Computer Architecture
M.Sc. Namar A taha

3'dclass

Lecture one

VVon Neumann models

This_is the summary of the core attributes of the Von Neumann computer
Architecture which is illustrated in fig -1. In modern computer the control
unit and ALU are part of the CPU

The Von Neumann_Architecture is a design model for a stored program
digital computer. Its main characteristic is a single sperate storage
structure (memory) that holds both program and data.

MEMORY
s [MAR MDR
INPUT | | OUTPUT
Keyboard Monitor
Mouse PROCESSING UNIT Printer
Scanner LED
Disk \Aru/ [TEMP Disk

CONTROL UNIT

P(::> IR

Figure 1. The von Neumann architecture model

Some important feature of the von Neumann Architecture are:

1- Both instruction (code) and data (variable and input/ output) are
stored in memory

2- Memory is a collection of binary digits (bits) that have been
organized in to bytes, words, and region with addresses

3- The code instruction and all data have memory addresses

4- To execute each instruction, it has to be moved to registers

5- Only registers have the “smarts” to do anything with instruction;
memory location have no smarts

6- To save a result computed in the registers; has to be moved back to
memory

7- Operating systems and compilers keep the instruction and data in
memory organized so it doesn’t get mixed up together

VVon Neumann model component

1

Memory -store data and program

Processing unit- performs the data processing

Input -means to enter data and program

Output — mean to extract result

Control unit -controls the order of the instruction execution

TR

1- Memory
. 2k X m array of stored bits

0000
0001
0010
0011 00101101
0100
0101
0110

10100010

[g §
- b -

01
10
11

= Address
unique (k-bit) identifier of location
= Contents m-bit value stored in location

Basic Operations:
e LOAD
read a value from a memory location
e STORE
write a value to a memory location
How does processing unit get data to/from memory?
MAR: Memory Address Register
MDR: Memory Data Register
To LOAD a location (A):
1. Write the address (A) into the MAR.
2. Send a “read” signal to the memory.
3. Read the data from MDR.
To STORE a value (X) to a location (A):

MEMORY
MAR MDR

1. Write the data (X) to the MDR.
2. Write the address (A) into the MAR.

3. a “write” signal to the memory

2- Processing Unit

In the simple form, it consist of two main parts
» ALU = Arithmetic and Logic Unit

could have many functional units some of them special-purpose (multiply, square
root, ADD, ...)

> A temporary storage, typically a set of few registers for storing few words of
data.

The size of data item processed by the ALU is referred to as the word length, and
each data item is referred to as word

3- Input & output

In order_for computer to process the information, the information it self
needs to be entered into the memory

In order for us to Know the results of processing the information, the
results need to be output in such a way that we can see them

In the simplest form, input and output device work with memory directly,
that is, an input device places a value into some memory location and
output device reads and displays a value from some memory location

INPUT OUTPUT
Keyboard Monitor
Mouse Printer
Scanner LED

Disk Disk

4- Control unit

Directs the works of all other unit

Keeps track of which instruction is being execute and which instruction
will be processed next; for this it uses two spatial register

- Instruction register (IR) contains current instruction being executed
- Program counter (PC) register Keeps a pointer (address) to the next
instruction to be executed

Stored program concepts

- Program is stored in some part of computer memory as a sequence

of instruction
- Instruction are represented and stored in memory as binary words
- Control unit reads an instruction form the memory

The instruction

The most basic unit of computer processing
In the simplest form, consists of two parts

- Opcode (operation code)- a portion of a machine language
instruction that specifies the operation to be performed

- Operand — a part of machine language instruction that specifies
the data to be operated on

VVon Neumann instruction cycle

Fetch instruction from memory

v

Decode instruction

'

Evaluate address

v

Fetch operands from memory

v

Execute operation

v

Store result

L]

Figure 2. Von Neumann instruction cycle

1-

2-

FETCH INSTRUCTION

Load next instruction (at address stored in PC) from memory into
Instruction Register (IR).

Copy contents of PC into MAR.

Send “read” signal to memory.

Copy contents of MDR into IR.

Then increment PC, so that it points to the
next instruction in sequence.

PC becomes PC+1.

DECODE phase

The instruction stored in IR is examined in order to decide what portion
of the microarchitecture needs to be involved in the execution of the
instruction

3-

4-

5-

EVALUATE ADDRESS phase

For instructions that require memory access, compute address used
for access

Some instructions do not need this phase, e.g., instruction that
work directly with the register

FETCH OPERAND phase
e In this phase, the source operand needed to carry out the
instruction are obtained from memory
e For some instruction, this phase equal to loading values from
the register file
e For other, this phase involves loading operand from memory
EXECUTE phase
e Instruction is carried out

e Some instruction may not require this phase e.g., data
movement instructions for which all the work is actually
done in the FETCH OPERAND phase

6- STORE RESULT phase
Write results to destination. (register or memory)

7- After the six phases of the instruction cycle are done, the control
unit begins the next instruction cycle, starting with the new fetch
(instruction) phase

e Since the PC was previous incremented by one, it contains
the pointer to the next instruction to be fetched and executed

Advantage and Disadvantage of Von Neumann model

Disadvantage

Regarding disadvantages if we want to specify it is very less compared
to the advantages. The processor takes more time to execute as it has to
decide between the data and instruction as both are stored in same
memory and also, we have two types of memory access, first to access
data and next for instruction and vice versa. The above reason may also
lead to system crash as there may be confusion between data and
instruction

Advantages

Most of the modern disk-based operating system are based on von
Neumann architecture which has made handling computer and working
out computation easier. It also reduces the hardware requirements of the
system as such by reducing the no. of the buses required to read the data
and instruction separately from two different memories

We can also change the program (instruction) more easily with a single
I/0O peripheral which also increases the system’s robustness.

Non-VVon Neumann Architecture

Any computer architecture in which the underlying model of
computation is radically different from the classical Von Neumann
model. a non-Von Neumann machine may thus be without the concept
of sequential flow of control (i.e., without any register corresponding to
a program counter that indicate the current point that has been reached in
execution of program) and /or without concept of a variable (i.e.,
without named “storage location in which a value may be stored and
subsequently referenced or changed). Example of non-VVon Neumann
machines are the data flow machines and the_reduction machines. In
both of these cases there is a high degree of parallelism and instead of
variable there are immutable bindings between name and constant
values.

What is the Von Neumann architecture?

The Von Neumann model is as used in desktop computer
executes instruction sequentially. Von Neumann computation
are a class of computer program ideally suited to sequential
processing. Turing machines are very similar

Non-VVon Neumann architecture

One example is MIMD architecture (multiple instruction / multiple
data), (multiple processors running in parallel)

Other example are analog computers, optical computers, quantum
computers, and neural network

—_— CHAPTER TWELVE f————

Memory Organization

IN THIS CHAPTER

12-1 Memory Hierarchy
122 Main Memory

12-3 Auxiliary Memory
1244 Associative Memory

12.5 Cache Memory
126 Virtual Memory
lL? A, ¥ A :l .

12-1 Memory Hierarchy

The memory unit is an essential component in any digital computer since it is
needed for storing programs and data. A very small computer with a limited
application may be able to fulfill its intended task without the need of addi-
tional storage capacity. Most general-purpose computers would run more
efficiently if they were equipped with additional storage beyond the capacity
of the main memory. There is just not enough space in one memory unit to
accommodate all the programs used in a typical computer. Moreover, most
computer users accumulate and continue to acc large its of
data-processing software. Not all accumulated information is needed by the
processor at the same time. Therefore, it is more economical to use low-cost
storage devices to serve as a backup for storing the information that is not
currently used by the CPU. The memory unit that communicates directly with
the CPU is called the main memory. Devices that provide backup storage are
ca!bdau.nharymmry The most common auxiliary memory devices used in
comp systems are tic disks and tapes. They are used for storing
system programs,]argedam files, and other backup information. Only pro-
grams and data currently needed by the processor reside in main memory. All

445

446 CHAPTER TWELVE Memory Organization

cache memory

other information is stored in auxiliary yand t ferred to main mem-
ory when needed.

The total memory capacity of a computer can be visualized as being a
hierarchy of components. The memory hierarchy system consists of all storage
devices employed in a computer system from the slow but high-capacity
auxiliary memory to a relatively faster main memory, to an even smaller and
faster cache memory accessible to the high-speed processing logic. Figure 12-1
illustrates the components in a typical memory hierarchy. At the bottom of the
hierarchy are the relatively slow magnetic tapes used to store removable files.
Next are the magnetic disks used as backup storage. The main memory occu-
pies a central position by being able to communicate directly with the CPU and
with auxiliary memory devices through an 'O processor. When programs not
residing in main memory are needed by the CPU, they are brought in from
auxiliary memory. Programs not currently needed in main memory are trans-
ferred into auxiliary memory to provide space for currently used programs and
data.

A special very-high-speed memory called a cache is sometimes used to
increase the speed of processing by making current programs and data avail-
able to the CPU at a rapid rate. The cache memory is employed in computer
systems to compensate for the speed differential between main memory access
time and processor logic. CPU logic is usually faster than main memory access
time, with the result that processing speed is limited primarily by the speed
of main memory. A technique used to comp for the mismatch in oper-
ating speeds is to employ an extremely fast, small cache between the CPU and
main memory whose access time is close to processor logic clock cycle time.
The cache is used for storing segments of programs currently being executed
in the CPU and temporary data frequently needed in the present calculations.

Figure 12-1 Memory hierarchy in a computer system.

Auxiliary memory
Magnetic
npes
110 proccssor Main

multiprogramming

SECTION 121 Memory Hierarchy 447

By making programs and data available at a rapid rate, it is possible to increase
the performance rate of the computer.

While the /O processor manages data transfers between auxiliary mem-
ory and main memory, the cache organization is concerned with the transfer
of information between main memory and CPU. Thus each is involved with
a different level in the memory hierarchy system. The reason for having two
or three levels of memory hierarchy is economics. As the storage capacity of
the memory increases, the cost per bit for storing binary information decreases
and the access time of the memory becomes longer. The auxiliary memory has
a large storage capacity, is relatively inexpensive, but has low access speed
compared to main memory. The cache memory is very small, relatively expen-
sive, and has very high access speed. Thus as the memory access speed
increases, so does its relative cost. The overall goal of using a memory hierarchy
is to obtain the highest-possible average access speed while minimizing the
total cost of the entire memory system.

Auxiliary and cache memories are used for different purposes. The cache
holds those parts of the program and data that are most heavily used, while
the auxiliary memory holds those parts that are not presently used by the CPU.
Moreover, the CPU has direct access to both cache and main memory but not
to auxiliary memory. The transfer from auxiliary to main memory is usually
done by means of direct memory access of large blocks of data. The typical
access time ratio between cache and main memory is about 1 to 7. For example,
a typical cache memory may have an access time of 100 ns, while main memory
access time may be 700 ns. Auxiliary memory average access time is usually
1000 times that of main memory. Block size in auxiliary memory typically
ranges from 256 to 2048 words, while cache block size is typically from 1 to 16
words.

Many operating systems are designed to enable the CPU to process a
number of independent programs concurrently. This concept, called multipro-
gramming, refers to the existence of two or more programs in different parts
of the memory hierarchy at the same time. In this way it is possible to keep
all parts of the computer busy by working with several programs in sequence.
For example, suppose that a program is being executed in the CPU and an /O
transfer is required. The CPU initiates the /O processor to start executing the
transfer. This leaves the CPU free to execute another program. In a multipro-
gramming system, when one program is waiting for input or output transfer,
there is another program ready to utilize the CPU.

With multiprogramming the need arises for running partial programs, for
varying the amount of main memory in use by a given program, and for
moving programs around the memory hierarchy. Computer programs are
sometimes too long to be accommodated in the total space available in main
memory. Moreover, a computer system uses many programs and all the
programs cannot reside in main memory at all times. A program with its data
normally resides in auxiliary memory. When the program or a segment of the

448 CHAPTER TWELVE Memory Organization

random-access
memory (RAM)

read-only memory
(ROM)

bootstrap loader

computer startup

program is to be executed, it is transferred to main memory to be executed by
the CPU. Thus one may think of auxiliary memory as containing the totality
of information stored in a computer system. It is the task of the operating
system to maintain in main memory a portion of this information that is
currently active. The part of the computer system that supervises the flow of
information between auxiliary memory and main memory is called the memory
management system. The hardware for a memory management system is pre-
sented in Sec. 12-7.

12-2 Main Memory

The main memory is the central storage unit in a computer system. It is a
relatively large and fast memory used to store programs and data during the
computer operation. The principal technology used for the main memory is
based on semiconductor integrated circuits. Integrated circuit RAM chips are
available in two possible operating modes, static and dynamic. The static RAM
consists essentially of internal flip-flops that store the binary information. The
stored information remains valid as long as power is applied to the unit. The
dynamic RAM stores the binary information in the form of electric charges that
are applied to capacitors. The capacitors are provided inside the chip by MOS
transistors. The stored charge on the capacitors tend to discharge with time and
the capacitors must be periodically recharged by refreshing the dynamic mem-
ory. Refreshing is done by cycling through the words every few milliseconds
to restore the decaying charge. The dynamic RAM offers reduced power
consumption and larger storage capacity in a single memory chip. The static
RAM is easier to use and has shorter read and write cycles.

Most of the main memory in a general-purpose computer is made up of
RAM integrated circuit chips, but a portion of the memory may be constructed
with ROM chips. Originally, RAM was used to refer to a random-access
memory, but now it is used to designate a read/write memory to distinguish
it from aread-only memory, although ROM is also random access. RAM is used
for storing the bulk of the programs and data that are subject to change. ROM
is used for storing programs that are permanently resident in the computer and
for tables of constants that do not change in value once the production of the
computer is completed.

Among other things, the ROM portion of main memory is needed for
storing an initial program called a bootstrap loader. The bootstrap loader is a
program whose function is to start the computer software operating when
power is turned on. Since RAM is volatile, its contents are destroyed when
power is turned off. The contents of ROM remain unchanged after power is
turned off and on again. The startup of a computer consists of turning the
power on and starting the execution of an initial program. Thus when power
is turned on, the hardware of the computer sets the program counter to the

bidirectional bus

SECTION 122 Main Memory 449

first address of the bootstrap loader. The bootstrap program loads a portion
of the operating system from disk to main memory and control is then trans-
ferred to the operating system, which prepares the computer for general use.

RAM and ROM chips are available in a variety of sizes. If the memory
needed for the computer is larger than the capacity of one chip, it is necessary
to combine a number of chips to form the required memory size. To demon-
strate the chip interconnection, we will show an example of a 1024 X 8 memory
constructed with 128 X 8 RAM chips and 512 X 8 ROM chips.

RAM and ROM Chips
A RAM chip is better suited for communication with the CPU if it has one or
more control inputs that select the chip only when needed. Another common
feature is a bidirectional data bus that allows the transfer of data either from
memory to CPU during a read operation, or from CPU to memory during a
write operation. A bidirectional bus can be constructed with three-state
buffers. A three-state buffer output can be placed in one of three possible
states: a signal equivalent to logic 1, a signal equivalent to logic 0, or a high-
impedance state. The logic 1 and 0 are normal digital signals. The high-
impedance state behaves like an open circuit, which means that the output
does not carry a signal and has no logic significance.

The block diagram of a RAM chip is shown in Fig. 12-2. The capacity of
the memory is 128 words of eight bits (one byte) per word. This requires a 7-bit

Figure 12-2 Typical RAM chip.

Chip select | em—={ CS|
Chip select 2 =mmmm{ CS2
128X 8 .
Read === RD RAM [tm—p— 8-bit data bus
Write === WR
7-bit address =——— AD7
(a) Block diagram
CSI CS2 RD WR |Memory function State of data bus
0 0 x x Inhibit High-impedance
0 1 X X Inhibit High-impedance
1 0 0 O Inhibit High-impedance
1 0 0 1 Write Input data to RAM
I 0 I x Read Output data from RAM
| I x X Inhibit High-impedance

(b) Function table

450

CHAPTER TWELVE Memory Organization

address and an 8-bit bidirectional data bus. The read and write inputs speci-
the memory operation and the two chips select (CS) control inputs are fc:
enabling the chip only when it is selected by the microprocessor. The availab: -
ity of more than one control input to select the chip facilitates the decoding c:
the address lines when multiple chips are used in the microcomputer. The reac
and write inputs are sometimes combined into one line labeled R/W. When the
chip is selected, the two binary states in this line specify the two operations
of read or write.

The function table listed in Fig. 12-2(b) specifies the operation of the RAM
chip. The unit is in operation only when CS1 = 1and CS2 = 0. The bar on top
of the second select variable indicates that this input is enabled when it is equa.
to 0. If the chip select inputs are not enabled, or if they are enabled but the read
or write inputs are not enabled, the memory is inhibited and its data bus is in
a high-impedance state. When CS1 = 1 and CS2 = 0, the memory can be
placed in a write or read mode. When the WR input is enabled, the memory
stores a byte from the data bus into a location specified by the address input
lines. When the RD input is enabled, the content of the selected byte is placed
into the data bus. The RD and WR signals control the memory operation as well
as the bus buffers associated with the bidirectional data bus.

A ROM chip is organized externally in a similar manner. However, since
a ROM can only read, the data bus can only be in an output mode. The block
diagram of a ROM chip is shown in Fig. 12-3. For the same-size chip, it is
possible to have more bits of ROM than of RAM, because the internal binary
cells in ROM occupy less space than in RAM. For this reason, the diagram
specifies a 512-byte ROM, while the RAM has only 128 bytes.

The nine address lines in the ROM chip specify any one of the 512 bytes
stored in it. The two chip select inputs must be CS1 = 1 and C52 = 0 for the

‘unit to operate. Otherwise, the data bus is in a high-impedance state. There

is no need for a read or write control because the unit can only read. Thus when
the chip is enabled by the two select inputs, the byte selected by the address
lines appears on the data bus.

Memory Address Map

The designer of a computer system must calculate the amount of memory
required for the particular application and assign it to either RAM or ROM. The
interconnection between memory and processor is then established from
knowledge of the size of memory needed and the type of RAM and ROM chips
available. The addressing of memory can be established by means of a table
that specifies the memory address assigned to each chip. The table, called a
memory address map, is a pictorial representation of assigned address space for
each chip in the system.

To demonstrate with a particular example, assume that a computer sys-
tem needs 512 bytes of RAM and 512 bytes of ROM. The RAM and ROM chips

SECTION 122 Main Memory 451

Chip seleCt | emmmd CS]
Chip select 2 s\ cs2
512X8 pemmeep— 8-bit data bus

ROM
9-bit address e AD9

Figure 12-3 Typical ROM chip.

to be used are specified in Figs. 12-2 and 12-3. The memory address map for
this configuration is shown in Table 12-1. The component column specifies
whether a RAM or a ROM chip is used. The hexadecimal address column
assigns a range of hexadecimal equivalent addresses for each chip. The address
bus lines are listed in the third column. Although there are 16 lines in the
address bus, the table shows only 10 lines because the other 6 are not used in
this example and are assumed to be zero. The small x's under the address bus
lines designate those lines that must be connected to the address inputs in each
chip. The RAM chips have 128 bytes and need seven address lines. The ROM
chip has 512 bytes and needs 9 address lines. The x’s are always assigned to
the low-order bus lines: lines 1 through 7 for the RAM and lines 1 through 9
for the ROM. It is now necessary to distinguish between four RAM chips by
assigning to each a different address. For this particular example we choose bus
lines 8 and 9 to represent four distinct binary combinations. Note that any other
pair of unused bus lines can be chosen for this purpose. The table clearly shows
that the nine low-order bus lines constitute a memory space for RAM equal to
2° = 512 bytes. The distinction between a RAM and ROM address is done with
another bus line. Here we choose line 10 for this purpose. When line 10 is 0,
the CPU selects a RAM, and when this line is equal to 1, it selects the ROM.

The equivalent hexadecimal address for each chip is obtained from the
information under the address bus assignment. The address bus lines are

TABLE 12-1 Memory Address Map for Microprocomputer

Address bus
Hexadecimal
Component address 10 9 8 765 4 3 21
RAM 1 0000-007F [} 0 x x x X X X X
RAM 2 0080-00FF 0 0 1 x x X X X x X
RAM 3 0100-017F 01 0 x x x X X X X
RAM 4 0180-01FF 01 1 x x x X X X X
ROM 0200-03FF 1 x X X X X X X X X

452

CHAPTER TWELVE Memory Organization

subdivided into groups of four bits each so that each group can be represented
with a hexadecimal digit. The first hexadecimal digit represents lines 13 to 16
and is always 0. The next hexadecimal digit represents lines 9 to 12, but lines
11 and 12 are always 0. The range of hexadecimal addresses for each compo-
nent is determined from the x’s associated with it. These x’s represent a binary
number that can range from an all-0’s to an all-1’s value.

