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Background 

• Transfer computer from calculating device to 
reasonable device. 
 

• Computer theory considers the computer 
parts ( logic circuits, operating systems, 
instruction sets, data structure, artificial 
intelligence, data structure, and so on). 
 

• Computer theory studies performance 
enhancement of existing machine 
components.  

 



Background 

• Our study research a better use of the current 
and future computers and optimality will be 
not considered. 
 

• Our study will investigate the accepted data 
structure and rejected. 
 

• Mathematica logic is one of computer theory 
parts. 

 



Background 

• Mathematicians faced a number of barriers to 
define a number of math terms such as 
infinity. 

 

• The Universal-algorithm machine is a 
theoretical concept was developed by “Alan 
Mathison Turing” that research what kind of 
work can be accepted by the machine.  

 



Background 

• The universal-algorithm machine led to the 
invention of the computer. 

• Vacuum tube invention assisted researchers to 
build automatic electronic calculators which 
attracted engineers to build computer for: 
 

– Storing input data in the computer. 

– Storing the software in the computer. 

– Has a central processing unit to process the input 
data based on their type. 



Background 

• The Linguistic ability of computers was 
achieved after the development of Noam 
Chomsky theory that led to developing 
computer languages. 

 

• Our study will focus on software that can be 
performed using computers and it is called 
computational theory. 

 



Languages 

• Each language in the linguistic field consists of 
three entities; letters, words, and sentences. 
 

• Set of characters shape word, group of words 
collect sentences which form paragraph and 
etc. 
 

• Not every set of letters can shape valid words 
and not every collection of words can make up 
a valid sentence.  

 



Languages 

• Similarly, in computer languages, a certain set of 
characters form a word (e.g. while, for, and so 
on).  Certain collection of words shape 
commands (e.g. for (i > 0; i < 100; i++), and 
certain set of commands compose program. 
 

• Theory of Formal Languages is an interesting set 
of string of symbols that obey a set computer 
language rules. The set of symbols does not focus 
on the meaning. 

 



Languages 

• Null Λ is an empty string (word) that do not 
have a letter.    
 

• Two words that have the same order of letters 
are equals. 
 

• The English language will be an example in our 
study. The Greek letter Σ will represent the 
whole alphabet.  

 



Languages 

• Formal language theory should include a basic 
unit called alphabet which consists of a finite 
number of symbols. 
 

• Formal language theory concentrates on 
syntax not on semantics (i.e. focuses on word 
spelling, not on the word meaning). 

 



Languages 

• To investigate a word whether it is valid in a 
language, two types of rules can be setup: test 
the alphabet letters or construct all words 
from the language. 

• Concatenation is an operation that can be 
applied to the formal language theory to write 
letters side by side.  

• Length is a function which defines the number 
letters in the string. 

 



Languages 

• Reverse function spells word reversely, for 
instance, the reverse of the word a = (123) is 
(321). 

• PALINDROME is a language that includes Λ 
and strings which are x and revers(x).  

• Closure (*) of the alphabet, is a language that 
contains a set of finite length of strings 
(including Λ). Each string is shaped from 
concatenation of the alphabet elements. 
Closure (*) sometimes is called Kleene star. 

 



Regular Expressions 

• Regular Expression (RE) is a phrase which defines 
a language and the resulted language is called 
Regular Language.  

Example:- 

From the alphabet Σ = {a, b}, it is possible to define 
the following L5. 

 L5 = {a, ab, abb, abbb, abbb, . . .} 

The RE which describes L5 is: 

 L5 = language (ab*) 

 



Regular Expressions 

• Kleene star (*) represents to the infinite language, 
however, (+) define a finite language. 
 

• Plus sign (+) has been employed to give a choice 
(i.e. either, or) in determining a language using 
RE.  
 

• The RE for a language which consists of strings 
that start with a and end with b and a 
combination of a and b in the middle is: 

   a(a + b)*b 

 



Regular Expressions 

Language associated with any RE should obey the 
following rules: 
1. It may contain only one letter such as (Λ) 
2. r1 is RE1 and r2 is RE2, r1 is associated with L1 and r2 

associated with L2 then: 
– r3 = r1r2, the language defined by r3 is associated with L1 

many times L2. 

  Language (r1r2) = L1L2 
– r3 = r1 + r2, the language defined by r3 is associated with a 

language L1 union L2. 

