
Computer Architecture

M.Sc. Namar A taha

3rd class

Lecture one

Von Neumann models

This is the summary of the core attributes of the Von Neumann computer

Architecture which is illustrated in fig -1. In modern computer the control

unit and ALU are part of the CPU

The Von Neumann Architecture is a design model for a stored program

digital computer. Its main characteristic is a single sperate storage

structure (memory) that holds both program and data.

Figure 1. The von Neumann architecture model

Some important feature of the von Neumann Architecture are:

1- Both instruction (code) and data (variable and input/ output) are

stored in memory

2- Memory is a collection of binary digits (bits) that have been

organized in to bytes, words, and region with addresses

3- The code instruction and all data have memory addresses

4- To execute each instruction, it has to be moved to registers

5- Only registers have the “smarts” to do anything with instruction;

memory location have no smarts

6- To save a result computed in the registers; has to be moved back to

memory

7- Operating systems and compilers keep the instruction and data in

memory organized so it doesn’t get mixed up together

Von Neumann model component

1- Memory -store data and program

2- Processing unit- performs the data processing

3- Input -means to enter data and program

4- Output – mean to extract result

5- Control unit -controls the order of the instruction execution

1- Memory

▪ 2
k

 x m array of stored bits

▪ Address

unique (k-bit) identifier of location

▪ Contents m-bit value stored in location

Basic Operations:

• LOAD

read a value from a memory location

• STORE

write a value to a memory location

How does processing unit get data to/from memory?

MAR: Memory Address Register

MDR: Memory Data Register

To LOAD a location (A):

1. Write the address (A) into the MAR.

2. Send a “read” signal to the memory.

3. Read the data from MDR.

To STORE a value (X) to a location (A):

1. Write the data (X) to the MDR.

2. Write the address (A) into the MAR.

3. a “write” signal to the memory

2- Processing Unit

In the simple form, it consist of two main parts

➢ ALU = Arithmetic and Logic Unit

could have many functional units some of them special-purpose (multiply, square

root, ADD, …)

➢ A temporary storage, typically a set of few registers for storing few words of

data.

The size of data item processed by the ALU is referred to as the word length, and

each data item is referred to as word

3- Input & output

In order for computer to process the information, the information it self

needs to be entered into the memory

In order for us to Know the results of processing the information, the

results need to be output in such a way that we can see them

In the simplest form, input and output device work with memory directly,

that is, an input device places a value into some memory location and

output device reads and displays a value from some memory location

4- Control unit

Directs the works of all other unit

Keeps track of which instruction is being execute and which instruction

will be processed next; for this it uses two spatial register

- Instruction register (IR) contains current instruction being executed

- Program counter (PC) register Keeps a pointer (address) to the next

instruction to be executed

Stored program concepts

- Program is stored in some part of computer memory as a sequence

of instruction

- Instruction are represented and stored in memory as binary words

- Control unit reads an instruction form the memory

The instruction

The most basic unit of computer processing

In the simplest form, consists of two parts

- Opcode (operation code)- a portion of a machine language

instruction that specifies the operation to be performed

- Operand – a part of machine language instruction that specifies

the data to be operated on

Von Neumann instruction cycle

Figure 2. Von Neumann instruction cycle

1- FETCH INSTRUCTION

- Load next instruction (at address stored in PC) from memory into

Instruction Register (IR).

- Copy contents of PC into MAR.

- Send “read” signal to memory.

- Copy contents of MDR into IR.

- Then increment PC, so that it points to the

- next instruction in sequence.

- PC becomes PC+1.

2- DECODE phase

 The instruction stored in IR is examined in order to decide what portion

of the microarchitecture needs to be involved in the execution of the

instruction

3- EVALUATE ADDRESS phase

• For instructions that require memory access, compute address used

for access

• Some instructions do not need this phase, e.g., instruction that

work directly with the register

4- FETCH OPERAND phase

• In this phase, the source operand needed to carry out the

instruction are obtained from memory

• For some instruction, this phase equal to loading values from

the register file

• For other, this phase involves loading operand from memory

5- EXECUTE phase

• Instruction is carried out

• Some instruction may not require this phase e.g., data

movement instructions for which all the work is actually

done in the FETCH OPERAND phase

6- STORE RESULT phase

Write results to destination. (register or memory)

7- After the six phases of the instruction cycle are done, the control

unit begins the next instruction cycle, starting with the new fetch

(instruction) phase

• Since the PC was previous incremented by one, it contains

the pointer to the next instruction to be fetched and executed

Advantage and Disadvantage of Von Neumann model

Disadvantage

Regarding disadvantages if we want to specify it is very less compared

to the advantages. The processor takes more time to execute as it has to

decide between the data and instruction as both are stored in same

memory and also, we have two types of memory access, first to access

data and next for instruction and vice versa. The above reason may also

lead to system crash as there may be confusion between data and

instruction

Advantages

Most of the modern disk-based operating system are based on von

Neumann architecture which has made handling computer and working

out computation easier. It also reduces the hardware requirements of the

system as such by reducing the no. of the buses required to read the data

and instruction separately from two different memories

We can also change the program (instruction) more easily with a single

I/O peripheral which also increases the system’s robustness.

