0 -1 3| @B=|2 2 1
! 11 2 0 1 -3

or any square matrix.of-degree (nxn) show that adj(A") = (adj A)".
2) F ix.0f degree (nxn) show that adj(A") = (adj A)'

1

A

Theorem® It A is invertible matrix, then oA invertible matrix for any scalar number
o # 0and (ozA)"l = %A"l.

(3) If A is a square-matrix and | A| # 0. Prove that A has inverse and A™ = —adj(A).

Proof: We must prove (cA)(LA™) =L A™)(aA) =1,

(aA)(% A_l) =(a %)(AA_l) (by previous theorem (rA)(sB) = (rs)(AB))
=1-1,=1, (A is invertible matrix so A A = 1,)

In the same way we prove that (L A™)(aA) =1,,.

L(aA) =LA
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Theorem: If the matrix A has inverse, then this inverse is unique.
Proof: Let B and C are the inverses for the matrix A.
By the definition of an inverse matrix, we have

AB=BA=1, ...(1)

AC=CA=1, ...(2)

B=BI, (by previous theorem A = Al,)

B = B(AC) (by (2))

B =(BA)C (the multiplication of matrices is associative)
B=1.C (by (1))

B=C (by previous theorem Al, = A)

.. The inverse matrix is unique.
Theorem: If A is invertible matrix, then A is invertible matfix: (Home work)

Theorem: If A is invertible matrix, then (A1) ' = A.

Or The inverse of the inverse matrix is equal to the matrix itself.
Proof:

AYAYHY = AH A=, (the définition of an inverse matrix)
But A'A=AA"'=I,

So each of Aand (A ') !are inverse-for the matrix A™*

Since the inverse of the matrix is ufiique, so we get (A" "'=A

Theorem: If A and B are invertible matrices, then (AB) * =B A,
Proof: We must prove that (AB)(B A ") = (B 'A 1) (AB) =,

(AB)(B 'A"H = ((AB)B" HA* (the multiplication of matrices is associative)
=(A(BB A (the multiplication of matrices is associative)
=(Al)A ! (B~ ' is the inverse matrix of the matrix B)
= AA ! (by previous theorem Al, = A)
=1, (the definition of an inverse matrix)

In the'same way we prove (B 'A% (AB) = I,.

10 2 -1
Example: Let A = and B = , prove that (AB) '=B *A"!
2 1 0 1
1 0 11 2 1 _1 01
Proof: A™ = ,B1=|2 2| AB= ,BrATI=| 2 2|
-2 1 0 1 4 -1 -2 1
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Corollary (1): If A, B and C are invertible matrices, then ABC invertible matrix.
ie.(ABC) '=Cc'B AL

Proof:

(ABC) '=((AB)C) * (the multiplication of matrices is associative)
=C '(AB) ! (by previous theorem (AB) '=B *A Y
=c'B A (by previous theorem (AB) '=B *A™})

Corollary (2): If Ay, Ay, ... A, are invertible matrices of the same degree,
then AA,... A, is invertible matrix where n is positive integer number and
(AdAg. A T=A L A AT (Home work)

Corollary (3): If A is invertible matrix then A" is invertible matrix for any
positive integer number nand (A") ' = (A~ H".

Proof: By using corollary (2)

Let A=A =...=A,=A

Since (AA...A) T=A T LL A TAY

So (AA..A) '=A ATAT

(An)—l — (A—l)n

Remark: We can prove Corollary (3) hy using mathematical induction method

Definition: If A is invertible matrix, we define
A"=(AH" where n is a-negative integer number
:A—lA—l A—l
(—n)—times

Al =

Examples:

(1) Let A’square matrix of degree (nxn) such that A* + 2A +I, = O,. Show that A is
invertible matrix and find its inverse?

Solution:

A%+ 2A +l, = O, (given)

A°+2A =0,-1,

AP+2A =1,

AZ+2A1, =—1, (by previous theorem Al, = [,A = A)

“AZ-2A 1, =,

AFA-21) =1,

AFA-21)=FA-21)A=1,

From that we have A is invertible matrix and A" *=-A—-2 1,
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(2) If A =Al, where A is scalar number. Prove that
1

A is invertible matrix < L #0 and A™ ==L
Proof: = Let A is invertible matrix. To prove A #0
Suppose =0 = A=Al,

= A=0,

But O, not invertible matrix (since their determinant equal to zero)
. A'is not invertible matrix which is a contradiction.
.. Our hypothesis A = 0 not true, so A # 0.
< Let A #0. To prove A is invertible matrix
A=Al (given)
A_1 = %In_l (by previous theorem (if A invertible matrix then“aA” is invertible matrix and
(@A) =L+A™))

-1
AT =21,

(The inverse matrix of identity matrix is thexidentity matrix itself)

(3) Let A be a square matrix such that A¥= O’for some positive integer values, this
matrix is called nilpotent. Show that A.isnot invertible matrix.

Solution: Suppose A is invertible matrix

— A" is invertible matrix  (by M Avis invertible matrix then A" is invertible matrix for any
positive integer number n)

— O is invertible matrix which is a contradiction
.. A'is not invertible matrix:

Exercise: Give example for nilpotent matrix of degree (2x2).

(4) If A and-B are invertible matrices of any degree. Is A + B invertible matrix?
If itisthat, is(A+B) '=A '+B 2
Solution: If A and B are invertible matrices it is not necessary A + B invertible matrix.

-1 0 2 0 . : .
For example: let A:{O 3} and B:{O 3} are invertible matrices, but

1 0
A+B= {O 0} not invertible matrix.

It may be A, B and A + B are invertible matrices, but not necessary that
(A+B) '=A '+B .
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-1 0 2 0 10
For example: A= , B= , A+B=
0 3 0 3 0 6

0] L [30] o [10
o 1'° 7 %’(+)‘o

But (A+B) '#A '+ B ! since

{1 0 {—1 o} s 0| |30
NE: e L=

0 s 0 3 0 3 0

(5) Let A + | invertible matrix. Show that (A — 1) and (A + 1) *.commute matrices?
ie. A-DA+D T =(A+1) A=) (Home work)

N~

Al=

o
o

w[n

Remark: The matrix A which satisfy A = | is callethinvolutory matrix.

(It is the matrix which is if it is multiply by itself the value equal to the identity matrix)
The involutory matrix is the inverse of itself.

The identity matrix is involutory matrix.

Example:
-1 -2 -2

The matrix A=| 1 2 .1} is involutory matrix, since A* = 1.
-1 -0

Exercises:

(1) Let A‘be’a square invertible matrix. Prove that | A*| = | Al¥ where k is a negative
integer number.

(2) " Let A be a square matrix and A” = O. Prove that (I — A) is invertible matrix.

(3) If A, B, Care square matrices of degree (nxn) and A is invertible matrix, then
AB=AC =B=C
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Definition: We say for the matrix of degree mxn is of reduced echelon form denoted
by (r.e.f.) if satisfy the following conditions:

(a) Rows consisting entirely of zeros, if exists, are appear at the bottom of the matrix.

(b) The first non-zero entry in every row that is not completely composed of zeros is
equal to 1 and it is called "the leading entry for that row".

(c) If the sequential rows i and i + 1 not completely composed of zeros, the‘leading
entry for the row i + 1 is appears on the right of the leading entry for the.rew i.

(d) If there exist a column has a leading entry for a row, then all other.entries for that

column equal to zero.

Remark: The matrix of the reduced echelon form may be not containing entirely rows

of zeros.
Examples:
0 0(2) 9]
000 3 Matrix of echelon form (e.f.) but not of the reduced
(1) A= echelon form(r.e.f.) since the leading entry for the
00O00O first row=2+ 1 (the condition (b) not satisfy).
00 0 0
000 @ o Matrix not of the reduced echelon form (r.e.f.) since
0 0O @ 0 the leading entry for the second row not on the right of
(2) B= 0 0 0071 the leading entry for the first row (the condition (c) not
satisfy).
0 0.0 0 0
01 0 0 O]
1
()NC= 00 00 Matrix of the reduced echelon form (r.e.f.)
0O 0010
0 0 00 0]
1 0 4
4 D=|0 1 0 -3 Matrix of the reduced echelon form (r.e.f.)
0 01 5
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— Matrix of the reduced echelon form (r.e.f.)
5) E={0 0 1 0 1
0 0 1
1 0 0 3 O]
0 01 00O
(6) F=|0 0 0 0 1 Matrix of the reduced echelon form (r.e.f.)
0 00 0O
0 0 00 0
(1 2 8 |
(7) 0 0 0 0] Matrix not of the reduced echelon<farm (r.e.f.) since the
00 1 -2 condition (a) not satisfies.
1 0 3 4] . :
Matrix not of the reduced echelon form (r.e.f.) since the
@) |0 @ -2 7 condition (b) not satisfies.
00 1 3
1 0 4 1]
01 -5 3 Matrix not of the reduced echelon form (r.e.f.) since the
(9) 0 @ 2 9 condition (c) not satisfies.
0 0 0 ~0]
1@ 1]
10 0ol 3 Matrix not of the reduced echelon form (r.e.f.) since the
(10) 00 1 4 condition (d) not satisfies.
0 0 0 0
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Linear Systems and Gaussian Elimination Method

Definition of the linear system: It is a set of (m) of linear equations and (n) of
unknowns (variables), and it is expressed in the following form:

a11X1 + aXo +...F A1nXn = by

Ao1X1 + AooXo ...+ AopXy = b2

am]_X]_ + am2X2 + . + aman = bm

It is written briefly as follows AX = B, where
A is the coefficients matrix (coefficients _of .the unknowns)

a.ll a12 e aln
A: a?l a?z eee az'n
3m 8mg e Amn oo
o
: X
X is the column of the unknowns X =| ~ 2
_X N _Inx1
b,
: .. b,
B is the absolute'quantities column B=| .
_bm dmx1
Examples:
(1) “vConsider the following linear system
2X1 — 3X2 =8
3X1+X2=1 (1)

8 X
The absolute quantities column is B = L} the column of the unknowns is X = Ll}
2

-3

1 } , SO We can write the system as follows:

2
the coefficients matrix A = [3
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2 1)l

When we compute the multiplication operator we get the system of the
equations (1).

(2) x+y+z=1
—-y+22=0
X+2y =2
1 X
The absolute quantities column is B=| 0 |, the column of the ‘Unknowns is X =|Y
2 z
1 1 1
the coefficients matrix A={0 -1 2| so we can write the system as follows:
1 2 0
1 1 1|x 1
0 -1 2|y |=|0
1 2 0}z 2

Definition the solution of\the linear system: It is a set of the value of the
unknowns which satisfyeach equation in the system.

Remark: Each setyof linear equation (AX=B) can be represent it by the
matrix [A:B], this matrix called augumented matrix.

Examples:
(1) Cansider the following linear system
3Xy +bX, —2X3=5
4X1 —Xo + 3X3 =14
Xp+Xo+X3=7

3 5 -2 : 5
The augumented matrixis |4 -1 3 : 14
1 1 1 : 7
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1 1 1 : 2
(2) If the augumented matrix is |0 -2 1 : 3/, so the set of the equations of the

3 0 4 :1
system
Xp+Xo+ Xz =2
—2X, + X3 =3

3Xy +4x3=1

Remark: From above we note that the system of linear equations transferte a system

simple than it (equivalent system) by using some operations on eguatiens. Also, the

representation of the system by an augumented matrix means that-each row in the

matrix represents an equation, and for this the system can bé\solved by using the

augumented matrix and these operations on the augumented” matrix correspond to

(similarity) operations on the equations. These operations.on an augumented matrix

are called elementary row operations and denoted:by~(e.r.0.) which are:

(1) We multiply the row (i) by a constant number (o not equal to zero. It is denoted by
{Ri = OLri}.

(2) We multiply the row (i) by a constant number o not equal to zero and add it to the
row (j) where (i #j) is denoted by {Rj= rj + ari}.

(3) Replace row (i) with row (j) or vice'versa and denote it by {rj <> ri}.

The above method which is~uSed to solve any linear system is called Gaussian

elemination method

Gauss-Jordan Reduction Method

Solving the'system AX = B in this method depends on converting the augumented
matrix to theseduced echelon form.

Examples: (1) Solve the following linear equations systems by Gauss-Jordan
reduction method

(a) x-4y=11
X—2y=7
. R = —r . R :1"2 .
[A:B]:{l —4 11} 277N {1 4 11} 275 {1 4 11}
1 -2 : 7 0 2 : 4 0O 1 : -2

7

R, =r +4r 1 0 3
1 1 "2 {O L 2}.Thesolutionisx:B and y=-2.
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(b) 2x+3y=0

4x-y=0
2 3 1 0] R=r-2rr 2 3 :0 R,= T 2 3:0
[A:B]Z : 2 2 1> 272\
4 -1 10 0 -7 : 0 01:0
. R—;r .
R=n-3r, 2 0:0] ™71 [10:0
“lo1 0 o1 :0

The solutionis x=0 and y=0

(2) Solve (if possible) the following system
X1+ X, =2
2X1+ 4%, =-1
Solution:

11 : 27 R,=r,-2r 1 1.:"p R,=2r 11: 2
2 4 1 1 0.2% -5 01: -5/2

R=r—r, 1 0 : 9/2 X 9/2
11 2, . =X = or x;,=9/2,x,=-5/2
01 : -5/2 X, | |-5/2

[A:B]:{

(3) Solve (if possible) the folowing system
2x—-3y=8
3x+y=1 (Home work)

(4) Solve (if possible) the following system
X1+ X +Xx3=1
22X+ 3X, + 3X3 = 3
Xir+ 2X, + 2X3 =5

Selution:

111 : 1 R2=r2—2r1>111 Rorr |1 11
[A:B]=|2 3 3 011:1 8 3 24011
R,=r,—r )

12 2 331,101 1 000

The third row means 0x; + 0x, + 0x3 = 3 which implies that 0 = 3 which is impossible
so the system has no solution.
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Remark: When solving this system by elimination method in solving equations, you
find the same answer (that the system is inconsistent) that is, it has no
solution.

