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Introduction to Computer Graphics 

Graphics is defined as any sketch or a drawing or a special network that pictorially represents 

some meaningful information. Computer Graphics is used where a set of image needs to be 

manipulated or the creation of the image in the form of pixels and is drawn on the computer. 

Computer Graphics is the process of transforming and presenting the information in a visual 

form.  

 

Definition of Computer Graphics: 

It is the use of computers to create and manipulate pictures on a display device. It comprises 

of software techniques to create, store, modify, represents pictures. 

 

Applications of Computer Graphics 

 Graphical User Interface (GUI): It is a way of interacting with a computer using the 

icon, menu, and other visual, graphics by which user easily interacts.  

 Entertainment: Computer graphics allow the user to make animated movies and games. 

Computer graphics are used to create scenes. Computer graphics are also used for special 

effects and animations. 

 Engineering Drawings: Computer Graphics has also provided us the flexibility to make 

3D models, house circuits and engineering drawings, etc. which is helpful for us. 

 Education and Training: Computer graphics are also used to provide training to students 

with simulators. The students can learn about the machines without physically trying them. 

 Medical Imaging: MRIs, CT scans, and other internal scans are possible because of 

computer graphics. 

 Flight Simulator: Computer graphic is used to provide training to pilots of aircraft. The 

pilots give much time to a flight simulator on the ground instead of real airplanes. 

 Printing Technology: Computer graphics are used in textile designing and flex printing. 

 Satellite Imaging: Computer graphics are used to forecast the movement of the cloud and 

to predict the weather. 

 Cartography: Computer graphics are used in map drawing. 

 

 

 

 

 

https://www.geeksforgeeks.org/introduction-to-computer-graphics/geeksforgeeks.org/computer-graphics-2/


Advantages of Computer graphics 

 Increase Productivity. 

 Computer graphics give us tools for creating pictures of solid objects as well as of 

theoretical, engineered objects. 

 The computer can store complex drawings and display complex pictures. 

 

Disadvantages of Computer graphics  

 Hardware characteristics and cost. 

 Technical issues. 

 

Display Adapter 

A plug-in card is what your computer uses to convert data in your machine to useful images on 

your screen. Also commonly called a "graphics card" or "video card”. The display adapter 

determines the maximum resolution and number of colors that can be displayed, which the 

monitor must also be able to support. On most PCs, these graphics circuits are built into the 

motherboard's chipset. A separate plug-in card is required only to greatly enhance rendering 

for video games or other fast-motion graphics applications. The display adapter has several 

types, some of them are shown below: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Graphics Video Card. 

 



Computer Display Standard 

CGA  Color Graphics Adapter 

EGA  Enhanced Color Adapter 

VGA  Video Graphic Array 

SVGA Super Video Graphic Array 

XGA Extended Video Graphic Array 

 

Note: display adapter, graphics card, display card, video adapter, video card, graphics adapter, 

graphics controller, VGA adapter and VGA card have all been terms for the plug-in board that 

creates the screen images. 

 

PC Display Modes 

A PC graphics card supports both Text and Graphics modes:  

 Text Mode  

Alternatively known as character mode or alphanumeric mode, text mode is a display 

mode divided into rows and columns of boxes showing only alphanumeric characters. 

Each box can contain one character. Basic unit is the character cell. Its screen, with 

coordinates (1 , 1 , 80 , 25).  

 

 

 

 

 

 

 

 

 

 

 

 

 

Computer screen with Text Mode. 

 

 

 



 

 Graphics Modes 

 A way of displaying images on a computer screen or other graphics device such that the 

basic unit is the pixel (generates image using pixels). Pixels, dots, or picture elements, 

are the smallest addressable physical points on a display, as well as the base components. 

Pixels are therefore the building blocks of any image you see on your screen. Lines and 

characters on the screen are drawn pixel by pixel.  

 

 

 

 

 

 

 

 

Computer screen with Graphics Mode. 

 

Windows PCs boot up in text mode and switch to graphics mode. Many DOS applications 

supported both modes and switched between them based on the function selected by the user.  

 

Resolution 

The display resolution of a digital television, computer screen or display device is the number 

of distinct pixels in each dimension that can be displayed. It can be an ambiguous term 

especially as the displayed resolution is controlled by different factors in cathode ray 

tube (CRT) displays, flat-panel displays (including liquid-crystal displays) and projection 

displays using fixed picture-element (pixel) arrays. It is usually quoted as width × height, with 

the units in pixels: for example, 1920 × 1080 means the width is 1920 pixels and the height is 

1080 pixels. 

 

https://www.encyclopedia.com/science-and-technology/computers-and-electrical-engineering/computers-and-computing/pixel#1O11pixel
https://www.computerhope.com/jargon/p/pixel.htm
https://en.wikipedia.org/wiki/Digital_television
https://en.wikipedia.org/wiki/Computer_monitor
https://en.wikipedia.org/wiki/Display_device
https://en.wikipedia.org/wiki/Pixel
https://en.wikipedia.org/wiki/Cathode_ray_tube
https://en.wikipedia.org/wiki/Cathode_ray_tube
https://en.wikipedia.org/wiki/Flat-panel_display
https://en.wikipedia.org/wiki/Liquid-crystal_display


 

 

 

 

 

 

 

 

 

 

Screen Resolution. 

 

Resolution of Computer Display Standard 

CGA  Color Graphics Adapter               300 x 200 

EGA  Enhanced Color Adapter              320 x 200 

VGA  Video Graphic Array                    640 x 480 

SVGA Super Video Graphic Array          800 x 600 

XGA Extended Video Graphic Array  1024 x 768 

 

 

Note: Pixels and resolution are directly correlated and a higher resolution equals a higher 

number of pixels on a screen. To visualize this, we can think of pixels as puzzle pieces; 

each one makes up a small piece of a bigger picture. Moreover, the more pixels a screen 

has, the more detailed images can be. The more bits per pixel, the more different colors 

or shades of gray. 

 

 

 



Note: In computer graphics, aliasing is the stair- stepped appearance of diagonal lines when 

there are not enough pixels on screen to represent them realistically. Also called “stair-

stepping” and “jaggies”. 

 

 

 

 

 

 

 

 

 

Example about low and high resolution. 

 

 

Note: A single graphics device can operate in a number of different graphics modes with 

different resolutions and color selections. We will deal with the VGA adapter. The 

graphics mode resolution is (640 x 480) and (16 colors). 

 

 

 

 

 



Types of Computer Graphics 

There are two types of computer graphics: 

 Vector Graphics 

            These graphics consist of anchored dots and connected by lines and curves, similar to 

the connect-the-dot activities you may have done as a kid. Also, vector graphics are 

made up of paths, each with a mathematical formula (vector) that tells the path how it 

is shaped. Because these graphics are not based on pixels, they are known as resolution 

independent, which makes them infinitely scalable. Their lines are sharp, without any 

loss in quality or detail, no matter what their size. These graphics are also device-

independent, which means their quality doesn't depend on the number of dots available 

on a printer or the number of pixels on a screen. Because they consist of lines and anchor 

points, the size of the files are relatively small. This makes vector files the best format 

for graphic assets such as illustrations, icons and company logos, as the same file can 

be used for designs ranging from a mobile app to a large billboard without sacrificing 

quality or increasing file size. 

 

 

 

 

 

 

 

Vector shapes are made up of points and lines that create paths. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Vector image 



 Raster Graphics 

Raster graphics, also called bitmap graphics, a type of digital image that uses tiny 

rectangular pixels, dots, or picture elements, arranged in a grid formation to represent 

an image. Raster is good for photographs. Raster graphics are great when creating rich 

and detailed images. Every pixel in a raster image can be a different color creating a 

complex image with all kinds of color and variations. 

 

 

 

 

 

 

 

Computer screen with pixels is a raster  

 

 

 

 

 

 

 

 

 

Computer screen with pixels is a raster  

 

 

 

 

 

 

 

Computer screen with pixels is a raster  



 

 

 

 

 

 

 

 

Raster image Vs Vector image 

 

 

When the raster image is zoomed in or enlarged pixels appear like little squares on graph paper. 

Note the figure below. We will deal with Raster Graphics. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Raster image Vs Vector image 

 

 

 

Note: It is known that Raster graphics is more popular than Vector graphics, but if your project 

requires scalable shapes and solid colors, vector is the best choice, but if your project 

requires complex color blends, raster is the preferred format. 

 

 



Graphics Display System 

It consists of four components: 

1. A display controller that gets the inputs and commands from the user and determines 

the image to be displayed on the monitor. The display controller will divide the image 

into a number of pixels. This image which is to be displayed is stored in the frame 

buffer. The image will be stored as a matrix of intensity values. 

2. A digital memory (frame buffer or Bitmap), in which the displayed Image is stored as 

a matrix of intensity values. The number of rows in the frame buffer array equal the 

number of raster lines on the display screen, and the number of columns in this array 

equals the number of pixels on each raster line.  

3. A monitor (computer screen). 

4. Video controller which is a simple interface that passes the contents of the frame buffer 

to the monitor. Inside the frame buffer the image is stored as a pattern of binary digital 

numbers, which represent a rectangular array of picture elements, or pixel. In the 

Simplest case where we wish to store only black and white images, we can represent 

black pixels by 0's in the frame buffer and white Pixels by 1's. The display controller 

simply reads each successive byte of data from the frame buffer and converts each 0 

and 1 to the corresponding video signal. This signal is then fed to the monitor. If we 

wish to change the displayed picture all we need to do is to change of modify the frame 

buffer contents to represent the new pattern of pixels. 

 

 

 

 

 

 

 

 

 

 

 

Graphics Display System. 

 



Note: A video controller, often referred to as a video or graphics card, is a key hardware component 

that allows computers to generate graphic information to any video display devices, such as a 

monitor or projector. Some modern computers do not include video cards, but rather have 

graphics processing units directly integrated into the computer's motherboard. 

 

Scan Conversion Definition 

It is a process of representing graphics objects a collection of pixels. The graphics objects are 

continuous. The pixels used are discrete. Each pixel can have either on or off state. The 

circuitry of the video display device of the computer is capable of converting binary values (0, 

1) into a pixel on and pixel off information. 0 is represented by pixel off. 1 is represented using 

pixel on. Using this ability graphics computer represent picture having discrete dots. Any 

model of graphics can be reproduced with a dense matrix of dots or points. Most human beings 

think graphics objects as points, lines, circles, ellipses. For generating graphical object, many 

algorithms have been developed. The process of scan conversion is also called as 

rasterization. The algorithms implementation varies from one computer system to another 

computer system. Some algorithms are implemented using the software. Some are performed 

using hardware or firmware. Some are performed using various combinations of hardware, 

firmware, and software. 

 

Coordinates of Computer Screen 

The graph paper ("Cartesian coordinate system") placed (0, 0) in the center with the y-axis 

pointing up and the x-axis pointing to the right (in the positive direction, negative down and to 

the left). The coordinate system for pixels in a computer window, however, is reversed along 

the y-axis. (0, 0) can be found at the top left with the positive direction to the right horizontally 

and down vertically. 

 

 

 

 

 

 

 

 

Coordinates System (Graph Paper) Vs Coordinates of Computer Screen. 



 

 

Line 

Line is straight (no bends), has no thickness, and extends in both directions without end 

(infinitely).  

 

 

 

 

 

 

 

One end makes it a "Ray", and two ends makes it a "Line Segment". 

 

Line Segment 

When it does have ends it is called a "Line Segment". 

 

  

 

 

 

 

 

Ray 

When it has just one end it is called a "Ray" 

  
 

 

 

 

 



 

 

Equation of Straight line 

The equation of a straight line is usually written as this way: 

 

                                   Y = mX + C 

 

Where, m is the Gradient or Slope of a line, C is the intercepting point (line segment intercepts Y-

axis when X=0), see the figure below: 

  

 

 

 

 

 

 

 

 

  

 

 

 

 

 

If you know values of m and c you can find any point on line segment. There are different equations 

of a line but the above equation is specially used in computer graphics. 

 

 

 

 

 

Y-axis 

(0, 

0) 

(x1, y1) 

X-axis 

(x2, y2) 

Y intercept 

(c) 



 

 

Slope 

Slope measures the steepness of a line. Slope also tells us the direction of the line - if it goes up, 

down, or if it's horizontal or vertical. Slope is calculated as the ratio of the amount of vertical 

change to horizontal change. 

 

 

 

 

 

 

 

 

  

 m (slope)= 
∆𝑦

∆𝑥
 , where ∆𝑥 = x2 - x1, ∆𝑦 = y2 – y1 

Ex: find the slope of a line, which has these two end points (8, 8) and (20, 15). 

∆𝑥 = x2 - x1 

∆𝑥 = 20 – 8 

∆𝒙 = 12 

∆𝑦 = y2 – y1 

∆𝑦 = 15 – 8 

∆𝒚 = 7 

m (slope)= 
∆𝑦

∆𝑥
  

m = 
𝟕

𝟏𝟐
 = 0.6 

 

There are four different types of slope, depending on the direction of the line (zero, undefined, 

positive (m<1, m=1, m>1), negative). 

 

 

 



 

 

1- Slope of Zero 

If the y-values are not changing as x increases, the line will have a slope of 0.  Anytime the line is 

horizontal (flat from left to right), the slope is zero.   

 

 

 

 

 

 

 

 

 

2- Undefined Slope 

A vertical line has an undefined slope.  In this situation, the y-values are changing, but the x-value 

always stays the same.  If you look at the definition of slope, the amount of horizontal change is 

in the denominator of a fraction.  In math, you can't have a 0 in the denominator. It doesn't make 

sense to divide by 0 so we say that the slope of a vertical line is undefined.  There isn't a slope for 

these types of lines. 

 

 

 

 

 

 

 

 

 



 

 

3- Positive slope (m<1, m=1, m>1) 

A positive slope means that two variables are positively related that is, when x increases, so does y, 

and when x decreases, y decreases also. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

4- Negative slope 

A negative slope means that two variables are negatively related; that is, 

when x increases, y decreases, and when x decreases, y increases. 

 

 

 

 

 

 

 

 

 

 

Useful summery 

The concept of slope is very useful, because it measures the relationship between two variables. 

A positive slope means that two variables are positively related that is, when x increases, so does y, 

and when x decreases, y decreases also. Graphically, a positive slope means that as a line on the 

line graph moves from left to right, the line rises.   

A negative slope means that two variables are negatively related; that is, 

when x increases, y decreases, and when x decreases, y increases. Graphically, a negative slope 

means that as the line on the line graph moves from left to right, the line falls.  

