
Database Design

1

 كلية التربية للعلوم الصرفة/ ابن الهيثن

اتبالورحلة الثالثة/قسن علوم الحاس

Database Design

 ا.م. آهنة عبد الرزاق هاني الصفار

Database Design

2

Database

Database is a collection of interrelated data stored together without harmful or unnecessary

redundancy to serve multiple applications.

1. Database management system (DBMS)

(DBMSs) are specially designed applications that interact with the user, other applications, and

the database itself to capture and analyze data. A general-purpose (DBMS) is a software system

designed to allow the definition, creation, querying, update, and administration of DB.

Well-known DBMSs include:

- MySQL

- Microsoft SQL Server

- Oracle, dBASE

- FoxPro

- IBM DB2

 A database is not generally portable across different DBMS, but different DBMSs can by using

standards such as SQL (Structure Query Language) and ODBC (Open Database Connectivity)

or JDBC (The Java Database Connectivity) to allow a single application to work with more than

one database.

2. Classification of DBMS

Database management systems can be classified based on several criteria, such as the data

model, user numbers and database distribution.

2.1 Classification Based on Data Model

A database model is a type of data model that determines the logical structure of a database

and fundamentally determines in which manner data can be stored, organized, and manipulated.

Database Design

3

Types of DB models:

- Network

- Hierarchical

- Relational

- Entity-Relationship

- Extended Relational

- Object-oriented

- Object-relational

- Semi-structured (XML/ Extensible Markup Language)

- NoSQL

2.2 Classification Based on User Numbers

It can be a single-user database system, which supports one user at a time, or a multiuser

database system, which supports multiple users concurrently.

2.3 Classification Based on Database Distribution

There are four main distribution systems for database systems and these, in turn, can be used

to classify the DBMS.

2.3.1 Centralized systems: With a centralized database system, the DBMS and database

are stored at a single site that is used by several other systems too. Fig(1)

 Fig(1) centralized DB

Database Design

4

2.3.2 Distributed database system: In a distributed database system, the actual database

and the DBMS software are distributed from various sites that are connected by a

computer network, A distributed database system allows applications to access data

from local and remote databases as shown in Fig(2)

 Fig(2) distributed DB

- Homogeneous distributed database systems: Homogeneous distributed database

systems use the same DBMS software from multiple sites. Data exchange between these

various sites can be handled easily.

- Heterogeneous distributed database systems: In a heterogeneous distributed database

system, different sites might use different DBMS software, but there is additional

common software to support data exchange between these sites.

3. RELATIONAL DB TABLE Concepts

Database Design

5

A database schema is a formal description of all the database relations and all the

relationships existing between them.

In a relational data model, data integrity can be achieved using integrity rules or

constraints.

Those rules are general, specified at the database schema level, and they must be

respected by each schema instance. If we want to have a correct relational database

definition, we have to declare such constraints.

what the relational data model constraints are:

- Entity integrity constraint

- Referential integrity constraint

- Semantic integrity constraints

ENTITY INTEGRITY CONSTRAINT
The entity integrity constraint says that no attribute participating in the primary key of a

relation is allowed to accept null values.

Database Design

6

NULL VALUE

- A Null represents property inapplicable information or unknown.

- Null is simply a marker indicating the absence of a value, an undefined value.

REFERENTIAL INTEGRITY CONSTRAINT

The referential integrity constraint says that if a relation R2 includes a foreign key FK

matching the primary key PK of other relation R1, then every value of FK in R2 must either be

equal to the value of PK in some tuple of R1 or be wholly null.

SEMANTIC INTEGRITY CONSTRAINTS

A semantic integrity constraint refers to the correctness of the meaning of the data. For

example, the street number attribute value from the OWNERS relation must be positive,

because the real-world street numbers are positive.

Semantic integrity constraints must be specified typically by a database administrator and

must be maintained in the system catalog or dictionary.

Relational DBMS permits several types of semantic integrity constraints such as :

- domain constraint

- null constraint

- unique constraint

- check constraint

Database Design

7

SEMANTIC INTEGRITY/ DOMAIN CONSTRAINT

A domain constraint implies that a particular attribute of a relation is defined on a

particular domain.

For example, the Street attribute domain of OWNERS relation is CHAR(20), because streets

have names in general and Number attribute domain is NUMERIC, because street numbers are

numeric values.

There are some particular forms of domain constraints, namely format constraints and range

constraints.

 A format constraint might specify something like a data value pattern.

 For example, the PhoneNumber attribute values must be of this type XXXX-XXXXXX where

X represents an a digits first 4 X is the key and the last 6 is phone number .

A range constraint requires that values of the attribute lie within the range values. For

example, the FabricationYear attribute values might range between 1950 and 2010.

SEMANTIC INTEGRITY /NULL CONSTRAINT

A null constraint specifies that attribute values cannot be null. On every tuple, from every

relation instance, that attribute must have a value which exists in the underlying attribute

domain.

For example, FirstName and LastName attributes values cannot be null, this means that a car

owner must have a name.

SEMANTIC INTEGRITY /UNIQUE CONSTRAINT

A unique constraint specifies that attribute values must be different. It is not possible to

have two tuples in a relation with the same values for that attribute.

For example, in the CARS relation the SerialNumber attribute values must be unique, because it

is not possible to have two cars and only one engine.

A unique constraint is usually specified with an attribute name followed by the word Unique.

Note that NULL is a valid unique value.

4. Goals of database design

The features that a good database system should provide and explain to what degree they

depend on good database design.

1. CRUD:

- CRUD stands for the four fundamental database operations that any database should

provide: Create, Read, Update, and Delete.

- CRUD is more a feature of databases in general than it is a feature of good database

design, but a good database design provides CRUD efficiently

- In general, however, if it doesn‟t have CRUD it‟s not a database.

2. Retrieval:

Database Design

8

- Retrieval is another word for „„read,‟‟ the R in CRUD. The database should allow you to

find every piece of data. There‟s no point putting something in the database if there‟s no

way to get it back later. (That would be a „„data black hole,‟‟ not a database.)

- The database should allow you to structure the data so you can find particular pieces of

data in one or more specific ways. For example, you should be able to find a customer‟s

billing record by searching for customer name or customer ID.

3. Consistency:

- Another aspect of the R in CRUD is consistency. The database should provide consistent

results. If you perform the same search twice in a row, you should get the same results.