Example: Solve (if possible) the following system

x+y+z=1

2x+y+z=1

3Xx+y+z=1
Solution:

111 1 R2=r2—2r1>1 1 1 : 1
ABl=|2 11 0 -1 -1: -1
[A:B] R,=r,—3r

311 3 3 71,0 -2 -2 i =2

1 1 1 : 1 107 0 : O

R, =r_-or R, =r +r
3 8 2,0 1 -1 1|—L 1 25/0/-1 -1
0 0 0 : O 0O 0 0 : O

Thismean x=0

—y—-z=-1

y+z=1

Which mean when we take value for y we can find the value of z.
This mean the system has infinite solutions.
The solution is x =0, z=.1>Y, y = any real number.
Or the solution {(0,a,1~a):a € R}.
If a=1,so(0,1,0)ds.solution, or if a =2, so (0,2, —1) is solution, ....and so on.

Equivalent Matrices

i the two matrices A and B are of the same degree, then A is a row equivalent
with B If B can be obtained from A with an operation or (Elementary Row Operations)
(e.r.0.), the equivalence is symbolized by (~) we say (A ~ B).

We can note that:

(1) For any matrix A, then A ~ A,

(2) For any matrices A and B, if A ~ B, then B ~ A.

(3) For any matrices ABand C,if A~Band B ~C, then A~C.
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Examples for the equivalent matrices:

2 1 0
1 IfFA=|1 2 1
0 2 1
2 1 0 2 1 0 2 1 0
R,=r,—r R, =2r
A=|1 2 1 S 3 2 4,11 21 2 2,2 4 2|=2B
0 2 1 -1 0 O -1 0_0
So A~B (row equivalent).
2) Show that A = 1 =2 I
(2) Show that A= 1 3 2
Solution:
A 1 -2 RZ:r2+r1 ) 1 -2 R1=r1+2r2ﬁ\ 1 0 L
1 3 0 1 0 1| 2
.'.A~|2

Exercise: Show that the matfi A—1 2 1 clB—1 0 =3
Xercise: ow a e matrices = 2 3 0 an = 0 -1 -2 are row

equivalent?

Theorem: (withoutyproof)
The square~matrix of degree (nxn) has inverse if it is row equivalent for the

identity matrix.

1 -2

1 3 } in example (2) above has inverse since it is

For 'example the matrix A ={

row equivalent to I,.

Theorem: (without proof)
If A is a square matrix of degree nxn, then the linear system An.n - Xnx1 = Byt has

unique solution if and only if |A| #0.

82



Remark: If A is a square matrix of degree nxn, then the linear system
A - Xnua = Bpaa has infinite number of the solutions or has no solution if and only if

Al =0.

Examples:
2 _
(1) Let Az{z _3} = | Al =0, so the linear system
2x—-3y =8
2x—-3y =3
by subtraction
0=6

Has no solution

2
(2) Let A=L } — | Al =0, so the linear system

—6

2x—-3y=8

4x — 6y = 16

multiply the first equation by (2)
4x — 6y = 16
4x — 6y = 16
by subtraction
0=0

Has infinite number of solutions.

Exercises: Selve the following linear systems

(1) x+y+z=1 (2) x+2y+2z=1 3) x+y=3
X*2y+3z=-1 X+5y+2z=4 2x—-y=1
X+4y+4z=-9 X+8y+22=8

(4) Find the value of a which make the following linear systems have no solution

(@ x-2y=5 (b) x—y+2z=3
3x+ay=1 2x+ay+3z=1
-3x+3y+z=4

83



Gramer's Rule

This method using to find the solutions of the linear system which its coefficients
matrix is square matrix and its determinant # 0.

Theorem: (without proof)

A.
Let An - Xiet = Brgand |Al £0, then X =%,j =1,2,...,n, where

A; is the matrix obtained it by replace the column j for the matrix A by the absolute
quantities column B.

Examples: Using the Gramer's rule to find the solution for the following systems:

(1) X1—2X2:8
5X1+2X2:4
Solution:
1 -2 8| -2 1
|A|:‘ ‘:12 , |A1|= ‘:24 , |A2|—‘ ﬂ?%
5 41 2 5
Ay _ 24 [Aa| _ 360,
YAl 120 7 TP A a2
The solution is X; = 2, X, = -3
(2) —2X1+3X2—X3:1
X1+2X2—X3:4
—2X1 — Xo + X353
Solution:
11 3 -1
Sl A 3 21 _11
Alsl1 2 -1|=-2 ,x1=| | _[E8) - Ao
2 -1 1 A - -
-2 1] -1 -2 3 |1
1 -1 1 2
) A,| |-2 3] 1 _ -6 _ ) :|A3|: -2 -1 13 :__8:4
2 A -2 2 A -2 -2
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Exercises: Solve the following linear systems by Gramer's rule

(1) 2x+y+z=6 (2) 2x+4y+62=2
X+2y-2z=-2 X +22=0
X+y+2z=-4 2Xx+3y—-72=-5

Homogeneous Linear Systems
We say the linear system of the formula

ap Xy +apXs ... taX, =0
A1Xy + AxXo +...+ axX, =0

amlxl + am2X2 +. . .+ aman = O

It is a homogeneous system that can be written in the matrix form AX = O.

The solution x; = X, = ... X, = 0 is called the trivial solution for the homogeneous
system.

If X1, X, ..., Xy SOlution for the linear system where x; # 0 for some values of 1, then
this solution is called non trivial.

. The homogeneous linear system always consistent (if it has some solutions), the
trivial solution is one of their solutions.

Theorem: If A is a square-matrix of degree nxn, then the homogeneous system
A X = O has trivial solution if and only if | A| #0.

Example:
3x+y=0
2x+4y =40
3l
A{Z 4} = |Al=10#0.
3 1] R,=r-or 1 -71 R,=r,-2r, 1 -7 Rfirz 1 -77 R,=r+7r, [1 0
[24}112{24}221[018} 18 [01}111{01}

The solutionisx=y =0
.". The trivial solution is the only solution for this system.

Remark: If A is a square matrix of degree nxn, then the homogeneous system
A X = O has infinite number of the solutions if and only if | A|=0.
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Examples:
(1) x-5y=0
2x—10y =0

1 -5
A:[ }:>|A|:O
2 -10

1 -5 Rzzrz—zrl X 1 -5
2 -10 0O O

X-5=0 = x=5y

Ox+0y=0

The solution is the set {(5a,a):a € R}.

So we get this system has infinite number of the solution:

(2) Find the value of o which make the linear system»(al — A)X = O has non trivial

luti 'fA—2 °
solution if A= 5 3|

Solution: The homogeneous system (a.l-="A)X = O has non trivial solution if and only
if lal-Al =0

_[1 0] [2 6] a2 -6
“'A'O{o 1}{2 3}:{ -2 oc—E}
Since lal-A | =0
a—2 -6
-2 o-3
(o0 —2) (o=8)>(-2)(-6) = 0
a’—5a+6-12=0
o’ —5a+6=0
(0v-6) (0 +1)=0 = a=6,a=-1

‘:o

Examples: Solve each of the following linear systems by Gauss-Jordan method
(1) x+2y+3z=0

—X+3y+2z=0

2x+y—-22=0

Note: since the absolute quantities column is zeros, so we can write the coefficients
matrix only in augumented matrix.
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7 2 5 2
-1 3 0 5 5 >0 1 1
R,=r,-2r
2 1 -2 3 3 1,0 -3 -8 0 -3 -8
Ry=-2r, [10 1 R3:_1r3 101 R=n-; 1100
R 011 >0 11 o 01
3 3 °3,/0 0 -5 001 2 2 3,0 011
The solutionisx=y=z=0
.. The trivial solution is the only solution for this system.
2. X+2y-2=0
X+3y+2z=0
3x+8y+32=0
1 2 -1] Ry=r,-n [t 2 -1 R =re2r, N
1 3 2 01 3 01 3
R,=r,—3r R, =r,—2r
3 8 3 3 3 1,]0 2 6 ¥ 3 "2 4,00 O
X-—72=0 = x=7z
y+3z=0 = y=-32
z = any real number
.. This system has infinite,number of solutions.
.. The solution is the set {(7a,—3a,a):a € R}.
Exercises: .Salve the following linear systems by Gauss-Jordan method
(1) 2x-2y+2z=0 (2) x+3y-3z=0 3) x+y+z+w=0
A <7y +32=0 X+3y—-2z =0 X +w=0
2X—-y+22=0 2x+6y—3z=0 X+2y+z =0

a b
(4) Let A :{ d } Prove that the homogeneous system AX = O has the only trivial
C

solution if and only if ab — bc # 0.
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Abstract for the method of transformations on rows

(Gauss-Jordan method)

To find the inverse of the matrix A by the method (Gauss - Jordan), we write the

matrix A with the identity matrix in the following form: [A: 1] then transformed the
matrix A by the transformations of rows into I, and thus transforms I, to A- 1,

(performed the transformations of rows operator in both matrices at the same time)

Examples: Find the inverse (if exists) for each of the following matrices

1 2 3
(1) A=1 3 3
1 2 4
Solution:
123:100 R2=r2—r1>123.1o
1 33:010 01 0G > 1
R.=r,—r .
1 2 4 0 0 1 3 3 1,0 0.1 -1 0
1 0 3 3 20 1 00 6 -2 -3
R, =r —-2r R, =r, —3r
1 1 2,010 : -1 1~0 11 34010°:-11 0
0 0 1 —1NO 1 0 0 1 -1 0 1
6 -2 -3
So the inverse of the matrix Ais A1=|-1 1 0
-1 0 1
1 2013
(2) A={1L =2 1
5 -2 -3
Solution:
1 2 31100 Rz—rz—r1>1 2 311
1 -2 1 010 0 -4 4 -1 1
R.=r -br
5 -2 -3 0 01 3 s |0 -12 12 5 0




1 2 -3
At this point the matrix A is row equivalentto B=|0 -4 4

0O 0 O
So the matrix A is singular (A has no inverse).
110
(3) Find the value(s) of a which make the inverse of the matrix A={1 0 Q {yexists.
1 2ra
What is A™1?
Solution:
110:100| Ry=r,-rr 22 0: 1 00
100:010 10 -1 0 -1 1°0
_ R,=r,—r ,
1 2 a 0 01 3 3 1,10 1 a : -1,0
R1=r1—r3> 10 -ai 20 -] pep" [10-ai 20 -1
00 a {211 2. 3,01 a ! -10 1
R, =r +r
2 2 3,/01 a -1 0 1 0 0 a -2 1 1
To be the third row not equal to zero, itymust a = 0.
g [T 0 a2 0,0 R1=r1+ar3>1oo 0 1 1
—2 3,101 a -L00) L 010: 1 -1-1
00 1 AL 1 2= g o1 : 2 1 1
L a a a 4 a a a
0 154
So A=l 1, .21 1.
=271 1
L a a a

Exercises: Find the inverse (if exists) for each of the following matrices

- 2 3 4

(1) A:{ } (3) C=[0 -1 1
0 2

1 2 2

1 2 1 111

2) B=[2 4 2 4 D=|0 2 5

0 -1 4 5 5 1
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Solving Linear Systems By Using The Inverse

Consider the linear system A,.n X,.1 = Bn.1, Where the matrix A,., has inverse,
then anl = A;in an]_

Proof:

AX=B

A'AX)=A'B (multiply each side by A1)

(A 'A)X=A'B (the multiplication of the matrices is associative)
I, X=A'B (the definition of the inverse (A *A =1))
X=A"'B

Remark: We use this method when the matrix is square and.has/inverse.

Examples:
(1) Solve the following linear system by using the inverse’of the matrix
@ x+2y=4
3x+4y=5
: ) 1 2]x 4
Solution: The system can be written as follows =
3 4]y 5
We compute the inverse for the coefficients matrix as follows

[A ][ AT

{1 2 11 o} R,=r=31 {1 2 11 o}

7

34 :01 0 2 : =31
Rzz_;rz 251 0] gy oo [LOF -2 1 B
To1:3 2 1o 10 3 L[l A7
2 2 2 2
2 1
The inverse of the coefficients matrixis A™=| 3 1
2 2

The solutionisx=—-3 and y = %
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(b) 3x—4y=-5
—2x+3y=4

-2 3|y 4
We compute the inverse for the coefficients matrix as follows
[A ][ F AT

3 4 -5
Solution: The system can be written as follows { }{X } :{ }

{3 4 i1 o} R =r+r, \{1 -1 i1 1} R,=r,+2r {1 ~1

2 3 01 |2 3 101 0" 1

7

R =1+, (1 0: 3 4
01 : 2 3

i . . 3 4
The inverse of the coefficients matrix is A™ = {2 3}

X=A1B

<[ -3 T3]

The solutionisx=1 and y =2,

(3) Solve the linear system-\>10x; + 5%, + 3x3 =1

7X1—3X2—2X3:—2
—4X1+2X2+X3=O

-1

-10 , 5.3 1 1 -1
Where | 73 -2 =|1 2 1
~4 2 1 2 0 -5

-10 5 3| x 1
Solution: The system can be written as follows | 7 -3 -2||/x, |=| -2
-4 2 1 |x; 0

Since the inverse of the coefficients matrix given, then
-1

x| [-10 5 3 1 x| [1 1 =2]1] [-1
X=A'B = |x,|=| 7 -3 2| |2|=|x,|=|1 2 1]|-2|=|-3
X3 -4 2 1 0 X3 2 0 -5 0 2

The solution is x; = -1, X, = -3 and X3 = 2.
91

11
2 3

|



CHAPTER FOUR
VECTORS AND VECTOR SPACES

X
Vectors: Consider the matrix X = {y } of degree (2x1) paired with X the line segment

has a tail O(0,0) Its vertex is P(x,y) and vice versa with the directed line

segment OP . Y
Pixa)

— | X
The vector is in the plane: It is the matrix X = {y} ofidegree (2x1), where x and y

are real numbers called components of X.

— | X — | X
Equal vectors: The vectors Xz{yl} and Yz{yz} are equal if and only if the
1 2

corresponding elements are equal,-that is x; =X, and y; = ..

2 2
Example: The vectors { 0} and { 3} are not equal since the corresponding elements

in the second roware not equal

Remark: -The\beginning of the vector may not be the origin point, so its beginning
may becthe point (a,b). The line vector ﬁQ beginning from P(a,b) (not the origin

point)and ending with the point Q(X,y), so this vector can be represented by the vector
P'OY(x',y") whose beginning is at O and its vertex is the point (x —a,y — b).