 

 

 

 

 

 

 



 

 

Slope and Angle of a line 

In the figure below, a line segment has two end-points (x1, y1) and (x2, y2). The dotted line that 

labeled ∆X is the difference between x2 and x1, and the dotted line that labeled ∆Y  is the difference 

between y2 and y1. These three sides make traingle with Ɵ angle. As we mentioned before, 

Slope is calculated as the ratio of the amount of vertical change to horizontal change. 

                                                m (slope)= 
∆𝒚

∆𝒙
 

 ∆Y  is the opposite side of Ɵ angle and ∆X is the adjacent side of Ɵ angle. Tangent of an angle is 

the length of opposite side divided by the length of the adjacent side: 

 

                                  Tan(Ɵ) = 
𝐨𝐩𝐩𝐨𝐬𝐢𝐭𝐞 𝐬𝐢𝐝𝐞

𝐚𝐝𝐣𝐚𝐜𝐞𝐧𝐭 𝐬𝐢𝐝𝐞
 = 

∆𝒚

∆𝒙
 = m (slope) 

 

So, Tan(Ɵ) = m (slope). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Y1 

Y2 

Ɵ 

∆Y 

∆X 

 

X1 X2 

X-axis 

Y-axis 

dY= ∆𝐘 

(Y2 – Y1) 

 

dX= ∆𝐗 

(X2 – X1) 

 

 (x2, y2) 

 



 

 

You know that Tan(45) = 1, so: 

1- When a line sloped at 45   angle, then  a slope    will become   equal to one (m =1).   Where  

∆Y = ∆X. 

2- When a line sloped at an angle of less than 45 degree, then a slope will become less than 

one (m < 1). Where ∆Y < ∆X. 

3- When a line sloped at an angle of greater than 45 degree, then a slope will become greater 

than one (m > 1). Where ∆Y > ∆X. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

X-axis 

Y-axis 

∆X 

∆Y 

∆Y 

∆X 

∆X 

∆Y 

(𝟏) 

(𝟐) 

(𝟑) 



 

 

Sampling 

Any line that we draw on the two dimensional coordinates system, must be represented by an 

equation. The line equation is Y=mX + C, where m is the slope of a line and C is the intercepting 

point of a line with y-axis when X=0. Sampling process means that, in line equation we substitute 

the value of X to get Y or vice versa. Sampling process of a line equation depends on the greatest 

value of ∆𝐱 or ∆𝐲. 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Line Generation Algorithms 

In any 2-Dimensional plane if we connect two points (x1, y1) and (x2, y2), we get a line 

segment. But in the case of computer graphics we cannot directly join any two coordinate 

points, for that we should calculate intermediate point’s coordinate and put a pixel for each 

intermediate point, of the desired color. 

There are several algorithms for generating a straight line, but we will only deal with two 

algorithms, namely: 

1- DDA algorithm. 

2- Bresenham’s line drawing algorithm. 

 

DDA algorithm 

The Digital Differential Analyzer (DDA) algorithm is an incremental scan-conversion method. 

Such an approach is characterized by performing calculations at each step using results from 

the preceding step.  

In order to understand the DDA algorithm, let us consider the following mathematical 

examples:- 

Ex1: By using the DDA algorithm, generate the  points  of the line which has two endpoints 

(2, 2) and (9, 2). 

        Sol: 

                Δx = x2 –x1,      Δy = y2 –y1 

               Δx = 9 – 2= 7,     Δy = 2 - 2 = 0 

               Steps = 7 (length of the line depends on the greatest value of Δx or Δy) 

                Xinc = 
∆𝑥

𝑆𝑡𝑒𝑝𝑠
 = 

7

7
 = 1,     Yinc = 

∆𝑦

𝑆𝑡𝑒𝑝𝑠
 = 

0

7
 = 0 

 

 

 

 

 

 

 

 

 

 

X Y 

2 2 

3 2 

4 2 

5 2 

6 2 

7 2 

8 2 

9 2 



Ex2: By using the DDA algorithm, generate the  points  of the line which has two endpoints 

(5, 4) and (12, 7). 

        Sol: 

               Δx = x2 –x1,      Δy = y2 –y1 

               Δx = 12 – 5= 7,     Δy = 7 - 4 = 3 

               Steps = 7 (length of the line depends on the greatest value of Δx or Δy) 

                Xinc = 
∆𝑥

𝑆𝑡𝑒𝑝𝑠
 = 

7

7
 = 1,     Yinc = 

∆𝑦

𝑆𝑡𝑒𝑝𝑠
 = 

3

7
 = 0.4 

 

 

 

 

 

 

 

 

 

 

Ex3: By using the DDA algorithm, generate  the points of the line which has two endpoints 

(17, 14) and (12, 9). 

        Sol: 

               Δx = x2 –x1,      Δy = y2 –y1 

               Δx = 12 – 17= -5,     Δy = 9 - 14 = -5 

               Steps = 5 (absolute value) 

                Xinc = 
∆𝑥

𝑆𝑡𝑒𝑝𝑠
 = 

−5

5
 = -1,     Yinc = 

∆𝑦

𝑆𝑡𝑒𝑝𝑠
 = 

−5

5
 = -1 

         

 

 

 

 

 

 

 

 

X Y Round(Y) 

5 4 4 

6 4.4 4 

7 4.8 5 

8 5.2 5 

9 5.6 6 

10 6 6 

11 6.4 6 

12 6.8 7 

X Y 

17 14 

16 13 

15 12 

14 11 

13 10 

12 9 



DDA Algorithm  

Step1: Start Algorithm 

Step2: Enter value of x1, y1, x2, y2. 

Step3:Check coordinates values, if(x1<0 or x2<0 or y1<0 or y2<0) then print Error Message. 

Step4: Calculate dx = x2-x1 

Step5: Calculate dy = y2-y1 

Step6: If ABS (dx) > ABS (dy) 

                Then  steps = abs (dx) 

                Else   steps = abs (dy) 

Step7: xinc=dx/steps 

            yinc=dy/steps 

Step8:  Initial value for 

              x = x1 

              y = y1 

Step9: Set pixels (round(x), round (y)) 

              x = x + xinc 

              y = y + yinc 

Step10: Repeat step 9 for steps times 

Step11: End Algorithm 

 

Ex4: Consider the line from (0 , 0) to (4 , 8). Use the DDA algorithm to rasterize the line.  

         Sol: 

               Δx = x2 –x1,      Δy = y2 –y1 

 

               Δx = 4 – 0= |4| = 4,     Δy = 8 - 0 = |8| = 8 

 

               Steps = 8 (absolute value) 

 

                Xinc = 
∆𝑥

𝑆𝑡𝑒𝑝𝑠
 = 

4

8
 = 0.5,     Yinc = 

∆𝑦

𝑆𝑡𝑒𝑝𝑠
 = 

8

8
 = 1 

 

 

 

 



I Plot X Y 

  0 0 

1 (0, 0) 0.5 1 

2 (1, 1) 1 2 

3 (1,2) 1.5 3 

4 (2, 3) 2 4 

5 (2, 4) 2.5 5 

6 (3, 5) 3 6 

7 (3, 6) 3.5 7 

8 (4, 7) 4 8 

9 Stop   

 

 

H.W: Consider the line from (5 , 7) to (10 , 15). Use the DDA algorithm to rasterize the line.  

 

Advantages: 

1- It is simple and easy to implement algorithm. 

2- It avoid using multiple operations which have high time complexities. 

3- It is faster than the direct use of the line equation because it does not use any floating 

point multiplication and it calculates points on the line. 

 

Disadvantages: 

1- It deals with the rounding off operation and floating point arithmetic so it has high time 

complexity. 

2- As it is orientation dependent, so it has poor endpoint accuracy. 

3- Due to the limited precision in the floating point representation it produces cumulative 

error. 

 



Bresenham’s Line drawing algorithm 

Bresenham’s line algorithm uses only integer addition and subtraction and multiplication by 2, 

and we know that the computer can perform the operations of integer addition and subtraction 

very rapidly. The computer is also time-efficient when performing integer multiplication by 

powers of 2. Therefore, it is an efficient method for scan-converting straight lines. 

Although developed originally for use with digital plotters, Bresenham's algorithm is equally 

suited for use with CRT raster devices. The basic principle of Bresenham's line algorithm is 

to select the optimum raster locations to represent a straight line. To accomplish this, the 

algorithm always increments either x or y by one unit depending on the slope of line. The 

increment in the other variable is determined by examining the distance between the actual 

line location and the nearest pixel. This distance is called decision variable (v) or decision 

parameter (P) or the error (e). This is illustrated in the Fig. below. 

 

 

 

 

 

 

 

 

As shown in the figure above, the line does not pass through all raster points (pixels). It passes 

through raster point (𝑋𝑘,𝑌𝑘) and partially crosses between (𝑋𝑘+1, 𝑌𝑘) and (𝑋𝑘+1, 𝑌𝑘+1).  Which 

one is the true? Therefore, we need to define a decision parameter (p). 

 

 



In mathematical a decision parameter is defined as: 

                                  P = d1 – d2     

Let us define p = d1 – d2. Now if p > 0, then it implies that d1 > d2, i.e. the pixel above the line 

is closer to the true line. If d1 < d2 (i.e. p < 0) then we can say that the pixel below the line is 

closer to the true line. Thus by checking only the sign of decision parameter (p), it is possible to 

determine the better pixel to represent the line path. 

The decision parameter (p) is initially set as: 

                                  p  =  2 Δy - Δx 

                 Where      Δy =  y2 - y1, and  Δx = x2 - x1 

Then according to value of p following actions are taken: 

 

for i=1 to Δx 

{ 

     Plot (x, y) 

     x = x + 1 

    if (p < 0) 

                    p = p + 2 Δy 

    else 

                { 

                     y = y + 1 

                    p = p + 2 Δy – 2 Δx 

                } 

 } 

 

When p < 0, decision parameter p is initialized to p = p + 2 * Δy. When p >= 0 decision 

parameter p is initialized to p = p + 2 Δy – 2 Δx.  You should note that in both the cases x is 

incremented by 1. 

 

 

 



Conditions of Integer Bresenham's line drawing algorithm 

Before writing the Integer Bresenham's line drawing algorithm, it is important to remember 

its conditions: 

1. Our pixel coordinates go from left to right, and bottom to top, the way they do in the first 

octant in mathematics. 

2. X1 < X2, and Y1 ≤ Y2. 

3. The slope of the line will be (0 ≤ m < 1), so we will be drawing the line from lower left to 

upper right; and, for any X value between X1 and X2, there will be exactly one pixel on.  

 

Integer Bresenham’s Line Drawing Algorithm  

Step1: Read the line end points (X1, Y1) and (X2, Y2) such that:  

             [(X1 < X2 and Y1 ≤ Y2) and (0 ≤ m < 1) otherwise exit]  

 

Step2:  ΔX = X2 - X1    and  ΔY = Y2 - Y1 

 

Step3: [Initialize starting point] 

             X  =  X1 and  Y  =  Y1  

 

step4: [Initialize value of decision parameter] 

             P = 2  * ΔY - ΔX  

 

Step5: for  i = 1 to ΔX 

             { 

                 Plot(x , y)  

                 X = X + 1 

                 if (p < 0) 

                                 p = p + 2 ΔY 

               

 

 



 else 

           { 

                   Y = Y + 1 

                    p = p + 2 ΔY – 2 ΔX 

        } 

        i = i + 1 

 } 

Step6: Stop. 

 

Ex: consider the line from (0 , 0) to (5 , 3). Use the Integer Bresenham’s algorithm to rasterize 

the line.  

 

 
Sol: 
 

    ΔX = 5 , ΔY = 3 , P = 1 

 

      

I Plot X Y P 

  0 0 1 

1 (0 , 0) 1 1 -3 

2 (1, 1) 2  3 

3 (2, 1) 3 2 -1 

4 (3, 2) 4  5 

5 (4, 2) 5 3 1 

6 Stop    

 

 

 

H.W: consider the line from (5 , 5) to (13 , 9). Use the Integer Bresenham’s algorithm to 

rasterize the line.  

 

 

 



Advantages 

1. It involves only integer arithmetic, so it is simple. 

2. It avoids the generation of duplicate points. 

3. It is faster as compared to DDA (Digital Differential Analyzer) because it does not 

involve floating point calculations like DDA Algorithm. 

4. More accurate and efficient than DDA Algorithm. 

 

Disadvantages 

This algorithm is meant for basic line drawing only Initializing is not a part of Bresenham's line 

algorithm. Therefore, to draw smooth lines, you should want to look into a different algorithm. 

 

Differentiate between DDA Algorithm and Bresenham's Line Algorithm: 

 

DDA Algorithm Bresenham's Line Algorithm 

1. DDA Algorithm use floating point, i.e., Real 

Arithmetic. 

1. Bresenham's Line Algorithm use fixed point, 

i.e., Integer Arithmetic 

2. DDA Algorithms uses multiplication &   

division its operation. 

2. Bresenham's Line Algorithm uses only  

 

   subtraction and addition its operation. 

3. DDA Algorithm is slowly than Bresenham's 

Line Algorithm in line drawing because 

it uses real arithmetic (Floating Point 

operation). 

3. Bresenham's Algorithm is faster than DDA 

Algorithm in line because it involves only 

addition & subtraction in its calculation and 

uses only integer arithmetic. 

4. DDA Algorithm is not accurate and efficient     

as Bresenham's Line Algorithm. 

4. Bresenham's Line Algorithm is more accurate    

and efficient at DDA Algorithm. 

5. DDA Algorithm can draw circle and curves 

but are not accurate as Bresenham's Line 

Algorithm. 

5. Bresenham's Line Algorithm can draw circle 

and curves with more accurate than DDA 

Algorithm. 

 

 

 

 

 



General Bresenham’s Line drawing algorithm 

If we try out the C++ implementation of the Bresenham algorithm, we find it has some peculiar 

properties. As expected, it fails to plot lines with negative slopes. It also fails to plot lines of 

positive slope greater than 1 (this is an interesting case). 

More unusually, we find that the order in which the endpoints are supplied to this routine is 

significant, it will only work as long as x1 is smaller than x2. 

In fact, if we have two line segments with the same endpoints, and the same slope, this routine 

may draw one of them successfully but fails to draw the other one. 