Another user who performs the same search should also get the same results. Consistency

means different parts of the database don‟t hold contradictory views of the same

information.

- A well-built database product can ensure that the exact same query returns the same

result but design also plays an important role. If the database is poorly designed, you may

be able to store conflicting data in different parts of the database.

4. Validity:

- Validity means data is validated where possible against other pieces of data in the

database. In CRUD terms, data can be validated when a record is created, updated, or

deleted.

- You can never protect a database from users who can‟t spell or who just plain enter the

wrong information, but a good database design can help prevent some kinds of errors that

a physical database cannot prevent.

- For example, the database can easily verify that data has the correct type. A good

database design also helps protect the database against incorrect changes

5. Error Correction:

- in a good design database It‟s easy to update incorrect data. In bad design Simple and

large-scale changes never happen. (Thousands of your customers‟ bills are returned to

you because their ZIP Code changed and the database didn‟t get updated.)

6. Speed:

- in a good design you can quickly find customers by name, account number, or phone

number.

- In bad design you can only find a customer‟s record if he knows his 37-digit account

number. Searching by name takes half an hour.

7. Security:

- good design :Users have access to the data they need and nothing else. bad design

Hackers and disgruntled employees have access to everything.

8. ACID:

- ACID is an acronym describing four features that an effective transaction system should

provide. ACID stands for Atomicity, Consistency, Isolation, and Durability.

Database Design

9

- Transactions are a sequence of queries and updates that together carry out a task.

Transactions can be committed, or rolled back; when a transaction is rolled back, the

effects of all updates performed by the transaction are undone.

- Atomicity means transactions are atomic. The operations in a transaction either all

happen or none of them happen.

- Consistency means the transaction ensures that the database is in a consistent state before

and after the transaction.

- In other words, if the operations within the transaction would violate the database‟s rules,

the transaction is rolled back.

- Isolation means the transaction isolates the details of the transaction from everyone

except the person making the transaction.

- Suppose you start a transaction, remove $100 from Alice‟s account, and add $100 to

Bob‟s account. Another person cannot peek at the database while you‟re in the middle of

this process and see a state where neither Alice nor Bob has the $100. Anyone who looks

in the database sees the $100 somewhere, either in Alice‟s account before the transaction

or in Bob‟s account afterwards.

- Durability means that once a transaction is committed, it will not disappear later. If the

power fails, when the database restarts, the effects of this transaction will still be there.

5. Database design

Database Design and Application Development: How can a user describe a real-world

enterprise (e.g., a university) in terms of the data stored in a DBMS? What factors must be

considered in deciding how to organize the stored data?

Database Design

10

5.1 Database Design Process

The database design process can be divided into six steps. The E-R model is most relevant to

the first three steps.

1. Requirements Analysis:

The very first step in designing a DB application is to understand what data is to be

stored in the DB, what applications must be built on top of it, and what operations are

most frequent and subject to performance requirements.

2. Conceptual Database Design: The information gathered in the requirements analysis step

is used to develop a high-level description of the data to be stored in the DB, along with

the constraints known to hold over this data. This step is often carried out using the E-R

model.

3. Logical Database Design: We must choose a DBMS to implement our DB design, and

convert the conceptual database design into a DB schema in the data model of the chosen

DBMS.

4. Schema Refinement: The fourth step with DB‟s design is to analyze the collection of

relations in our relational DB schema to identify potential problems, and to refine it

(Normalization).

5. Physical Database Design: It describes the details of how data is stored. This step may

simply involve building indexes on some tables and clustering some tables

6. Application and Security Design: Any software project that involves a DBMS must

consider aspects of the application that go beyond the database itself. We must identify

the entities (e.g., users, user groups, departments) and processes involved in the

Database Design

11

application. We must describe the role of each entity in every process that is reflected in

some application task, as part of a complete workflow for that task.

6. The Entity Relationship Mode

ER data model has existed for over 35 years. It is well suited to data modelling for use

with DB because it is fairly abstract and is easy to discuss and explain. ER models are

readily translated to relations. ER models, also called an ER schema, are represented by ER

diagrams. ER modelling is based on two concepts:

1. Entities, defined as tables that hold specific information (data)

2. Relationships, defined as the associations or interactions between entities

Table(1) Entity Relationship Diagram Symbols

Symbol Shape Name Symbol Description

Entities

Entity

An entity is an object in the real world with an

independent existence that can be differentiated

from other objects. An entity is represented by a

rectangle which contains the entity’s name.

Weak Entity

An entity that cannot be uniquely identified by its

attributes alone. The existence of a weak entity is

dependent upon another entity called the owner

entity.

Associative

Entity

An entity used in a many-to-many relationship

(represents an extra table). All relationships for the

associative entity should be many

Attributes

Database Design

12

Attribute

An attribute is a particular property that describes

the entity. each attribute is represented by an oval

containing attribute’s name

Key attribute
An attribute that uniquely identifies a particular

entity. The name of a key attribute is underscored.

Multivalued

attribute

An attribute that can have many values (there are

many distinct values entered for it in the same

column of the table). Multivalued attribute is depicted

by a dual oval.

Derived

attribute

An attribute whose value is calculated (derived) from

other attributes. The derived attribute may not be

physically stored in the database. This attribute is

represented by dashed oval.

Relationships

Relationship A relationship among two or more entities

6.1 Entity

An entity is an object in the real world with an independent existence that can be differentiated

from other objects.

An entity might be

- An object with physical existence (e.g., a lecturer, a student, a car)

- An object with conceptual existence (e.g., a course, a job, a position)

Database Design

13

Entities can be classified based on their strength into:-

-Weak entity: an entity is considered weak if its tables are existence dependent.

- That is, it cannot exist without a relationship with another entity

- Its primary key is derived from the primary key of the parent entity

Strong entity: an entity is considered strong if it can exist a part from all of its related entities.

- A table without a foreign key or a table that contains a foreign key that can contain nulls

is a strong entity

An entity set is a collection of entities of an entity type at a particular point of time. In an entity

relationship diagram (ERD), an entity type is represented by a name in a box.

4.2 Entity and attributes
Each entity has attributes—the particular properties that describe it. For example, an

EMPLOYEE entity may be described by the employee‟s name, age, address, salary, and job. A

particular entity may have values for each of its attributes.