Non-Von Neumann Architecture

Any computer architecture in which the underlying model of

computation is radically different from the classical Von Neumann

model. a non-Von Neumann machine may thus be without the concept

of sequential flow of control (i.e., without any register corresponding to

a program counter that indicate the current point that has been reached in

execution of program) and /or without concept of a variable (i.e.,

without named “storage location in which a value may be stored and

subsequently referenced or changed). Example of non-Von Neumann

machines are the data flow machines and the reduction machines. In

both of these cases there is a high degree of parallelism and instead of

variable there are immutable bindings between name and constant

values.

What is the Von Neumann architecture?

The Von Neumann model is as used in desktop computer

executes instruction sequentially. Von Neumann computation

are a class of computer program ideally suited to sequential

processing. Turing machines are very similar

Non-Von Neumann architecture

One example is MIMD architecture (multiple instruction / multiple

data), (multiple processors running in parallel)

Other example are analog computers, optical computers, quantum

computers, and neural network

242 CHAPTER EIGHT Central Processing Unit

bus system

Figure 8·1 Major components of CPU.

a task that in large part involves choosing the hardware for implementing the
machine instructions. The user who programs the computer in machine or
assembly language must be aware of the register set, the memory structure,
the type of data supported by the instructions, and the function that each
instruction performs.

Design examples of simple CPUs are carried out in Chaps. 5 and 7. This
chapter describes the organization and architecture of the CPU with an empha­
sis on the user's view of the computer. We briefly describe how the registers
communicate with the ALU through buses and explain the operation of the
memory stack. We then present the type of instruction formats available, the
addressing modes used to retrieve data from memory, and typical instructions
commonly incorporated in computers. The last section presents the concept of
reduced instruction set computer (RISQ.

s,z General Register Organization

In the programming examples of Chap. 6, we have shown that memory
locations are needed for storing pointers, counters, return addresses, tempo­
rary results, and partial products during multiplication. Having to refer to
memory locations for such applications is time consuming because memory
access is the most time-consumin\;, oqerati!lR i.R � <:.<'-w..�\'1!1. . \\).1; more conve­
nlent and more efficient to store these intermediate values in processor regis­
ters. When a large number of registers are included in the CPU, it is most
efficient to connect them through a common bus system. The registers commu­
nicate with each other not only for direct data transfers, but also while perform­
ing various microoperations. Hence it is necessary to provide a common unit
that can perform all the arithmetic, logic, and shift microoperations in the
processor.

A bus organization for seven CPU registers is shown in Fig. 8-2. The
output of each register is connected to two multiplexers (MUX) to form the two
buses A and B. The selection lines in each multiplexer select one register or the
input data for the particular bus. The A and B buses form the inputs to a

- Rl
,_ RZ

..._ R3

- R4
,_. RS
,_. R6
>-- R1

Load
(71i,..)

3x8
-

ttt
sao

[:: OPR ::

3 3 3

I SF.I..A I SELl! I SEI.D I OPR

(b)C<nrolwml

Bblll

l"ipft 8-2 Reciau .., with common ALU.

}saB

244 CHAPTER EIGHT Central Processing Unit

control word

common arithmetic logic unit (ALU). The operation selected in the ALU deter­
mines the arithmetic or logic microoperation that is to be performed. The result
of the microoperation is available for output data and also goes into the inputs
of all the registers. The register that receives the information from the output
bus is selected by a decoder. The decoder activates one of the register load
inputs, thus providing a transfer path between the data in the output bus and
the inputs of the selected destination register.

The control unit that operates the CPU bus system directs the information
flow through the registers and ALU by selecting the various components in the
system. For example, to perform the operation

R1 <-- R2 + R3

the control must provide binary selection variables to the following selector
inputs:

1. MUX A selector (SELA): to place the content of R2 into bus A .

2 . MUX B selector (SELB): to place the content o f R 3 into bus B .

3 . ALU operation selector (OPR): to provide the arithmetic addition
A + B .

4. Decoder destination selector (SELD): to transfer the content of the
output bus into R 1 .

The four control selection variables are generated i n the control unit and
must be available at the beginning of a clock cycle. The data from the two source
registers propagate through the gates in the multiplexers and the ALU, to the
output bus, and into the inputs of the destination register, all during the clock
cycle interval. Then, when the next clock transition occurs, the binary informa­
tion from the output bus is transferred into R 1. To achieve a fast response time,
the ALU is constructed with high-speed circuits. The buses are implemented
with multiplexers or three-state gates, as shown in Sec. 4-3.

Control Word
There are 14 binary selection inputs in the unit, and their combined value
specifies a control word. The 14-bit control word is defined in Fig. 8-2(b). It
consists of four fields. Three fields contain three bits each, and one field has
five bits. The three bits of SELA select a source register for the A input of the
ALU. The three bits of SELB select a register for the B input of the ALU. The
three bits of SELD select a destination register using the decoder and its seven
load outputs. The five bits of OPR select one of the operations in the ALU. The
14-bit control word when applied to the selection inputs specify a particular
microoperation.