 

 

 

 

 

 

 

Of course, this is not surprising really, when we consider that the function works 

by incrementing x. It does emphasise, however, that the routine is plotting vectors, direction is 

significant. Considering all the vectors from (x1, y1) to (x2, y2) we find that there are eight 

regions, (the ``octants'') and the basic Bresenham algorithm works in only one of them. 

 

 

 

 

 

 

 

 

 



A full implementation of the Bresenham’s algorithm must, of course, be able to handle all 

combinations of slope and endpoint order. 

We can finalize everything. If we want to deal with positive or negative slope lines, we just 

adjust the step size to be +1 or -1. If we want to deal with slopes greater than 1 (or less the -1), 

we just interchange X and Y, and do our step increment (or decrement) using Y instead of X, etc. 

 

General Bresenham’s Line Drawing algorithm  

 
Step1: Read the line end points (X1, Y1) and (X2,Y2).  

 

Step2:  ΔX  = |X2 - X1|    and  ΔY  = |Y2 - Y1|  

 

Step3:  s1 = sign(X2 - X1)    and  s2  = sign(Y2 - Y1)  

 

Step4: [Initialize starting point] 

             X  =  X1 and  Y  =  Y1 

  

Step5: [Interchange ΔX and ΔY depending on the slop of the line] 

             if ΔY > ΔX then 

                   temp = ΔX 

                   ΔX = ΔY 

                   ΔY = temp 

                   Interchange = 1 

             else 

                     Interchange = 0 

 

Step6: [Initialize value of decision variable or error] 

                  p = 2  * ΔY - ΔX  



Step7: for  i = 1 to ΔX 

             { 

                 Plot(X , Y)  

                       if Interchange = 1 then 

                               Y = Y + s2 

                      else 

                                X = X + s1 

                 if (p < 0) 

                           p = p + 2 ΔY 

               else 

                         { 

                                            if Interchange = 1 then 

                                                         X = X+ s1 

                                            else 

                                                        Y = Y + s2 

                                     p = p + 2 ΔY – 2 ΔX 

                       } 

           i = i + 1 

               }//for 

Step8: Stop. 

 

 

 

 

 

 

 

 

 



Ex: consider the line from (10 , 20) to (5 , 10). Use the General Bresenham’s algorithm to 

rasterize the line.  

 

 

Sol: 

           Line orientation is from right to left so:  

            Δx = 5 , Δy = 10 , s1 = -1 , s2 = -1 

            Δy is greater than  Δx  so , Δx = 10 , Δy = 5, Interchange = 1 

 

 

I Plot X Y P 

  10 20 0 

1 (10, 20) 9 19 -10 

2 (9, 19)  18 0 

3 (9, 18) 8 17 -10 

4 (8, 17)  16 0 

5 (8, 16) 7 15 -10 

6 (7, 15)  14 0 

7 (7, 14) 6 13 -10 

8 (6, 13)  12 0 

9 (6, 12) 5 11 -10 

10 (5, 11)  10 0 

11 Stop    

 

 

 

 

 

 

 



 Ex: consider the line from (8, 7) to (3, 12). Use the General Bresenham’s algorithm to rasterize 

the line.  

 

 

Sol: 

           Line orientation is from right to left and from bottom to top so:  

            Δx = 5 , Δy = 5 , s1 = -1 , s2 = +1 , m = -1 

            Δy is not greater than  Δx  so , Interchange = 0 

 

I Plot X Y P 

  8 7 5 

1 (8, 7) 7 8 5 

2 (7, 8) 6 9 5 

3 (6, 9) 5 10 5 

4 (5, 10) 4 11 5 

5 (4, 11) 3 12 5 

6 Stop    

 

 

 

H . W: consider the line from (5 , 10) to (10 , 20). Use the General Bresenham’s algorithm to 

rasterize the line.  

 

 

 



Circle Drawing 

Circle: The set of all points on a plane that are a fixed distance from a center. 

 

 

 

 

 

 

 

 

To draw a circle we need two things, the coordinates of the center and the radius of the circle. 

 

Radius: The radius of a circle is the length of the line from the center to any point on its edge. 

 

Equation of the circle: For any point on the circle (x, y) and the center at the origin (0, 0), the 

equation of the circle is: 

 

                                                𝑋2  + 𝑌2 = 𝑅2 , Where R is the radius of the circle.  

  

The equation of circle is found using Pythagoras. See the following figure, when R=5. 

 

 

 

 

 

 

 

 

https://www.mathsisfun.com/sets/set-of-points.html


If the center of the circle at point (a, b), then the equation will be: 

              (𝑋 − 𝑎)2 + (𝑦 − 𝑏)2 = 𝑅2 

See the figure below: 

 

 

 

 

 

 

 

 

Also, for any point on a circle (x, y) and the center at origin (0, 0), the equation of 

the circle is: 

                         𝑿𝟐  + 𝒀𝟐 - 𝑹𝟐  = 0  

Above equation also called circle function f(x, y), where: 

                        f(x, y) =  𝑿𝟐  + 𝒀𝟐 - 𝑹𝟐   

if the center at point (a, b), the equation (circle function) is  

                           f(x,y) =  (𝑋 − 𝑎)2 + (𝑦 − 𝑏)2 - 𝑅2 

 

Circle Generation Algorithm 

It is not easy to display a continuous smooth arc on the computer screen as our computer screen 

is made of pixels organized in matrix form. So, to draw a circle on a computer screen we should 

always choose the nearest pixels from a printed pixel so as they could form an arc. There are two 

algorithm to do this: 

 

1. Mid-Point circle drawing algorithm 

 

2. Bresenham’s circle drawing algorithm 

 

https://www.geeksforgeeks.org/mid-point-circle-drawing-algorithm/


Before getting in the details of these algorithms let us, discuss the following concept: 

For any given point on the circle in clockwise to generation of it, there are only three possible 

selections for the next pixel, which best represent the circle, horizontally to the right, diagonally 

downward to the right and vertically downward. These are labeled:  𝒎𝑯,  𝒎𝑫, 𝒎𝒗, respectively 

in following figure. The algorithm chooses the pixel, which minimizes the square of the distance 

between one of these pixels and the true circle, i.e. the minimum of:  

 

   𝒎𝑯 = │ (𝒙𝒊 + 𝟏)𝟐 +  (𝒚𝒊 )
𝟐 - 𝑹𝟐 │ 

   𝒎𝐷 = │ (𝒙𝒊 + 𝟏)𝟐 +  (𝒚𝒊 − 𝟏)𝟐 - 𝑹𝟐 │ 

   𝒎𝑣 = │ (𝒙𝒊)
𝟐 +  (𝒚𝒊 − 𝟏)𝟐 - 𝑹𝟐 │ 

 

 

 

 

 

 

 

 

 

 

 

 

 

First quadrant pixel selection 

 

 

 

 

 

(𝑥𝑖 , 𝑦𝑖  ) (𝑥𝑖 + 1, 𝑦𝑖  ) 

(𝑥𝑖 + 1, 𝑦𝑖  - 1) 

(𝑥𝑖, 𝑦𝑖  - 1) 

   𝒎𝑯 

   𝒎𝐷  

   𝒎𝒗 



Circle Generation Algorithm for Drawing One Quadrant of a Circle 

Step1: start 

Step2: X = XC 

Step3: Y = YC + R 

Step4: while ( y >= 0 ) 

Step5: plot ( X, Y ) 

Step6: Eh = │ (X + 𝟏)𝟐 +  𝒀 
𝟐 - 𝑹𝟐 │ 

Step7: Ed = │ (X + 𝟏)𝟐 +  (Y − 𝟏)𝟐 - 𝑹𝟐 │ 

Step8: Ev = │ X𝟐 +  (Y − 𝟏)𝟐 - 𝑹𝟐 │ 

Step9: min = minimum (Eh, Ed, Ev) 

Step10: if min = Eh then X = X + 1: goto  step 13 

Step11: if min = Ed then X = X + 1: Y = Y - 1: goto  step 13 

Step12: if min = Ev then Y = Y – 1 

Step13: end while 

Step14: Stop 

 

 

 

 

 

 

 

 

 

 

 



Ex: Draw a circle by using circle generation algorithm, when C = 0, R = 8. 

 

X Y Plot Eh Ed Ev Min 

0 8 (0, 8) 1 14 15 Eh=1 

1  (1, 8) 4 11 14 Eh=4 

2  (2, 8) 9 6 11 Ed=6 

3 7 (3, 7) 1 12 19 Eh=1 

4  (4, 7) 10 3 12 Ed=3 

5 6 (5, 6) 8 3 14 Ed=3 

6 5 (6, 5) 3 1 12 Ed=1 

7 4 (7, 4) 16 9 6 Ev=6 

7 3 (7, 3) 9 24 11 Ev=6 

8 3 (8, 3) 21 21 4 Ev=4 

8 2 (8, 2) 18 18 1 Ev=1 

8 1 (8, 1)  17 0 Ev=0 

8 0 (8, 0)     

 

 

 

 



Basics of Bresenham’s Circle Drawing Algorithm 

Bresenham’s circle drawing algorithm is used to determine the next pixel of screen to be 

illuminated while drawing a circle by determining the closest nearby pixel. As Circles are 

symmetrical so the values of y-intercept and x-intercept are same if circle's Center 

coordinates are at Origin (0, 0), see the figure below. 

    

 

 

 

 

 

 

 

 

 

 

 

 

 

Here, Radius = OA = r 

Due to symmetrical property of Circle, we don't need to calculate all the pixels of all the octets 

and quadrants. We need to find the pixels of only one octet, rest we can conclude through using 

(8-way symmetry), see the following figure. 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

8-Way symmetry: Any circle follows 8-way symmetry. This means that for every point (x,y) 8 

points can be plotted. These (x,y), (y,x), (-y,x), (-x,y), (-x,-y), (-y,-x), (y,-x), (x,-y).  

 

For any point (x+a, y+b), points (x ± a, y ± b) and (y ± a, x ± b) also lie on the same circle. So, it 

is sufficient to compute only 1/8 of a circle, and all the other points can be computed from it. 

 

8-Way symmetry is based on (Mirror reflection). If we see Right hand, in the mirror we will    

Left hand, similarly if we see pixel (x, y), in the mirror we will see (y, x). So, point (x,y) in 

octect-2 will become point (y, x) in octect-1 after reflection. Point (-x, y) in octet-3 will become 

point (-y, x) in octet-4 and so on. 

 



Let’s take the Octet-2 which is in quadrant-1. Here both x and y are positive here the initial pixel 

would be (0, y) coordinate, see the figure below. 

 

 

 

 

 

 

 

 

 

 

 

 

 

At point R both the value of both x and y coordinates would be same as R is at same distance of 

Both X and Y axis. 

 

 

 

 

 

 

 

 

 

 



Derivation of Bresenham’s circle algorithm 

In the figure below, let's say our circle is at some random pixel P whose coordinates are (xk, yk). 

Now we need to find out our next pixel. 

Note: This is octet 2 so here, x can never be decremented as per properties   of a circle but y 

either needs to decremented or to be kept same. y is needed to be decided. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Here it needs to decide whether go with N or S. For this, Bresenham’s circle drawing algorithm 

will help us to decide by calculating the difference between radius and the coordinates of the 

next pixels. 

The shortest of d1 and d2 will help us decide our next pixel. 

 

Note:   xk+1 = xk +1  as  xk+1  is the next consecutive pixel of xk similarly   yk-1 = yk -1. 

 
Equation of Circle with Radius r: 

 

       (x − h)2 +  (y − k)2 = r2                           

 



When coordinates of center are at Origin i.e., (h=0, k=0) 

 

        x2 +  y2 = r2   (Pythagoras theorem) 

 

Function of Circle Equation: 

 

       F(C) =  x2 +  y2 - r2       

                              

Function of Circle at N: 

 

      F(N) = (x𝑘+1)2 + (y𝑘)2 - r2                        (Positive) 

 

Here the value of F(N) will be positive because N is out-side the circle that makes  (xk+1)2 + 

(yk)2  Greater than r2. 

 

Function of Circle at S: 

 

      F(S) = (x𝑘+1)2 + (y𝑘−1)2 - r2                (Negative) 

 

Here the value of F(S) will be Negative because S is in-side the circle that makes (𝒙𝒌+𝟏)𝟐 + 

(𝒚𝒌−𝟏)𝟐  Less than 𝒓𝟐.  

                

Now we need a decision parameter, which help us decide the next pixel, say Dk 

and,   Dk = F(N)+F(S) 

 

Here either we will get the positive or negative value of Dk : 

So if Dk < 0, that means the negative F(S) is bigger than the positive F(N), that implies 

Point N is closer to the circle than point S. So, we will select pixel N as our next pixel 

(xk+1, yk). 

 

and if Dk > 0, that means positive F(N) is bigger and S is more closer as F(S) is  smaller. So, 

we will Select S as our next pixel (xk+1, yk-1). 

 

 

 



Summery  

 

D0
 = 3-2r        //Initial value of decision parameter 

 

 

                                                                                              

Dk+1 =                                                                                                                                //next value of decision parameter  

 

 

 

 

Bresenham’s Circle Drawing Algorithm 

A circle is made up of 8 Equal Octets so, we need to find only coordinates of any one octet rest 

we can conclude using that coordinates. 

We took octet-2. Where X and Y will represent the pixel. 

Let us make a function Circle() with parameters coordinates of Centre (Xc,Yc) and pixel 

point (X,Y) that will plot the pixel on screen. 

 

 

 

 

 

 

 

 

 

 

 

Dk + 4xk + 6                 if (Dk  < 0)  

 

Dk + 4(xk - yk) + 10      if (Dk  >= 0)  

 



We will find pixels assuming that Center is at Origin (0,0) then we will add the coordinates of 

center to corresponding X and Y while drawing circle on screen. 

 

Circle (Xc,Yc,X,Y)  

{ 

Plot (Y+Xc , X+Yc)          ……Octet-1 

Plot (X+Xc , Y+Yc)          ……Octet-2  

Plot (-X+Xc , Y+Yc)         ……Octet-3 

Plot (-Y+Xc , X+Yc)         ……Octet-4 

Plot (-Y+Xc , -X+Yc)       ……Octet-5 

Plot (-X+Xc , -Y+Yc)       ……Octet-6 

Plot (X+Xc , -Y+Yc)         ……Octet-7 

Plot (Y+Xc , -X+Yc)         ……Octet-8 

} 

Each plot function is for different octet and will construct the circle while in loop. 