  Language (r1 + r2) = L1 + L2 
– The language associated with (r1)* is L1

*, then L1 is a set of 
all words. 

 



Finite Automata 

• Finite automaton FA is a combination of three 
items: 

A group of states, one is designed as an initial 
state and one or more as the final state. 
 

A collection of input letters to be read by the 
machine one after another. 
 

A set of transitions which guide the transition 
from one state to another depending on the input 
letter. 

 

 



Finite Automata 

• The start state can be recognised by the signs 
minus (-) or arrow or start word as a start 
state and the signs plus (+) or inside or outside 
circle and final as a final word state 
respectively.  
 

• The letters of the input string will form path in 
FA machine starting from the begin state and 
traverse machine states reaching a particular 
state. 



Finite Automata 

 

• If the state is a final state, the path has ended 
successfully and the input string is accepted. 
 

•  Otherwise, the input string will be rejected. 
 

• The travelling across FA will be ended when 
the input string is out of letters.     



Finite Automata 

• Some aspects of directed graph for example 
arrow and circle are adopted to draw FA:  

 

– directed edge or edge is employed to represent a 
path from one state to another. 
 

–  Some states have one or more outgoing edges 
and some states have no incoming edges (e.g. 
start state). 



Finite Automata 

• FA read letters of input string one each time 
beginning from the leftmost letter.  
 

• The process starts from the start state and 
ends with reading of the last letter. 
 

• The sequence of letters determines the 
sequence of states. 
 

• FA sometimes call finite accepter because its 
role only accepts the input string or reject it.  



Finite Automata 

Example: 

The following FA accepts the language which is 
generated by the following RE: 

    (a+b)*a 

 



Transition Graph TG 

• FA consumes one input letter at a time to travel from 
one state to another as shown in the following 
figure. 

 

 

• The need for a machine which accepts strings by few 
numbers of edges is important as demonstrated in 
the following graph. 

 



Transition Graph TG 

• Transition graph TG is a collection of three 
items: 
– A collection of sets; at least one start state and 

one or more (may be none) final state. 
 

– A set of input letters (alphabet) which form 
strings. 
 

– A set of edges (travels) which examine the input 
string. 

 



Kleene’s Theorem 

• Kleene confirmed in 1956 a theorem which states 
that;  A language which is determined by RE or FA 
or TG can be defined by the three methods. 

 

The prof of the theorem consists of three parts; 
– Every language which is accepted by FA can be 

defined by TG. 

– Every language which is accepted by TG can be 
defined by RE. 

– Every language which is accepted by RE can be also 
accepted by FA. 

 



Kleene’s Theorem 

• The Proof of part 1: 

 Every FA is TG, so that, any language which is 
defined by FA is defined by TG. 

 

• The Proof of Part 2:  

 The proof consists of steps which start with 
TG and end with RE that defines the same language. 

 

----------------------------- Continued---------------------- 

 



Kleene’s Theorem 

• First: simplifying the TG, this can be done by 
creating a new start state which is labelled by 
‘-‘ and connect it with other start states by 
edges which are labelled by the word Λ. 
Remove ‘-‘ signs from the old start states.  

 

• Second: apply the same steps in first to unify 
the final states in one final state.  

 ------------- Continued -------------- 



Kleene’s Theorem 

• Third : one by one, in any order, bypass and 
eliminate all not – and + states in the TG. A state 
is bypassed by connecting each incoming edge 
with each outgoing edge, the label of each 
resultant edge is the concatenation of the label 
on the incoming edge with the label on the loop 
edge if there is one and the label on the outgoing 
edge. 

 

• ---------------------- Continued ----------------- 



Kleene’s Theorem 

• Fourth: When two states are joined by more 
than one edge going in the same direction, 
unify (+) them by adding their labels. 
 

• finally, when all that is left is one edge from – 
to +, the label on that edge is a RE that 
generates the same language as was 
recognized by the original machine. 

 



Kleene’s Theorem 

• The Proof of Part 3: 
 

• Rule1: A machine accepts a specific letter of 
an alphabet, there is a machine accepts Λ 
string.  
 

• Rule2: FA1 accepts a language which is defined 
by RE1 (r1). FA2 accepts a language which is 
determined by RE2 (r2). FA3 (FA1 + FA2) accepts 
the language which is defined by (r1 + r2). 