The encoding of the register selections is specified in Table 8-1 . The 3-bit

ALU

SECTION 8-2 General Register Organization 245

TABLE 8 .. 1 Encoding of Register Selection Fields

Binary
Code SELA SELB SELD

000 Input Input None
001 R1 R1 R1
010 R2 R2 R2
011 R3 R3 R3
100 R4 R4 R4
101 R5 R5 R5
110 R6 R6 R6
111 R7 R7 R7

binary code listed in the first column of the table specifies the binary code for
each of the three fields. The register selected by fields SELA, SELB, and SELD
is the one whose decimal number is equivalent to the binary number in the
code. When SELA or SELB is 000, the corresponding multiplexer selects the
external input data. When SELD = 000, no destination register is selected but
the contents of the output bus are available in the external output.

The ALU provides arithmetic and logic operations. In addition, the CPU
must provide shift operations. The shifter may be placed in the input of the
ALU to provide a preshift capability, or at the output of the ALU to provide
postshifting capability. In some cases, the shift operations are included with
the ALU. An arithmetic logic and shift unit was designed in Sec. 4-7. The
function table for this ALU is listed in Table 4-8. The encoding of the ALU
operations for the CPU is taken from Sec. 4-7 and is specified in Table 8-2. The
OPR field has five bits and each operation is designated with a symbolic name.

TABLE 8-2 Encoding of ALU Operations

OPR
Select Operation Symbol

00000 Transfer A TSFA
00001 Increment A INCA
00010 Add A + B ADD
00101 Subtract A - B SUB
00110 Decrement A DECA
01000 AND A and B AND
01010 OR A and B OR
01100 XOR A and B XOR
01110 Complement A COMA
10000 Shift right A SHRA
11000 Shift left A SHLA

246 CHAPTIR EIGHT Centtal Processing Unit

Examples of Microoperations
A control word of 14 bits is needed to specify a rnicrooperation in the CPU. The
control word for a given microoperation can be derived from the selection
variables. For example, the subtract rnicrooperation given by the statement

R1 <-R2 - R3

specifies R2 for the A input of the ALU, R3 for the B input of the ALU, R1 for
the destination register, and an ALU operation to subtract A - B. Thus the
control word is specified by the four fields and the corresponding binary value
for each field is obtained from the encoding listed in Tables 8-1 and 8-2. The
binary control word for the subtract rnicrooperation is 010 011 001 00101 and
is obtained as follows:

Field:
Symbol:
Control word:

SELA SELB SELD OPR
R2 R3 R1 SUB
010 011 001 00101

The control word for this rnicrooperation and a few others are listed in
Table 8-3.

The increment and transfer rnicrooperations do not use the B input of the
ALU. For these cases, the B field is marked with a dash. We assign 000 to any
unused field when formulating the binary control word, although any other
binary number may be used. To place the content of a register into the output
terminals we place the content of the register into the A input of the ALU, but
none of the registers are selected to accept the data. The ALU operation TSFA
places the data from the register, through the ALU, into the output terminals.
The direct transfer from input to output is accomplished with a control word

TABLE 8�3 Examples of Microoperations for the CPU

Microoperation SELA

R1 <-- R2 - R3 R2
R4 <-- R4 V R5 R4
R6 <-- R6 + 1 R6
R7 <-- R 1 R 1
Output <-- R2 R2
Output <-- lnput Input
R4 <-- sh1 R4 R4
RS <-- 0 RS

Symbolic Designation

SELB

R3
R5

RS

SELD

R1
R4
R6
R7
None
None
R4
RS

OPR Control Word

SUB 010 011 001 00101
OR 100 101 100 01010
INCA 110 000 110 00001
TSFA 001 000 111 00000
TSFA 010 000 000 00000
TSFA 000 000 000 00000
SHLA 100 000 100 11000
XOR 101 101 101 01100

UFO

stack pointer

SECTION 8-3 Scack Organizarion 24 7

of all 0' s (making the B field 000). A register can be cleared to 0 with an
exclusive-OR operation. This is because x Ell x = 0.

It is apparent from these examples that many other microoperations can
be generated in the CPU. The most efficient way to generate control words with
a large number of bits is to store them in a memory unit. A memory unit that
stores control words is referred to as a control memory. By reading consecutive
control words from memory, it is possible to initiate the desired sequence of
microoperations for the CPU. This type of control is referred to as micropro­
grammed controL A microprogrammed control unit is shown in Fig. 7-8. The
binary control word for the CPU will come from the outputs of the control
memory marked "micro-ops."

8-3 Stack Organization

A useful feature that is included in the CPU of most computers is a stack or
last-in, first-out (UFO) list. A stack is a storage device that stores information
in such a manner that the item stored last is the first item retrieved. The
operation of a stack can be compared to a stack of trays. The last tray placed
on top of the stack is the first to be taken off.