 

 

 

 

 

 

 

 

 

 



Bresenham’s circle drawing algorithm  

Step 1: Start 

Step 2: Get the Radius of Circle R and Coordinates of center of circle (Xc, Yc). 

Step 3: X and Y are going to be plotted points so, Set X=0 and Y=R. 

Step 4: Initialize decision Parameter   

               D = 3-2R              

Step 5: while (X <= Y) 

Step 6: Plot Circle (Xc, Yc, X, Y) 

Step 7: Increment value of X 

              X=X+1 

Step 8: if (D < 0) Then 

                              D = D + 4X + 6 

             Else 

                              Y=Y-1 

                              D=D+4(X-Y) + 10 

Step 9: End while. 

Step 10: Stop. 

 

 

 

 

 

 



Ex: Given the center point coordinates (Xc, Yc) as (0, 0) and radius as 8, generate all the points 

to form a circle. 

Sol: 

        Step1: assign the starting point coordinates (X, Y) as: 

                     X=0 , Y=R=8 

        Step2: Calculate the initial value of decision parameter D as: 

                    D = 3 – 2 * R = 3 – 2 * 8 = -13 

       Step3: As D < 0, so case1 is satisfied. Thus, 

                   X(new)= X (old) + 1 = 0 + 1 = 1 

                   Y(new)= Y(old) = 8 

                   D(new) = D(old) + 4* X+ 6 = -13 + (4*1) + 6 = -3 

       Step4: repeat Step3 while (X<= Y). 

 

 

 

 

          

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Dk Dk+1 (X, Y) 

  

(0, 8) 

-13 -3 (1, 8) 

-3 11 (2, 8) 

11 5 (3, 7) 

5 7 (4, 6) 

7 

 

(5, 5) 

Algorithm Terminates 

These are all points for Octet-2 



Algorithm calculates all the points of octet-2 and terminates. Now, the points of octet-1 are 

obtained using the mirror effect by swapping X and Y coordinates. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

Now, the points for rest of the part are generated by following the signs of other quadrants. 

The other points can also be generated by calculating each octet separately. 

 

 

 

 

 

Octet-2 Points Octet-1 Points 

(0, 8) (5, 5) 

(1, 8) (6, 4) 

(2, 8) (7, 3) 

(3, 7) (8, 2) 

(4, 6) (8, 1) 

(5, 5) (8, 0) 

These are all points for Quadrant-1. 



 Here, all the points have been generated with respect to quadrant-1. 

 

Quadrant-1 (X,Y) Quadrant-2 (-X,Y) Quadrant-3 (-X,-Y) Quadrant-4 (X,-Y) 

(0, 8) (0, 8) (0, -8) (0, -8) 

(1, 8) (-1, 8) (-1, -8) (1, -8) 

(2, 8) (-2, 8) (-2, -8) (2, -8) 

(3, 7) (-3, 7) (-3, -7) (3, -7) 

(4, 6) (-4, 6) (-4, -6) (4, -6) 

(5, 5) (-5, 5) (-5, -5) (5, -5) 

(6, 4) (-6, 4) (-6, -4) (6, -4) 

(7, 3) (-7, 3) (-7, -3) (7, -3) 

(8, 2) (-8, 2) (-8, -2) (8, -2) 

(8, 1) (-8, 1) (-8, -1) (8, -1) 

(8, 0) (-8, 0) (-8, 0) (8, 0) 

These are all points of the Circle. 

 

 



Ex: Given the center point coordinates (Xc, Yc) as (0, 0) and radius as 10, generate all the points 

to form a circle. 

Sol: 

        Step1: assign the starting point coordinates (X, Y) as: 

                     X=0 , Y=R=10 

        Step2: Calculate the initial value of decision parameter D as: 

                    D = 3 – 2 * R = 3 – 2 * 10 = -17 

       Step3: As D < 0, so case1 is satisfied. Thus, 

                   X(new)= X (old) + 1 = 0 + 1 = 1 

                   Y(new)= Y(old) = 10 

                   D(new) = D(old) + 4* X+ 6 = -17 + (4*1) + 6 = -7 

       Step4: repeat Step3 while (X<= Y). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Dk Dk+1 (X, Y) 

  

(0, 10) 

-17 -7 (1, 10) 

-7 7 (2, 10) 

7 -7 (3, 9) 

-7 15 (4, 9) 

15 13 (5, 8) 

13 19 (6,7) 

Algorithm Terminates 

These are all points for Octet-2 



Algorithm calculates all the points of octet-2 and terminates. Now, the points of octet-1 are 

obtained using the mirror effect by swapping X and Y coordinates. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Now, the points for rest of the part are generated by following the signs of other quadrants. 

The other points can also be generated by calculating each octet separately. 

 

 

 

 

Octet-2 Points Octet-1 Points 

(0, 10) (7, 6) 

(1, 10) (8, 5) 

(2, 10) (9, 4) 

(3, 9) (9, 3) 

(4, 9) (10, 2) 

(5, 8) (10, 1) 

(6,7) (10,0) 

These are all points for Quadrant-1. 



Here, all the points have been generated with respect to quadrant-1. 

Quadrant-1 (X,Y) Quadrant-2 (-X,Y) Quadrant-3 (-X,-Y) Quadrant-4 (X,-Y) 

(0, 10) (0, 10) (0, -10) (0, -10) 

(1, 10) (-1, 10) (-1, -10) (1, -10) 

(2, 10) (-2, 10) (-2, -10) (2, -10) 

(3, 9) (-3, 9) (-3, -9) (3, -9) 

(4, 9) (-4, 9) (-4, -9) (4, -9) 

(5, 8) (-5, 8) (-5, -8) (5, -8) 

(6, 7) (-6, 7) (-6, -7) (6, -7) 

(7, 6) (-7, 6) (-7, -6) (7, -6) 

(8, 5) (-8, 5) (-8, -5) (8, -5) 

(9, 4) (-9, 4) (-9, -4) (9, -4) 

(9,3) (-9, 3) (-9, -3) (9, -3) 

(10,2) (-10, 2) (-10, -2) (10, -2) 

(10, 1) (-10, 1) (-10, -1) (10, -1) 

(10,0) (-10,0) (-10,0) (10,0) 



Ex: Given the center point coordinates (Xc, Yc) as (10, 10) and radius as 10, generate all the 

points to form a circle. 

Sol: 

        Step1: assign the starting point coordinates (X, Y) as: 

                     X=0 , Y= R =10 

        Step2: Calculate the initial value of decision parameter D as: 

                    D = 3 – 2 * R = 3 – 2 * 10 = -17 

       Step3: As D < 0, so case1 is satisfied. Thus, 

                   X(new)= X (old) + 1 = 0 + 1 = 1 

                   Y(new)= Y(old) = 10 

                   D(new) = D(old) + 4* X+ 6 = -17 + (4*1) + 6 = -7 

       Step4: Xplot = X + Xc = 1 + 10 = 11 

                  Yplot = Y + Yc = 10 + 10 = 20 

       Step5: repeat Step3 and Step4 while (Xplot <= Yplot). 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Dk Dk+1 (X, Y) (Xplot, Yplot) 

  

(0, 10) (10, 20) 

-17 -7 (1, 10) (11, 20) 

-7 7 (2, 10) (12, 20) 

7 -7 (3, 9) (13, 19) 

-7 15 (4, 9) (14, 19) 

15 13 (5, 8) (15, 18) 

13 19 (6, 7) (16, 17) 

Algorithm Terminates 

These are all points for Octet-2. 



Algorithm calculates all the points of octet-2 and terminates. Now, the points of octet-1 are 

obtained using the mirror effect by swapping X and Y coordinates. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Now, the points for rest of the part are generated by following the signs of other quadrants. The 

other points can also be generated by calculating each octet separately. 

 

The following table, all the points have been generated with respect to quadrant-1. 

 

Octet-2 Points Octet-1 Points 

(10, 20) (17, 16) 

(11, 20) (18, 15) 

(12, 20) (19, 14) 

(13, 19) (19, 13) 

(14, 19) (20, 12) 

(15, 18) (20, 11) 

(16, 17) (20, 10) 

These are all points for Quadrant-1. 



Quadrant-1 (X,Y) Quadrant-2 (-X,Y) Quadrant-3 (-X,-Y) Quadrant-4 (X,-Y) 

(10, 20) (10, 20) (10, 0) (10, 0) 

(11, 20) (9, 20) (9, 0) (11, 0) 

(12, 20) (8, 20) (8, 0) (12, 0) 

(13, 19) (7, 19) (7, 1) (13, 1) 

(14, 19) (6, 19) (6, 1) (14, 1) 

(15, 18) (5, 18) (5, 2) (15, 2) 

(16, 17) (4, 17) (4, 3) (16, 3) 

(17, 16) (3, 16) (3, 4) (17, 4) 

(18, 15) (2, 15) (2, 5) (18, 5) 

(19, 14) (1, 14) (1, 6) (19, 6) 

(19, 13) (1, 13) (1, 7) (19, 7) 

(20, 12) (0, 12) (0, 8) (20, 8) 

(20, 11) (0, 11) (0, 9) (20, 9) 

(20, 10) (0, 10) (0, 10) (20, 10) 

These are all points of the Circle. 



Advantages of Bresenham’s Circle Drawing Algorithm 

 The advantages of Bresenham’s Circle Drawing Algorithm are- 

 The entire algorithm is based on the simple equation of circle X2 + Y2 = R2. 

 It is easy to implement. 

  

Disadvantages of Bresenham’s Circle Drawing Algorithm 

 The disadvantages of Bresenham’s Circle Drawing Algorithm are- 

 Accuracy of the generating points is an issue in this algorithm. 

 This algorithm suffers when used to generate complex and high graphical images. 

 There is no significant enhancement with respect to performance. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Ellipse Generation Algorithm 

Ellipse is a modified circle whose radius varies from a maximum value in one direction to a 

minimum value in the perpendicular direction (Ellipse is an elongated circle). 

Ellipse is also defined as the geometric figure which is the set of all points on a plane whose 

distance from two fixed points known as the foci remains a constant. 

 

 

 

 

 

 

 

Foci of the ellipse. 

Note: Foci of the ellipse, is the distance from any point on the ellipse to two fixed position. 

The sum of these two distances is the same value for all points on the ellipse. 

Note: Ellipse consists of two axes: major and minor axes where the major axis is the longest 

diameter and minor axis is the shortest diameter.  

Note: Unlike circle, the ellipse has four-way symmetry property which means that only the 

quadrants are symmetric while the octants are not. Here, we will calculate the points 

for one quadrant while the points for the remaining three can be calculated using the 

former points. 

 

 

 

 

 

 

 

 

                                          Four-way symmetry. 

Note: Ellipse equation centered at the origin is: 

ry
2 . x2 + rx

2 . y2 = ry
2 . rx

2 

 



Determining the Slope of a Curve at the Point of Tangency 

One of the differences between the slope of a straight line and the slope of a curve is that 

the slope of a straight line is constant, while the slope of a curve changes from point to 

point. It changes as you move along it. For this reason, we measure the slope of a curve at just 

one point. For example, instead of measuring the slope as the change between any two points 

(between A and B or B and C), we measure the slope of the curve at a single point (at A or C). 

We can do this by using the Tangent line. 

A tangent is a straight line that touches a curve at a single point and does not cross through it. 

The point where the curve and the tangent meet is called the point of tangency. Both of the 

figures below show a tangent line to the curve. 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

The slope of a curve at a point is equal to the slope of the straight line that is tangent to the 

curve at that point. 



Example 

 What is the slope of the curve at point A? 

 

 

 

 

 

 

 

Sol: 

The slope of the curve at point A is equal to the slope of the straight line BC. By finding the 

slope of the straight line BC, we have found the slope of the curve at point A. 

 

 (x1, y1) = (1, 1),    (x2, y2) = (3, 2) 

  dx = x2 – x1 = 3 -1 =  2 

  dy = y2 – y1= 2 – 1 = 1 

  slope = dy/dx 

  The slope at point A is 1/2, or 0.5. 

 

This is the slope of the curve only at point A. To find the slope of the curve at any other point, 

we would need to draw a tangent line at that point and then determine the slope of that tangent 

line. 

 

 

 

 

 

 

 

 

 

 

 



Mid-Point Ellipse drawing Algorithm: 

In computer graphics, the mid-point ellipse algorithm is an incremental method of drawing 

an ellipse. This method is modified from Bresenham’s algorithm used in the circle generation. 

The mid-point ellipse drawing algorithm is used to calculate all the perimeter points of an 

ellipse. In this algorithm, the mid-point between the two pixels is calculated which helps in 

calculating the decision parameter. The value of the decision parameter determines whether 

the mid-point lies inside, outside, or on the ellipse boundary and the then position of the mid-

point helps in drawing the ellipse. 

Now, for understanding the proper working of the algorithm, let us consider the elliptical curve 

in the first quadrant. 

 As mentioned before, the Ellipse equation is: 

ry
2 . x2 + rx

2 . y2 = ry
2 . rx

2 

For a given point P(xi , yi), the quantity f(x, y) (Ellipse function) 

       f(x, y) =  ry
2 . x2 + rx

2 . y2 - ry
2 . rx

2 

is a measure telling where P lies in relation to the true ellipse: 

       f(x, y) < 0 then (x, y) is inside the ellipse. 

       f(x, y) > 0 then (x, y) is outside the ellipse. 

       f(x, y) = 0 then (x, y) is on the ellipse 

In the ellipse each quadrant is divided into two regions: I and II respectively. In region I, the 

slope on the curve is greater than –1 while in region II less than –1. At point Q the slope of the 

curve is -1, where the slope of an ellipse is given by:  

m = dy/dx = - (fx / fy) = - (2 ry
2 x / 2rx

2 y) = -1, where fx & fy are partial derivatives of f(x, y). 



The starting point for region I will be (0, r) and for region II, the initial points will become the 

ending points of region I, where the slope becomes less than -1. That’s why we need to keep 

in check the value of slope while plotting the points for region I to know whether we have 

reached region II or not. 

 

Derivation for Region I 

In region I (dy/dx > –1), and X is always incremented but Y is not (Yi or Yi – 1). Let us consider 

two pixels: one which is outside (E) and the other which is inside (SE) respectively. 

Let their coordinates be: 

For E; (Xi +1, Yi ) 

For SE; (Xi +1, Yi - 1) 

 

 

 

 

 

 

 

 

 

 

 

Region I. 