Memory Connection to CPU

RAM and ROM chips are connected to a CPU through the data and address
buses. The low-order lines in the address bus select the byte within the chips
and other lines in the address bus select a particular chip through its chip select
inputs. The connection of memory chips to the CPU is shown in Fig. 12-4. This
configuration gives a memory capacity of 512 bytes of RAM and 512 bytes of
ROM. It implements the memory map of Table 12-1. Each RAM receives the
seven low-order bits of the address bus to select one of 128 possible bytes. The
particular RAM chip selected is determined from lines 8 and 9 in the address
bus. This is done through a 2 X 4 decoder whose outputs go to the CS1 inputs
in each RAM chip. Thus, when address lines 8 and 9 are equal to 00, the first
RAM chip is selected. When 01, the second RAM chip is selected, and so on.
The RD and WR outputs from the microprocessor are applied to the inputs of
each RAM chip.

The selection between RAM and ROM is achieved through bus line 10.
The RAMs are selected when the bit in this line is 0, and the ROM when the
bit is 1. The other chip select input in the ROM is connected to the RD control
line for the ROM chip to be enabled only during a read operation. Address bus
lines 1to 9 are applied to the input address of ROM without going through the
decoder. This assigns addresses 0 to 511 to RAM and 512 to 1023 to ROM. The
data bus of the ROM has only an output capability, whereas the data bus
connected to the RAMs can transfer information in both directions.

The example just shown gives an indication of the interconnection com-
plexity that can exist between memory chips and the CPU. The more chips that
are connected, the more external decoders are required for selection among the
chips. The designer must establish a memory map that assigns addresses to
the various chips from which the required connections are determined.

12-3 Auxiliary Memory

The most common auxiliary memory devices used in computer systems are
magnetic disks and tapes. Other components used, but not as frequently, are
magnetic drums, magnetic bubble memory, and optical disks. To understand
fully the physical mechanism of auxiliary memory devices one must have a
knowledge of magnetics, electronics, and electromechanical systems. Al-

CPU

Address bus
1611 10 9 8 7-1 RD WR Data bus
Decoder
3210
L csi
CS2
128x8
RD gaM| D
=1 WR
AD7
cst
Cs2
RD 128 x g Data
= WR
AD7
cst
CS2
RD 128 x g Data
> WR
AD7
cst
CS2
RD 128 x 2 Data
L= WR
AD7
> cst
CS2
1-7 128 x 8 Data
ROM

o |00

Figure 12-4 Memory connection to the CPU.

453

454

CHAPTER TWELVE Memory Organization

though the physical properties of these storage devices can be quite complex,
their logical properties can be characterized and compared by a few parame-
ters. The important characteristics of any device are its access mode, access
time, transfer rate, capacity, and cost.

The average time required to reach a storage location in memory and
obtain its contents is called the access time. In electromechanical devices with
moving parts such as disks and tapes, the access time consists of a seek time
required to position the read-write head to a location and a transfer time
required to transfer data to or from the device. Because the seek time is usually
much longer than the transfer time, auxiliary storage is organized in records
or blocks. A record is a specified number of characters or words. Reading or
writing is always done on entire records. The transfer rate is the number of
characters or words that the device can transfer per second, after it has been
positioned at the beginning of the record.

Magnetic drums and disks are quite similar in operation. Both consist of
high-speed rotating surfaces coated with a magnetic recording medium. The
rotating surface of the drumis a cylinder and that of the disk, a round flat plate.
The recording surface rotates at uniform speed and is not started or stopped
during access operations. Bits are recorded as magnetic spots on the surface
as it passes a stationary mechanism called a write head. Stored bits are detected
by a change in magnetic field produced by a recorded spot on the surface as
it passes through a read head. The amount of surface available for recording in
a disk is greater than in a drum of equal physical size. Therefore, more
information can be stored on a disk than on a drum of comparable size. For
this reason, disks have replaced drums in more recent computers.

Magnetic Disks

A magnetic disk is a circular plate constructed of metal or plastic coated with
magnetized material. Often both sides of the disk are used and several disks
may be stacked on one spindle with read/write heads available on each surface.
All disks rotate together at high speed and are not stopped or started for access
purposes. Bits are stored in the magnetized surface in spots along concentric
circles called tracks. The tracks are commonly divided into sections called
sectors. In most systems, the minimum quantity of information which can be
transferred is a sector. The subdivision of one disk surface into tracks and
sectors is shown in Fig. 12-5.

Some units use a single read/write head for each disk surface. In this type
of unit, the track address bits are used by a mechanical assembly to move the
head into the specified track position before reading or writing. In other disk
systems, separate read/write heads are provided for each track in each surface.
The address bits can then select a particular track electronically through a
decoder circuit. This type of unit is more expensive and is found only in very
large computer systems.

Permanent timing tracks are used in disks to synchronize the bits and

SECTION 12.3 Auxiliary Memory 455

Tracks

<\Seclg,\>/

Read/write
head

Figure 12-5 Magnetic disk.

recognize the sectors. A disk system is addressed by address bits that specify
the disk number, the disk surface, the sector number and the track within the
sector. After the read/write heads are positioned in the specified track, the
system has to wait until the rotating disk reaches the specified sector under the
read/write head. Information transfer is very fast once the beginning of a sector
has been reached. Disks may have multiple heads and simultaneous transfer
of bits from several tracks at the same time.

A track in a given sector near the circumference is longer than a track near
the center of the disk. If bits are recorded with equal density, some tracks will
contain more recorded bits than others. To make all the records in a sector of
equal length, some disks use a variable recording density with higher density
on tracks near the center than on tracks near the circumference. This equalizes
the number of bits on all tracks of a given sector.

Disks that are permanently attached to the unit assembly and cannot be
removed by the occasional user are called hard disks. A disk drive with remov-
able disks is called a floppy disk. The disks used with a floppy disk drive are
small removable disks made of plastic coated with magnetic recording material.
There are two sizes commonly used, with diameters of 5.25 and 3.5 inches. The
3.5-inch disks are smaller and can store more data than can the 5.25-inch disks.
Floppy disks are extensively used in personal computers as a medium for
distributing software to computer users.

Magnetic Tape

A magnetic tape transport consists of the electrical, mechanical, and electronic
components to provide the parts and control mechanism for a magnetic-tape
unit. The tape itself is a strip of plastic coated with a magnetic recording

456 CHAPTER TWELVE Memory Organization

content addressable
memory

medium. Bits are recorded as magnetic spots on the tape along several tracks.
Usually, seven or nine bits are recorded simultaneously to form a character
together with a parity bit. Read/write heads are mounted one in each track so
that data can be recorded and read as a sequence of characters.

Magnetic tape units can be stopped, started to move forward or in re-
verse, or can be rewound. However, they cannot be started or stopped fast
enough between individual characters. For this reason, information is recorded
in blocks referred to as records. Gaps of unrecorded tape are inserted between
records where the tape can be stopped. The tape starts moving while in a gap
and attains its constant speed by the time it reaches the next record. Each
record on tape has an identification bit pattern at the beginning and end. By
reading the bit pattern at the beginning, the tape control identifies the record
number. By reading the bit pattern at the end of the record, the control
recognizes the beginning of a gap. A tape unit is addressed by specifying the
record number and the number of characters in the record. Records may be of
fixed or variable length.

12-4 Associative Memory

Many data-processing applications require the search of items in a table stored
in memory. An assembler program searches the symbol address table in order
to extract the symbol’s binary equivalent. An account number may be searched
in a file to determine the holder's name and account status. The established
way to search a table is to store all items where they can be addressed in
sequence. The search procedure is a strategy for choosing a sequence of
addresses, reading the content of memory at each address, and comparing the
information read with the item being searched until a match occurs. The
number of accesses to memory depends on the location of the item and the
efficiency of the search algorithm. Many search algorithms have been devel-
oped to minimize the number of accesses while searching for an item in a
random or sequential access memory.

The time required to find an item stored in memory can be reduced
considerably if stored data can be identified for access by the content of the data
itself rather than by an address. A memory unit accessed by content is called
an associative memory or content addressable memory (CAM). This type of memory
is accessed simultaneously and in parallel on the basis of data content rather
than by specific address or location. When a word is written in an associative
memory, no address is given. The memory is capable of finding an empty
unused location to store the word. When a word is to be read from an associa-
tive memory, the content of the word, or part of the word, is specified. The
memory locates all words which match the specified content and marks them
for reading.

Because of its organization, the associative memory is uniquely suited to
do parallel searches by data association. Moreover, searches can be done on

SECTION 12-4 Associative Memory 457

an entire word or on a specific field within a word. An associative memory is
more expensive than a random access memory because each cell must have
storage capability as well as logic circuits for matching its content with an
external argument. For this reason, associative memories are used in applica-
tions where the search time is very critical and must be very short.

Hardware Organization

The block diagram of an associative memory is shown in Fig. 12-6. It consists
of a memory array and logic for m words with n bits per word. The argument
register A and key register K each have n bits, one for each bit of a word. The
match register M has m bits, one for each memory word. Each word in memory
is compared in parallel with the content of the argument register. The words
that match the bits of the argument register set a corresponding bit in the match
register. After the matching process, those bits in the match register that have
been set indicate the fact that their corresponding words have been matched.
Reading is accomplished by a sequential access to memory for those words
whose corresponding bits in the match register have been set.

The key register provides a mask for choosing a particular field or key in
the argument word. The entire argument is compared with each memory word
if the key register contains all 1’s. Otherwise, only those bits in the argument
that have 1’s in their corresponding position of the key register are compared.
Thus the key provides a mask or identifying piece of information which

Figure 12-6 Block diagram of associative memory.

I Argument register (4)—|

I Key register (K) |

Match
register
Input —s-{
Associative memory
array and logic
Read —s m words
Write am—p-{ n bits per word

|

Output

458

CHAPTER TWELVE Memory Organization

specifies how the reference to memory is made. To illustrate with a numericai
example, suppose that the argument register A and the key register K have the
bit configuration shown below. Only the three leftmost bits of A are compared
with memory words because K has 1’s in these positions.

A 101 111100

K 111 000000

Word 1 100 111100 no match
Word 2 101 000001 match

Word 2 matches the unmasked argument field because the three leftmost bits
of the argument and the word are equal.

The relation between the memory array and external registers in an
associative memory is shown in Fig. 12-7. The cells in the array are marked by
the letter C with two subcripts. The first subscript gives the word number and
the second specifies the bit position in the word. Thus cell C; is the cell for bit
jin word i. A bit 4; in the argument register is compared with all the bits in
column j of the array provided that K; = 1. This is done for all columns
j=1,2,...,n. If a match occurs between all the unmasked bits of the argu-
ment and the bits in word i, the corresponding bit M; in the match register is
set to 1. If one or more unmasked bits of the argument and the word do not
match, M,; is cleared to 0.

Figure 12-7 Associative memory of m word, n cells per word.

[;g

9 BH-B

Word 1 .
Word i C,
Word m @

Bitn

SECTION 124 Associative Memory 459

The internal organization of a typical cell C; is shown in Fig. 12-8. It
consists of a flip-flop storage element F; and the circuits for reading, writing,
and matching the cell. The input bit is transferred into the storage cell during
a write operation. The bit stored is read out during a read operation. The match
logic compares the content of the storage cell with the corresponding un-
masked bit of the argument and provides an output for the decision logic that
sets the bit in M;.

Match Logic

The match logic for each word can be derived from the comparison algorithm
for two binary numbers. First, we neglect the key bits and compare the argu-
ment in A with the bits stored in the cells of the words. Word i is equal to the
argument in A if A; = Fjforj = 1,2,...,n. Two bits are equal if they are both
1 or both 0. The equality of two bits can be expressed logically by the Boolean
function

% = AjF; + A/ F;
where x; = 1 if the pair of bits in position j are equal; otherwise, x; = 0.
For a word i to be equal to the argument in A we must have all x; variables
equal to 1. This is the condition for setting the corresponding match bit M; to
1. The Boolean function for this condition is

M, =xx%3 X,

and constitutes the AND operation of all pairs of matched bits in a word.

Figure 12-8 One cell of associative memory.

A K;
Input o
Write
Matph > To M,
Read logic

Output

460 CHAPTER TWELVE Memory Organization

We now include the key bit K; in the comparison logic. The requirement
is that if K; = 0, the corresponding bits of A;and F; need no comparison. Only
when K; = 1 must they be compared. This requirement is achieved by ORing
each term with K;, thus:

-+ K = X lle =1
5+ K [1 if K =0
When K; = 1, we have K/ =0 and x; + 0 = x;. When K; = 0, then K/ = 1 and
x;+1=1 A term (x; + K/) will be in the 1 state if its pair of bits is not
compared. This is necessary because each term is ANDed with all other terms
so that an output of 1 will have no effect. The comparison of the bits has an
effect only when K; = 1.

The match logic for word i in an associative memory can now be expressed
by the following Boolean function:

M; = (x1 + Ki)(x2 + K)(xs + K3) - - - (xa + K;)

Each term in the expression will be equal to 1 if its corresponding K; = 0. If
K; = 1, the term will be either 0 or 1 depending on the value of x;. A match will
occur and M; will be equal to 1 if all terms are equal to 1.

If we substitute the original definition of x;, the Boolean function above
can be expressed as follows:

M = [1(4F + A/Fj + K)
ji=1

where I1is a product symbol designating the AND operation of all n terms. We
need m such functions, one for each word i = 1,2,3,...,m.

The circuit for matching one word is shown in Fig. 12-9. Each cell requires
two AND gates and one OR gate. The inverters for A; and K; are needed once
for each column and are used for all bits in the column. The output of all OR
gates in the cells of the same word go to the input of a common AND gate to
generate the match signal for M;. M; will be logic 1 if a match occurs and 0 if
no match occurs. Note that if the key register contains all 0's, output M; will
be a 1 irrespective of the value of A or the word. This occurrence must be
avoided during normal operation.

Read Operation

If more than one word in memory matches the unmasked argument field, all
the matched words will have 1’s in the corresponding bit position of the match
register. It is then necessary to scan the bits of the match register one at a time.
The matched words are read in sequence by applying aread signal to each word
line whose corresponding M; bit is a 1.

SECTION 124 Associative Memory 461

K, A, K 4, K, A,

2
[m F [my ml-|-—][F 7]

Y Y Y

a D—M‘

Figure 12-9 Match logic for one word of associative memory.

In most applications, the associative memory stores a table with no two
identical items under a given key. In this case, only one word may match the
unmasked argument field. By connecting output M; directly to the read line in
the same word position (instead of the M register), the content of the matched
word will be presented automatically at the output lines and no special read
command signal is needed. Furthermore, if we exclude words having a zero
content, an all-zero output will indicate that no match occurred and that the
searched item is not available in memory.

Write Operation

An associative memory must have a write capability for storing the information
to be searched. Writing in an associative memory can take different forms,
depending on the application. If the entire memory is loaded with new infor-
mation at once prior to a search operation then the writing can be done by
addressing each location in sequence. This will make the device'a random-
access memory for writing and a content addressable memory for reading. The
advantage here is that the address for input can be decoded as in a random-
access memory. Thus instead of having m address lines, one for each word in
memory, the number of address lines can be reduced by the decoder tod lines,
where m = 2. ’

462 CHAPTER TWELVE Memory Organization

locality of reference

If unwanted words have to be deleted and new words inserted one at a
time, there is a need for a special register to distinguish between active and
inactive words. This register, sometimes called a tag register, would have as
many bits as there are words in the memory. For every active word stored in
memory, the corresponding bit in the tag register is set to 1. A word is deleted
from memory by clearing its tag bit to 0. Words are stored in memory by
scanning the tag register until the first 0 bit is encountered. This gives the first
available inactive word and a position for writing a new word. After the new
word is stored in memory it is made active by setting its tag bit to 1. An
unwanted word when deleted from memory can be cleared to all (’s if this
value is used to specify an empty location. Moreover, the words that have a
tag bit of 0 must be masked (together with the K; bits) with the argument word
so that only active words are compared.

12-5 Cache Memory

Analysis of a large number of typical programs has shown that the references
to memory at any given interval of time tend to be confined within a few
localized areas in memory. This phenomenon is known as the property of
locality of reference. The reason for this property may be understood considering
that a typical computer program flows in a straight-line fashion with program
loops and subroutine calls encountered frequently. When a program loop is
executed, the CPU repeatedly refers to the set of instructions in memory that
constitute the loop. Every time a given subroutine is called, its set of instruc-
tions are fetched from memory. Thus loops and subroutines tend to localize
the references to memory for fetching instructions. To a lesser degree, memory
references to data also tend to be localized. Table-lookup procedures repeat-
edly refer to that portion in memory where the table is stored. Iterative proce-
dures refer to common memory locations and array of numbers are confined
within a local portion of memory. The result of all these observations is the
locality of reference property, which states that over a short interval of time,
the addresses generated by a typical program refer to a few localized areas of
memory repeatedly, while the remainder of memory is accessed relatively
infrequently.

If the active portions of the program and data are placed in a fast small
memory, the average memory access time can be reduced, thus reducing the
total execution time of the program. Such a fast small memory is referred to
as a cache memory. Itis placed between the CPU and main memory as illustrated
in Fig. 12-1. The cache memory access time is less than the access time of main
memory by a factor of 5 to 10. The cache is the fastest component in the memory
hierarchy and approaches the speed of CPU components.

The fundamental idea of cache organization is that by keeping the most
frequently accessed instructions and data in the fast cache memory, the aver-

hit ratio

mapping

SECTION 12.5 Cache Memory 463

age memory access time will approach the access time of the cache. Although
the cache is only a small fraction of the size of main memory, a large fraction
of memory requests will be found in the fast cache memory because of the
locality of reference property of programs.

The basic operation of the cache is as follows. When the CPU needs to
access memory, the cache is examined. If the word is found in the cache, it is
read from the fast memory. If the word addressed by the CPU is not found in
the cache, the main memory is accessed to read the word. A block of words
containing the one just accessed is then transferred from main memory to
cache memory. The block size may vary from one word (the one just accessed)
to about 16 words adjacent to the one just accessed. In this manner, some data
are transferred to cache so that future references to memory find the required
words in the fast cache memory.

The performance of cache memory is frequently measured in terms of a
quantity called hit ratio. When the CPU refers to memory and finds the word
in cache, it is said to produce a hit. If the word is not found in cache, it is in
main memory and it counts as a miss. The ratio of the number of hits divided
by the total CPU references to memory (hits plus misses) is the hit ratio. The
hit ratio is best measured experimentally by running representative programs
in the computer and measuring the number of hits and misses during a given
interval of time. Hit ratios of 0.9 and higher have been reported. This high ratio
verifies the validity of the locality of reference property.

The average memory access time of a computer system can be improved
considerably by use of a cache. If the hit ratio is high enough so that most of
the time the CPU accesses the cache instead of main memory, the average
access time is closer to the access time of the fast cache memory. For example,
a computer with cache access time of 100 ns, a main memory access time of
1000 ns, and a hit ratio of 0.9 produces an average access time of 200 ns. This
is a considerable improvement over a similar computer without a cache mem-
ory, whose access time is 1000 ns.

The basic characteristic of cache memory is its fast access time. Therefore,
very little or no time must be wasted when searching for words in the cache.
The transformation of data from main memory to cache memory is referred to
as a mapping process. Three types of mapping procedures are of practical
interest when considering the organization of cache memory:

1. Associative mapping
2. Direct mapping
3. Set-associative mapping

To help in the discussion of these three mapping procedures we will use a
specific example of a memory organization as shown in Fig. 12-10. The main
memory can store 32K words of 12 bits each. The cache is capable of storing
512 of these words at any given time. For every word stored in cache, there is

464

CHAPTER TWELVE Memory Organization

Main memory

32K X 12 CPU

Cache memory
512x12 -

Figure 12-10 Example of cache memory.

a duplicate copy in main memory. The CPU communicates with both memo-
ries. It first sends a 15-bit address to cache. If there is a hit, the CPU accepts
the 12-bit data from cache. If there is a miss, the CPU reads the word from main
memory and the word is then transferred to cache.

Associative Mapping

The fastest and most flexible cache organization uses an associative memory.
This organization is illustrated in Fig. 12-11. The associative memory stores
both the address and content (data) of the memory word. This permits any
location in cache to store any word from main memory. The diagram shows
three words presently stored in the cache. The address value of 15 bits is shown
as a five-digit octal number and its corresponding 12-bit word is shown as a
four-digit octal number. A CPU address of 15 bits is placed in the argument
register and the associative memory is searched for a matching address. If the

Figure 12-11 Associative mapping cache (all numbers in octal).

CPU address (15 bits)

Argument register

~—— Address Data
01000 3450
027717 6710

22345 1234

tag field

SECTION 12.5 Cache Memory 465

address is found, the corresponding 12-bit data is read and sent to the CPU.
If no match occurs, the main memory is accessed for the word. The ad-
dress-data pair is then transferred to the associative cache memory. If the cache
is full, an address—data pair must be displaced to make room for a pair that is
needed and not presently in the cache. The decision as to what pair is replaced
is determined from the replacement algorithm that the designer chooses for the
cache. A simple procedure is to replace cells of the cache in round-robin order
whenever a new word is requested from main memory. This constitutes a
first-in first-out (FIFO) replacement policy.