Y Q)

P(ab) Q-ay-b=y)

X

P'(0,0)
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Examples:

. . |2
(1) If Q(s,t) is the vertex of the vector PQ, where P'Q'={3} whose beginning

P(-5,2), we can find the values of s and t as follows:
X—a=X =>s-(-5H)=2 =>s=-3
y—-b=y = t-2=3 = t=5

Y
'y

Q(-3.5)

3 | @3

A

v

Ve — |2
(2) If P(a,b) is the beginning of the vector PQ,, where P'Q'={3} and the vertex is

Q(7,5), find the value of each a, b ? N
Solution: i
7-a=2 => a=5 and 4
5-b=3 = b=2 .

| |

Definitions:
(1) The-length of the vector f((x,y) IS H?(H = /X 24 y 2.

(2) The length of the straight line segment P,P, it

Is the distance between the two points Py(X1,y1)
and P,(X,,y») which is equal to

Hﬁ“:\/(xz -x1)? + (Y, - Y1)’
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Examples:
(1) Find the length of the vector X = (6,—8)?
Solution:

X| = x2+y2 =\(6)% + (-8)? =+/36+ 64 =+/100 =10

(2) Find the distance between the two points P(2,3) and Q(5,-1) (The length@f'the

straight line segment @)?
Solution:

[PQ|=\(6-27 + (-1-3° =(3)" + (-4)° =25 =5

. X — | X
Remark: The two vectors X; :{yl} and X, ={y2} are parallel if x; y, = X Y,
1 2

that is, if and only if they are located on“vertical or straight lines with the

same slope,
y y Ya— ¥

If mj_:_l,mzz_z > m=m, = _1:_2 = X1 Y2 =XoV1.
X1 X2 X1 Xy

Operations on vectors:

Definition: Let both ‘X = (X4,y41) and Y = (X5,Y5) be vectors in the plane, so their

sum is X+V=(X1’Y1)+(X2’YZ)=(X1+X2’y1+Y2)-
Example:>Let )?z(l,S) and \7:(2,—2) , then

XAY =(@15)+(2,-2)=(3,3).
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Definition: Let X = (x,y) and k is any real number, then kX =k(x,y) = (kx ,ky)
If k>0, then kX has the same direction of X.
If k<0,then kX has opposite direction of X.

Remark: The vector O=(0,0) is called the zero vector and X+O =X,
Also §+(—1)§:6 and writes (—1)f( as the form —X and called minus X and
X —Y =X+ (-Y) called the difference between X and Y .

Note that adding two vectors represents ane of the diagonals of a parallelogram and
subtracting two vectors representing the other.

The angle between two vectors: the angle between two non-zero vectors
X = (X4,¥1) and Y= (X5,Y ) isthe angle 6 and 0 < 6 < 180°

HX — VHZ = HXHZ + HVHZ — ZHXHHVHCOSG (The law of the cosine) ...(1)
X-Y=(X; = X0 % (Y1 -Y,)
Hi —VHZ = (X4 _X2)2 +(y1 - Y2)2

2 2 2,2
XL+ Y1 +X5 +Y5 —2(X X +Y1Y))

IR N -2 02

Substituting in (1) we get that

1X 3.+ le 2
X[Iv]

cosf =2 . where HYH - OHVH #0
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Inner Product

Definition: Let i:(xl,yl) and Vz(xz,yz) be two vectors, the inner product of

the two vectors Xand Y or dot product is defined as

_— —

X-Y=XX,+VY.Y,
Accordingly, the previous law will be

cose:X—°Y . 0<0<

XlI¥1

Example: Let X =(2,4) and Y =(-1,2), then
XY =@ +@@ =6 , [X|=v2"+4> =20 Y| =41 +2* =5
6

V205

Cos0O =

=0.6=0=>53.2" approximately

Remark: If X-Y =0, then cos 6 = B.and the vectors are orthogonal if and only if

Example: The two vectors X'= (3,—4) and Y = (4,3)
are orthogonal since
X-Y =(3)(4) +(- 4@y =0.

(4.3)

|

i

G4

Theorem: Let X, Y and Z are vectors, K is any number, then

S 12 -
1) X-X= HXH >0 satisfy the equality if and only if X=0.

—_ - —  —

2 X-Y=Y-X (Commutative property)
(3) (i + V) Z=X-Z+Y-Z (The property of distributing multiplication on the addition)
@) (kX)-Y =X (kY)=k(X-Y).
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Unit Vector: It is the vector whose length is equal to one unit.

—

If X anon-zero vector, the unit vector is the vector U= WX

Example: Let X = (—4,3) be a vector, then

IX| = (4% +8* =16 +9+ 25 =5

- 4 3
U= —(—4,3) = (?,—) it is the unit vector because

0=+ =5 -1

Remark: Y
(1) i=(1,0) and j=(0,1) unit vector in R? they *m
" o

are orthogonal to where i lies toward the positive

oli ao
X-axis and j toward the positive Y-axis. [

(2) The vector X:(x ,Y) in R? we writesin terms of i and J in R? as follows
X=Xxi+VY].

Example: Let X = (-3,7),then X=-3i+7j.

Vector of type n

Definition; The matrix X=| . is said to be a vector of type n and X,Xa,....Xn

LN dnx1

called the components of the vector X.

X1 Y1
< _| X2 o _| Y2 _ _
Remarks: The two vectors X =| . and Y = : of the type n is equal if
R [Yndha

(A <i<n)and (xi = V).
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1 1]
— |3 — |3 .
Example: The two vectors X = @ and Y = @ of type 4, X #Y since the third
5

5
component of them not equal (4 #- 2).

Remark: The vector can also be written in a row. For example, in the ‘previous
example the vectors can be written as X =[1,3,-2,5], Y =[1,3,4,5].

Operations on vectors:

Let X= [X1, X2, ..., Xn] and Y = [y1, Y2, ..., Yo}-b& any vectors, k any number,
then

Q) kX = K[Xs, X, .., %] = [K X0.K X -k X]
2) X+Y =[X1, X5 ooy Xol * [Y1r Yoo oos Ya XL + Y1, X2 + Yo, .o Xo + Y]

(B) X=Y=X+(=Y)=[Xs, X, .o Xab= [Y1, Yoo --os Yol = [Xe = Vi, Xo = Yau «vos Yo — Vil

Meaning multiplying a \vector by any number, it is the same to the law of
multiplying a matrix by a number, as well as addition and subtraction.

— — — |13 -5
Example: Let X; £[2,3,4], X, =[-1,2,6] , X3 Z{EZE} , find the value of
. AN\ 1 — —
(1) 2X;£X,-8X5 (2 E(Xl - X3)
Solution:
) . . 13 -5
(1) 2X1 + X2 _8X3 = 2 [2,3,—4] + [—1,2,6] _8 E;Zv?

=1[4,6,-8] + [-1,2,6] - [4,6,-5] = [-1,2,3]
®) %(Yl’ ~X,)= % ([2.3-4] - [-1,2,6]) = % [3,1,-10]

L2+
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Exercises:
(1) Let X; = [3,1-4], X, =[2,2-3], X5 =[0,-4,1], X, =[-4,4,6], prove that
(a) 2X; —5X, =[-4,-8,7]

(b) 2X, +X, =0
(c) 2X; —3X; X3 =0

—

d)2X, - X, -X.+X,=0
1 2 3 4

(2) Draw a diagram of a straight segment directed at R? Awhich represents the
following

— |2 — |3 — |3 -5 0
@ Xl{g} (b) XZ:M © Xg{_s} (@ &{_J

(3) Find the vertex for each of the following vectors and draw a diagram for it

-2
(a) The vector 5 } and the tail (3,2):

2
(b) The vector 5} and the tail, (Z,2).

(4) Find X+Y , X<¥and 3X - 2X
(a) X =(2,3)5X.2(-2,5).
(b) X=(0,3),Y =(3,2).

(5) Let iz(l,Z),Vz(—BA),Zz(X,4),U=(—2,y),find x and y such that

—

. 3. o
(@ Z=2X (b) EU:Y (c) 2z+U=X
(6) Find the length for each of the following vectors
(@ (12) (b) (3-4) (c) (0.2

(7) Find the distance for each pair of the following points
(@) (34).(2,3) (b) (34).,(0,0) (c) (2,0),(0:3)
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(8) Find the unit vector with the direction of X
@ X=(-34) () X=(-2-3) (c) X=(5,0)

(9) Find XY for each of the following vectors
@ X=(12),Y=(2-3) (b) X=(-3,-4),Y=(4,-3)

(10) Prove that
@ i-i=j-j=1  (b) i-j=0

(11) Which of the following vectors X;=(1,2), X»=(01), X;=(-2,-4),
X, =(-21), X5 =(2,5), Xg =(-6,3) are
(a) orthogonal (b) In the same direction

Theorem: Let X,Y, Z be a vectors in RS and let ¢ and d numbers, then

(@) X +Y vectorin R" (R" is.closed under the addition of vectors operation)
ﬂ)§+7:7+§
(2) X+(Y+2Z)=(X+X)+Z

—

(3) There exists unique vector O which is called zero vector in R" such that
X+0=0+X=X.
(4) There éxists unique vector —X in R" such that X+(=X)=(-X)+X=0

(b) ¢ X“vectorin R"
(B)}-c(X+Y)=cX+cY
6) (c+d)X=cX+dX
(7) c(dX)=(cd)X
8 1- X=X
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Definition: The length of the vector of the norm X =(X1, X2, ..., Xp) IN R" is

HXH:\/X12+XZZ+...+X§: /ﬁ‘ixf (1)
=

Or it is a distance between the point (x4, X, ..., X,) and the original point.

Example: Find the value of the numerical constant k to make the norm.of the vector
A =(5,3,k) equal to /50 ?
Solution:

HKH :\/52 +3% +Kk?

\/%:\/25+9+k2
J50 =+/34 + k?

50 = 34 + k* Square both sides
5034 =Kk
16=k> = k=T4

Definition: The distance between(the points (X¢, Xo, ..., X,) and (Y, Yo, ..., Yn) is the
length of the vector X —Y where X =(Xy, Xo, ..., X,) and Y= (Y1, Y2, -5 Yn)-

XY= —yD2E (o —y o) 4ot K~y =30 -¥)? | @)
i=1

ExamplesLlet X =(2,3,2,-1),Y =(4,2,1,3)

>?H=\/22 + 32422 1 (-1)% =18

VH=\/42+22+12+32 ~J30

X-Y|=y(2-42+(3-2%+@-1%+(-1-3? =v22
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Example: Find the value of the numerical constant k to make the distance between
the vectors A =(3,—1,6,3) and B = (2,k,1,-4) equal to 6 units? (Home work)

Remarks:
(1) The length of the vector represents the distance between the vector and the original
point.

(2) The distance between two vectors in R" represents the distance betweéen’ the
vertices points of the vectors.

(3) Prove that H)? - VH = HV - f(H

Inner Product on R"

Definition: Let X:(xl, X, ..., Xn) @nd Vz(yl, Yo, . -3Yn) Vectors in R" then the inner
product is defined as the form

—_— —

XY= XpY1+Xo Yo+ ...+ Xn Y

I n
XY =2 XY
i-1

The inner product is also called*point product.

Example: Let X =(2/3,2,-1) and Y =(4,2,1,3) two vectors, then
XY =(2)4) +@)2) + Q1) + (-1)(3)=8+6+2-3=13

Cauchy-Schwarz Inequality

Theorem: Let X,Y beavectorsin R", then | X-Y|< || XI|[IIY]l.
Proof: If Y = O, then|IY lI=0and X-Y =0 and the theorem satisfy.
Let X=0O,Y =0 and r arbitrary fixed, then

(X =rY)(X-rY)=0 (previous theorem)

X-X -2rX-Y +r’Y-Y >0

IXIZ=2rX-Y +r* 1Y >0
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: : : XY
Because r represent any constant, the inequality above is true when = ﬁ

—_— — —_— —

XYoo (XYY
IXIP-2=—=X-Y+|S—= | IYI? >0
Y-Y [Y-Yj
2 — )’
||X||2—2(X°:) + (X:) IY1? =0

M UM
— 2 -
LS NS
MM

IXINY 12— 2(X-Y)?+(X-Y)’>0 multiply by 4l Y-II2

2

I X 11> =2

IXIPNY 13- (X-Y)?=0
IXIANY 112> (X-Y)?

. I —2  |—
| XY <IXIYI (\/ X = ‘XU , taking the square root of both sides

Example: Let X = (2,3) and Y_= (1,0), then
X-Y =(2)(1) +(3)(0) =2

[ =v2* + 3 =3 V] =1+ 0" <1, [ [Y]= VI3 =13

X-¥|=2<3={X]|v]

Definition® The angle between the two non-zero vectors X and Y is the unique

number 6 and 0 < 0 < &, where COSO = %
X ]

From Cauchy-Schwarz inequality we note that <1 also we know that

X1[¥]

lcos O] < 1.
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Remark: We note that ‘Y-V‘:\COSO\HYHHVH. That is, the Cauchy - Schwarz

inequality becomes equal if we multiply the right-hand side by the absolute cosine of
the angle between the two vectors

Example: Let X=(1,0,0,1) and Y =(0,1,0,1), then
M-z ]2 X -1

Therefore,

cos0 = ff 1l pocostl o o-60e
X||¥] va2v2 2

Exercise: Find the angle between each of the following vectors:

(1) X=(0,1)and Y= (1,0) Solution: 902

(2) X=(0,0,1) with itself Solution:'Q°

(3) X=(0,0,1)and Y= (1,0,1) Solution: 45°

(4) X=(2,3,4) with itself Solution: 0°

Definition: Let X,Y be a vectorsin R" we say that

(1) X and Y are orthogonalif X-Y =0 or if one of the vectors is zero.

—

2) X and Y are parailel if \XV\:HXHHVH

(3) X and Y arein the same direction if X - Y :HYHHVH

Remark:The previous definition can be formulated as follows:
et X,Y be avectorsin R" and 0 is the angle between them, then

—

(1) X and Y are orthogonal if cos 6 = 0.