 

Value for their mid-point will be: 

MP = [((Xi +1  +  Xi +1) / 2) , ((Yi +  Yi – 1) / 2)] 

      = (Xi +1 , Yi – 1 / 2) 

To define the decision parameter the  MP will be put in ellipse function f(x, y): 

     d1i =  ry
2 (X

i
 + 1)2 + rx

2 (Yi –  1 / 2)
2
 - rx

2  ry
2 

Successive parameter can be defined as: 

     d1i+1 =  ry
2 (X

i+1
 + 1)2 + rx

2 (Yi+1 –  1 / 2)
2
 - rx

2  ry
2 

 

 



After a number of derivation steps: 

  If d1 < 0 the midpoint is inside the ellipse then yi is closer (Yi + 1 =  Yi) (choose point E).  

       d1 = d1 + 2  ry
2 x +  ry

2 ,   with   2 ry
2 x = 2 ry

2 x + 2 ry
2 

  We know that the dx = 2 ry
2 x, so the above equations can be rewritten as the following: 

       d1 = d1 + dx +  ry
2 

       dx = dx + 2 ry
2 

 If d1>= 0 the midpoint is outside or on the ellipse then yi − 1 is closer (Yi + 1= Yi − 1) (choose point 

SE).  

       d1 = d1 + 2  ry
2 x +  ry

2 - 2 rx
2 y, with   2 rx

2 y = 2 rx
2 y - 2 rx

2 

We know that the dy = 2 rx
2 y, so the above equations can be rewritten as the following: 

       d1 = d1 + dx – dy +  ry
2 

       dy = dy - 2 rx
2 

The initial value of the decision parameter is:  

     d1 =  ry
2 -  rx

2 ry + ¼  rx
2     (by putting the initial point (0, ry) in ellipse function f(x, y)) 

 

Derivation for Region II 

In region II (dy/dx < –1), all calculations are similar to that in region I except that Y is always 

decremented but X is not (Xi or Xi + 1). Let us consider two pixels: one which is inside (S) and 

the other which is outside (SE) respectively. Let their coordinates be: 

For S; (Xi , Yi - 1) 

For SE; (Xi +1, Yi - 1) 

 

 

 

 

 

 

 

 

 

Region II. 



Value for their mid-point will be: 

MP = [((Xi +1  +  Xi) / 2) , ((Yi - 1 +  Yi – 1) / 2)] 

      = (Xi +1 / 2, Yi – 1) 

To define the decision parameter the  MP will be put in ellipse function f(x, y): 

     d2i =  ry
2 (Xi  + 1 /2)2 + rx

2 (Yi –  1)2 - rx
2  ry

2 

Successive parameter can be defined as: 

     d2i+1 =  ry
2 (Xi+1  + 1/2)2 + rx

2 (Yi+1 –  1)2 - rx
2  ry

2 

After a number of derivation steps: 

If d1> 0 the midpoint is outside the ellipse then xi is closer (xi + 1= xi) (choose point S).  

     d2 = d2 - 2 rx
2 y + rx

2 , with  2 rx
2 y = 2 rx

2 y - 2 rx
2 

We know that the dy = 2 rx
2 y, so the above equations can be rewritten as the following: 

     d2 = d2  + rx
2 - dy 

     dy = dy - 2 rx
2 

If d2<= 0 the midpoint is inside the ellipse then xi + 1 is closer (xi + 1 = xi + 1) (choose point 

SE).  

      d2 = d2 + 2 ry
2 x - 2 rx

2 y + rx
2 , with   2 ry

2 x = 2 ry
2 x + 2  ry

2 

                                                                  2 rx
2 y = 2 rx

2 y - 2 rx
2  

We know that the dx = 2 ry
2 x, so the above equations can be rewritten as the following: 

      d2= d2 + dx – dy + rx
2 

      dx= dx + 2  ry
2 

      dy = dy - 2 rx
2 

The initial value of the decision parameter is:  

   d2 =  ry
2 (x + 1/2)2 + rx

2 (y − 1)2 - rx
2  ry

2  (by putting the last point(Xi, Yi) of Region I in 

ellipse function f(x, y)) 

 

 

The algorithm described above shows how to obtain the pixel coordinates in the first quadrant 

only. The ellipse centre is assumed to be at the origin. In actual implementation, the pixel 

coordinates in other quadrants can be simply obtained by use of the symmetric characteristics 

of an ellipse. For a pixel (x, y) in the first quadrant, the corresponding pixels in other three 

quadrants are (x, –y), (–x, y) and (–x, –y) respectively. If the centre is at (XC, YC), all 

calculated coordinate (x, y) should be adjusted by adding the offset (XC, YC). For easy 

implementation, a function PlotEllipse() is defined as follows: 



PlotEllipse (XC, YC, X, Y) 

putpixel (XC+X, YC+Y) 

putpixel (XC+X, YC–Y) 

putpixel (XC–X, YC+Y) 

putpixel (XC–X, YC–Y) 

end PlotEllipse 

 

Mid-Point Ellipse drawing Algorithm 

Step 1: Start 

Step 2: Take input radius along x axis (rx) and y axis (ry) and obtain center of ellipse (Xc, Yc). 

Step 3: Initialize the initial point of Region1 (we assume ellipse to be centered at origin) as: 

                 X=0, Y=ry 

Step4: Obtain the initial decision parameter for Region1 as:  

               d1 = ry
2 + 0.25 ∗ rx

2  −  rx
2 ∗  ry 

Step5:  initialize the partial derivatives (dx and dy) as:  

             dx = 2 ry
2 x 

             dy = 2 rx
2 y 

Step6:  Repeat steps while (dx < dy) 

             Plot (X+Xc, Y+Yc) 

             Plot (-X+Xc, Y+Yc) 

             Plot (-X+Xc, -Y+Yc) 

             Plot (X+Xc, -Y+Yc) 

              X = X+1 

           if (d1 < 0) 

                { 

                   dx = dx + 2 ry
2 

                   d1 = d1 + dx +  ry
2 

                  } 

 

 

 

 



           else 

                 { 

                    y=y-1 

                    dx = dx + 2 ry
2 

                    dy = dy - 2 rx
2 

                    d1 = d1 + dx – dy +  ry
2 

                   } 

Step 7: When dx ≥ dy, plot Region 2: 

Step 8: Obtain the initial decision parameter for Region2 (using the last point of region1) as:  

               d2=  ry
2 (x + 0.5)2 +  rx

2 (y − 1)2 -  rx
2  ry

2 

Step 9: while (y>=0) 

              Y = Y – 1 

               if (d2 > 0) 

                  { 

                       dy = dy - 2 rx
2 

                       d2 = d2 +  rx
2 – dy 

                   } 

               else 

                     { 

                          X = X + 1 

                         dx = dx + 2 ry
2 

                         dy = dy - 2 rx
2 

                         d2 = d2 + dx – dy +  rx
2  

                       } 

                 Plot (X+Xc, Y+Yc) 

               Plot (-X+Xc, Y+Yc) 

               Plot (-X+Xc, -Y+Yc) 

               Plot (X+Xc, -Y+Yc) 

Step 10: Stop 

 

 



 Ex: Given input ellipse parameter rx=8 and ry=6, determine pixel positions along the ellipse 

path in the first quadrant using the midpoint ellipse algorithm. 

 

           Sol:  

 

                 rx=8 , ry = 6 

 

                  Region 1 

                 (X0, Y0) = (Xc, ry) = (0, 6) 

                 dx = 2 ry
2 x = 0                                       (with increment 2 ry

2 = 72) 

                 dy = 2 rx
2 y = 2 rx

2 ry = 2*64*6 = 768    (with increment - 2 rx
2 = -128) 

                 d1 = ry
2 + 0.25rx

2  −  rx
2 ∗  ry  

                      = 36 + 16 – 64*6 = -332 

 

     I d1 (x, y) dx dy 

  (0, 6) 0 768 

1 -332 (1,6) 72 768 

2 -224 (2,6) 144 768 

3 -44 (3,6) 216 768 

4 208 (4,5) 288 640 

5 -108 (5,5) 360 640 

6 288 (6,4) 432 52 

7 244 (7,3) 504 384 

 

             Move out region 1 since dx > dy  

 

 

 



    Region 2 

    (X0, Y0) = (7, 3)       (last position in Region 1) 

     Last value of dx = 504 (with increment 2 ry
2 = 72) 

     Last value of dy = 384 (with increment - 2 rx
2 = -128) 

     d2=  ry
2 (x + 1/2)2 +  rx

2 (y − 1)2 -  rx
2  ry

2 

         = 36(7 + 0.5)2 + 64 (3 − 1)2 - 64*36 

         = 36(56.25) + 64(4) – 64*36 = -23 

 

 

 

 

 

 

                                                                                        

                                                        Stop at Y = 0 

           

 

 

 

 

 

 

 

 

 

 

Note: If the ellipse center is not (0, 0), the point can be found as you learned in the circle 

algorithm. 

 

H. W: Can the Mid-Point Ellipse drawing Algorithm draw a circle? 

I d2 (x, y) dx dy 

1 -23 (8,2) 576 256 

2 407 (8,1) 576 128 

3 343 (8,0) -- -- 



2D Geometric Transformation  

Geometric Transformation means changing some graphics into something else by 

applying rules, or it is the geometrical changes of an object from a current state to 

modified state.  

There are two ways or types of 2D Transformation: 

1- Object Transformation: Alter the coordinates descriptions of an object, while 

the Coordinate system unchanged. 

2- Coordinate transformation:  Produce a different coordinate system. 

 

Why the Transformation is needed? 

To manipulate the initially created object and to display the modified object without 

having to redraw it. 

 

2D Geometric Transformation (Object Transformation) 

We can have various types of object transformations such as translation, scaling up or 

down, rotation, shearing, etc. When a transformation takes place on a 2D plane, it is 

called 2D transformation. 

Transformations play an important role in computer graphics to reposition the 

graphics on the screen and change their size or orientation. 

 

In 2D object, transformation is to change: 

• Object’s Position (Translation). 

• Object’s Orientation (Rotation). 

• Object’s Size (Scaling). 

• Object’s Reflection (Mirror Image). 

• Object’s shapes (shear). 

 

 

 

 

Basic Transformations 



 

Translation 

A translation moves all points in an object along the same straight-line path to new 

positions on the screen. You can translate a point in 2D by adding translation 

coordinate (H, V) to the original coordinate X,Y to get the new coordinate X′,Y′. 

Where, H is added to X and V is added to Y. see the figure below. 

 

 

 

 

 

 

 

 

Horizontal and Vertical displacement. 

 

A translation can also be interpreted as the addition of a constant vector to every 

point, or as shifting the origin of the coordinate system. 

 

Note: To translate an object in an image, we must translate every point defining the 

object. All points are displaced the same distance and the object is draw using 

these transformed points. 

 

Note: Translation coordinates (H, V) are also called “Translation or Shift Vector” or 

“Translation Factor”. 

 

 

 



Note: The H and V represent the Horizontal and Vertical displacement or distance 

that point has moved, So: 

    1- If H is Positive, the point moves to the Right. 

    2- If H is Negative, the point moves to the Left. 

    3- If V is Positive, the point moves to the Up. 

    4- If V is Negative, the point moves to the Down. 

 

We can apply Translation on following objects- 

• Point (pixel). 

• Line. 

• Rectangle. 

• Polygon. 

• Square. 

• Circle. 

 

Note: By translation, we can move any object from one to another place without 

changing the shape, size, or orientation of the object. So translation is called 

rigid transformation.  

 
 

 

 

 

 

 

 

 

 



Ex: Given a triangle with its three vertices (40, 0), (80, 0), (60, 100). Apply 

translation with 120 units to the right and 20 units up. 

  Sol: 

          Old coordinates of the triangle = (40, 0), (80, 0), (60, 100). 

           Translation coordinate = (H, V) = (120, 20) 

 

 

 

 

 

 

 

 

 

Let the new vertix (Xnew, Ynew) 

 for the coordinates (40, 0)             

 Xnew= Xold + H = 40 + 120 =160 

 Ynew= Yold + V = 0 + 20 = 20 

 Thus, new coordinates for (40, 0) is (160, 20) 

 

for the coordinates (80, 0)             

Xnew= Xold + H = 80 + 120 = 200 

Ynew= Yold + V = 0 + 20 = 20 

Thus, new coordinates for (80, 0) is (200, 20) 

 

 

Original position 



for the coordinates (60, 100)             

 Xnew= Xold + H = 60 + 120 =180 

 Ynew= Yold + V = 100 + 20 = 120 

 Thus, new coordinates for (60, 100) is (180, 20) 

               

 

 

 

 

 

 

 

 

 

H. W 

1- Write a function to translate any object (up, down, right, left). 

2- Write a program to draw a polygon and using translated function to translate it in 

any direction 

3- Consider  a  triangle   defined  by  its  three  vertices (20, 0), (60, 0), (40, 100) be 

translated 20 units to the Left. 

4- Consider   a triangle   defined  by  its three vertices (40, 0), (100, 0), (60, 100) be 

translated 40 units to the Left and 40 units down. 

 

 

 

Position after Translation 



Homogeneous Coordinate Representation 

The previous Translation is also shown in the form of 3 x 3 matrix: 

 

 

 

 

 

 

[X'    Y'    1] = [X    Y    1] * 

 

 

Note: for translating an object, each vertex must multiply by translation matrix. 

 

 

 

 

Ex: Given a traingle with its three vertices (40, 100), (20, 0), (60, 0). Apply 

translation with 20 units to the right using matrix representation. 

      Sol:  

              Translation matrix is  

 

 

 

 

   1     0     0 

             0     1     0 

H   V    1 

Translation Matrix 

   1     0     0 

              0     1     0 

 H   V    1 

= 

     X1   Y1    1 

   X2   Y2    1 

   X3   Y3    1 

     1   0     0 

0   1    0 

H   V    1 

* 

   X1'   Y1'    1 

   X2'   Y2'    1 

   X3'   Y3'    1 

   1   0     0 
0   1    0 

20  0    1 



 

 

 

 

40*1 + 100*0 + 1*20 = 60 

40*0 + 100*1 + 1*0 = 100 

40*0 + 100*0 + 1*1 = 1 

20*1 + 0*0 + 1*20 = 40 

20*0 + 0*1 + 1* 0 = 0 

20*0 + 0*0 + 1*1 = 1 

60*1 + 0*0 + 1*20 = 80 

60*0 + 0*1 + 1*0 = 0 

60*0 + 0*0 + 1*1 = 1 

 

 

 

 

 

 

 

 
Triangle before and after translation 

 

H. W: Given a triangle with its three vertices (40, 0), (100, 0), (60, 100). Apply 

translation with 40 units to the Left and 40 units down, using matrix 

representation. 