Direct Mapping

Associative memories are expensive compared to random-access memories
because of the added logic associated with each cell. The possibility of using
a random-access memory for the cache is investigated in Fig. 12-12. The CPU
address of 15 bits is divided into two fields. The nine least significant bits
constitute the index field and the remaining six bits form the tag field. The figure
shows that main memory needs an address that includes both the tag and the
index bits. The number of bits in the index field is equal to the number of
address bits required to access the cache memory.

In the general case, there are 2 words in cache memory and 2" words in
main memory. The n-bit memory address is divided into two fields: k bits for
the index field and n — k bits for the tag field. The direct mapping cache
organization uses the n-bit address to access the main memory and the k-bit
index to access the cache. The internal organization of the words in the cache
memory is as shown in Fig. 12-13(b). Each word in cache consists of the data
word and its associated tag. When a new word is first brought into the cache,
the tag bits are stored alongside the data bits. When the CPU generates a
memory request, the index field is used for the address to access the cache. The

Figure 12-12 Addressing relationships between main and cache memories.

6 bits 9 bits

| l

0o 00 32K X 12 000 s12x 12
) Octal Cache memory
Octal Maln memory address Address = 9 bits
address = i
re Address = 15 bits 77 Data =12 bits.
Data = 12 bits
77 117

466

CHAPTER TWELVE Memory Organization

Memory Index

address Memory data address Tag Data
00000 1220 000 00 1220
00777 2340
01000 3450
01777 4560 7717 02 6710
02000 5670

(b) Cache memory

02777 6710

(a) Main memory

Figure 12-13 Direct mapping cache organization.

tag field of the CPU address is compared with the tag in the word read from
the cache. If the two tags match, there is a hit and the desired data word is in
cache. If there is no match, there is a miss and the required word is read from
main memory. It is then stored in the cache together with the new tag,
replacing the previous value. The disadvantage of direct mapping is that the
hit ratio can drop considerably if two or more words whose addresses have the
same index but different tags are accessed repeatedly. However, this possibility
is minimized by the fact that such words are relatively far apart in the address
range (multiples of 512 locations in this example.)

To see how the direct-mapping organization operates, consider the nu-
merical example shown in Fig. 12-13. The word at address zero is presently
stored in the cache (index = 000, tag = 00, data = 1220). Suppose that the CPU
now wants to access the word at address 02000. The index address is 000, so
it is used to access the cache. The two tags are then compared. The cache tag
is 00 but the address tag is 02, which does not produce a match. Therefore, the
main memory is accessed and the data word 5670 is transferred to the CPU.
The cache word at index address 000 is then replaced with a tag of 02 and data
of 5670.

The direct-mapping example just described uses a block size of one word.
The same organization but using a block size of 8 words is shown in Fig. 12-14.

SECTION 12.5 Cache Memory 467

Index Tag Data 6 6 3
000 ot 3450 | Tag IBIock Wordl
Block 0
007 0! 6578 D S—
Index
010
Block |
o017
1
770 | 02
Block 63
777 02 6710

Figure 12-14 Direct mapping cache with block size of 8 words.

Theindex field is now divided into two parts: the block field and the word field.
In a 512-word cache there are 64 blocks of 8 words each, since 64 X 8 = 512.
The block number is specified with a 6-bit field and the word within the block
is specified with a 3-bit field. The tag field stored within the cache is common
to all eight words of the same block. Every time a miss occurs, an entire block
of eight words must be transferred from main memory to cache memory.
Although this takes extra time, the hit ratio will most likely improve with a
larger block size because of the sequential nature of computer programs.

Set-Associative Mapping

It was mentioned previously that the disadvantage of direct mapping is that
two words with the same index in their address but with different tag values
cannot reside in cache memory at the same time. A third type of cache organ-
ization, called set-associative mapping, is an improvement over the direct-
mapping organization in that each word of cache can store two or more words
of memory under the same index address. Each data word is stored together
with its tag and the number of tag-data items in one word of cache is said to
form a set. An example of a set-associative cache organization for a set size of
two is shown in Fig. 12-15. Each index address refers to two data words and
their associated tags. Each tag requires six bits and each data word has 12 bits,
so the word length is 2(6 + 12) = 36 bits. An index address of nine bits can
accommodate 512 words. Thus the size of cache memory is 512 X 36. It can
accommodate 1024 words of main memory since each word of cache contains
two data words. In general, a set-associative cache of set size k will accommo-
date k words of main memory in each word of cache.

468 CHAPTER TWELVE Memory Organization

replacement
algorithms

Index Tag Data Tag Data
000| Ot 3450 02 5670
777| 02 6710 00 2340

Figure 12-15 Two-way set-associative mapping cache.

The octal numbers listed in Fig. 12-15 are with reference to the main
memory contents illustrated in Fig. 12-13(a). The words stored at addresses
01000 and 02000 of main memory are stored in cache memory at index address
000. Similarly, the words at addresses 02777 and 00777 are stored in cache at
index address 777. When the CPU generates a memory request, the index value
of the address is used to access the cache. The tag field of the CPU address is
then compared with both tags in the cache to determine if a match occurs. The
comparison logic is done by an associative search of the tags in the set similar
to an associative memory search: thus the name “’set-associative.” The hit ratio
will improve as the set size increases because more words with the same index
but different tags can reside in cache. However, an increase in the set size
increases the number of bits in words of cache and requires more complex
comparison logic.

When a miss occurs in a set-associative cache and the set is full, it is
necessary to replace one of the tag-data items with a new value. The most
common replacement algorithms used are: random replacement, first-in, first-
out (FIFO), and least recently used (LRU). With the random replacement policy
the control chooses one tag-data item for replacement at random. The FIFO
procedure selects for replacement the item that has been in the set the longest.
The LRU algorithm selects for replacement the item that has been least recently
used by the CPU. Both FIFO and LRU can be implemented by adding a few
extra bits in each word of cache.

Writing into Cache

An important aspect of cache organization is concerned with memory write
requests. When the CPU finds a word in cache during a read operation, the
main memory is not involved in the transfer. However, if the operation is a
write, there are two ways that the system can proceed.

write-through

write-back

valid bit

SECTION 12.6 Virtual Memory 469

The simplest and most commonly used procedure is to update main
memory with every memory write operation, with cache memory being up-
dated in parallel if it contains the word at the specified address. This is called
the write-through method. This method has the advantage that main memory
always contains the same data as the cache. This characteristic is important in
systems with direct memory access transfers. It ensures that the data residing
in main memory are valid at all times so that an /O device communicating
through DMA would receive the most recent updated data.

The second procedure is called the write-back method. In this method only
the cache location is updated during a write operation. The location is then
marked by a flag so that later when the word is removed from the cache it is
copied into main memory. The reason for the write-back method is that during
the time a word resides in the cache, it may be updated several times; however,
as long as the word remains in the cache, it does not matter whether the copy
in main memory is out of date, since requests from the word are filled from
the cache. Itis only when the word is displaced from the cache that an accurate
copy need be rewritten into main memory. Analytical results indicate that the
number of memory writes in a typical program ranges between 10 and 30
percent of the total references to memory.

Cache Initialization
One more aspect of cache organization that must be taken into consideration
is the problem of initialization. The cache is initialized when power is applied
to the computer or when the main memory is loaded with a complete set of
programs from auxiliary memory. After initialization the cache is considered
to be empty, but in effect it contains some nonvalid data. It is customary to
include with each word in cache a walid bit to indicate whether or not the word
contains valid data.

The cache is initialized by clearing all the valid bits to 0. The valid bit of
a particular cache word is set to 1 the first time this word is loaded from main
memory and stays set unless the cache has to be initialized again. The intro-
duction of the valid bit means that a word in cache is not replaced by another
word unless the valid bit is set to 1 and a mismatch of tags occurs. If the valid
bit happens to be 0, the new word automatically replaces the invalid data. Thus
the initialization condition has the effect of forcing misses from the cache until
it fills with valid data.

12-6 Virtual Memory

In a memory hierarchy system, programs and data are first stored in auxiliary
memory. Portions of a program or data are brought into main memory as they
are needed by the CPU. Virtual memory is a concept used in some large
computer systems that permit the user to construct programs as though alarge

470 CHAPTER TWELVE Memory Organization

address space
memory space

memory space were available, equal to the totality of auxiliary memory. Each
address that is referenced by the CPU goes through an address mapping from
the so-called virtual address to a physical address in main memory. Virtual
memory is used to give programmers the illusion that they have a very large
memory at their disposal, even though the computer actually has a relatively
small main memory. A virtual memory system provides a mechanism for
translating program-generated addresses into correct main memory locations.
This is done dynamically, while programs are being executed in the CPU. The
translation or mapping is handled automatically by the hardware by means of
a mapping table.

Address Space and Memory Space
An address used by a programmer will be called a virtual address, and the set
of such addresses the address space. An address in main memory is called a
location or physical address. The set of such locations is called the memory space.
Thus the address space is the set of addresses generated by programs as they
reference instructions and data; the memory space consists of the actual main
memory locations directly addressable for processing. In most computers the
address and memory spaces are identical. The address space is allowed to be
larger than the memory space in computers with virtual memory.

As an illustration, consider a computer with a main-memory capacity of

32K words (K = 1024). Fifteen bits are needed to specify a physical address in

memory since 32K = 2", Suppose that the computer has available auxiliary
memory for storing 22 = 1024K words. Thus auxiliary memory has a capacity
for storing information equivalent to the capacity of 32 main memories. Denot-
ing the address space by N and the memory space by M, we then have for this
example N = 1024K and M = 32K.

In a multiprogram computer system, programs and data are transferred
to and from auxiliary memory and main memory based on demands imposed
by the CPU. Suppose that program 1 is currently being executed in the CPU.
Program 1 and a portion of its associated data are moved from auxiliary
memory into main memory as shown in Fig. 12-16. Portions of programs and
data need not be in contiguous locations in memory since information is being
moved in and out, and empty spaces may be available in scattered locations
in memory.

In a virtual memory system, programmers are told that they have the total
address space at their disposal. Moreover, the address field of the instruction
code has a sufficient number of bits to specify all virtual addresses. In our
example, the address field of an instruction code will consist of 20 bits but
physical memory addresses must be specified with only 15 bits. Thus CPU will
reference instructions and data with a 20-bit address, but the information at
this address must be taken from physical memory because access to auxiliary
storage for individual words will be prohibitively long. (Remember that for

SECTION 12.6 Virtual Memory 471

Auxiliary memory

Main memory
Program | \ Program 1
Data 1, |
Data 1,2
Data I, |
Program 2
Data 2, |
Memory space
M=32k=2!5
Address space
N =1024K =220

Figure 12-16 Relation between address and memory space in a virtual
memory system.

efficient transfers, auxiliary storage moves an entire record to the main mem-
ory.) A table is then needed, as shown in Fig. 12-17, to map a virtual address
of 20 bits to a physical address of 15 bits. The mapping is a dynamic operation,
which means that every address is translated immediately as a word is refer-
enced by CPU.

The mapping table may be stored in a separate memory as shown in
Fig. 12-17 or in main memory. In the first case, an additional memory unit is
required as well as one extra memory access time. In the second case, the table

Figure 12-17 Memory table for mapping a virtual address.

Virtual address

¥

Virtual Main memory

address Memory address Main
register register memory
(20 bits) table (15 bits)

Main memory
Memory table buffer register
buffer register

472 CHAPTER TWELVE Memory Organization

pages and blocks

page frame

takes space from main memory and two accesses to memory are required with
the program running at half speed. A third alternative is to use an associative
memory as explained below.

Address Mapping Using Pages

The table implementation of the address mapping is simplified if the informa-
tion in the address space and the memory space are each divided into groups
of fixed size. The physical memory is broken down into groups of equal size
called blocks, which may range from 64 to 4096 words each. The term page refers
to groups of address space of the same size. For example, if a page or block
consists of 1K words, then, using the previous example, address space is
divided into 1024 pages and main memory is divided into 32 blocks. Although
both a page and a block are split into groups of 1K words, a page refers to the
organization of address space, while a block refers to the organization of
memory space. The programs are also considered to be split into pages.
Portions of programs are moved from auxiliary memory to main memory in
records equal to the size of a page. The term “page frame” is sometimes used
to denote a block.

Consider a computer with an address space of 8K and a memory space
of 4K. If we split each into groups of 1K words we obtain eight pages and four
blocks as shown in Fig. 12-18. At any given time, up to four pages of address
space may reside in main memory in any one of the four blocks.

The mapping from address space to memory space is facilitated if each
virtual address is considered to be represented by two numbers: a page number
address and a line within the page. In a computer with 2’ words per page, p
bits are used to specify a line address and the remaining high-order bits of the
virtual address specify the page number. In the example of Fig. 12-18, a virtual
address has 13 bits. Since each page consists of 2'° = 1024 words, the high-
order three bits of a virtual address will specify one of the eight pages and the
low-order 10 bits give the line address within the page. Note that the line
address in address space and memory space is the same; the only mapping
required is from a page number to a block number.

The organization of the memory mapping table in a paged system is
shown in Fig. 12-19. The memory-page table consists of eight words, one for
each page. The address in the page table denotes the page number and the
content of the word gives the block number where that page is stored in main
memory. The table shows that pages 1, 2, 5, and 6 are now available in main
memory in blocks 3, 0, 1, and 2, respectively. A presence bit in each location
indicates whether the page has been transferred from auxiliary memory into
main memory. A 0 in the presence bit indicates that this page is not available
in main memory. The CPU references a word in memory with a virtual address
of 13 bits. The three high-order bits of the virtual address specify a page
number and also an address for the memory-page table. The content of the

Page 0

Page |

Page 2

Page 3

Page 4

Page 5

Page 6

Page 7

Address space
N=8K=2"

SECTION 12-6 Virtual Memory

Block 0

Block |

Block 2

Block 3

Memory space
M=4K=2"2

Figure 12-18 Address space and memory space split into groups of 1K words.

473

word in the memory page table at the page number address is read out into
the memory table buffer register. If the presence bit is a 1, the block number
thus read is transferred to the two high-order bits of the main memory address
register. The line number from the virtual address is transferred into the 10
low-order bits of the memory address register. A read signal to main memory

Table
address
000

001
010
011
100
101
110
111

Figure 12-19 Memory table in a paged system.

Page no.

Line number

[t o1Jor o101 001 1] Virtual address

Memory page table

Presence

¥ vit

0 Main memory
11 1 Block 0
00 1 1 Block 1

0 [[o1 T o101010011 |——|—’ Block 2

0 Main memory Block 3
o1 1 address register
10 1

0

474

CHAPTER TWELVE Memory Organization

transfers the content of the word to the main memory buffer register ready to
be used by the CPU. If the presence bit in the word read from the page table
is 0, it signifies that the content of the word referenced by the virtual address
does not reside in main memory. A call to the operating system is then
generated to fetch the required page from auxiliary memory and place it into
main memory before resuming computation.

Associative Memory Page Table
A random-access memory page table is inefficient with respect to storage
utilization. In the example of Fig. 12-19 we observe that eight words of memory
are needed, one for each page, but at least four words will always be marked
empty because main memory cannot accommodate more than four blocks. In
general, a system with n pages and m blocks would require a memory-page
table of n locations of which up to m blocks will be marked with block numbers
and all others will be empty. As a second numerical example, consider an
address space of 1024K words and memory space of 32K words. If each page
or block contains 1K words, the number of pages is 1024 and the number of
blocks 32. The capacity of the memory-page table must be 1024 words and only
32 locations may have a presence bit equal to 1. At any given time, at least 992
locations will be empty and not in use.

A more efficient way to organize the page table would be to construct it
with a number of words equal to the number of blocks in main memory. In this

‘way the size of the memory is reduced and each location is fully utilized. This

method can be implemented by means of an associative memory with each
word in memory containing a page number together with its corresponding

Figure 12-20 An associative memory page table.

Virtual address
A\

r -
Page no.

Ll 01 I Line number IArgumenl register

001 11
o1o0f|o00
101 0!
110 10

Associative memory

Page no. Block no.

page fault

SECTION 126 Virtual Memory 475

block number. The page field in each word is compared with the page number
in the virtual address. If a match occurs, the word is read from memory and
its corresponding block number is extracted.

Consider again the case of eight pages and four blocks as in the example
of Fig. 12-19. We replace the random access memory-page table with an
associative memory of four words as shown in Fig. 12-20. Each entry in the
associative memory array consists of two fields. The first three bits specify a
field for storing the page number. The last two bits constitute a field for storing
the block number. The virtual address is placed in the argument register. The
page number bits in the argument register are compared with all page numbers
in the page field of the associative memory. If the page number is found, the
5-bit word is read out from memory. The corresponding block number, being
in the same word, is transferred to the main memory address register. If no
match occurs, a call to the operating system is generated to bring the required
page from auxiliary memory.

Page Replacement

A virtual memory system is a combination of hardware and software tech-
niques. The memory management software system handles all the software
operations for the efficient utilization of memory space. It must decide (1)
which page in main memory ought to be removed to make room for a new
Ppage, (2) when a new page is to be transferred from auxiliary memory to main
memory, and (3) where the page is to be placed in main memory. The hardware
mapping mechanism and the memory management software together consti-
tute the architecture of a virtual memory.

When a program starts execution, one or more pages are transferred into
main memory and the page table is set to indicate their position. The program
is executed from main memory until it attempts to reference a page that is still
in auxiliary memory. This condition is called page fault. When page fault occurs,
the execution of the present program is suspended until the required page is
brought into main memory. Since loading a page from auxiliary memory to
main memory is basically an I/O operation, the operating system assigns this
task to the I/O processor. In the meantime, control is transferred to the next
program in memory that is waiting to be processed in the CPU. Later, when
the memory block has been assigned and the transfer completed, the original
program can resume its operation.

When a page fault occurs in a virtual memory system, it signifies that the
page referenced by the CPU is not in main memory. A new page is then
transferred from auxiliary memory to main memory. If main memory is full,
it would be necessary to remove a page from a memory block to make room
for the new page. The policy for choosing pages to remove is determined from
the replacement algorithm that is used. The goal of a replacement policy is to
try to remove the page least likely to be referenced in the immediate future.

Two of the most common replacement algorithms used are the first-in,

476

FIFO

CHAPTER TWELVE Memory Organization

first-out (FIFO) and the least recently used (LRU). The FIFO algorithm selects for
replacement the page that has been in memory the longest time. Each time a
page is loaded into memory, its identification number is pushed into a FIFO
stack. FIFO will be full whenever memory has no more empty blocks. When
anew page must be loaded, the page least recently brought in is removed. The
page to be removed is easily determined because its identification number is
at the top of the FIFO stack. The FIFO replacement policy has the advantage
of being easy to implement. It has the disadvantage that under certain circum-
stances pages are removed and loaded from memory too frequently.

The LRU policy is more difficult to implement but has been more attrac-
tive on the assumption that the least recently used page is a better candidate
for removal than the least recently loaded page as in FIFO. The LRU algorithm
can be implemented by associating a counter with every page that is in main
memory. When a page is referenced, its associated counter is set to zero. At
fixed intervals of time, the counters associated with all pages presently in
memory are incremented by 1. The least recently used page is the page with
the highest count. The counters are often called aging registers, as their count
indicates their age, that is, how long ago their associated pages have been
referenced.

12-7 Memory Management Hardware

In a multiprogramming environment where many programs reside in memory
it becomes necessary to move programs and data around the memory, to vary
the amount of memory in use by a given program, and to prevent a program
from changing other programs. The demands on computer memory brought
about by multiprogramming have created the need for a memory management
system. A memory management system is a collection of hardware and soft-
ware procedures for managing the various programs residing in memory. The
memory management software is part of an overall operating system available
in many computers. Here we are concerned with the hardware unit associated
with the memory management system.
The basic components of a memory management unit are:

1. A facility for dynamic storage relocation that maps logical memory
references into physical memory addresses

2. A provision for sharing common programs stored in memory by differ-
ent users

3. Protection of information against unauthorized access between users
and preventing users from changing operating system functions

The dynamic storage relocation hardware is a mapping process similar to
the paging system described in Sec. 12-6. The fixed page size used in the virtual

segment

logical address

SECTION 12-7 Memory Management Hardware 477

memory system causes certain difficulties with respect to program size and the
logical structure of programs. It is more convenient to divide programs and
data into logical parts called segments. A segment is a set of logically related
instructions or data elements associated with a given name. Segments may be
generated by the programmer or by the operating system. Examples of seg-
ments are a subroutine, an array of data, a table of symbols, or a user’s
program.

The sharing of common programs is an integral part of a multiprogram-
ming system. For example, several users wishing to compile their Fortran
programs should be able to share a single copy of the compiler rather than each
user having a separate copy in memory. Other system programs residing in
memory are also shared by all users in a multiprogramming system without
having to produce multiple copies.

The third issue in multiprogramming is protecting one program from
unwanted interaction with another. An example of unwanted interaction is
one user’s unauthorized copying of another user’s program. Another aspect
of protection is concerned with preventing the occasional user from performing
operating system functions and thereby interrupting the orderly sequence of
operations in a computer installation. The secrecy of certain programs must be
kept from unauthorized personnel to prevent abuses in the confidential activ-
ities of an organization.

