

 Computational Theory

Lecturer:- Baydaa AL-Khafaji

Reference: - Introduction to Computational Theory

 by Daniel I.A. Cohen.

 Computational Theory
Lecturer:- Baydaa AL-Khafaji

Reference: - Introduction to

Computational Theory by Daniel I.A.

Cohen.

Background

• Transfer computer from calculating device to
reasonable device.

• Computer theory considers the computer
parts (logic circuits, operating systems,
instruction sets, data structure, artificial
intelligence, data structure, and so on).

• Computer theory studies performance
enhancement of existing machine
components.

Background

• Our study research a better use of the current
and future computers and optimality will be
not considered.

• Our study will investigate the accepted data
structure and rejected.

• Mathematica logic is one of computer theory
parts.

Background

• Mathematicians faced a number of barriers to
define a number of math terms such as
infinity.

• The Universal-algorithm machine is a
theoretical concept was developed by “Alan
Mathison Turing” that research what kind of
work can be accepted by the machine.

Background

• The universal-algorithm machine led to the
invention of the computer.

• Vacuum tube invention assisted researchers to
build automatic electronic calculators which
attracted engineers to build computer for:

– Storing input data in the computer.

– Storing the software in the computer.

– Has a central processing unit to process the input
data based on their type.

Background

• The Linguistic ability of computers was
achieved after the development of Noam
Chomsky theory that led to developing
computer languages.

• Our study will focus on software that can be
performed using computers and it is called
computational theory.

Languages

• Each language in the linguistic field consists of
three entities; letters, words, and sentences.

• Set of characters shape word, group of words
collect sentences which form paragraph and
etc.

• Not every set of letters can shape valid words
and not every collection of words can make up
a valid sentence.

Languages

• Similarly, in computer languages, a certain set of
characters form a word (e.g. while, for, and so
on). Certain collection of words shape
commands (e.g. for (i > 0; i < 100; i++), and
certain set of commands compose program.

• Theory of Formal Languages is an interesting set
of string of symbols that obey a set computer
language rules. The set of symbols does not focus
on the meaning.

Languages

• Null Λ is an empty string (word) that do not
have a letter.

• Two words that have the same order of letters
are equals.

• The English language will be an example in our
study. The Greek letter Σ will represent the
whole alphabet.

Languages

• Formal language theory should include a basic
unit called alphabet which consists of a finite
number of symbols.

• Formal language theory concentrates on
syntax not on semantics (i.e. focuses on word
spelling, not on the word meaning).

Languages

• To investigate a word whether it is valid in a
language, two types of rules can be setup: test
the alphabet letters or construct all words
from the language.

• Concatenation is an operation that can be
applied to the formal language theory to write
letters side by side.

• Length is a function which defines the number
letters in the string.

Languages

• Reverse function spells word reversely, for
instance, the reverse of the word a = (123) is
(321).

• PALINDROME is a language that includes Λ
and strings which are x and revers(x).

• Closure (*) of the alphabet, is a language that
contains a set of finite length of strings
(including Λ). Each string is shaped from
concatenation of the alphabet elements.
Closure (*) sometimes is called Kleene star.

Regular Expressions

• Regular Expression (RE) is a phrase which defines
a language and the resulted language is called
Regular Language.

Example:-

From the alphabet Σ = {a, b}, it is possible to define
the following L5.

 L5 = {a, ab, abb, abbb, abbb, . . .}

The RE which describes L5 is:

 L5 = language (ab*)

Regular Expressions

• Kleene star (*) represents to the infinite language,
however, (+) define a finite language.

• Plus sign (+) has been employed to give a choice
(i.e. either, or) in determining a language using
RE.

• The RE for a language which consists of strings
that start with a and end with b and a
combination of a and b in the middle is:

 a(a + b)*b

Regular Expressions

Language associated with any RE should obey the
following rules:
1. It may contain only one letter such as (Λ)
2. r1 is RE1 and r2 is RE2, r1 is associated with L1 and r2

associated with L2 then:
– r3 = r1r2, the language defined by r3 is associated with L1

many times L2.

 Language (r1r2) = L1L2
– r3 = r1 + r2, the language defined by r3 is associated with a

language L1 union L2.

 Language (r1 + r2) = L1 + L2
– The language associated with (r1)* is L1

*, then L1 is a set of
all words.

Finite Automata

• Finite automaton FA is a combination of three
items:

A group of states, one is designed as an initial
state and one or more as the final state.

A collection of input letters to be read by the
machine one after another.

A set of transitions which guide the transition
from one state to another depending on the input
letter.

Finite Automata

• The start state can be recognised by the signs
minus (-) or arrow or start word as a start
state and the signs plus (+) or inside or outside
circle and final as a final word state
respectively.

• The letters of the input string will form path in
FA machine starting from the begin state and
traverse machine states reaching a particular
state.