Old vertices 

= 

         1   0    0 
0   1    0 

20  0    1 

 
           40  100     1 

20     0      1 

60     0      1 

 

* 

60    100    1 

40      0       1 

80      0       1 

 

New vertices 



Rotation 

Rotation is a process of changing the angle of the object. Also, it is defined as a 

process of repositioning all points in an object along a circular path in the plane 

centered at the pivot point. Or rotation means that, all points of the object are 

transformed to new positions by rotating the points through a specified rotation angle 

about the rotation axis (in 2D, rotation pivot or pivot point). 

 

 

 

 

 

 

 

 

 

Where, P is original position. P' is final position or position after rotation and θ is 

angle of rotation.   

The Rotation of any object depends upon the two things: 

   1- Rotation Point: It is also called the Pivot point. Where, the pivot point may be 

the origin (0, 0) or any arbitrary point. 

   2- Rotation Angle: It is denoted by Theta (θ). 

 

Note: a point located at the origin does not change its place; therefore, Rotation is 

relative to the origin. 

Note: An unwanted translation is a byproduct of  rotation. So, the location of a rotated 

object can be controlled by choosing the location of a point (pivot point) with 

respect to which the rotation is performed.  

 

A point Rotation 



Types of Rotation 

We can rotate an object in two ways or directions:- 

1- Clockwise: An object rotates clockwise if the value of the Rotation angle is 

negative (-). 

2- Counter-Clockwise (Anti-Clockwise): An object rotates anti-clockwise if the 

value of the Rotation angle is positive (+). 

 

 

 

 

 

 

 

 

 

Note: Rotation can be applied on the following objects: 

• Straight Line: Straight Line is rotated by the endpoints with the same 

angle and redrawing the line between new endpoints. 

• Polygon: Polygon is rotated by shifting every vertex using the same 

rotational angle. 

• Curved Lines: Curved Lines are rotated by repositioning of all points 

and drawing of the curve at new positions. 

• Circle: It can be obtained by center position by the specified angle. 

• Ellipse: Its rotation can be obtained by rotating major and minor axis 

of an ellipse by the desired angle. 

 
Note: By rotation, we can rotate an object about a fixed point without changing its 

size and shape (rigid transformation). But the orientation is changed. 

 

 Clockwise (angle is negative) Counter clockwise (angle is positive) 



Rotation Rules 

   Any point (X, Y) can be represented by: 

 1- Its radial distance (r), where, r is the Euclidean distance from the origin to the 

point(X, Y) its self.  

 2- Its angle (ϕ) of X-Axis. 

 

 

 

 

 

 

 

 

X and Y can be calculated as following: 

Note the figure below, after connecting the dotted straight line, we have a triangle. 

According to trigonometry, (r) is the hypotenuse, X-axis is the adjacent side to (ϕ), 

and dotted straight line (Y-axis) is the opposite side to (ϕ). 

 

 

 

 

 

 

 

 

 

 

 



According to the trigonometric rules: 

Cos (ϕ) = 
Adj

hyp
  

Cos (ϕ) = 
X

r
  

∴  X = r * Cos (ϕ)  

Sin (ϕ) = 
𝑜𝑝𝑝

ℎ𝑦𝑝
  

Sin (ϕ) = 
𝑌

𝑟
  

∴  Y = r * Sin (ϕ)  

X = r * Cos (ϕ)  

Y = r * Sin (ϕ)  

If p(x, y) is rotated at an angle (θ) that is counterclockwise direction. The transformed 

point (X', Y') is represented as: 

 

 X′=r * Cos (ϕ+θ) 

 Y′=r * Sin (ϕ+θ)  

 

 

 

 

 

 

 

 

 

………… (1) 

………… (2) 



By using the trigonometric rules, equation (2) becomes: 

 X′=r * Cos (ϕ) * Cos (θ) – r * Sin (ϕ) * Sin (θ) 

 Y′=r * Sin (ϕ) * Cos (θ) + r * Cos (ϕ) * Sin (θ) 

From the definition of X and Y, equation (3) becomes: 

 X′= X * Cos (θ) – Y * Sin (θ) 

 Y′= Y * Cos (θ) + X * Sin (θ) 

 

Note: So, equation (4) is the final formula that is used to rotate a point P(X, Y) 

counterclockwise (positive angle) about the origin.  

 

To rotate a point P(X, Y) through a clockwise angle (θ) about the origin of the 

coordinates system , we must rewrite equation (4) as following to get equation(5): 

  X′= X * Cos (θ) + Y * Sin (θ) 

  Y′= - X * Sin (θ) + Y * Cos (θ) 

 

Note: Cos (θ) = Cos (-θ), i.e. Cos (45) = 0.707, Cos (-45) = 0.707 

           Sin (-θ) = - Sin (θ), i.e. Sin (45) = 0.707, Sin (-45) = -0.707 

 

Note: So, equation (5) is the final formula that is used to rotate a point P(X, Y) 

clockwise (negative angle) about the origin.  

 

If we want to rotate an object at an angle (θ) about a pivot point (𝑋𝑝,  𝑌𝑝) other than 

the origin, we must perform the following three steps:  

 

Step1: Translate 

  Translate the pivot point (Xp,  Yp) to the origin. Every point(x, y) defining the 

object is translated to a new point (X', Y') where: 

 

                 X' = X - Xp 

                 Y' = Y - Yp 

………… (3) 

………… (4) 

………… (5) 



Step2: Rotate 

           Use these translated points (X', Y'), θ degree about the origin to obtain new 

point(X'', Y'') where: 

 

             X’′= X' * Cos (θ) – Y, * Sin (θ) 

             Y''= Y' * Cos (θ) + X' * Sin (θ) 

Step3: Translate 

              Translate the center of rotation back to the pivot point (Xp,  Yp). 

                X''' = X'' + Xp 

                Y''' = Y'' + Yp 

Note: The previous three steps can be performed in one step: 

              X'''= (X - Xp) * Cos(θ) – (Y - Yp) * Sin(θ) + Xp 

             Y'''= (Y - Yp) * Cos(θ) + (X - Xp)  * Sin(θ) + Yp 

 

Ex: Rotate a line whose endpoints are (3, 4) and (12, 15) about origin through a 

45° counterclockwise  direction.  

     Sol: 

          Rotation angle: +45 

          Pivot point: origin (0,0) 

         X′= X * Cos (θ) – Y * Sin (θ) 

         Y′= Y * Cos (θ) + X * Sin (θ) 

          Cos (45 °) = 0.707 

           Sin (45 °) = 0.707 

For (3, 4) 

X' = 3 * 0.707 – 4 * 0.707 = -0.707 

Y' = 4 * 0.707 + 3* 0.707 = 4.949 

The point (3, 4) after rotation will be (-0.707, 4.949) 

For (12, 5) 

X' = 12 * 0.707 – 15 * 0.707 = -2.121 

Y' = 15 * 0.707 + 12 * 0.707 = 19.089 

The point (12, 5) after rotation will be (-2.121, 19.089) 



 

 

 

 

 

 

 

 

 

Ex: Rotate a line whose endpoints are (3, 4) and (12, 15) about a pivot point (3, 4) 

through a 45° counterclockwise  direction.  

Sol: 

          Rotation angle: +45 

          Pivot point (𝑋𝑝,  𝑌𝑝): (3, 4) 

          Cos (45 °) = 0.707 

           Sin (45 °) = 0.707 

1- Translate the line to the origin 

      X' = X - Xp 

      Y' = Y - Yp 

      For (3, 4) 

      X' = 3 – 3 = 0 

      Y' = 4 – 4 = 0 

    point (3, 4) after translation will be (0, 0) 

      

      

Before rotation 



For (12, 15) 

      X' = 12 – 3 = 9 

      Y' = 15 – 4 = 11 

    point (12, 15) after translation will be (9, 11) 

 

 

 

 

 

 

 

 

2- Rotate the translated line about the origin. 

     Rotate angle: +45° 

     Pivot point: (0, 0) 

     X''= X' * Cos (θ) – Y' * Sin (θ) 

     Y'′= Y' * Cos (θ) + X' * Sin (θ) 

      For (0, 0) 

      X'' = 0 * 0.707 – 0 * 0.707 = 0 

      Y'' = 0 * 0.707 + 0 * 0.707 = 0 

     point (0, 0) after rotation about origin will be (0, 0) 

      For (9, 11) 

      X'' = 9 * 0.707 – 11 * 0.707 = -1.414 

    Y'' = 11 * 0.707 + 9 * 0.707 = 14.14 

    point (9, 11) after rotation about origin will be (-1.414, 14.14) 



  

 

 

 

 

 

 

3- Translate back the rotated line.  

       X''' = X'' + Xp 

       Y''' = Y'' + Yp 

      For (0, 0) 

      X''' = 0 + 3 = 3 

      Y''' = 0 + 4 = 4 

      point (0, 0) after translation back will be (3, 4) 

     For (-1.414, 14.14) 

      X''' = -1.414 + 3 = 1.586 

      Y''' = 14.14 + 4 = 18.14 

      point (-1.414, 14.14) after translation back will be (1.586, 18.14) 

 

 

 

 

 

 



H. W:  

1. Rotate the triangle (10, 0), (30, 0), (50, 80) 45° counterclockwise about the 

origin.  

2. Rotate the triangle (7, 8), (4, 4), (10, 5) 90° counterclockwise  about   the   

point  (7, 8).  

3. Rotate the above triangle 90° clockwise about the point (4, 4).  

4. Write an equation to rotate any picture clockwise about the pivot point. 

5. Write a program which rotates a polygon. 

a- Counter clockwise about the origin. 

b- Counter clockwise about a pivot point. 

 

Homogeneous Coordinate Representation 

The previous rotation is also shown in the form of 3 x 3 matrix: 

1- Counterclockwise direction: 

 

         [X'    Y'    1] = [X    Y    1] * 

 

  

2- Clockwise direction: 

 

          [X'    Y'    1] = [X    Y    1] *  

 

 

 

 
 Cos(θ)    Sin(θ)    0 

-Sin(θ)    Cos(θ)    0 

    0            0           1   

 
 Cos(θ)    -Sin(θ)     0 

 Sin(θ)      Cos(θ)     0 

    0               0           1   



Note: for rotation an object, each vertex must multiply by rotation matrix. 

 

 

 

 

 

 

Ex: Rotate a line whose endpoints are (3, 4) and (12, 15) about origin through a 

45° counterclockwise  direction, using matrix representation. 

 

      Sol: 

              Rotation angle: +45 

              Pivot point: (0, 0)  

             Cos (45 °) = 0.707 

             Sin (45 °) = 0.707 

 

 

 

 

 

 

 

 

 

 

= 

X1   Y1   1 

X2   Y2   1 

X3   Y3   1 

 
* 

X1'   Y1'   1 

X2'   Y2'   1 

X3'   Y3'   1 

 

 Cos(θ)    Sin(θ)    0 

-Sin(θ)    Cos(θ)    0 

    0            0           1   

 

 
 Cos(θ)    Sin(θ)    0 

-Sin(θ)    Cos(θ)    0 

    0            0           1   

Counterclockwise rotation matrix 

= 

0.707     0.707      0 

-0.707    0.707      0 

                0           0            1 

 
3      4        1 

12    15      1 

 

* 
-0.707    4.949    1 

-2.121   19.089   1             

 



Ex: Rotate a line whose endpoints are (3, 4) and (12, 15) about a pivot point (3, 4) 

through a 45° counterclockwise  direction, using matrix representation. 

 

      Sol: 

          Rotation angle: +45 

          Pivot point (Xp,  Yp): (3, 4) 

          Cos (45 °) = 0.707     

          Sin (45 °) = 0.707 

 

1- Translate the line to the origin. 

  

 

 

 

2- Rotate the translated line about the origin. 

 

 

 

 

3- Translate back the rotated line. 

 

 

 

 

 

= 

 1     0      0 

 0     1      0 

-3   -4     1 

 
3      4        1 

12    15      1 

 

* 
0        0          1 

9       11         1             

 

0.707     0.707      0 

-0.707    0.707      0 

    0           0           1 

 0        0          1 

9       11         1             

 

* = 
   0            0         1 

-1.414    14.14     1 

 

   0            0         1 

-1.414    14.14     1 

 
1     0      0 

0     1      0 

3    4       1 

 
* = 

   3            4         1 

 1.586    18.14     1 

 

 
 Cos(θ)    Sin(θ)    0 

-Sin(θ)    Cos(θ)    0 

    0            0           1   

Counterclockwise rotation matrix 



H. W:  

1- Rotate the triangle (10, 0), (30, 0), (50, 80) 45° counterclockwise about the origin, 

using matrix representation.  

2- Rotate the   triangle (7, 8), (4, 4), (10, 5) 90°  counterclockwise  about the   point 

(7, 8), using matrix representation.  

3- Rotate the above triangle 90° clockwise about the point (4, 4), using matrix 

representation.  

 

Scaling 

 A scaling transformation is used to alter or change the size of objects. In the scaling 

process, we either compress or expand the dimension of the object. Scaling operation 

can be achieved by multiplying each vertex coordinate (x, y) of the polygon by 

scaling factor to produce the transformed coordinates as (x’, y’). There are two 

scaling factors, Sx in x direction and Sy in y-direction.  

Generally, scaling factor is (Sx, Sy), but scaling equations are: 

 

      X' = X * Sx 

      Y' = Y * Sy 

 
Note: a point located at the origin does not change its place; therefore, Scaling is 

relative to the origin (as rotation), see the figure below. 

 

 

 

 

 

 

 

 
Scaling about the origin 



Note: An unwanted translation is a byproduct of scaling. So, the location of a scaled 

object can be controlled by choosing the location of a point (fixed point) with 

respect to which the scaling is performed.  

 

Ex: Scale a triangle whose its vertices are (4,4), (7, 8), (10, 5) by Sx = 2 and Sy = 2, 

about the origin point. 

 Sol: 

         Old coordinates of the triangle = (4,4), (7, 8), (10, 5).  