The address generated by a segmented program is called a logical address.
This is similar to a virtual address except that logical address space is associated
with variable-length segments rather than fixed-length pages. The logical
address may be larger than the physical memory address as in virtual memory,
but it may also be equal, and sometimes even smaller than the length of the
physical memory address. In addition to relocation information, each segment
has protection information associated with it. Shared programs are placed in
a unique segment in each user’s logical address space so that a single physical
copy can be shared. The function of the memory management unit is to map
logical addresses into physical addresses similar to the virtual memory map-
ping concept.

Segmented-Page Mapping

It was already mentioned that the property of logical space is that it uses
variable-length segments. The length of each segment is allowed to grow and
contract according to the needs of the program being executed. One way of
specifying the length of a segment is by associating with it a number of
equal-size pages. To see how this is done, consider the logical address shown
in Fig. 12-21. The logical address is partitioned into three fields. The segment
field specifies a segment number. The page field specifies the page within the
segment and the word field gives the specific word within the page. A page
field of k bits can specify up to 2* pages. A segment number may be associated

478 CHAPTER TWELVE Memory Organization

Logical address
Segment } Page [Word |
Segment lable Page table
ove——
*
Hiock | Word
Physical address

{a) Logical to physical address mapping

Segment Page Block

(b) Associative memory translation look-aside buffer (TLB)

Figure 12-21 Mapping in d-page memory £ unit.

with just one page or with as many as 2* pages. Thus the length of a segment
would vary according to the number of pages that are assigned to it.

The mapping of the logical address into a physical address is done by
means of two tables, as shown in Fig. 12-21(a). The segment number of the
logical address specifies the address for the segment table. The entry in the

SECTION 12-7 Memory Management Hardware 479

segment table is a pointer address for a page table base. The page table base
is added to the page number given in the logical address. The sum produces
a pointer address to an entry in the page table. The value found in the page
table provides the block number in physical memory. The concatenation of the
block field with the word field produces the final physical mapped address.

The two mapping tables may be stored in two separate small memories
or in main memory. In either case, a memory reference from the CPU will
require three accesses to memory: one from the segment table, one from the
page table, and the third from main memory. This would slow the system
significantly when compared to a conventional system that requires only one
reference to memory. To avoid this speed penalty, a fast associative memory
is used to hold the most recently referenced table entries. (This type of memory
is sometimes called a translation lookaside buffer, abbreviated TLB.) The first time
a given block is referenced, its value together with the corresponding segment
and page numbers are entered into the associative memory as shown in
Fig. 12-21(b). Thus the mapping process is first attempted by associative search
with the given segment and page numbers. If it succeeds, the mapping delay
is only that of the associative memory. If no match occurs, the slower table
mapping of Fig. 12-21(a) is used and the result transformed into the associative
memory for future reference.

Numerical Example

A numerical example may clarify the operation of the memory management
unit. Consider the 20-bit logical address specified in Fig. 12-22(a). The 4-bit
segment number specifies one of 16 possible segments. The 8-bit page number
can specify up to 256 pages, and the 8-bit word field implies a page size of 256
words. This configuration allows each segment to have any number of pages
up to 256. The smallest possible segment will have one page or 256 words. The
largest possible segment will have 256 pages, for a total of 256 X 256 = 64K
words.

The physical memory shown in Fig. 12-22(b) consists of 2% words of 32
bits each. The 20-bit address is divided into two fields: a 12-bit block number
and an 8-bit word number. Thus, physical memory is divided into 4096 blocks
of 256 words each. A page in a logical address has a corresponding block in
physical memory. Note that both the logical and physical address have 20 bits.
In the absence of a memory management unit, the 20-bit address from the CPU
can be used to access physical memory directly.

Consider a program loaded into memory that requires five pages. The
operating system may assign to this program segment 6 and pages 0 through
4, as shown in Fig. 12-23(a). The total logical address range for the program is
from hexadecimal 60000 to 604FF. When the program is loaded into physical
memory, it is distributed among five blocks in physical memory where the
operating system finds empty spaces. The correspondence between each
memory block and logical page number is then entered in a table as shown in

480 CHAPTER TWELVE Memory Organization

4 8 8
Segment | Page Word
(a) Logical address format: 16 segments of 256 pages each,
each page has 256 words
12 8
Block Word

220 x 32
Physical memory

(b) Physical address format: 4096 blocks of 256 words each,
each word has 32 bits

Figure 12-22 An example of logical and physical addresses.

Fig. 12-23(b). The information from this table is entered in the segment and
page tables as shown in Fig. 12-24(a).

Now consider the specific logical address given in Fig. 12-24. The 20-bit
address is listed as a five-digit hexadecimal number. It refers to word number
7E of page 2 in segment 6. The base of segment 6 in the page table is at address
35. Segment 6 has associated with it five pages, as shown in the page table at
addresses 35 through 39. Page 2 of segment 6 is at address 35 + 2 = 37. The
physical memory block is found in the page table to be 019. Word 7E in block
19 gives the 20-bit physical address 0197E. Note that page 0 of segment 6 maps
into block 12 and page 1 maps into block 0. The associative memory in Fig.

Figure 12-23 Example of logical and physical memory address assignment.

Hexadecimal
address Page number

60000 Page 0 Segment Page Block
60100 Page 1 6 00 012
60200 Page 2 g g; g?g
60300 Page 3 6 03 053
60400 P~ 6 04| ast
604FF aee

(a) Logical address assignment

(b) Segment-page versus
" memory block assignment

Segment table

35

A3

Figure 12-24 Logical to physical memory

SECTION 12-7 Memory Management Hardware 481

Logical address (in haxadecimal)

[s

02

1 =

35
36
37
38
39

A3

(a) Segment and page table mapping

Page table

012

019

053

A61

012

000FF

01200

012FF

01900
0197E
019FF

Segment Page Block
6 02 019
6 04 A6l

in hexadecimal).

(b) Associative memory (TLB)

ple (all

Physical memory

Block 0

Block 12

32-bit word

bers are

482

CHAPTER TWELVE Memory Organization

12-24(b) shows that pages 2 and 4 of segment 6 have been referenced previously
and therefore their corresponding block numbers are stored in the associative
memory.

From this example it should be evident that the memory management
system can assign any number of pages to each segment. Each logical page can
be mapped into any block in physical memory. Pages can move to different
blocks in memory depending on memory space requirements. The only updat-
ing required is the change of the block number in the page table. Segments can
grow or shrink independently without affecting each other. Different seg-
ments can use the same block of memory if it is required to share a program
by many users. For example, block number 12 in physical memory can be
assigned a second logical address FO000 through FOOFF. This specifies segment
number 15 and page 0, which maps to block 12 as shown in Fig. 12-24(a).

Memory Protection

Memory protection can be assigned to the physical address or the logical
address. The protection of memory through the physical address can be done
by assigning to each block in memory a number of protection bits that indicate
the type of access allowed to its corresponding block. Every time a page is
moved from one block to another it would be necessary to update the block
protection bits. A much better place to apply protection is in the logical address
space rather than the physical address space. This can be done by including
protection information within the segment table or segment register of the
memory management hardware.

The content of each entry in the segment table or a segment register is
called a descriptor. A typical descriptor would contain, in addition to a base
address field, one or two additional fields for protection purposes. A typical
format for a segment descriptor is shown in Fig. 12-25. The base address field
gives the base of the page table address in a segmented-page organization or
the block base address in a segment register organization. This is the address
used in mapping from a logical to the physical address. The length field gives
the segment size by specifying the maximum number of pages assigned to the
segment. The length field is compared against the page number in the logical
address. A size violation occurs if the page number falls outside the segment
length boundary. Thus a given program and its data cannot access memory not
assigned to it by the operating system.

The protection field in a segment descriptor specifies the access rights
available to the particular segment. In a segmented-page organization, each

Figure 12-25 Format of a typical segment descriptor.

Base address I Lengtﬂ Protection—l

Problems 483

entry in the page table may have its own protection field to describe the access
rights of each page. The protection information is set into the descriptor by the
master control program of the operating system. Some of the access rights of
interest that are used for protecting the programs residing in memory are:

1. Full read and write privileges
2. Read only (write protection)

3. Execute only (program protection)
4. System only (operating system protection)

Full read and write privileges are given to a program when it is executing
its own instructions. Write protection is useful for sharing system programs
such as utility programs and other library routines. These system programs are
stored in an area of memory where they can be shared by many users. They
can be read by all programs, but no writing is allowed. This protects them from
being changed by other programs.

The execute-only condition protects programs from being copied. It re-
stricts the segment to be referenced only during the instruction fetch phase but
not during the execute phase. Thus it allows the users to execute the segment
program instructions but prevents them from reading the instructions as data
for the purpose of copying their content.

Portions of the operating system will reside in memory at any given time.
These system programs must be protected by making them inaccessible to
unauthorized users. The operating system protection condition is placed in the
descriptors of all operating system programs to prevent the occasional user

from accessing operating

-t o
’| PROBLEMS |— =
12-1. a. How many 128 x 8 RAM chips are needed to provide a Y capacity
of 2048 bytes?

b. How many lines of the address bus must be used to access 2048 bytes of
memory? How many of these lines will be common to all chips?
¢. How many lines must be decoded for chip select? Specify the size of the
decoders.
12-2. A computer uses RAM chips of 1024 x 1 capacity.
a. How many chips are needed, and how should their address lines be
connected to provide a memory capacity of 1024 bytes?
b. How many chips are needed to provide a memory capacity of 16K bytes?
Explain in words how the chips are to be connected to the address bus.
12-3. A ROM chip of 1024 % Bbits has four select inputs and operates from a 5-volt

484

CHAPTER TWELVE Memory Organization

12-5.

12-6.

12-7.

12-8.

12-9.

12-10.

12-11.

12-12.

power supply. How many pins are needed for the IC package? Draw a block
diagram and label all input and output terminals in the ROM.

Extend the memory system of Fig. 12-4 to 4096 bytes of RAM and 4096 bytes
of ROM. List the memory-address map and indicate what size decoders are
needed.

A computer employs RAM chips of 256 X 8 and ROM chips of 1024 X 8. The
computer system needs 2K bytes of RAM, 4K bytes of ROM, and four
interface units, each with four registers. A memory-mapped /O configura-
tion is used. The two highest-order bits of the address bus are assigned 00
for RAM, 01 for ROM, and 10 for interface registers.

a. How many RAM and ROM chips are needed?

b. Draw a memory-address map for the system.

c. Give the address range in hexadecimal for RAM, ROM, and interface.
An 8-bit computer has a 16-bit address bus. The first 15 lines of the address
are used to select a bank of 32K bytes of memory. The high-order bit of the
address is used to select a register which receives the contents of the data
bus. Explain how this configuration can be used to extend the memory
capacity of the system to eight banks of 32K bytes each, for a total of 256K
bytes of memory.

A magnetic disk system has the following parameters:

T, = average time to position the magnetic head over a track
R = rotation speed of disk in revolutions per second
N: = number of bits per track

N, = number of bits per sector

Calculate the average time T, that it will take to read one sector.

What is the transfer rate of an eight-track magnetic tape whose speed is 120
inches per second and whose density is 1600 bits per inch?

Obtain the complement function for the match logic of one word in an

associative memory. In other words, show that M/ is the sum of exclusive-

OR functions. Draw the logic diagram for M/ and terminate it with an

inverter to obtain M;.

Obtain the Boolean function for the match logic of one word in an associative

memory taking into consideration a tag bit that indicates whether the word

is active or inactive.

What additional logic is required to give a no-match result for a word in an

associative memory when all key bits are zeros?

a. Draw the logic diagram of all the cells of one word in an associative
memory. Include the read and write logic of Fig. 12-8 and the match logic
of Fig. 12-9.

b. Draw the logic diagram of all cells along one vertical column (column j)
in an associative memory. Include a common output line for all bits in
the same column.

486 CHAPTER TWELVE Memory Organization

c. If a page consists of 2K words, how many pages and blocks are there in
the system?
12-20. A virtual memory has a page size of 1K words. There are eight pages
and four blocks. The associative memory page table contains the following
entries:

Block

L =] g

(=R

Make a list of all virtual addresses (in decimal) that will cause a page fault
if used by the CPU.

12-21. Avirtual memory system has an address space of 8K words, a memory space
ofinmdn.mdp-gzmdhﬁkamuflenis(mﬁngl&)ﬂe
following page occur during a given time interval. (Only
pn@echnnguml.uud [fﬂwmpageism‘emdw it is not listed
twice.)

4 20126140102357

Detemhethefmupupthllmuﬁdeﬂtinmlhmmylfunuhpm
hange if the repl algorithm used is (a) FIFO; (b) LRU.

12-22. Determine the two logical addresses from Fig. 12-24(a) that will access
physical memory at hexadecimal address 012AF.

12-23. The logical add space in a comp ists of 128 seg
Mug:mtnnhmupw&pagunﬂkwdaineuh Physical memory
consists of 4K blocks of 4K words in each. Formulate the logical and physical
address formats.

12-24. Give the binary number of the logical address formulated in Prob. 12-23 for
segment 36 and word number 2000 in page 15.

—= REFERENCES |

1. Baer, J. L., G Si Archi . Py MD: Comp Science Press,

e 7 y
2. D , 5., Comyp Architecture: A Modern Synthesis, Vol. 1. New York: John
Wiley 1939

3. Gibson, G. A., Computer Systems Concepts and Design. Englewood Cliffs, NJ: Prentice
Hall, 1991.

10.

11.

References 487

. Hamacher, V. C., Z. G. Vranesic, and S. G. Zaky, Computer Organization, 3rd ed.

New York: McGraw-Hill, 1990.

. Hwang, K., and F. A. Briggs, Computer Architecture and Parallel Processing. New

York: McGraw-Hill, 1984.

. Kain, R., Computer Architecture: Software and Hardware, Vol. 1. Englewood Cliffs, NJ:

Prentice Hall, 1989.

. Langholz, G., J. Francioni, and A. Kandel, Elements of Computer Organization.

Englewood Cliffs, NJ: Prentice Hall, 1989.

. Murray, W. D., Computer and Digital System Architecture. Englewood Cliffs, NJ:

Prentice Hall, 1990.

. Patterson, D. A., and]. L. Hennessy, Computer Architecture: A Quantitative Approach.

San Mateo, CA: Morgan Kaufmann Publishers, 1990.

Pollard, L. H., Computer Design and Architecture. Englewood Cliffs, NJ: Prentice
Hall, 1990.

Stone, H. S. (ed.), Introduction to Computer Architecture, 2nd ed. Chicago: Science
Research Associates, 1980.

byte

interface

SECTION 11-2 Input-Output Interface 385

the familiar typewriter controls, such as backspace (BS), horizontal tabulation
(HT), and carriage return (CR). Information separators are used to separate the
data into divisions like paragraphs and pages. They include characters such as
record separator (RS) and file separator (FS). The communication control char-
acters are useful during the transmission of text between remote terminals.
Examples of communication control characters are STX (start of text) and ETX
(end of text), which are used to frame a text message when transmitted through
a communication medium.

ASCII is a 7-bit code, but most computers manipulate an 8-bit quantity
as a single unit called a byte. Therefore, ASCII characters most often are stored
one per byte. The extra bit is sometimes used for other purposes, depending
on the application. For example, some printers recognize 8-bit ASCII characters
with the most significant bit set to 0. Additional 128 8-bit characters with the
most significant bit set to 1 are used for other symbols, such as the Greek
alphabet or italic type font. When used in data communication, the eighth bit
may be employed to indicate the parity of the binary-coded character.

11-2 Input—Output Interface

Input-output interface provides a method for transferring information be-
tween internal storage and external /O devices. Peripherals connected to a
computer need special communication links for interfacing them with the
central processing unit. The purpose of the communication link is to resolve
the differences that exist between the central computer and each peripheral.
The major differences are:

1. Peripherals are electromechanical and electromagnetic devices and their
manner of operation is different from the operation of the CPU and
memory, which are electronic devices. Therefore, a conversion of signal
values may be required.

2. The data transfer rate of peripherals is usually slower than the transfer
rate of the CPU, and consequently, a synchronization mechanism may
be needed.

3. Data codes and formats in peripherals differ from the word format in
the CPU and memory.

4. The operating modes of peripherals are different from each other and
each must be controlled so as not to disturb the operation of other
peripherals connected to the CPU.

To resolve these differences, computer systems include special hardware
components between the CPU and peripherals to supervise and synchronize
all input and output transfers. These components are called inferface units
because they interface between the processor bus and the peripheral device.

386 CHAPTER ELEVEN Input-Output Organization

In addition, each device may have its own controller that supervises the
operations of the particular mechanism in the peripheral.

L/O Bus and Interface Modules

A typical communication link between the processor and several peripherals
is shown in Fig. 11-1. The /O bus consists of data lines, address lines, and
control lines. The magnetic disk, printer, and terminal are employed in prac-
tically any general-purpose computer. The magnetic tape is used in some
computers for backup storage. Each peripheral device has assodated with it
an interface unit. Each interface decodes the address and control received from
the /O bus, interprets them for the peripheral, and provides signals for the
peripheral controller. It also synchmmz.es the data ﬁuw and supervises the
transfer between peripheral and processor. Each peripheral has its own con-
troller that operates the particular electromechanical device. For example, the
printer controller controls the paper motion, the print timing, and the selection
of printing characters. A controller may be housed separately or may be
physically integrated with the peripheral.

The I/O bus from the processor is attached to all peripheral interfaces. To
communicate with a particular device, the processor places a device address
on the address lines. Each interface attached to the /O bus contains an address
decoder that monitors the address lines. When the interface detects its own
address, it activates the path between the bus lines and the device that it
controls. All peripherals whose address does not correspond to the address in
the bus are disabled by their interface.

At the same time that the address is made available in the address lines,
the processor provides a function code in the control lines. The interface

Figure 11-1 Connection of O bus to input-output devices.
Ll Data
Control

1/O command

control command

status

output data

input data

SECTION 112 Input—Output Interface 387

selected responds to the function code and proceeds to execute it. The function
code is referred to as an /O command and is in essence an instruction that is
executed in the interface and its attached peripheral unit. The interpretation
of the command depends on the peripheral that the processor is addressing.
There are four types of commands that an interface may receive. They are
classified as control, status, data output, and data input.

A control command is issued to activate the peripheral and to inform it what
to do. For example, a magnetic tape unit may be instructed to backspace the
tape by one record, to rewind the tape, or to start the tape moving in the
forward direction. The particular control command issued depends on the
peripheral, and each peripheral receives its own distinguished sequence of
control commands, depending on its mode of operation.

A status command is used to test various status conditions in the interface
and the peripheral. For example, the computer may wish to check the status
of the peripheral before a transfer is initiated. During the transfer, one or more
errors may occur which are detected by the interface. These errors are desig-
nated by setting bits in a status register that the processor can read at certain
intervals.

A data output command causes the interface to respond by transferring data
from the bus into one of its registers. Consider an example with a tape unit.
The computer starts the tape moving by issuing a control command. The
processor then monitors the status of the tape by means of a status command.
When the tape is in the correct position, the processor issues a data output
command. The interface responds to the address and command and transfers
the information from the data lines in the bus to its buffer register. The interface
then communicates with the tape controller and sends the data to be stored
on tape.

The data input command is the opposite of the data output. In this case the
interface receives an item of data from the peripheral and places it in its buffer
register. The processor checks if data are available by means of a status com-
mand and then issues a data input command. The interface places the data on
the data lines, where they are accepted by the processor.

I/O versus Memory Bus

In addition to communicating with /O, the processor must communicate with
the memory unit. Like the /O bus, the memory bus contains data, address,
and read/write control lines. There are three ways that computer buses can be
used to communicate with memory and I/O:

1. Use two separate buses, one for memory and the other for I/O.

2. Use one common bus for both memory and IO but have separate
control lines for each. ‘

3. Use one common bus for memory and /O with common control lines.

388 CHAPTERELEVEN Input-Output Organization

Iop

isolated I/O

memory-mapped

In the first method, the computer has independent sets of data, address,
and control buses, one for accessing memory and the other for /O. This is done
in computers that provide a separate /O processor (IOP) in addition to the
central processing unit (CPU). The memory communicates with both the CPU
and the IOP through a memory bus. The IOP communicates also with the input
and output devices through a separate I/O bus with its own address, data and
control lines. The purpose of the IOP is to provide an independent pathway
for the transfer of information between external devices and internal memory.
The VO processor is sometimes called a data channel. In Sec. 11-7 we discuss
the function of the IOP in more detail.

Isolated versus Memory-Mapped /O

Many computers use one common bus to transfer information between mem-
ory or /O and the CPU. The distinction between a memory transfer and /O
transfer is made through separate read and write lines. The CPU specifies
whether the address on the address lines is for a memory word or for an
interface register by enabling one of two possible read or write lines. The I/O
read and I/0 write control lines are enabled during an I/O transfer. The memory
read and memory write control lines are enabled during a memory transfer. This
configuration isolates all I/O interface addresses from the addresses assigned
to memory and is referred to as the isolated I/O method for assigning addresses
in a common bus.

