
Visual Programming
Lecture 1 – Introduction

قسم علوم الحاسبات/ كلية التربية للعلوم الصرفة ابن الهيثم/ جامعة بغداد

(نظري)مسائي / المرحلة الثالثة صباحي

2022-2021السنة

شهلاء طالب. د: أستاذة المادة

Visual programming is a type of programming language that lets
humans describe processes using illustration. Whereas a typical text-
based programming language makes the programmer think like a
computer, a visual programming language lets the programmer
describe the process in terms that make sense to humans.

• A visual programming language (VPL) is a programming
language that uses graphical elements and figures to
develop a program.

• A VPL employs techniques to design a software program
in two or more dimensions, and includes graphical
elements, text, symbols and icons within its
programming context.

• A visual programming language is also known as an
executable graphics language.

Visual Basic 2012 – Introduction
Microsoft launched Visual Basic 2012 in the year 2012. It is a fully object-
oriented programming language implemented on the .NET
Framework. Similar to the earlier version of VB.NET programming
languages, VB2012 is integrated with other Microsoft Programming
languages in an IDE called Visual Studio Express 2012.

The reasons for of implementing Visual Basic program are listed as follows:

1- It uses Integrated Development Environment (IDE) which is easier for the
user to minimize code writing.

2- All visual programs follow the same concepts, therefore the user will
become more familiar with visual approach for other visual languages.

3- It provides Input box and Output box as an interactive windows with user.

4- It is able to connect to Internet, and to call Explorer.

When you launch Visual Studio Express 2012, the start page
will appear, as shown in Figure 1.1 below.

Figure 1.1: Visual Studio 2012 Start Page

To start a new Visual Studio Express 2012 project, simply click on New
Project to launch the Visual Studio New Project page, as shown in
Figure 1.2

Figure 1.2: Visual Studio 2012 Project Page

• The New Project Page (Figure1.2) comprises three templates,
Visual Basic, Visual C# and Visual C++. Since we are going to
learn Visual Basic 2012, we shall select Visual Basic. Visual
Basic 2012 offers you four types of projects that you can
create. As we are going to learn to create Windows
Applications, we will select Windows Forms Application.

• At the bottom of this dialog box, you can change the default
project name WindowsApplication1 to some other name you
like, for example, MyFirstProgram. After you have renamed
the project, click OK to continue. The Toolbox is not shown
until you click on the Toolbox tab. When you click on the
Toolbox tab, the common controls Toolbox will appear.

Form
Designer

Project Explorer
Window

Properties
Window

ToolBox

Figure 1.3: Visual Basic 2012 IDE

• Visual Basic Express 2012 IDE (Figure 1.3) comprises a few windows, the
Form window, the Solution Explorer window and the Properties window. It
also consists of a toolbox which contains many useful controls that allow a
programmer to develop his or her VB programs.

• Form Designer: it is a window for each form to customize the designed
interface of the application. Using the form designer, the user can add
controls, graphics, and text to create the desired form appearance.

• Project Explorer Window: it is a list of the forms and modules for the
current projects. It is a hierarchical tree- branch structure, where the project
at top of tree and other parts like forms ,modules descend from this tree.

• Properties Window: it is a List of properties settings for a selected form or a
control. These properties are characteristics (such as size, visible, or color) of
the selected object it provides an easy way to set properties.

• ToolBox: it contains a collection of tools that are needed for project design.

What are Controls

Controls in Visual Basic 2012 are objects that can
be placed on the form to perform various tasks.
Figure 1.4 shows the toolbox that contains the
controls. They are categorized into Common
Controls, Containers, Menus, Toolbars, Data,
Components, Printings and Dialogs. At the
moment, we will focus on the common controls.
Some frequently used common controls are
Button, Label, ComboBox, ListBox, PictureBox,
and TextBox. To insert a control into your form in
Visual Basic 2012 IDE, drag the control from the
toolbox and drop it onto the form. You can
reposition and resize it as you like.

Figure 1.4: Visual Basic 2012 Toolbox

Now, we shall proceed to show you
how to create your first program.
First, change the text of the form
to My First Program in the
properties window, it will appear
as the title of the program. Next,
insert a button and change its text
to OK. The design interface is
shown in Figure 1.5.

Figure 1.5: The Design Interface

Now click on the OK button to
bring up the code window and
enter the following statement
between Private Sub and End
Sub procedure, as shown in
Figure 1.6.

MsgBox(“My First Visual Basic
2012 Program”)

Figure 1.6: The Code Window

Now click on the Start on the toolbar to run the program then click on
the OK button, a dialog box that displays the “My First Visual Basic 2012
Program″ message will appear, as shown in Figure 1.7.

The function MsgBox is a built-in function of Visual Basic 2012 and it
will display the text enclosed within the brackets.

Figure 1.7: The Message Box

Visual Programming
Lecture 2 – Data Types, Variables,
Constants and Discussion Making

قسم علوم الحاسبات/ كلية التربية للعلوم الصرفة ابن الهيثم/ جامعة بغداد

(نظري)مسائي / الثالثة صباحي : المرحلة

شهلاء طالب. د: أستاذة المادة

Data types refer to an extensive system used for declaring
variables or functions of different types. The type of a variable
determines how much space it occupies in storage and how
the bit pattern stored is interpreted.

VB.Net provides a wide range of data types. The
following table shows some of the data types available −

Variables

The following example demonstrates use of some of the types −

Dim b As Byte

Dim n As Integer

Dim d As Double

Dim da As Date

Dim c As Char

Dim s As String

Dim bl As Boolean

The Type Conversion Functions in VB.Net

Private Sub Button1_Click(sender As Object, e As EventArgs)
Handles Button1.Click

Dim n As Integer

Dim da As Date

Dim bl As Boolean

n = 1234567

da = Today

Console.WriteLine(bl)

Console.WriteLine(CByte(bl))

Console.WriteLine(CStr(bl))

Console.WriteLine(CStr(da))

Console.WriteLine(CChar(CChar(CStr(n))))

Console.WriteLine(CChar(CStr(da)))

End Sub

False
0
False
18/10/2021
1
1

Constant and Enumeration
The constants refer to fixed values that the program may not alter
during its execution. These fixed values are also called literals.

Constants can be of any of the basic data types like an integer constant,
a floating constant, a character constant, or a string literal. There are
also enumeration constants as well.

The constants are treated just like regular variables except that their
values cannot be modified after their definition.

An enumeration is a set of named integer constants.

Example
Private Sub Button2_Click(sender As Object, e As

EventArgs) Handles Button2.Click

Const PI = 3.14149

Dim radius, area As Single

radius = 7

area = PI * radius * radius

Console.WriteLine("Area = " & Str(area))

End Sub

Area = 153.933

Example
Private Sub Button3_Click(sender As Object, e As EventArgs) Handles
Button3.Click

Console.WriteLine("The Color Red is : " & Colors.red)

Console.WriteLine("The Color Yellow is : " & Colors.yellow)

Console.WriteLine("The Color Blue is : " & Colors.blue)

Console.WriteLine("The Color Green is : " & Colors.green)

End Sub

Enum Colors

red = 1

orange = 2

yellow = 3

green = 4

azure = 5

blue = 6

violet = 7

End Enum

The Color Red is : 1
The Color Yellow is : 3
The Color Blue is : 6
The Color Green is : 4

Discussion Making in VB

Generally, in Visual Basic 2012 the statement that needs to be executed

based on the condition is known as a “Conditional Statement” and the

statement is more likely a block of code.

Visual Basic If Statement

Syntax of Visual Basic if Statement

If bool_expression Then

// Statements to Execute if condition is true

End If

Visual Basic If Statement Flow Chart Diagram
Following is the flow chart diagram which will represent the process flow of If
statement in Visual Basic programming language.

VisualBasic If Statement Example
Following is the example of defining the If statement in Visual Basic programming

language to execute the block of code or statements based on a Boolean expression.

Private Sub Button2_Click(sender As Object, e As EventArgs)
Handles Button2.Click

Dim x As Integer = 20, y As Integer = 10
If x >= 10 Then

MsgBox("x is Greater than 10")
End If
If y <= 5 Then

MsgBox("y is less than or equals to 5")
End If
MsgBox("Press Enter Key to Exit..")

End Sub

Visual Basic If Else Statement
In Visual Basic, If Else statement or condition is having an optional Else statements and
the Else statements will be executed whenever the If condition fails to execute..

Generally in Visual Basic, If Else statement, whenever the boolean expression returns
true, then the If statements will be executed otherwise the Else block of statements will
be executed.

Syntax of Visual Basic If Else Statement

If boolean_expression Then
// Statements to Execute if boolean expression is True
Else
// Statements to Execute if boolean expression is False
End If

Following is the example of defining the If Else statement in Visual Basic
programming language to execute the block of code or statements based on a
Boolean expression.

Private Sub Button3_Click(sender As Object, e As EventArgs) Handles
Button3.Click

Dim x As Integer = 20

If x >= 10 Then

MsgBox("x is Greater than or Equals to 10")

Else

MsgBox("x is Less than 10")

End If

MsgBox("Press Enter Key to Exit..")

End Sub

Visual Basic If Else Statement Example

Visual Programming
Lecture 3 –Discussion Making

قسم علوم الحاسبات/كلية التربية للعلوم الصرفة ابن الهيثم/ جامعة بغداد
(نظري)مسائي / المرحلة الثالثة صباحي

2022-2021السنة
طالبشهلاء : اساتذة المادة

Discussion Making in VB

Generally, in Visual Basic the statement that needs to be executed based

on the condition is known as a “Conditional Statement” and the

statement is more likely a block of code.