The stack in digital computers is essentially a memory unit with an
address register that can count only (after an initial value is loaded into it). The
register that holds the address for the stack is called a stack pointer (SP) because
its value always points at the top item in the stack. Contrary to a stack of trays
where the tray itself may be taken out or inserted, the physical registers of a
stack are always available for reading or writing. It is the content of the word
that is inserted or deleted.

The two operations of a stack are the insertion and deletion of items. The
operation of insertion is called push (or push-down) because it can be thought
of as the result of pushing a new item on top. The operation of deletion is called
pop (or pop-up) because it can be thought of as the result of removing one item
so that the stack pops up. However, nothing is pushed or popped in a com­
puter stack. These operations are simulated by incrementing or decrementing
the stack pointer register.

Register Stack
A stack can be placed in a portion of a large memory or it can be organized as
a collection of a finite number of memory words or registers. Figure 8-3 shows
the organization of a 64-word register stack. The stack pointer register SP
contains a binary number whose value is equal to the address of the word that
is currently on top of the stack. Three items are placed in the stack: A, B, and
C, in that order. Item C is on top of the stack so that the content of SP is now
3. To remove the top item, the stack is popped by reading the memory word

302 CHAPTER NINE Pipeline and Vector Processing

an example

havioral characteristics of the computer system rather than its operational and
structural interconnections. One type of parallel processing that does not fit
Flynn's classification is pipelining. The only two categories used from this
classification are SIMD array processors discussed in Sec. 9-7, and MIMD
multiprocessors presented in Chap. 13.

In this chapter we consider parallel processing under the following main
topics:

1. Pipeline processing

2. Vector processing

3. Array processors

Pipeline processing is an implementation technique where arithmetic suboper­
ations or the phases of a computer instruction cycle overlap in execution.
Vector processing deals with computations involving large vectors and ma­
trices. Array processors perform computations on large arrays of data.

9-2 Pipelining

Pipelining is a technique of decomposing a sequential process into subopera­
tions, with each subprocess being executed in a special dedicated segment that
operates concurrently with all other segments. A pipeline can be visualized as
a collection of processing segments through which binary information flows.
Each segment performs partial processing dictated by the way the task is
partitioned. The result obtained from the computation in each segment is
transferred to the next segment in the pipeline. The final result is obtained after
the data have passed through all segments. The name "pipeline" implies a
flow of information analogous to an industrial assembly line. It is characteristic
of pipelines that several computations can be in progress in distinct segments
at the same time. The overlapping of computation is made possible by associ­
ating a register with each segment in the pipeline. The registers provide
isolation between each segment so that each can operate on distinct data
simultaneously.

Perhaps the simplest way of viewing the pipeline structure is to imagine
that each segment consists of an input register followed by a combinational
circuit. The register holds the data and the combinational circuit performs the
suboperation in the particular segment. The output of the combinational circuit
in a given segment is applied to the input register of the next segment. A clock
is applied to all registers after enough time has elapsed to perform all segment
activity. In this way the information flows through the pipeline one step at a
time.

The pipeline organization will be demonstrated by means of a simple

SECTION 9·2 Pipelining 303

example. Suppose that we want to perform the combined multiply and add
operations with a stream of numbers.

A, • B, + C, for i = 1, 2, 3, . . . , 7

Each suboperation is to be implemented in a segment within a pipeline. Each
segment has one or two registers and a combinational circuit as shown in Fig.
9-2. R 1 through RS are registers that receive new data with every clock pulse.
The multiplier and adder are combinational circuits. The suboperations per­
formed in each segment of the pipeline are as follows:

R 1 <-- A,, R2 <-- B,

R3 <-- R 1 • R2, R4 <-- C,

R5 <-- R3 + R4

Input A, and B,

Multiply and input C,

Add C; to product

The five registers are loaded with new data every clock pulse. The effect of each
clock is shown in Table 9-1 . The first clock pulse transfers A1 and 81 into R 1 and

Figure 9�2 Example of pipeline processing.

A; B, C;

304 CHAPTER NINE Pipeline and Vector Processing

TABLE 9 .. 1 Content of Registers in Pipeline Example

Clock Segment 1 Segment 2 Segment 3
Pulse

Number R l RZ R3 R4 R5

A, B,
2 A, B, A1 * B1 c,
3 A, B, A2 * B2 c, At * Bl + C1
4 A, B, A3 * BJ c, A2 * B2 + C2
5 As Bs A4 * B4 c, Al * Bl + C3
6 A, B, As * Bs c, A4 * B4 + C4
7 A, B, A6 * B6 c, As * Bs + Cs
8 A, * B, c, A6 * B6 + C6
9 A1 * B1 + C,

R2. The second dock pulse transfers the product of R 1 and R2 into R3 and C1
into R4. The same clock pulse transfers A2 and B2 into R 1 and R2. The third
clock pulse operates on all three segments simultaneously. It places A, and B,
into R1 and R2, transfers the product of R1 and R2 into R3, transfers C, into
R4, and places the sum of R3 and R4 into RS. It takes three clock pulses to fill
up the pipe and retrieve the first output from RS. From there on, each dock
produces a new output and moves the data one step down the pipeline. This
happens as long as new input data flow into the system. When no more input
data are available, the clock must continue until the last output emerges out
of the pipeline.