(2) X and Y are parallel if cos 6 = + 1.

(3) X and Y are in the same direction if cos © = 1.
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Example: Let X =(1,0,0,1), Y =(0,1,1,0) and Z= (3,0,0,3).

X-Y=0,Y-Z=0,s0 X and Y are orthogonal, also Y and Z are orthogonal.
X226, [X|- 2. |25 — [qJ2|-~25 38 -0 %2

Thus X and Z are parallel and because X - Z positive then X and Z are in the same
direction.

Exercise: Any pair of the following vectors is parallel and which is orthegonal
X1 = (2,3-1-1), X, = (-2,-1,-3,4), X3 = (1,2,3,-4), if there is.a parallel pair are
they in the same direction?

The following theorem is a result of the Cauchy-Schwarz inequality and it is
called the triangle inequality

Theorem: Let X,Y be avectorsin R", then HY +7H§HXH+HVH
Proof:

| X+ YIP=(X + Y)(X +Y) (X-X =1l XII>>0 by previous theorem)

=X X +2(X-Y)+Y Y

= IXIP+2(X5Y) +1 Y12

<IXIPD20XIY I+ 1Y > Cauchy-Schwarz inequality

= (X1 + 1Y 1)
IX A=< IXT+ 1Yl taking the square root of both sides

The following theorem is also an important theorem which is called Pythagorean
Theorem.
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Theorem: Let X,Y be a vectors in R", then HY +7H2 :HYHZ +H\7H2 if and only if

—

X and Y are orthogonal.

— = =2
Proof: (=) By previous theorem X-X:HXH >0 we get o
K=Y =
. o i X
IX+Y IP=(X+Y)(X +Y) —
Y
=IX 1P+2(X-Y)+1Y |? (D

when [X + ¥ = x| +[¥[ then 2X-¥) =0, then
X - Y =0 which is mean that X and Y are orthogonal.

(<) X and Y are orthogonal, then X - Y =0 and so equatioh.(1) become
e =+

Example: Let X =(0,0,0,3) and Y = (0, 4,3:0)

X|-va-3 . [V]-v25-s . [x]+[v}e

X+Y =(0-433)= HX 4 VH:

IX+Y1IP=34=3+5 = XIP*IY |

XY =0, so we get that X.‘and Y are orthogonal

Definition: The unitivector U in R" is a vector of length one unit.

—

If X is a noh.zero vector in R" then the vector U defined as u :WX IS a unit
vector ifrtHe same direction of X .

Example: Let X = (1,2,2) and Y = (2,0,0), then IX11=3and Y =2

The two vectors U and UZ defined as

Are unit vectors in the same direction of X and Y respectively.

(122) (200)
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—

In the case R indicates unit vectors in the positive directions of the axes X .Y
and Z symbols i = (1,0,0), j = (0,1,0) and k = (0,0,2).

Also the vector X = (x,y,2) in R® can be written by using the form of the unit vectors

I, j and k as the form X =Xi+yj+zk.
As example the vector X = (2, —1,3) writes as X =2i —j+ 3k

In general: in the case of R" the unit vectors in the positive directions of the axes are
U; =(1,0,0,...,0) , U, =(0,1,0,...,0) , ..., U, =(0,0,0,»,1) which are mataually
orthogonal.

If X=(Xp.Xo,.... %) then X =xU; + XU, + ... KX, U,

Exercises:
(1) Find the unit vector U in the samedirection of X for each of the following
(@) X =(2,-1,3)

(b) X =(1,2,3,4)
(c) X =(0,1-1)
(d) X =(0,-1,254)

(2) Write X~and Y In terms of unit vectors i, j and k, where X= (1,2, -3) and
Y =23, -1).
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Vectors Space

Definition: We call V a real vector space (or V vector space over R) if the set of

elements has two operations:

@: Binary operation on vector space, i.e. ® :V—V

O©: The multiplication operation © is an application from R xV to V, and called the
multiplication operation by a real number. Meaning O: R xV—— V

Satisfy the following axioms:

First: Axioms of Addition

(1) Closure: The effect of vector addition, i.e. if X,Y eV, thén (Y+V) eV.

(2) Associative: If X,Y,Z eV, then (X+Y)+Z=X+(Y.+2).

(3) Identity element: For addition there exists an‘€lement denoted by (6) such that,
X+0=0+X =X , V XeV

(4) Addition Inverse: For all X e V there'eXists Y e V such that
X+Y=Y+X =0, Y is called the-inyerse of X and denoted by (-X).

(5) Commutative: For all X, Y ey X+Y=Y+X,

Second: Axioms of Scalar (Real) Multiplication
(6) Forany o € R and.any X eV, thenaX e V.
(7) Ifa, B e Rand-Xe V, then (o B) X = (B X).
(8) For any X &V, then 1. X= X.

Third: Axiems of Distributives
(9) eyB e Rand Xe V,then X +BX =a X (o + B).
(10)1f o € R and X,Y eV, then oc(f(#?) —aX+aY.

Remark: We call for any element of vector space by a vector.
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Example: Show that R (set of real numbers) with addition and multiplication
operations is a vector space

Solution:

First: axioms of addition:

D If x,ye R, thenx+yeR (closing by the effect of the addition operation)
@) If x,y,ze R, then(x+y)+z=x+(y+2) € R (theaddition operation is associative)
(3) 0 € R (identity element), Vx € Rthenx+0=0+Xx=X.
4 xeRand—x e R, then x+(-X)=(—-x)+x=0

(— x) is the additive inverse for x.
B)x,y e R, thenx+y=y+X (the addition operation is commutative)

Second: Axioms of Scalar Multiplication

(6) If X,y € R,thenxy € R (closing by theeffect ‘of the multiplication operation)
(MIFxy,zeR, then(xy)z=x(y2) e R (thecmultiplication operation is associative)
BleR1-x=x-1,Vxek.

Third: Axioms of Distributives

O If x,y,ze R, then(x+y)z=x7z%tYy7z e R.
(10) If x,y,ze R,thenz(x+y)=zx+zy e R.
Thus (IR,+,-) is a vector space.

Remark: If V is a veCtor space on the set of the complex numbers C then it is called
complex vector space:

Example: The set | (set of integer numbers) with addition and multiply be a real
number not a vector space, i.e. (I,+,-) is not a vector space.
Solution:
The, operation of multiplication by a real number does not satisfy or what is called
(elosed in effect of the multiplication operation).
Takex =8 e I, azl,then X =1-8:§¢I.
3 3 3

So, (I,+,-) is not a vector space.
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Example: Check in detail that R* vector space, where R ={(a,b):a,b e R} if (+) and
() defined as the formulas

(b)) +(a,,b,) =(a, +a,,b, +b,)

k (a,b) =(ka,kb)

Solution:

First: axioms of addition:

(1) Let X=(a,,b,),Y =(a,,b,) € R? a,,b,,a,,b, e R
i"‘ V = (a17b1) + (a27b2)

=(a, +a,,b, +b,) e R?2 (definition the addition operation of.two vectors)
R R
S (S

=~ The closure operation with the effect of vectors addition satisfy

(2) Let X =(a,,b,),Y =(a,,b,).Z = (a,,b,) e R?,a,,b,,8,.0,,8;,b, e R

(X+Y)+Z=((a,b) +(a,b,)) + (a.b,)
:(a1 + a2’b1 +b2) + (ae7b3)
=((a, +a,) +a,,(b, +b,) +by) 7 (definition the addition operation of two vectors)
=(a, + (@, +a;),b, + (b, +b;))  (the addition of numbers is associative)

(i + V) + 2 :(311b1) + (3.2 +a3’b2 +b3)
:(ai’bl) + ((azibz) + (as’b3)
=X+ (Y +2)
=~ The associative operation is satisfy
(3) For all X =(a/b)&R? there exists O = (0,0) € R? such that
X + O=(@@b)*+ (0,0)
=(@+0,b +0) (definition the addition operation of two vectors)

=(a,b) =X (Zero is the additive identity element of numbers)
=~ The identity element exists

(4) For all X =(a,b) e R? there exists —X = (-a,—-b) € R? such that
X +(-X)=(a,b) + (-a,-b)
=(a+(-a),b + (-b)) (definition the addition operation of two vectors)
=(0,00=0
~ The addition Inverse exists
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(5) Let X=(a,,b,),Y =(a,,b,) € R? a,,b,,a,,b, e R
X+Y= (a1’b1) + (a27b2)
:(a1 + aZ’bl +b2)
=(a, +a,,b, +b,)
=(a,,b,) + (a,,b,) (the addition of numbers is commutative)
=Y +X
~ The commutative property satisfy

Second: Axioms of Scalar Multiplication
(6) For any X = (a,b) e R? and for any number r e R

rX=r(ab)=(ra,rh) e R?

eR eR

(7) For any X = (a,b) e R? and for any numbers r,t e R

(rt)X =(rt)(@,b)=((rt)a,(rt)b) (definition the scalar multiplication)
=(r (ta),r (tb)) (the multiplication of numbers is associative)
=r(tath) (definition the scalar multiplication)
=r(t(a,b)) (definition the scalar multiplication)
=r(t X)

(8) For any X = (a,b) € R%-and for any number 1e R
1-X =1(a,b)
=(1a,1b) (definition the scalar multiplication)
=(a,b)=X

Third: Axioms of Distributives

(9)'For any X = (a,b) e R? and for any numbers «, 8 R
(a+ B)X=(a+pB)ab)=((a+Ba,(a+p)b) (definition the scalar multiplication)
=((aa + pa),(ab + pb))
=((aa,ab) + (pa, pb))
=(a(a,b) + p(ab))
=a§+ﬂ§
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(10) Forany X =(a,,b,),Y =(a,,b,) €R?a,,b,,a,,b, e R and any e e R
ai 1 2 2 al 1172 2

0((?( + v) =a((a,h,) +(a,,b,))
=a(a, +a,,b, +b,) (definition the addition operation of two vectors)
=(a(a +a,),a, +b,)) (definition the scalar multiplication)
=(0(6\1 +aa,, abl + O{bz) (the multiplication distribution over the addition of numbers)
=((aa,,ab,) + (¢a,,ab,))  (definition the addition operation of two vectors)
=a(a,b) +a(a,,b,) (definition the scalar multiplication)

—aX+aY

. R?is a vector space

Exercise: Prove that R® is a vector space where R® ={(a,b,c):a,b,c e R}?

Definition: Suppose R" ={(x,,X,,...,X,): X e R}fori =1,2,...,n and let
X=Xy, X0 X, Y = (Y1, Y oo ¥ ) R define addition operation on R" as

§(+7:(x1,x2,...,xn)+(yl,yz,...,yn)
=X, + Y X, Yo X, RY L)

© Multiplication by a scatar (standard) or real number on R"

FX =r(X;,X,,..X,) =X, X,,...,1X,)

Exercises:
(1) Show. that (R",®,0®) is a vector space.

a
(2) Let W=M,, = {:13 az},ai eR,i =123, 4} be a set of all matrices of degree 2x2
4

with the addition and multiplication by a real number on matrices. Prove that W is

a vector space on R.
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Example: Let V ={(x,,X,):x;,X, e R,X, :;xl +1}. Is (V,+,:) vector space such that

(+) is the ordinary addition on R? and (-) is the ordinary multiplication of an element
in R? by a real number k.
Solution:

Let X,Y eV such that

X=(a,a,),Y=0,b,):a,a,b,b, eR a, =2a1 +1Db, =;b1 +1
X+Y=(a,3,)+([b,b,)=(a +b,,a, +b,)
%+@:¢q+D+QQ+D

1 1
="a, +1+ b, +1
o 2

:;(a1+b1)+2

;«ti(a1 +b,)+1

L X+YeV
For an example: X,Y eV such that"X = (0,1) ,1:i(0) +1and Y =(2,2), Z:i(Z) +1

X+Y=(0,1)+(2,2) = (2,3)@V because 37&;(2) +1.

So the addition operatien.not closed on V.
~ (V,+,") is not vectorspace.

Exampler Let V ={(x,,X,,X;) X, X,, X, € R}. Is (V,+,:) vector space if (+) and (-)
defined as'the formulas ¢ X =c(x,X,,X ;) = (cX,,X,,X;)and
XENV= (%%, %3) + (Y1, Y50 Ys) = (Xy + Y1.X, + Y5, X5 +Y5)
Solution:
In this example all the conditions satisfy except the first condition of axioms of
distributives in (Third).
Let X=(a,b,c)eV, a,feR
(a+ B)X=(a+p)ab,c)
=((a+ p)a,b,c)
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aX+ X =afab,c)+ B@b,c)
=(aa,b,c) +(pa,b,c)
=((a+ p)ab+b,c+c)
=((ax+ p)a,2b,2c)

((ax + B)a,2b,2c) # ((a + B)a,b,c)
v aX+ fX# (a+ X
~ (V,+,)) is not vector space. (Make sure the rest of the conditiong-are satisfy)

Example: Is (V,®,0) vector space where © and © are defined as the formulas
cOX=c(X;,X,,X;)=(cx,,0,0)

XOY = (XX Xg) ® (V1,Y 5, Y3) = (Xy + Y1, X, + Y Xg Y 5)

Solution:

(V,®,0) is not vector space, because if X = (X;3X,,X,) eV X, X,,X; R

10X =1(X,,X,,X;3) = (X,,0,0) # (X, X, %) 1O X # X .

Example: Let V be the set of(the solutions of the system of linear equations
A Xnua = B such that Bi)# Om.a. IS (V,+,:) vector space with the addition of
matrix and multiply the matrix-by a number.

Solution: Let X,Y eV
AX=B ..(1) & AY=B ..(2)

A(X+Y)=AX+AY
=B+B=2B From (1) and (2)
#B

. (i + 7) ¢ V
" (}? + V) not necessary that the system of linear equations has solution.

~ V not closed under the addition operation
~ (V,+,") is not vector space
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Exercises:
(1) Let V={(x,y):x,y e R,y =2x}. Is (V,+,") vector space?