In the isolated /O configuration, the CPU has distinct input and output
instructions, and each of these instructions is associated with the address of
an interface register. When the CPU fetches and decodes the operation code
of an input or output instruction, it places the address associated with the
instruction into the common address lines. At the same time, it enables the /O
read (for input) or /O write (for output) control line. This informs the external
components that are attached to the common bus that the address in the
address lines is for an interface register and not for a memory word. On the
other hand, when the CPU is fetching an instruction or an operand from
memory, it places the memory address on the address lines and enables the
memory read or memory write control line. This informs the external compo-
nents that the address is for a memory word and not for an I/O interface.

The isolated /O method isolates memory and I/O addresses so that
memory address values are not affected by interface address assignment since
each has its own address space. The other alternative is to use the same address
space for both memory and I/O. This is the case in computers that employ only
one set of read and write signals and do not distinguish between memory and
I/O addresses. This configuration is referred to as memory-mapped 1/0. The
computer treats an interface register as being part of the memory system. The
assigned addresses for interface registers cannot be used for memory words,
which reduces the memory address range available.

IO port

SECTION 11-2 Input-Output Interface 389

In a memory-mapped I/O organization there are no specific input or
output instructions. The CPU can manipulate I/O data residing in interface
registers with the same instructions that are used to manipulate memory
words. Each interface is organized as a set of registers that respond to read and
write requests in the normal address space. Typically, a segment of the total
address space is reserved for interface registers, but in general, they can be
located at any address as long as there is not also a memory word that responds
to the same address.

Computers with memory-mapped I/O can use memory-type instructions
to access /O data. It allows the computer to use the same instructions for either
input-output transfers or for memory transfers. The advantage is that the load
and store instructions used for reading and writing from memory can be used
to input and output data from /O registers. In a typical computer, there are
more memory-reference instructions than I/O instructions. With memory-
mapped VO all instructions that refer to memory are also available for I/O.

Example of I/O Interface

An example of an /O interface unit is shown in block diagram form in Fig. 11-2.
It consists of two data registers called ports, a control register, a status register,
bus buffers, and timing and control circuits. The interface communicates with
the CPU through the data bus. The chip select and register select inputs
determine the address assigned to the interface. The /O read and write are two
control lines that specify an input or output, respectively. The four registers
communicate directly with the /O device attached to the interface.

The I/O data to and from the device can be transferred into either port
A or port B. The interface may operate with an output device or with an input
device, or with a device that requires both input and output. If the interface
is connected to a printer, it will only output data, and if it services a character
reader, it will only input data. A magnetic disk unit transfers data in both
directions but not at the same time, so the interface can use bidirectional lines.
A command is passed to the /O device by sending a word to the appropriate
interface register. In a system like this, the function code in the /O bus is not
needed because control is sent to the control register, status information is
received from the status register, and data are transferred to and from ports
A and B registers. Thus the transfer of data, control, and status information
is always via the common data bus. The distinction between data, control, or
status information is determined from the particular interface register with
which the CPU communicates.

The control register receives control information from the CPU. By load-
ing appropriate bits into the control register, the interface and the /O device
attached to it can be placed in a variety of operating modes. For example, port
A may be defined as an input port and port B as an output port. A magnetic
tape unit may be instructed to rewind the tape or to start the tape moving in

390

CHAPTER ELEVEN Input-Output Organization

Bidirectional Port A 1/0 data
Bus register
buffers

data bus

Port B 1/0 data
e ———

Chip select register
—— | RSI
Register select
RSO Timing Control Control
X ———
and ” register
1/0 read »|gp control ‘:’
]
1 o
1/0 write WR £
Staus | Statws
register
~————— To CPU To 1/0 device ———————>

CS RS1 RSO | Register selected

0 x x None: data bus in high-impedance
0 Port A register
1 Port B register

1 1 0 Control register

1 1 1 Status register

Figure 11-2 Example of /O interface unit.

the forward direction. The bits in the status register are used for status condi-
tions and for recording errors that may occur during the data transfer. For
example, a status bit may indicate that port A has received a new data item from
the /O device. Another bit in the status register may indicate that a parity error
has occurred during the transfer.

The interface registers communicate with the CPU through the bidirec-
tional data bus. The address bus selects the interface unit through the chip
select and the two register select inputs. A circuit must be provided externally
(usually, a decoder) to detect the address assigned to the interface registers.
This circuit enables the chip select (CS) input when the interface is selected by
the address bus. The two register select inputs RS1 and RSO are usually
connected to the two least significant lines of the address bus. These two inputs

strobe

handshaking

timing diagram

SECTION 11-3 Asynchronous Data Transfer ~ 391

select one of the four registers in the interface as specified in the table accom-
panying the diagram. The content of the selected register is transfer into the
CPU via the data bus when the I/O read signal is enabled. The CPU transfers
binary information into the selected register via the data bus when the /O write
input is enabled.

11-3 Asynchronous Data Transfer

The internal operations in a digital system are synchronized by means of clock
pulses supplied by a common pulse generator. Clock pulses are applied to all
registers within a unit and all data transfers among internal registers occur
simultaneously during the occurrence of a clock pulse. Two units, such as a
CPU and an I/O interface, are designed independently of each other. If the
registers in the interface share a common clock with the CPU registers, the
transfer between the two units is said to be synchronous. In most cases, the
internal timing in each unit is independent from the other in that each uses its
own private clock for internal registers. In that case, the two units are said to
be asynchronous to each other. This approach is widely used in most computer
systems.

Asynchronous data transfer between two independent units requires
that control signals be transmitted between the communicating units to indi-
cate the time at which data is being transmitted. One way of achieving this is
by means of a strobe pulse supplied by one of the units to indicate to the other
unit when the transfer has to occur. Another method commonly used is to
accompany each data item being transferred with a control signal that indicates
the presence of data in the bus. The unit receiving the data item responds with
another control signal to acknowledge receipt of the data. This type of agree-
ment between two independent units is referred to as handshaking.

The strobe pulse method and the handshaking method of asynchronous
data transfer are not restricted to /O transfers. In fact, they are used extensively
on numerous occasions requiring the transfer of data between two indepen-
dent units. In the general case we consider the transmitting unit as the source
and the receiving unit as the destination. For example, the CPU is the source
unit during an output or a write transfer and it is the destination unit during
an input or aread transfer. It is customary to specify the asynchronous transfer
between two independent units by means of a timing diagram that shows the
timing relationship that must exist between the control signals and the data in
the buses. The sequence of control during an asynchronous transfer depends
on whether the transfer is initiated by the source or by the destination unit.

Strobe Control

The strobe control method of asynchronous data transfer employs a single
control line to time each transfer. The strobe may be activated by either the
source or the destination unit. Figure 11-3(a) shows a source-initiated transfer.

392

CHAPTER ELEVEN Input-Output Organization

Data bus

Source Destination
unit Strobe unit

(a) Block diagram

Data ‘l Valid data ||

Strobe I |

(b) Timing diagram

Figure 11-3 Source-initiated strobe for data transfer.

The data bus carries the binary information from source unit to the destination
unit. Typically, the bus has multiple lines to transfer an entire byte or word.
The strobe is a single line that informs the destination unit when a valid data
word is available in the bus.

As shown in the timing diagram of Fig. 11-3(b), the source unit first places
the data on the data bus. After a brief delay to ensure that the data settle to
a steady value, the source activates the strobe pulse. The information on the
data bus and the strobe signal remain in the active state for a sufficient time
period to allow the destination unit to receive the data. Often, the destination
unit uses the falling edge of the strobe pulse to transfer the contents of the data
bus into one of its internal registers. The source removes the data from the bus
a brief period after it disables its strobe pulse. Actually, the source does not
have to change the information in the data bus. The fact that the strobe signal
is disabled indicates that the data bus does not contain valid data. New valid
data will be available only after the strobe is enabled again.

Figure 11-4 shows a data transfer initiated by the destination unit. In this
case the destination unit activates the strobe pulse, informing the source to
provide the data. The source unit responds by placing the requested binary
information on the data bus. The data must be valid and remain in the bus long
enough for the destination unit to accept it. The falling edge of the strobe pulse
can be used again to trigger a destination register. The destination unit then
disables the strobe. The source removes the data from the bus after a predeter-
mined time interval.

In many computers the strobe pulse is actually controlled by the clock
pulses in the CPU. The CPU is always in control of the buses and informs the
external units how to transfer data. For example, the strobe of Fig. 11-3 could
be a memory-write control signal from the CPU to a memory unit. The source,
being the CPU, places a word on the data bus and informs the memory unit,

two-wire control

SECTION 11-3 Asynchronous Data Transfer 393

Data bus
Source Destination
unit Strobe unit

(a) Block diagram
Data Valid data

Strobe

(b) Timing diagram

Figure 11-4 Destination-initiated strobe for data transfer.

which is the destination, that this is a write operation. Similarly, the strobe of
Fig. 11-4 could be a memory-read control signal from the CPU to a memory
unit. The destination, the CPU, initiates the read operation to inform the
memory, which is the source, to place a selected word into the data bus.

The transfer of data between the CPU and an interface unit is similar to
the strobe transfer just described. Data transfer between an interface and an
/O device is commonly controlled by a set of handshaking lines.

Handshaking

The disadvantage of the strobe method is that the source unit that initiates the
transfer has no way of knowing whether the destination unit has actually
received the data item that was placed in the bus. Similarly, a destination unit
that initiates the transfer has no way of knowing whether the source unit has
actually placed the data on the bus. The handshake method solves this problem
by introducing a second control signal that provides a reply to the unit that
initiates the transfer. The basic principle of the two-wire handshaking method
of data transfer is as follows. One control line is in the same direction as the
data flow in the bus from the source to the destination. It is used by the source
unit to inform the destination unit whether there are valid data in the bus. The
other control line is in the other direction from the destination to the source.
It is used by the destination unit to inform the source whether it can accept
data. The sequence of control during the transfer depends on the unit that
initiates the transfer.

Figure 11-5 shows the data transfer procedure when initiated by the
source. The two handshaking lines are data valid, which is generated by the
source unit, and data accepted, generated by the destination unit. The timing
diagram shows the exchange of signals between the two units. The sequence
of events listed in part (c) shows the four possible states that the system can

394

CHAPTER ELEVEN Input-Output Organization

Data bus
Source Data valid D:
unit unit
Data accepted
(a) Block diagram

Data bus

Data valid

Data accepted

(b) Timing diagram

Source unit Destination unit

Place data on bus.

Enable data valid.

Disable data valid.
Invalidate data on bus.

Accept data from bus.
Enable data accepted.

Disable data accepted.
Ready to accept data
(initial state).

(c) Sequence of events

Figure 11-5 Source-initiated transfer using handshaking.

be at any given time. The source unit initiates the transfer by placing the data
on the bus and enabling its data valid signal. The data accepted signal is activated
by the destination unit after it accepts the data from the bus. The source unit
then disables its data valid signal, which invalidates the data on the bus. The
destination unit then disables its data accepted signal and the system goes into
its initial state. The source does not send the next data item until after the
destination unit shows its readiness to accept new data by disabling its data
accepted signal. This scheme allows arbitrary delays from one state to the next

SECTION 11-3 Asynchronous Data Transfer 395

and permits each unit to respond at its own data transfer rate. The rate of
transfer is determined by the slowest unit.

The destination-initiated transfer using handshaking lines is shown in
Fig. 11-6. Note that the name of the signal generated by the destination unit
has been changed to ready for data to reflect its new meaning. The source unit
in this case does not place data on the bus until after it receives the ready for
data signal from the destination unit. From there on, the handshaking proce-
dure follows the same pattern as in the source-initiated case. Note that the

Figure 11-6 Destination-initiated transfer using handshaking.

Data bus
Source Data valid D
unit unit
Ready for data
(a) Block diagram
Ready for data
Data valid
Valid data
Data bus
(b) Timing diagram
Source unit Destination unit

Ready to accept data.
Enable ready for data.

Accept data from bus.
Disable ready for data.

Place data on bus.
Enable data valid.

Disable data valid.
Invalidate data on bus
(initial state).

(c) Sequence of events

396 CHAPTER ELEVEN Input-Output Organization

timeout

synchronous

asynchronous

sequence of events in both cases would be identical if we consider the ready for
data signal as the complement of data accepted. In fact, the only difference
between the source-initiated and the destination-initiated transfer is in their
choice of initial state.

The handshaking scheme provides a high degree of flexibility and reliabil-
ity because the successful completion of a data transfer relies on active partic-
ipation by both units. If one unit is faulty, the data transfer will not be
completed. Such an error can be detected by means of a timeout mechanism,
which produces an alarm if the data transfer is not completed within a prede-
termined time. The timeout is implemented by means of an internal clock that
starts counting time when the unit enables one of its handshaking control
signals. If the return handshake signal does not respond within a given time
period, the unit assumes that an error has occurred. The timeout signal can be
used to interrupt the processor and hence execute a service routine that takes
appropriate error recovery action.

Asynchronous Serial Transfer

The transfer of data between two units may be done in parallel or serial. In
parallel data transmission, each bit of the message has its own path and the
total message is transmitted at the same time. This means that an n-bit message
must be transmitted through n separate conductor paths. In serial data trans-
mission, each bit in the message is sent in sequence one at a time. This method
requires the use of one pair of conductors or one conductor and a common
ground. Parallel transmission is faster but requires many wires. It is used for
short distances and where speed is important. Serial transmission is slower but
is less expensive since it requires only one pair of conductors.

Serial transmission can be synchronous or asynchronous. In synchron-
ous transmission, the two units share a common clock frequency and bits are
transmitted continuously at the rate dictated by the clock pulses. In long-
distant serial transmission, each unit is driven by a separate clock of the same
frequency. Synchronization signals are transmitted periodically between the
two units to keep their clocks in step with each other. In asynchronous trans-
mission, binary information is sent only when it is available and the line
remains idle when there is no information to be transmitted. This is in contrast
to synchronous transmission, where bits must be transmitted continuously to
keep the clock frequency in both units synchronized with each other. Syn-
chronous serial transmission is discussed further in Sec. 11-8.

A serial asynchronous data transmission technique used in many interac-
tive terminals employs special bits that are inserted at both ends of the char-
acter code. With this technique, each character consists of three parts: a start
bit, the character bits, and stop bits. The convention is that the transmitter rests

start bit

stop bit

SECTION 11-3 Asynchronous Data Transfer 397

at the 1-state when no characters are transmitted. The first bit, called the start
bit, is always a 0 and is used to indicate the beginning of a character. The last
bit called the stop bit is always a 1. An example of this format is shown in
Fig. 11-7.

A transmitted character can be detected by the receiver from knowledge
of the transmission rules:

1. When a character is not being sent, the line is kept in the 1-state.

2. The initiation of a character transmission is detected from the start bit,
which is always 0.

3. The character bits always follow the start bit.

4. After the last bit of the character is transmitted, a stop bit is detected
when the line returns to the 1-state for at least one bit time.

Using these rules, the receiver can detect the start bit when the line goes from
1t00. A clock in the receiver examines the line at proper bit times. The receiver
knows the transfer rate of the bits and the number of character bits to accept.
After the character bits are transmitted, one or two stop bits are sent. The stop
bits are always in the 1-state and frame the end of the character to signify the
idle or wait state.

At the end of the character the line is held at the 1-state for a period of
at least one or two bit times so that both the transmitter and receiver can
resynchronize. The length of time that the line stays in this state depends on
the amount of time required for the equipment to resynchronize. Some older
electromechanical terminals use two stop bits, but newer terminals use one
stop bit. The line remains in the 1-state until another character is transmitted.
The stop time ensures that a new character will not follow for one or two bit
times.

As an illustration, consider the serial transmission of a terminal whose
transfer rate is 10 characters per second. Each transmitted character consists

Figure 11-7 Asynchronous serial transmission.

| 1 1 0 0 0 1 0 1
Start . Stop
f———————————
bit Character bits 4—‘4— bits |

398 CHAPTER ELEVEN Input-Output Organization

baud rate

of a start bit, eight information bits, and two stop bits, for a total of 11 bits. Ten
characters per second means that each character takes 0.1 s for transfer. Since
there are 11 bits to be transmitted, it follows that the bit time is 9.09 ms. The
baud rate is defined as the rate at which serial information is transmitted and
is equivalent to the data transfer in bits per second. Ten characters per second
with an 11-bit format has a transfer rate of 110 baud.

The terminal has a keyboard and a printer. Every time a key is depressed,
the terminal sends 11 bits serially along a wire. To print a character in the
printer, an 11-bit message must be received along another wire. The terminal
interface consists of a transmitter and a receiver. The transmitter accepts an
8-bit character from the computer and proceeds to send a serial 11-bit message
into the printer line. The receiver accepts a serial 11-bit message from the
keyboard line and forwards the 8-bit character code into the computer. Inte-
grated circuits are available which are specifically designed to provide the
interface between computer and similar interactive terminals. Such a circuit is
called an asynchronous communication interface or a universal asynchronous receiver-
transmitter (UART).

Asynchronous Communication Interface

The block diagram of an asynchronous communication interface is shown in
Fig. 11-8. It functions as both a transmitter and a receiver. The interface is
initialized for a particular mode of transfer by means of a control byte that is
loaded into its control register. The transmitter register accepts a data byte from
the CPU through the data bus. This byte is transferred to a shift register for
serial transmission. The receiver portion receives serial information into an-
other shift register, and when a complete data byte is accumulated, it is
transferred to the receiver register. The CPU can select the receiver register to
read the byte through the data bus. The bits in the status register are used for
input and output flags and for recording certain errors that may occur during
the transmission. The CPU can read the status register to check the status of
the flag bits and to determine if any errors have occurred. The chip select and
the read and write control lines communicate with the CPU. The chip select
(CS) input is used to select the interface through the address bus. The register
select (RS) is associated with the read (RD) and write (WR) controls. Two
registers are write-only and two are read-only. The register selected is a func-
tion of the RS value and the RD and WR status, as listed in the table accom-
panying the diagram.

The operation of the asynchronous communication interface is initialized
by the CPU by sending a byte to the control register. The initialization proce-
dure places the interface in a specific mode of operation as it defines certain
parameters such as the baud rate to use, how many bits are in each character,
whether to generate and check parity, and how many stop bits are appended
to each character. Two bits in the status register are used as flags. One bit is

transmitter

SECTION 11-3 Asynchronous Data Transfer 399

Bidirectional Bus Transmit
—~———]
buffers i : data
data bus Transmitter Shift
register register
j Transmitter
Control Trans:\;tlter clock
> i conl e—
i {(
M..‘ cs “ fegister and clock
3
. Kl
Register select E Rece
—_— - 2 . Cceive
RS Timing k= Status Receiver zl ;:ker
and M1 repister control
1/0 read | kD control 8! and clock
YO write | WR Receive
Receiver Shift data
e— N — . le—22
register register

CS RS | Operation | Register selected

X None: data bus in high-impedance
I 0 WR Transmitter register
WR Control register
10 RD Receiver register

1 1 RD Status register

Figure 11-8 Block diagram of a typical asynchronous communication interface.

used to indicate whether the transmitter register is empty and another bit is
used to indicate whether the receiver register is full.

The operation of the transmitter portion of the interface is as follows. The
CPU reads the status register and checks the flag to see if the transmitter
register is empty. If it is empty, the CPU transfers a character to the transmitter
register and the interface clears the flag to mark the register full. The first bit
in the transmitter shift register is set to 0 to generate a start bit. The character
is transferred in parallel from the transmitter register to the shift register and
the appropriate number of stop bits are appended into the shift register. The
transmitter register is then marked empty. The character can now be transmit-
ted one bit at a time by shifting the data in the shift register at the specified

400 CHAPTER ELEVEN Input-Output Organization

receiver

FIFO

baud rate. The CPU can transfer another character to the transmitter register
after checking the flag in the status register. The interface is said to be double
buffered because a new character can be loaded as soon as the previous one
starts transmission.

The operation of the receiver portion of the interface is similar. The
receive data input is in the 1-state when the line is idle. The receiver control
monitors the receive-data line for a 0 signal to detect the occurrence of a start
bit. Once a start bit has been detected, the incoming bits of the character are
shifted into the shift register at the prescribed baud rate. After receiving the
databits, the interface checks for the parity and stop bits. The character without
the start and stop bits is then transferred in parallel from the shift register to
the receiver register. The flag in the status register is set to indicate that the
receiver register is full. The CPU reads the status register and checks the flag,
and if set, it reads the data from the receiver register.

The interface checks for any possible errors during transmission and sets
appropriate bits in the status register. The CPU can read the status register at
any time to check if any errors have occurred. Three possible errors that the
interface checks during transmission are parity error, framing error, and over-
run error. Parity error occurs if the number of 1’s in the received data is not
the correct parity. A framing error occurs if the right number of stop bits is not
detected at the end of the received character. An overrun error occurs if the
CPU does not read the character from the receiver register before the next one
becomes available in the shift register. Overrun error results in a loss of
characters in the received data stream.