Types Of Attributes

Several types of attributes occur in the ER model: simple versus composite, single valued

versus multivalued, and stored versus derived.

1. Simple attributes: Are those drawn from the atomic value domains; they are also called

single-valued attributes. In the COMPANY database, an example of this would be: Name

= {John} ; Age = {23}

2. Composite attributes: Are those that consist of a hierarchy of attributes. Figure 3

Address may consist of Number, Street and Suburb. So this would be written as →

Address = {59 +‘Meek Street’ + ‘Kingsford’}

Database Design

14

 Fig(3) Address is a Composite attribute

3. Multivalued attributes: Are attributes that have a set of values for each entity. See

Figure 4, are the degrees of an employee: BSc, MIT, PhD.

Fig(4) Degree is a multi-valued attribute

4. Derived attributes: Are attributes that contain values calculated from other attributes.

Figure 5 Age can be derived from the attribute Birthdate. In this situation, Birthdate is

called a stored attribute, which is physically saved to the database

Fig (5) Age is a derived attribute, name, birthday, salary, address are stored attributes

4.3 NULL Values

Database Design

15

 A null is a special symbol, independent of data type, which means either unknown or

inapplicable. It does not mean zero or blank. Features of null include:

- No data entry

- Not permitted in the primary key

- Should be avoided in other attributes

 Null Can represent:-

- An unknown attribute value.

- A known, but missing, attribute value.

- A not “applicable” condition.

• Can create problems when functions such as COUNT, AVERAGE and SUM are used

4.4 Relationship

Relationships are the glue that holds the tables together. They are used to connect related

information between tables.

Degree of a relationship is the number of entities associated in the relationship. Binary and

ternary relationships are special cases where the degrees are 2 and 3, respectively.

The binary relationship, an association between two entities, is by far the most common type in

the natural world. In fact, many modeling systems use only this type.

Unary relationship (recursive): A unary relationship, also called recursive, is one in which a

relationship exists between occurrences of the same entity set. In this relationship, the primary

and foreign keys are the same, but they represent two entities with different roles fig(7).

Fig(7) recursive relationship

Ternary Relationships: A ternary relationship is a relationship type that involves many to

many relationships between three tables. Refer to Figure (8) for an example of mapping a

ternary relationship type. Note n-ary means multiple tables in relationship.

Database Design

16

Fig(8) A ternary relationship

Connectivity of a Relationship The connectivity of a relationship describes a constraint

on the connection of the associated entity occurrences in the relationship. Values for

connectivity are either “one” or “many.”

Example: for a relationship between the entities Department and Employee, a connectivity of

one for Department and many for Employee means that there is at most one entity occurrence of

Department associated with many occurrences of Employee.

The actual count of elements associated with the connectivity is called the cardinality of the

relationship.

Relationship Connectivity

Table (2) Relational Symbol and Meaning

Symbol Meaning

Relationships (Cardinality and Modality)

Zero or One

One or More

Database Design

17

One and only One

Zero or More

 Many - to – One

a one through many notation on one side of a

relationship and a one and only one on the other

a zero through many notation on one side of a

relationship and a one and only one on the other

a one through many notation on one side of a

relationship and a zero or one notation on the other

a zero through many notation on one side of a

relationship and a zero or one notation on the other

 Many - to – Many

a zero through many on both sides of a relationship

a zero through many on one side and a one through

many on the other

a one through many on both sides of a relationship

a one and only one notation on one side of a relationship

and a zero or one on the other

a one and only one notation on both sides

4.5 How to Convert ER Diagram to Relational Database

We will be following the simple rules:

1. Entities and Simple Attributes:

- An entity type within ER diagram is turned into a table. You may preferably keep the

same name for the entity or give it a sensible name but avoid DBMS reserved words as

well as avoid the use of special characters.

Database Design

18

- Each attribute turns into a column (attribute) in the table. The key attribute of the entity is

the primary key of the table which is usually underlined. It can be composite if required

but can never be null.

Example:

Persons (personid, name, lastname, email)

Note the phone attribute not included.

2. Multi-Valued Attributes

A multi-valued attribute is usually represented with a double-line oval.

If you have a multi-valued attribute, take the attribute and turn it into a new entity or table of its

own. Then make a 1: N relationship between the new entity and the existing one. In simple

words:

- Create a table for the attribute.

- Add the primary (id) column of the parent entity as a foreign key within the new table

Persons (personid, name, lastname, email)

Phones (phoneid , personid, phone)

3. 1:1 Relationships

Phone

Database Design

19

To keep it simple and even for better performances at data retrieval, I would personally

recommend using attributes to represent such relationship. For instance, let us consider the case

where the Person has or optionally has one wife. You can place the primary key of the wife

within the table of the Persons which we call in this case Foreign key as shown below.

Persons (personid, name, lastname, email , wifeid)

Wife (wifeid , name)

Or vice versa to put the personid as a foreign key within the Wife table as shown below:

Persons (personid , name, lastname, email)

Wife (wifeid , name , personid)

4. 1: N Relationships

This is the tricky part! For simplicity, use attributes in the same way as 1:1 relationship but we

have only one choice as opposed to two choices. For instance, the Person can have

a House from zero to many, but a House can have only one Person. To represent such

relationship the personidas the Parent node must be placed within the Child table as a foreign

key but not the other way around as shown next:

It should convert to:

Persons (personid , name, lastname, email)

House (houseid , num , address, personid)

Database Design

20

5. N:N Relationships

We normally use tables to express such type of relationship. It is the same for N − ary

relationship of ER diagrams. For instance, The Person can live or work in many countries. Also,

a country can have many people. To express this relationship within a relational schema we use

a separate table as shown below:

it should convert into :

Persons(personid , name, lastname, email)

Countries (countryid , name, code)

HasRelat (personid + countryid)

Case Study

Convert the E-R diagram into relational database

Database Design

21

7. Enhanced Entity Relationship Model (EER Model)

EER is a high-level data model that incorporates the extensions to the original ER model. It

includes all modeling concepts of basic ER and additional:

- Sub Class and Super Class

- Specialization and Generalization

- Union or Category

- Aggregation

7.1 Sub class-super class

One entity type might be a subtype of another; very similar to subclasses in OO programming

- Example:

o EMPLOYEE may be further grouped into SECRETARY, ENGINEER,

MANAGER, TECHNICIAN….

o VEHICLE may be grouped into CAR, TRUCK, VAN, …

o Each of these groupings is a subset of EMPLOYEE entities and is called a

subclass of EMPLOYEE

o EMPLOYEE is the superclass for each of these subclasses

o These are called superclass/subclass relationships.

o These are also called IS-A relationships (SECRETARY IS-A EMPLOYEE,

TECHNICIAN IS-A EMPLOYEE, …). -

- An entity that is member of a subclass inherits all attributes of the entity as a member of

the superclass

- It also inherits all relationships

7.2 Specialization

Database Design

22

- Is the process of defining a set of subclasses of a superclass

- The set of subclasses is based upon some distinguishing characteristics of the entities in

the superclass

- Example: {SECRETARY, ENGINEER, TECHNICIAN} is a specialization of

EMPLOYEE based upon job type.