(2) Let V be a set of real functions defined on R then (V,®,©®) is a vector space where
f.gev,ceR,(f ®g)(x)=Ff (x)+g(x),c ©g)(x)=c-g(x)

(3) Let V={(x,,x,,0):x,,x, eR}. Is (V,®,0) vector space where defined.as 'the
formulas (x,,x,,0)®(y,,y¥,,0)=(x; +y,,X, +VY,,0) and
C O X =C(X,,X,,X;)=(cX,,X,,0)

(4) Let V be the set of all polynomial vectors of degree (2) or less;p € V, where for all
X eR,p(X)=ag+aXx+ax,ana,ac R,forp,qeV
P(X) = @ + arx + aX*, q(X) = bg + byx + bX?, ag, a;, asbg-by, by € R
(p @ 0)(X) = (a0 + bo) + (ar+ by)X + (az+ by) X°

(c Op)(X) = cag + (cayx + (ca)x’; c e R

Prove that (V,®,©) is a vector space.

(5) Show that is the following sets with the operations defined below represent a
vector space and if not, whiehcenditions are not satisfy?

(@) The set of all ordered triads of real numbers (x,y,z) with the two defined
operations (X,, Y5427) ®(X,,Y,,2,)=(X; +X,,¥,+V¥,,2,+2,) and

coOX,y,z)=(x,L,2).

(b) The set’of all ordered triads of real numbers in the form (0,0,z) with the two
defined operations (0,0,z,) ©(0,0,z,)=(0,0,z, +z,) and
¢ (0,0,z2)=(0,0,cz).

(c) The set of all ordered pairs of real numbers (x,y) with the two defined
operations (X,,Y,) ® (X,,Y,) =(X; +X,,y, +Y,) and c ©(x,y)=(0,0).

6) LetV={f;f: R— R, f(0) =1} Is(V,+,) vector space?

(7) Which of the following is a vector space with ordinary addition and multiplication

over R?
) W={(x0;xeR} (i) W={(x1);xeR} (iii) W={(xx); x e R}
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(8) Which of the following is a vector space with ordinary addition and multiplication
over R®?
(i) W={(a+3bab);a,beR} (i) W={(—a,-2a,a);acR}

(9) Which of the following is a vector space with addition of matrix and multiply the
matrix by a number?

() W={[ajl20; 212 = 0, &; e R} (i) W ={[ajl2.2; 811 = a2 = 0}

(iii)W:{S ; 8} ,a,b,c,deR}

Subspaces

Definition: Let V be a vector space and W is a non‘empty subset of V, if W is a vector
space for the two operations defined on V we say.that' W is a subspace of V.

Examples: Let W = {(a,b,1); a,b e R}, W &"R?, is W a subspace of R*?
Solution: Let X,Y € W, where
i:(%’bl’l)vvz(azibbl)
X+ Y =(a,b,1) +(a,b,.0)
=(a, +a,,b, +b,,2) (@ +a,,b, +b,,1)
(}—(+\7)¢W

Thus W is no@-subspace of R®.

Theorem:>Let V be a vector space with the two operations @ and ©, ¢ # W < V. Then
Wiisasubspace of V if and only if the two conditions satisfy

(1) X,Y eW, then X®Y eW
(2)IfteR and XeW, thent© XeW

Proof: (=) LetWc V
. W is a subspace from the definition.

. W is closed for addition and closed for multiplication by a number i.e. properties (1)
and (2) are satisfied.
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(<) If W is closed for addition and closed for multiplication by a number, we must
prove that W is a vector space.

First: axioms of addition:

(1) W closed for the addition from hypothesis.
() If X,Y,ZeW, then X,Y,ZeV because W c V
But the addition is associative on V (since V is a vector space)
XeY)oZ=X® (Y DZ)
.. @ associative on W
(3) Let XeW, because W is closed for multiplication by>a number, so
(-DX=-XeW
XOX=(-X)®X=0 (W closed for the additiorn)
Thus —X the additive inverse for the vector X.
(4) Because (-X)eW and X @ (-X) =(-X) ® X =0 (W closed for the addition)
Thus OeW. So O is the identity element for the addition operation.
(5) If X,Y e W, then X,Y eV because W &V
But the addition is commutative onA/(since V is a vector space)
L XOY=Y®X
.. @ commutative on W
Second: Axioms of Scalar,Multiplication

(6) W is closed for multiplication by a number by hypothesis.
(7) Let o, p e R*and’X e W, then X € V because W < V
But V is.a vector space, thus (¢8)X = a(SX) e W.

(8) Let X.&W, then X eV because W c V
But'V'is a vector space, thus 10 X =X .

Third: Axioms of Distributives
(9) Leta, B €R and X e W, then X eV because W < V
But V is a vector space, thus (o + 8)X =aX ® X.

(10) Let o e R and X,Y e W, then X,Y eV because W c V
But V is a vector space, thus a(X® Y)=aX® aY.

Therefore (W,®,0®) is a vector space and also is a subspace of (V,®,0).
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Example: Let W ={(a,b,0); a,b e R}, W < RR?, is W a subspace of R*>?
Solution: Let X =(a,,b,,0),Y =(a,,b,,0) e W
(1) X+ Y =(a,b,,0) + (a,,b,,0)
=(a, +a,,b, +b,,0)
Since the third component equal zero, so X+Y e W
(2) Let X=(a,,b,,0) e W, € R, then aX = a(a,,b,,0) = (aa,,ab,,0) e W
aXeW
The two properties are satisfy, thus W is a subspace of R®.

Exercise: Let W={(a,b); b=2a,a, be R}, W R?. Is W subspace of R??

Remarks: If (V,®,0) is any vector space, then

(1) (V,®,0) is a subspace by itself because V < V and V is a vector space.

(2) W = {6} is a subspace of V.

Therefore for any non zero vector space there.exists at least two subspaces of it.
Proof (2): Oe W, then O+0=0eW.

. W is closed for addition operation

OecW,axeR,then a-O=0eW

. Wis closed for multiplicationby a number
. Wis a subspace of V

Exercise: Let V=R?* W ={(xy);ax+by=0,x,y eR}wherea and b are real
numbers. Provesthat W is a subspace of R?.

Examples:

(1) LetyAX =0 homogeneous system where A is a matrix of degree mxn and let
W < R" contains all the solutions for this homogeneous system, then W is a
subspace of R",

Solution: Let Y,ZeWcR", then Y and Z two solutions for the homogeneous

system, i.e. AY=0 and AZ=0

@) AY+Z)=AY+AZ =0+0
~AY+2Z2)=0
Thus Y + Z solution for the homogeneous system, i.e. Y + ZeW.
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(b) Lett eR,Y e W
AtY)=t(AY) (by previous theorem)
=t(0)
AtY)=0
LtY eW
Thust Y is a solution for the homogeneous system, i.e.tt Y e W.

Therefore W is a subspace of R".

(2) Let V be a vector space and let U and W two subspaces-of\V. Prove that
G =U N W is asubspace of V.

Proof: It is clear that G = ¢ because O Uand O € W, s0 0. Un'W

(@) Let X,YeG = X,YeU = X+YeU (U'is a subspace)
Also, = X,YeW = X+YeW (W is a subspace)
Thus X+YeG

(b) Let ¢ e R, aXeU and a?(eW,thus aXeG
~ G Is a subspace of V

Exercises:
(1) Let W = {(x,y,2); a x +"by+cz = 0}, a, b, c € R not all zero. Show that W is a
subspace of R®.

(2) Let W = {A: A“ls-a square matrix of degree 2x2 and invertible matrix}. Is W
subspace of Vi=M,,»(IR)}.

(3) Let W be a set of the diagonal matrices of degree nxn. Is W subspace of
V =Muan(R)}.

(4). Let W = {A: A is a square matrix of degree 2x2, A*> = | }. Is W subspace of
V= szz(R)}.

(5) Which of the following sets of R® is a subspace of R®, set of all vectors of the
form:

(@) (a,b,2) (b) (a,b,c),wherea+b=c
(¢) (a,b,c), wherec>0 (d) (a,b,c), where a=c=0
(e) (a,b,c), where 1+2a="hb (H (a,b,c), wherea=-c
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(6) Show that the set of the solutions for the system AX =B, where A is a matrix of
degree mxn not a subspace of R" if B = O.

(7) Let V be a vector space, U and W are two subspaces of V. Prove that
G=U+W={u+w,ueUand weW}isasubspace.

Linear Combination

Definition: We say that the vector X is a linear combination7of the vectors
X, X,,...X, if we can write it as the form X=c¢, X, +¢,Xz+7.+C X, where

C;,Cy,...,C, are numbers

11

Examples:
(1) Consider the vectors X, = (1,2,1,-1), X, =(1,0,2,=3), X, =(1,1,0,-2) in R*, show
that the vector X =(2,1,5,-5) is a linear combination of X,,X,,X,.

Solution: Suppose that we have C,, C, and C3 where

C1z+czfz+cszzx
c1(L1,2,1,-1) + ¢5(1,0,2,-3) + c5(1/40:-2) = (2,1,5,-5)

(C]_,ZC]_,C]_,—C]_) + (021012021_302) + (C3’C3101_2C3) = (2;1151_5)

(C1 + Cy + C3, 2C1 + C3,C1,#.2C5,— C1 — 3Cy — 2C3) = (2,1,5,—5)

Ci+tCr+C3=2 (1)
2C +c3=1 (2)
Ci+2C, A 55 ...(3)

—643¢,-2¢c3 =5  ...(4)

We use Gauss-Jordan reduction method to find the values of C,, C, and C,

101 01 ¢ 27 Re=2n o1 1 27
2 0 1 i 1| Rg=ryn [0 2 -1i -3

12055R_r+r01—153
4a—4 1,510 2 -1 -3
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Ri=l—T3 . 11 0 2 : _1

R2=I‘2-|—2I’3 . 0 0 -3 -3
“lo 1 -1 3

R,=r,+2r

44 —35100 3 : 3]

Cp+2c3=-1 _ 1 _1q
36,23 = cy=—1 Cme=-1 =06=
CZ—C3:3 CZ+1:3 = C2=2
_3C3=3:>C3:—1 C3:—1

Therefore

1(1,2,1,-1) +2(1,0,2,-3) - 1(1,1,0,-2) = (2,1,5,-5)
~. X is a linear combination of X, X, and X,.

(2) Let X, =(1,2,-1) and X, = (1,0,-1) two vectors'in R®. Is the vector X =(1,0,2) a
linear combination of X, and X, .

Solution: The vector X to be a linear ¢ombination of X, and X, we must find two
numbers c, and ¢, such that

Clz + C2X—2 =X
c1(1,2,-1) + ¢c»(1,0,-1) = (1,0,2)
(C1,2€1,— C1) + (C2,0,— ¢3) =(1,0,2)
(cq + ¢y, 2¢4,— €1 — C,)-2(1,0,2)

cCit+c,=1 (1)
2c, =0 Y.(2)
—C—Cp =2 ...(3)

We use-Gauss-Jordan reduction method to find the values of C, and C,

1Y 1 i 1] Repe2r [101 01

. —> .

2 0 : 0 0 -2 : 2
: R3:r3+r1) .

-1 -1 : 2 O 0 : 3

The third row means 0 ¢; + 0 ¢, =3 = 0 = 3 which is impossible.
Thus the system has no solution.

~. X is not a linear combination of X, and X, .
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Exercises:
(1) Which of the following vectors is a linear combination of the vectors

X,=(21-2), X, =(-2-1,0), X,=(4,2,-3)
(@) X=(10,0) (b) X=(0,01) (c) X=(@11) (d) X=(4,2,-6)

(2) If possible express the vector (1,1,1) as a linear combination of the vectors in.R’
X, =(21-3), X, =(1L2,-2), X, =(2,-5,-1).

(3) If possible express the vector X =(4,5,1) as a linear combination-of the vectors
in R® X, =(1,21),X,=(231), X,=(11,0). (the solution ¢cz=2, c,=—1, c3=4)

Theorem: Let V be a vector space and X,,X,,..., X, ¢V and let W be a set of all

linear combination of the vectors X,,X,,.., X, , i.e.
W ={c,X, +C,X, +..4C, X, ,C,,C,,....C, € R}, thén-W is a subspace of V.
Proof: because O =0X, +0X, +...+0X

L 0eW=W=d
~WcCcVv
(1) Let X,Y € W so there exists§,}C,,....c. € R such that X =c¢, X, +¢,X, +..+C, X,
and there exists d,,d,,...;d, € R suchthat Y =d,Y, +d,Y, +..+d, Y,
X®Y = (¢, X, +C,X+...4¢, X, )® (d,Y, +d,Y, +...+d, Y.)

= (CQODX, +(C, +d,)X, +.+ (¢, +d,)X,

X®Y =g, X, +e,X, +..+e, X, wherec,+d,=e,c,+d,=e,,..c +d =e
AX®YeW (W closed for the addition)
2) Let X =¢, X, +¢,X, +..+¢, X, e Wt eR
tX=t(c,X,+¢,X, +...+¢, X, )
= (tc,)X, + (tc,)X, +...+(tc )X,  Axioms of Scalar Multiplication: (e,8)X = a(5X)
=k, X, +k,X, +..+k X, k,=tc, ,i=12,..,n

LtXeW (W is closed for multiplication by a number)
Therefore W is a subspace of V.
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Span (Generating) Set

Definition: Let S={X,,X,....,.X,} be a set of vectors in a vector space V. We say that

the set S spans V or V generated by S if any vector in V is a linear combination of the
vectors of S.

Examples:

(1) Show that the set S = {(1,0), (0,1)} spans R”.

Solution: We must prove that every vector in R?* can be written as a linear
combination of the vectors (1,0), (0,1).

Let (a,b) e R?, to find the values of the numbers ¢, and ¢, such that

(a,b) = ¢4(1,0) + c»(0,1)

=(€1,0) + (0,c2)

=(c,c)) > c1=a, C=b
- (a,b) =a(1,0) + b(0,1)
. Sspans R?.