 



Kleene’s Theorem 

• Rule3:  FA1 accepts a language which is defined 
by RE1 (r1). FA2 accepts a language which is 
determined by RE2 (r2). FA3 (FA1 + FA2) accepts the 
language which is defined by (r1 r2). 

 

• Rule 4: If “r” is a regular expression and FA1 is a 
finite automaton that accepts exactly the 
language defined by “r”, then there is an FA called 
FA2 that will accept exactly the language defined 
by “ r* ”. 

 

 



Nondeterministic Finite 

Automata NFA 
NFA is a group of three items: 

 

– A finite collection of states, one can act as a start 
state and set of final states. 
 

– Input letters of alphabet Σ. 
 

– A finite group of edges which explain the 
transitions from start state toward the final states. 
The transition can be done using more than one 
edge with the same label. 

 

 



  Nondeterministic Finite 

Automata NFA 

Example of machine conversion from NFA to 
DFA. 

 



 Nondeterministic Finite 

Automata NFA 

• States of the NFA are S= {q0, q1, q2} and the 
transition table is: 

 

 

 

 

• First state of DFA = {q0} 

 

 

 

  a b 

q0 q0, q1 q0 

q1   q2 

q2     



Nondeterministic Finite 

Automata NFA 
• q0, q1 is the second state in DFA and q0 is 

already exist in DFA. The transition table for 
the new state is:  

 

 

• The next state of the DFA is: q0, q2 and the 
transition table of the new state is: 

 

 

  a b 

q0, q1 q0, q1 q0, q2 

  a b 

q0, q2 q0, q1 q0 



Nondeterministic Finite 

Automata NFA 
• There is no new state for the new machine 

which will be as follows: 

 



Regular Languages 

• It is a language that is defined by a regular 
expression and also by FA based on Kleene’s 
theorem. 

 

• Theorem:- 

 If L1 and L2 are regular languages, then L1 
+ L2, L1L2, and L* are also regular language. 

 



Regular Languages 

• Proof-1 (by regular expression) : 
 

The regular expressions r1 and r2 generate the 
languages L1 and L2, then the language which is 
generated by L1+L2, L1L2 , and L1

* is also regular 
language. 

 

 



Regular Languages 

• Proof-2 (by machine):- 

Let L1 and L2 are accepted by TG1 and TG2 
respectively. Then, 

 

L1 + L2: 

 

 

  



Regular Languages 

• L1L2 

 

 



Regular Languages 

• L* 

 

 



Non-Regular Languages 

• A language that cannot be defined by a regular 
expression is called a non-regular language. 

 

Example:- 

  L = {Λ  ab  aabb  aaabbb  .  .  .  } 

  L = {anbn for n = 0 1 2 3 . . . ) 

  RE= anbn 

 

------------------------- Continued ------------------- 

 



Non-Regular Languages 

• For every RL there is some that FA accepts it, 
then we can construct FA machine for the 
language L, the machine will accept the string 
“a98b96 ”, while this string is not in the 
language L, in other words, the machine 
accepts words not in L, therefore, the 
language L is not Regular. 

 



Context-Free Grammar CFG 

• A group of rules which is called grammar is 
used to validate sentence in the linguistic 
field.  

• The validation process comprises inspection of 
the syntax (structure) of the input sentence, 
not in the semantics (meaning). 

• A set of grammatical rules is dubbed 
productions.   



Context-Free Grammar CFG 

• The structure of the rules known as Context-
Free Grammar CFG. 
 

• The process of generating of final string of 
leaves starting from the beginning of a 
sequence of rules is known as derivation.  
 

• The language which is generated by CFG is 
called Context-free Language. 

 



Context-Free Grammar CFG 

• Context-Free Grammar is a collection of three 
items: 

An alphabet of letters called terminals and r. 
 

A group of symbols and known as non-terminals 
one of them act as a start symbol. 
 

A sequence of productions of the form of: 

 

Non-terminal → string of terminals and/or non-terminals 

 



Context-Free Grammar CFG 

Example: 

Let us consider the following CFG: 

    S→ aS 

    S → Λ 

 

If the production-1 is applied 6 times then 
production-2 only once, then the derivation 
procedure will take the following sequence: 

------------------------ Continued ----------------- 

 



Context-Free Grammar CFG 

 

 

 

 

 

 

The RE of this CFG is a*. 