Visual Basic If Statement

Syntax of Visual Basic if Statement

If bool_expression Then

// Statements to Execute if condition is true

End If

Visual Basic If Statement Flow Chart Diagram
Following is the flow chart diagram which will represent the process flow of If
statement in Visual Basic programming language.

VisualBasic If Statement Example
Following is the example of defining the If statement in Visual Basic programming

language to execute the block of code or statements based on a Boolean expression.

Private Sub Button2_Click(sender As Object, e As EventArgs)
Handles Button2.Click

Dim x As Integer = 20, y As Integer = 10
If x >= 10 Then

MsgBox("x is Greater than 10")
End If
If y <= 5 Then

MsgBox("y is less than or equals to 5")
End If
MsgBox("Press Enter Key to Exit..")

End Sub

Visual Basic If Else Statement
In Visual Basic, If Else statement or condition is having an optional Else statements and
the Else statements will be executed whenever the If condition fails to execute..

Generally in Visual Basic, If Else statement, whenever the boolean expression returns
true, then the If statements will be executed otherwise the Else block of statements will
be executed.

Syntax of Visual Basic If Else Statement

If boolean_expression Then
// Statements to Execute if boolean expression is True
Else
// Statements to Execute if boolean expression is False
End If

Following is the example of defining the If Else statement in Visual Basic
programming language to execute the block of code or statements based on a
Boolean expression.

Private Sub Button3_Click(sender As Object, e As EventArgs) Handles
Button3.Click

Dim x As Integer = 20

If x >= 10 Then

MsgBox("x is Greater than or Equals to 10")

Else

MsgBox("x is Less than 10")

End If

MsgBox("Press Enter Key to Exit..")

End Sub

Visual Basic If Else Statement Example

Visual Basic If-Else-If Statement
In Visual Basic, If-Else-If statement or condition is useful to define the multiple conditions and execute only
the matched condition based on our requirements.
Generally, in Visual Basic if statement or if-else statement is useful when we have a one condition to validate
and execute the required block of statements. In case, if we have a multiple conditions to validate and execute
only one block of code, then If-Else-If statement is useful in our application.

Syntax of Visual Basic If-Else-If Statement

If condition_1 Then
// Statements to Execute if condition_1 is True
ElseIf condition_2 Then
// Statements to Execute if condition_2 is True
ElseIf condition_3 Then
// Statements to Execute if condition_3 is True
....
....
Else
// Statements to Execute if all conditions are False
End If

Visual Basic If-Else-If Statement Flow Chart

Visual Basic If-Else-If Statement Example
Following is the example of defining the If-Else-If statement in Visual Basic
programming language to execute the block of code or statements based
on the Boolean expression.
Private Sub Button4_Click(sender As Object, e As EventArgs) Handles
Button4.Click

Dim x As Integer = 5

If x = 10 Then

MsgBox("x value equals to 10")

ElseIf x > 10 Then

MsgBox("x value greater than 10")

Else

MsgBox("x value less than 10")

End If

MsgBox("Press Enter Key to Exit..")

End Sub

Visual Basic Select Case Statement

In Visual Basic, Select...Case statement is useful to execute a
single case statement from the group of multiple case statements
based on the value of a defined expression.

By using Select...Case statement in Visual Basic, we can replace
the functionality of if…else if statement to provide better
readability for the code.

https://www.tutlane.com/tutorial/visual-basic/vb-if-else-if-statement

Visual Basic Select Case Statement Syntax
Generally, in Visual Basic the Select...Case statement is a collection
of multiple case statements and it will execute only one single case
statement based on the matching value of the defined expression.
Select Case variable/expresion

Case value1

// Statements to Execute

Case value2

//Statements to Execute

....

....

Case Else

// Statements to Execute if No Case Matches

End Select

Visual Basic Select Case Statement Example

Private Sub Button5_Click(sender As Object,
e As EventArgs) Handles Button5.Click

Dim x As Integer = 20
Select Case x

Case 10
MsgBox("x value is 10")

Case 15
MsgBox("x value is 15")

Case 20
MsgBox("x value is 20")

Case Else
MsgBox("Not Known")

End Select
MsgBox("Press Enter Key to Exit..")

End Sub

Visual Basic Select Case Statement Flow Chart

Discussion Making in VB Program

Visual Programming
Lecture 4 –Operators & Loops

قسم علوم الحاسبات/كلية التربية للعلوم الصرفة ابن الهيثم/ جامعة بغداد
(نظري)مسائي / المرحلة الثالثة صباحي

2022-2021السنة
شهلاء طالب: اساتذة المادة

Operators: An operator is a symbol that tells the compiler to

perform specific mathematical or logical manipulations. VB.Net is

rich in built-in operators and provides following types of commonly

used operators −

• Arithmetic Operators

• Comparison Operators

• Assignment Operators

• Logical Operators

Arithmetic Operators
Following table shows all the arithmetic operators supported by
VB.Net. Assume variable A holds 2 and variable B holds 7, then −

Comparison Operators
Following table shows all the comparison operators supported by VB.Net. Assume

variable A holds 10 and variable B holds 20, then −

Logical Operators
Following table shows all the logical operators supported by VB.Net. Assume
variable A holds Boolean value True and variable B holds Boolean value False,
then −

There are following
assignment operators
supported by VB.Net −

Assignment Operators

The For....Next Loop
The syntax is:

For counter=startNumber to endNumber (Step increment)

One or more VB statements

Next

Example 1: Write a program to print (hello) five times.

Sol:
Private Sub Button3_Click(sender As Object, e As
EventArgs) Handles Button3.Click

For i = 1 To 5
Console.WriteLine("hello")

Next i

End Sub

Example 2: Write a program to print even numbers from 1 to 10.

Sol:

Private Sub Button4_Click(sender As Object, e
As EventArgs) Handles Button4.Click

For i = 2 To 10 Step 2
Console.WriteLine(i)

Next i

End Sub

To exit a For.....Next Loop you can place the Exit For statement within

the loop; and it is normally used together with the If...Then...statement

Private Sub Button5_Click(sender As Object,
e As EventArgs) Handles Button5.Click

Dim n As Integer
For n = 1 To 10

If n > 6 Then
Exit For

Else
Console.WriteLine(n)

End If
Next

End Sub

The Do Loop
The Do Loop syntaxes are
a)

Do While condition

Block of one or more Visual Basic 2012 statements

Loop

b)

Do

Block of one or more Visual Basic 2012 statements

Loop While condition

c)

Do Until condition

Block of one or more Visual Basic 2012 statements

Loop

d)

Do

Block of one or more Visual Basic 2012 statements

Loop Until condition

Private Sub Button6_Click(sender As Object,
e As EventArgs) Handles Button6.Click

Dim counter As Integer

Do While counter <= 1000

Console.WriteLine(counter)

counter += 100

Loop

End Sub

1. Do While Loop Example

Write a program to print (hello) five times with its
numbering using do while loop.

Private Sub Button8_Click(sender As Object,
e As EventArgs) Handles Button8.Click

Dim i As Integer
i = 1
Do While i <= 5

Console.WriteLine("hello")
i = i + 1

Loop

End Sub

Write a program to print even numbers from 1 to 10.

Private Sub Button9_Click(sender As Object, e
As EventArgs) Handles Button9.Click

Dim i As Integer
i = 2
Do While i <= 10

Console.WriteLine(i)
i = i + 2

Loop
End Sub

Private Sub Button7_Click(sender As Object, e As
EventArgs) Handles Button7.Click

Dim sum, n As Integer

Console.WriteLine("n" & vbTab & "Sum")

Console.WriteLine("---------------------
-")

Do

n += 1

sum += n

Console.WriteLine(n & vbTab & sum)

If n = 100 Then

Exit Do

End If

Loop

End Sub

2. Do Loop Example

3. Do Until Loop.

Private Sub Button10_Click(sender As Object, e
As EventArgs) Handles Button10.Click

Dim i As Integer

i = 1

Do Until i > 5

Console.WriteLine("hello")

i = i + 1

Loop

End Sub

4. Do Loop Until.

Private Sub Button11_Click(sender As Object, e As
EventArgs) Handles Button11.Click

Dim i As Integer

i = 1

Do

Console.WriteLine("hello")

i = i + 1

Loop Until i > 5

End Sub

Visual Programming
Lecture 5 –Basic Controls

قسم علوم الحاسبات/كلية التربية للعلوم الصرفة ابن الهيثم/ جامعة بغداد
(نظري)مسائي / المرحلة الثالثة صباحي

2022-2021السنة
شهلاء طالب: اساتذة المادة

Basic Controls

VB.Net provides a huge variety of controls that help you to create

rich user interface. Functionalities of all these controls are defined

in the respective control classes. The control classes are defined in

the System.Windows.Forms namespace.

The following table lists some of the commonly used controls −

Controls Properties
Forms and controls have properties, events, and methods. Together they make the
forms and controls useful for programmers.

You can change the appearance of the controls (and form) by setting their
properties in the properties window.

Here is a shortlist of the properties we use in the course:

Here is an example program that changes some properties of the form and the
controls. To enter the code into Visual Basic IDE, you can double click Button1 in
design view. Can you guess what will happen after Button1 is clicked?

Private Sub Button1_Click(sender As Object, e As EventArgs) Handles
Button1.Click

Me.Text = "Button1 Pressed!"