- May have several specializations of the same superclass

- Example: Another specialization of EMPLOYEE based in method of pay is

{SALARIED_EMPLOYEE, HOURLY_EMPLOYEE}.

- Superclass/subclass relationships and specialization can be diagrammatically represented

in EER diagrams

- Attributes of a subclass are called specific attributes. For example, Typing Speed of

SECRETARY

- The subclass can participate in specific relationship types. For example, BELONGS_TO

of HOURLY_EMPLOYEE.

7.3 Generalization

- The reverse of the specialization process

- Several classes with common features are generalized into a superclass; original classes

become its subclasses

- Example: CAR, TRUCK generalized into VEHICLE; both CAR, TRUCK become

subclasses of the superclass VEHICLE.

- We can view {CAR, TRUCK} as a specialization of VEHICLE

Database Design

23

- Alternatively, we can view VEHICLE as a generalization of CAR and TRUCK

7.4 Category or Union

- Category represents a single super class or sub class relationship with more than one

super class.

- For example Car booking, Car owner can be a person, a bank (holds a possession on a

Car) or a company. Category (sub class) → Owner is a subset of the union of the three

super classes → Company, Bank, and Person. A Category member must exist in at least

one of its super classes.

REWRITING UNION AS SPECIALIZATION

7.5 Aggregation

- Aggregation is a process that represent a relationship between a whole object and its

component parts.

Database Design

24

- It abstracts a relationship between objects and viewing the relationship as an object.

- It is a process when two entity is treated as a single entity.

In the following example, the relation between College and Course is acting as an Entity

in Relation with Student.

7.6 EER to Relational Mapping

Fig(9) ER schema diagram specialization on job title

To convert each super-class/subclass relationship into a relational schema you must use one of

the four options available.

Let C be the super-class, K its primary key and A1, A2, …, An its remaining

attributes and let S1, S2, …, Sm be the sub-classes.

Database Design

25

Option A (multiple relation option):

• Create a relation L for C with attributes

(L) = {K, A1, A2, …, An} and PK(L) = K.

• Create a relation Li for each subclass Si, 1 < i < m, with the attributes

(Li) = {K} U {attributes of Si} and PK(Li) = K.

• This option works for any constraints: disjoint or overlapping; total or partial.

Mapping the EER diagram on fig(9) using option A

Option B (multiple relation option):

• Create a relation Li for each subclass Si, 1 < i < m, with

(Li) = {attributes of Si} U {K, A1, A2, …, An} PK(Li) = K

• This option works well only for disjoint and total constraints.

• If not disjoint, redundant values for inherited attributes.

Fig(10)

Vehicle

Prices Vec-No

Car Truck

Model

d

Database Design

26

Car

MaxSpeed Pass-count Model Price Vec-no

Truck

Tonnage Axel count Model Price Vec-no

Option c (Single Relation Option)

• Create a single relation L with attributes

(L) = {K, A1, …, An} U {attributes of S1} U… U {attributes of Sm} U {T} and PK(L)=K

• This option is for specialization whose subclasses are DISJOINT, and T is a type attribute that

indicates the subclass to which each tuple belongs, if any. This option may generate a large

number of null values.

• Not recommended if many specific attributes are defined in subclasses (will result in many

null values!)

Employee

Ssn Fname Minit Lname birthdate Address JobType typpigSpeed TGrad EngType Temp

Option d (Single Relation Option)

• Create a single relation schema L with attributes

(L) = {K, A1, …, An} U {attributes of S1} U… U {attributes of Sm} U {T1, …, Tn} and

PK(L)=K

• This option is for specialization whose subclasses are overlapping, and each Ti, 1 < i < m, is a

Boolean attribute indicating whether a tuple belongs to subclass Si.

• This option could be used for disjoint subclasses too.

Vehicle

Vec_no Model Price Maxspee Pass-count carF tonnage Axel count truckF

Database Design

27

Relational algebra

 The traditional set operations: union, intersection, difference and Cartesian product

 The special relational operations: select, project, join and divide.

Relational algebra a formal query language for asking questions. Is a set of operators to

manipulate relations. Each operator of the relational algebra takes either one or two relations as

its input and produces a new relation as its output

Codd defined 8 such operators, two groups of 4 each:

 The traditional set operations: union, intersection, difference and Cartesian product

 The special relational operations: select, project, join and divide.

Selection: σ

 selects rows from relation R that satisfy selection condition c

 Example : find the movies made by Hanson after 1997

Selection Condition

• Selection condition is a Boolean combination of terms

• A term is one of the following forms:

1. attribut op constant op ∈ {=, ≠,<,≤,>, ≥}

Database Design

28

2. attribute1 op attribute2

3. term1 ∧ term2

4. term1 ∨ term2

5. ￢ term1

6. (term1)

• Operator precedence: (), op, ￢, ∧, ∨

Projection π

Eliminate duplicate tuples, if any.

Database Design

29

Set Operations

 Union: R ∪ S returns a relation containing all tuples that

 occur in R or S (or both). Remove the duplicated tuples

 Intersection: R ∩ S returns a relation containing all tuples that occur in both R

and S

 Set-difference: R − S returns a relation containing all tuples in R but not in S

 Two relations are union compatible if

 - They have the same number of fields

 - corresponding fields, have the same domains

 union (∪), intersection (∩), and set-difference (−) operators require input

relations to be union compatible

Database Design

30

Database Design

31

Cross-Product

 Consider R(A,B,C) and S(X, Y)

 Cross-product: R × S returns a relation with attribute list (A,B,C,X, Y) defined as

follows:

 R × S = {(a, b, c, x, y) | (a, b, c) ∈ R, (x, y) ∈ S}

 Cross-product operation is also known as Cartesian product

 Fields of the same name are may renamed

Join

Join can be defined as cross-product followed by selection and projection. We

have

Several variants of join.