         Scaling factor (Sx, Sy) = (2, 2) 

          pivot point (Xp, Yp) = (0,0) 

          For (4, 4) 

          Xnew = Xold * Sx = 4 * 2 = 8 

          Ynew = Yold * Sy = 4 * 2 = 8 

          point (4, 4) after scaling about origin will be (8, 8) 

         For (7, 8) 

          Xnew = Xold * Sx = 7 * 2 = 14 

          Ynew = Yold * Sy = 8 * 2 = 16 

          point (7, 8) after scaling about origin will be (14, 16) 

         For (10, 5) 

          Xnew = Xold * Sx = 10 * 2 = 20 

          Ynew = Yold * Sy = 5 * 2 = 10 

         point (10, 5) after scaling about origin will be (20, 10) 

 



Scaling Factors Effects 

Scaling factors affect size as following: 

• If Sx = Sy , then  a scaling  process will be (uniform scaling). 

• If Sx ≠  Sy , then  a scaling  process will be (non uniform scaling) or (differential 

scaling). Object’s shape will elongate or distort. 

• If Sx , Sy < 1, size is reduced (shrink), object moves closer to origin. 

• If Sx , Sy > 1, size is increased, object moves further from origin. 

• If Sx = Sy = 1, size does not change. 

• If the picture to be enlarged to twice its original size then Sx = Sy =2, so on three 

times, four times ….etc. 

See the following figures: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

Scaling Relative to a Pivot or Fixed Point 

To scale an object about a pivot or fixed point (Xp, Yp), we must perform the 

following three steps: 

 

 Step1: Translate 

              All coordinates of object  are translated so that the fixed point is moved to 

the coordinate origin.  

                  X' = X - Xp 

                 Y' = Y - Yp 

Step2: Scaling 

              The translated coordinates are scaled with respect to the origin. 

                X'' = X' * Sx 

                Y'' = Y' * Sy 

 



Step3: Translate 

              The coordinates are translated back so that the fixed point is returned to its 

original position. 

                X''' = X'' + Xp 

                Y''' = Y'' + Yp 

Note: The previous three steps can be performed in a one step: 

              X'''= (X - Xp) * Sx + Xp 

             Y'''= (Y - Yp) * Sy + Yp 

 
Ex: Scale a triangle whose its vertices are (4,4), (7, 8), (10, 5) by Sx = 2 and Sy = 2, 

about the fixed point (4, 4). 

 

        Sol: 

         Old coordinates of the triangle = (4,4), (7, 8), (10, 5).  

         Scaling factor (Sx, Sy) = (2, 2) 

          pivot or fixed point (Xp, Yp) = (4, 4) 

 

          For (4, 4) 

          Xnew = (Xold – Xp) * Sx + Xp = (4 – 4) * 2 + 4 = 4 

          Ynew = (Yold – Yp) * Sy + Yp = (4 – 4) * 2 + 4 = 4 

          the new coordinates are  (4, 4) 

 

          For (7, 8) 

          Xnew = (Xold – Xp) * Sx + Xp = (7 – 4) * 2 + 4 = 10 

          Ynew = (Yold – Yp) * Sy + Yp = (8 – 4) * 2 + 4 = 12 

          the new coordinates are  (10, 12) 

 

         For (10, 5) 

          Xnew = (Xold – Xp) * Sx + Xp = (10 – 4) * 2 + 4 = 16 

          Ynew = (Yold – Yp) * Sy + Yp = (5 – 4) * 2 + 4 = 6 

          the new coordinates are  (16, 6) 



 

 

Note: By scaling, we can expand or compress an object without changing its shape or 

orientation, so scaling is called non-rigid transformation. 

 

H. W 

 1- Magnify the triangle (0, 0), (8, 10), (12, 4), to 4 times its size, about the origin 

point. 

2- Magnify the above triangle to ½ its size. 

3- Magnify the triangle (0, -3), (-6, -7), (6, -7), to 3 times its size,  about   the  point 

(0, -3). 

4- Write a scale function to magnify any image. 

5- Write an equation to magnify any picture without translation. 

6- Consider an object defined by its vertices (10, 10), (20, 10), (20, 20), (10, 20) being 

scaled twice to the X and Y direction about the point (15, 15). 

 

 

 



Homogeneous Coordinate Representation 

The previous scaling is also shown in the form of 3 x 3 matrix: 

 

 

 

 

 

 

 

 

 

[X'    Y'    1] = [X    Y    1] * 

 

 

 

Note: for scaling an object, each vertex must multiply by scaling matrix. 

 

 

 

 

 

 

EX: Magnify the triangle (0, 0), (8, 10), (12, 4), to 4 times its size, about the origin 

point, using matrix representation. 

 

 

 

 

 

Sx    0     0 

0     Sy    0 

0      0     1 

 

* 

0      0      1    

8     10     1 

12    4      1 

 

4    0     0 

0     4    0 

0      0   1 

 

0       0      1 

32    40     1 

48    16     1 

 = 

Sx    0     0 

0     Sy    0 

0      0     1 

 

Scaling Matrix 

= 

X1   Y1   1 

X2   Y2   1 

X3   Y3   1 

 

* 

X1'   Y1'   1 

X2'   Y2'   1 

X3'   Y3'   1 

 

Sx    0     0 

0     Sy    0 

0      0     1 

 



EX: Magnify the triangle (0, -3), (-6, -7), (6, -7), to 3 times its size,  about the point 

(0, -3), using matrix representation. 

 

      Sol: 

              Scaling factor (Sx, Sy) = (3, 3) 

               pivot point (Xp,Yp) = (0, -3) 

      1- Translate the triangle to the origin. 

 

 

 

 

 

     2- Scale the Translated triangle about origin. 

 

 

 

 

 

    3- Translate back the scaled triangle. 

 

 

 

 

 

 

 

* 

0      -3     1 

-6     -7     1 

6      -7     1 

 

1    0     0 

0     1    0 

0    +3   1 

 

 0       0      1 

-6      -4     1 

 6       -4     1 

 = 

Translation matrix 

* 

 
3    0     0 

0     3    0 

0     0    1 

 

 

 0       0        1 

-18    -12     1 

 18    -12     1 

 = 

 0       0    1 

-6    -4     1 

 6    -4     1 

Scaling matrix 

* 

 

1    0     0 

0     1    0 

0    -3    1 

 

 0       -3       1 

-18    -15     1 

 18    -15      1 

 = 

 0        0       1 

-18    -12     1 

 18    -12     1 



H. W 

 1- Magnify the triangle (0, 0), (8, 10), (12, 4), to 4 times its size, about the origin 

point, using matrix representation. 

2- Magnify the above triangle to ½ its size, using matrix representation. 

3- Magnify the triangle (0, -3), (-6, -7), (6, -7), to 3 times its size,  about  the   point 

(0, -3), using matrix representation. 

4- Consider an object defined by its vertices (10, 10), (20, 10), (20, 20), (10, 20) being 

scaled twice to the X and Y direction about the point (15, 15), using matrix 

representation. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Reflection Transformation 

The Reflection is a mirror image of the original object. All the points of the original 

object are reflected or flipped on a line called the axis of reflection, line of 

reflection, axis of symmetry, or mirror line.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Properties of reflection 

 Reflection is a kind of rotation where the angle of rotation is 180 degree. 

 A reflection is defined by the mirror line. In the above diagram, X-axis is the 

mirror line. If a mirror line is vertical or horizontal, all the points on the mirror line 

will not change. These points are said to be invariant. 

 The reflected object is always formed on the other side of mirror. 

 Under reflection, the shape and size of an image is exactly the same as the original 

figure. This type of transformation is called isometric transformation or rigid 

transformation. 

 The orientation is laterally inverted, that is they are facing opposite directions. 

The objects materialize as if they are mirror images, with right and left inverted. 



 Corresponding parts of the figures (original object and its reflection) are the same 

distance from the line of reflection. 

 

Types of Reflection  

There are two types of reflection: 

 Reflection about a line: in this type the line of reflection is the perpendicular 

bisector of the line joining any point and its image. Also, Lettering the vertices 

of the objects in a reflection requires changing the sequence of the letters 

(such as from clockwise to anticlockwise or vice versa). There are four types: 

1- Reflection about the X-axis or line Y=0 

2- Reflection about the Y-axis or line X=0 

3- Reflection about line Y = X 

4- Reflection about line y = -X 

 

 Reflection about a point: A point reflection occurs when an object is created 

around a single point called point of reflection.  For every point in the object, 

there is another point found directly opposite it on the other side of the center 

therefore; the point of reflection becomes the midpoint of the segment joining 

the point with its reflected image. Lettering sequence remains the same. The 

most frequently used point is the origin (0, 0). 

 
Reflection about X-Axis or line Y=0 

This transformation keeps X values same but flips (changes the sign) y values of 

coordinate positions. 

We can represent the Reflection along X-axis by following equations: 

       X' = X  

       Y' = -Y  

Note: In the second equation, the negative sign does not mean that Y must be a 

negative value, but rather that the value of Y is negated. Meaning if the value 

of Y is negative it will become positive and vice versa. So on for all of the 

reflection equations. 



Ex: Reflect a triangle whose its vertices are A (-2, 2), B (1, 5), C (3, 3) about X-axis.  

 

         Sol: 

                  For A (-2,2) 

X' = X = -2 

Y' = -Y = -2 

                 point A (-2, 2) after reflection will be A'(-2, -2) 

 

                 For B (1, 5) 

X' = X = 1 

Y' = -Y = -5 

                 point B (1, 5) after reflection will be B'(1, -5) 

 

                For C (3, 3) 

X' = X = 3 

Y' = -Y = -3 

                 point C (3, 3) after reflection will be  C'(3, -3) 

 

 

 

 

 

 

 

 

 

 

 

 

  

Note: In above figure, lettering direction of original triangle is clockwise while in its 

reflected image is anticlockwise. 



We can also represent Reflection about X-axis in the form of matrix: 

 

 

    [X'    Y'    1] = [X    Y    1] * 

 

 

Note: for reflection an object, each vertex must multiply by reflection matrix. 

 

 

 

 

 

Ex: Reflect a triangle whose its vertices are A(-3, -2), B(-5, -5), C(-1, -5) about X-

axis using matrix.  

   Sol: 

         

 

 

 

 

 

 

 

 

 

 

 

 

 

1     0     0 

0     -1    0 

0      0     1 

 

= 

X1   Y1   1 

X2   Y2   1 

X3   Y3   1 

 

* 

X1'   Y1'   1 

X2'   Y2'   1 

X3'   Y3'   1 

 

1     0     0 

0     -1    0 

0      0     1 

 

= 

-3    -2    1 

            -5     -5    1 

            -1     -5    1 

 * 

-3    2    1 

-5    5    1 

-1    5    1 

 

1     0     0 

0     -1    0 

0      0     1 

 



Note: In above figure, lettering direction of original triangle is anticlockwise while in 

its reflected image is clockwise. 

 

Reflection about Y-Axis or line X=0 

This transformation keeps Y values same but flips (changes the sign) X values of co-

ordinate positions. 

We can represent the Reflection along Y-axis by following equations: 

       X' = -X  

       Y' = Y  

 

Ex: Reflect a triangle whose its vertices are A (2, 3), B (6, 2), C (5, -1) about Y-axis.  

 

         Sol: 

                For A (2,3) 

X' = -X = -2 

Y' = Y = 3 

                 point A (2, 3) after reflection will be A' (-2, 3) 

 

                For B (6,2) 

X' = -X = -6 

Y' = Y = 2 

                 point B (6, 2) after reflection will be B'(-6, 2) 

 

                 For C (5, -1) 

X' = -X = -5 

Y' = Y = -1 

                 point C (5, -1) after reflection will be C'(-5, -1) 

 



 

 

 

 

 

 

 

 

 

 

 

 

Note: In above figure, lettering direction of original triangle is clockwise while in its 

reflected image is anticlockwise. 

 

We can also represent Reflection about Y-axis in the form of matrix: 

 

 

    [X'    Y'    1] = [X    Y    1] * 

 

 

Note: for reflection an object, each vertex must multiply by reflection matrix. 

 

 

 

 

 

 

 

-1    0      0 

0     1      0 

0      0     1 

 

= 

X1   Y1   1 

X2   Y2   1 

X3   Y3   1 

 

* 

X1'   Y1'   1 

X2'   Y2'   1 

X3'   Y3'   1 

 

-1     0     0 

0       1    0 

0      0     1 

 



Ex: Reflect a triangle whose its vertices are A(3, -1), B(1, -4), C(4, -4) about Y-axis 

using matrix.  

 

   Sol: 

 

         

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Note: In above figure, lettering direction of original triangle is anticlockwise while in 

its reflected image is clockwise. 

 

 

= 

3    -1    1 

             1     -4    1 

             4     -4    1 

 * 

-3    -1    1 

-1    -4    1 

-4    -4    1 

 

-1     0     0 

 0     1     0 

0      0     1 

 



Reflection about the line Y=X 

This transformation interchanges X and Y values of coordinate positions (the x-

coordinate and y-coordinate change positions), see the figure below. We can represent 

the Reflection along the line Y=X by the following equations: 

       X' = Y  

       Y' = X  

 

 

 

 

 

 

 

 

 

 

 

 

 

Ex: Reflect a triangle whose its vertices are A(-3, -2), B(-1, 0), C(-4, 1) about the line 

Y= X.  

   Sol: 

                For A (-3, -2) 

X' = Y = -2 

Y' = X = -3 

                 point A (-3, -2) after reflection will be A'(-2, -3) 

 

                 For B (-1, 0) 

X' = Y = 0 

Y' = X = -1 

                 point B (-1, 0) after reflection will be B'(0, -1) 



                For C (-4, 1) 

X' = Y = 1 

Y' = X = -4 

                 point C (-4, 1) after reflection will be C'(1, -4) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Note: In above figure, lettering direction of original triangle is anticlockwise while in 

its reflected image is clockwise. 

 

We can also represent Reflection about the line Y=X in the form of matrix: 

 

 

    [X'    Y'    1] = [X    Y    1] * 

 

0     1      0 

1     0      0 

0      0     1 

 



Note: for reflection an object, each vertex must multiply by reflection matrix. 

 

 

 

 

 

 

Ex: Reflect a triangle whose its vertices are A (1, 5), B (3, 4), C (1, 2) about the line 

Y= X using matrix.  

 

   Sol: 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Note: In above figure, lettering direction of original triangle is clockwise while in its 

reflected image is anticlockwise. 