First-In, First-Out Buffer
A first-in, first-out (FIFO) buffer is a memory unit that stores information in
such a manner that the item first in is the item first out. A FIFO buffer comes
with separate input and output terminals. The important feature of this buffer
is that it can input data and output data at two different rates and the output
data are always in the same order in which the data entered the buffer. When
placed between two units, the FIFO can accept data from the source unit at one
rate of transfer and deliver the data to the destination unit at another rate. If
the source unit is slower than the destination unit, the buffer can be filled with
data at a slow rate and later emptied at the higher rate. If the source is faster
than the destination, the FIFO is useful for those cases where the source data
arrive in bursts that fill out the buffer but the time between bursts is long
enough for the destination unit to empty some or all the information from the
buffer. Thus a FIFO buffer can be useful in some applications when data are
transferred asynchronously. It piles up data as they come in and gives them
away in the same order when the data are needed.

The logic diagram of a typical 4 X 4 FIFO buffer is shown in Fig. 11-9. It
consists of four 4-bit registers RI, I = 1,2,3,4, and a control register with

SECTION 11-3 Asynchronous Data Transfer 401

R1 R2 R3 R4
— ——
Data == 4-bit 4-bit 4-bit 4-bit [Data
mput ____ | register register register register output
— ——
JAN JAN /\
Clock Clock Clock Clock
Insert
et S Fy -~ N F, S Fy pl S F,
Output
ready
— R F =4 R Fy fed R Fy el R Fy =
Delete

Input ready

Master clear

Figure 11-9 Circuit diagram of 4 X 4 FIFO buffer.

flip-flops F, i = 1, 2,3, 4, one for each register. The FIFO can store four words
of four bits each. The number of bits per word can be increased by increasing
the number of bits in each register and the number of words can be increased
by increasing the number of registers.

A flip-flop F,in the control register that is set to 1 indicates that a 4-bit data

word is stored in the corresponding register RI. A 0 in F, indicates that the
corresponding register does not contain valid data. The control register directs

402

CHAPTER ELEVEN Input—Output Organization

the movement of data through the registers. Whenever the F, bit of the control
register is set (F; = 1) and the F,, bit is reset (Fi,; = 1), a clock is generated
causing register R(I + 1) to accept the data from register RI. The same clock
transition sets F., to 1 and resets F; to 0. This causes the control flag to move
one position to the right together with the data. Data in the registers move
down the FIFO toward the output as long as there are empty locations ahead
of it. This ripple-through operation stops when the data reach a register RI with
the next flip-flop F..; being set to 1, or at the last register R4. An overall master
clear is used to initialize all control register flip-flops to 0.

Data are inserted into the buffer provided that the input ready signal is
enabled. This occurs when the first control flip-flop F, is reset, indicating that
register R1is empty. Data are loaded from the input lines by enabling the clock
in R1 through the insert control line. The same clock sets F;, which disables the
input ready control, indicating that the FIFO is now busy and unable to accept
more data. The ripple-through process begins provided that R2 is empty. The
data in R1 are transferred into R2 and F, is cleared. This enables the input ready
line, indicating that the inputs are now available for another data word. If the
FIFO is full, F; remains set and the input ready line stays in the 0 state. Note
that the two control lines input ready and insert constitute a destination-initiated
pair of handshake lines.

The data falling through the registers stack up at the output end. The
output ready control line is enabled when the last control flip-flop F, is set,
indicating that there are valid data in the output register R4. The output data
from R4 are accepted by a destination unit, which then enables the delete
control signal. This resets F,, causing output ready to disable, indicating that the
data on the output are no longer valid. Only after the delete signal goes back
to 0 can the data from R3 move into R4. If the FIFO is empty, there will be no
data in R3 and F, will remain in the reset state. Note that the two control lines
output ready and delete constitute a source-initiated pair of handshake lines.

11-4 Modes of Transfer

Binary information received from an external device is usually stored in mem-
ory for later processing. Information transferred from the central computer into
an external device originates in the memory unit. The CPU merely executes the
I/O instructions and may accept the data temporarily, but the ultimate source
or destination is the memory unit. Data transfer between the central computer
and I/O devices may be handled in a variety of modes. Some modes use the
CPU as an intermediate path; others transfer the data directly to and from the
memory unit. Data transfer to and from peripherals may be handled in one of
three possible modes:

1. Programmed I/O
2. Interrupt-initiated /O
3. Direct memory access (DMA)

programmed 1/O

interrupt

DMA

Iop

SECTION 11-4 Modes of Transfer 403

Programmed /O operations are the result of /O instructions written in
the computer program. Each data item transfer is initiated by an instruction
in the program. Usually, the transfer is to and from a CPU register and
peripheral. Other instructions are needed to transfer the data to and from CPU
and memory. Transferring data under program control requires constant mon-
itoring of the peripheral by the CPU. Once a data transfer is initiated, the CPU
is required to monitor the interface to see when a transfer can again be made.
Itis up to the programmed instructions executed in the CPU to keep close tabs
on everything that is taking place in the interface unit and the IO device.

In the programmed /O method, the CPU stays in a program loop until
the /O unit indicates that it is ready for data transfer. This is a time-consuming
process since it keeps the processor busy needlessly. It can be avoided by using
an interrupt facility and special commands to inform the interface to issue an
interrupt request signal when the data are available from the device. In the
meantime the CPU can proceed to execute another program. The interface
meanwhile keeps monitoring the device. When the interface determines that
the device is ready for data transfer, it generates an interrupt request to the
computer. Upon detecting the external interrupt signal, the CPU momentarily
stops the task it is processing, branches to a service program to process the /O
transfer, and then returns to the task it was originally performing.

Transfer of data under programmed I/O is between CPU and peripheral.
In direct memory access (DMA), the interface transfers data into and out of the
memory unit through the memory bus. The CPU initiates the transfer by
supplying the interface with the starting address and the number of words
needed to be transferred and then proceeds to execute other tasks. When the
transfer is made, the DMA requests memory cycles through the memory bus.
When the request is granted by the memory controller, the DMA transfers the
data directly into memory. The CPU merely delays its memory access operation
to allow the direct memory /O transfer. Since peripheral speed is usually
slower than processor speed, /O-memory transfers are infrequent compared
to processor access to memory. DMA transfer is discussed in more detail in
Sec. 11-6.

Many computers combine the interface logic with the requirements for
direct memory access into one unit and call it an /O processor (IOP). The IOP
can handle many peripherals through a DMA and interrupt facility. In such
a system, the computer is divided into three separate modules: the memory
unit, the CPU, and the IOP. /O processors are presented in Sec. 11-7.

v

Example of Programmed 1/O
In the programmed /O method, the /O device does not have direct access to
memory. A transfer from an I/O device to memory requires the execution of
several instructions by the CPU, including an input instruction to transfer the
data from the device to the CPU and a store instruction to transfer the data from
the CPU to memory. Other instructions may be needed to verify that the data
are available from the device and to count the numbers of words transferred.

404 CHAPTER ELEVEN Input—Output Organization

An example of data transfer from an /O device through an interface into
the CPU is shown in Fig. 11-10. The device transfers bytes of data one at a time
as they are available. When a byte of data is available, the device places it in
the /O bus and enables its data valid line. The interface accepts the byte into
its data register and enables the data accepted line. The interface sets a bit in
the status register that we will refer to as an F or “flag” bit. The device can now
disable the data valid line, but it will not transfer another byte until the data
accepted line is disabled by the interface. This is according to the handshaking
procedure established in Fig. 11-5.

A program is written for the computer to check the flag in the status
register to determine if a byte has been placed in the data register by the /O
device. This is done by reading the status register into a CPU register and
checking the value of the flag bit. If the flag is equal to 1, the CPU reads the
data from the data register. The flag bit is then cleared to 0 by either the CPU
or the interface, depending on how the interface circuits are designed. Once
the flag is cleared, the interface disables the data accepted line and the device
can then transfer the next data byte.

A flowchart of the program that must be written for the CPU is shown
in Fig. 11-11. It is assumed that the device is sending a sequence of bytes
that must be stored in memory. The transfer of each byte requires three
instructions:

1. Read the status register.

2. Check the status of the flag bit and branch to step 1 if not set or to step
3 if set.

3. Read the data register.
Each byte is read into a CPU register and then transferred to memory with a

store instruction. A common /O programming task is to transfer a block of
words from an I/O device and store them in a memory buffer. A program that

Figure 11-10 Data transfer from /O device to CPU.

Interface ob
|e——21d 2Us us
Data bus :
Address bus LDala register
CPU Data valid 10
1/0 read o
10 wiite St.?tus F Data accepted
register

F = Flag bit

SECTION 11-4 Modes of Transfer 405

r Read data register —l

| Check flag bit |

l Read status register I

l Transfer data to memory |

Operation

complete?

Continue
with
program

Figure 11-11 Flowchart for CPU program to input data.

stores input characters in a memory buffer using the instructions defined in
Chap. 6 is listed in Table 6-21.

The programmed I/O method is particularly useful in small low-speed
computers or in systems that are dedicated to monitor a device continuously.
The difference in information transfer rate between the CPU and the /O device
makes this type of transfer inefficient. To see why this is inefficient, consider
a typical computer that can execute the two instructions that read the status
register and check the flag in 1 ps. Assume that the input device transfers its

406 CHAPTER ELEVEN Input-Output Organization

vectored interrupt

I/O routines

data at an average rate of 100 bytes per second. This is equivalent to one byte
every 10,000 ps. This means that the CPU will check the flag 10,000 times
between each transfer. The CPU is wasting time while checking the flag instead
of doing some other useful processing task.

Interrupt-Initiated /O

An alternative to the CPU constantly monitoring the flag is to let the interface
inform the computer when it is ready to transfer data. This mode of transfer
uses the interrupt facility. While the CPU is running a program, it does not
check the flag. However, when the flag is set, the computer is momentarily
interrupted from proceeding with the current program and is informed of the
fact that the flag has been set. The CPU deviates from what it is doing to take
care of the input or output transfer. After the transfer is completed, the
computer returns to the previous program to continue what it was doing before
the interrupt.

The CPU responds to the interrupt signal by storing the return address
from the program counter into a memory stack and then control branches to
a service routine that processes the required /O transfer. The way that the
processor chooses the branch address of the service routine varies from one
unit to another. In principle, there are two methods for accomplishing this.
Oneis called vectored interrupt and the other, nonvectored interrupt. In a nonvec-
tored interrupt, the branch address is assigned to a fixed location in memory.
In a vectored interrupt, the source that interrupts supplies the branch informa-
tion to the computer. This information is called the interrupt vector. In some
computers the interrupt vector is the first address of the /O service routine.
In other computers the interrupt vector is an address that points to a location
in memory where the beginning address of the /O service routine is stored.
A system with vectored interrupt is demonstrated in Sec. 11-5.

Software Considerations

The previous discussion was concerned with the basic hardware needed to
interface I/O devices to a computer system. A computer must also have soft-
ware routines for controlling peripherals and for transfer of data between the
processor and peripherals. I/O routines must issue control commands to acti-
vate the peripheral and to check the device status to determine when it is ready
for data transfer. Once ready, information is transferred item by item until all
the data are transferred. In some cases, a control command is then given to
execute a device function such as stop tape or print characters. Error checking
and other useful steps often accompany the transfers. In interrupt-controlled
transfers, the /O software must issue commands to the peripheral to interrupt
when ready and to service the interrupt when it occurs. In DMA transfer, the
/O software must initiate the DMA channel to start its operation.

priority interrupt

polling

SECTION 11-5 Priority Interrupt 407

Software control of input-output equipment is a complex undertaking.
For this reason I/O routines for standard peripherals are provided by the
manufacturer as part of the computer system. They are usually included within
the operating system. Most operating systems are supplied with a variety of
/O programs to support the particular line of peripherals offered for the
computer. I/O routines are usually available as operating system procedures
and the user refers to the established routines to specify the type of transfer
required without going into detailed machine language programs.

11-5 Priority Interrupt

Data transfer between the CPU and an I/O device is initiated by the CPU.
However, the CPU cannot start the transfer unless the device is ready to
communicate with the CPU. The readiness of the device can be determined
from an interrupt signal. The CPU responds to the interrupt request by storing
the return address from PC into a memory stack and then the program
branches to a service routine that processes the required transfer. As discussed
in Sec. 8-7, some processors also push the current PSW (program status word)
onto the stack and load a new PSW for the service routine. We neglect the PSW
here in order not to complicate the discussion of /O interrupts.

In a typical application a number of /O devices are attached to the
computer, with each device being able to originate an interrupt request. The
first task of the interrupt system is to identify the source of the interrupt. There
is also the possibility that several sources will request service simultaneously.
In this case the system must also decide which device to service first.

A priority interrupt is a system that establishes a priority over the various
sources to determine which condition is to be serviced first when two or more
requests arrive simultaneously. The system may also determine which condi-
tions are permitted to interrupt the computer while another interrupt is being
serviced. Higher-priority interrupt levels are assigned to requests which, if
delayed or interrupted, could have serious consequences. Devices with high-
speed transfers such as magnetic disks are given high priority, and slow
devices such as keyboards receive low priority. When two devices interrupt the
computer at the same time, the computer services the device, with the higher
priority first.

Establishing the priority of simultaneous interrupts can be done by soft-
ware or hardware. A polling procedure is used to identify the highest-priority
source by software means. In this method there is one common branch address
for all interrupts. The program that takes care of interrupts begins at the branch
address and polls the interrupt sources in sequence. The order in which they
are tested determines the priority of each interrupt. The highest-priority source
is tested first, and if its interrupt signal is on, control branches to a service
routine for this source. Otherwise, the next-lower-priority source is tested, and

408 CHAPTER ELEVEN Input-Output Organization

vector address (VAD)

so on. Thus the initial service routine for all interrupts consists of a program
that tests the interrupt sources in sequence and branches to one of many
possible service routines. The particular service routine reached belongs to the
highest-priority device among all devices that interrupted the computer. The
disadvantage of the software method is that if there are many interrupts, the
time required to poll them can exceed the time available to service the /O
device. In this situation a hardware priority-interrupt unit can be used to speed
up the operation.

A hardware priority-interrupt unit functions as an overall manager in an
interrupt system environment. It accepts interrupt requests from many
sources, determines which of the incoming requests has the highest priority,
and issues an interrupt request to the computer based on this determination.
To speed up the operation, each interrupt source has its own interrupt vector
to access its own service routine directly. Thus no polling is required because
all the decisions are established by the hardware priority-interrupt unit. The
hardware priority function can be established by either a serial or a parallel
connection of interrupt lines. The serial connection is also known as the daisy-
chaining method.

Daisy-Chaining Priority

The daisy-chaining method of establishing priority consists of a serial connec-
tion of all devices that request an interrupt. The device with the highest priority
is placed in the first position, followed by lower-priority devices up to the
device with the lowest priority, which is placed last in the chain. This method
of connection between three devices and the CPU is shown in Fig. 11-12. The
interrupt request line is common to all devices and forms a wired logic connec-
tion. If any device has its interrupt signal in the low-level state, the interrupt
line goes to the low-level state and enables the interrupt input in the CPU.
When no interrupts are pending, the interrupt line stays in the high-level state
and no interrupts are recognized by the CPU. This is equivalent to a negative-
logic OR operation. The CPU responds to an interrupt request by enabling the
interrupt acknowledge line. This signal is received by device 1 at its PI (priority
in) input. The acknowledge signal passes on to the next device through the PO
(priority out) output only if device 1 is not requesting an interrupt. If device
1hasa pending interrupt, it blocks the acknowledge signal from the next device
by placing a 0 in the PO output. It then proceeds to insert its own interrupt
vector address (VAD) into the data bus for the CPU to use during the interrupt
cycle.

A device with a 0 in its PI input generates a 0 in its PO output to inform
the next-lower-priority device that the acknowledge signal has been blocked.
A device that is requesting an interrupt and has a 1 in its Pl input will intercept
the acknowledge signal by placing a 0 in its PO output. If the device does not
have pending interrupts, it transmits the acknowledge signal to the next device

SECTION 11.5 Priority Interrupt 409

Processor data bus

VAD 1 VAD 2 VAD 3
Device | Device 2 Device 3 T .
0 nex
P PO PI PO Pl PO = jevice
Interrupt request
INT
CPU
Interrupt acknowledge

INTACK

Figure 11-12 Daisy-chain priority interrupt.

by placing a 1in its PO output. Thus the device with PI = 1and PO = 0is the
one with the highest priority that is requesting an interrupt, and this device
places its VAD on the data bus. The daisy chain arrangement gives the highest
priority to the device that receives the interrupt acknowledge signal from the
CPU. The farther the device is from the first position, the lower is its priority.

Figure 11-13 shows the internal logic that must be included within each
device when connected in the daisy-chaining scheme. The device sets its RF
flip-flop when it wants to interrupt the CPU. The output of the RF flip-flop goes
through an open-collector inverter, a circuit that provides the wired logic for
the common interrupt line. If PI = 0, both PO and the enable line to VAD are
equal to 0, irrespective of the value of RF. If PI = 1and RF = 0, then PO = 1
and the vector address is disabled. This condition passes the acknowledge
signal to the next device through PO. The device is active when PI = 1 and
RF = 1. This condition places a 0 in PO and enables the vector address for the
data bus. It is assumed that each device has its own distinct vector address.
The RF flip-flop is reset after a sufficient delay to ensure that the CPU has
received the vector address.

Parallel Priority Interrupt

The parallel priority interrupt method uses a register whose bits are set sepa-
rately by the interrupt signal from each device. Priority is established aceording
to the position of the bits in the register. In addition to the interrupt register,
the circuit may include a mask register whose purpose is to control the status
of each interrupt request. The mask register can be programmed to disable

410 CHAPTERELEVEN Input—Output Organization

priority logic

VAD

Priority in

Pl Enable
| Vector address
Priority out
Interrupt RF PO
request s Q 4DC J
from device

PO Enable

R Pl RF
| 0 0 0
0 0 0
) @'_ 1 10
Open-collector o 1
inverter -

-0 - O

Interrupt request to CPU

Figure 11-13 One stage of the daisy-chain priority arrangement.

lower-priority interrupts while a higher-priority device is being serviced. It can
also provide a facility that allows a high-priority device to interrupt the CPU
while a lower-priority device is being serviced.

The priority logic for a system of four interrupt sources is shown in
Fig. 11-14. It consists of an interrupt register whose individual bits are set by
external conditions and cleared by program instructions. The magnetic disk,
being a high-speed device, is given the highest priority. The printer has the
next priority, followed by a character reader and a keyboard. The mask register
has the same number of bits as the interrupt register. By means of program
instructions, it is possible to set or reset any bit in the mask register. Each
interrupt bit and its corresponding mask bit are applied to an AND gate to
produce the four inputs to a priority encoder. In this way an interrupt is
recognized only if its corresponding mask bit is set to 1 by the program. The
priority encoder generates two bits of the vector address, which is transferred
to the CPU.

Another output from the encoder sets an interrupt status flip-flop IST
when an interrupt that is not masked occurs. The interrupt enable flip-flop IEN
can be set or cleared by the program to provide an overall control over the
interrupt system. The outputs of IST ANDed with IEN provide a common
interrupt signal for the CPU. The interrupt acknowledge INTACK signal from
the CPU enables the bus buffers in the output register and a vector address
VAD is placed into the data bus. We will now explain the priority encoder
circuit and then discuss the interaction between the priority interrupt con-
troller and the CPU.

SECTION 115 Priority Interrupe 411

Interrupt
register
Disk — 0 VAD
[)% 10 CPU
i
Printer 1 i) 4 "';' .
Priovity -
Reader — 2 —D_ ; o of—
e —b
Keyboard ——— 3 D =1
h 0—
0 —
e
0 |
L L
D Imterrupt
1w CPU
2
f——
INTACK
from CPU
3
Mask
register
Figure 11-14 Priority interrupt hardware.
Priority Encoder

The priority encoder is a circuit that implements the priority function. The logic
of the priority encoder is such that if two or more inputs arrive at the same time,
the input having the highest priority will take precedence. The truth table of
a four-input priority encoder is given in Table 11-2. The x’s in the table
designate don’t-care conditions. Input I; has the highest priority; so regardless
of the values of other inputs, when this input is 1, the output generates an
output xy = 00. [, has the next priority level. The outputis 01ifI; = 1 provided

412

CHAPTER ELEVEN Input-Output Organization

TABLE 11-2 Priority Encoder Truth Table

Inputs Outputs

Io I, I, I x y IST Boolean functions

w

x =140
=10, + 1415
UST) =1y + 1, + 1, + 1,

X = =00

0
1
0
1
X

cooco~
coo~=X
oo =X X
O = XX X
O

that I, = 0, regardless of the values of the other two lower-priority inputs. The
output for I, is generated only if higher-priority inputs are 0, and so on down
the priority level. The interrupt status IST is set only when one or more inputs
are equal to 1. If all inputs are 0, IST is cleared to 0 and the other outputs of
the encoder are not used, so they are marked with don’t-care conditions. This
is because the vector address is not transferred to the CPU when IST = 0. The
Boolean functions listed in the table specify the internal logic of the encoder.
Usually, a computer will have more than four interrupt sources. A priority
encoder with eight inputs, for example, will generate an output of three bits.
The output of the priority encoder is used to form part of the vector
address for each interrupt source. The other bits of the vector address can be
assigned any value. For example, the vector address can be formed by append-
ing six zeros to the x and y outputs of the encoder. With this choice the interrupt
vectors for the four /O devices are assigned binary numbers 0, 1, 2, and 3.