Me.BackColor = Color.Pink

Label1.Text = "Name"

Label1.BackColor = Color.Green

Label1.ForeColor = Color.Yellow

Label1.Top = 80

TextBox1.Text = "Sarah"

TextBox1.BackColor = Color.Red

TextBox1.Enabled = False

TextBox1.Left = 20

Button1.Visible = False

End Sub

Before After

Exercise 1:
Write a program with two controls: Button1 and TextBox1. When Button1 is clicked,
the following things should happen:

(a) TextBox1 is disabled,

(b) The background color of TextBox1 becomes yellow,

(c) Button1 becomes visible, and

(d) The form’s background color becomes white.

Exercise 2:
Identify the mistakes in the following source code. There is one mistake in each line.

(Note: There are no mistakes with the words Me, Label1, Button1 and TextBox1.)

Me.Title = "Title of the form"

Label1.BackColor = Colour.Green

Button1.Visible = Ture

TextBox1.Enable = False

TextBox1.Text = Very good

CheckBox and RadioButton

The checkbox is a control that allows the user to select multiple items.

The radio button is another control in Visual Basic 2012 that allows selection

of choices. However, it operates differently from the CheckBox. While the

CheckBoxes allow the user to select one or more items, radio buttons are

mutually exclusive, which means the user can only choose one item only out

of a number of choices.

Example

In this example, the user can enter text into a TextBox and format the font

using the three CheckBoxes that represent bold, italic and underline. Also

change the size of text into a TextBox by using two RadioButtons.

Public Class Form1

Private Sub CheckBox1_CheckedChanged(sender As Object, e As EventArgs) Handles CheckBox1.CheckedChanged

If CheckBox1.Checked Then

TextBox1.Font = New Drawing.Font("Times New Roman", 20, FontStyle.Bold)

End If

End Sub

Private Sub CheckBox2_CheckedChanged(sender As Object, e As EventArgs) Handles CheckBox2.CheckedChanged

If CheckBox2.Checked Then

TextBox1.Font = New Drawing.Font("Times New Roman", 20, FontStyle.Italic)

End If

End Sub

Private Sub CheckBox3_CheckedChanged(sender As Object, e As EventArgs) Handles CheckBox3.CheckedChanged

If CheckBox3.Checked Then

TextBox1.Font = New Drawing.Font("Times New Roman", 20, FontStyle.Underline)

End If

End Sub

Private Sub RadioButton1_CheckedChanged(sender As Object, e As EventArgs) Handles RadioButton1.CheckedChanged

TextBox1.Font = New Drawing.Font("Times New Roman", 20)

End Sub

Private Sub RadioButton2_CheckedChanged(sender As Object, e As EventArgs) Handles RadioButton2.CheckedChanged

TextBox1.Font = New Drawing.Font("Times New Roman", 10)

End Sub

End Class

Visual Basic Calculator

Visual Programming
Lecture 6 – InputBox Function & ListBox

Control

قسم علوم الحاسبات/كلية التربية للعلوم الصرفة ابن الهيثم/ جامعة بغداد
(نظري)مسائي / المرحلة الثالثة صباحي

2022-2021السنة
شهلاء طالب: اساتذة المادة

The InputBox() Function
An InputBox() function will display a message box where the user can enter a value or a
message in the form of text.

myMessage=InputBox(Prompt, Title, default text, x-position, y-position)

myMessage is a variant data type but typically it is declared as string, which accept the
message input by the users. The arguments are explained as follows:

Prompt - the message displayed normally as a question asked.

Title - The title of the Input Box.

default-text - The default text that appears in the input field where users can use it as his
intended input or he may change to the message he wish to enter.

x-position and y-position - the position or the coordinates of the input box.

Example:
Private Sub Button1_Click(sender As Object, e As EventArgs)

Handles Button1.Click
Dim userMsg As String
userMsg = Microsoft.VisualBasic.InputBox("What is your

message?", "Message Entry Form", "Enter your messge here", 200,
300)

If userMsg <> "" Then
MessageBox.Show(userMsg)

Else
MessageBox.Show("No Message")

End If

End Sub

ListBox Control
The ListBox represents a Windows control to display a list of items
to a user. A user can select an item from the list. It allows the
programmer to add items at design time by using the properties
window or at the runtime.

You can populate the list box items
either from the properties window
or at runtime. To add items to a
ListBox, select the ListBox control
and get to the properties window,
for the properties of this control.
Click the (Collection) button next to
the Items property. This opens the
String Collection Editor dialog box,
where you can enter the values
one at a line.

Properties of the ListBox Control
The following are some of the commonly used properties of the ListBox control −

Events of the ListBox Control
The following are some of the commonly used events of the

ListBox control :

Example 1
In the following example, let us add a list box at design time and add items on it
at runtime.

Take the following steps −

Drag and drop two labels, a button and a ListBox control on the form.

Set the Text property of the first label to provide the caption "Choose your

favorite destination for higher studies".

Set the Text property of the second label to provide the caption "Destination".

The text on this label will change at runtime when the user selects an item on the

list.

Click the listbox and the button controls to add the following codes in the code

editor.

Private Sub Form1_Load(sender As Object, e As EventArgs) Handles MyBase.Load
Me.Text = "tutorialspoint.com"
ListBox1.Items.Add("Canada")
ListBox1.Items.Add("USA")
ListBox1.Items.Add("UK")
ListBox1.Items.Add("Japan")
ListBox1.Items.Add("Russia")
ListBox1.Items.Add("China")
ListBox1.Items.Add("India")

End Sub

Private Sub Button2_Click(sender As Object, e As EventArgs) Handles
Button2.Click

MsgBox("You have selected " + ListBox1.SelectedItem.ToString())
End Sub

Private Sub ListBox1_SelectedIndexChanged(sender As Object, e As EventArgs)
Handles ListBox1.SelectedIndexChanged

Label2.Text = ListBox1.SelectedItem.ToString()
End Sub

When the above code is executed and run

using Start button available at the Microsoft

Visual Studio tool bar, it will show the

following window −

When the user chooses a destination, the text in the
second label changes −

Clicking the Select button displays a message box with the user's choice −

Example 2
In this example, we will fill up a list box with items, retrieve the total number of items

in the list box, sort the list box, remove some items and clear the entire list box.

Design the Form −

Public Class Form1

Private Sub Form1_Load(sender As Object, e As

EventArgs) Handles MyBase.Load

' Set the caption bar text of the form.

Me.Text = "tutorialspoint.com"

' creating multi-column and multiselect list box

ListBox1.MultiColumn = True

ListBox1.SelectionMode =

SelectionMode.MultiExtended

End Sub

Private Sub Button1_Click(sender As Object, e As

EventArgs) Handles Button1.Click

'populates the list

ListBox1.Items.Add("Safety")

ListBox1.Items.Add("Security")

ListBox1.Items.Add("Governance")

ListBox1.Items.Add("Good Music")

ListBox1.Items.Add("Good Movies")

ListBox1.Items.Add("Good Books")

ListBox1.Items.Add("Education")

ListBox1.Items.Add("Roads")

ListBox1.Items.Add("Health")

End Sub

Private Sub Button2_Click(sender As Object, e As EventArgs) Handles Button2.Click

ListBox1.Sorted = True

End Sub

Private Sub Button3_Click(sender As Object, e As EventArgs) Handles Button3.Click

ListBox1.Items.Clear()

End Sub

Private Sub Button5_Click(sender As Object, e As EventArgs) Handles Button5.Click

ListBox1.Items.RemoveAt(ListBox1.SelectedIndex())

End Sub

Private Sub Button4_Click(sender As Object, e As EventArgs) Handles Button4.Click

Label1.Text = ListBox1.Items.Count

End Sub

Private Sub ListBox1_Click(sender As Object, e As EventArgs) Handles
ListBox1.Click

Label3.Text = ListBox1.SelectedItem.ToString()

End SubEnd Class

When the above code is executed and run
using Start button available at the Microsoft
Visual Studio tool bar, it will show the
following window −

Fill the list and check workings of other buttons −

Visual Programming
Lecture 7 – MsgBox

قسم علوم الحاسبات/كلية التربية للعلوم الصرفة ابن الهيثم/ جامعة بغداد
(نظري)مسائي / المرحلة الثالثة صباحي

2022-2021السنة
شهلاء طالب: استاذة المادة

MsgBox () Function
The objective of MsgBox is to produce a pop-up message box and prompt the user
to click on a command button before he /she can continues. This format is as
follows:
yourMsg=MsgBox(Prompt, Style Value, Title)

The first argument, Prompt, will display the message in the message box. The Style
Value will determine what type of command buttons appear on the message box,
please refer to Table 1 for types of command button displayed. The Title argument
will display the title of the message board.

Table 1: Style Values

yourMsg is a variable that holds values that are returned by the MsgBox () function.
The values are determined by the type of buttons being clicked by the users. It has to
be declared as Integer data type in the procedure or in the general declaration section.
Table 2 shows the values, the corresponding named constant and buttons.

Table 2 : Return Values and Command Buttons

To make the message box looks more sophisticated, you can add an icon
besides the message. There are four types of icons available in VB as
shown in Table 3.