Finite Automata

• If the state is a final state, the path has ended
successfully and the input string is accepted.

• Otherwise, the input string will be rejected.

• The travelling across FA will be ended when
the input string is out of letters.

Finite Automata

• Some aspects of directed graph for example
arrow and circle are adopted to draw FA:

– directed edge or edge is employed to represent a
path from one state to another.

– Some states have one or more outgoing edges
and some states have no incoming edges (e.g.
start state).

Finite Automata

• FA read letters of input string one each time
beginning from the leftmost letter.

• The process starts from the start state and
ends with reading of the last letter.

• The sequence of letters determines the
sequence of states.

• FA sometimes call finite accepter because its
role only accepts the input string or reject it.

Finite Automata

Example:

The following FA accepts the language which is
generated by the following RE:

 (a+b)*a

Transition Graph TG

• FA consumes one input letter at a time to travel from
one state to another as shown in the following
figure.

• The need for a machine which accepts strings by few
numbers of edges is important as demonstrated in
the following graph.

Transition Graph TG

• Transition graph TG is a collection of three
items:
– A collection of sets; at least one start state and

one or more (may be none) final state.

– A set of input letters (alphabet) which form
strings.

– A set of edges (travels) which examine the input
string.

Kleene’s Theorem

• Kleene confirmed in 1956 a theorem which states
that; A language which is determined by RE or FA
or TG can be defined by the three methods.

The prof of the theorem consists of three parts;
– Every language which is accepted by FA can be

defined by TG.

– Every language which is accepted by TG can be
defined by RE.

– Every language which is accepted by RE can be also
accepted by FA.

Kleene’s Theorem

• The Proof of part 1:

 Every FA is TG, so that, any language which is
defined by FA is defined by TG.

• The Proof of Part 2:

 The proof consists of steps which start with
TG and end with RE that defines the same language.

----------------------------- Continued----------------------

Kleene’s Theorem

• First: simplifying the TG, this can be done by
creating a new start state which is labelled by
‘-‘ and connect it with other start states by
edges which are labelled by the word Λ.
Remove ‘-‘ signs from the old start states.

• Second: apply the same steps in first to unify
the final states in one final state.

 ------------- Continued --------------

Kleene’s Theorem

• Third : one by one, in any order, bypass and
eliminate all not – and + states in the TG. A state
is bypassed by connecting each incoming edge
with each outgoing edge, the label of each
resultant edge is the concatenation of the label
on the incoming edge with the label on the loop
edge if there is one and the label on the outgoing
edge.

• ---------------------- Continued -----------------

Kleene’s Theorem

• Fourth: When two states are joined by more
than one edge going in the same direction,
unify (+) them by adding their labels.

• finally, when all that is left is one edge from –
to +, the label on that edge is a RE that
generates the same language as was
recognized by the original machine.

Kleene’s Theorem

• The Proof of Part 3:

• Rule1: A machine accepts a specific letter of
an alphabet, there is a machine accepts Λ
string.

• Rule2: FA1 accepts a language which is defined
by RE1 (r1). FA2 accepts a language which is
determined by RE2 (r2). FA3 (FA1 + FA2) accepts
the language which is defined by (r1 + r2).

Kleene’s Theorem

• Rule3: FA1 accepts a language which is defined
by RE1 (r1). FA2 accepts a language which is
determined by RE2 (r2). FA3 (FA1 + FA2) accepts the
language which is defined by (r1 r2).

• Rule 4: If “r” is a regular expression and FA1 is a
finite automaton that accepts exactly the
language defined by “r”, then there is an FA called
FA2 that will accept exactly the language defined
by “ r* ”.

Nondeterministic Finite

Automata NFA
NFA is a group of three items:

– A finite collection of states, one can act as a start
state and set of final states.

– Input letters of alphabet Σ.

– A finite group of edges which explain the
transitions from start state toward the final states.
The transition can be done using more than one
edge with the same label.

 Nondeterministic Finite

Automata NFA

Example of machine conversion from NFA to
DFA.

 Nondeterministic Finite

Automata NFA

• States of the NFA are S= {q0, q1, q2} and the
transition table is:

• First state of DFA = {q0}

 a b

q0 q0, q1 q0

q1 q2

q2

Nondeterministic Finite

Automata NFA
• q0, q1 is the second state in DFA and q0 is

already exist in DFA. The transition table for
the new state is:

• The next state of the DFA is: q0, q2 and the
transition table of the new state is:

 a b

q0, q1 q0, q1 q0, q2

 a b

q0, q2 q0, q1 q0

Nondeterministic Finite

Automata NFA
• There is no new state for the new machine

which will be as follows:

Regular Languages

• It is a language that is defined by a regular
expression and also by FA based on Kleene’s
theorem.