1. Condition joins

Database Design

32

2. Equijoin

Condition consists only of equalities connected by ᴧ

Redundancy in retaining both attributes in result. So, an additional projection is applied

to remove the second attribute.

3. Natural join

3. Natural Join

It is an equijoin in which equalities are specified on all fields having the same name in

R and S.

 We can then omit the join condition.

 Result is guaranteed not to have two fields with the same name.

 If no fields in common, then natural join is simply cross product

Database Design

33

Transformation Rules and SQL Constructs

Database Design

34

Database Design

35

Advanced SQL

The SQL language has several aspects to it.

1. The Data Manipulation Language (DML): This subset of SQL allows users to

pose queries and to insert, delete, and modify rows.

2. The Data Definition Language (DDL): This subset of SQL supports the creation,

deletion, and modification of definitions for tables and views.

3. Triggers and Advanced Integrity Constraints: The new SQL:1999 standard

includes support for triggers.

Database Design

36

4. Embedded SQL: Embedded SQL features allow SQL code to be called from a

host language such as C or COBOL.

5. Dynamic SQL: Features allow a query to be constructed (and executed) at run-

time.

6. Client-Server Execution and Remote Database Access: These commands control

how a client application program can connect to an SQL database server, or

access data from a database over a network.

7. Transaction Management: Various commands allow a user to explicitly control

aspects of how a transaction is to be executed.

8. Security: SQL provides mechanisms to control users' access to data objects such

as tables and views.

TRIGGERS AND ACTIVE DATABASES

A trigger is a procedure that is automatically invoked by the DBMS in response to

specified changes to the database, and is typically specified by the DBA. A database

that has a set of associated triggers is called an active database.

A trigger description contains three parts:

- Event: A change to the database that activates the trigger.

- Condition: A query or test that is run when the trigger is activated.

- Action: A procedure that is executed when the trigger is activated and its

condition is true.

A trigger can be thought of as a 'daemon' that monitors a database, and is executed

when the database is modified in a way that matches the event specification.

An insert, delete, or update statement could activate a trigger, regardless of which user

or application invoked the activating statement; users may not even be aware that a

trigger was executed as a side effect of their program.

A condition in a trigger can be a true/false statement (e.g., all employee salaries are

less than $100,000) or a query. A query is interpreted as true if the answer set is

Database Design

37

nonempty and false if the query has no answers. If the condition part evaluates to true,

the action associated with the trigger is executed.

A trigger action can examine the answers to the query in the condition part of the

trigger, refer to old and new values of tuples modified by the statement activating the

trigger, execute the queries, and make changes to the database.

In fact, an action can even execute a series of data-definition commands (e.g., create

new tables, change authorizations) and transaction-oriented commands (e.g., commit)

or call host-language procedures.

Triggers can be used in various applications, such as maintaining database consistency,

monitoring database updates, and updating derived data automatically.

Trigger Syntax and Examples in MySQL

To create a trigger or drop a trigger, use the CREATE TRIGGER or DROP TRIGGER

statement.

Syntax

 CREATE

 TRIGGER trigger_name

 trigger_time trigger_event

 ON tbl_name FOR EACH ROW

 trigger_body

trigger_time: { BEFORE | AFTER }

trigger_event: { INSERT | UPDATE | DELETE }

Trigger names exist in the schema namespace, meaning that all triggers must have

unique names within a schema. Triggers in different schemas can have the same name.

trigger_time is the trigger action time. It can be BEFORE or AFTER to indicate that

the trigger activates before or after each row to be modified.

https://dev.mysql.com/doc/refman/5.5/en/create-trigger.html
https://dev.mysql.com/doc/refman/5.5/en/drop-trigger.html

Database Design

38

Note : Basic column value checks occur prior to trigger activation, so you cannot

use BEFORE triggers to convert values inappropriate for the column type to valid

values.

trigger_event indicates the kind of operation that activates the trigger. These

trigger_event values are permitted:

 INSERT: The trigger activates whenever a new row is inserted into the table; for

example, through INSERT statements.

 UPDATE: The trigger activates whenever a row is modified; for example,

through UPDATE statements.

 DELETE: The trigger activates whenever a row is deleted from the table; for

example, through DELETE statements.

 DROP TABLE and TRUNCATE TABLE statements on the table do not activate this

trigger, because they do not use DELETE.

The trigger_event does not represent a literal type of SQL statement that activates the

trigger so much as it represents a type of table operation. For example,

an INSERT trigger activates not only for INSERT statements but also LOAD

DATA statements because both statements insert rows into a table.

Notes :

1. Cascaded foreign key actions do not activate triggers.

2. There cannot be multiple triggers for a given table that have the same trigger

event and action time. For example, you cannot have two BEFORE

UPDATE triggers for a table. But you can have a BEFORE UPDATE and

a BEFORE INSERT trigger, or a BEFORE UPDATE and an AFTER

UPDATE trigger.

trigger_body is the statement to execute when the trigger activates. To execute

multiple statements, use the BEGIN ... END compound statement construct.

https://dev.mysql.com/doc/refman/5.5/en/insert.html
https://dev.mysql.com/doc/refman/5.5/en/insert.html
https://dev.mysql.com/doc/refman/5.5/en/update.html
https://dev.mysql.com/doc/refman/5.5/en/update.html
https://dev.mysql.com/doc/refman/5.5/en/delete.html
https://dev.mysql.com/doc/refman/5.5/en/delete.html
https://dev.mysql.com/doc/refman/5.5/en/drop-table.html
https://dev.mysql.com/doc/refman/5.5/en/truncate-table.html
https://dev.mysql.com/doc/refman/5.5/en/delete.html
https://dev.mysql.com/doc/refman/5.5/en/insert.html
https://dev.mysql.com/doc/refman/5.5/en/insert.html
https://dev.mysql.com/doc/refman/5.5/en/load-data.html
https://dev.mysql.com/doc/refman/5.5/en/load-data.html
https://dev.mysql.com/doc/refman/5.5/en/begin-end.html

Database Design

39

Within the trigger body, you can refer to columns in the subject table (the table

associated with the trigger) by using the aliases OLD and NEW. OLD.col_name refers

to a column of an existing row before it is updated or deleted. NEW.col_name refers

to the column of a new row to be inserted or an existing row after it is updated.