General Considerations
Any operation that can be decomposed into a sequence of suboperations of
about the same complexity can be implemented by a pipeline processor. The
technique is efficient for those applications that need to repeat the same task
many times with clifferent sets of data. The general structure of a four-segment
pipeline is illustrated in Fig. 9-3. The operands pass through all four segments
in a fixed sequence. Each segment consists of a combinational circuit S; that
performs a suboperation over the data stream flowing through the pipe. The
segments are separated by registers R; that hold the intermediate results
between the stages. Information flows between adjacent stages under the
control of a common clock applied to all the registers simultaneously. We

task define a task as the total operation performed going through all the segments
in the pipeline.

space-tiltU! diagram The behavior of a pipeline can be illustrated with a space-time diagram.
This is a cliagram that shows the segment utilization as a function of time. The
space-time cliagram of a four-segment pipeline is demonstrated in Fig. 9-4. The
horizontal axis clisplays the time in clock cycles and the vertical axis gives the

speedup

SECTION 9-2 Pipelining 305

Figure 9�3 Four�segment pipeline.

segment number. The diagram shows six tasks T1 through T6 executed in four
segments. Initially, task 1i is handled by segment 1. After the first clock,
segment 2 is busy with T,, while segment 1 is busy with task T2• Continuing
in this manner, the first task T1 is completed after the fourth clock cycle. From
then on, the pipe completes a task every clock cycle. No matter how many
segments there are in the system, once the pipeline is full, it takes only one
clock period to obtain an output.

Now consider the case where a k-segment pipeline with a clock cycle time
t, is used to execute n tasks. The first task T1 requires a time equal to kt, to
complete its operation since there are k segments in the pipe. The remaining
n - 1 tasks emerge from the pipe at the rate of one task per clock cycle and
they will be completed after a time equal to (n - 1)t, . Therefore, to complete
n tasks using a k-segment pipeline requires k + (n - 1) clock cycles. For exam­
ple, the diagram of Fig. 9-4 shows four segments and six tasks. The time
required to complete all the operations is 4 + (6 - 1) = 9 clock cycles, as
indicated in the diagram.

Next consider a nonpipeline unit that performs the same operation and
takes a time equal to t. to complete each task. The total time required for n tasks
is nt •. The speedup of a pipeline processing over an equivalent nonpipeline
processing is defined by the ratio

I 2

Segment: T, T,

T,

5 =
nt.

(k + n - 1)t,

Figure 9�4 Space�time diagram for pipeline.

3 4 5 6 7 8

T, T, Ts T,

T, T, T, Ts T,

T, T, T, T, Ts T,

T, T, T, T, Ts

9
Clock cycles

T,

306 CHAPTER NINE Pipeline and Vector Processing

As the number of tasks increases, n becomes much larger than k - 1, and
k + n - 1 approaches the value of n. Under this condition, the speedup
becomes

5 = !_,_
t,

If we assume that the time it takes to process a task is the same in the pipeline
and non pipeline circuits, we will have t, = kt,. Including this assumption, the
speedup reduces to

s = � = k
t,

This shows that the theoretical maximum speedup that a pipeline can provide
is k, where k is the number of segments in the pipeline.

To clarify the meaning of the speedup ratio, consider the following
numerical example. Let the time it takes to process a suboperation in each
segment be equal to t, = 20 ns. Assume that the pipeline has k = 4 seg­
ments and executes n = 100 tasks in sequence. The pipeline system will take
(k + n - 1)t, = (4 + 99) x 20 = 2060 ns to complete. Assuming that t, =
kt, = 4 x 20 = 80 ns, a non pipeline system requires nkt, = 100 x 80 = 8000 ns
to complete the 100 tasks. The speedup ratio is equal to 8000/2060 = 3 .88. As
the number of tasks increases, the speedup will approach 4, which is equal to
the number of segments in the pipeline. If we assume that t, = 60 ns, the
speedup becomes 60/20 = 3 .

To duplicate the theoretical speed advantage of a pipeline process by
means of multiple functional units, it is necessary to construct k identical units
that will be operating in parallel. The implication is that a k-segment pipeline
processor can be expected to equal the performance of k copies of an equivalent
nonpipeline circuit under equal operating conditions. This is illustrated in
Fig. 9-5, where four identical circuits are connected in parallel. Each P circuit
performs the same task of an equivalent pipeline circuit. Instead of operating
with the input data in sequence as in a pipeline, the parallel circuits acceptfour
input data items simultaneously and perform four tasks at the same time.
As far as the speed of operation is concerned, this is equivalent to a four
segment pipeline. Note that the four-unit circuit of Fig. 9-5 constitutes a
single-instruction multiple-data (SIMD) organization since the same instruc­
tion is used to operate on multiple data in parallel.