= 

1     5    1 

             3      4    1 

             1      2    1 

 * 

5     1    1 

4     3    1 

 2    1    1 

 

 0     1     0 

 1     0     0 

 0     0     1 

 

= 

X1   Y1   1 

X2   Y2   1 

X3   Y3   1 

 

* 

X1'   Y1'   1 

X2'   Y2'   1 

X3'   Y3'   1 

 

0       1      0 

1       0      0 

0       0      1 

 



Reflection about the line Y= -X 

This transformation interchanges X and Y values of coordinate positions. (The x-

coordinate and y-coordinate change positions and signs). See the figure below. We 

can represent the Reflection along the line Y= -X by the following equations: 

       X' = -Y  

       Y' = -X  

 

 

 

 

 

 

 

 

 

 

 

 

 

Ex: Reflect a triangle whose its vertices are A (0, 5), B (2, 3), C (-2, 3) about the line 

Y= -X.  

   Sol: 

               For A (0, 5) 

X' = -Y = -5 

Y' = -X = 0 

                 point A (0, 5) after reflection will be A'(-5, 0) 

 

                 For B (2, 3) 

X' = -Y = -3 

Y' = -X = -2 

                 point B (2, 3) after reflection will be B'(-3, -2) 



                For C (-2, 3) 

X' = -Y = -3 

Y' = -X = - (-2) = 2 

                 point C (-2, 3) after reflection will be C'(-3, 2) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Note: In above figure, lettering direction of original triangle is clockwise while in its 

reflected image is anticlockwise. 

 

We can also represent Reflection about the line Y= -X in the form of matrix: 

 

 

    [X'    Y'    1] = [X    Y    1] * 

 

 

 0     -1      0 

-1      0      0 

 0      0      1 

 



Note: for reflection an object, each vertex must multiply by reflection matrix. 

 

 

 

 

 

Ex: Reflect a triangle whose its vertices are A (-3, 1), B (-5, -3), C (-2, -4) about the 

line Y= -X using matrix.  

 

   Sol: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

= 

X1   Y1   1 

X2   Y2   1 

X3   Y3   1 

 

* 

X1'   Y1'   1 

X2'   Y2'   1 

X3'   Y3'   1 

 

 0      -1      0 

-1       0      0 

 0       0      1 

 

= 

  -3       1    1 

             -5      -3    1 

             -2      -4    1 

 * 

-1     3    1 

 3     5     1 

 4     2      1 

 

  0     -1     0 

 -1      0     0 

   0     0      1 

 



Reflection about the origin (0, 0) 

This transformation flips (changes the signs) X and Y values of coordinate positions. 

We can represent the Reflection about the origin by the following equations: 

       X' = -X  

       Y' = -Y  

 

Ex: Reflect a triangle whose its vertices are A (1, 5), B (1, 2), C (5, 2) about the 

origin.  

   Sol: 

               For A (1, 5) 

                  X' = -X = -1 

                   Y' = -Y = -5  

                 point A (1, 5) after reflection will be A'(-1, -5) 

 

               For B (1, 2) 

                   X' = -X = -1 

                   Y' = -Y = -2  

                 point B (1, 2) after reflection will be B'(-1, -2) 

 

                 For C (5, 2) 

                   X' = -X = -5 

                   Y' = -Y = -2  

                 point C (5, 2) after reflection will be C'(-5, -2) 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

Note: In above figure, lettering direction remains the same (anticlockwise). 

Note: the coordinates of triangle A'B'C' are similar to the coordinates as 

triangle ABC, but the signs have been changed. 

 

We can also represent Reflection about the origin in the form of matrix: 

 

 

    [X'    Y'    1] = [X    Y    1] * 

 

 

 

Note: for reflection an object, each vertex must multiply by reflection matrix. 

 

 

 

-1      0      0 

 0     -1      0 

 0      0      1 

 

= 

X1   Y1   1 

X2   Y2   1 

X3   Y3   1 

 

* 

X1'   Y1'   1 

X2'   Y2'   1 

X3'   Y3'   1 

 

-1      0      0 

 0     -1      0 

 0      0       1 

 



Ex: Reflect a triangle whose its vertices are A (-5, 2), B (-3, 4), C (-5, 5) about the 

origin using matrix.  

   Sol: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Note: In above figure, lettering direction remains the same (anticlockwise). 

Note: the coordinates of triangle A'B'C' are similar to the coordinates as 

triangle ABC, but the signs have been changed. 

H. W: Reflect   the shape (20, 70), (40, 50), (60, 70),   (40, 90) about: 

           1- X-axis   2- Y-axis   3- origin (0, 0),   4- Y= X   5- Y= -X by using reflection 

equations and draw the result.    

 

Finally don't forget: Reflections are FLIPS!! 

= 

  -5       2    1 

             -3       4     1 

             -5       5     1 

 

* 

5     -2     1 

 3     -4     1 

 5      -5     1 

 

  -1     0     0 

   0    -1     0 

   0     0     1 

 



Shear Transformation 

Shearing also known skewing is a transformation that slants the shape of an object. It 

distorts the shape of an object such that the transformed shape appears as if the object 

were composed of internal layers that had been caused to slide over each other (It 

appears like somebody has dragged the object). 

Shearing deals with changing the shape and size of the 2D object along x-axis and y-

axis. We can denote shearing with ‘Shx’ and ‘Shy’. These ‘Shx’ and ‘Shy’ are 

called “Shearing factor”. The shear can be in one direction or in two directions.  So 

we can perform shearing on the object in three ways: 

 

1- Shearing along x-axis:  In this, we can preserve the y coordinate and only change 

the x coordinate. It is also called “Horizontal Shearing” or “X-Shearing”. 

           We can represent X-Shearing by the following equations: 

 

              X' = X + Shx* Y 

              Y' = Y 

 

 

 

 

 

 

 

 

 

 

Horizontal or X-Shearing 

 

 

According to the above equations and above figure, in X-shearing a vertical line 

becomes slanted line with slop Shx and the horizontal lines are shifted to the right or 

left, depending on the sign of Shx (Any point above the X-axis is shiffted to the right 

(increasing x) if Shx > 0 , and to the left (decreasing x)  if Shx < 0).  Points below 

the x-axis move in the opposite direction, while points on the axis stay fixed. 



We can represent X-shearing in the form of matrix: 

 

    

 

     [X'    Y'    1] = [X    Y    1] *  

 

 

 

Note: for shearing an object, each vertex must multiply by X-shearing matrix. 

 

 

 

 

 

 

 

 

Ex: A Triangle with P (2, 2), Q (0, 0) and  R (2, 0). Apply Shearing factor 2 on X-

axis. Find out the new coordinates of the triangle?  

Sol: 

        The coordinates of triangle = P (2, 2), Q (0, 0), R (2, 0) 

        Shearing Factor for X-axis, Shx = 2 

         For P (2, 2) 

                 X' = X + Shx* Y 

                 X' = 2 + 2 x 2 = 6 

                 Y' = Y = 2 

        The New Coordinates = (6, 2) 

       For Q (0, 0) 

         X' = X + Shx* Y 

         X'   = 0 + 2 x 0 = 0 

               Y' = Y = 0 

       The New Coordinates = (0, 0) 

 

1           0           0 

Shx       1           0 

0            0           1 

= 

X1   Y1   1 

X2   Y2   1 

X3   Y3   1 

 

* 

X1'   Y1'   1 

X2'   Y2'   1 

X3'   Y3'   1 

 

1           0           0 

Shx      1           0 

0           0           1 



For R (2, 0) 

  X' = X + Shx* Y  

  X' = 2 + 2 x 0 = 2 

        Y' = Y = 0 

The New Coordinates = (2, 0) 

 

 

 

 

 

Ex: A Triangle with P (2, 2), Q (0, 0) and R (2, 0). Apply Shearing factor 2 on X-axis. 

Find out the new coordinates of the triangle using matrix representation?  

 

 

 

 

 

 

 

 

 

 

 

 

= 

2     2     1 

0     0     1 

2     0     1 

 * 

6     2     1 

              0     0     1 

 2     0     1 

 

1           0           0 

2           1           0 

0           0           1 



2- Shearing along y-axis: In this, we can preserve the x coordinate and only change the 

y coordinate. It is also called “Vertical Shearing.” 

     We can represent Vertical Shearing by the following equation: 

 

              X' = X  

              Y' = Y + Shy* X 

 

 

 

 

 

 

 

 

 

 

Vertical or Y-Shearing 

 

We can represent Y-shearing in the form of matrix: 

 

 

 

[X'    Y'    1] = [X    Y    1] *  

 

 

 

 

Note: for shearing an object, each vertex must multiply by Y-shearing matrix. 

 

 

 

 

 

 

1        Shy           0 

0           1            0 

0           0            1 

= 

X1   Y1   1 

X2   Y2   1 

X3   Y3   1 

 

* 

X1'   Y1'   1 

X2'   Y2'   1 

X3'   Y3'   1 

 

1        Shy         0 

0           1           0 

0           0           1 



Ex: A Triangle with P (2, 2), Q (0, 0) and  R (2, 0). Apply Shearing factor 2 on Y-

axis. Find out the new coordinates of the triangle?  

 

Sol: 

        The coordinates of triangle = P (2, 2), Q (0, 0), R (2, 0) 

        Shearing Factor for Y-axis, Shy = 2 

          For P (2, 2) 

                   X' = X = 2 

                  Y' = Y + Shy* X 

                 Y' = 2 + 2*2 = 6 

         The New Coordinates = (2, 6) 

         For Q (0, 0) 

                   X' = X = 0 

                  Y' = Y + Shy* X 

                 Y' = 0 + 2*0 = 0 

        The New Coordinates = (0, 0) 

         For R (2, 0) 

                  X' = X = 2 

                  Y' = Y + Shy* X 

                  Y' = 0 + 2*2 = 4 

        The New Coordinates = (2, 4) 

 

 



Ex: A Triangle with P (2, 2), Q (0, 0) and R (2, 0). Apply Shearing factor 2 on Y-axis. 

Find out the new coordinates of the triangle using matrix representation?  

 

 

 

 

 

 

 

 

3- Shearing along XY-Axes: Here layers will be slided in both x as well as y direction. 

The sliding will be in horizontal as well as vertical direction. The shape of the object 

will be distorted. The matrix of shear in both directions is given by: 

 

                 X' = X + Shx* Y 

                 Y' = Y + Shy* X 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

= 

2     2     1 

0     0     1 

2     0     1 

 * 

2     6     1 

              0     0     1 

 2     4     1 

 

1           2           0 

0           1           0 

0           0           1 

Original object 

Shearing XY- Axes 



We can represent XY-shearing in the form of matrix: 

 

 

 

     [X'    Y'    1] = [X    Y    1] *  

 

 

 

 

Note: for shearing an object, each vertex must multiply by XY-shearing matrix. 

 

 

 

 

 

 

 

 

Ex: A rectangle with A (3, 5), B (6, 5), C (3, 2) and D (6, 2). Find out the new 

coordinates of the rectangle along XY-axes? (Shearing factor 2 on X-axis and 3 

on Y-axis).  

 

Sol: 

       The coordinates of the rectangle = A (3, 5), B (6, 5), C (3, 2), D (6, 2)          

       Shearing Factor for X-axis, Shx = 2 

       Shearing Factor for Y-axis, Shy = 3 

           

        For A (3, 5) 

                  X' = X + Shx* Y 

                  X' = 3 + 2 * 5 = 13 

                  Y' = Y + Shy* X 

                  Y' = 5 + 3 * 3 = 14 

         The New Coordinates = (13, 14) 

 1        Shy           0 

Shx       1             0 

 0           0             1 

= 

X1   Y1   1 

X2   Y2   1 

X3   Y3   1 

 

* 

X1'   Y1'   1 

X2'   Y2'   1 

X3'   Y3'   1 

 

 1        Shy         0 

Shx       1           0 

 0           0           1 



        For B (6, 5) 

                  X' = X + Shx* Y 

                  X' = 6 + 2 * 5 = 16 

                  Y' = Y + Shy* X 

                  Y' = 5 + 3 * 6 = 23 

         The New Coordinates = (16, 23) 

        For C (3, 2) 

                  X' = X + Shx* Y 

                  X' = 3 + 2 * 2 = 7 

                  Y' = Y + Shy* X 

                  Y' = 2 + 3 * 3 = 11 

         The New Coordinates = (7, 11) 

        For D (6, 2) 

                  X' = X + Shx* Y 

                  X' = 6 + 2 * 2 = 10 

                  Y' = Y + Shy* X 

                  Y' = 2 + 3 * 6 = 20 

         The New Coordinates = (10, 20) 

 

                                                                

 

Shearing XY- Axes Original object 



Ex: A rectangle with A (3, 5), B (6, 5), C (3, 2) and D (6, 2). Find out the new 

coordinates of the rectangle along XY-axes using matrix 

representation? (Shearing factor 2 on X-axis and 3 on Y-axis).  

 

Sol: 

       The coordinates of the rectangle = A (3, 5), B (6, 5), C (3, 2), D (6, 2)          

       Shearing Factor for X-axis, Shx = 2 

       Shearing Factor for Y-axis, Shy = 3 

 

 

 

 

 

 

 

 

Very Useful Summery 

 A shearing transform. Although shears can in fact be built up out of rotation and 

scaling if necessary. A shear will "tilt" objects. A horizontal shear will tilt things 

towards the left (for negative shear) or right (for positive shear). A vertical shear tilts 

them up or down. 

 

H. W: A rectangle with A (3, 5), B (6, 5), C (3, 2) and D (6, 2). Find out the new 

coordinates of the rectangle along X-axis? (Shearing factor -2 on X-axis).  

 

H. W: A rectangle with A (-8, 7), B (-4, 7), C (-8, 3) and D (-4, 3). Find out the new 

coordinates of the rectangle along Y-axis? (Shearing factor 2 on Y-axis).  

 

H. W: Find out the new coordinates of the object along x-axis, y-axis, xy- axes. 

(Applying shear factor 4 on X-axis and 1 on Y-axis). The coordinates of the 

triangle are A (1, 1), B (0, 0), and C (1, 0). 

 

 

= 

3     5     1 

6     5     1 

3     2     1 

             6     2      1 

 

* 

13     14     1 

           16      23     1 

 7       11      1 

           10      20     1 

 

1           3           0 

2           1           0 

0           0           1 



Difference between scaling and shearing 

With scaling you can resize a geometry or a group of geometries uniformly or non-

uniformly. This gives you the ability to resize different components of your model 

relative to other components. Non-uniform scaling gives you ability to create more 

interesting shapes than were possible before – e.g. Ellipses and Ellipsoids. 

Shearing is another useful transform. It comes handy when you want to skew an 

object sideways while still keeping the surfaces in perpendicular direction flat. 

 

 

 

 

 