Interrupt Cycle

The interrupt enable flip-flop IEN shown in Fig. 11-14 can be set or cleared by
program instructions. When IEN is cleared, the interrupt request coming from
IST is neglected by the CPU. The program-controlled IEN bit allows the pro-
grammer to choose whether to use the interrupt facility. If an instruction to
clear IEN has been inserted in the program, it means that the user does not
want his program to be interrupted. An instruction to set IEN indicates that
the interrupt facility will be used while the current program is running. Most
computers include internal hardware that clears IEN to 0 every time an inter-
rupt is acknowledged by the processor.

At the end of each instruction cycle the CPU checks IEN and the interrupt
signal from IST. If either is equal to 0, control continues with the next instruc-
tion. If both IEN and IST are equal to 1, the CPU goes to an interrupt cycle.
During the interrupt cycle the CPU performs the following sequence of micro-
operations:

SP«SP -1 Decrement stack pointer
M[SP]«PC Push PC into stack

SECTION 11-5 Priority Interrupt 413

INTACK <1 Enable interrupt acknowledge
PC «VAD Transfer vector address to PC
IEN <0 Disable further interrupts

Go to fetch next instruction

The CPU pushes the return address from PC into the stack. It then acknowl-
edges the interrupt by enabling the INTACK line. The priority interrupt unit
responds by placing a unique interrupt vector into the CPU data bus. The CPU
transfers the vector address into PC and clears IEN prior to going to the next
fetch phase. The instruction read from memory during the next fetch phase will
be the one located at the vector address.

Software Routines

A priority interrupt system is a combination of hardware and software tech-
niques. So far we have discussed the hardware aspects of a priority interrupt
system. The computer must also have software routines for servicing the
interrupt requests and for controlling the interrupt hardware registers.
Figure 11-15 shows the programs that must reside in memory for handling the

Figure 11-15 Programs stored in memory for servicing interrupts.

Address
Memory 1/0 service programs
0 JMP DISK DISK —> Program to service
magnetic disk
1 JMP PTR
2 JMPRDR PTR — Program to service
fine printer
3 JMP KBD
Main program
RDR — Program to service
character reader
750 —
KBD —> Program to service
keyboard
Stack 256 —>

256
750

414 CHAPTER ELEVEN Input-Output Organization

service program

interrupt system. Each device has its own service program that can be reached
through a jump (JMP) instruction stored at the assigned vector address. The
symbolic name of each routine represents the starting address of the service
program. The stack shown in the diagram is used for storing the return address
after each interrupt.

To illustrate with a specific example assume that the keyboard sets its
interrupt bit while the CPU is executing the instruction in location 749 of the
main program. At the end of the instruction cycle, the computer goes to an
interrupt cycle. It stores the return address 750 in the stack and then accepts
the vector address 00000011 from the bus and transfers it to PC. The instruction
inlocation 3 is executed next, resulting in transfer of control to the KBD routine.
Now suppose that the disk sets its interrupt bit when the CPU is executing the
instruction at address 255 in the KBD program. Address 256 is pushed into the
stack and control is transferred to the DISK service program. The last instruc-
tion in each routine is a return from interrupt instruction. When the disk
service program is completed, the return instruction pops the stack and places
256 into PC. This returns control to the KBD routine to continue servicing the
keyboard. At the end of the KBD program, the last instruction pops the stack
and returns control to the main program at address 750. Thus, a higher-priority
device can interrupt a lower-priority device. It is assumed that the time spent
in servicing the high-priority interrupt is short compared to the transfer rate
of the low-priority device so that no loss of information takes place.

Initial and Final Operations

Each interrupt service routine must have an initial and final set of operations
for controlling the registers in the hardware interrupt system. Remember that
the interrupt enable IEN is cleared at the end of an interrupt cycle. This flip-flop
must be set again to enable higher-priority interrupt requests, but not before
lower-priority interrupts are disabled. The initial sequence of each interrupt
service routine must have instructions to control the interrupt hardware in the
following manner:

1. Clear lower-level mask register bits.
2. Clear interrupt status bit IST.

3. Save contents of processor registers.
4. Set interrupt enable bit IEN.

5. Proceed with service routine.

The lower-level mask register bits (including the bit of the source that
interrupted) are cleared to prevent these conditions from enabling the inter-
rupt. Although lower-priority interrupt sources are assigned to higher-num-
bered bits in the mask register, priority can be changed if desired since the

SECTION 11-6 Direct Memory Access 415

programmer can use any bit configuration for the mask register. The interrupt
status bit must be cleared so it can be set again when a higher-priority interrupt
occurs. The contents of processor registers are saved because they may be
needed by the program that has been interrupted after control returns to it. The
interrupt enable IEN is then set to allow other (higher-priority) interrupts and
the computer proceeds to service the interrupt request.

The final sequence in each interrupt service routine must have instruc-
tions to control the interrupt hardware in the following manner:

1. Clear interrupt enable bit IEN.
2. Restore contents of processor registers.

3. Clear the bit in the interrupt register belonging to the source that has
been serviced.

4. Set lower-level priority bits in the mask register.
5. Restore return address into PC and set IEN.

The bit in the interrupt register belonging to the source of the interrupt
must be cleared so that it will be available again for the source to interrupt. The
lower-priority bits in the mask register (including the bit of the source being
interrupted) are set so they can enable the interrupt. The return to the inter-
rupted program is accomplished by restoring the return address to PC. Note
that the hardware must be designed so that no interrupts occur while executing
steps 2 through 5; otherwise, the return address may be lost and the informa-
tion in the mask and processor registers may be ambiguous if an interrupt
is acknowledged while executing the operations in these steps. For this reason
IEN is initially cleared and then set after the return address is transferred into
PC.

The initial and final operations listed above are referred to as overhead
operations or housekeeping chores. They are not part of the service program
proper but are essential for processing interrupts. All overhead operations can
be implemented by software. This is done by inserting the proper instructions
at the beginning and at the end of each service routine. Some of the overhead
operations can be done automatically by the hardware. The contents of proces-
sor registers can be pushed into a stack by the hardware before branching to
the service routine. Other initial and final operations can be assigned to the
hardware. In this way, it is possible to reduce the time between receipt of an
interruptand the execution of the instructions that service the interrupt source.

11-6 Direct Memory Access (DMA)

The transfer of data between a fast storage device such as magnetic disk and
memory is often limited by the speed of the CPU. Removing the CPU from the
path and letting the peripheral device manage the memory buses directly

commands

SECTION 11-7 Input-Output Processor 421

Central processing

unit (CPU)
B
-; Peripheral devices

Memory unit S

: (D @ @ @
=

Input—output

processor (I0P) 1/0 bus

Figure 11-19 Block diagram of a computer with I/O processor.

The data formats of peripheral devices differ from memory and CPU data
formats. The IOP must structure data words from many different sources. For
example, it may be necessary to take four bytes from an input device and pack
them into one 32-bit word before the transfer to memory. Data are gathered
in the IOP at the device rate and bit capacity while the CPU is executing its own
program. After the input data are assembled into a memory word, they are
transferred from IOP directly into memory by “’stealing” one memory cycle
from the CPU. Similarly, an output word transferred from memory to the IOP
is directed from the IOP to the output device at the device rate and bit capacity.

The communication between the IOP and the devices attached to it is
similar to the program control method of transfer. Communication with the
memory is similar to the direct memory access method. The way by which the
CPU and IOP communicate depends on the level of sophistication included in
the system. In very-large-scale computers, each processor is independent of
all others and any one processor can initiate an operation. In most computer
systems, the CPU is the master while the IOP is a slave processor. The CPU
is assigned the task of initiating all operations, but /O instructions are executed
in the IOP. CPU instructions provide operations to start an /O transfer and also
to test /O status conditions needed for making decisions on various /O
activities. The IOP, in turn, typically asks for CPU attention by means of an
interrupt. It also responds to CPU requests by placing a status word in a
prescribed location in memory to be examined later by a CPU program. When
an /O operation is desired, the CPU informs the IOP where to find the /O
program and then leaves the transfer details to the IOP.

Instructions that are read from memory by an IOP are sometimes called
commands, to distinguish them from instructions that are read by the CPU.
Otherwise, an instruction and a command have similar functions. Commands
are prepared by experienced programmers and are stored in memory. The
command words constitute the program for the IOP. The CPU informs the IOP
where to find the commands in memory when it is time to execute the /O
program.

242 CHAPTER EIGHT Central Processing Unit

bus system

Register set

oo T

Arithmetic
logic unit
(ALU)

Figure 81 Major components of CPU.

a task that in large part involves choosing the hardware for implementing the
machine instructions. The user who programs the computer in machine or
assembly language must be aware of the register set, the memory structure,
the type of data supported by the instructions, and the function that each
instruction performs.

Design examples of simple CPUs are carried out in Chaps. 5 and 7. This
chapter describes the organization and architecture of the CPU with an empha-
sis on the user’s view of the computer. We briefly describe how the registers
communicate with the ALU through buses and explain the operation of the
memory stack. We then present the type of instruction formats available, the
addressing modes used toretrieve data from memory, and typical instructions
commonly incorporated in computers. The last section presents the concept of
reduced instruction set computer (RISC).

8-2 General Register Organization

In the programming examples of Chap. 6, we have shown that memory
locations are needed for storing pointers, counters, return addresses, tempo-
rary results, and partial products during multiplication. Having to refer to
memory locations for such applications is time consuming because memory
access is the most time-consuming ogeratiqn in a compiiet. 11 3s more conve-
nient and more efficient to store these intermediate values in processor regis-
ters. When a large number of registers are included in the CPU, it is most
efficient to connect them through a common bus system. The registers commu-
nicate with each other not only for direct data transfers, butalso while perform-
ing various microoperations. Hence it is necessary to provide a common unit
that can perform all the arithmetic, logic, and shift microoperations in the
processor.

A bus organization for seven CPU registers is shown in Fig. 8-2. The
output of eachregisteris connected to two multiplexers (MUX) to form the two
buses A and B. The selection lines in each multiplexer select one register or the
input data for the particular bus. The A and B buses form the inputs to a

SECTION 8.2 General Register Organization 243

Load
(7 tires) SBLA[

{b} Cantrol word

Figure 82 Reglonr ¢ with ecnmon AUUL

244 CHAPTER EIGHT Central Processing Unit

control word

common arithmetic logic unit (ALU). The operation selected in the ALU deter-
mines the arithmetic or logic microoperation that is to be performed. The result
of the microoperation is available for output data and also goes into the inputs
of all the registers. The register that receives the information from the output
bus is selected by a decoder. The decoder activates one of the register load
inputs, thus providing a transfer path between the data in the output bus and
the inputs of the selected destination register.

The control unit that operates the CPU bus system directs the information
flow through the registersand ALU by selecting the various components in the
system. For example, to perform the operation

R1<R2 + R3

the control must provide binary selection variables to the following selector
inputs:

1. MUX A selector (SELA): to place the content of R2 into bus A.
2. MUX B selector (SELB): to place the content of R3 into bus B.

3. ALU operation selector (OPR): to provide the arithmetic addition
A+ B.

4. Decoder destination selector (SELD): to transfer the content of the
output bus into R1.

The four control selection variables are generated in the control unit and
must be available at the beginning of a clock cycle. The datafrom the two source
registers propagate through the gates in the multiplexers and the ALU, to the
output bus, and into the inputs of the destination register, all during the clock
cycle interval. Then, when the next clock transition occurs, the binary informa-
tion from the output bus is transferred into R 1. Toachieve a fast response time,
the ALU is constructed with high-speed circuits. The buses are implemented
with multiplexers or three-state gates, as shown in Sec. 4-3.

Control Word

There are 14 binary selection inputs in the unit, and their combined value
specifies a control word. The 14-bit control word is defined in Fig. 8-2(b). It
consists of four fields. Three fields contain three bits each, and one field has
five bits. The three bits of SELA select a source register for the A input of the
ALU. The three bits of SELB select a register for the B input of the ALU. The
three bits of SELD select a destination register using the decoder and its seven
load outputs. The five bits of OPR select one of the operations in the ALU. The
14-bit control word when applied to the selection inputs specify a particular
microoperation.

The encoding of the register selections is specified in Table 8-1. The 3-bit

ALU

SECTION 8.2 General Register Organization 245

TABLE 8-1 Encoding of Register Selection Fields

Binary
Code SELA SELB SELD
000 Input Input None
001 R1 R1 R1
010 R2 R2 R2
o011 R3 R3 R3
100 R4 R4 R4
101 R5 R5 R5
110 Ré R6 R6
111 R7 R7 R7

binary code listed inthe first column of the table specifies the binary code for
each of the three fields. The register selected by fields SELA, SELB, and SELD
is the one whose decimal number is equivalent to the binary number in the
code. When SELA or SELB is 000, the corresponding multiplexer selects the
external input data. When SELD = 000, no destination register is selected but
the contents of the output bus are available in the external output.

The ALU provides arithmetic and logic operations. In addition, the CPU
must provide shift operations. The shifter may be placed in the input of the
ALU to provide a preshift capability, or at the output of the ALU to provide
postshifting capability. In some cases, the shift operations are included with
the ALU. An arithmetic logic and shift unit was designed in Sec. 4-7. The
function table for this ALU is listed in Table 4-8. The encoding of the ALU
operations for the CPU is taken from Sec. 4-7 and is specified in Table 8-2. The
OPR field has five bits and each operation is designated with a symbolic name.

TABLE 8-2 Encoding of ALU Operations

OPR

Select Operation Symbol
00000 Transfer A TSFA
00001 Increment A INCA
00010 Add A + B ADD
00101 Subtract A — B SUB
00110 Decrement A DECA
01000 AND A and B AND
01010 OR Aand B OR
01100 XOR Aand B XOR
01110 Complement A COMA
10000 Shift right A SHRA

11000 Shift left A SHLA

246

CHAPTER EIGHT Central Processing Unit

Examples of Microoperations

A control word of 14 bits is needed to specify a microoperation in the CPU. The
control word for a given microoperation can be derived from the selection
variables. For example, the subtract microoperation given by the statement

R1<~R2 - R3

specifies R2 for the A input of the ALU, R3 for the B input of the ALU, R1 for
the destination register, and an ALU operation to subtract A — B. Thus the
control word is specified by the four fields and the corresponding binary value
for each field is obtained from the encoding listed in Tables 8-1 and 8-2. The
binary control word for the subtract microoperation is 010 011 001 00101 and
is obtained as follows:

Field: SELA SELB SELD OPR
Symbol: R2 R3 R1 SUB
Control word: 010 011 001 00101

The control word for this microoperation and a few others are listed in
Table 8-3.

Theincrement and transfer microoperations do not use the Binput of the
ALU. Forthese cases, the B field is marked with a dash. We assign 000 to any
unused field when formulating the binary control word, although any other
binary number may be used. To place the content of a register into the output
terminals we place the content of the register into the A input of the ALU, but
none of the registers are selected to accept the data. The ALU operation TSFA
places the data from the register, through the ALU, into the output terminals.
The direct transfer from input to output is accomplished with a control word

TABLE 8-3 Examples of Microoperations for the CPU

Symbolic Designation

Microoperation SELA SELB SELD OPR Control Word

R1<R2 - R3 R2 R3 R1 SUB 010 011 001 00101
R4<R4\/ R5 R4 R5 R4 OR 100 101 100 01010
R6<R6 + 1 R6 — R6 INCA 110 000 110 00001
R7«<R1 R1 — R7 TSFA 001 000 111 00000
Output «R2 R2 — None TSFA 010 000 000 00000
Output <~ Input Input — None TSFA 000 000 000 00000
R4<shl R4 R4 — R4 SHLA 100 000 100 11000

R5<0 R5 R5 R5 XOR 101 101 101 01100

LIFO

stack pointer

SECTION 8-3 Stack Organization 247

of all 0’s (making the B field 000). A register can be cleared to 0 with an
exclusive-OR operation. This is because x®x = 0.

It is apparent from these examples that many other microoperations can
be generated in the CPU. The most efficient way to generate control words with
a large number of bits is to store them in a memory unit. A memory unit that
stores control words is referred to as a control memory. By reading consecutive
control words from memory, it is possible to initiate the desired sequence of
microoperations for the CPU. This type of control is referred to as micropro-
grammed control. A microprogrammed control unit is shown in Fig. 7-8. The
binary control word for the CPU will come from the outputs of the control
memory marked “micro-ops.”

8-3 Stack Organization

A useful feature that is included in the CPU of most computers is a stack or
last-in, first-out (LIFO) list. A stack is a storage device that stores information
in such a manner that the item stored last is the first item retrieved. The
operation of a stack can be compared to a stack of trays. The last tray placed
on top of the stack is the first to be taken off.

The stack in digital computers is essentially a memory unit with an
address register that can count only (after an initial value is loaded into it). The
register that holds the address for the stack is called a stack pointer (SP) because
its value always points at the top item in the stack. Contrary to a stack of trays
where the tray itself may be taken out or inserted, the physical registers of a
stack are always available for reading or writing. It is the content of the word
that is inserted or deleted.

The two operations of a stack are the insertion and deletion of items. The
operation of insertion is called push (or push-down) because it can be thought
of as the result of pushing a new item on top. The operation of deletion is called
pop (or pop-up) because it can be thought of as the result of removing one item
so that the stack pops up. However, nothing is pushed or popped in a com-
puter stack. These operations are simulated by incrementing or decrementing
the stack pointer register.

Register Stack

A stack can be placed in a portion of a large memory or it can be organized as
a collection of a finitenumber of memory words or registers. Figure 8-3 shows
the organization of a 64-word register stack. The stack pointer register SP
contains a binary number whose value s equal to the address of the word that
is currently on top of the stack. Three items are placed in the stack: A, B, and
C, in that order. Item C is on top of the stack so that the content of SP is now
3. Toremove the top item, the stack is popped by reading the memory word

302 CHAPTERNINE Pipeline and Vector Processing

an example

havioral characteristics of the computer system rather than its operational and
structural interconnections. One type of parallel processing that does not fit
Flynn’s classification is pipelining. The only two categories used from this
classification are SIMD array processors discussed in Sec. 9-7, and MIMD
multiprocessors presented in Chap. 13.

In this chapter we consider parallel processing under the following main
topics:

1. Pipeline processing
2. Vector processing
3. Array processors

Pipeline processing is an implementation technique where arithmetic suboper-
ations or the phases of a computer instruction cycle overlap in execution.
Vector processing deals with computations involving large vectors and ma-
trices. Array processors perform computations on large arrays of data.

9-2 Pipelining

Pipelining is a technique of decomposing a sequential process into subopera-
tions, with each subprocess being executed in a special dedicated segment that
operates concurrently with all other segments. A pipeline can be visualized as
a collection of processing segments through which binary information flows.
Each segment performs partial processing dictated by the way the task is
partitioned. The result obtained from the computation in each segment is
transferred to the next segment in the pipeline. The final result is obtained after
the data have passed through all segments. The name “pipeline” implies a
flow of information analogous to an industrial assembly line. It is characteristic
of pipelines that several computations can be in progress in distinct segments
at the same time. The overlapping of computation is made possible by associ-
ating a register with each segment in the pipeline. The registers provide
isolation between each segment so that each can operate on distinct data
simultaneously.

Perhaps the simplest way of viewing the pipeline structure is to imagine
that each segment consists of an input register followed by a combinational
circuit. The register holds the data and the combinational circuit performs the
suboperation in the particular segment. The output of the combinational circuit
in a given segment is applied to the input register of the next segment. A clock
is applied to all registers after enough time has elapsed to perform all segment
activity. In this way the information flows through the pipeline one step at a
time.

The pipeline organization will be demonstrated by means of a simple

SECTION 9-2 Pipelining 303

example. Suppose that we want to perform the combined multiply and add
operations with a stream of numbers.

Ai*B; + C; fori=123,...,7

Each suboperation is to be implemented in a segment within a pipeline. Each
segment has one or two registers and a combinational circuit as shown in Fig.
9-2. R1through R5 are registers that receive new data with every clock pulse.
The multiplier and adder are combinational circuits. The suboperations per-
formed in each segment of the pipeline are as follows:

Rl1«<A;, R2<B; Input A; and B;
R3«R1%R2, R4<«C, Multiply and input C;
R5<R3 + R4 Add C; to product

The five registers are loaded with new data every clock pulse. The effect of each
clock is shown in Table 9-1. The first clock pulse transfers A; and B, into R1and

Figure 9-2 Example of pipeline processing.