There are various reasons why the pipeline cannot operate at its maxi­
mum theoretical rate. Different segments may take different times to complete
their suboperation. The clock cycle must be chosen to equal the time delay of
the segment with the maximum propagation time. This causes all other seg­
ments to waste time while waiting for the next clock. Moreover, it is not always

I;

P,

SECTION 9-3 Arithmetic Pipeline 307

Figure 9�5 Multiple functional units in parallel.

correct to assume that a nonpipe circuit has the same time delay as that of an
equivalent pipeline circuit. Many of the intermediate registers will not be
needed in a single-unit circuit, which can usually be constructed entirely as a
combinational circuit. Nevertheless, the pipeline technique provides a faster
operation over a purely serial sequence even though the maximum theoretical
speed is never fully achieved.

There are two areas of computer design where the pipeline organization
is applicable. An arithmetic pipeline divides an arithmetic operation into sub­
operations for execution in the pipeline segments. An instruction pipeline oper­
ates on a stream of instructions by overlapping the fetch, decode, and execute
phases of the instruction cycle. The two types of pipelines are explained in the
following sections.

9-3 Arithmetic Pipeline

Pipeline arithmetic units are usually found in very high speed computers. They
are used to implement floating-point operations, multiplication of fixed-point
numbers, and similar computations encountered in scientific problems. A
pipeline multiplier is essentially an array multiplier as described in Fig. 10-10,
with special adders designed to minimize the carry propagation time through
the partial products. Floating-point operations are easily decomposed into
suboperations as demonstrated in Sec. 10-5. We will now show an example of
a pipeline unit for floating-point addition and subtraction.

The inputs to the floating-point adder pipeline are two normalized float­
ing-point binary numbers.

X = A X 2'

Y = 8 X 2'

308 CHAPTER NINE Pipeline and Vector Processing

A and B are two fractions that represent the mantissas and a and b are the
exponents. The floating-point addition and subtraction can be performed in
four segments, as shown in Fig. 9-6. The registers labeled R are placed between
the segments to store intermediate results. The suboperations that are per­
formed in the four segments are:

1. Compare the exponents.

2. Align the mantissas.

3. Add or subtract the mantissas.

4. Normalize the result.

This follows the procedure outlined in the flowchart of Fig. 10-15 but with some
variations that are used to reduce the execution time of the suboperations. The
exponents are compared by subtracting them to determine their difference.
The larger exponent is chosen as the exponent of the result. The exponent
difference determines how many times the mantissa associated with the
smaller exponent must be shifted to the right. This produces an alignment of
the two mantissas. It should be noted that the shift must be designed as a
combinational circuit to reduce the shift time. The two mantissas are added or
subtracted in segment 3. The result is normalized in segment 4. When an
overflow occurs, the mantissa of the sum or difference is shifted right and the
exponent incremented by one. If an underflow occurs, the number of leading
zeros in the mantissa determines the number of left shifts in the mantissa and
the number that must be subtracted from the exponent.

The following numerical example may clarify the suboperations per­
formed in each segment. For simplicity, we use decimal numbers, although
Fig. 9-6 refers to binary numbers. Consider the two normalized floating-point
numbers:

X = 0.9504 X 10'

Y = 0.8200 X 1<J1

The two exponents are subtracted in the first segment to obtain 3 - 2 = 1. The
larger exponent 3 is chosen as the exponent of the result. The next segment
shifts the mantissa of Y to the right to obtain

X = 0.9504 X 103

Y = 0.0820 X 103

This aligns the two mantissas under the same exponent. The addition of the
two mantissas in segment 3 produces the sum

Z = 1 .0324 X 10'

Sepn<rll l;

Scpxor2:

Sqment 3:

$qrncnl4:

-
A

3 10 CHAPTER NINE Pipeline and Vector Processing

insttvction cycle

The sum is adjusted by normalizing the result so that it has a fraction with a
nonzero first digit. This is done by shifting the mantissa once to the right and
incrementing the exponent by one to obtain the normalized sum.

Z = 0.10324 X 10'

The comparator, shifter, adder-subtractor, incrementer, and decrementer in
the floating-point pipeline are implemented with combinational circuits. Sup­
pose that the timedelaysof the four segments are t, = 60 ns, t2 = 70 ns, t3 = 100
ns, t4 = 80 ns, and the interface registers have a delay of t, = 10 ns. The dock
cycle is chosen to be t, = t3 + t, = 110 ns. An equivalent nonpipeline floating­
point adder-subtractor will have a delay time t, = t, + t2 + t, + t4 + t, = 320
ns. In this case the pipelined adder has a speedup of 3201110 = 2. 9 over the
nonpipelined adder.

9-4 Instruction Pipeline

Pipeline processing can occur not only in the data stream but in the instruction
stream as well. An instruction pipeline reads consecutive instructions from
memory while previous instructions are being executed in other segments.
This causes the instruction fetch and execute phases to overlap and perform
simultaneous operations. One possible digression associated with such a
scheme is that an instruction may cause a branch out of sequence. In that case
the pipeline must be emptied and all the instructions that have been read from
memory after the branch instruction must be discarded.