S => aS 

  => aaS 

  => aaaS 

  => aaaaS 

  => aaaaaS 

  => aaaaaaS 

  => aaaaaaΛ 

  = aaaaaa 



Regular Grammars 

• Some languages are generated by CFG and 
defined by RE and is called Regular 
Languages. 

• However, some languages such as anbn are not 
regular languages but can be generated by 
CFG. 

• To investigate that the CFG is a regular 
grammar, it needs to proof that there is a 
compatible FA accepts the strings generated 
by the CFG. 



Regular Grammars 

Example: 

The following FA accepts strings that have a 
double ‘a’. 

 



Regular Grammar 

Example:  
let us walk through the below machine to confirm that 
the string abbaab which is defined by the following FA, is 
accepted by a CFG. The procedure starts from the start 
state to the final state based on the edge and state labels.  
 
 
 
 
 
 
-------------------------------- Continued ---------------------- 
 



Regular Grammar 

 

 

 

S (We begin in S) 

aM (We take an a-edge to M) 

abS (We take an a-edge then a b-edge and we are in S) 

abbS (An a-edge, a b-edge, and a b-loop back to S) 

abbaM (Another a-edge and we are in M) 

abbaaF (Another a-edge and we are in F) 

abbaabF (A b-loop back to F) 

abbaab (The finished path: an a-edge a b-edge . . . ) 



Regular Grammar 

• The path development of the string abbaab is similar to the 
derivation of the string in a CFG: 
 

S → aM 

S → bS 

M → aF 

M → bS 

F → aF 

F → bF 

F → Λ 

• Therefore, this CFG is regular grammar.    

 

 



Chomsky Normal Form CNF 

Some of CFGs’ can produce the same string in 
several different ways and this CFG is called 
ambiguous and the case is known as ambiguity. 

 

Example: 

The following CFG defines a stings of a’s: 
 

   S → aS | Sa |a 
 

----------------------- Continued ----------------------- 

 

 



Chomsky Normal Form CNF 

To drive a string of three as from the CFG, there 
different ways to do that as shows in the 
following trees: 

 



Chomsky Normal Form CNF 

• Chomsky Normal Form was developed to cover 
this issue.  

• A CFG said to be CNF when its productions in the 
following form: 

  

 Non-terminal → two non-terminals 

           or 

 Non-terminal → one terminal 

  

 

 



Chomsky Normal Form CNF 

• To perform this transferring, some steps are 
needed: 
 

– Remove NULL-production. 
 

– The semi-word which is a string of non-terminal, 
and terminals should be represented as a string of 
couple of non-terminals. 



Chomsky Normal Form CNF 

Example of removing NULL-production. 

 

The following CFG generates a language which is 
defined by the RE = a(a+b)*. 

  S → aX | a 

  X → aX | bX | Λ 

 

The equivalent CFG without Λ-production is: 

  S → aX | a 

  X → aX | bX | a | b 

 

 

 

 



Chomsky Normal Form CNF 

Example of handling semi-word. 

 

The following CFG  for a language that their strings 
must end with a 

  S → Xa 

  X → a | b 

 

The modified CFG is: 

  S → Xa 

  X → a | b 

  A → a 

 

 

 

 



Chomsky Normal Form CNF 

Example of transferring CFG into CNF. 
 
The following CFG produces EVENPALINDROM language. 

 
S → ASA  
S → BSB  
S → AA  
S → BB 
A → a 
B → b 
 

------------------------- Continued -------------------------- 



Chomsky Normal Form CNF 

The CNF of the original CFG is: 
 

S → AR1  

S → BR2  

S → AA  

S → BB 

R1 → SA 

R2 → BA   

A → a 

B → b 

 



Pushdown Automata PDA  

• Pushdown Automata was designed to examine 
the CFG whether its regular or not. 

• It consists of 8 items: 

An input alphabet Σ. 

The input string will be stored in an input TAPE which 
is labelled starting from cell-I and ended by blank Δ. 

A pushdown stack is used to store characters Γ and it 
is initially filled with blank Δ.  

 

----------------------- Continued -------------------------- 



Pushdown Automata PDA 

One START state that has only out-edge and no in-
edge. 

 

 

Halt state of two things, some ACCEPT and some 
REJECT. They have in-edge and no out-edge. 