(2) Let X, =(1,2),X, =(-1,1) show.that the space spans by the set {X,,X,} is R?.
Solution: Let X=(a,b)eR*abeR, to find the values of the numbers c; and c,
such that
X =01Y1 +C2fz
(a,b) = c1(1,2) + Co(=1y1)

= (€1,2¢y) A (+C2,C0)

= (Cp*€2,2Cy + Cy)

Lo =a (D

2C++ C, =D ...(2)
—————————————————————————————————————— by addition

301=a+b:>01=%(a+b) and C2=%(b—2a)
—~ 1 .1 .
X=_(@+b)X;+ (b -22)X,

oo {X,X,} spans R?.
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(3) Find the space spans by the set {(-1,2,1)}.
Solution:
W={c(-1,2,1);c e R} ={(-=c,2cc);c e R}
={c(-1,21);c e R}
This is equation of a straight line passing through the two points (-1,2,1) and (0,0,0).

(4) Find the space spans by the set {X,, X,} where X, =(~1,2,3),X, = (-2,4,6):
Solution: Let W is the space spans by the set {E,Xj}, i.e.
W = {¢,X, +¢,X,;c,,C, R}
={c1(-1,2,3) + cx(-2,4,6) ;C,,C, € R}
= {(- ¢1,2¢4,3¢y) + (—2¢;,4¢,,6¢)) ;C,,C, € R}
= {(~ c1—2c,,2¢c; + 4c,,3¢, + 6C,) ;C,,C, € R}
={(=1(c1+2cy), 2(cy + 2¢y), 3(Cy + 2¢y)) ;C,,Cr R}
={(c1 +2¢5)(-1,2,3) ;¢;,C, e R}
={c3(-1,2,3) ;c; € R},  suppose cp+ 2¢, =cC3
This is equation of a straight line passing:through the two points (0,0,0) and (-1,2,3).

Note that X, = 2X,
¢, X, +¢,X, =¢, X, +C,(2X,)
=(c,+2¢,)X,
=c, X, , suppose ¢; + 2C, = Cg

~. The space spans.by the set {X,, X,} is the same space spans by the set {X,}

o 1—

or Note that "X, = EX2
— M 1— —
G, X{HC X, :Cl(EXZ) +C, X,

1 -
= (Ecl +¢,) X,

=c,X, , suppose i¢C, +C, =C,

~. The space spans by the set {X_,X,} is the same space spans by the set {X,}

Remark: Every line passing through the origin point is a subspace of R?.
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(5) Express the zero vector as a linear combination of the two vectors
X, =(2,3),X,=(-31) in R?
Solution: To find the values of the numbers ¢, and ¢, such that
6 :lel +C2fz
(0,0) = c4(2,3) + c(-3,1)
= (2¢4,3¢y) + (-3c;,C,) = (2¢,—3Cy, 3C1+ Cy)
2¢c1—3c, =0
3¢+, =0 = ¢, =-3¢;
~201+9,=0 = 11¢,=0 = ¢, =0
= ¢,=-3(0)=0
(0,0)=0-X, +0-X, =0-(2,3) + 0-(-3,1)

(6) Let W ={(x,y,2): x—2y +z=0}

(a) Prove that W is a subspace of R®. (Home work)
(b) Find the two vectors X, and X, such that W is generated by the set {X,,X,}
Solution (b):

W ={(x\y,2): x-2y +z=0}

={(x,y,2y - x): X,y e R}

={00y.2y) + (x,0,x%); x,y e R}

={y(0,1,2) + x(1,0,-1); X, y R}
This is a set of linear combination of the two vectors (0,1,2) and (1,0,-1).
Let X, =(1,0,-1) and X, =(0,1,2)

~. W is generated by.the set {X,,X,}, i.e. {X,,X,} spans W.

Exercises:
(1) Let X;*= (1,0) and X, = (1,1) show that the space spans by the set {X,,X,} is R?.

(2) Find the space spans by the set {X,,X,} in R® where X,=(1,-1,2) and
X, =(0,1,2).

(3) Which of the following sets spans R?
(&) (-11),(12) (b) (1,0),(0,1) (c) (0,0),(11),(-2-2) (d) (24), (-1.2)

(4) Which of the following sets spans R®
(@ (1,0,0), (0,1,0), (0,0,1) (b) (1,-1,2),(0,1,1)
(c) (1,1,0),(1,0,1), (0,1,1) (d) (2,2,3), (-1,-2,1), (0,1,0)

125



Linear Independence

Definition: Let S={X,,X,,...,X,} be a set of distinct vectors in a vector space V. We

say the set S is non linearly independent (dependent) if there exists a constants
(Cy, Co, ...,Cx) Not all zero, such that

¢, X, +C, X, +..4¢, X, =0 D)

Conversely, the set S is said to be linearly independent. That is, Scis “linearly
independent if it satisfy (1) only whenc; =c,=... =¢,=0.

Remark: If the set S={X,,X,,..,. X}, then S is non linearly<independent if there
exists a linear combination of vectors of the set S equal to zere,"i.e.
¢, X, +¢,X, +...+¢, X, = O, such that at least one of ¢; %0, 1 <i <k.

Example: Let S = {(1,0),(0,1)}. Show that S is linearly independent set.
Solution: Let c4, ¢, be a constants

c: (1,0) + ¢, (0,1) =(0,0)

(c1,0) + (0,c2) = (0,0)

(c1c2)=(0,0) = ¢,=0,c,=0

. Sis linearly independent set

Exercise: Let S = {(2,2),(0;1)}. Is the set S linearly independent or dependent?

Example: Let S ={(1,2,-1),(2,3,-4),(4,3,-2)}. Show that S is non linearly independent
(dependent) set.
Solution: Let\6;and ¢, and c; be a constants
c: (1,1:-1) + ¢, (2,3,-4) +¢c3 (4,3,-2) = (0,0,0)
Cc,t2cH+4c3=0
G, +£3c, +3c3=0
~Cy—4c,—2¢c3=0

1 2 4
The coefficients matrix A=| 1 3 3 |, because |A]l =0
1 4 2

.. The linear system or the set has no trivial solution.
Thus S is non linearly independent (dependent) set.
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Remark: If the system of equations is homogeneous and the determinant of the
coefficients matrix equal to zero, then this means that the system has a solution other
than the zero solution, but if the determinant not equal to zero, this means that the
system has a unique solution (the zero solution).

To make sure of this, we will find the values of c¢;, ¢, and c3 in the previous
example

1 2 4 RZ — rz_rl 1 2 4 Rl — r1_2r2 1 O 6
S St
1 3 3 0O 1 -1 01 -1

-1 4 2 10 2 2 >0 0 0

cp+6c;3=0 = c1=-6C3

C,—C3=0 = cCy=¢C3

Let cg=1,thenc;=—6 and ¢, = 1.

-6(1,1,-1) + 1(2,3,-4) + 1(4,3,-2) = (0,0,0)

Thus S is non linearly independent (dependent) set.

Exercise: Show that S = {(0,1,1),(2,1,2),(1,2,1)} is linearly independent set by using
the previous remark.

Examples:
(1) If S={X,,X,} is adinearly independent set in the vector space V. Prove that the
set {X, + X,, X3~ X, } is also linearly independent.
Solution: Let ¢;"and ¢, be a constants
¢, (X, +X5) %8, (X, - X;) =0
c +C2)z +(c, _Cz)g -0
Because X, and X, are linearly independent, so
€. +¢C,=0
c,—C =0
———————————————————— by addition
2c;=0 = ¢;=0,c,=0
~. The set {X, + X,,X, — X, } is also linearly independent
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(2) If E, and E, are two vectors in the vector space R? such that E, =(1,0) and
E, =(0,1). Prove that S={E,,E,} is a linearly independent set. Also prove that
the set {E,,E,,...,E } in R" is linearly independent, where

E, =(10,0,...,0),E, =(0,1,0,0,...,0),...,.E_ = (0,0,...,0,)
Solution: Let c; and ¢, be a constants

ClE +CZE =0
c,(1,0)+c,(0,1) =(0,0)
(,,0)+(0.c,) = (0,0)
(c,c,)=(0,0)=c,=0,c,=0

. Sis alinearly independent set

In the same way (or more generally) the: set’ {E,,E,,...E .} is a linearly
independent set.

(3) Let Py(t) = t 2+t + 2, Pyt) = 26754+ t, Py(t) = 3t % + 2t + 2. Is the set
S = {P1(t),P,(t),P3(t)} linearly independent or not?

Solution: Let c; and ¢, and c¢; be a constants

Clpl(t)+CZP2(t)+CSP3(t):O

Clt? +t+2) +c(2t2 +1) +eaBt? +2t+2) =0

(CL+2C, +3C3) t% + (Crh Gy +2C5) t+ (26, +2¢5) =0t*+ 0t +0
Ci+2c,+3c3=0

Ci+Cy+ 2c3=0

2c; +2¢;=0

This’homogeneous system has infinity of solutions (check it)

One of these solutionsisc; =1,c,=1,c3=-1. Sothat P (t) +P,(t) —P,(t) = 0.
~ The set S is non linearly independent (dependent).
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Exercises:

(1) Show whether the following sets are linearly independent in V, where V is the
vector space of all polynomials of second degree or less
(@) Si={x,2x—1,1} (b) S;={2x*3x’}  (c) S3={1,2x +3,x* +2x +1,3x* — 2x}

(2) Show whether the following sets are linearly independent in the vector space-V,
where V is the vector space of 2x2 matrices

s[5 k)
o s-5 3005 Ak 03 )

Theorem: S is a set of nonzero vectors in a vecton space V. S is non linearly
independent if and only if one of these vectors is.'a‘linear combination of all other
vectors in S.

Proof: Let S={X,,X,,... X1, X;» Xis101e0r X}

Because S is non linearly independent

=~ There exists a constants ¢y, C,, ...,.Cj, +.., Cx ot all zero (c; = 0)

C, X, +C, X, +..+¢;, X, , +¢; X, +C

[ i+1

X, .+ X, =0

i+1

C, X, +C, X, +..+¢;, X

X,

i+l

(_Cllfl+(_C2JX7+...+[_C‘1]ﬁ+...+(_c”leHl +.. +[_C jXT( =X,
Ci Ci Ci Ci Ci

« X, is adingar combination of the vectors X,,X,,..., Xy, Xj,10re0r X, .
Conversely, S={X,,X,,... X._;, X;, Xi,1»roos X, }

P S X0 +..+¢ X, =—<; X,

If X -is a linear combination of the vectors X,,X,,.... X, ;, Xi.1,,.1 X,
= There exists a constants ¢4, C», ..., Ci_1, ..., Ci+1, ..., Ckx Such that

_ — — —_

X, =C X, +C, X, +...+C, X, , +...+C

X, 4. 4C X,

i+1“ M+l

O= cX+cX+ +C,_ X +(1)X+c X

~ Theset S={X,,X,,.... X, X;, Xi,1»»-., X, } is non linearly independent

i+1 i+1+"'+Cka
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Examples:

(1) ThesetS =4{(2,6),(3,9),(1,3)} is non linearly independent (dependent) since
1(3,9) =1(2,6) + 1(1,3)
That is the vector (3,9) is a linear combination of the other vectors.

or solve using the definition

¢, X, +C,X,+¢,X,=0 = 1(2,6) +1(1,3) - 1(3,9) = (0,0)

(2) Let f(x)=x% g(x) =x, h(x) =1and j(x) = (x + 1) for all x eR. Show.that the set
S={f, g, h,j}isnon linearly independent in the vector spaces for all.real functions
Solution:
) =(x+1)?=x*+2x+1
=1-f(x) +2-g(x) + 1-h(x)
j=1.-f+2g+1h
. S={f, g, h,j}isnon linearly independent.

Theorem: In R" any set containing moreythan n elements is a non linearly
independent set.

Proof: Let S={X,,X,,...,X_} setin R"such that m > n, if
Z:(aﬂ’aiz’-"am)’ X—zz(azpazzv“aZn)a R X—m:(amliamz’-"amn)

_— —

¢, X, +C,X, +..4¢ X =0,
C,(ay,a,,..a,) +C, (8,8, .. 8yt .. +C (8,85, --8y,) =(0,0,...,0)

Ciaip + Coaz t ... + Crapr30 ..(1)
Cid;z + CoAzn t ... HCnadmz =0 ...(2)
Cidin + Codop + ... + Cp@mn =0 ...(n)

The set.of homogeneous equations (homogeneous system) contains (n) of equations
and (m) of unknowns i.e.

The’number of unknowns (m) > The number of equations (n).

.. The homogeneous system has a non-trivial solution.

. Siis non linearly independent

Example: Is the set S = {(1,1,1), (1,2,1), (1,3,5), (0,1,-1)} in R?® linearly independent
or dependent set?
Solution: Because 4 > 3 (m > n), so S is non linearly independent (linearly dependent).
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Basis and Dimension

Definition of the basis: A set of the vectors S={X,,X,,..., X, } in a vector space V is

said to be the basis of the vector space V if (1) S spans V
(2) Sis linearly independent

Example: Let S={E,,E,} where E, = (1,0) and E, = (0,1), then S is a basis.for R?.

Solution:

(1) Letc; and c, be a constants
¢,E, +¢,E, =0
¢,(1,0)+c,(0,2) =(0,0)
(c,.0)+(0.c,)=(0,0)
(c,,c,)=(0,0)=c,=0,c,=0

.. Sis linearly independent set.

(2) Let (x,y)eR? and ky, k, constants
(X’y):k1E+kZE
= k,(1,0) +k,(0,1)
(X’y):(kl’kZ):klzx’ kz =Yy
so(xy) =x(1,0) + y(0,1)
. Sspans R?
Thus S is a basis-for R?.

Remark:»S.in this case called the normal basis for R?.

Exercise: The set S={E,,E,,E.} where E, = (1,0,0) E, = (0,1,0) and E, = (0,0,1) is a
basis for R®.

In general:
The set S = {(1,0....,0),(0,1,...,0),...,(0,0,...1)} is a basis for R".
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Example: Let S; = {(1,0),(1,1)} and S, ={(-2,1),(2,3)}
(@) Show that S, is a basis for R”.
(b) Show that S, is a basis for R?.
Solution (a):
(1) Letc, and c, be a constants

c,(1,0)+c,(L,1) =(0,0)

(Cl’ O) + (Cz’Cz) = (0’0)

(c,+c,,c,)=(0,0)=c,=0

c,+0=0=c¢c,=0
. Sy is linearly independent set.