Here is a simple example that associates a trigger with a table, to activate

for INSERT operations. The trigger acts as an accumulator, summing the values

inserted into one of the columns of the table.

mysql> CREATE TABLE account (acct_num INT, amount DECIMAL(10,2));

mysql> CREATE TRIGGER ins_sum BEFORE INSERT ON account

 FOR EACH ROW SET @sum = @sum + NEW.amount;

The CREATE TRIGGER statement creates a trigger named ins_sum that is associated

with the account table. It also includes clauses that specify the trigger action time, the

triggering event, and what to do when the trigger activates:

 The keyword BEFORE indicates the trigger action time. In this case, the trigger

activates before each row inserted into the table. The other permitted keyword here

is AFTER.

 The keyword INSERT indicates the trigger event; that is, the type of operation that

activates the trigger. In the example, INSERT operations cause trigger activation. You

can also create triggers for DELETE and UPDATE operations.

 The statement following FOR EACH ROW defines the trigger body; that is, the

statement to execute each time the trigger activates, which occurs once for each row

affected by the triggering event. In the example, the trigger body is a simple SET that

accumulates into a user variable the values inserted into the amount column. The

statement refers to the column as NEW.amount which means “the value of

the amount column to be inserted into the new row.”

https://dev.mysql.com/doc/refman/5.5/en/insert.html
https://dev.mysql.com/doc/refman/5.5/en/create-trigger.html
https://dev.mysql.com/doc/refman/5.5/en/insert.html
https://dev.mysql.com/doc/refman/5.5/en/delete.html
https://dev.mysql.com/doc/refman/5.5/en/update.html
https://dev.mysql.com/doc/refman/5.5/en/set-variable.html

Database Design

40

To use the trigger, set the accumulator variable to zero, execute an INSERTstatement,

and then see what value the variable has afterward:

mysql> SET @sum = 0;

mysql> INSERT INTO account VALUES(137,14.98),(141,1937.50),(97,-100.00);

mysql> SELECT @sum AS 'Total amount inserted';

+-----------------------+

| Total amount inserted |

+-----------------------+

| 1852.48 |

+-----------------------+

In this case, the value of @sum after the INSERT statement has executed is 14.98 +

1937.50 - 100, or 1852.48.

To destroy the trigger, use a DROP TRIGGER statement. You must specify the

schema name if the trigger is not in the default schema:

mysql> DROP TRIGGER test.ins_sum;

If you drop a table, any triggers for the table are also dropped.

Trigger names exist in the schema namespace, meaning that all triggers must have

unique names within a schema. Triggers in different schemas can have the same name.

In an INSERT trigger, only NEW.col_name can be used; there is no old row. In

a DELETE trigger, only OLD.col_name can be used; there is no new row. In

an UPDATEtrigger, you can use OLD.col_name to refer to the columns of a row

before it is updated and NEW.col_name to refer to the columns of the row after it is

updated.

By using the BEGIN ... END construct, you can define a trigger that executes multiple

statements. Within the BEGIN block, you also can use other syntax that is permitted

within stored routines such as conditionals and loops. However, just as for stored

routines, if you use the mysql program to define a trigger that executes multiple

https://dev.mysql.com/doc/refman/5.5/en/insert.html
https://dev.mysql.com/doc/refman/5.5/en/insert.html
https://dev.mysql.com/doc/refman/5.5/en/drop-trigger.html
https://dev.mysql.com/doc/refman/5.5/en/begin-end.html
https://dev.mysql.com/doc/refman/5.5/en/mysql.html

Database Design

41

statements, it is necessary to redefine the mysql statement delimiter so that you can use

the ; statement delimiter within the trigger definition.

The DELIMITER statement changes the standard delimiter which is semicolon (;) to

another. The delimiter is changed from the semicolon (;) to double-slashes //.

Why do we have to change the delimiter? To pass the trigger, stored procedure to the

server as a whole rather than letting mysql tool to interpret each statement at a time.

The following example illustrates these points. It defines an UPDATE trigger that

checks the new value to be used for updating each row, and modifies the value to be

within the range from 0 to 100. This must be a BEFORE trigger because the value

must be checked before it is used to update the row:

mysql> delimiter //

mysql> CREATE TRIGGER upd_check BEFORE UPDATE ON account

 -> FOR EACH ROW

 -> BEGIN

 -> IF NEW.amount < 0 THEN

 -> SET NEW.amount = 0;

 -> ELSEIF NEW.amount > 100 THEN

 -> SET NEW.amount = 100;

 -> END IF;

 -> END;//

mysql> delimiter ;

STORED PROCEDURES

A stored procedure is a set of Structured Query Language (SQL) statements with an

assigned name, which are stored in a relational database management system as a

group, so it can be reused and shared by multiple programs.

https://dev.mysql.com/doc/refman/5.5/en/mysql.html
http://searchsqlserver.techtarget.com/definition/SQL
http://searchsqlserver.techtarget.com/definition/relational-database-management-system

Database Design

42

Why Stored Procedures?

 Stored procedures are fast. The main speed gain comes from reduction of network

traffic. Running application logic directly at the database has the advantage that the

amount of data that is transferred between the database server and the client issuing the

SQL statement can be minimized.

 Stored procedures are beneficial for software engineering reasons. Once a stored

procedure is registered with the database server, different users can re-use the stored

procedure, eliminating duplication of efforts in writing SQL queries or application

logic, and making code maintenance easy.

 Although they are called stored procedures, they do not have to be procedures in a

programming language sense; they can be functions.

View

A view is tables whose rows are not explicitly stored in the database but are computed

as needed from a view definition. A database view is a searchable object in a database

that is defined by a query. Though a view doesn‟t store data, some refer to a views as

“virtual tables,” you can query a view like you can a table. A view can combine data

from two or more table, and also just contain a subset of information. We create view

using SQL commands.

What is the difference between table and view?

A view is a virtual table. A view consists of rows and columns just like a table. The

difference between a view and a table is that views are definitions built on top of other

tables (or views), and do not hold data themselves. If data is changing in the

underlying table, the same change is reflected in the view. A view can be built on top

of a single table or multiple tables. It can also be built on top of another view.