• Theorem:-

 If L1 and L2 are regular languages, then L1
+ L2, L1L2, and L* are also regular language.

Regular Languages

• Proof-1 (by regular expression) :

The regular expressions r1 and r2 generate the
languages L1 and L2, then the language which is
generated by L1+L2, L1L2 , and L1

* is also regular
language.

Regular Languages

• Proof-2 (by machine):-

Let L1 and L2 are accepted by TG1 and TG2
respectively. Then,

L1 + L2:

Regular Languages

• L1L2

Regular Languages

• L*

Non-Regular Languages

• A language that cannot be defined by a regular
expression is called a non-regular language.

Example:-

 L = {Λ ab aabb aaabbb . . . }

 L = {anbn for n = 0 1 2 3 . . .)

 RE= anbn

------------------------- Continued -------------------

Non-Regular Languages

• For every RL there is some that FA accepts it,
then we can construct FA machine for the
language L, the machine will accept the string
“a98b96 ”, while this string is not in the
language L, in other words, the machine
accepts words not in L, therefore, the
language L is not Regular.

Context-Free Grammar CFG

• A group of rules which is called grammar is
used to validate sentence in the linguistic
field.

• The validation process comprises inspection of
the syntax (structure) of the input sentence,
not in the semantics (meaning).

• A set of grammatical rules is dubbed
productions.

Context-Free Grammar CFG

• The structure of the rules known as Context-
Free Grammar CFG.

• The process of generating of final string of
leaves starting from the beginning of a
sequence of rules is known as derivation.

• The language which is generated by CFG is
called Context-free Language.

Context-Free Grammar CFG

• Context-Free Grammar is a collection of three
items:

An alphabet of letters called terminals and r.

A group of symbols and known as non-terminals
one of them act as a start symbol.

A sequence of productions of the form of:

Non-terminal → string of terminals and/or non-terminals

Context-Free Grammar CFG

Example:

Let us consider the following CFG:

 S→ aS

 S → Λ

If the production-1 is applied 6 times then
production-2 only once, then the derivation
procedure will take the following sequence:

------------------------ Continued -----------------

Context-Free Grammar CFG

The RE of this CFG is a*.

S => aS

 => aaS

 => aaaS

 => aaaaS

 => aaaaaS

 => aaaaaaS

 => aaaaaaΛ

 = aaaaaa

Regular Grammars

• Some languages are generated by CFG and
defined by RE and is called Regular
Languages.

• However, some languages such as anbn are not
regular languages but can be generated by
CFG.

• To investigate that the CFG is a regular
grammar, it needs to proof that there is a
compatible FA accepts the strings generated
by the CFG.

Regular Grammars

Example:

The following FA accepts strings that have a
double ‘a’.

Regular Grammar

Example:
let us walk through the below machine to confirm that
the string abbaab which is defined by the following FA, is
accepted by a CFG. The procedure starts from the start
state to the final state based on the edge and state labels.

-------------------------------- Continued ----------------------

Regular Grammar

S (We begin in S)

aM (We take an a-edge to M)

abS (We take an a-edge then a b-edge and we are in S)

abbS (An a-edge, a b-edge, and a b-loop back to S)

abbaM (Another a-edge and we are in M)

abbaaF (Another a-edge and we are in F)

abbaabF (A b-loop back to F)

abbaab (The finished path: an a-edge a b-edge . . .)

Regular Grammar

• The path development of the string abbaab is similar to the
derivation of the string in a CFG:

S → aM

S → bS

M → aF

M → bS

F → aF

F → bF

F → Λ

• Therefore, this CFG is regular grammar.

Chomsky Normal Form CNF

Some of CFGs’ can produce the same string in
several different ways and this CFG is called
ambiguous and the case is known as ambiguity.

Example:

The following CFG defines a stings of a’s:

 S → aS | Sa |a

----------------------- Continued -----------------------

Chomsky Normal Form CNF

To drive a string of three as from the CFG, there
different ways to do that as shows in the
following trees:

Chomsky Normal Form CNF

• Chomsky Normal Form was developed to cover
this issue.

• A CFG said to be CNF when its productions in the
following form:

 Non-terminal → two non-terminals

 or

 Non-terminal → one terminal

Chomsky Normal Form CNF

• To perform this transferring, some steps are
needed:

– Remove NULL-production.

– The semi-word which is a string of non-terminal,
and terminals should be represented as a string of
couple of non-terminals.

Chomsky Normal Form CNF

Example of removing NULL-production.

The following CFG generates a language which is
defined by the RE = a(a+b)*.

 S → aX | a

 X → aX | bX | Λ

The equivalent CFG without Λ-production is:

 S → aX | a

 X → aX | bX | a | b

Chomsky Normal Form CNF

Example of handling semi-word.