Consider a computer with an instruction fetch unit and an instruction
execution unit designed to provide a two-segment pipeline. The instruction
fetch segment can be implemented by means of a first-in, first-out (FIFO)
buffer. This is a type of unit that forms a queue rather than a stack. Whenever
the execution unit is not using memory, the control increments the program
counter and uses its address value to read consecutive instructions from mem­
ory. The instructions are inserted into the FIFO buffer so that they can be
executed on a first-in, first-out basis. Thus an instruction stream can be placed
in a queue, waiting for decoding and processing by the execution segment. The
instruction stream queuing mechanism provides an efficient way for reducing
the average access time to memory for reading instructions. Whenever there
is space in the FIFO buffer, the control unit initiates the next instruction fetch
phase. The buffer acts as a queue from which control then extracts the instruc­
tions for the execution unit.

Computers with complex instructions require other phases in addition to
the fetch and execute to process an instruction completely. In the most general
case, the computer needs to process each instruction with the following se­
quence of steps.

SECTION 9-4 Instruction Pipeline 3 1 1

1. Fetch the instruction from memory.

2. Decode the instruction.

3. Calculate the effective address.

4. Fetch the operands from memory.

5. Execute the instruction.

6. Store the result in the proper place.

There are certain difficulties that will prevent the instruction pipeline
from operating at its maximum rate. Different segments may take different
times to operate on the incoming information. Some segments are skipped for
certain operations. For example, a register mode instruction does not need an
effective address calculation. Two or more segments may require memory
access at the same time, causing one segment to wait until another is finished
with the memory. Memory access conflicts are sometimes resolved by using
two memory buses for accessing instructions and data in separate modules. ln
this way, an instruction word and a data word can be read simultaneously from
two different modules.

The design of an instruction pipeline will be most efficient if the instruc­
tion cycle is divided into segments of equal duration. The time that each step
takes to fulfill its function depends on the instruction and the way itis executed.

Example: Four-Segment Instruction Pipeline
Assume that the decoding of the instruction can be combined with the calcu­
lation of the effective address into one segment. Assume further that most of
the instructions place the result into a processor register so that the instruction
execution and storing of the result can be combined into one segment. This
reduces the instruction pipeline into four segments.

Figure 9-7 shows how the instruction cycle in the CPU can be processed
with a four-segment pipeline. While an instruction is being executed in seg­
ment 4, the next instruction in sequence is busy fetching an operand from
memory in segment 3. The effective address may be calculated in a separate
arithmetic circuit for the third instruction, and whenever the memory is avail­
able, the fourth and all subsequent instructions can be fetched and placed in
an instruction FIFO. Thus up to four suboperations in the instruction cycle can
overlap and up to four different instructions can be in progress of being
processed at the same time.

Once in a while, an instruction in the sequence may be a program control
type that causes a branch out of normal sequence. In that case the pending
operations in the last two segments are completed and all information stored
in the instruction buffer is deleted. The pipeline then restarts from the new
address stored in the program counter. Similarly, an interrupt request, when
acknowledged, will cause the pipeline to empty and start again from a new
address value.

312 OW'TEll. NINE Pipeline and Vecmr Processina

Figure 9-8 shows the operation of the instruction pipetine. The time in the
horizontal axis is divided into steps of equal duration. The four segments are
represented in the diagram with an abbreviated symbol.

1. Fl is the segment that fetches an instruction.

2. DA is the segment that decodes the instruction and calculates the
effective address.

3. FO is the segment that fetches the operand.

4. EX is the segment that executes the instruction.

It is assumed that the processor has separate instruction and data memories
so that the operation in Fl and FO can proceed at the same time. In the absence

pipeline conflicts

Step: I 2 3

Ins truction: I FI DA FO

2 FI DA

4 5 6

EX

FO EX

SECTION 9-4 Instruction Pipeline 3 1 3

7 8 9 1 0 I I I 2 I 3

(Branch) 3 FI DA FO EX

4 FI - - FI DA FO EX

5 - - - Fl DA FO EX

6 FI DA FO EX

7 Fl DA FO EX

Figure 9�8 Timing of instruction pipeline.

of a branch instruction, each segment operates on different instructions. Thus,
in step 4, instruction 1 is being executed in segment EX; the operand for
instruction 2 is being fetched in segment FO; instruction 3 is being decoded in
segment DA; and instruction 4 is being fetched from memory in segment FL

Assume now that instruction 3 is a branch instruction. As soon as this
instruction is decoded in segment DA in step 4, the transfer from FI to DA of
the other instructions is halted until the branch instruction is executed in step
6. If the branch is taken, a new instruction is fetched in step 7. If the branch
is not taken, the instruction fetched previously in step 4 can be used. The
pipeline then continues until a new branch instruction is encountered.

Another delay may occur in the pipeline if the EX segment needs to store
the result of the operation in the data memory while the FO segment needs
to fetch an operand. In that case, segment FO must wait until segment EX has
finished its operation.

In general, there are three major difficulties that cause the instruction
pipeline to deviate from its normal operation.

1. Resource conflicts caused by access to memory by two segments at the
same time. Most of these conflicts can be resolved by using separate
instruction and data memories.

2. Data dependency conflicts arise when an instruction depends on the
result of a previous instruction, but this result is not yet available.