Database Design

43

Views offer the following advantages:

1. Ease of use: A view hides the complexity of the database tables from end

users. Essentially we can think of views as a layer of abstraction on top of the database

tables.

2. Space savings: Views takes very little space to store, since they do not store

actual data.

3. Additional data security: Views can include only certain columns in the table

so that only the non-sensitive columns are included and exposed to the end user. In

addition, some databases allow views to have different security settings, thus hiding

sensitive data from prying eyes.

Create view in mysql

The basic syntax used to create a view in MySQL.

CREATE VIEW `view_name` AS SELECT statement;

WHERE

 "CREATE VIEW `view_name`" tells MySQL server to create a view object in the

database named `view_name`

 "AS SELECT statement" is the SQL statements to be packed in the views. It can be a

SELECT statement can contain data from one table or multiple tables.

Dropping views

The DROP command can be used to delete a view from the database that is no longer

required. The basic syntax to drop a view is as follows.

DROP VIEW ` view_name `;

Indexes

Database Design

44

An index is a data structure that organizes data records on disk to optimize certain

kinds of retrieval operations. An index allows us to efficiently retrieve all records that

satisfy search conditions on the search key fields of the index. We can also create

additional indexes on a given collection of data records, each with a different search

key, to speed up search operations that are not efficiently supported by the file

organization used to store the data records.

Basic Concepts

- Indexing mechanisms are used to optimize certain accesses to data (records) managed

in files. For example, the author catalog in a library is a type of index.

- Search Key (definition): attribute or combination of attributes used to look up

records in a file.

- An Index File consists of records (called index entries) of the form

- Index _les are typically much smaller than the original file because only the values

for search key and pointer are stored.

- There are two basic types of indexes:

o Ordered indices: Search keys are stored in a sorted order.

o Hash indices: Search keys are distributed uniformly across “buckets" using a

hash function.

- A file may have several indices on different search keys.

Create index in mysql

There are 2 ways to create an index. You can either create an index when you first

create a table using the CREATE TABLE statement or you can use the CREATE

INDEX statement after the table has been created.

Syntax

The syntax to create an index using the CREATE TABLE statement in MySQL is:

Database Design

45

CREATE TABLE table_name (

 column1 datatype [NULL | NOT NULL],

 ...

 column_n datatype [NULL | NOT NULL],

 INDEX index_name [USING BTREE | HASH]

 (index_col1 [(length)] [ASC | DESC],

 ...

 index_col_n [(length)] [ASC | DESC]));

OR

The syntax to create an index using the CREATE INDEX statement in MySQL is:

CREATE [UNIQUE | FULLTEXT | SPATIAL] INDEX index_name

 [USING BTREE | HASH]

 ON table_name

 (index_col1 [(length)] [ASC | DESC],

 index_col2 [(length)] [ASC | DESC],

 ...

 index_col_n [(length)] [ASC | DESC]);

UNIQUE

Optional. The UNIQUE modifier indicates that the combination of values in the

indexed columns must be unique.

FULLTEXT

Optional. The FULLTEXT modifier indexes the entire column and does not allow

prefixing.

SPATIAL

Optional. The SPATIAL modifier indexes the entire column and does not allow

indexed columns to contain NULL values.

Database Design

46

index_name

The name to assign to the index.

table_name

The name of the table in which to create the index.

index_col1, index_col2, ... index_col_n

col1…col_n The columns to use in the index.

Length

Optional. If specified, only a prefix of the column is indexed not the entire column.

For non-binary string columns, this value is the given number of characters of the

column to index. For binary string columns, this value is the given number of bytes of

the column to index.

ASC

Optional. The index is sorted in ascending order for that column.

DESC

Optional. The index is sorted in descending order for that column.

Example

Let's look at an example of how to create an index in MySQL using the CREATE

TABLE statement. This statement would both create the table as well as the index at

the same time.

For example:

CREATE TABLE contacts

(contact_id INT(11) NOT NULL AUTO_INCREMENT,

 last_name VARCHAR(30) NOT NULL,

 first_name VARCHAR(25), birthday DATE,

 PRIMARY KEY (contact_id),

 INDEX contacts_idx (last_name, first_name));

Database Design

47

In this example, we've created the contacts table as well as an index

called contacts_idx which consists of the last_name and first_name columns.

Next, we will show you how to create the table first and then create the index using the

CREATE INDEX statement.

For example:

CREATE TABLE contacts

(contact_id INT(11) NOT NULL AUTO_INCREMENT,

 last_name VARCHAR(30) NOT NULL,

 first_name VARCHAR(25), birthday DATE,

 PRIMARY KEY (contact_id));

CREATE INDEX contacts_idx ON contacts (last_name, first_name);

In this example, the CREATE TABLE statement would create the contacts table. The

CREATE INDEX statement would create an index called contacts_idx that consists of

the last_name and the first_name fields.

Unique Index

To create a unique index on a table, you need to specify the UNIQUE keyword when

creating the index. Again, this can be done with either a CREATE TABLE statement

or a CREATE INDEX statement.

For example:

CREATE TABLE contacts

(contact_id INT(11) NOT NULL AUTO_INCREMENT,

 last_name VARCHAR(30) NOT NULL,

 first_name VARCHAR(25),

 birthday DATE,

 CONSTRAINT contacts_pk PRIMARY KEY (contact_id),

 UNIQUE INDEX contacts_idx (last_name, first_name));

Database Design

48

OR

CREATE TABLE contacts

(contact_id INT(11) NOT NULL AUTO_INCREMENT,

 last_name VARCHAR(30) NOT NULL,

 first_name VARCHAR(25),

 birthday DATE,

 CONSTRAINT contacts_pk PRIMARY KEY (contact_id));

CREATE UNIQUE INDEX contacts_idx

 ON contacts (last_name, first_name);

Both of these examples would create a unique index on

the last_name and first_name fields so that the combination of these fields must

always contain a unique value with no duplicates. This is a great way to enforce

integrity within your database if you require unique values in columns that are not part

of your primary key.

Drop an Index

You can drop an index in MySQL using the DROP INDEX statement.