Table 3: Types of Icons

Private Sub Button6_Click(sender As Object, e As EventArgs) Handles Button6.Click

Dim testMsg As Integer

testMsg = MsgBox("Click to Test", vbYesNoCancel + vbExclamation, "Test Message")

If testMsg = 6 Then

MessageBox.Show("You have clicked the yes button")

ElseIf testMsg = 7 Then

MessageBox.Show("You have clicked the NO button")

Else

MessageBox.Show("You have clicked the Cancel button")

End If

End Sub

Visual Programming
Lecture 8 –ComboBox Control & String

Manipulation Functions

قسم علوم الحاسبات/كلية التربية للعلوم الصرفة ابن الهيثم/ جامعة بغداد
(نظري)مسائي / المرحلة الثالثة صباحي

2022-2021السنة
شهلاء طالب: استاذة المادة

ComboBox Control

The ComboBox control is used to display a drop-down list of
various items. It is a combination of a text box in which the user
enters an item and a drop-down list from which the user selects
an item.

In this example, let us fill a combo box with various items, get the selected items in the combo
box and show them in a list box and sort the items.
Drag and drop a combo box to store the items, a list box to display the selected items, four
button controls to add to the list box with selected items, to fill the combo box, to sort the items
and to clear the combo box list, respectively.
Add a label control that would display the selected item.

Private Sub Button2_Click(sender As Object, e As EventArgs) Handles
Button2.Click

ComboBox1.Items.Clear()

ComboBox1.Items.Add("Safety")

ComboBox1.Items.Add("Security")

ComboBox1.Items.Add("Governance")

ComboBox1.Items.Add("Good Music")

ComboBox1.Items.Add("Good Movies")

ComboBox1.Items.Add("Good Books")

ComboBox1.Items.Add("Education")

ComboBox1.Text = "Select from..."

ComboBox1.Items.Add("Roads")

ComboBox1.Items.Add("Health")

ComboBox1.Items.Add("Food for all")

ComboBox1.Items.Add("Shelter for all")

ComboBox1.Items.Add("Industrialisation")

ComboBox1.Items.Add("Peace")

ComboBox1.Items.Add("Liberty")

ComboBox1.Items.Add("Freedom of Speech")

End Sub

Add items to

ComboBox

Private Sub Button3_Click(sender As Object, e As EventArgs) Handles
Button3.Click

ComboBox1.Sorted = True

End Sub

Private Sub Button4_Click(sender As Object, e As EventArgs)
Handles Button4.Click

ComboBox1.Items.Clear()

ComboBox1.Text = ""

End Sub

Private Sub ComboBox1_SelectedIndexChanged(sender As Object, e As
EventArgs) Handles ComboBox1.SelectedIndexChanged

Label1.Text = ComboBox1.SelectedItem.ToString()

End Sub

Clear ComBox

Items

Sort ComBox

Items

Show

selected item

from ComBox

into Label

Private Sub Form1_Load(sender As Object, e As EventArgs) Handles MyBase.Load

' Set the caption bar text of the form.

Me.Text = "tutorialspoint.com"

End Sub

Private Sub Button1_Click(sender As Object, e As EventArgs) Handles Button1.Click

If ComboBox1.SelectedIndex > -1 Then

Dim sindex As Integer

sindex = ComboBox1.SelectedIndex

Dim sitem As Object

sitem = ComboBox1.SelectedItem

ListBox1.Items.Add(sitem & " " & sindex)

Else

MsgBox("you did not select")

End If

End Sub

Change

Form Text

selected items in the

ComboBox and show

them in a ListBox

String Manipulation Functions

Example

Performing Word Search

We can make use of various string functions to perform
word search from a textbox.
In the following example, we insert a textbox and set the
multiline property to true. We also insert a textbox for the
user to enter the word to search and a button to perform
the search. Besides that, we also include a label control to
display the result. In the code, we use the set Focus
property to highlight the word found. In addition, we also
use the SelectionStart to set the starting point of text
selected.

Private Sub Button1_Click(sender As Object, e As EventArgs) Handles Button1.Click

Dim As Integer

Dim m1, myWord As String

m1 = TextBox1.Text

myWord = TextBox3.Text

n = InStr(1, m1, myWord)

If n = 0 Then

Label1.Text = "Your word not found, try again."

Else

Label1.Text = "Found your word " & myWord & " at " & " Position " & n

TextBox1.Focus()

TextBox1.SelectionStart = n - 1

TextBox1.SelectionLength = Len(myWord)

End If

End Sub

Visual Programming
Lecture 9 – Math Functions

قسم علوم الحاسبات/كلية التربية للعلوم الصرفة ابن الهيثم/ جامعة بغداد
(نظري)مسائي / المرحلة الثالثة صباحي

2022-2021السنة
شهلاء طالب: استاذة المادة

The Abs function

The Abs function returns the
absolute value of a given
number.

Dim x As Integer =
Math.Abs(Val(TextBox1.Tex
t))'x = Math.Abs(3)

TextBox2.Text = x

The Exp function

The Exp of a number x is the
exponential value of x, i.e. ex . For
example, Exp(1)=e=2.71828182

Dim num1, num2 As Single

num1 = Val(TextBox1.Text)

num2 = Math.Exp(num1)

TextBox2.Text = num2

The Fix Function
The Fix function truncates the decimal part of a positive
number and returns the largest integer smaller than the
number. However, when the number is negative, it will return
smallest integer larger than the number. For example,
Fix(9.2)=9 but Fix(-9.4)=-9

Dim num1, num2 As Single

num1 = Val(TextBox1.Text)

num2 = Fix(num1)

Textbox2.Text = num2

The difference between Int and Fix is
that if number is negative, Int

returns the first negative integer less
than or equal to number, whereas

Fix returns the first negative integer
greater than or equal to number. For
example, Int converts -8.4 to -9, and

Fix converts -8.4 to -8.

The Int Function

The Int is a function that converts a
number into an integer by
truncating its decimal part and the
resulting integer is the largest
integer that is smaller than the
number. For example

Int(2.4)=2, Int(6.9)=6 , Int(-5.7)=-6,
Int(-99.8)=-100

TextBox2.Text =
Int(Val(TextBox1.Text))

The Log function is the function
that returns the natural logarithm
of a number. For example,
Log(10)=2.302585

Dim num1, num2 As Single

num1 = Val(TextBox1.Text)

num2 = Math.Log(num1)

TextBox2.Text = num2

The Log Function

The Rnd() Function
Rnd is a very useful function in Visual Basic 2012 . We use the Rnd funciton to
write code that involves chance and probability. The Rnd function returns a
random value between 0 and 1. Random numbers in their original form are
not very useful in programming until we convert them to integers. For
example, if we need to obtain a random output of 6 integers ranging from 1 to
6, which makes the program behave like a virtual dice, we need to convert the
random numbers to integers using the formula Int(Rnd*6)+1.

Dim num As Double

num = Int(Rnd() * 6) + 1

Textbox2.Text = num

In this example, Int(Rnd*6) will generate a random integer
between 0 and 5 because the function Int truncates the decimal
part of the random number and returns an integer. After adding
1, you will get a random number between 1 and 6 every time
you click the button. For example, let say the random number
generated is 0.98, after multiplying it by 6, it becomes 5.88, and
using the integer function Int(5.88) will convert the number to 5;
and after adding 1 you will get 6.

The Round Function
The Round function is the function that rounds up a number to a certain number of
decimal places. The syntax is

Round (n, m)

which means to round a number n to m decimal places. For example, Math.Round
(7.2567, 2) =7.26

Private Sub Button4_Click(sender As Object, e As EventArgs)
Handles Button4.Click

Dim num1, num2 As Single

num1 = TextBox1.Text

num2 = Math.Round(num1, 2)

Label1.Text = num2

End Sub

Private Sub Button1_Click(sender As Object, e As EventArgs) Handles
Button1.Click

Dim x As Integer = Math.Sqrt(25)

MsgBox(x)

End Sub

Private Sub Button2_Click(sender As Object, e As EventArgs)
Handles Button2.Click

Dim x As Integer = Math.Max(10, 5)

MsgBox(x)

End Sub

Private Sub Button3_Click(sender As Object, e As EventArgs)
Handles Button3.Click

Dim x As Integer = Math.Min(2, 5)

MsgBox(x)

End Sub

Visual Programming
Lecture 10 – PicutreBox Control &

Windows Media Player Control

قسم علوم الحاسبات/كلية التربية للعلوم الصرفة ابن الهيثم/ جامعة بغداد
(نظري)مسائي / المرحلة الثالثة صباحي

2022-2021السنة
طالبشهلاء : اساتذة المادة

PictureBox Control
The PictureBox control is used for displaying images on the form. The Image property of the control
allows you to set an image both at design time or at run time.

Let's create a picture box by dragging a PictureBox control from the Toolbox and dropping it on the form.

PictureBox Control

You can set the Image property to the Image you want to display, either at
design time or at run time. You can programmatically change the image
displayed in a picture box, which is particularly useful when you use a
single form to display different pieces of information.

PictureBox1.Image = Image.FromFile("C:\testImage.jpg")

Properties of the PictureBox Control
The SizeMode property, which is set to values in the PictureBoxSizeMode enumeration, controls
the clipping and positioning of the image in the display area.

PictureBox1.SizeMode = PictureBoxSizeMode.StretchImage

here are five different PictureBoxSizeMode is available to PictureBox control.

AutoSize - Sizes the picture box to the image.
CenterImage - Centers the image in the picture box.
Normal - Places the upper-left corner of the image at upper left in the picture box.
StretchImage - Allows you to stretch the image in code.
You can change the size of the display area at run time with the ClientSize property.

You can change the size of the display area at run time with the ClientSize property.
pictureBox1.ClientSize = New Size(xSize, ySize)

Example
In this example, let us put two PictureBox and a button control on the form.
We set the image property of the picture box to 11.png, as we used before.
The Click event of the button named Button1 is to show the change of
properties in PictureBox2.