1 l
e N —

Multiplier

Adder

304 CHAPTER NINE Pipeline and Vector Processing

task

space-time diagram

TABLE 9-1 Content of Registers in Pipeline Example

Clock Segment 1 Segment 2 Segment 3
Pulse
Number R1 R2 R3 R4 RS

1 A, B, — — —
2 Az B, AixB G —
3 As By, Ax*B, C; Ai*Bi+GC
4 A, B, As3*B; Cs A*B, + G,
5 As Bs As* By (o A3;*By + G
6 Ae Bs As*Bs Cs As*Bs+ Cs
7 A B, Ae* Bs Cs AsxBs+ Cs
8 — — Ar* B, (&) As*Bs + Cs
9 — — — —_ A;*B, + C,

R2. The second clock pulse transfers the product of R1 and R2 into R3 and C;
into R4. The same clock pulse transfers A; and B, into R1 and R2. The third
clock pulse operates on all three segments simultaneously. It places A; and B,
into R1 and R2, transfers the product of R1 and R2 into R3, transfers C, into
R4, and places the sum of R3 and R4 into R5. It takes three clock pulses to fill
up the pipe and retrieve the first output from R5. From there on, each clock
produces a new output and moves the data one step down the pipeline. This
happens as long as new input data flow into the system. When no more input
data are available, the clock must continue until the last output emerges out
of the pipeline.

General Considerations

Any operation that can be decomposed into a sequence of suboperations of
about the same complexity can be implemented by a pipeline processor. The
technique is efficient for those applications that need to repeat the same task
many times with different sets of data. The generalstructure of a four-segment
pipeline is illustrated in Fig. 9-3. The operands pass through all four segments
in a fixed sequence. Each segment consists of a combinational circuit S; that
performs a suboperation over the data stream flowing through the pipe. The
segments are separated by registers R; that hold the intermediate results
between the stages. Information flows between adjacent stages under the
control of a common clock applied to all the registers simultaneously. We
define a task as the total operation performed going through all the segments
in the pipeline.

The behavior of a pipeline can be illustrated with a space-time diagram.
This is a diagram that shows the segment utilization as a function of time. The
space-time diagram of a four-segment pipeline is demonstrated in Fig. 9-4. The
horizontal axis displays the time in clock cycles and the vertical axis gives the

speedup

SECTION 92 Pipelining 305

Clock

vV \V/ \V V
Input
— 5 S, S3 R Sa

Figure 9-3 Four-segment pipeline.

segment number. The diagram shows six tasks T; through T; executed in four
segments. Initially, task T; is handled by segment 1. After the first clock,
segment 2 is busy with T;, while segment 1 is busy with task T,. Continuing
in this manner, the first task T; is completed after the fourth clock cycle. From
then on, the pipe completes a task every clock cycle. No matter how many
segments there are in the system, once the pipeline is full, it takes only one
clock period to obtain an output.

Now consider the case where a k-segment pipeline with a clock cycle time
t, is used to execute n tasks. The first task T; requires a time equal to kt, to
complete its operation since there are k segments in the pipe. The remaining
n — 1 tasks emerge from the pipe at the rate of one task per clock cycle and
they will be completed after a time equal to (n — 1)t,. Therefore, to complete
n tasks using a k-segment pipeline requiresk + (n — 1) clock cycles. For exam-
ple, the diagram of Fig. 9-4 shows four segments and six tasks. The time
required to complete all the operations is 4 + (6 — 1) =9 clock cycles, as
indicated in the diagram.

Next consider a nonpipeline unit that performs the same operation and
takes a time equal to t, to complete each task. The total time required for n tasks
is nt,. The speedup of a pipeline processing over an equivalent nonpipeline
processing is defined by the ratio

nt,

S=(k+n—1)t,,

Figure 9-4 Space-time diagram for pipeline.

1 2 3 4 5 6 7 8 9

Clock cycles
Segment: 1| T, T T3 Ty Ts Te

2 n|ln|nl|ln| |

3 T, T, | I3 | Ts Ts | Te

4 T, T, T3 T, | Ts | Te

306

CHAPTER NINE Pipeline and Vector Processing

As the number of tasks increases, n becomes much larger than k — 1, and
k + n — 1 approaches the value of n. Under this condition, the speedup
becomes

|1

3

S =

-~

If we assume that the time it takes to process a task is the same in the pipeline
and nonpipeline circuits, we will have t, = kt,. Including this assumption, the
speedup reduces to

This shows that the theoretical maximum speedup that a pipeline can provide
is k, where k is the number of segments in the pipeline.

To clarify the meaning of the speedup ratio, consider the following
numerical example. Let the time it takes to process a suboperation in each
segment be equal to f, = 20 ns. Assume that the pipeline has k = 4 seg-
ments and executes n = 100 tasks in sequence. The pipeline system will take
(k+n—1),=(4+99) x20=2060 ns to complete. Assuming that t,=
kt, = 4 X 20 = 80ns, a nonpipeline system requires nkt, = 100 x 80 = 8000 ns
to complete the 100 tasks. The speedup ratio is equal to 8000/2060 = 3.88. As
the number of tasks increases, the speedup will approach 4, which is equal to
the number of segments in the pipeline. If we assume that ¢, = 60 ns, the
speedup becomes 60/20 = 3.

To duplicate the theoretical speed advantage of a pipeline process by
means of multiple functional units, it is necessary to construct k identical units
that will be operating in parallel. The implication is that a k-segment pipeline
Pprocessor can be expected to equal the performance of k copies of an equivalent
nonpipeline circuit under equal operating conditions. This is illustrated in
Fig. 9-5, where four identical circuits are connected in parallel. Each P circuit
performs the same task of an equivalent pipeline circuit. Instead of operating
with the input data in sequence as in a pipeline, the parallel circuits acceptfour
input data items simultaneously and perform four tasks at the same time.
As far as the speed of operation is concerned, this is equivalent to a four
segment pipeline. Note that the four-unit circuit of Fig. 9-5 constitutes a
single-instruction multiple-data (SIMD) organization since the same instruc-
tion is used to operate on multiple data in parallel.

There are various reasons why the pipeline cannot operate at its maxi-
mum theoretical rate. Different segments may take different times to complete
their suboperation. The clock cycle must be chosen to equal the time delay of
the segment with the maximum propagation time. This causes all other seg-
ments to waste time while waiting for the next clock. Moreover, it is notalways

SECTION 9-3 Arithmetic Pipeline 307

I; liny lisa %)
P, Py Py P

l i | !

Figure 9-5 Multiple functional units in parallel.

correct to assume that a nonpipe circuit has the same time delay as that of an
equivalent pipeline circuit. Many of the intermediate registers will not be
needed in a single-unit circuit, which can usually be constructed entirely as a
combinational circuit. Nevertheless, the pipeline technique provides a faster
operation over a purely serial sequence even though the maximum theoretical
speed is never fully achieved.

There are two areas of computer design where the pipeline organization
is applicable. An arithmetic pipeline divides an arithmetic operation into sub-
operations for execution in the pipeline segments. An instruction pipeline oper-
ates on a stream of instructions by overlapping the fetch, decode, and execute
phases of the instruction cycle. The two types of pipelines are explained in the
following sections.

9-3 Arithmetic Pipeline

Pipeline arithmetic units are usually found in very high speed computers. They
are used to implement floating-point operations, multiplication of fixed-point
numbers, and similar computations encountered in scientific problems. A
pipeline multiplier is essentially an array multiplier as described in Fig. 10-10,
with special adders designed to minimize the carry propagation time through
the partial products. Floating-point operations are easily decomposed into
suboperations as demonstrated in Sec. 10-5. We will now show an example of
a pipeline unit for floating-point addition and subtraction.

The inputs to the floating-point adder pipeline are two normalized float-
ing-point binary numbers.

X=Ax2
Y=Bx2

308 CHAPTERNINE Pipeline and Vector Processing

A and B are two fractions that represent the mantissas and @ and b are the
exponents. The floating-point addition and subtraction can be performed in
four segments, as shown in Fig. 9-6. The registers labeled R are placed between
the segments to store intermediate results. The suboperations that are per-
formed in the four segments are:

1. Compare the exponents.

2. Align the mantissas.

3. Add or subtract the mantissas.
4. Normalize the result.

This follows the procedureoutlined in the flowchart of Fig. 10-15 but withsome
variations that are used to reduce the execution time of the suboperations. The
exponents are compared by subtracting them to determine their difference.
The larger exponent is chosen as the exponent of the result. The exponent
difference determines how many times the mantissa associated with the
smaller exponent must be shifted to the right. This produces an alignment of
the two mantissas. It should be noted that the shift must be designed as a
combinational circuit to reduce the shift time. The two mantissas are added or
subtracted in segment 3. The result is normalized in segment 4. When an
overflow occurs, the mantissa of the sum or difference is shifted right and the
exponent incremented by one. If an underflow occurs, the number of leading
zeros in the mantissa determines the number of left shifts in the mantissa and
the number that must be subtracted from the exponent.

The following numerical example may clarify the suboperations per-
formed in each segment. For simplicity, we use decimal numbers, although
Fig. 9-6 refers to binary numbers. Consider the two normalized floating-point
numbers:

X =0.9504 x 10°
Y = 0.8200 x 10?
The two exponents are subtracted in the first segment toobtain3 — 2 = 1. The

larger exponent 3 is chosen as the exponent of the result. The next segment
shifts the mantissa of Y to the right to obtain

X =09504 x 10°
Y = 0.0820 x 10°

This aligns the two mantissas under the same exponent. The addition of the
two mantissas in segment 3 produces the sum

Z =1.0324 x 10°

SECTION 83 Arithmetic Pipeline

Segmem 3

Figure 9-6 Pipeline for floating-point addirion and subtraction.

310 CHAPTER NINE Pipeline and Vector Processing

instruction cycle

The sum is adjusted by normalizing the result so that it has a fraction with a
nonzero first digit. This is done by shifting the mantissa once to the right and
incrementing the exponent by one to obtain the normalized sum.

Z =0.10324 x 10*

The comparator, shifter, adder-subtractor, incrementer, and decrementer in
the floating-point pipeline are implemented with combinational circuits. Sup-
pose that the timedelaysof the four segmentsare t, = 60ns, t, = 70 ns, t; = 100
ns, t; = 80 ns, and the interface registers have a delay of ¢, = 10 ns. The clock
cycleis chosen tobe t, = t; + ¢, = 110 ns. An equivalent nonpipeline floating-
point adder-subtractor will have a delay time t, = ¢, + t, + t; + t, + t, = 320
ns. In this case the pipelined adder has a speedup of 320/110 = 2.9 over the
nonpipelined adder.

9-4 Instruction Pipeline

Pipeline processing can occur not only in the data stream but in the instruction
stream as well. An instruction pipeline reads consecutive instructions from
memory while previous instructions are being executed in other segments.
This causes the instruction fetch and execute phases to overlap and perform
simultaneous operations. One possible digression associated with such a
scheme is that an instruction may cause a branch out of sequence. In that case
the pipeline must be emptied and all the instructions that have been read from
memory after the branch instruction must be discarded.

Consider a computer with an instruction fetch unit and an instruction
execution unit designed to provide a two-segment pipeline. The instruction
fetch segment can be implemented by means of a first-in, first-out (FIFO)
buffer. This is a type of unit that forms a queue rather than a stack. Whenever
the execution unit is not using memory, the control increments the program
counter and uses its address value to read consecutive instructions from mem-
ory. The instructions are inserted into the FIFO buffer so that they can be
executed on a first-in, first-out basis. Thus an instruction stream can be placed
ina queue, waiting for decoding and processing by the execution segment. The
instruction stream queuing mechanism provides an efficient way for reducing
the average access time to memory for reading instructions. Whenever there
is space in the FIFO buffer, the control unit initiates the next instruction fetch
phase. The buffer acts as a queue from which control then extracts the instruc-
tions for the execution unit.

Computers with complex instructions require other phases in addition to
the fetch and execute to process an instruction completely. In the most general
case, the computer needs to process each instruction with the following se-
quence of steps.

SECTION 94 Instruction Pipeline 311

. Fetch the instruction from memory.
. Decode the instruction.

. Calculate the effective address.

. Fetch the operands from memory.

. Execute the instruction.

. Store the result in the proper place.

AU W N -

There are certain difficulties that will prevent the instruction pipeline
from operating at its maximum rate. Different segments may take different
times to operate on the incoming information. Some segments are skipped for
certain operations. For example, a register mode instruction does not need an
effective address calculation. Two or more segments may require memory
access at the same time, causing one segment to wait until another is finished
with the memory. Memory access conflicts are sometimes resolved by using
two memory buses foraccessinginstructionsand data in separate modules. In
this way, an instruction word and a data word can be read simultaneously from
two different modules.

The design of an instruction pipeline will be most efficient if the instruc-
tion cycle is divided into segments of equal duration. The time that each step
takes to fulfill its function depends on the instruction and the way itis executed.

Example: Four-Segment Instruction Pipeline

Assume that the decoding of the instruction can be combined with the calcu-
lation of the effective address into one segment. Assume further that most of
the instructions place theresultinto a processorregister so that the instruction
execution and storing of the result can be combined into one segment. This
reduces the instruction pipeline into four segments.

Figure 9-7 shows how the instruction cycle in the CPU can be processed
with a four-segment pipeline. While an instruction is being executed in seg-
ment 4, the next instruction in sequence is busy fetching an operand from
memory in segment 3. The effective address may be calculated in a separate
arithmetic circuit for the third instruction, and whenever the memory is avail-
able, the fourth and all subsequent instructions can be fetched and placed in
an instruction FIFO. Thus up to four suboperations in the instruction cycle can
overlap and up to four different instructions can be in progress of being
processed at the same time.

Once in a while, an instruction in the sequence may be a program control
type that causes a branch out of normal sequence. In that case the pending
operations in the last two segments are completed and all information stored
in the instruction buffer is deleted. The pipeline then restarts from the new
address stored in the program counter. Similarly, an interrupt request, when
acknowledged, will cause the pipeline to empty and start again from a new
address value.

312 awurmeRNINE Pipeline and Veeme Prcexing

Figure 9-7 Four-segment CPU pipeline.

Figure 58 shows the operation of th einstruction pipeline. The timein the
harizantal axis is divided into steps of equal duration. The four segments are
represented in the diagram with an abbreviated symbol.

1. B is the segpent that fetches an Ustruction.

2. DA is the segment that decodes the insthuction and calculates the
effective address.

3. FO is the segment that fetches the operand.
4. EXis the segment that executes the insuction.

Itis assumed that the processor has separate insthsction and data memories
so that theoperation in Fl and FO can proceed at the same time. In the absence

pipeline conflicts

SECTION 94 Instruction Pipeline 313

Step: 1 2 3 4 5 6 7 8 9 10|11]12]13
Instruction:. 1 | FI | DA| FO | EX
2 FI | DA | FO | EX
(Branch) 3 FI | DA| FO | EX
4 F1 - - FI | DA| FO | EX
5 - - - Fl | DA | FO | EX
6 FI [DA | FO | EX
7 FI | DA | FO | EX

Figure 9-8 Timing of instruction pipeline.

of a branch instruction, each segment operates on different instructions. Thus,
in step 4, instruction 1 is being executed in segment EX; the operand for
instruction 2 is being fetched in segment FO; instruction 3 is being decoded in
segment DA; and instruction 4 is being fetched from memory in segment FI.

Assume now that instruction 3 is a branch instruction. As soon as this
instruction is decoded in segment DA in step 4, the transfer from FI to DA of
the other instructions is halted until the branch instruction is executed in step
6. If the branch is taken, a new instruction is fetched in step 7. If the branch
is not taken, the instruction fetched previously in step 4 can be used. The
pipeline then continues until a new branch instruction is encountered.

Another delay may occur in the pipeline if the EX segment needs to store
the result of the operation in the data memory while the FO segment needs
to fetch an operand. In that case, segment FO must wait until segment EX has
finished its operation.

In general, there are three major difficulties that cause the instruction
pipeline to deviate from its normal operation.

1. Resource conflicts caused by access to memory by two segments at the
same time. Most of these conflicts can be resolved by using separate
instruction and data memories.

2. Data dependency conflicts arise when an instruction depends on the
result of a previous instruction, but this result is not yet available.

3. Branch difficulties arise from branch and other instructions that change
the value of PC.

Data Dependency
A difficulty that may caused a degradation of performance in an instruction
pipeline is due to possible collision of data or address. A collision occurs when

314 CHAPTER NINE Pipeline and Vector Processing

hardware interlocks

operand forwarding

delayed load

an instruction cannot proceed because previous instructions did not complete
certain operations. A data dependency occurs when an instruction needs data
that are not yet available. For example, an instruction in the FO segment may
need to fetch an operand that is being generated at the same time by the
previous instruction in segment EX. Therefore, the second instruction must
wait for data to become available by the first instruction. Similarly, an address
dependency may occur when an operand address cannot becalculated because
the information needed by the addressing mode is not available. For example,
an instruction with register indirect mode cannot proceed to fetch the operand
if the previous instruction is loading the address into the register. Therefore,
the operand access to memory must be delayed until the required address is
available. Pipelined computers deal with such conflicts between data depen-
dencies in a variety of ways.

The most straightforward method is to insert hardware interlocks. An
interlock is a circuit that detects instructions whose source operands are des-
tinations of instructions farther up in the pipeline. Detection of this situation
causes the instruction whose source is not available to be delayed by enough
clock cycles to resolve the conflict. This approach maintains the program
sequence by using hardware to insert the required delays.

Another technique called operand forwarding uses special hardware to
detect a conflict and then avoid it by routing the data through special paths
between pipeline segments. For example, instead of transferring an ALU result
into a destination register, the hardware checks the destination operand, and
if it is needed as a source in the next instruction, it passes the result directly
into the ALU input, bypassing the register file. This method requires additional
hardware paths through multiplexers as well as the circuit that detects the
conflict.

A procedure employed in some computers is to give the responsibility for
solving data conflicts problems to the compiler that translates the high-level
programming language into a machine language program. The compiler for
such computers is designed to detect a data conflict and reorder the instruc-
tions as necessary to delay the loading of the conflicting data by inserting
no-operation instructions. This method is referred to as delayed load. An exam-
ple of delayed load is presented in the next section.

Handling of Branch Instructions

One of the major problems in operating an instruction pipeline is the occur-
rence of branch instructions. A branch instruction can be conditional or uncon-
ditional. An unconditional branch always alters the sequential program flow
by loading the program counter with the target address. In a conditional
branch, the control selects the target instruction if the condition is satisfied or
the next sequential instruction if the condition is not satisfied. As mentioned
previously, the branch instruction breaks the normal sequence of the instruc-
tion stream, causing difficulties in the operation of the instruction pipeline.

prefetch target
instruction

branch target buffer

loop buffer

branch prediction

delayed branch

SECTION 9-5 RISC Pipeline 315

Pipelined computers employ various hardware techniques to minimize the
performance degradation caused by instruction branching.

One way of handling a conditional branch is to prefetch the targetinstruc-
tion in addition to the instruction following the branch. Both are saved until
the branch is executed. If the branch condition is successful, the pipeline
continues from the branch target instruction. An extension of this procedure
is to continue fetching instructions from both places until the branch decision
is made. At that time control chooses the instruction stream of the correct
program flow.

Another possibility is the use of a branch target buffer or BTB. The BTB is
an associative memory (see Sec. 12-4) included in the fetch segment of the
pipeline. Eachentry in the BTB consists of the address of a previously executed
branch instruction and the targetinstruction for that branch. It also stores the
next few instructions after the branch target instruction. When the pipeline
decodes a branch instruction, it searches the associative memory BTB for the
address of theinstruction. If it isin the BTB, theinstruction is available directly
and prefetch continues from the new path. If the instruction is not in the BTB,
the pipeline shifts to a new instruction stream and stores the target instruction
in the BTB. The advantage of this scheme is that branch instructions that have
occurred previously are readily available in the pipeline without interruption.

A variation of the BTB is the loop buffer. This is a small very high speed
register file maintained by the instruction fetch segment of the pipeline. When
a program loop is detected in the program, it is stored in the loop buffer in its
entirety, including all branches. The program loop can be executed directly
without having to access memory until the loop mode is removed by the final
branching out.

Another procedure that some computers use is branch prediction. A
pipeline with branch prediction uses some additional logic to guess the out-
come of a conditional branch instruction before it is executed. The pipeline then
begins prefetching the instruction stream from the predicted path. A correct
prediction eliminates the wasted time caused by branch penalties.

A procedure employed in most RISC processors is the delayed branch. In
this procedure, thecompilerdetects the branchinstructions and rearranges the
machinelanguage code sequence by inserting useful instructions that keep the
pipelineoperating withoutinterruptions. An example of delayed branch is the
insertion of a no-operation instruction after a branch instruction. This causes
the computer to fetch the target instruction during the execution of the no-
operation instruction, allowing a continuous flow of the pipeline. An example
of delayed branch is presented in the next section.

9.5 RISC Pipeline

The reduced instruction set computer (RISC) was introduced in Sec. 8-8.
Among the characteristics attributed to RISC is its ability to use an efficient
instruction pipeline. The simplicity of the instruction set can be utilized to