(2) Let (a,b)eR?* and ki, k, constants
(@b) =k,(1,0) +k,(L1)
:(k110)+(k2’k2)
(ab)=(k,+k,,k,)=k,=b
k,+k,=a=k, +h=a=k, =a-b
- (ab) = (@a—b) (1,0) + b(L,1)
. Sy spans R?
Thus S; is a basis for R2.

Solution (b):
(1) Letc, and c, be a censtants
c,(-2,1) +c,(2,3)=(0,0)
(—2c,,c,) + (2¢5,3¢,) =(0,0)
(—2c, + 2c,C¢+ 3c,) =(0,0)
—2c+#2c,=0=-2c, =-2¢, =¢, =C,
c,+3¢,=0=c,=-3,=>-3,=C,=>4,=0=c,=0
¢cy=0,c,=c,=c, =0
. Sy is linearly independent set.

(2) Let (a,b)eR? and ky, k, constants
(a,b)=k,(-2,1) +k,(2,3)

1
~2k, + 2k, =a}:>—k1+k2 =>a

=(-2k. + 2k, k., +3k
(—2k, 21Ky 2):>k1+3k2:b

k,+3k,=Db
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—k1+k2:%a

_______________________ by addition

1 1.1 1, 3
4k225a+b — kZZZ(Ea'i‘b) — klzz(—§a+b)

- (ah) = %(—ga +b)(21) + %(%a +b)(2.3)

. S, spans R?
Thus S, is a basis for R?.

Example: Find the basis for the space of the solutions of*system of homogeneous

equations.
X1+ Xo — X3 =0 (1)
X;+2X, + X3+ X4=0 ...(2)
3X1+5X2+X3+3X4:O (3)
2X1+X2—4X3—X4:0 (4)
Solution:

Using the Causs elimination method or the Causs Jordan elimination method, we get
that X; =3X3 + X4 , Xo = —2X3g'— X4. SO the solution space is

W = {3X3 + X4,— 2X3-5Xu, X3,X4; X3, X € R}
= {(3Xa,— 2%3:X3,0) + (X4,— X4,0,X4); X3, Xs € R}

={x3(8=2,1,0) + x4 (11,0, 1); X3.xs € R}

=«_EVvery vector in W is a linear combination of the vectors (1,— 1,0, 1) and (3,—2,1,0)
- B={(3,-210),(1,-1,0,1)} spans W.

Also, B ={(3,-2,1,0), (1,— 1,0, 1)} is linearly independent set
.". The set B is a basis for W.
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Exercises:
(1) Show that

(a) B, ={(1,1,0),(0,1,1),(0,0,1)} basis for R®.
(b) B, = {(1,2,-1),(2,2,1),(1,1,3)} basis for R®.
(€) Bs=1[(1,0,1,0),(0,1,-1,2),(1,0,0,1),(0,2,2,1)} basis for R*.

1 0{|0 1|/0 O[O O
(2) Lettheset B= , , : , Is B a basis for M, , (R)?
0 1//0 OJ|1 0|0 1

(3) Let the set B = {1,x,x°}. Show that B is a basis for the vector spacé\V where V is
the vector space of all polynomials of second degree or less

(4) LetthesetB ={1—x,1+x+x%1—x—x%1+2x + x*}-1sBd basis for the vector
space V where V is the vector space of all polynomials of'seeend degree or less?

Theorem: Let S={X_,X,,...,X } be a basis forthe vector space V, then every vector

in V can be written in only one form as a linear combination of S vectors.
Proof:

Every vector X in V can be written-a$*a linear combination of S vectors because S
spans V. Let

X=¢,X,+¢,X, +..4¢ X_ ..(D)
X=d,X, +d, X, +..+d X ..(2)

By subtracting equation (2) from equation (1) we get that
0= (Cl _dl)il"' (Cz _dz)X—2+---+ (Cn _dn)z

Because S is linearly independent we have

c;—d; =0 = c; =d,,

C,—d, =0v= ¢, =d,,...

Che =0 = ¢, =d,

leyci=di  (1<ign).

Theorem: (without proof)
If S={X,,X,,....X,} is a basis for the vector space V and T={Y,,Y,,... Y.} is
linearly independent set of the vectors of V then n>r.
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Corollary: If S={X,,X,,...X,} and T={Y,,Y,,...Y_} are two basis for the vector
space V then m=n,

Proof:

Because S is a basis for V and T is linearly independent set (since T is a basis for the
vector space V)

= n=>m (by previous theorem) ...(1)

Because T is a basis for VV and S is linearly independent set (since S is a basisfor the
vector space V)

= mz2=n (by previous theorem) ...(2)
From (1) and (2) we get that m =n.

Examples:
(1) Theset S ={(1,0),(0,1)} is a basis for R?, so S contains-enly two vectors
= any basis for R* must contains two vectors.

(2) The set S = {(1,0,0,...,0),(0,1,0,...,0),..c%0,0,0,...,1)} is a basis for R", so S
contains n vectors
= any basis for R" must contains n~vectors (by corollary)

Theorem: (without proof)
Let S={X,,X,,... X} be a set of nonzero vectors generating subspace W of
vector space V, then a subset.of S is a basis for W.

Example: Let W be.a subspace of R* generator by the vectors
X, = 12,22,)), X, =(-3,0,4,3) , X, =(2,11-1), X, = (-3,3,-9,6)
Find the set'B-stich that B < {X,,X,,X,,X,}=S and B basis for W.

Solution:We test whether S is linearly independent or dependent set
In theiease S is linearly independent set, then S is the basis we need.
If

/X, +¢,X, +C, X, +¢, X, =0 ..(1)
c,12,-2,1)+c,(-3,0,4,3) +c,(2,1,1,-1) +¢,(-3,3,-9,6)=(0,0,0,0)
By solving this system of equations (Using the Causs elimination method or the Causs
Jordan elimination method), we get ¢;=—Cc,—9¢c4 ¢ C3=2C,+ 3¢y
=~ The system has infinite number of solutions.
. Siis non linearly independent set.
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Take ¢, =1 and ¢, =0,thenc;=—1 and c3=2

X, +X,+2X,+0X,=0 by compensation in equation (1)

X, =X, ~2X,-0X,

This means that X, is linear combination for the vectors X, , X, and X, .
Thus B, ={X,,X,,X,} spans W

We test whether B, is an independent or dependent set.
In the case that B, is independent set, then By is the required basis.

If d,X,+d,X,+d,X,=0 e)
d,(1,2,-2,1)+d,(2,1,1,-1) +d,(-3,3,-9,6)=(0,0,0,0)

By solving this system of equations we get that d; =—3d; « )= 3d;
~ The system has infinite number of solutions.

.. By is non linearly independent set.

Take d3=1,then d;=-3 and d, =3

—3X,+3X,+X,=0 by compensation in equation (2)

X, =3X,-3X,

This means that X, is linear combination for the vectors X, and X, .
Thus B, ={X,,X,} spans W.
We test whether B, is an independent or dependent set.

In the case that B, is independent set, then B, is the required basis.
Note that B, is independent set (Prove that)

« B,=B={X,,X,}isa basis for W.

Dimension of Space

Definition of the dimension: Let V be a no zero vector space, V is called a space with
a finite dimension if it has a base the number of its elements is a natural number.

The number of the vectors in the basis is called the dimension and denoted by dim (V)
I.e. dim (V) = the number of the vectors in the basis of the vector space V.

If V ={O}, then dim (V) = 0.
If S={X,,X,....,.X,} basis for the vector space V, then dim (V) = n
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Remark: The spaces that we will discuss are vector spaces with finite dimensions
(that is, their distance = a natural number). There are vector spaces of infinite
dimensions.

Examples:

(1) dim(R*=2 , dim(R* =3 , dim(R")=n.

(2) dim (P,) =3, where P, is a quadratic polynomial.

(3) dim (P3) =4, where Pz is a polynomial of the third degree.

Generally:|dim (P,) =n + 1|, where P, is a polynomial of degree (n)-

(4) Find the dimension for the vector space M, ,(R).
a b c
Solution: MM(R):{OI ¢ };a,b,c,d,e,f ER}

ot e g o e

S is a basis for M, ,(RR) because

(1 0 0] 010 0 0t 0
+C, +c, +C,
0 0O 05070 1

< O

ollo o 3)

0 0 0O
+C; +
0 0 10

o

@) ¢

o

0 0

0 0 0] [0 0 O
Ce =
00 1] |0 0O

{cl c, cﬂ {O 0 O}
= = C1=C=C3=C=C=C=0

O O O

C, C. Cs| [0 00

. Sis linearly independent set.
b 1 00 010 0 01 0 00O
(b) a : =k, +k, +K, +k, +
d.e f 0 00O 0 00 0 00O 1 00
0000 0 0O
K +Kg
010 0 0 1
a b c k, k, k
= ! 2 3 :>k1=a., k2=b, k3:C,k4:d,k5:e,k6=f
d e f k, kg K
- Sspans M, ;(R).

Thus S is a basis for M, ,(RR).
oo dim(M,,(R)) =6  (the number of the vectors in S is 6)

Generally:|[dim(M__ (R))=mxn

mxn
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(5) Let V be the vector space of all polynomials of degree 2 or less. Find the
dimension for this vector space?
Solution:
Let p e V«p(X) =ap+ax +ax’, Vv a,,a,a,cR,x eR and S={1,xx°}
. S'is a basis for the vector space V because
(@) Cr-1+C-X+C3-x*=0=0+0-x+0-x* = ¢;=C,=¢3=0
.. Sis linearly independent set.

(B) ki-1+ky-Xx+ks-X2=ag+tax+ax = ki=ag, ky=a;, ks = as
5. S ={1,x,x°} spans V

Thus S is a basis for V.

o dim (V) =3  (the number of the vectors in S is 3)

(6) Find the dimension for the subspace W generated- by the vectors {(1,0,-1,5),
(3,2,1,0), (0,-1,0,1), (-1,-5,-3,13)} in R* ?
Solution: To find the dimension for subspace W\generated by the vectors {(1,0,-1,5),
(3,2,1,0), (0,-1,0,1), (-1,-5,-3,13)} we must first find a basis for W.
Let S ={(1,0-1,5), (3,2,1,0), (0,-1,0,1), (1+5,-3,13)}
Therefore, we must make sure that S is‘linearly independent or linearly dependent set
So, if
c1(1,0,-1,5) + ¢5(3,2,1,0) + ¢c3(0,~1;0,1) + c4(-1,-5,-3,13) = (0,0,0,0), we get
c, + 3C, -, =0
2C,—C3—5¢c,=0
—C1 +0C —-3c,=0
5¢; +C3 +13¢4' 50
From this it fellows that this system has a non-trivial solution (because the determinant
of the coefficients matrix = zero)  (check it).
And by solving this system by the Causs-Jordan elimination method, we get that:
C1 = =204, C, = C4, C3=—3C4
Take ¢,=1 = ¢;=-2,c,=1,c3=-3
"S 1s a non linearly independent set (linearly dependent) because the constants are
not zeros.
-2(1,0,-1,5) + 1(3,2,1,0) - 3(0,-1,0,1) + 1(-1,-5,-3,13) = (0,0,0,0)
We take the vector of one factor for convenience
(-1,-5-3,13) =2(1,0,-1,5) - 1(3,2,1,0) + 3(0,-1,0,1)
=(2,0,-2,10) - (3,2,1,0) + (0,-3,0,3)
Thus W generated by the set B = {(1,0,-1,5), (3,2,1,0), (0,-1,0,1)}
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Now we must check whether B is linearly independent set or linearly dependent set.
Soif:
k1(1,0,-1,5) + k»(3,2,1,0) + k3(0,-1,0,1) = (0,0,0,0)

kp+3k, =0

2k, — ks =0

—ki+tky =0
5k, +k;=0
By solving this system, we get k; =k, = ks = 0.
. B is a linearly independent set.
But the set B spans the subspace W, so B is a basis for W and from that.we obtain
dim (W) =3 (the number of the vectors in B is 3)

Exercises:
(1) Find the dimension for the subspace of R* span by the vectors (2,4), (4,2), (0,0)?

(2) Find the dimension for the subspace of R® span‘hy the vectors
(@) (1,0,0), (-1,2,1), (3,2,2) (b) 42,3,4) ,(1,1,-1)

(3) Find the dimension for the vector space-span by {1 + x, 1 + x + x5, 1 — x — X%,
1 + 2x + x°} for polynomials of second'degree or less.

Theorem: (without proof)
If S is a set of linearly independent vectors in the finite dimension vector space V,
there exists a basis T for.the vector space V contains S.

Example: Find.the basis for R® contain the vector Yl =(1,0,2) ?
Solution:d_et"S={X}.S, ={X,,E,,E,,E.} where E, = (1,0,0),E, = (0,1,0),E, = (0,0,1)
S, spans-R®. We find the set T suchthat T<'S;, X, €T and T is a basis for R®.

Sy 'is'non linearly independent set (it contains four vectors from R* and dim((R%)) =3)
Moreover if ¢, X, +¢,E, +¢,E, +¢,E, =0 we get that ¢, =— ¢y, ¢4 = — 2¢1, ¢3 = 0
Take C1=1 = ¢c;=-1,¢c3=0,¢c4=-2

X,~E,+0E,~2E,=0 = X,-0E,-2E,=E,

. T={X_,E,,E,} spans R*. But T is linearly independent set of vectors in R®.

Therefore T is a basis for R* and contains the set S ={Z}.
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Exercises:
(1) Find a basis for R* contains the two vectors X, = (1,0,2) and X, =(0,1,2).

(2) Find a basis for R* contains the two vectors X, =(1,0,1,0) and X, =(-1,1,-1,0).

(3) Find a basis for R* contains the two vectors fl =(1,0,1,0) and fz =(0,1,-1,0)

Rank of Matrix

Definition: Let A= matrix of degree.mxn” and

L~ 'ml m2 mn _|
E a, |
X =| % [ X;=| %2 ... X =| % |, the subspace W span by the set {X,,X; ... X,
= XK= S s X = U ubspace W span by the set {X,,X,,..., X}
aml_ _amZJ a‘mn_

is called matrix column space A ‘or-the space span by the column of the matrix A. The
dimension of the matrix column space A is called the column rank for the matrix A.

