قسم الرياضيات يناقش رسالة ماجستير تبحث في بعض نتائج التقارب لخوارزميات النقطة الاقرب ذات الخطوات المختلفة


Print Friendly, PDF & Email

ناقش قسم الرياضيات في كلية التربية للعلوم الصرفة (ابن الهيثم) رسالة الماجستير الموسومة (بعض نتائج التقارب لخوارزميات النقطة الاقرب ذات الخطوات المختلفة) للطالب ( سعد شاكر حسين ) التي انجزها تحت اشراف التدريسية في القسم (أ.م.د. زينة حسين معيبد) ونوقشت من قبل أعضاء لجنة المناقشة المبينة أسمائهم فيما يأتي :

  • أ.م.د. فاطمة فيصل كريم (رئيسا)

  • أ.م.د. يوسف يعكوب يوسف (عضوا)

  • أ.م.د. فارعة علي جيجان (عضوا)

  • أ.م.د. زينة حسين معيبد (عضوا ومشرفا)

 في هذه الرسالة ، قدمنا ثلاث خوارزميات  جديدة تسمى Mann-Z المعدلة و Mann-Sالمعدلة  و ZSY التكرارية ، و عرفنا نوعا جديدا من تطبيق الانكماش يسمى المعمم like تطبيقات الانكماش. أثبتنا أن لدينا خوارزمية ZSY أسرع من خوارزمية S و خوارزمية Mannالمخططات التكرارية الرائدة الحالية ، و انه أسرع من الخوارزمية  الجديدة (Mann-Z المعدل ، Mann-S المعدل) لتقريب النقطة الثابتة. من ناحية أخرى، فان خوارزميات النقطة القريبة المعدلة Mann-Z أفضل من خوارزمية  Mann و خوارزمية S و خوارزمية Mann-S المعدلة باستخدام المعمم like تطبيقات الانكماش في المساحة المعيارية. أيضا، أثبتنا ان التكرار Mann-Z المعدل يكافئ كل من الخوارزميات (ZSY-خوارزمية ، Mann-S المعدل، مان، S، تعديل SP، إيشيكاوا، بيكارد-S، M، الخوارزميةN-، نور،  k، ) المتعلقة بتقريبها إلى نقاط ثابتة في الفضاء uniformly  بناخ، ونحن عرضنا التقارب لكل الخوارزميات إلى نقطة ثابتة مع صورتها. كما نقدم توضيحا رقميا لتوضيح أن خوارزميات النقطة الثابتة لدينا أفضل من الخوارزميات الأخرى باستخدام المعمم like تطبيقات الانكماش.


Some Convergence Results for Proximal Point Algorithms with Different Steps

By Sa’ad Shakir Hussein

Supervised by Supervised By Assist Prof. Dr. Zena Hussein Maibed

Abstract

In this thesis, we to introduce a new algorithms type different steps called Modified Mann-Z, Modified Mann-S and ZSY- algorithm and we defined nw type of contraction mapping called generalized like contraction mapping. We proved that our algorithm (ZSY- algorithm) is faster than S- algorithm and Mann- algorithm the existing leading algorithms, and it is faster from a new algorithm (Modified Mann-Z, Modified Mann-S) for the approximation of fixed point.

On the other hand, the Modified Mann-Z  proximal point algorithms are better than of Mann- algorithm, S- algorithm, and Modified Mann-S  algorithm in terms of using generalized like contraction mappings in normd space.

Also, we prove the equivalence of the Modified Mann-Z proximal point algorithm of all these proximal point algorithms (ZSY- algorithm, Modified Mann-S, Mann, S, Modified SP, Ishikawa, Picard-S , M, N-algorithm, Noor, k, M*-algorithms) that are related to its approximate to fixed points in uniformly Banach space. Moreover, the convergence of each algorithm are proved with it’s their image. Furthermore, a numerical illustration to show   that our proximal point algorithm  are better than the other algorithms is presented by generalized like contraction mapping.

 

Comments are disabled.