The following CFG for a language that their strings
must end with a

 S → Xa

 X → a | b

The modified CFG is:

 S → Xa

 X → a | b

 A → a

Chomsky Normal Form CNF

Example of transferring CFG into CNF.

The following CFG produces EVENPALINDROM language.

S → ASA
S → BSB
S → AA
S → BB
A → a
B → b

------------------------- Continued --------------------------

Chomsky Normal Form CNF

The CNF of the original CFG is:

S → AR1

S → BR2

S → AA

S → BB

R1 → SA

R2 → BA

A → a

B → b

Pushdown Automata PDA

• Pushdown Automata was designed to examine
the CFG whether its regular or not.

• It consists of 8 items:

An input alphabet Σ.

The input string will be stored in an input TAPE which
is labelled starting from cell-I and ended by blank Δ.

A pushdown stack is used to store characters Γ and it
is initially filled with blank Δ.

----------------------- Continued --------------------------

Pushdown Automata PDA

One START state that has only out-edge and no in-
edge.

Halt state of two things, some ACCEPT and some
REJECT. They have in-edge and no out-edge.

-------------------------------Continued -------------------

Pushdown Automata PDA

Finitely many non-branching PUSH states that
introduce characters onto the top of the STACK,
they are of the form:-

Where, X is any letter in Γ.

---------------------------- Continued ----------------------

Pushdown Automata PDA

Finitely many branching states of two things:-

 States that read the next unused letter from the TAPE:-

 State that read the top character of the STACK:-

Pushdown Automata PDA

• The procedure of PDA will be as follows:

Starting from START state and follow the un-labelled
edge to generate a path through the graph.

The path will be ended either at the halt state or crash
in a state when there is no edge corresponding to the
input letter.

-------------------- Continued ---------------------------

Pushdown Automata PDA

The letter will be vanished when it is read from
the TAPE or popped from the STACK.

A path of string which is ended in ACCEPT it is
accepted and the set of strings which are
accepted by PDA it called the language accepted
by the PDA.

Pushdown Automata PDA

Example: the following PDA defines EVENPALINDROM
language.

 ------------------------------ Continued --------------------

Pushdown Automata PDA

• Let us examine the string babbab whither it is
accepted by the PDA or not. This can be done by
tracing the string through the machine.

• The input string will be stored in the TAPE.

• The following table explains the tracing process
of the string through the PDA.

------------------------------ Continued -----------------------

TAPE b a b b a b Δ

Pushdown Automata PDA

STATE TAPE STACK

START babbabΔ Δ

READ1 babbabΔ Δ

PUSH b babbabΔ bΔ

READ1 babbabΔ bΔ

PSUH a babbabΔ abΔ

READ1 babbabΔ abΔ

PUSH b babbabΔ babΔ

READ1 babbabΔ babΔ

POP2 babbabΔ abΔ

READ2 babbabΔ abΔ

POP1 babbabΔ bΔ

READ2 babbabΔ bΔ

POP1 babbabΔ Δ

READ2 babbabΔ Δ

POP3 babbabΔ Δ

ACCEPT babbabΔ Δ

Turing Machine TM

• It is a mathematical representation of
computer which developed by Alan Mathison
Turing.

• The importance of TM is that it has an output
which conveys people of the operation results.

Turing Machine TM

TM has the following items:

 An alphabet Σ of input letters that do not contain
the blank symbol Δ for clarity purpose.

 The input string will be stored in a TAPE that
consists of a sequence of cells. Each cell contains a
single character of the input string. The initial
values of the TAPE are blanks Δ.

Turing Machine TM

 A HAED read the content of the TAPE cells and can
be moved to the left or right. The initial location of
the HEAD is the first cell (cell i) and the HEAD has
to be relocated to the right or the machine will be
crashed.

 The input string is written on the TAPE by HEAD. If
the HEAD writes blank Δ in a cell, it means
removing the content of the cell not writing a
blank as a character in the cell.

Turing Machine TM

 A machine which consists of a set of states; one
START state where the execution begins and HALT
states where the execution is finished, a number
of states which do not have a function it has only
names.

 A program which is a set of rules that labels the
machine edges by three sections: (Letteri, Lettero,
direction).

 Letteri, the input character is read by the HEAD.

--------------------- Continued ----------------------------

Turing Machine TM

 Lettero, the character which is written by the
HEAD.

 direction, move the HEAD to a specific direction.

 Turing Machine is deterministic, nor more than
one leaving edge have the same Letteri.

Turing Machine TM

• TM will be crashed when:

1. The HEAD is moved to the right while it is in the
first cell.

2. The path of the input string will not arrive at the
HALT state.

Turing Machine TM

Example:

Let us trace the input string aba on the following
TM:

Turing Machine TM

STATE TAPE & TAPE HEAD

START1 aba

2 aba

3 aba

3 abaΔ

HALT 4 abaΔΔ