1 2270
32 8| _ :
Example: Let A = y 3 7| Find the column rank for the matrix A?
-1 2 0]
Solution; The subspace of the columns of the matrix A is
1 -2 0
W=-<c, 3 +C, 2 +C, ° ,C1,C,,CoeR e
2 3 7
-1 2 0
1 ][-2][0]
Let 5= 3 , 2 , 8 the spans set for W.
2 3117
-1]12]|0]
If
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1 —2 0 0
3 2 8 0
c, +c, +c,| _ =] | Then we get
2 3 7 0
| —1] 2 ] 0] [0
Ci—2C =0

3c; +2¢,+8c3=0

2Cc,+3c,+7¢c3=0

—C1 +2¢, =0

= €1 =2C), C3=—-0Cy

Let c,=1 = ¢;=2 and c3=-1

.. The set S is non linearly independent.

1] [-2] [0] [O] 0 1 -2
3 2 8 0 8 2
- _|= - =2 +
AP 7170 71727 3
-1} [ 2] |[0] |0 0] |[-1]qQ«2]
F 1]
Letg'— 3 , 2 be the set’spans W. It is a linearly independent set.
2 3
=1(] 2

. S"is a basis for W. Thusdim (W) = 2.
.. The dimension of.the column space of the matrix A = 2 (the column rank of A).

1 1 1 0

2 3 4 -1| _. :
Example;Let A = Lo o 3l Find the column rank for the matrix A?

4 1 5 2

Solution: The column subspace of the matrix A is

1 1 1 0

2 3 4 -1 d let
W=<c, 1 +cC, ) +C, P +cC, 3 ,C.,C,,C;,c,eR andle

|4 | 1] | 5 | 2 ]
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1111]]1 0
S= 2 ,3, 4 ,_1 be the set spans W, if we have
11122
4|11 5] 2]
1] 1] 1] (0] [O]
c 2 c 3 c 4 c -1 |0
+ + + =
-1 2 tp=2| 13| |o
4 ] 1] =N 2] | 0]
Cp+C,+C3 =0

2cy+3c,+4c3—¢c4 =0
—C;+2¢,—2c3+3c,=0

4ci+c,+5c3+2¢c, =0

1 1 1 0
3 4 -1 2 4 -1 2 3 -
3 4 -1
=2 -2 3|--1 -2 3|+-1 2 3|+0=0
-1 2 -2 3
1 5 2| |4 52 |4 1 2
4 1 5 2

.. This homogeneous linear system has a trivial solution, i.e.c; =¢c; =c3=¢4 =0
. S'is a linearly independent set.

. S'is a basis for W. Thus«dim (W) = 4.

.. The dimension of the’column space of the matrix A = 4 (the column rank of A).

Definition:.Let A be a matrix of degree mxn, if A is row equivalent to a matrix B
(where B is areduced echelon form matrix ( r.e.f)) then the number of non-zero rows
of the matrix B is called the row rank of A.

Examples:
1 2 -1
(1) Let A=| 2 4 -2|.Find the row rank of A?
-1 -1 3
1 2 1| Ryer2r |1 2 -1 Do 1 0 -5
Solution: | 2 4 -2 Ry=r, 41, 00 0| —=»100 0
-1 -1 3 01 2 01 2



1 0 -5
2L, 10 1 2|=B
0 0 O
. The matrix B is a reduced echelon form matrix ( r.e.f). Thus the row rank of A = 2.

1 -2 0
3 2 8| _.
(2) Let A= . Find the row rank of A?
2 3 7
-1 2 0]
Solution:
(1 -2 0] _Ry=r-3n [1 -2 O] n_t (1 20
=1y
3 2 8| Rer2, |0 8 8 282, 101" 1
2 3 7 Ro_rr 0 7 7] R=r {10 1 1
1 2 o] |0 0 o0 o 0 0
(1 0 2]
R,=r+2r,
—1 12510 1 1 B
R3:r3—r2) 00 0
0 0 0]

.. The matrix B is a reduced echelon form matrix ( r.e.f). Thus the row rank of A = 2.

Remarks:

(1) The rank of the zero matrix of degree mxn = 0.

(2) The rank of the identity matrix of degree nxn = n. (because it is a reduced echelon
form matrix,(‘r.e.f ) and all rows are linearly independent).

(3) If the*degree of the matrix is mxn, then its rank is not greater than the smallest of
the<two numbers m and n, i.e. r(A) < min{m,n}.

Another definition of matrix rank: The rank of a matrix is the largest number of
linearly independent rows (columns) in the matrix.

Theorem: (without proof)
Let A be a matrix of degree (mxn) the row rank and the column rank of a matrix
A are equal.
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Remark: The row rank of A = The column rank = The rank of a matrix A.

1 21 1 0 1
-1 1 1 01 -2
Example: Find the rank of a matrix Aif A= 1 -3 3|~-B=|0 0 O
3 51 0 0 O
1 45 0 0 ©

Solution: Because the matrix A is equal to the matrix B which has reduced echelon
form.
.. The rank of a matrix A=2  (the number of non zero rows) (check that A ~ B).

1 11 0
Exercise: Find the rank of the matrix A where A = 2 42 _31 ?  (Ans. 4)
| -
4 1 5 2]

Remark: To find the rank of the matrix do.the following
(1) Transform the matrix A to reduced echelon form and let the resulting matrix is B.
(2) The rank of the matrix A = the Rumber of the non zero rows in the matrix B.

Theorem: Let A and B bestwo matrices of degree (mxn) row equivalent then the two
rows spaces are identical.

Proof: Because A and B are two row equivalent matrices, then B can be obtained from
A rows after performing a finite number of elementary transformations on it.

That is, each.rowin B is a linear combination of A rows.

This means that the rows of B are a subset of the row space of A.

That is;.the row space of B is contained in the row space of A .. ()
In‘the same way we get that
The'row space of A is contained in the row space of B .. (2)

From (1) and (2) we get that the row space of A is equal to the row space of B.

Theorem: (without proof)

Let A be a matrix of degree (mxn) then the non zero rows in a matrix B which is
the matrix A after transform it to the reduced echelon form which is the basis for the
row space of A.
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Remark: We can use the above theorem to find the basis for the vector space V spans

by the set of vectors S:{K,X—Z,...,Xn} in R", i.e. spans S=V € R" as follows:

(1) Form the matrix A defined by the shape A=|" % | whose rows represent the.S

vectors
(2) Transform the matrix A to the reduced echelon forms and let the reSulting matrix is B.
(3) The non zero rows in the matrix B are the basis for the matrix A:

Example: Let S = {(1,-2,0,3,-4),(3,2,8,1,4),(2,3,7,2,3),(=1,2,0,4,-3)} and V be a
subspace of R°. Find the basis for \V?

Solution: Form the matrix A where the rows of it are the S vectors and V is the row

space for it

(1 -2 003, 4]
3 208 1 4
A=

2 72 3
72 0 4 -3

And by using the elementary transformations on the rows, we convert the matrix A to
the reduced echelon forms, and we get the matrix

The non-zero rows in the matrix B represent the basis for the row space of the matrix
A ‘Which is represent the basis for V. That is, {(0,0,0,1,-1),(0,1,1,0,1),(1,0,2,0,1)} is
the basis for V.

Remark: From the above theorem and example we note the following

(1) The result basis is not subset of the given vectors.

(2) The way to represent any vector as a linear combination of these basis elements is
done in the same way that the vector is represented as a linear combination of the
elements of the natural base.
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That is: in the previous example when we want to represent the vector
X =(5,4,14,6,3) we note that the base vectors contain the axis element 1 in the first,
second, and fourth positions in the first, second and fourth vectors, respectively. Thus,
we will use the base vectors with the first, second and fourth projections of the vector
X, as follows:

X =(5,4,14,6,3)= 5(1,0,2,0,1) + 4(0,1,1,0,1) + 6(0,0,0,1,-1)

= (5,0,10,0,5) + (0,4,4,0,4) + (0,0,0,6,-6)

Theorem: Let A be a matrix of degree (nxn), then
A is invertible matrix < the rank of the matrix A =n.
Proof: = Let A be a square invertible matrix

. A'is arow equivalent to the identity matrix I, (A sduare’matrix of degree nxn has an inverse
if it/is a row equivalent to the identity matrix)
.. The rank of the matrix A =n.

< Let The rank of the matrix A=n
Since A is a row equivalent to the identity matsix I, and |1, =0
. Alis invertible matrix.

Corollary (1): Let A be a matrix.of'degree (nxn), then
The rank of the.matrix A=n < |A] 20
Proof: = The rank of thematrix A =n

A is invertible matrix (previous theorem: let A be a matrix of degree (nxn), then A is invertible matrix <
the rank of the matrix A = n)

Thus |A| =0.
< Let |A]l #£0then A is invertible matrix

The rank of the matrix A =n (previous theorem: let A be a matrix of degree (nxn), then A is invertible
matrix < the rank of the matrix A = n)

—_—

Corollary (2): Let S:{Xl,XZ,...,fn} be a set of n vectors in R" and A columns

(rows) are X,, X,, ..., X, then Sis linearly independent set < |Al =0.

Proof: = Suppose that S is linearly independent set
From definition of linearly independent

¢, X, +C,X, +...+¢, X, =0 suchthat ¢,=c,=..=cC
We can write this relation as

=0

n
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a, | a, | ‘a, | [0]
C, % +C, afz +..4C, B | _|©

E a, | a, | [0
[c@a, +C,a,+...+Ca, | [O] ¢, | [O]
c:1a21+c2a22.+...+cna2n _ 0 oA Co |_ 0
ca,tCa,+...+ca, | 0] c,| [0

This system is homogeneous this lead to |A| = 0 (because™thé column of the
unknowns = 0) this is possible when | A| # 0.

< Suppose that | A| 0.

From Corollary (1), the rank of the matrix A =n < 4A| 0.

From Theorem, A is invertible matrix < the rank-of the matrix A =n.

. Sis linearly independent set when the columns,(rows) of the matrix are the vectors

_— —

X,, X,, ..., X, invertible matrix this means.)A| = 0.

n

Corollary (3): The homogeneous systém AX =0 former of n linear equation and n
unknowns has non zero solution<<» the rank of the matrix A <n.

Thatis : AX =0 has non z&ro solution < the rank of the matrix A < n.

Proof: From Corollary (1); the rank of the matrix A<n < [A| = 0.

This is: the rank of themiatrix A <n < A is a non invertible matrix.

.. The homogeneous system AX =0 has non zero solution < A is a non invertible matrix.

Example:: Consider the homogeneous system
2%y +%X3=0
3X; +3X5 + X3=0

Xi—3X, + X3 =0

2 0 1
Solution: The coefficient matrixis A={3 3 1.
1 31
2 0 1| R, 1 3 0 R2=%rz 1 3 0
A=|3 3 1 1o 12 2| — 1|0 6 -1

R,=r,—3r, —r _
1 31|71 3 1| RNy 5 1
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13 0] _, 130 10 %
R3=r3+r2 Rzzgrz 1 R,=1-3r, 1
Rttt g 6 g 67,00 1 1| RiBhlg 1 2
0 0 O 0 0 O 0 0 O

This matrix is in a reduced echelon forms. Therefore the rank of the matrix A < 3.

Theorem: Let A be a matrix of degree nxn, then

The homogeneous system AX =0 has non zero solution < A is non invertiblématrix.
Proof: = Suppose that A is invertible matrix that is mean A~ * exists.

A 1(A)ﬁ() =A 'O By multiplying both sides of the homogeneous system-equation by A~ !
(A 'A)X =0

,X=0 = X=0

This means that the unique solution for this homogeneous:system is the zero solution

X = O which is a contradiction since the homogeneous'system has non zero solution.
. A'is non invertible matrix.
< (Home work)

1 20
Example: Find the rank of the matrix. A={0 1 3|. And from it conclude whether
2 1 3

it is invertible matrix or not. and if the homogeneous system AX =0 has non zero
solution or not?
Solution: We transform:the matrix A in the reduced echelon forms.

120 1 2 0] Regor [1 0 -6 10 -6
_ Riy=h=21 Rs=1r3
A=j0 1 3|58, 10 1 3 (01 3| ohhloo1 3
2 1 3 0 3 3| /"0 0 12 00 1

Rt 1 0 0
—L L=y
0 1 0|=1,
R 4=r,>3r,
>0 0 1
Thus the rank of the matrix A = 3.

- A'is invertible matrix (By previous theorem: Let A be a matrix of degree (nxn), then A is
invertible matrix < the rank of the matrix A =n)
or A square matrix of degree nxn has an inverse if it is row equivalent
to the identity matrix

So by the previous theorem (Let A be a matrix of degree nxn, then the homogeneous

system AX =0 has non zero solution < A is non invertible matrix).
The homogeneous system has no solution only the zero solution.
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1 0 -6
Exercise: Find the rank of the matrix B=|0 1 3 | And from it conclude whether it
0 0 O

is invertible matrix or not and if the homogeneous system AX =0 has non zero
solution or not?

Corollary: (without prove)

The linear system has solution AX =B < The rank of the matrix /A = the rank
of [A:B].

2 1 3| x, 1
Example: Consider the linear system |1 2 9 X, |=|2
0 1 3|x,| |3
Since the rank of the matrix A = the rank of [A:B], so‘the linear system has solution
1 2 3] [4
Example: Consider the linear system |1 3. 4 X, |=|5
2 -1 T X, 6

The rank of the matrix A = 2 and the rank of [A:B] = 3.
=~ the rank of the matrix A # the rankof [A:B]
=~ The system has no solution.

Exercises:

—_— s s —

X, =(6,1,2) and Z =(1,1,1) find the basis for the subspace?

1 2 3 2 1
(2), Find the row and column rank forthe matrix o—{3 1 -5 -2 1|?

7 8 -1 2 5
1 2 3

(3) Isthe matrix A=| -1 2 3 | invertible or not invertible matrix?
0 8 0
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(4) Does the following system have a solution or not
Xp— 2% —3X3+4x,=1
4X1 — X, —BX3 + 6X4 =2
2X1 +3Xy X3 — 2X4 = 2

411 2 2
(5) Let S=4(11,| 5 |,|-1|¢, isitis linearly independent in R*?
21|-5|| 3
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