3. Branch difficulties arise from branch and other instructions that change
the value of PC.

Data Dependency
A difficulty that may caused a degradation of performance in an instruction
pipeline is due to possible collision of data or address. A collision occurs when

3 14 CHAPTER NINE Pipeline and Vector Processing

an instruction cannot proceed because previous instructions did not complete
certain operations. A data dependency occurs when an instruction needs data
that are not yet available. For example, an instruction in the FO segment may
need to fetch an operand that is being generated at the same time by the
previous instruction in segment EX. Therefore, the second instruction must
wait for data to become available by the first instruction. Similarly, an address
dependency may occur when an operand address cannot be calculated because
the information needed by the addressing mode is not available. For example,
an instruction with register indirect mode cannot proceed to fetch the operand
if the previous instruction is loading the address into the register. Therefore,
the operand access to memory must be delayed until the required address is
available. Pipelined computers deal with such conflicts between data depen­
dencies in a variety of ways.

hardware interlocks The most straightforward method is to insert hardware interlocks . An
interlock is a circuit that detects instructions whose source operands are des­
tinations of instructions farther up in the pipeline. Detection of this situation
causes the instruction whose source is not available to be delayed by enough
clock cycles to resolve the conflict. This approach maintains the program
sequence by using hardware to insert the required delays.

operand forwarding Another technique called operand forwarding uses special hardware to
detect a conflict and then avoid it by routing the data through special paths
between pipeline segments. For example, instead of transferring an ALU result
into a destination register, the hardware checks the destination operand, and
if it is needed as a source in the next instruction, it passes the result directly
into the ALU input, bypassing the register ffie. This method requires additional
hardware paths through multiplexers as well as the circuit that detects the
conflict.

A procedure employed in some computers is to give the responsibility for
solving data conflicts problems to the compiler that translates the high-level
programming language into a machine language program. The compiler for
such computers is designed to detect a data conflict and reorder the instruc­
tions as necessary to delay the loading of the conflicting data by inserting

delayed load no-operation instructions. This method is referred to as delayed load. An exam­
ple of delayed load is presented in the next section.

Handling of Branch Instructions
One of the major problems in operating an instruction pipeline is the occur­
rence of branch instructions. A branch instruction can be conditional or uncon­
ditional. An unconditional branch always alters the sequential program flow
by loading the program counter with the target address. In a conditional
branch, the control selects the target instruction if the condition is satisfied or
the next sequential instruction if the condition is not satisfied. As mentioned
previously, the branch instruction breaks the norrnal sequence of the instruc­
tion stream, causing difficulties in the operation of the instruction pipeline.

prefetch target
instruction

branch target buffer

loop buffer

branch prediction

tklayed branch

SECTION 9-5 RlSC Pipeline 3 15

Pipelined computers employ various hardware techniques to minimize the
performance degradation caused by instruction branching.

One way of handling a conditional branch is to prefetch the target instruc­
tion in addition to the instruction following the branch. Both are saved until
the branch is executed. If the branch condition is successful, the pipeline
continues from the branch target instruction. An extension of this procedure
is to continue fetching instructions from both places until the branch decision
is made. At that time control chooses the instruction stream of the correct
program flow.

Another possibility is the use of a branch target buffer or BTB. The BTB is
an associative memory (see Sec. 12-4) included in the fetch segment of the
pipeline. Each entry in the BTB consists of the address of a previously executed
branch instruction and the target instruction for that branch. It also stores the
next few instructions after the branch target instruction. When the pipeline
decodes a branch instruction, it searches the associative memory BTB for the
address of the instruction. If it is in the BTB, the instruction is available directly
and prefetch continues from the new path. If the instruction is not in the BTB,
the pipeline shifts to a new instruction stream and stores the target instruction
in the BTB. The advantage of this scheme is that branch instructions that have
occurred previously are readily available in the pipeline without interruption.

A variation of the BTB is the loop buffer. This is a small very high speed
register file maintained by the instruction fetch segment of the pipeline. When
a program loop is detected in the program, it is stored in the loop buffer in its
entirety, including all branches. The program loop can be executed directly
without having to access memory until the loop mode is removed by the final
branching out.

Another procedure that some computers use is branch prediction . A
pipeline with branch prediction uses some additional logic to guess the out­
come of a conditional branch instruction before it is executed. The pipeline then
begins prefetching the instruction stream from the predicted path. A correct
prediction eliminates the wasted time caused by branch penalties.

A procedure employed in most ruse processors is the deli<yed branch . In
this procedure, the compiler detects the branch instructions and rearranges the
machine language code sequence by inserting useful instructions that keep the
pipeline operating without interruptions. An example of delayed branch is the
insertion of a no-operation instruction after a branch instruction. This causes
the computer to fetch the target instruction during the execution of the no­
operation instruction, allowing a continuous flow of the pipeline. An example
of delayed branch is presented in the next section.

9-5 RISC Pipeline

The reduced instruction set computer (ruSq was introduced in Sec. 8-8 .
Among the characteristics attributed to ruse is its ability to use an efficient
instruction pipeline. The simplicity of the instruction set can be utilized to