PictureBox2.Image = Image.FromFile("C:\Users\user\Desktop\2020-2021\vb\11.png")

PictureBox2.ClientSize = New Size(300, 300)

PictureBox2.SizeMode = PictureBoxSizeMode.StretchImage

Before pressing Button1 After pressing Button1

Windows Media Player Control

Example

Public Class Form2

Private Sub Button1_Click(sender As Object, e As EventArgs) Handles Button1.Click

AxWindowsMediaPlayer1.URL = "C:\Users\user\Desktop\TOM&JERRY.mp4"

End Sub

Private Sub Button2_Click(sender As Object, e As EventArgs) Handles Button2.Click

AxWindowsMediaPlayer1.Ctlcontrols.play()

End Sub

Private Sub Button3_Click(sender As Object, e As EventArgs) Handles Button3.Click

AxWindowsMediaPlayer1.Ctlcontrols.stop()

End Sub

Private Sub Button4_Click(sender As Object, e As EventArgs) Handles Button4.Click

AxWindowsMediaPlayer1.Ctlcontrols.pause()

End Sub

End Class

The Code

The Implementation

Visual Programming
Lecture 11 – ProgressBar, ScrollBars,

DateTimePicker and MenuStrip Controls

قسم علوم الحاسبات/كلية التربية للعلوم الصرفة ابن الهيثم/ جامعة بغداد
(نظري)مسائي / المرحلة الثالثة صباحي

2022-2021السنة
طالبشهلاء : اساتذة المادة

ProgressBar Control
It is used to provide visual feedback to your users about the status of some task. It shows a bar

that fills in from left to right as the operation progresses.

The ProgressBar control is used by the user to acknowledge the progress status of
some defined tasks, such as downloading a large file from the web, copying files,
installing software, calculating complex results, and more.

ProgressBar Properties

The Maximum and Minimum properties define the range of values to
represent the progress of a task.

Minimum : Sets the lower value for the range of valid values for
progress.
Maximum : Sets the upper value for the range of valid values for
progress.
Value : This property obtains or sets the current level of progress.
By default, Minimum and Maximum are set to 0 and 100. As the task
proceeds, the ProgressBar fills in from the left to the right.

ScrollBars Control

A ScrollBar control is used to create and display vertical and
horizontal scroll bars on the Windows form. It is used when we have
large information in a form, and we are unable to see all the data.
Therefore, we used VB.NET ScrollBar control. Generally, ScrollBar is
of two types: HScrollBar for displaying scroll bars and VScrollBar for
displaying Vertical Scroll bars.

Example

Private Sub Button1_Click(sender As Object, e As EventArgs) Handles Button1.Click

ProgressBar1.Visible = True

Dim i As Integer

ProgressBar1.Minimum = 0

ProgressBar1.Maximum = 300

For i = 0 To 300 Step 100

ProgressBar1.Value = i

HScrollBar1.Value = i

If i > ProgressBar1.Maximum Then

i = ProgressBar1.Maximum

End If

Next

MsgBox("Successfully Completed")

VScrollBar1.Value = i

End Sub

DateTimePicker Control
The DateTimePicker control allows the user to select or display date and
time values with a specified format in Windows Forms. Furthermore, we
can determine the current date and time using the Value property of the
DateTimePicker control. By default, the Value property returns the
current date and time in the DateTimePicker.

DateTimePicker Control

• The DateTimePicker control prompts the user for a date or time using
a graphical calendar with scroll arrows. The most important property
of the DateTimePicker is the Value property, which holds the selected
date and time.

• The Value property is set to the current date by default. You can use
the Text property or the appropriate member of Value to get the date
and time value.

• The control can display one of several styles, depending on its
property values. The values can be displayed in four formats, which
are set by the Format property: Long, Short, Time, or Custom.

Public Class Form3

Private Sub Form3_Load(sender As Object, e As EventArgs) Handles MyBase.Load

Button1.Text = "Calculate Days"

Label1.Text = "Calculate the total days from your date of birth to the current date."

Label2.Text = "Total Days"

Label3.Text = "Select the DOB"

Label4.Text = "Current Date"

DateTimePicker1.Format = DateTimePickerFormat.Long

End Sub

Private Sub Button1_Click(sender As Object, e As EventArgs) Handles Button1.Click

Dim dp As Date = DateTimePicker1.Value

Dim dp2 As Date = DateTimePicker2.Value

Dim result As TimeSpan = dp.Subtract(dp2)

Dim ds As Integer = result.TotalDays

TextBox1.Text = ds

TextBox1.ForeColor = Color.Red

MsgBox(" Days = " & ds)

End Sub

End Class

MenuStrip Control
The MenuStrip control represents the container for the menu structure.

The MenuStrip control works as the top-level container for the menu structure.

The ToolStripMenuItem class and the ToolStripDropDownMenu class provide

the functionalities to create menu items, sub menus and drop-down menus.

Example
• In this example, let us add menu and sub-menu items.

• Take the following steps −

• Drag and drop or double click on a MenuStrip control, to add it to the form.

• Click the Type Here text to open a text box and enter the names of the menu
items or sub-menu items you want. When you add a sub-menu, another text box
with 'Type Here' text opens below it.

• Complete the menu structure shown in the diagram above.

• Add a sub menu Exit under the File menu.

The Code

Private Sub ExitToolStripMenuItem_Click(sender As
Object, e As EventArgs) Handles
ExitToolStripMenuItem.Click

End

End Sub

Hide and Show item in Menu Strip

Private Sub Button1_Click(sender As Object, e As EventArgs) Handles Button1.Click
SaveToolStripMenuItem.Visible = True

End Sub

Disable and Enable the Menu strip item

Visual Programming
Lecture 12 –Working with ToolStrip Control

& ContextMenuStrip

قسم علوم الحاسبات/كلية التربية للعلوم الصرفة ابن الهيثم/ جامعة بغداد
(نظري)مسائي / المرحلة الثالثة صباحي

2022-2021السنة
شهلاء طالب: اساتذة المادة

ToolStrip Control
ToolStrip Control is an control object that used in the VB.NET windows
application to create ToolBar. We can find it on toolbox under Menus &
Toolbar. Double click add it into Form.

Control will stick on the top of Form.

8 types of control can be added to ToolStrip.

For initiation, we'll add buttons which are Save, Edit, Delete, Cancel, and
Close. Set focus on toolstrip then click the dropdown and choose
"button" as above image. Do it again to get 3 buttons added. After
adding 3 buttons, add a Separator, then add 2 buttons again. The result
should be as following:

Give focus on first button image, right-click --> DisplayStyle -->
ImageAndText. This step will change the button style displaying
Image and Text. Do again for 4 other buttons.

Below image shows the result.

Next, we'll change the button text. Give focus on button then go to
properties box to change Text. Changes each button's text with Save, Edit,
Delete, Cancel, and Close.

The next step is to set an image for each button. Set focus on the button,
right-click and click Set Image...

https://iconarchive.com/tag/vb-net

The next step is to set an image for each button. Set focus on the button, right-click
and click Set Image...

A "Select Source" dialog will be prompted. Choose option "Local resource" then click
Import button.

Chose image files that represent the button's function, consider the appropriate size of
images. When the image has been chosen click Open...

The chosen image will be set as the image of the button. Repeat process for 4 other
buttons.

Private Sub ToolStripButton1_Click(sender As Object, e As EventArgs) Handles
ToolStripButton1.Click

MsgBox("Save Button Clicked")
End Sub

Private Sub ToolStripButton2_Click(sender As Object, e As EventArgs) Handles
ToolStripButton2.Click

MsgBox("Edit Button Clicked")
End Sub

Private Sub ToolStripButton3_Click(sender As Object, e As EventArgs) Handles
ToolStripButton3.Click

MsgBox("Delete Button Clicked")
End Sub

Private Sub ToolStripButton5_Click(sender As Object, e As EventArgs) Handles
ToolStripButton5.Click

MsgBox("Cancel Button Clicked")
End Sub

Private Sub ToolStripButton6_Click(sender As Object, e As EventArgs) Handles
ToolStripButton6.Click

MsgBox("Close Button Clicked")
End Sub

The ContextMenuStrip control represents a shortcut menu that pops
up over controls, usually when you right click them. They appear in
context of some specific controls, so are called context menus. For
example, Cut, Copy or Paste options.

ContextMenuStrip

Example
In this example, let us add a content menu with the menu items Cut, Copy and Paste.

Take the following steps −

Drag and drop or double click on a ControlMenuStrip control to add it to the form.

Add the menu items, Cut, Copy and Paste to it.

Add a RichTextBox control on the form.

Set the ContextMenuStrip property of the RichTextBox to ContextMenuStrip1 using the
properties window.

Double Click the menu items and add following codes in the Click event of these menus −

Private Sub CutToolStripMenuItem_Click(sender As Object, e As
EventArgs) Handles CutToolStripMenuItem.Click

RichTextBox1.Cut()

End Sub

Private Sub CopyToolStripMenuItem_Click(sender As Object, e As
EventArgs) Handles CopyToolStripMenuItem.Click

RichTextBox1.Copy()

End Sub

Private Sub PasteToolStripMenuItem_Click(sender As Object, e As
EventArgs) Handles PasteToolStripMenuItem.Click

RichTextBox1.Paste()

End Sub

Visual Programming
Lecture 13 –Timer Control

قسم علوم الحاسبات/كلية التربية للعلوم الصرفة ابن الهيثم/ جامعة بغداد
(نظري)مسائي / المرحلة الثالثة صباحي

2022-2021السنة
شهلاء طالب: اساتذة المادة

The timer is used to manage events that are time-related. We can use Timer Control in
many situations in our development environment. If you want to run some code after a
certain interval of time continuously, you can use the Timer control. As well as to start a
process at a fixed time schedule, to increase or decrease the speed in an animation
graphics with time schedule etc. you can use the Timer Control. The Visual Studio
toolbox has a Timer Control that allowing you to drag and drop the timer controls
directly onto a Windows Forms designer. At runtime it does not have a visual
representation and works as a component in the background.