Syntax

The syntax to drop an index using the DROP INDEX statement in MySQL is:

DROP INDEX index_name ON table_name;

index_name

The name of the index to drop.

table_name

The name of the table where the index was created.

Example

Let's look at an example of how to drop an index in MySQL.

For example:

Database Design

49

DROP INDEX contacts_idx ON contacts;

In this example, we've dropped an index called contacts_idx from the contacts table.

SQL Joins

A JOIN clause is used to combine rows from two or more tables, based on a related

column between them.

Let's look at a selection from the "person" table:

Then, look at a selection from the "color" table:

Notice that the "fk" column in the "person" table refers to the "id" in the "color" table.

Then, we can create the following SQL statement (that contains an INNER JOIN), that

selects records that have matching values in both tables:

The MySQL INNER JOIN clause matches rows in one table with rows in other tables

and allows you to query rows that contain columns from both tables.

Here are the different types of the JOINs in SQL:

 (INNER) JOIN: Returns records that have matching values in both tables

Database Design

50

 LEFT (OUTER) JOIN: Return all records from the left table, and the matched

records from the right table

 RIGHT (OUTER) JOIN: Return all records from the right table, and the matched

records from the left table

 Cross join : Return all records when there is a match in either left or right table

Database Design

51

Accessing SQL from a Programming Language

SQL provides a powerful declarative query language. Writing queries in SQL is

usually much easier than coding the same queries in a general-purpose programming

language. However, a database programmer must have access to a general-purpose

programming language for at least two reasons:

1. Not all queries can be expressed in SQL, since SQL does not provide the full

expressive power of a general-purpose language. That is, there exist queries that can be

expressed in a language such as C, Java, or Cobol that cannot be expressed in SQL. To

write such queries, we can embed SQL within a more powerful language.

2. Non declarative actions—such as printing a report, interacting with a user, or

sending the results of a query to a graphical user interface—cannot be done from

within SQL.

 Applications usually have several components, and querying or updating data is only

one component; other components are written in general-purpose programming

languages. For an integrated application, there must be a means to combine SQL with

a general-purpose programming language.

There are two approaches to accessing SQL from a general-purpose programming

language:

 Dynamic SQL: A general-purpose program can connect to and communicate with a

database server using a collection of functions (for procedural languages) or methods

(for object-oriented languages). Dynamic SQL allows the program to construct an

SQL query as a character string at runtime, submit the query, and then retrieve the

result into program variables a tuple at a time.

 Embedded SQL: Like dynamic SQL, embedded SQL provides a means by which a

program can interact with a database server. However, under embedded SQL, the SQL

statements are identified at compile time using a preprocessor.

Database Design

52

The preprocessor submits the SQL statements to the database system for

precompilation and optimization; then it replaces the SQL statements in the application

program with appropriate code and function calls before invoking the programming-

language compiler.

Two standards for connecting to an SQL database JDBC is an application program

interface for the Java language. The other, ODBC is an application program interface

originally developed for the C language C++, C#, and Visual Basic.

New DB Data Model Types

Several application areas for database systems are limited by the restrictions of the

relational data model. As a result, researchers have developed several data models

based on an object-oriented approach and NoSQl, to deal with these application

domains.

Object-Oriented / Object-Relational Databases

In the 1980s, several database systems based on the object-oriented data model were

developed. The major database vendors presently support the object-relational data

model, a data model that combines features of the object-oriented data model and

relational data model. It extends the traditional relational model with a variety of

features such as structured and collection types, as well as object orientation.

An object typically has two components: state (value) and behavior (operations). It can

have a complex data structure as well as specific operations defined by the

programmer. Objects in an OOPL (OO Programming Language) exist only during

program execution; therefore, they are called transient objects. An OO DB can extend

the existence of objects so that they are stored permanently in a database, and hence

the objects become persistent objects that exist beyond program termination and can

be retrieved later and shared by other programs. In other words, OO databases store

Database Design

53

persistent objects permanently in secondary storage, and allow the sharing of these

objects among multiple programs and applications.

The Object-Relational (OR) model is very similar to the relational model; however, it

treats very entity as an object (instance of a class), and a relationship as an inheritance.

Some features and benefits of an Object-Relational model are:

- Support for complex, user defined types

- Object inheritance

- Extensible objects

Object-Relational databases have the capability to store object relationships in

relational form.

NOSQL

NoSQL is an approach to databases that represents a shift away from traditional

relational database management systems (RDBMS) NoSQL can mean “not SQL” or

“not only SQL.” NoSQL is particularly useful for storing unstructured data, which is

growing far more rapidly than structured data and does not fit the relational schemas of

RDBMS. Common types of unstructured data include: user and session data; chat,

messaging, and log data; time series data such as IoT (Internet of Think) and device

data; and large objects such as video and images.

Types of NOSQL DBS

Several different varieties of NoSQL databases have been created to support specific

needs and use cases. These fall into four main categories:

- Key-value data stores : Key-value NoSQL databases emphasize simplicity and

are very useful in accelerating an application to support high-speed read and write

http://basho.com/resources/nosql-databases/

Database Design

54

processing of non-transactional data. Stored values can be any type of binary object

(text, video, JSON document, etc.) and are accessed via a key. The application has

complete control over what is stored in the value, making this the most flexible

NoSQL model. Data is partitioned and replicated across a cluster to get scalability and

availability. For this reason, key value stores often do not support transactions.

However, they are highly effective at scaling applications that deal with high-speed,

non-transactional data.

- Document stores : Document databases typically store self-describing JSON,

XML, and BSON documents. They are similar to key-value stores, but in this case, a

value is a single document that stores all data related to a specific key. Popular fields

in the document can be indexed to provide fast retrieval without knowing the key.

Each document can have the same or a different structure.

- Wide-column stores: Wide-column NoSQL databases store data in tables with

rows and columns similar to RDBMS, but names and formats of columns can vary

from row to row across the table. Wide-column databases group columns of related

data together. A query can retrieve related data in a single operation because only the

columns associated with the query are retrieved. In an RDBMS, the data would be in

different rows stored in different places on disk, requiring multiple disk operations for

retrieval.

- Graph stores: A graph database uses graph structures to store, map, and query

relationships. They provide index-free adjacency, so that adjacent elements are linked

together without using an index

http://basho.com/resources/document-databases/

Database Design

55

- Multi-modal databases leverage some combination of the four types described

above and therefore can support a wider range of applications.