 

 

 

-------------------------------Continued ------------------- 



Pushdown Automata PDA  

 

Finitely many non-branching PUSH states that 
introduce characters onto the top of the STACK, 
they are of the form:- 

 

 

 

Where, X is any letter in Γ. 

 

---------------------------- Continued ---------------------- 

 

 



Pushdown Automata PDA 

Finitely many branching states of two things:- 

 States that read the next unused letter from the TAPE:- 

 

 

 

 

 State that read the top character of the STACK:- 

 



Pushdown Automata PDA  

• The procedure of PDA will be as follows: 

 

Starting from START state and follow the un-labelled 
edge to generate a path through the graph. 

 

The path will be ended either at the halt state or crash 
in a state when there is no edge corresponding to the 
input letter. 

 

-------------------- Continued --------------------------- 

 

 



Pushdown Automata PDA  

 

The letter will be vanished when it is read from 
the TAPE or popped from the STACK. 

 

A path of string which is ended in ACCEPT it is 
accepted and the set of strings which are 
accepted by PDA it called the language accepted 
by the PDA. 

 



Pushdown Automata PDA 

Example: the following PDA defines EVENPALINDROM 
language. 

 

 

 

 

 

 

 

 

 ------------------------------ Continued -------------------- 



Pushdown Automata PDA 

• Let us examine the string babbab whither it is 
accepted by the PDA or not. This can be done by 
tracing the string through the machine. 

• The input string will be stored in the TAPE. 

 

 

• The following table explains the tracing process 
of the string through the PDA. 
 

------------------------------ Continued ----------------------- 

 

TAPE b a b b a b Δ   



Pushdown Automata PDA 

STATE TAPE STACK 

START babbabΔ Δ 

READ1 babbabΔ Δ 

PUSH b babbabΔ bΔ 

READ1 babbabΔ bΔ 

PSUH a babbabΔ abΔ 

READ1 babbabΔ abΔ 

PUSH b babbabΔ babΔ 

READ1 babbabΔ babΔ 

POP2 babbabΔ abΔ 

READ2 babbabΔ abΔ 

POP1 babbabΔ bΔ 

READ2 babbabΔ bΔ 

POP1 babbabΔ Δ 

READ2 babbabΔ Δ 

POP3 babbabΔ Δ 

ACCEPT babbabΔ Δ 



Turing Machine TM 

• It is a mathematical representation of 
computer which developed by Alan Mathison 
Turing. 

 

• The importance of TM is that it has an output 
which conveys people of the operation results. 



Turing Machine TM 

TM has the following items: 
 

 An alphabet Σ of input letters that do not contain 
the blank symbol Δ for clarity purpose. 

 

 The input string will be stored in a TAPE that 
consists of a sequence of cells. Each cell contains a 
single character of the input string. The initial 
values of the TAPE are blanks Δ. 

 



Turing Machine TM 

 A HAED read the content of the TAPE cells and can 
be moved to the left or right. The initial location of 
the HEAD is the first cell (cell i) and the HEAD has 
to be relocated to the right or the machine will be 
crashed. 

 The input string is written on the TAPE by HEAD. If 
the HEAD writes blank Δ in a cell, it means 
removing the content of the cell not writing a 
blank as a character in the cell.  



Turing Machine TM 

 A machine which consists of a set of states; one 
START state where the execution begins and HALT 
states where the execution is finished, a number 
of states which do not have a function it has only 
names. 

 A program which is a set of rules that labels the 
machine edges by three sections: (Letteri, Lettero, 
direction). 

 Letteri, the input character is read by the HEAD. 
 

--------------------- Continued ----------------------------  



Turing Machine TM 

 Lettero, the character which is written by the 
HEAD. 

 

 direction, move the HEAD to a specific direction. 

 

 Turing Machine is deterministic, nor more than 
one leaving edge have the same Letteri.  



Turing Machine TM 

• TM will be crashed when: 

 

1. The HEAD is moved to the right while it is in the 
first cell. 

 

2. The path of the input string will not arrive at the 
HALT state. 



Turing Machine TM 

Example: 

Let us trace the input string aba on the following 
TM: 

 



Turing Machine TM 

STATE TAPE & TAPE HEAD 

START1 aba 

2 aba 

3 aba 

3 abaΔ 

HALT 4 abaΔΔ 