Timer Control

How to work with Timer Control ?
• With the Timer Control, we can control programs in millisecond, seconds, minutes

and even in hours. The Timer Control allows us to set Interval property in
milliseconds (1 second is equal to 1000 milliseconds). For example, if we want to
set an interval of two minute we set the value at Interval property as 120000,
means 120x1000 .

• The Timer Control starts its functioning only after its Enabled property is set to
True, by default Enabled property is False.

Timer Example
The following program shows a Timer example that display current system time in a
Label control. For doing this, we need one Label control and a Timer Control. Here in
this program, we can see the Label Control is updated each seconds because we set
Timer Interval as 1 second, that is 1000 milliseconds. After drag and drop the Timer
Control in the designer form , double click the Timer control and set the
DateTime.Now.ToString to Label control text property.

Private Sub Timer1_Tick(sender As Object, e As EventArgs)
Handles Timer1.Tick

Label1.Text = DateTime.Now.ToString

End Sub

Implementation
After

Before

Start and Stop Timer Control
We can control the Timer Control Object that when it start its function as well as
when it stop its function. The Timer Control has a start and stop methods to
perform these actions.

Here is an example for start and stop methods of the Timer Control. In
this example we run this program only 10 seconds. So we start the
Timer in the Form_Load event and stop the Timer after 10 seconds. We
set timer Interval property as 1000 milliseconds (1 second) and in run
time the Timer will execute 10 times its Tick event.

Code

Public Class Form2
Dim second As Integer
Private Sub Form2_Load(sender As Object, e As EventArgs) Handles

MyBase.Load
Timer1.Interval = 1000
Timer1.Start() 'Timer starts functioning

End Sub

Private Sub Timer1_Tick(sender As Object, e As EventArgs) Handles
Timer1.Tick

Label1.Text = DateTime.Now.ToString
Second = Second + 1
If Second >= 10 Then

Timer1.Stop() 'Timer stops functioning
MsgBox("Timer Stopped....")

End If
End Sub

End Class

Implementation

Example : Creating a simple stopwatch

We can create a simple stopwatch using the Timer control. Start a new
project and name it stopwatch. Change the Form1 text to
Stopwatch. Insert the Timer control into the form and set its interval to
1000 which is equal to one second. Besides, set the timer Enabled
property to False so that it will not start ticking when the program is
started. Insert three buttons and change their names to StartBtn,
StopBtn and ResetBtn respectively. Change their text to “Start”,
“Stop” and “Reset” accordingly. Now, key in the code as follows:

Public Class Form3
Private Sub Timer1_Tick(sender As Object, e As EventArgs) Handles Timer1.Tick

'To increase one unit per second
Label1.Text = Val(Label1.Text) + 1

End Sub

Private Sub Button1_Click(sender As Object, e As EventArgs) Handles Button1.Click
'To start the Timer
Timer1.Enabled = True

End Sub

Private Sub Button2_Click(sender As Object, e As EventArgs) Handles Button2.Click

'To stop the Timer
Timer1.Enabled = False

End Sub

Private Sub Button3_Click(sender As Object, e As EventArgs) Handles Button3.Click
'To reset the Timer to 0
Label1.Text = 0

End Sub
End Class

Implementation

The Interface of the Stopwatch is as shown below:

Example
Before After

Code
Public Class Form3

Dim a As Integer

Private Sub Timer1_Tick(sender As Object, e As EventArgs) Handles Timer1.Tick

Label1.Left = Label1.Left + 5 * a

If Label1.Left >= Me.Width Then

a = -1

End If

End Sub

Private Sub Form3_Load(sender As Object, e As EventArgs) Handles MyBase.Load

a = 1

End Sub

End Class

Design a program that contains PictureBox1 and Timer, when Timer starts the size of
PictureBox1 increase every one second after ten seconds the size of PictureBox1 to be
decreases every one second and the Timer to be stopped after 20 seconds

Design a program that’s contents Lable1, Button1 and Timer1 , when press the
Button1 the lable1 will be a countdown , The timer stop when the Label1 equal
zero and show message "The Time is Over".

Homework

Visual Basic 2012
Lecture 14 –Common Dialogs

قسم علوم الحاسبات/كلية التربية للعلوم الصرفة ابن الهيثم/ جامعة بغداد
(نظري)مسائي / المرحلة الثالثة صباحي

2022-10السنة
طالبشهلاء : اساتذة المادة

A Dialog box is a temporary Window for an application that accepts
user response through mouse or keyboard to open a file, save a file,
notifications, alert messages, color, print, openfile dialog box, etc. It is
also useful to create communication and interaction between the user
and the application. Furthermore, the dialog box appears in a form
when the program needs to interact with users, such as when an error
occurs, an alert message, acknowledgment from the user or when the
program requires immediate action or whether the decision is to be
saved based on the changes.

All VB.NET Dialog box inherits the CommonDialog class and overrides
the RunDialog() method of the base class to create the OpenFileDialog
box, PrintDialogbox, Color, and Font Dialog box. The RunDialog()
method is automatically called in a Windows form when the dialog box
calls its ShowDialog() method.

Dialog Box

ShowDialog method
There are many built-in dialog boxes to be used in Windows forms for various tasks like
opening and saving files, printing a page, providing choices for colors, fonts, page setup, etc.,
to the user of an application. These built-in dialog boxes reduce the developer's time and
workload.

All of these dialog box control classes inherit from the CommonDialog class and override
the RunDialog() function of the base class to create the specific dialog box.

The RunDialog() function is automatically invoked when a user of a dialog box calls
its ShowDialog() function.

The ShowDialog method is used to display all the dialog box controls at run-time. It returns a value of
the type of DialogResult enumeration. The values of DialogResult enumeration are −

Abort − returns DialogResult.Abort value, when user clicks an Abort button.

Cancel − returns DialogResult.Cancel, when user clicks a Cancel button.

Ignore − returns DialogResult.Ignore, when user clicks an Ignore button.

No − returns DialogResult.No, when user clicks a No button.

None − returns nothing and the dialog box continues running.

OK − returns DialogResult.OK, when user clicks an OK button

Retry − returns DialogResult.Retry , when user clicks an Retry button

Yes − returns DialogResult.Yes, when user clicks an Yes button

Common Dialog Class Inheritance

Common Dialogs

ColorDialog control
The ColorDialog control class represents a common dialog box that displays

available colors along with controls that enable the user to define custom

colors. It lets the user select a color.

The main property of the ColorDialog control is Color, which returns

a Color object.

Following is the Color dialog box −

Example of ColorDialog control

Implementation

FontDialog Control
It prompts the user to choose a font from among those installed on the local

computer and lets the user select the font, font size, and color. It returns the

Font and Color objects.

Following is the Font dialog box −

Example of FontDialog Control

Code

If FontDialog1.ShowDialog <>
Windows.Forms.DialogResult.Cancel Then

TextBox1.Font = FontDialog1.Font

End If

The OpenFileDialog control prompts the user to open a file and allows the user to select a file to

open. The user can check if the file exists and then open it. The OpenFileDialog control class

inherits from the abstract class FileDialog.

If the ShowReadOnly property is set to True, then a read-only check box appears in the dialog

box. You can also set the ReadOnlyChecked property to True, so that the read-only check box

appears checked.

OpenFileDialog Control

If OpenFileDialog1.ShowDialog <>
Windows.Forms.DialogResult.Cancel Then

PictureBox1.Image =
Image.FromFile(OpenFileDialog1.FileName)

End If

Code

The SaveFileDialog control prompts the user to select a location
for saving a file and allows the user to specify the name of the file to
save data. The SaveFileDialog control class inherits from the
abstract class FileDialog.

Following is the Save File dialog box −

SaveFileDialog Control

Example of SaveFileDialog Control and OpenFileDialog Control

Code

Private Sub Button1_Click(sender As Object, e As EventArgs) Handles Button1.Click

SaveFileDialog1.Filter = "TXT Files (*.txt*)|*.txt"

If SaveFileDialog1.ShowDialog = Windows.Forms.DialogResult.OK _

Then

My.Computer.FileSystem.WriteAllText _

(SaveFileDialog1.FileName, TextBox1.Text, True)

End If

End Sub

Private Sub Button2_Click(sender As Object, e As EventArgs) Handles
Button2.Click

If OpenFileDialog1.ShowDialog <> Windows.Forms.DialogResult.Cancel Then

TextBox2.Text =
My.Computer.FileSystem.ReadAllText(OpenFileDialog1.FileName)

End If

End Sub

Visual Programming
Lecture 15 – How to Connect Access

Database in VB.Net

قسم علوم الحاسبات/كلية التربية للعلوم الصرفة ابن الهيثم/ جامعة بغداد
(نظري)مسائي / المرحلة الثالثة صباحي

2022-2021السنة
شهلاء طالب: اساتذة المادة

Steps How to Connect Access Database in VB.Net

Step 1: Create an MS Access Database. Open an MS Access Database in
your Computer and Create a Blank Database and Save it
as “inventorydb.accdb”.
Step 2: Create a Database Table.
To create a table, follow the image
below and save it as “tblitems”.

Step 3: Populate the table. Add sample records in the table.
follow the sample records in the image below.

Steps How to Connect Access Database in VB.Net
Step 4: Create a VB.Net Application.Open Visual Studio and Create a Visual
Basic Application project and Save it as “connectvbaccess”.
Step 5: Design the user interface. To design the form, you need to follow the
image below.

Steps How to Connect Access Database in VB.Net

Step 6: Select TOOLS from Menu Bar → Connect to Database

Steps How to Connect Access Database in VB.Net

Step 7: Select the database name from Add Connection dialog box.

Steps How to Connect Access Database in VB.Net

Step 8: Test ConnectionTo test the connection, click the “Test
Connection” button, finally click “OK” button at the side of
the “Cancel” button.

Steps How to Connect Access Database in VB.Net

Step 9: Copy the Connection String. Copy the connection string
so that we can use this in our next step.

Code To Connect Access Database in VB.Net

- Add Imports System.Data.OleDb before Public class Form1
- Add the following code under “Public Class Form1”.
Dim con As New OleDbConnection

Dim c As String = "Provider=Microsoft.ACE.OLEDB.12.0;Data
Source=C:\Users\lenovo 1\Documents\Database6.accdb"

Double Click on the Form1 and add the following code
con.ConnectionString = c
The Code above started with a Declaration of Variable name “con” with an Ole
Object Type OledbConnection.
Inside OledbConnection, we pasted the connection string we copied from
the “Step 9” instructions.

Test the Connection of Access database in VB.Net

To test the Connection between ms access database and VB.Net,
Double click the form1 add the following code under “Form1_Load”
events.
con.ConnectionString = c

Try
con.Open()
If con.State = ConnectionState.Open Then

MsgBox("connected")
Else

MsgBox("not connected")
End If

Catch ex As Exception
MsgBox("ex.message")

Finally
con.Close()

End Try

Test the Connection of Access database in VB.Net

•We use try-catch to the exceptions that may occur during
runtime.
•open the connection
•check using if statement if the connection is open
•‘Display a message box if successfully connected or Not
•close the connection
Press “F5” to run the Project.
When you run the project it will give you this message.

How to Load Record from Access Database to
Datagridview In VB.Net

After adding the code, you may press F5 or click the Start debugging button to test the code.
The output should look like as shown below.

Try
Dim sql As String
Dim cmd As New OleDbCommand
Dim dt As New DataTable
Dim dp As New OleDbDataAdapter
con.Open()
sql = "Select * from tblitems"
cmd.Connection = con
cmd.CommandText = sql
dp.SelectCommand = cmd
dp.Fill(dt)
DataGridView1.DataSource = dt

Catch ex As Exception
MsgBox("ex.message")

Finally
con.Close()

End Try

Vb.net
Access

Con
Con.connectionstring=c

Con.open

table1

dt

dp

DataGridview

cmd

sql

Visual Programming
Lecture 16 – How to Connect Access

Database in VB.Net (Insert, Update and
Delete)

قسم علوم الحاسبات/كلية التربية للعلوم الصرفة ابن الهيثم/ جامعة بغداد
(نظري)مسائي / المرحلة الثالثة صباحي

2022-2021السنة
طالبشهلاء : اساتذة المادة

• What is Data provider? The data provider is used to connecting to a
database. Executing commands and retrieving data, storing it in
a Dataset, reading the retrieved data and updating the database.

• What is Command? A command is a SQL statement or a stored
procedure used to retrieve, insert, delete or modify data in a data
source.

• What is DataAdapter? This is integral to the working of ADO.Net since
data is transferred to and from a database through a data adapter. It
retrieves data from a database into a dataset and updates the
database. When changes are made to the dataset, the changes in the
database are actually done by the data adapter.

• What is DataTable? Datatable consists of the DataRow and DataColumn
objects. The DataTable objects are case-sensitive.

• What is OledbConnection? OleDbConnection is designed for connecting
to a wide range of databases, like Microsoft Access and Oracle.

Save Record in Access Database using
VB.net

We learn how to save the record in the access database using vb.net. To do this,
double click the “Save Item” button and add the following code.

Implementation

Im
p

le
m

e
n

ta
ti

o
n

Try

Dim i As Integer

Dim sql As String

Dim cmd As New OleDb.OleDbCommand

con.Open()

sql = "Insert Into
tblitems(ItemName,ITEMDESCRIPTION,Qty,Price)
VALUES ('" & TextBox1.Text & "', '" &
TextBox2.Text & "', '" & TextBox3.Text &
"','" & TextBox4.Text & "')"

cmd.Connection = con

cmd.CommandText = sql

i = cmd.ExecuteNonQuery

If i > 0 Then

MsgBox("New record has been
inserted successfully!")

dt.Clear()

sql = "Select * from tblitems"

cmd.Connection = con

cmd.CommandText = sql

dp.SelectCommand = cmd

dp.Fill(dt)

DataGridView1.DataSource = dt

Else

MsgBox("No record has been
inserted successfully!")

End If

Catch ex As Exception

MsgBox(ex.Message)

Finally

con.Close()

End Try

Updating of Records from Access Database
In VB.Net
we will learn how to update records from an access database
using vb.net. In order for us to proceed in updating the record,
we will add first a code to pass value from datagridview to
textboxes.

To start with, go back to form design and double click the
datagridview. And Change the Event to
“CellClick” from “CellContentClick”. It means that every time
the user clicks the selected data in the Datagrid view, the value
will automatically pass to the textboxes. So here’s the following
code.

Implementation

Im
p

le
m

e
n

ta
ti

o
n

And here’s the Following code for Updating the record from access database using vb.net.

Private Sub DataGridView1_CellClick(sender As Object, e As

DataGridViewCellEventArgs) Handles DataGridView1.CellClick

Me.Text = DataGridView1.CurrentRow.Cells(0).Value

TextBox1.Text =

DataGridView1.CurrentRow.Cells(1).Value

TextBox2.Text =

DataGridView1.CurrentRow.Cells(2).Value

TextBox3.Text =

DataGridView1.CurrentRow.Cells(3).Value

TextBox4.Text =

DataGridView1.CurrentRow.Cells(4).Value

End Sub

Try
Dim sql As String
Dim cmd As New

OleDb.OleDbCommand
con.Open()
sql = "UPDATE tblitems SET

ItemName='" & TextBox1.Text & "',
ITEMDESCRIPTION='" & TextBox2.Text &
"', Qty='" & Val(TextBox3.Text) & "',
Price='" & Val(TextBox4.Text) & "'
WHERE Id=" & Val(Me.Text) & ""

cmd.Connection = con
cmd.CommandText = sql
i = cmd.ExecuteNonQuery
If i > 0 Then

MsgBox("Record has been
UPDATED successfully!")

dt.Clear()
sql = "Select * from tblitems“

cmd.Connection = con
cmd.CommandText = sql
dp.SelectCommand = cmd
dp.Fill(dt)

DataGridView1.DataSource = dt
Else

MsgBox("No record has been
UPDATED!")

End If
Catch ex As Exception

MsgBox(ex.Message)
Finally

con.Close()
End Try

Deleting of Records from Access Database
In VB.Net

For deleting of records from the access database in
vb.net, we will still use the same code
in inserting and updating the record from access using
vb.net.

Go back to Form design and double click the “Delete
Item” button. Then add the following code.

Implementation

Im
p

le
m

e
n

ta
ti

o
n

Try
Dim sql As String
Dim cmd As New

OleDb.OleDbCommand
con.Open()
sql = "Delete * from

tblitems WHERE Id=" & Val(Me.Text) &
""

cmd.Connection = con
cmd.CommandText = sql
i = cmd.ExecuteNonQuery
If i > 0 Then

MsgBox("Record has
been deleted successfully!")

dt.Clear()
sql = "Select * from tblitems"

cmd.Connection = con
cmd.CommandText = sql
dp.SelectCommand = cmd
dp.Fill(dt)

DataGridView1.DataSource = dt

Else
MsgBox("No record has been
deleted!")

End If
Catch ex As Exception

MsgBox(ex.Message)
Finally

con.Close()

End Try

Visual Programming
Lecture 17– How to Create a Quick

Search using VB.net and MS Access

قسم علوم الحاسبات/كلية التربية للعلوم الصرفة ابن الهيثم/ جامعة بغداد
(نظري)مسائي / المرحلة الثالثة صباحي

2022-2021السنة
شهلاء طالب: اساتذة المادة

Steps how to search record in vb.net using
ms access

Step 1: First, use the database that you created before.

Step 2: Next, we will now create a Visual basic Project named
“Bookfinder” then, extract the download database and put it inside
the Bin folder.

Step 3: After creating a project in Visual Basic. Let’s now design the
form. Follow the Image below on the form looks like.

Step 4: Next, Let’s add functionality to our application by adding some code to
our objects.
Step 5: First, we will add declaration under public class: and here’s the code:

Step 6: Next, Double click the form, and on the form, load adds the following code:

Imports System.Data.OleDb
Public Class Form1

Dim i As Integer
Dim con As New OleDbConnection
Dim sql As String
Dim cmd As New OleDbCommand
Dim dt As New DataTable
Dim dp As New OleDbDataAdapter
Dim c As String = "Provider=Microsoft.Jet.OLEDB.4.0;Data

Source=C:\Users\user\Documents\Database1.mdb"

Private Sub Form1_Load(sender As Object, e As EventArgs) Handles MyBase.Load
TextBox5.Visible = False
Button3.Enabled = False
Label5.Visible = False

End Sub

Step 7: Double the “Search OR” button and add the following code:

dt.Clear()
Try

con.ConnectionString = c
con.Open()
sql = "Select * from tblitems where ItemName='" & TextBox1.Text & "' or
ITEMDESCRIPTION='" & TextBox2.Text & "' or QTY='" & TextBox3.Text & "' or
Price='" & TextBox4.Text & “’ “

cmd.Connection = con
cmd.CommandText = sql
dp.SelectCommand = cmd
dp.Fill(dt)
DataGridView1.DataSource = dt

Catch ex As Exception
MsgBox(ex.Message)

Finally
con.Close()

End Try

Im
p
le
m
en

ta
ti
o
n

Step 8: Next double click the “Use Quick Search” button. And ad the following
code:

Button2.Enabled = False
TextBox5.Visible = True
TextBox1.BackColor = Color.Aqua
TextBox2.BackColor = Color.Aqua
TextBox3.BackColor = Color.Aqua
TextBox4.BackColor = Color.Aqua
TextBox1.Enabled = False
TextBox2.Enabled = False
TextBox3.Enabled = False
TextBox4.Enabled = False
Button3.Enabled = True
Label5.Visible = True

Step 9: Then, double click the textbox under “Quick Search” Label
make sure you will be redirected to “Texhchanged Event“.

This allows you to perform a quick search because every time
you type on the textbox provided it will automatically give you the
results on the datagridiview based on the keyword inputted by the
user.

And here’s add the following code:
Private Sub TextBox5_TextChanged(sender As Object, e As EventArgs) Handles
TextBox5.TextChanged

dt.Clear()
Try

con.ConnectionString = c
con.Open()
sql = "Select * from tblitems where ItemName LIKE '%" & TextBox5.Text &
"%' or ITEMDESCRIPTION LIKE '%" & TextBox5.Text & "%' "
cmd.Connection = con
cmd.CommandText = sql
dp.SelectCommand = cmd
dp.Fill(dt)
DataGridView1.DataSource = dt

Catch ex As Exception
MsgBox(ex.Message)

Finally
con.Close()

End Try
End Sub

Im
p
le
m
en
ta
ti
o
n

Step 10: Double the “Search AND” button and add the following code:
dt.Clear()

Try

con.ConnectionString = c

con.Open()

sql = "Select * from tblitems where ItemName='" & TextBox1.Text & "'
and ITEMDESCRIPTION='" & TextBox2.Text & "' and QTY='" & TextBox3.Text
& "' and Price='" & TextBox4.Text & "' "

cmd.Connection = con

cmd.CommandText = sql

dp.SelectCommand = cmd

dp.Fill(dt)

DataGridView1.DataSource = dt

Catch ex As Exception

MsgBox(ex.Message)

Finally

con.Close()

End Try

Im
p
le
m
en
ta
ti
o
n

Button2.Enabled = True

TextBox1.BackColor = Color.White

TextBox2.BackColor = Color.White

TextBox3.BackColor = Color.White

TextBox4.BackColor = Color.White

TextBox1.Enabled = True

TextBox2.Enabled = True

TextBox3.Enabled = True

TextBox4.Enabled = True

Button3.Enabled = False

Label5.Visible = False

TextBox5.Visible = False

Step 11: Double the “Use TexTBox Filter” button and add the following code:

Visual Programming
Lecture 18 – Report

قسم علوم الحاسبات/كلية التربية للعلوم الصرفة ابن الهيثم/ جامعة بغداد
(نظري)مسائي / المرحلة الثالثة صباحي

2022-2021السنة
شهلاء طالب: اساتذة المادة

Step 1: Data Sources

Step 2: Using Report Wizard

Step 3: Format the Report

Step 4: Adding ReportViewer

Step 5: Connect the ReportViewer with Report

Step 6: Review the Report

Visual Basic 2012
Lecture 19 – How to navigate between

Records using VB.net and MS Access

قسم علوم الحاسبات/كلية التربية للعلوم الصرفة ابن الهيثم/ جامعة بغداد
(نظري)مسائي / المرحلة الثالثة صباحي

2022-2021السنة
طالبشهلاء : اساتذة المادة

Public Sub nav(ByVal a As Integer)
Try

TextBox1.Text = dt.Rows(a).Item(1)
TextBox2.Text = dt.Rows(a).Item(2)
TextBox3.Text = dt.Rows(a).Item(3)
TextBox4.Text = dt.Rows(a).Item(4)

Catch ex As Exception
MsgBox(ex.Message)

End Try

End Sub

Show First Record

Private Sub Button7_Click(sender As Object, e As
EventArgs) Handles Button7.Click

If minval <> 0 Then
minval = 0
nav(minval)

End If
End Sub

Show Last Record

Private Sub Button8_Click(sender As Object, e As EventArgs)
Handles Button8.Click

minval = dt.Rows.Count() - 1
nav(minval)

End Sub

Show Next Record

Private Sub Button5_Click(sender As Object, e As EventArgs)
Handles Button5.Click

minval += 1
If minval > dt.Rows.Count() - 1 Then

minval = dt.Rows.Count() - 1

End If
nav(minval)

End Sub

Show Previous Record

Private Sub Button6_Click(sender As Object, e As
EventArgs) Handles Button6.Click

minval -= 1
If minval < 0 Then

minval = 0
End If
nav(minval)

End Sub

Visual Programming
Lecture 20 – File Handling + Function &

Procedure

قسم علوم الحاسبات/كلية التربية للعلوم الصرفة ابن الهيثم/ جامعة بغداد
(نظري)مسائي / المرحلة الثالثة صباحي

2022-2021السنة
طالبشهلاء : اساتذة المادة

Read Text from Text File

Imports System.IO
Public Class Form1

Private Sub Button4_Click(sender As Object, e As
EventArgs) Handles Button4.Click

Dim fileReader As String

fileReader=My.Computer.FileSystem.ReadAllText("C:
\Users\user\Desktop\mshraa\g12\24003.txt")
MsgBox(fileReader)
TextBox1.Text = fileReader

End Sub

Write Text in Text File

Dim FILE_NAME As String = "C:\Users\user\Desktop\mshraa\g12\24001.txt"

If System.IO.File.Exists(FILE_NAME) = True Then

Dim objWriter As New System.IO.StreamWriter(FILE_NAME)

objWriter.Write(TextBox1.Text)
objWriter.Close()
MessageBox.Show("Text written to file")

Else

MessageBox.Show("File Does Not Exist")

End If

What is Procedure in VB

A procedure is a group of statements that together perform a task
when called. After the procedure is executed, the control returns to
the statement calling the procedure. VB.Net has two types of
procedures −

▪ Functions

▪ Sub procedures or Subs

Functions return a value, whereas Subs do not return a value.

Defining a Function

The Function statement is used to declare the name, parameter

and the body of a function. The syntax for the Function statement is

−
Function FunctionName [(ParameterList)] As ReturnType

[Statements]

End Function

Where,

•FunctionName − indicates the name of the function

•ParameterList − specifies the list of the parameters

•ReturnType − specifies the data type of the variable the function returns

Example

Following code snippet shows a function FindMax that takes two

integer values and returns the larger of the two.
Sub Main()

Dim a As Integer = 100

Dim b As Integer = 200

Dim res As Integer

res = FindMax(a, b)

Console.WriteLine("Max value is : {0}", res)

Console.ReadLine()

End Sub

Function FindMax(ByVal num1 As Integer, ByVal num2 As Integer)

As Integer

' local variable declaration */

Dim result As Integer

If (num1 > num2) Then

result = num1

Else

result = num2

End If

FindMax = result

End Function

Defining Sub Procedures

The Sub statement is used to declare the name, parameter and the
body of a sub procedure. The syntax for the Sub statement is −

Sub SubName [(ParameterList)] [Statements]

End Sub

Where,

•SubName − indicates the name of the Sub

•ParameterList − specifies the list of the parameters

Example
The following example demonstrates a Sub procedure CalculatePay that takes two parameters hours
and wages and displays the total pay of an employee −

Sub Main()

'calling the CalculatePay Sub Procedure

CalculatePay(25, 10)

CalculatePay(40, 20)

CalculatePay(30, 27.5)

Console.ReadLine()

End Sub

Sub CalculatePay(ByRef hours As Double, ByRef wage As Decimal)

'local variable declaration

Dim pay As Double

pay = hours * wage

Console.WriteLine("Total Pay: {0:C}", pay)

End Sub

ByRef Argument

Private Sub Button3_Click(sender As Object, e As EventArgs)
Handles Button3.Click

Dim a As Integer

a = 10

x(a)

Console.WriteLine("main" & a)

End Sub

Sub x(ByRef a As Integer)

a = 20

Console.WriteLine("function" & a)

End Sub

ByVal Argument
Private Sub Button4_Click(sender As Object, e As EventArgs)
Handles Button4.Click

Dim a As Integer

a = 10

x1(a)

Console.WriteLine("main" & a)

End Sub

Sub x1(ByVal a As Integer)

a = 20

Console.WriteLine("function" & a)

End Sub

	all lectures
	Lecture 1
	Lecture 2
	Lecture 3
	Lecture 4
	Lecture 5
	Lecture 6.pptx
	Lecture 7
	Lecture 8
	Lecture 9
	Lecture 10
	Lecture 11
	Lecture 12
	Lecture 131
	Lecture 14

	Lecture 15
	Lecture 16
	Lecture 17
	Lecture 18
	Lecture 19
	Lecture 20

